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ABSTRACT
Recent data analysis of polar motion indicates the presence of a component
with periodicity corresponding to the motion of the lunar ascending node. An
investigation of the tidal response of the ocean to long period forcing functions
has been conducted. The results of the investigation indicate the possibility of
excitation of a wobble component with the amplitude and frequency indicated by
the data. An enhancement function for the equilibrium tide has been postulated

in the form of an expansion in zonal harmonics and the coefficients of such an

expansion have been estimated so as to obtain polar motion components of the

required magnitude. ’ ’
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1. INTRODUCTION
Recent data analysis by Markowitz (1979) indicate the existence of a wobble component with

periodicity and phase corresponding to the motion of the lunar ascending node.

% The objective of this investigation is to ascertain the possibility of the existence of a 18.6
year wobble component due to a modified equilibrium ocean tide. The study of the equilibrium
response of the oceans dates back to Darw:n (1886). More recently Proudman (1960) reached the
conclusion that the tidal constituent with nodal period will follow the equilibrium law while the

semiannual and annual constituents will probably follow it.

Wunsch (1967) tested the equilibrium hypothesis by computing periodograms for the fort-
nightly and monthly tides on islands of the Pacific which he found to deviate significantly from

equilibrium. He considers the nodal tide to tend towards equilibrium with a certain degree of

admissible uncertainty.

The ocean responds not only to the gravitational potential of the Moon and the Sun, but also

to the second degree potential of the Earth rotation. The “pole tide” or ocean response to the

Chandler wobble has been analyzed by various investigators, Haubrich and Munk (1959) analyzed

mean monthly values of sea level from 11 tide stations and found the average pole tid: with period

} of 14 months to have an amplitude twice that predicted by equilibrium theory. {

Hosoyama, ct al,, (1976) found the amplitude ratios of the observed to equilibrium pole
' tides to increase at high and low latitudes in the northern hemisphere; they also find latitude
dependent phase delays and advances with implications concerning the possible excitement of the
: Chandler wobble. Naito (1977, 1979) computed the secular variations of the amplitude and phase

of the observed pole tide for the period 1900-1964 and compared them with those of the
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equilibrium pole tide, he found the largest amplitudes of the observed pole tide to take place in
the coasts of the Baltic and North Seas, he concludes that the observed pole tides seem to have a
certain relation with the equilibrium tides, but to have their own secular variations. Dickman
(1979) studied the effects of the pole tide on the Chandler wobble assuming pole tide amplitudes
up to 10 times equilibrium both for the case of global enhancement and for regional enhance-
ments in the North and Baltic seas. Dahlen (1976) developed a general theory to determine the

influencc of the pole tide upon rotation of the Earth.

The coneept of an enhancement function which modifies the equilibrium tide can be applied
also to the ocean response to the gravitational disturbing forces. Such an enhancement function
can be expressed in terms of spherical harmonics with adjustable coefficients, It is then possible
to express the tidal contributions to the products of inertia in terms of the enhancement function
coefficients which can be estimated so as to obtain the polar motion components indicated by the
analysis of the data. The estimated coefficients then can be used to predict the modified behavior

of the cquilibrium tide.

2. SOLUTION TO THE LIOUVILLE EQUATIONS

The Liouville equations of motion were first given by Liouville (1858). The following
assimptions are now made,
(1) the external moments and relative angular momentum terms vanish,
(2) the moments of inertia are constant and considerably larger than the products of
inertia; the equatorial inoments of inertia are equal.

(3) the w, component of angular velocity is a constant and much larger than w, and Wy.

Neglecting products of small quantities the cquations of motion then become

0

]

'iu‘*‘z +Aw, + lylwyz + (C - A)wyu)z
2.1

-—iy,wz + Awy - I w: + (A -0 ww, =0

b
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Now let the products of inertia be given by
ke = 1§z + 1,
lyz = Iy, + 1y,

where the superscript r denotes the contribution due to rotational deformation of the solid Earth

Q.2)

’. , and T indicates the contribution due to the ocean tide. The rotational deformation is known to

be given by
RS
I = e w
IXz 3 2 G Wy Wy
(2.3)
RS

lyz = ‘;kz 'G_“’y“’z

where R denotes the radius of the Earth, G is the gravitational constant and k, is the second degree

| Love number.

Equations (2.1) can then be written as follows,

] &')x-f-nzwx-——l——(fx—nf)
E | (A + ) y

ol Ao

(2.4)

1
(A + ﬂ|)

| L] .

y ¥ nzmy = (fy + nfy)

where

Ik RS 3
| a8 = =— _—w
7 1 3 ZG z
[(C - A) -a]

ns=

Eo (A +a)

T
fy = 1Jz0, - l)Tz"*’z2

fy = l;:“’z + 1] wd
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Let
15, = My, cos(§t = ¢y,)
: (2.6)
lyz - Myz co“n - ‘yz)
Then
wy = Wy cos(ft - ¢,,x)
2.7
wy - wy co’(n - ¢wy)
wx = {K% + K% + 2K1K2 'in(Oxz = ’yz)} i
W, = {KI + K} + 2K K, sin(¢,, - ¢,‘,)} k2
dwx = arctan <(K,singy, + K,cos¢y,)/(K,cos¢y, - K;singy,)
$py = arctan {K,sinq)yz + K c089y,)/(K3cusgy, = K singy,)
K, = -My,w,¢? + nw,)/[(A + a,}n? - §?))
K; = My;w 8w, + n/I(A + aXn? - )
K3 = (My,/My,)K,;
K‘ = ‘(sz/Myz)Kz
The polar motion compenents are given by
X = (wy/wz)R
(2.8)

y = (wy/wz)R

3. EQUILIBRIUM OCEAN TIDE

The subject of an cquilibrium ocean tide including the effects of ocean loading and the self
attraction of the water has been the object of various investigations: Hendersholt (1972), Dahlen
(1976), Agnew and Farrell (1978) and others. It follows that a global equilibrium tide is given by

the following expression:

(1 + kn = hn) Un

1 - ay(1 + ky - hy) g

3.1
3 p

2“ + 1 p',

(g =




x

where U, is the disturbing potential due to the mass of the tide generating body and its motion
relative to the Earth; k;,, h,, k{, and hy are the Love numben of degree n, p denotes the density

of water and pp is the mean density of the solid Earth, g is the acceleration of gravity.

In order to introduce the concept of a modified equilibrium tide an enhancement function is
postulated and its functional form is assumed to be given by an expansion in spherical han.nonics

of the following form,
E@) = rJP] + r0P9 + rOP§ + r9P} (3.2)

where the P's arc the Legendre polynomials and the r's are undetermined coefficients. The modified

equilibrium tide is then given by
Ew = E@0)¢ 3.3)
The unmodificd tide is recovered when

=1 =ry=M-=0.

Now let 2 denote the surface arca covered by the oceans and define 5'“ as follows:

Eusd = /:/ ty ds 3.4)
c

where the surface integral is taken over the arca of the continents. §y represents the quantity

which must be added to &, in order to satisfy conservation of mass. Note that,

[[ Eyds = [/‘ fmds - [/ tuds
C Sphere Oceans
3.5
[/ b ds = /] (0. ) b ds
Oceans Sphere

a® cosmy 0 over coniinents
RIS DI - i = { (3.6)
n m

by sinmy 1 over oceans
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Consider the casc when the disturbing potential is given by

U2 = R2 qg Pg (3-7)

qf being a function of the position and mass of the disturbing body. Making use of Equations
(3.1)-(3.7)

= (B,/5a() [a9r8 + (-— ad + j—ag)

2 2
+ ag-f-;agﬁ-'?-ag-l v

(3.8)
3 0 4 50 0] 0
+{—al + —a} + — o} r
7 MRS
(1 + k, -hy) R?
Bz = — qg
l - Qz(l + kz - h, ) g
The complete expression for the modified equilibrium tide is then
By = by * b (3.9)

4, PRODUCTS OF INERTIA

The contributions to the products of inertia due to a modified equilibrium tide are given by

Iy, =f/ {0, ¢)xzdm
Sphere

lyl =ff 10, y)yzdm
Sphere

“.1n

where
x = Rsindcosy
y = Rsindsiny
z = Roost

O

oy



dm = pf, (6)[Rd6 * Rsinddy)

Making use of Equations (3.1)=(3.9) yields

(o} gome [2() 2]
(EORESOR—HIL

TE2 0 (22 22
AE ) (i () G o) (1)
, l418%0 (a; )] o E(‘;\.&‘

165165 \b} /| * s \b}/B,

The integration of the product of three and four spherical harmonics has been performed by means

of the 3-j symbols of Wigner (Rotenberg, et al., 1959; Winch and James, 1973).

5. NUMERICAL RESULTS

The expressions for the products of inertia given by Equations (4.2) can be put in the form

of Equations (2.6) since

a§ = -(Gp/R?) I Mjcos(a;) (S.1)
i

where G, is Doodson’s constant and M, «; are the amplitudes and arguments for the various tidal
constituents. The principal terms of the low frequency tides ace given by Cartwright and Edden

(1973). For the purpose of this investigation the nodal term is the one of interest, then

M = -0.06556
a={t - 259183280 (5.2)
¢t = 2n/18.613 years

e -.;,. o b e et M Tl st

g
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epoch. !89. December 31, 12h, Om, Os
ephemeris time

The solution of the problem consists in estimating the values of r§, ¢{, 1§ and 9 appearing in
Equation (4.2) which will yicld polar motion components satisfying the results from data analysis.

oy

Markowitz (1979) analyzed 79 years of ILS (International Latitude Service) data and 17

years of IPMS (International Polar Motion Service) data, he obtained the following recults:

ILS
x = (282 13)cos(§t - 1903.7 £ 1.2y)
y = (222 13)cos({t - 190442 1.5y)

IPMS
x = (222 13)cos({t - 1905.7 £ 1.5y)
y = (252 13)cos ({t - 1906.7 £ 1.4y)

The results are expressed in a geodetic coordinate system in cm units. The polar motion

components corresponding to the casc of a non-moditied equilibrium tide are obtained by letting

1) =1,19=r) =1 =0, this yields

x = 0.3 cos ({t - 1906.14)
y = 3.02cos(ft - 1913.38)

In order to cstimate the values of the coefficients that will 1it the polar motion cata a general

purpose adaptive iterator for nonlinear problems (Campbell, ¢t al.) has been used. The results are

given below: }
s .

1) = --7.2260094

= 27151830

1) = 3.1766850
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1) = -0.92669194
X = 27.48 cos (§t - 1905.37)
. y = 22.84 cos ({t - 1904.97)

1PMS
1) = ~2,0466899
r? = 1,2925059
1) = 2,0108450
1} = 0.0091169942
x = 21,27 cos(§t - 1905.44)
y = 25.85cos({t - 1905.05)

In both cases the coefficients were cstimated so as to obtain polar motion components within
1cm of the mean values given by Markowitz analysis. No constraints were imposed on the values

obtained for the phase angles.

The corresponding enhancement functions and tide heights follow from Equations (3.2) and

(3.9), they are shown in Figures (5.1)=(5.5) below, also shown is the unmodified cquilibrium tide,

6. CONCLUSIONS

The results indicate that a modified cquilibrium tide could provide the excitation required to
gencrate the polar motion component detected by Markowitz. However since no ocean dynamics
have been incorporated into the formuiation of the enhancement function the results have to remain
speculative. The concept of enhanceinent is not a n.w one although its application has been limited
to the pole tide, in such cases different invest.g~tors have considered the possibility of enhancement
reaching values up to 10 times the equilibrium, also analysis of tidal data has indicated the existence
of latitude dependencics as well as magnificaticns in shallow seas. In that light and by ¢~ mparison the
magnitude of enhancement obtained in this study does not appear altogether exorbitant, especially in
the case of the IPMS data. Nevertheless the results should be considered as indicative of a possibility
rather than as a quantitative determination of ocean behavior.
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APPENDIX 1
Numerical values of the constants used in the investigation,

Moments of inertia.

A = 8.016(10*)gm - cm?
C = 8.043(10*)gm - cm?
w,; = 27/86400rad/sec
R = 6.378(10%)cm
k, = 0.30

G = 6.67(10°8)cm? dynes/gm?

With the values above and making use of Equation (2.5) one obtains a 445 day Chandler period.

(1 +ky - hy)

2 = 086465
| "'az(l + kz- hz)

p = 1.03gm/cm3

[ ]
"

= 980 cm/sec?

The values of the coefficients ag‘ and bnm appearing in the ocean function, Equation (3.6)
are those given by Balmino, Lambeck and Kaula (1973). The proper normalization factors have

been applied in order to maintain consistency throughout the calculations,

Gp = 2.627723(10%)cm?/sec?
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FIGURE CAPTIONS

Figure 5.1 Unmodified Tide Height
Figure 5.2 Modified Tide Height (ILS)
Figure 5.3 Modified Tide Height (IPMS)
Figure 5.4 Enhancement Function (ILS)

Figure 5.5 Enhancement Function (IPMS)
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