

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH

INFORMATION AS POSSIBLE

4

JPL PUBLICATION 79-49

Computing Region Moments from
Boundary Representations
J. M. Wilf
R. T. Cunningham

(NASA-CR-162685) CCMPTITTNG REGION 4OMENTS 	 MRO-16767

FROM BOnNDART RFPRFSFNTATTCNS (Jet
Propulsion Lab.) 36 D Hr A0 3 /MF A01

CSCL 09P	 '?nclas
r,3/F1 45Q66

^o

C

November 1, 1979

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

1
LL-

'	
10

JPL PUBLICATION 79-49

Computing Region Moments from
Boundary Representations
J. M. Wilf
R. T. Cunningham

November 1, 1979

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

CONTENTS

I. Introduction --- 1

II. Derivation of the General Formula ----------------------------- 4

' .- 11 . Values for the Independent Parameter

IV. Moments for Chain-Encoded Curves ----------------------------- 13

V. The Algorithms -- 22

References--r--------------- 31

Tables

1. Chain code values and an example of moment calibration ---------- 18

:1	
2. Computational requirements for Equations (27) ------------------- 20

{

3. Computational requirements for Equations (28) ------------------- 21

Figures

1. The region R, with boundary OR approximated
byan oriented polygon.-- 6

2. The eight possible directions between a grid
pointand its nearest neighbors --------------------------------- 14

3. The region R, with boundary OR approximated
bya chain-encoded curve -- 15

iii

ABSTRACT

The moments of a region in an image can be used to describe the

region's location, orientation, and shape. This paper derives the class

of all possible formulas for computing arbitrary moments of a region

from the region's boundary. The selection of a particular formula

depends on the choice of an independent parameter. Several choices of

this parameter are explored for region boundaries approximated by

polygons. The parameter choice that minimizes computation time for

boundaries represented by chain code is derived. Finally, two

algorithms are presented. The first computes arbitrary moments for a

region from a polygonal approximation of its boundary. The second

algorithm is optimal for computing low order moments from chain-encoded

boundaries.

iv

= - _

I. INTRODUCTION

Many pattern recognition techniques in computer vision use

structural or statistical features of regions and their outlines to

characterize the shape of objects being viewed. An important class of

statistical features is the set of (p +q)-th order moments defined by

0 m
`'((

F4 s f Je xpYgf (x .Y) dxdY

where f(x,y) is a density distribution function. In the context of

pattern recognition, the moments are computed for a unifr,rm density

distribution over a closed region R in the xy-plane. Therefore, f(x,y)

reduces to

1, if (x,y) eR
f(x,y)

10, if (x,y) gR

In this case, (1) becomes

_ ff xpyq dxdy	 (2)mpq	
R

The most common example of the use of moments is to compute the

centroid (x,x) of a region by

m10	 - mol	
(3)x =. y =-E0--0-00	 m00

where m00 is the area of the region. Moments are also used to compute

the angle of a region's axis of minimum moment of inertia 0. This quantity

(1)

1

y

defines the region ' s orientation within a two -fold degeneracy and is

given by

e = 1 tari 1	
2(,Oo'

ll - m].omol)	 (^)

2	
1'06'20 - '10) - ('00'02 - '61)

The quantities x, y, and 9 are useful for pattern recognition

because they specify the position and orientation of regions, defining

a transformation between image and model coordinates, and thus allowing

further analysis of shape features in a standard reference frame.

A more direct application of moments to pattern recognition is the

use of moment invariants to describe objects. These are quantities,

computed in terms of the moments of a region, that are invariant under

translation, rotation, and scale changes. Hu (1] derives seven moment

invariants and Wong and Hall [2] describe an application that uses

them to recognize objects in aerial scenes.

If the region is scanned in a raster fashion, the moments may be

calculated by using the discrete version of Eq. (2):

F
	 xpYq 	 (x.Y)s R	 (5)

mpq L
x̂ y

However, a,region is often represented by its boundary. This is

the case when edge detection is used to separate objects in a scene [3].

It is possible to re^onstruct the region from its boundary and use

'	 Eq. (5). However, this is computationally inefficient, since a region

usually contains many more points than its boundary. Therefore, a

method that computes moments while traversing the boundary is desirable.

.V

2

In this paper, such a method is derived for boundaries approximated

by polygons.

Chain code is an ordered list of numbers that represent the orien•,

tations of segments comprising the boundary. It is a commonly used

special case of polygonal approximation with many attractive properties
1

[4]. The method presented in this paper is used to find an algorithm

that minimizes the time it takes to calculate moments from chain-encoded

boundaries.

In Section II, we derive the general formula for computing region

moments from a boundary representation. The initial steps of the deri-

vation rely on the theory of differential forms. Reader unfamiliar

with this branch of mathematics are referred to Flanders [S]. In

Section III, we explore the possible choices of the independent param-

eter in the general formula to obtain equations suitable for computation.

In Section IV, the execution time of these equations is analyzed for

chain-encoded curves. Finally, Section V presents an algorithm that

computes arbitrary moments from polygonal boundaries and an algorithm

that is optimal for computing low order moments from chain-encoded

curves.

3

II. DERIVATION OF THE GENERAL FORMULA

The strategy of this derivation is to reduce the surface integral

in formula (2) to a line integral, using Stokes' theorem. In our case,

we want to find functions A - A(x,y) and B = B(x,y) such that

mpq = fxpygdxdy = J Adx + Bdy	 (6)
R	 aR

where aR is the boundary of R. Stokes' theorem states that for Eq. (6)

to hold, we must have

xpyqdxdy = d(Adx + Bdy)	 (7)

where d, the differential operator, is defined in two dimensions by

d - dx
a
+ dy ay (5). Evaluating the d operator in Eq. (7) gives

xpygdxdy = ^ax ay) dxdy

or	 (8)

xpyq =
DB
x - ay

The solution to this partial differential equation is

A = axpyq+l , B = bxp+lyq	 (9)

4

where a and b are real numbers. We can find a and b by substituting the

values of A and B from Eq. (9) back into Eq. (3). This yields the

following constraint:

b(p + 1) - a(q + 1) - 1	 (10)

The line integral to be solved then becomes

mpq s	
(4vdx + bxdy)xpyq

aR
	 (11)

where a and b are constrained by Eq. (10). For any piecewise continu-

ous boundary representation, Eq. (11) will give a region ' s moments

from its boundary.

Let 8R, the r^-ndary of the region, be approximated by a closed
n

polygon as in Fig. 1. Then, DR n Rs1S., where the S i are linked oriented

line segments with endpoints (x R _ 1 , y^ _ 1) and (xR , yd, respectively.

Since 8R is a piecewise continuous function, the integral in equation

(11) can be broken into a sum of integrals over each boundary segment.

Let

Pqt = J (avdx + bxdy)xpyq
	

(?2)

L

Then

n

W
.^	 Pg	 mpgZ
	

(13)

t=1

S

(XO• Yd - (x7, r7)

(V Y6)

(xl. rl)	 s.

(X5 . Y^ -

Y^

(xV Y-

Figure 1. The region R, shown here as bordered by the dotted line,
has its boundary, 8R, approximated by an oriented polygon.
The polygon is composed of the links S t and oriented in a
clockwise direction.

6

The problem is to find m pgt by integrating Eq. (12). Let

Axe n X - xt-1 and Ay nyt-Yt-1 . Then all points (x,y) along the

lire segment S i can be parameterized as follows:

x = Axtt + xl ,	 Y = Aytt + y i	 -1 S t S 0	 (14)

dx n AxIdt,	 dy = Ayidt

Using Eq. (lk) and the binomial theorem,

q
xPyq =	

(i) Ax
it i xP-i	 r

(q) AyRtj Yq-j

[i=0	 Jn0

P	 qq

	

Fq-j

(i)(^^xi i y	
Ax AY t i+j	 (15)

i=0=0

Finally, by substituting the parameterized x, y, dx, dy, and xpyq of

r-qs. (14) and (15) into the integral that defines mpg1 in Eq. (12), the

general formula is obtained:

0p 	 q

M	 n 	 (a+b) Ax Ay t + qy Ax + bx Ay 	 ti i^ xt yq-^ Qx i Ay'^ t i+j	 dt
pq^	 E	 t	 Y	 R	 t	 t	 1	 R	 t	 t

t•-1	 1^0 i•0

(1b)

7

I

Moto'

0-h

where b(p+l) - a(q+l) = 1. Equation (16) is not only a formula for the

(p+q)-th order moment; it also contains evens► possible formula for the

(p+q)-th order moment. Each choice of parameters a and b, subject to the

constraint given above, generates a new valid equation for mpgi.

6

1II. VALUES FOR THE INDEPENDENT PARAMETER

Before Eq. (16) can be evaluated, real values must be assigned to

the parameters a and b. The goal is to choose the a and b that will make

computing m Q9 as simple as possible. The most obvious simplification

is elimination of one or more of the terms in the integral. It follows

directly from Eq. (16) and the constraint on a and b, that only three

parameter choices will eliminate one of the terms in Eq. (16):

Choice 1: a + b - 0, b - 1/(p+q+2)

Choice 2: a - 0, b - 1/(p+l) 	 (17)

Choice 3: b - 0, a = -1/(q+l)

We now look at each case in detail. For choice 1, the general

formula reduces to

0j	
^p

p	 qq

m	 = b(x Ay - y Ax	
!.1 ^ ^q

xP-i yq-.1 Ax eyj t i+j dt
PqE	 k	 R Q) 1	 i	 ^j^ ¢	 k	 A

t=-1 i-0 ,j-0

(18)

Noting that

0 ti+

j
dt	

ti+j+l

J	 = i+j +l
-1

0	

-1 i+J+l

-1

[ti

9

iy

3

t '_
a

a

and setting At : xIAYI - ykexk , the formula for choice 1 becomes

P	 q	 i+J

Pqt : b AR
	

(i1+^+1
(
it (j)	

i
yq	 Ay't	 (19)

i=0 3=0

For choice 2, where a - 0 and b - 1/(p+l), the middle term in the

integral in Eq. (16) drops out, leaving

0	 P	 q /

Pqk = b
r (Ax DyRt + xi Byit)5i) (

j) X£
-i yR-j QX^i eyjt t i+j dt

t=J-1	 i=0 j=0

(20)

Evaluating the integral in (20) gives

P	 q	 i+j+1
1 	 q P-i q-j i+1 j+lm	 spgI - bE i++2

(ip)
`j} xk yL ©xk dyk

i=0 j=0

P	 q

E(-1)i+j E+	
P-i+1 yq-,^ 8xi

Ay,^+1
1+J+1

(F)

i

(q

)i Xk	 k	 k k
i=0 J=0

The two double sums can be combined by making the substitution

k=i+l in the first double sum. Making this substitution yields

(21)

10

p+1 q

b^.....^....^ (p 1 /q 	 p-k+l q-j	 k. J+1
PqA 	 E Ek+j+l k-1 G) xR	 yR AX

k.1
►YR

k-1 J-0

P	 q 1_1)1+j
+	 - 1i) \

q^ p-i+l q-^	 i	 +l

	

^+l	
j x

R 	yR nx R t^Y R	(2)

i-0 J M0

Finally, using the relation ikpl^ + (k1 - ^pk	 .the sums can be

combine.: as follows:

p+l qi+j
m	 b	 ['^ (1 ^	 (p+l) (q) xp-i+l yQ-,j Ax' Ay'+'	 (23)

pqR	 i+j+l	 i	 j	 R	 R	 R	 4

1-0 J-0

Choice 3, the case where b - 0 and a = -1/(q+l), reduces Eq. (16)

to

0	 p	 q

m	 - s	 (AxAy t + y Ax)	
(p) 	 xp-iyq-j AxVAY`^ti+`idt

pqR	 t	 R	 R	 R 	i

(q)

i 	 R	 R	 R	 Rt--	 i-0 JU
u,14)

Comparison of Fqs. (20) and (24) allows us to exploit the symmetry of

the a - o and b m r cases to write the solution of Fq. (' 1+) as

p q+1

	

(-1)
i+,^

p	 q l	 p I q- i+ 1	 i+1	 j
mpgk

r
L E i+j

+l i i x t- y R	 Axe Aye

{"•	 i-0 1 -0

(•-,E;)

11

Now we have three formulas for mpgt - Eqa. (19), (23), and (25) -

corresponding to three choices of the independent parameter. Which

formula should be used for computation? In the next section, we will

examine the special case of ehAin-encoded curves, when Ax and Ay take on

only the values zero, one, and minus one. For now, let us consider the

general case of polygonal approximation, where Ax and Ay are arbitrary

real numbers. We assume that all moments up to order n - p + q are to

be computed in a single boundary traversal.

The computational requirements for m00
are the same for all

parameter choices. For p + q > 0, the number of terms, N, for each

parameter choice can be read directly from the formulas:

For choice 1, a = -b, N = (p+l)(q+l) = pq + p + q + 1

For choice 2, a =	 0, N = (p+2)(q+l) pq + p + 2q + 2	 (26)

For choice 3, b =	 0, N = (p+l)(q+2) = pq + 2p + q + 2

The equations in (26) show that choice 1 requires at least p

additions fewer than choice 2 and q additions fewer than choice 3.

Equation (26) also shows that choices 2 and 3 differ by p-q terms.

Therefore, choice 2 is more efficient than choice 3 when p > q and

choice 3 is more efficient when p < q.

Equations (23) and (25) are homogeneous polynomials in x, y, Ax,

and Ay, of degree p+q+2. Equation (19) is homogeneous of degree p+q

and requires one extra multiplication for the A R term. Therefore,

choice 1 requires at most the same number of multiplications needed for

choices 2 and 3. Clearly, for the general case of polygonal approxi-

mation to a curve, Eq. (19) is the logical formula for computing moments.

12

r

IV. MOMENTS FOR CHAIN-ENCODED CURVES

Chain code is a special case of polygonal approximation. Each

segment of the boundary connects a grid point to one of its eight near-

est neighbors, represented by the numbers zero through seven. Fig-

ures 2 and 3 show our conventions for labelling the chain code direc-

tions, image coordinates, and the positive orientation of the boundary.

Using a chain-encoded boundary representation, we would like to

compute the zeroeth through secind order moments: m00,
m10' mol l m20'

E:

	

	
mill and m02 . We have a choice of two sets of formulas. The first set

is derived from Eq. (19):

n
_ 1

m00 2

	

	
AR

k=1

n

m10 3
F AR

(x ,, 2 Ax,)
R,=1

nn

m01	 3 L...I AR `YR 2 4yJC

R-1

(27)
n

m20 4 F, AR, (x
2 - x R Ax, + 3 AX2

i=1

	

•	 nn

mil 4 F, Ak ^ xk y
^ 2 x^ Ay, - 2 Y^ Ax e + 3 Axe, AYQ)

Z=1

n
2

	

'	 m02 _ 1

	
At (Y^t - Y, Ayk +

3 AYR

1^=1

13

a 0

3
	

2
	

I

5	 6	 7

Figure 2. The eight possible directions between a grid point
and its nearest neighbors are represented by the
chain code numbers as shown above.

14

'1 r

0	 1	 2	 3	 4	 S	 d	 7	 8	 9	 10'

0	 +x

1 OR

2	 (x00 rd acs, 2)

3

4

5
R

6

1	 f

8

Ole

9

[+y

Figure 3. The region R, shown here as bordered by the dotted
line, has its boundary, 8R, approximated by a
chain-encoded curve. The chain code for BE is 0,0,
09090,0,097,09696969495,5959495,3,412,4,312,2,211,1.

The second set of formulas will derive from Eqs. (23) and (25) by

using (23) if p >- q, and Eq. (25) otherwise. The formulas are

n
j	 1)

m00 =	 1xR AYR - 2
AX

1 AyR!
R=1

n

M.0 = 2 ^j (xR ^R - xR AxR 4YR + 3 Ax1
 AY 1)

R=1

_	
n1 ^^ 2	 1	 2)

2	 ym01 = -	 R Ax - yR AX AyR + 3
Ax AyR

R=1

n
m20 3	

(x3R
AY - 2 xR Ax I AyR	+ x AxR Ay

it - 4 AXR AY

R=1

n
1^(2	 1 2 2

mll 2

	

	 xR yR AYR 2 xR AyR x yR
AxR

AyR
R=1

+ .g

3 x Ax

AyR + 3 yR
2

AxR
AyI - 7 AxR AYD

n

m02 = 3	 (yR
AX 	

2 y AX Ay it + yR AX AyR k
AxR

Ay X
)

R=1

These formulas can be evaluated most efficiently if the terms of

each sum are accumulated separately as the boundary is traversed. Let

PMpq[k] represent the kth term, in the order written above, of moment

mpq . For example, PM10[2] - xIAXIAYI in Eq. (28). After completing the

traversal, each PMpq[k] term is multiplied by its coefficient. These

quantities are then combined to obtain the moments.

16

The chain code representation allows another simplification. Since

AX and Ayi are limited to the values zero, one, and minus one, it is not

necessary to perform the multiplications by Ax and Ayi indicated in the

formulas. If Ax (Ay I) = 0, then the terms containing Ax (Ayi) can be

ignored. Otherwise, Ax and Ayi simply determine the sign of each term.

The values of Axk and Ay are completely determined by the chain coda num-

ber. We therefore treat each of the eight chain code directions as a

separate case. Table 1 shows the eight cases for m oo , using the formula

from Eq. (28).

Now, we must decide which set of formulas executes in the least

amount of time, using the implementation strategy discussed above.

Clearly, the formulas in Eq. (28) have more terms than those in Eq. (27).

However, this does not tell the whole story, since the restrictions

on Ax and Ay mean that each term is not necessarily computed every time.

The probability that a term is computed equals the probability that its

Ax or Ay factors are nonzero. Let w be the probability that the kth

term is computed and let P(z) represent the probability that event z

occurs. Then,

1,	 if there are no Ax or Ay factors present

P(Ax00),	 if a Ax but not a Ay factor is present

	

n	 (29)

	

k	 P(Ay00),	 if a Ay but not a Ax factor is present

P(AxAyOO), if both Ax and Ay factors are present

AM

17

OEM

Table 1. Chain code values and an example of moment ci

Chain code 0 1 2 3 4 5

Ax 1 1 0 -1 -1 -1

Ay 0 -1 -1 -1 0 1

PM00[1)=xAy 0 -x -x -X 0 x

PM00[21-AxAy 0 -1 0 1 0 -1

The eight chain code values are shown with correspondin,

Ax, Ay, and the terms PM00[1], PM00[2) used to compute

18

s

Oroen and Verbeek [61 have calculated that, for an arbitrary

chain-encoded figure, the probability of an even chain code Link-is

0.5858 and the probability of an odd link is 0.4142. Therefore, refer-

ring to Table 1,

P(WO) = P(odd code) + 2 Pleven code) a 0.7071	
(30)

P(Ay#0) - P(odd code) + 2 Pleven code) = 0.7071

P(Ax1ly#0) = P(odd code) - 0.4142

Let Tk be the execution time of PMpq[k], M the execution time for

one multiplication, and A the execution time for one addition. Let U

be the number of multiplications needed to calcullte PMpq[k]. Then the

expected execution time for this term, E(T k), is given by

E(Tk) -
Wk (P

k

M + A)
	

(31)

Table 2 gives Ak, Uk , and E(Tk) for every term in Eqs. (27) and

(28). The total expected execution time E(T) is just the sum of the

E(Tk) over all terms in the formula. The result of adding the E(Tk)

in Tables 2 and 3 reveals that

For Eq. (27), E(T) - 5M + 12.4852A
(32)

For Eq. (28), E(T) - 3.9497M + 10.3343A

Therefore, ve vill use equation (28) to calculate the moments from

a chain-encoded boundary.

19

Table 2. Computational requirements for Equations (27)

mpq k PMpgtkl
V U Yk

moo
1 At 1 0 0

M10
1 Aix 1 1 1

2 A1Ax 0.7071 0 0

m01 1 Aiy 1 1 1

2 ALAY 0.7071 0 0

M20 1 AIx2 1 la 1

2 AIxAx 0.7071 Oa 0

3 AtAx2 0.7071
01,

0

m11 1 A9xy 1 1 1

2 AtxAy 0.7071 Oa 0

3 AtyAx 0.7071 Oa 0

4 ARAxAy 0.4142 0 0

m02 1 Aty2 1 1 1

2 ARyAy 0.7071 Oa 0

3 ARAy2 0.7071 0 0

Total 12.0710 5

The expected number of additions is .4142 + en k = 12.4852.b
The expected number of multiplications is c"O k = 5.

"All or part of an indicated product is computed for a previous term;
e.g., PM20[1) : Aix2 = (Atx)x - PMO[1]•x.

bThere is one extra addition required to compute A = xDy - yAx which
is performed with probability P(AxAy # 0) s .4142'

1ti

20

Table 3. Computational requirements for Equations (28)

mpq k PM$qIk) w Vk xk"k

m00 1 xAy 0.7071 0 0
2 AxAy 0.4142 0 0

m10 1 x2Ay 0.7071 1 0.7071
2 xAxAy 0.4142 0 0

3 Ax2Ay o.4142 0 0

m01 1 y2Ax 0.7071 1 0.7071

2 yAxAy 0.4142 0 0

3 AxAy2 0.4142 0 0
m20 1 x3Ay 0.7071 la 0.7071

2 x2AxAy 0.4-142 Oa 0

3 xAx2:Ay 0.4142 0 0
4 Ax3Ay Ob 0 0

mll
1 x2yAy 0.7071 la 0.7071

2 x2Ay2 0.7071 Oa 0

3 xyAxAy 0.4142 i 0.4142

4 xAxAy2 0.4142 0 0

5 yAx2Ay 0.4142 0 0

6 Ax2Ay 0.4142 0 0

m02 1 y3Ax 0.7071 is 0.7071

2 y2AxAy 0.4142 0a 0

3 y4xAy2 0.4142 0 0
4 AxAy3 0b	 1 0 0

Total	 1 10.3343 1 3.9497

The expected number of additions is Ew k = 10.33+3.

The expected number of multiplications is Ewkuk 3'9497'

aAll or part of an indicated product is computed f)r a previous term;
e.g., PM20(1) = x 3Ay = x(x2Ay) = x•PMlO[1].

bThese terms are not computed, since for Ax, Ayc{-1,0,1),AxAy = Ax3Ay
=AxAy3 . only PMOO[2] = AxAy is computed.

21

V. THE ALGORITHMS

The first algorithm presented here computes moments from arbitrary

Polygonal boundary curves, using the formulas in equation (27). The

following information is needed as input:

NVERT — the number of vertices in the polygon.

X(ij, Y(ij, i - 0, 1, 2, ..., NVERT — ordered lists of the x and y

coordinates, respectively, of the vertices of the polygon. For

convenience, X(Oj- X[NVERT] and Y(03 - Y(NVERTI. The coordinates

are labelled by the convention shorn in Fig 3. (0,0) is the upper

lefthand corner of the image; the +x axis points to the right, and

the +y axis points downward.

MAXORD — the highest order moment to calculate

In addition, it assumed that the procedure BCOEFF(m,n) which cal-

culates the binomial coefficient
(14)

has been declared.

The output of this algorithm is a list of all (p + q)-th order

moments where p + q < MAXORD. The moments are stored in lexicographical

order in the array MOMENT as follows:

MOO' m10' m01' m20' mll' rO', • " " mOMAXORD

All entries of the array MOMENT are assumed to be initialized to zero.

-^%	 BEGIN

INTEGER L

FOR L:-1 STEP 1 UNTIL NVENT DO

22

BEGIN	 COMM traverse boundary;

INTEGER K,M;

REAL DELTAX,DELTAY,AL;

DELTAX: mX(Ll - X(L-11;

DELTAY: •YjLI - Y(L-1];

AL: nX(LIODELTAY - Y(LIsDELTAX;

MOMENT(1 l : -MOKMT[1 l + AL;

K: •1; CANT K indexes the array MOMENT;

FOR M: nl STEP 1 UNTIL MAXORD DO

BEGIN	 CANT calculate moments of order M;

INTEGER P,Q;

FOR P: nM STEP -1 UNTIL 0 DO

BEGIN	 COMMENT select next p,q;

INTEGER I,SI; REAL MPQL;

Q:MM-Pi

MPQL: n0; K: nK+1; SI:•l;

FOR I: -O STEP 1 UNTIL P DO

BEGIN	 COOM outer sun;

INTEGER J,SJ,PI

PI:=BCOEFF(P,I);

SI: •-SI; SJ:ESI;

FOR J : wO STEP 1 UNTIL Q DO

BEGIN	 COMMENT inner sun;

INTEGER EXP : REAL T;

COMMENT initialize partial product for this term;

T: nSJ:•-SJ;

23

FOR EXP:=I STEP -1 UNTIL 1 DO T:=T*DELTAX;

FOR EXP:=J STEP -1 UNTIL 1 DO T:=T*DELTAY;

FOR EXP:=P-I STEP -1 UNTIL 1 DO T:=T*X[L];

FOR EXP:=Q-J STEP -1 UNTIL 1 DO T:=T*Y[L];

MPQL:=MPQL + (PI*BCOEFF (Q,J)*T)/I+J-1);

END;	 COMMENT end of FOR-J loop;

END;	 COMMENT end of FOR-I loop;

MOMENT[K1:=M0-MENT[K1 + AL*MPQL;

END;	 COMMENT end of FOR-P loop;

END;	 COMMENT end of FOR-M loop;

END;	 COMMENT end of boundary;

BEGIN COMMENT scale moments by 1/(p+q+2)

INTLGER K,M, I ;

K:=O

FOR M:=O STEP 1 UNTIL MAXORD DO

FOR I:=O STEP 1 UNTIL M DO

BEGIN K:=K+1; MOMENT[K]:=MOMENT[K]/(M+2) END; COMMENT M=P+Q;

END;

END;

The second algorithm computes specific low order moments from

chain-encoded curves. It needs the following information:

X,Y — the coordinates of the starting point of the chain. The

coordinate labelling convention described above is used.

^^.	 L — the number of links in the chain. This is the number of

segments that make up the boundary curve.

24

a

CC[i], i - 1, ..., L - the list of chain code representing the

curve, CC[i] e(0, ..., 7) as shown in Fig. 2. The chain code

is ordered so that the curve is traversed in a clockwise direction.

This algorithm generates a list of low order moments stored in the

array MOMENT as follows:

m00' m10' m01' m20' '11' m02'

BEGIN

INTEGER ARRAY PM00[1: 2],PM10,PMO1,PM20,PMO2[1:3],PM11[1:6];

INTEGER I,X2,X3,Y2,Y3,XY,X2Y;

COMMENT initialize sums;

PM00[1]:=PM00[2]:=0;

FOR I:=1 STEP 1 UNTIL 3 DO

PM10[I]:=PM01[I]:=PM20[I]:=PM11[I]:=PMO2[I]:=0;

PM11[4):=PM11[5]:=PM11[6]:=0;

FOR I:=1 STEP 1 UNTIL L DO

CASE CC[I] OF

BEGIN COMMENT case number corresponds to chain code value;

[0] BEGIN COMMENT Dx=1, Dy=O;

X:=X+1;

Y2:=Y*Y; Y3:=Y2*Y;

PM01[1]:=PM01[l] + Y2;

PMO2[1]:=PMO2[1] + Y3
	

END;

25

r

sfi

(1] BEGIN COMMENT Dx-1, Dy--l;

X: aX+l; Y : -Y-1;

X2:-X*X; X3:=X2*X; Y2:-Y*Y; Y3:-Y2*Y; X
X

PM00[1]: aPN,00[1] - X;

PM00[2]: PM00[2] - 1;

PM10[11:=PM10[1] - X2;

PM10[2]: =PM10[2] - X;

PM10[3]: =PM10[3] - 1;

PMO1[1]:=PM01[l] + Y2;

PMO1[2]: =PMOl(2] - Y;

PM01[31:=R101[31 + 1;

PM20[11:=PM20(l] - X3;

PM20[2]:=PM20[2] - X3;

PM20(31: =PM20[31 - X;

PM11(11:=PM11[l] - X2Y;

PM11[21:=PM11[2] + X2;

PM11[3]:=PM11[3] - XY;

PM11[41: =PM11[41 + x;

PM11[5]:=PM11(5] - Y;

PM11[61:=PM11[61 + 1;

PMO2[1]:=PMO2[l] + Y3;

PMO2[21:=PMO2[21 - Y2;

PMO2[31:=PMO2[31 + Y	 END;

(2] BEGIN COMMENT Dx=O, Dy=-1;

Y:-Y-1;

X2:=X*X; X3: =X2*X; X2Y:=X2*Y;

26

PMOO[I]:=PMOO[1] - X;

PM10[1]:-PM10[l] - X2;

PM11[1I:=PM11[1] - X2Y;

PM11[2]:=PM11[2] + X2;

PM20[1]:=PM20[l] - X3	 END;

[3] BEGIN COMMENT Dx=-1, Dy=-1;

X:=X-1; Y:=Y-1;

X2:=X*X; X3: =X2*X; Y2:=Y*Y; Y3: =Y2*Y; XY:=X*Y;
X2Y:=X*XY;

PM00[1]:=PM00[1] - X;

PMOO[2]:=PM00[2] + 1;

PM10[1]:=PM10[l] - X2;

PM10[2]:=PM10[2] + X;

PMiO[3]: =PM10[3] - 1;

PM01[1]:=PM01[l] - Y2;

PMO1[2]:=PM01[2] + Y;

PM01[3]: =PM01[3] - 1;

PM20[1]:=PM20[l] - X3;

PM20[2]:=PM20[2] + X2;

PM20[3]: =PM20[3] - X;

PM11[1]:=PM11[1] - X2Y;

PM11[2]:=PM11[2] + X2;

PM11[3]: =PM11[3] + XY;

A4 PM11[4]:=PM11[4] - X;

PM11[5]: =PM11[5] - Y;

PM11[6]:=PM11[6] + 1;

PMO2[1]:=PMO2[1] - Y3;
k

27

[5] BEGIN COMMENT Dx=--1, Dy=1;

X:=X-1; Y:=Y+1;

X2: =X*X; X3: =X2*X; Y2:=Y*Y; Y3: =Y2*Y; XY:=X*Y;
X2Y:=X*XY;

PM00[l]: =PM00[1] + X;

PM00[2]: =PMOO[2] - 1;

PM10[1]: =PM10[l] + X2;

PM10[2]:=PM?lo[2] - X;

PM10[3]: =PM10[3] + 1;

PM01[l]:=PM01[l] - Y2;

PM01[2]:=PM01[2] - Y;

PM01[3]: =PM01[3] - 1;

PM20[1]: =PM20[l] + X3;

PM20[2]:=PM20[2] - X2;

PM20[3]:=PM20[3] + X;

PM11[1]:=PM1 1[l] + X2Y;

PM11[2]:=PM11[2] + X2;

PM11[3]: =PM11[3] - XY;

PM11[4]:=PM11[4] - X;

28

PM11[5]:=PM11[51 + Y;

PM11[6]:=PM11[6] + 1;

PMO2[l]:=PMO2[l] - Y3;

PMO2[2]:=PMO2[2] - Y2;

PMO2(3]: =PMO2[3] - Y	 END;

[6] BEGIN COMMENT Dx=O, Dy=1;

Y: =Y+1;

X2: =X*X; X3:=X2 *X; X2Y:=X2*Y;

PM00(l]:=PM00[l] + X;

PM10[1]:=PM10[1]

• X2;

PM11[1]:=PM11[1] • X2Y;

PM11[23:=PM11[2] • X2;

PM20[1]:=PM20[l] • X3	 END;

[7] BEGIN COMMENT Dx=1, Dy=1;

X:=X+1; Y:=Y+1;

X2:=X*X; X3: =X2*X; Y2:=Y*Y; Y3: =Y2*Y; XY:=X*Y;
XY2:=X*XY;

PM00[1]: =PM00[1] + X;

PM00[2]:=PM00[2] + 1;

PM10[1]:=PM10[l] + X2;

PM10[23:=PM10[21 + X;

PM10[3]:=PM10[3] + 1;

PM01[1]:=PM01[1] + Y2;

PM01[2]:=PM01[2] + Y;

PM01[33: =PM01[31 + 1;

29

PM20[11-.-PM20(l] + X3;

PM20[21:-PM20[21 + X2;

PM20[31:=PM20[3) + X;

PM11[13:-PM11[1] + X2Y;

PM11[21:-PM11[21 + X2;

PM11[3]: =PM11[3] + XY;

PMil[41:-PMll[41 + x;

PM11[51:-PM11[51 + Y;

PM11[61:-PM11[61 + 1;

PMO2[11:=PMO2[1] + Y3;

PMO2[2):=PMO2[2] + Y2;

PMO2[31: =PMO2[31 + Y	 END

END;

COMM now combine partial sums to get the moments

The moments are computed in the order M00, M10, M01, M20,

Mll, MO2;

MOMENT[1]:= PMOO(1] - P

MONM[21:= (3*PM10(ll

MOMENT[31:=- (3*PM01[1]

MOMENT[4]:= (4 *PM20[1]

MOMENT[51:= (12*PM11[l]

MoMENT[61:=-(4 *PMO2[l1

M00[2]/2;

- 3*PM10[21 + PM10[31)/6;

- 3*PM01[21 + PM01(31)/6;

- 6*PM20[21 + 4*PM20[3] - PMOO[21) /12;

- 6*PM11[2) - 12*PM11[3) + 8*PM11[4]
+ 4*PM11[51 - 3*PM11[61)/24;

- 6*PMO2[21 + 4 *PMO2[3] - PM00[21)/12

END;

30

REFERENCES

1. M. Hu, "Visual Pattern Recognition by Moment Invariants," IRE

Trans. Information Theory, IT-8, 1962, pp. 179-187.

2. R. Wong and E. Hall, "Scene Matching With Invariant Moments,"

Computer Graphics and Image Processing, Vol. 8, pp. 16-24, 1978.

3. R. Eskenazi and J. Wtlf, Low Level Processing for Real-Time Image

Analysis, Publication 79-79, Jet Propulsion Laboratory, Pasadena,

California, Sept. 1979.

4. H. Freeman, "Computer Processing of Line-Drawing Images," Computing

Surveys, Vol. 6, pp. 57-97, 1974.

5. H. Flanders, Differential Forms with Applications to the Physical

Sciences, Academic Press, New York, 1963.

6. F. Groen and P. Verbeek, "Freeman-Code Probabilities of Object

Boundary Quantized Contours," Computer Graphics and Image

Processing, Vol. 7, pp. 391-402, 1978.

.

31

6

	1980008507.pdf
	notice_poor quality MF.pdf
	0001A04.JPG
	0001A04.TIF
	0001A05.JPG
	0001A05.TIF
	0001A06.JPG
	0001A06.TIF
	0001A07.TIF
	0001A08.TIF
	0001A09.TIF
	0001A10.TIF
	0001A11.TIF
	0001A12.TIF
	0001A12a.JPG
	0001A12a.TIF
	0001B02.JPG
	0001B03.TIF
	0001B04.JPG
	0001B04.TIF
	0001B05.JPG
	0001B06.JPG
	0001B07.JPG
	0001B08.JPG
	0001B09.JPG
	0001B10.JPG
	0001B11.JPG
	0001B12.JPG
	0001B12a.JPG
	0001C02.JPG
	0001C03.JPG
	0001C04.JPG
	0001C05.JPG
	0001C06.JPG
	0001C07.JPG
	0001C08.JPG
	0001C09.JPG
	0001C10.JPG
	0001C11.JPG
	0001C12.JPG
	0001C12a.JPG
	0001E02.JPG
	0001E03.JPG
	0001E04.JPG
	0001E05.JPG
	0001E06.JPG

