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ABSTRACT

The moments of a region in an image can be used to describe the
region's location, orientation, and shape. This paper derives the class
of all possible formulas for computing arbitrary moments of a region
from the region's boundary. The selection of a particular formulas
depends on the choice of an independent paremeter. Several choices of
this parameter are explored for region boundaries approximated by
polygons. The parameter choice that minimizes computation time for
boundaries represented by chain code is derived. Finally, two
algorithms are presented. The first computes arbitrary moments for a
region from a polygonal approximation of its boundary. The second
algorithm is optimal for computing low order moments from chain-encoded

boundaries.
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I. INTRODUCTION

Many pattern recognition techniques in computer vision use
structural or statistical features of regions and their outlines to
characterize the shape of objects being viewed. An important class of

statistical features is the set of (p +q )=-th order moments defined by

xPydf(x,y) axdy (1)

s

K
"pq © _-£

where f(x,y) is a density digtribution function. In the context of
pattern recognition, the moments are computed for a unifrrm density
distribution over a closed region R in the xy-plane. Therefore, f(x,y)

reduces to

1, if (x,y) eR
f(X,Y) =
0, if (x,y) ¢R

In this case, (1) becomes

Mg = jl;f xy? axdy (2)

The most common example of the use of moments is to compute the

centroid (X,y) of a region by

m m..
§=El‘9" == (3)
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where M50 is the area of the region. Moments are also used to compute

the angle of a region's axis of minimum moment of inertia @. This quantity
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defines the region's orientation within a two-fold degeneracy and is

given vy

2(m..m,. - m. )
00™1 ~ ™o%n (1)

3 -3
(mogP20 = ®10) = [ogloz = To1)

1

9 =-% tan

The quantities X, ¥, and 6 are useful for pattern recognition
because they specify the position and orientation of regions, defining
& transformation between image and model coordinates, and thus allowing

further analysis of shape features in a standard reference frame.

A more direct applicution of moments to pattern recognition is the

use of moment invariants to describe objects. These are quantities,
computed in terms of the moments of a region, that are invariant under
translation, rotation, and scale changes. Hu [1] derives seven moment
invariants and Wong and Hall [2] describe an application that uses

them to recognize objects in aerial scenes.

If the region is scanned in a raster fashion, the moments may be

calculated by using the discrete version of Eq. (2):
Ly R
mpq = ZZ y ’ (x:y)s (S)
x Yy

However, a.region is often represented by its boundary. This is
the case when edge detection is used to separate objects in a scene [3].
It is possible to reronstruct the region from its boundary and use
Eq. (5). However, this is computationally inefficient, since a region
usually contains many more points tﬁan its boundary. Therefore, a

method that computes moments while traversing the boundary is desirable.




In this paper, such a method is derived for boundaries approximated

by polygons.

Chain code is an ordered list of numbers that represent the oriens
tations of segments comprising the boundary. It is a commonly used
special case of polygonal approximation with many attractive properties
[4]. 'The method presented in this paper is used to find an algorithm
that minimizes the time it takes to calculate moments from chain-encoded

boundaries.

In Section II, we derive the general formula for computing region
moments from a boundary representation. The initial steps of the deri-
vation rely on the theory of differential forms. Reader. unfamiliar
with this branch of mathematics are referred to Flanders [5]. 1In
Section III, we explore the possible choices of the independent param-
eter in the general formula to obtain equations suitable for computation.
In Section IV, the execution time of these equations is analyzed for
chain-encoded curves. Finally, Section V presents an algorithm that
computes arbitrary moments from polygonal boundaries and an algorithm
that is optimal for computing low order moments from chain-encoded

curves.




I1. DERIVATION OF THE GENERAL FORMULA

The strategy of this derivation is to reduce the surface integral
in formula (2) to a line integral, using Stokes' theorem. In our case,

we want to find functions A = A(x,y) and B = B(x,y) such that

= fxpyqudy = fAdx + Bdy (6)
R

m
Pq 3R

where 3R is the boundary of R. Stokes' theorem states that for Eq. (6)

to hold, we must have
xPy%axdy = d(Adx + Bdy) (1)

where d, the differential operator, is defined in two dimensions by

d = dx 53}4» dy-a%-’- [5]. Evaluating the d operator in Eq. (T7) gives

P q 3B _ 3A
x y dxdy = (ax - ay) dxdy

or (8)

The solution to this partial differential equation is

A= axpyq+1 B = bxpﬂ'yq (9)




where a and b are real numbers. We can find a and b by substituting the
values of A and B from Eq. (9) back into Eq. (8). This yields the

following constraint:
bpip+1l) -alqg+l) =1 (10)

The line integral to be solved then becomes

m = f(sydx + bxdy )Py (11)

vhere a and b are constrained by Eq. (10). For any piecewise continu-
ous boundary representation, Eq. (11) will give a region's moments

from its boundary.

Let 9R, the Tzundary of the region, be a.pproximated by & closed

n
polygon as in Fig. 1., Then, 9R 'zglsl.’ where the SR. are linked oriented

line segments with endpoints (xl 1) and (xz, yl). respectively.

- 1’ y!: -
Since 3R is a piecewise continuous function, the integral in equation

(11) can be broken into a sum of integrals over each boundary segment.

Let
m o, = f (aydx + bxdy)xFyd (12)
Pql sz
Then
n
oo " ;l L (13)
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Figure 1. The region R, shown here as bordered by the dotted line,

has its boundary, 8R, approximated by an oriented poliygen.

The polygon is composed of the linke Sl and oriented in a
clockwise direction.
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The problem is to find mpql by integrating Eq. (12). Let
Axg "X, =X, and Ayl AR Then all points (x,y) along the

line segment Sl can be parameterized as follows:

x = Axlt * X y= Ayit +y, -1 stso0 (14)

dx = szdt. dy = Ayldt

Using Eq. (14) and the binomial theorem,

Pyl i( Axi i i()AthJ | -

1-0 J=0

P qQ

Z Z (g) (g) X, yg a=J Ax AYJ % (15)
i=Q J=0

Finally, by substituting the parameterized x, y, dx, dy, and xpyq

Eqs. (14) and (15) into the integral that defines L in Eq. (12), the

general formula is obtained:

0 P 3
Py ofqy P=1 q=t , 1, 3 i%)
Bt ” f (asD) 8x, &y t + ay, 8x, + bx, by, E E (1) (J) xp oy ax, Ayt dt
teal {s0 J=0

(16)




vhere b(p+l) - a(q+l) = 1, Equation (16) is not only a formula for the
(p+q)=th order moment; it also contains every possibie formula for the

(p*q)=th order moment. Each choice of parameters a and b, subject to the

constraint given above, generates a nev valid equation for mpqz'




II1. VALUES FOR THE INDEPENDENT PARAMETER

Before Eq. (1€) can be evaluated, real values must be assigned to
the parameters a and b, The goal is to choose the a and b that will make
computing mpqg as simple as possible. The most obvious simplification
is elimination of one or more of the terms in the integral. It follows
directly from Eq. (16) and the constraint on a and b, that only three

parameter choices will eliminate one of the terms in Eq. (16):

Choice 1: a+b =0, b= 1/(p+tq+2)
Choice 2: a = 0, b= 1/(p+l1) (17)

Choice 3: b= 0, a=-1/(q+l)

We now look at each case in detail. For choice 1, the general

formula reduces to

0

p q
- z:z:p qy b1 _a=J , 1 , § i+]
™o " b(xiAyl ylel) f (i) (J) X, ¥, v Ax, dypt dt

t=-]l | im0 J=0

Noting that

0 {+3+1 0 14341 i+
f ¥ gy e 2 . o =1) L L=1)”

i+3+1 T iegel i+ 341
=1 -1




the formula for choice 1 becomes

and setting Al = xlAy2 - ylez,

(<1~ i .q~8 ,. 1,3

my "“Ezmu D () = v exy ey (19)
i=0 J4=0

For choice 2, where a = 0 and b = 1/(p+l), the middle term in the

integral in Eq. (16) drops out, leaving

0 P q
= Py /qy p-1i q-} 3 14
b f (ax, 8y,t + x; &y)) Z Z(i) (J)"z yid axy ty) ™ ae
t=-1 1=0 3=0
(20)
Evaluating the integral in (20) gives
: 2 §-1)i+3+1 P\ /a p-i q-J 1+1 J+1
|2 LS (5) (J) RS ol
i=0 §=0
N o (1) p 1 g~ 341
- qQ pP-i+ q- +
*Z Z EYrS) (i)(J)xE Yy A" Ay, (21)
i=0 J§=0

The two double sums can be combined by making the substitution

=i+l in the first double sum. Making this substitution yields

10
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q

pt+l
' g Z 3+l (k-l) (q) L vy ) Ayiﬂ

=0

L (=)t p p-i*1 q=) J*l
SR

Finally, using the relation (kgl) + (ﬁ) = (p;l) » the sums can be
combines as follows:
p+l 14
= -l p+l) sqy _p-i+1l q=J i,,0%1 -
m o bz Z T (P8 (@) 7 v ax (23)

i=0 }=0

Choice 3, the case where b = 0 and a = =1/(q+l), reduces Eq. (16)

to

0 p q

- , 2: ’p) (q p=i q=J , 17,3 i+
LI a f (Axl Aylt'&y! Axl) z (i i)x! Yo U Axy Ayzt

tmal im0  J=0
(o)

Comparison of Egs. (20) and (2h) allows us to exploit the symmetry of

the a = 0 and b = © cases to write the solution of Eq. (24) as
q+l

(1) P) (1) I gl -

{=0 j=0

11
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dt




Now we have three formulas for m ., = Eqs. (19), (23), and (25) =
corresponding to three choices of the independent parameter. Which
formula should be used for computation? In the next section, we will
examine the special case of chdin-encoded curves, when Ax and Ay take on
only the values zero, one, and minus one. For now, let us consider the
general case of polygonal approximation, where Ax and Ay are arbitrary
real numbers. We assume that all moments up to order n = p + q are to
be computed in a single boundary traversal.

The computational requirements for m,, are the same for all

parameter choices. For p + q > 0, the number of terms, N, for each

parameter choice can be read directly from the formulas:

For choice 1, a = =b, N = (p+1l)(q+l) =pq+p+ g+ 1
For choice 2, a = 0, N = (p+2)(q+l) = pq + p + 2q + 2 (26)
For choice 3, b= 0, N = (p+tl)(q+2) =pq + 2p + q + 2

The equations in (26) show that choice 1 requires at least p
additions fewer than choice 2 and q additions fewer than choice 3.
Equation (26) also shows that choices 2 and 3 differ by p-q terms.
Therefore, choice 2 is more efficient than choice 3 when p > q and

choice 3 is more efficient when p < q.

Equations (23) and (25) are homogeneous polynomials in x, y, Ax,
and Ay, of degree p+q+2. Equation (19) is homqgeneous of degree p+q
and rejquires one extra multiplication for the Az term. Therefore,
choice 1 requires at most the same number of multiplications needed for

choices 2 and 3. Clearly, for the general case of polygonal approxi-

mation to a curve, Eq. (19) is the logical formula for computing moments.

12
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IV. MOMENTS FOR CHAIN-ENCODEL CURVES

Chain code is a special case of polygonal approximation. Each
segment of the boundary connects a grid point to one of its eight near-
est neighbors, represented by the numbers zero through seven. Fig-
ures 2 and 3 show our conventions for labelling the chain code direc-

tions, image coordinates, and the positive orientation of the boundary.

Using a chain-encoded boundary representation, we would like to

compute the zeroceth through second order moments: Bo* mlO’ m01, m20,

mll’ and m02. We have a choice of two sets of formulas, The first set

is derived from Eq. (19):

n
1
Moo = 2 A,
2=1
n
1 1
™o T3 ) ("z‘z“z)
9=1
n
L 1
Doy = 3 ZAz (yz‘ 2 Ayz)
L=l
(27)
n
1L 2 1,2
m20 =3 AE (x2 - x2 Ax2 + 3 Axl)
=1
n
1 1 1 1
my TG Ay (xgyy = 3%, &y = 3 ¥, 8x + 5 8% by,
=1
n
1 2 1,2
Boo = % Ay (yg-ysz1+3Ay£)
g=1
13
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3 2 1
4= > 0
Y
5 6 7
Figure 2. The eight possible directions between a grid point

and its nearest neighbors are represented by the
chain code numbers as shown above.
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The region R, shown here as bordered by the dotted
line, has its boundary, 8R, approximated by a
chain-encoded curve. The chain code for 8R is 0,0,
09090’090Q7'0'696’6!!‘!5’5’5!h95)391‘!21&93!2!29201’10
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The second set of formulas will derive from Eqs. (23) and (25) by

using (23) if p » q, and Eq. (25) otherwise. The formulas are

n
1
moo'z:("z by, = 3 ix, by, )
T [
1 ! i
20 22( x, Ax, by, + 3 ax) Ay, )
=1
n
1
o1 ® "2 (yz Ax, = ¥, 8xy by, Ax “Vz) g
p=1 ;
n
SISV (3 3.2 1,3 (28)
m20 3Z(x Ayz > 2Ax Ay£+xAx Ayz hAleAyz)
=1
n
1 L
B 22 X, ¥y 8y - 3% by g A%y By
3 =1
+ 25 ax oy +-1-y szAy AxAy)
37 L3 L TI
n
C LN (B L2342 2 1, .3
, B2 3 (yz‘”‘z 2 Y, Ax, by, *y, A, Ayz'hszAyz)
;, =1

; These formulas can be evaluated most efficiently if the terms of
each sum are accumulated separately as the boundary is traversed, Let
PMpq(k] represent the kth term, in the order written above, of moment

m g For example, PM10[2] = x,Ax Ay, in Eq. (28). After completing the
"“ traversal, each PMpq(k] term is multiplied by its coefficient. These

quantities are then combined to obtain the moments.




The chain code representation allows another simplification. Since
sz and Ayz are limited to the values zero, one, and minus one, it is not
necessary to perform the multiplications by sz and Ayz indicated in the
formulas. If Ax, (Ayz) = 0, then the terms containing bx, (Ayz) can be
ignored. Otherwise, sz and Ayz simply determine the sign of each term.
The values orszand Ayk are completely determined by the chain code num-
ber. We therefore treat each of the eight chain code directions eas a

separate case, Table 1 shows the eight cases for m 0 using the formula

0
from Eq. (28).

Now, we must decide which set of formulas executes in the least
amount of time, using the implementation strategy discussed above,
Clearly, the formulas in Eq. (28) have more terms than those in Eq. (27).
However, this does not tell the whole story, since the restrictions
on sz and Ay2 mean that each term is not necessarily computed every time.
The probability that a term is computed equals the probability that its
Axn or Ay2 factors are nonzero. Let L be the probability that the kth
term is computed and let P(z) represent the probability that event z

occurs. Then,

1, if there are no Ax or Ay factors present
P(Aax#0), if a Ax but not a Ay factor is present
— (29)
P(Ay#0), if a Ay but not a Ax factor is present

P(AxAy#0), if both Ax and Ay factors are present

17




Table 1. Chain code values and an example of moment calculations

Chain code 0 1 2 3 4 5 6 T
Ax 1l 1 0 -1 -1 -1 0 1
Ay 0 -1 -1 -1 0 1l 1 1
PM0O[ 1 ]=xAy 0 | -x -x - 0 x x x
PMOO[ 2] =Axay 0| -1 0 1 0 -1 0 1

The eight chain code values are shown with corresponding values of

6x, 8y, and the terms PMOO[1], PMOO[2] used to compute Boo

18
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Groen and Verbeek (6] have calculated that, for an arbitrary
chain-encoded figure, the probability of an even chain code link is
0.5858 and the probability of an odd link is 0.4142., Therefore, refer-
ring to Table 1,

P(Ax$0) = P(0dd code) + %-P(even code) = 0,7071 (30)
30

P(Ay#0) = P(odd code) + %-P(even code) = 0,7071

P(AxAy#0) = P(odd code) = 0,.4142

Let T, be the execution time of PMpq(k], M the execution time for
one multiplication, and A the execution time for one additién., Let "k
be the number of multiplications needed to calcualte PMpq(k]. Then the

expected execution time for this term, E(Tk). is given by

E(T,) = m (w M+ A) (31)

Table 2 gives w and E(Ti) for every term in Egs. (27) and

k' uk’
(28). The total expected execution time E(T) is just the sum of the
E(Tk) over all terms in the formula. The result of adding the E(Tk)
in Tables 2 and 3 reveals that
For Eq. (27), E(T) = SM + 12.4852A )
(32
For Eq. (28), E(T) = 3.9L49TM + 10.3343A
Therefore, we will use equation (28) to calculate the moments from

8 chain-encoded boundary.

19




Table 2. Computational requirements for Equations (27)
mpq X PMpqik] 'k uk LI
By 1 At 1 0 0
m, 1 Alx i 1 1
2 Asz 0.70T2 0 0
Doy l Aly 1 1l 1
2 AzAg 0.7071 0 0
LY 1 Agx 1 1® 1
2 A xbx 0.7071 0o® 0
3 A o 0.7071 0 0
m ) 1 A xy 1 1
2 A xby 0.7071 o* 0
3 A,yox 0.7071 0® 0
i A Axdy 0.k1k2 ]
Bos 1 Ay° 1 1 1
2 Ayby 0.7071 0* 0
3 Ay 0.7072 0 0
Total 12,0710 5
The expected number of additions is .hlkh2 + em = 12,4852.°
The expected number of multiplications is Em My = 5.

811 or part of an indicated product is computed for a previous term;
e.g., PM20[1] = A)x 2 = (Ajx)x = PM1O[1]-x.

bThere is one extra addition required to compute A = xAy -~ ybx which
is performed with probability P(AxAy # 0) = Jbauot

20




Table 3. Computational requirements for Equations (28)
L ] PMpq[k] L Ve LA
Boo 1 xby 0.7071 0 0
2 AxAy 0.h1k2 0 0
@, 1 x2ay 0.7071 1 0.7071
2 xAxAy 0.b1k2 0 0
3 ax2ay 0.4142 0 0
By 1 y2ox 0.7071 1 0.7071
2 ybaxAy 0.b1k2 0 0
3 axay? 0.k41k2 0 0
Bg 1 x3ay 0.70T1 18 0.70T1
2 x°AxAy 0.k142 0® 0
3 xbx2Ay 0.k1k2 0
4 ax3ny o 0 0
m 1 <Cysy 0.7071 1® 0.7071
2 x2ay? 0.7071 o 0
3 Xy AxAy 0.4142 : 0.4142
4 xAxby? 0.4142 0 0
5 yax2ay 0.4142 0 0
6 ax2ay 0.41k2 0 0
Boo 1 y3ax 0.70T1 18 0,707
2 y2oxby 0.4k 0o® 0
3 yoxay? 0.b1k2 0
4 Axay3 ® 0
Total 10,3343 3.9497
The expected number of additions is In, = 10,3343,
The expected number of multiplications is zukuk = 3,9L497,

{ #a11 or part of an_indicated product is cumputed f r a previous term;
o | e.g., PM20[1] = x3ay = x(xpy) = x-PMIO[1].
bTheae terms are not computed, since for 8x, Aye{-1,0,1},Axdy = Ax3

by
'AxAy3. Only PMOO[2] = AxAy is computed.

2l
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V. THE ALGORITHMS

The first algorithm presented here computes moments from arbitrary
polygonal boundary curves, using the formulas in equation (27). The

following information is needed as input:
KVERT = the number of vertices in the polygon.

x(1], ¥[i], 1 = 0, 1, 2, ..., NVERT ~ ordered lists of the x and y
cocrdinates, respectively, of the vertices of the polygon. For
convenience, X[0]= X[NVERT) and Y[0] = Y[NVERT]. The coordinates
are labelled by the convention shown in Fig 3. (0,0) is the upper
lefthand corner of the image; the +x axis points to the right, and

the +y axis points downward.
MAXORD — the highest order moment to calculate

In addition, it assumed that the procedure BCOEFF(m,n) which cel=

culates the binomial coefficient (:) has been declared.

The output of this algorithm is a list of all (p + q)=th order
moments where p + q < MAXORD. The moments are stored in lexicographical

order in the array MOMENT as follows:

Boo® ™00 Bor 200 M1 "ot cc v POMAXORD

All entries of the array MOMENT are agsumed to be initialized to zero.

.~ BEGIN
INTEGER L

] FOR L:=1 STEP 1 UNTIL NVERT DO

o s e i e g




BEGIN COMMENT traverse boundary;
INTEGER K ,M;
REAL DELTAX,DELTAY ,AL;

DELTAX:=X(L] - X[L-1];
DELTAY:=Y[L] - Y[L-1];
AL:=X[L]*DELTAY - Y[L]*DELTAX;
MOMENT(1]:=MOMENT(1] + AL;
K:=l; COMMENT K indexes the array MOMENT;
FOR M:=1 STEP 1 URTIL MAXORD DO
BEGIKN COMMENT calculate moments of order M;
INTEGER P,Q;
FOR P:=M STEP -1 UNTIL 0 DO
BEGIN COMMENT select next p,q;
INTEGER I,8I; REAL MPQL;
Q:=M-P;
MPQL:=0; K:=K+1; 8I:=1;
FOR I:=0 STEP 1 UNTIL P DO
BEGIN COMMENT outer sum;
INTEGER J,8J ,PI
PI:=BCOEFF(P,I);
SIl:=-81; 8J:=8I;
FOR J:=0 STEP 1 UNTIL Q DO
BEGIN COMMENT inner sum;
INTEGER EXP: REAL T;
COMMENT initialize partisl product for this term;

T:=5J:m<8J;



FOR EXP:=I STEP -1 UNTIL 1 DO T:=T*DELTAX;
FOR EXP:=J STEP -1 UNTIL 1 DO T:=T*DELTAY;
FOR EXP:=P-I STEF -1 UNTIL 1 DO T:=T*X[L];
FOR EXP:=Q-J STEP -1 UNTIL 1 DO T:=T*Y[L];
MPQL:=MPQL + (PI*BCOEFF (Q,J)*T)/I+J-1);
END; COMMENT end of FOR-J loop;
END; COMMENT end of FOR-I loop;

MOMENT[K] : sMOMENT [K] + AL*MPQL;

END; COMMENT end of FOR~P loop;
END; COMMENT end of FOR-M loop;
END; COMMENT end of boundary;

BEGIN COMMENT scale moments by 1/(p+q+2)
INTLGER K,M,I;
K:=0

FOR M:=0 STEP 1 UNTIL MAXORD DO

FOR I:=0 STEP 1 UNTIL M DO
BEGIN K:=K+1; MOMENT[K]:=MOMENT(K]/(M+2) END; COMMENT M=P+Q;
END;

END;

} The second algorithm computes specific low order moments from

chain-encoded curves. It needs the following informetion:

; X,Y ~ the coordinates of the starting point of the chain. The

coordinate labelling convention described above is used.

.. L — the number of links in the chain. This is the nuuber of

segments that make up the boundary curve.

2k




ccfi], i =1, ..., L = the 1list of chain code representing the
curve, CC[i] €(d, ..., T) as shown in Fig. 2. The chain code

is ordered so that the curve is traversed in a clockwise direction.

This algorithm generates a list of low order moments stored in the

array MOMENT as follows:

M0* M10° Mo1* M20* ™11 Moo

BEGIN

INTEGER ARRAY PMOO[1:2],PM10,PMO1,PM20,PM0O2[1:3],PM11[1:6];

INTEGER I,X2,X3,Y2,Y3,XY,X2Y;

COMMENT initialize sums;

PMOO( 1] :=PMOO[2] :=0;

FOR I:=1 STEP 1 UNTIL 3 DO
PM10[1]:=PMO1[I]):=PM20[1]:=PM11[I]:=PM02[I]:=0;

PM11[4]:=PM11[5]:=PM11[6]:=0;

FOR I:=1 STEP 1 UNTIL L DO
CASE cc[1] oF

BEGIN COMMENT case number corresponds to chain code value;

[0] BEGIN COMMENT Dx=1, Dy=0;
X:=X+1;
Y2:=YRY; Y3:=YoMy,
PMO1{1]:=PMO1[1] + Y2,

PMO2[1]:=PM02[1] + Y3 END;




(1]

(2]

BEGIN COMMENT Dx=l, Dy=-1;
X:a)X+l; Y:i=Ya=l;

X2:=X®Y; X3:=X2#X; Y2:=Y#Y; Y3:=Y2W%Y,

PMOO[1] :=PNMOO[1] - X;
PMOOIZ]:=PMOO[2] -1
pMio[1]:=PM10[1] - X2;
pMio[2]:=pM10(2] - X;
PM10{3]:=PM10[3] - 1;
PMO1[1]:=PMO1[1] + Y2,

PMO1[2]:=PMOL[2] -~ Y}

PMO1[3]:=PN01[3] + 1;
PM20{1]:=PM20[1] - X3;
PM20[2):=PM20[2] - X3;
PM20[ 3] :=PM20[3] ~ X;

pM11{1]:=PM11[1] - X2Y;
pMi1[2]:=PM11[2] + X2;
PM11[3]:=PM11[3] - XY;
PM11[{L4]:=PM11[L] + X;
PM11[5]:=PM11(5] - Y;
PM11[6]:=PM11[6] + 1;
PM02[1]:=PM0O2[1] + Y3;
PMO2[2]:=PMO2[2] - Y2;

PMO2[ 3):=PM02[3] + Y END;

BEGIN COMMENT Dx=0, Dy=-1;
Y:=Y-1;

X2:=X%#X; X3:=X2¥X; X2Y:=X2o%Y;
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(3]

pMoo{1]:=PMOO[1] - X;

PMio[1]:=PM10[1] - X2;
pMm1[1]:=pM11[1] - X2Y;
pMi1(2]:=pM11(2] + X2;

PM20[{1]:=PM20[1] - X3 END;

BEGIN COMMENT Dx=-1, Dy=-1;
X:=X-1; Y:=Y-1;

X2:=X%X; X3:=X2%X; Y2:=Y%Y; Y3:=Yo#Y;

pPMoo[1]:=PMOO[1] - X;
pPMoo[2]:=PMOO[2] + 1;
pMi0[1]:=pPM10[1] -
pmio[2]:=pM10[2] + X;
PM10[3]:=PM10[3] - 1;
pMo1(1]:=PMO1[1] -
pMo1[2]:=PMO1[2] + Y;
PMo1[3]:=PMO1(3] - 1;
PM20[1]:=PM20[1] - X3;
pM20(2] :=PM20[2] + X2;
PM20[3]:=PM20[3] - X;
pMi1[1]:=pM11(1] - X2Y;
pMi1[2]:=PM11[2] + X2;
PM11(3]:=PM11(3] +
PM11[L4]:=PM11[L] - X;
PM11(5):=PM11[5] - Y;
pM11[6]:=PML1{6] + 1;

pMo2{1]:=PM02[1] - Y¥3;

XY :=X%*Y;
X2Y :=X*XY




PMo2[ 2] :=PM0O2[2] + Y2;

PM02[3]:=PM0O2[3] - Y END;

BEGIN COMMENT Dx=-1, Dy=0;
X:=X-1;

Y2:=Y*Y; Y3:sY2%Y;
PMO1[1]:=PMO1[1] - Y2;

PM02[1]:=PMO2[1] - Y3 END;

BEGIN COMMENT Dx=-1, Dy=1;
X:=X-1; Y:=Y+1;

X2:=X*¥X; X3:=X2%*X; Y2:=Y¥*Y,

PMOO[1]:=PMOO[1] + X;

PMOO[2] :=PMOQ[2] - 1;
pmMio{1]:=PM10[1] + X2;
pPM10[2]:=PM10[2] - X;
pMio[3]:=pM10[3] + 1;
PMO1[1]:=PMO1[1] - Y2;
pMoi[2]:=PMO1[2] - Y;
PMO1[3]:=PMO1[3] - 1;
PM20[1]:=PM20[1] + X3;
PM20[2]:=PM20[2] - X2;
PM20[3]:=PM20[3] + X;

PM11[1]:=PM11[1] + X2V,
pM11[2]:=PM11[2] + X2;

PM11(3]:=PM11{3]

[}
2

PM11[L4]:=PM11[4]

I
<
we
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Y3:=Y2#Y; XY:=X*Y,
X2Y :=X¥*XY;
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(6]

PM11[5]:=PM11[5] + Y;
PM11[6]:=PM11[6] + 1;
PMO2[1]:=PMO2[1] - Y3;
PMO2[2]:=PM0O2[2] - Y2,
PM02[3]:=PM02[3] - Y END;

BEGIN COMMENT Dx=0, Dy=1;
Y:=Y+1;

X2:=X*X; X3:=X2%X; X2Y:=X2%Y,
PMOO[1]:=PMOO[1] + X;
PM10[1]:=PM10[1] + X2,
PM11[{1]:=PM11[1] + X2Y;
PM11[2]:=PM11[2] + X2;

PM20[1]:=PM20[1] + X3 END;

BEGIN COMMENT Dx=1, Dy=1,
Xe=X+1l; Y:=Y+1;

X2:=X*X;, X3:=X2%X; Y2:=Y¥*Y;

-+

PMOO[1]:=PMOO[1] + X;

PMoo[2]:=PMOO[2]

+

1;
pM10[1]:=PM10[1] + X2;

PM10[2]:=PM10[2]

+
>

PM10[3]:=PM10[3] + 1;
PMO1[1]:=PMO1[1] + Y2,
PMO1[2]:=PMO1[2] + Y;

PMO1[3]:=PM01[3]

+
)
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Y3:=Y2¥%Y; XY:=X*Y,
XY2 :=X¥XY;




PM20[1]:=PM20[1] + X3;

PM20[2]:=PM20(2] + X2;
PM20[3] :=PM20[ 3] + X;

pMi1[1]:=PM11{1] + X2Y; j
PM11[2]):=PM11[2] + X2; |
PM11[3]:=PM11[3] + XY;

pM11[b4]:=PM11[L] + X;

PM11[5]):=PM11[5] + ¥;

PM11[6]:=PMI1[6] + 1;

PMO2[1]:=PM02[1] + Y3;

PMO2[2]:=PM02[2] + Y2;

PM02f3]:=PM02[3] +Y END
END;

COMMENT now combine partial sums to get the moments

The moments are computed in the order MOO, M10, MO1l, M20,

Mil, MO2;
MOMENT([1]:= PMoO{1] -~ PMOO[2]/2;
MOMENT[2]:= (3*PM10{1] - 3*pPMr0[2] + PM10[3]})/6;

MOMENT[3]:=-(3*PMO1[1] - 3*PMO1[2] + PMO1[3])/6;
MOMENT[4]:= (L*PM20[1] - 6é#*PM20[2] + L*PM20[3] - PMOO[2])/12;

MOMENT[5]:= (12%PM11[1] - 6*PM11[2] - 12%PM11[3] + 8%PM11[4]
+ LepM11[5] - 3*PM11[6])/2h;

MOMENT[6]:=-(L*pM0O2[1] -~ 6%PM02{2] + L*PMO2[3] - PMOO[2])/12

END;
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