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1.0 INTRODUCTION

The in-track error resulting in computing elliptic orbits with Cartesian 000rdi-
nates is reduced by several orders of magnitude with the use of a time element.
♦ general time element, to be used with any arbitrary independent variable, is
proposed.

Taking the example of a transfer orbit for a , geosynohrorious mission, a compari-
son with the eccentric, true, and elliptic anomaly as the independent variable
is presented. The elliptic anomaly (a new anomaly intermediate between the so-
centric and the true anomaly) is shown to perform significantly better than the
other classical anomalies.
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2.0 EFFICIENT INTEGRATION OF SCCENTRIC ORBITS

	 ^-
This document shall denote, by eccentric orbit, an elliptic orbit of
eccentricity a > 0.1. An orbit is highly eccentric if its eccentricity e > 0.7.
The transfer orbit linking a near-Earth, near-circular parking orbit to a near-
circular geosynchronous orbit is an example of a highly eccentric orbit.

Efficient integration of an orbit is defined as the numerical integration of an
orbit with a given accuracy and the minimum number of steps per revolution..

In a preceding document (ref. 1) dedicated to the numerical integration of
highly eccentric orbits, the following observations were made:

a. An eccentric orbit should not be integrated with equal stepsizes in time;
i.e., time stepsizes should be small near pericenter and large near 	 •^
apocenter.

b. An integration method with automatic stepsize control is adequate, but inef-
ficient, for the integration of eccentric orbits.

e. Better efficiency is obtained by using an independent variable •other than
time, by providing an analytical stepsize regulation, and by choosing a
fixed-step integration method.

d. For large stepsizes, the importance of a proper formulation of the differen-
tial equations of motion (DEM) increases.

r

e. For a certain range of stepsizes, the straightforward formulation of DEM in
terms of Cartesian coordinates, together with the use of a time element, com-
pares favorably with more elaborate transformations of DEM.

Automatic stepsize integration methods are based on the consideration of an esti-
mation of the local truncation error per step. Such a method does not provide
a stepsize distribution along the orbit as regularly and efficiently as with the
help'of an analytical stepsize regulation. In addition, by having equal steps
in the independent variable, a highly efficient multistep integration method can
be used.

Observation ( d) is trivial for very large stepsizes. With one.atep per revolu-
tion, for instance, the integration of Cartesian coordinates produces nonvalid
results while the integration of a set of orbital elements correctly reproduces
the two-body part of the motion.

For reasonably small stepsizes (> 50 steps/rev), and for moderate propagation
time (<50 revolutions), a formulation of the DEM in terms of Cartesian coordi-
nates is adequate and gives fairly accurate results concerning the orbital
shape. However, depending on the physical time, the in-track error can grow
outside any limit. This is because of the well -known instability of the DEM di-
rect formulation of the two-body problem ( refs. 2 and 3).

2
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If Cartesia7 coordinates are to be used, a special treatment of the in-track
error is required. This is achieved by the introduction of a so-called time
element .

A time element, to be used with Cartesian coordinates, has been proposed only in
the case of the eccentric anomaly as the independent variable (refs. 2 and 4).
As shown in the following sections, the eccentric anomaly does not lead to the
most efficient analytical stepsize regulation. The purpose of this document is
to propose a general time element, which is valid for any type of anomaly.

From a mathematical standpoint, there is little doubt that a formulation of the
DEM in terms of orbital elements is always preferred to Cartesian coordinates.
From a practical standpoint, however, it is often observed that the analyst
who prepares the software for space missions is hesitant to use variables differ-
enr. from Cartesian 2oordinates. This is because the observations are physical
lengths and velocities directly expressed in Cartesian coordinates; therefore,
a valuable contribution is made if the advantage of using orbital elements can
be preserved, to a certain extent, in a Cartesian coordinates formulation. This
is the primary concern in a time element search.

The time element development in arbitrary independent variable terms was made
possible by adopting the Hamiltonian mechanics framework in the extended phase
space. Section 4.0 outlines the derivations and results. By combinin* the time
transformation to be used with Cartesian coordinates (sec. 3.0) with the gen-
eral results of section 4.0, a general time element will be derived in
section 5.0.

Finally, a numerical comparison in section 6.0 will show the time element bene-
fit and the outstanding performances of the elliptic anomaly as the independent
variable.

3.0 TIME TRANSFORMATIONS

An analytical stepsize regulation is achieved by a change in the independent var-
iable (ref. 5)

dt=fdT
	

(3.1)

where t is the physical time, T is the new independent variable (sometimes
called fictitious time), and f is a function of the state. Equation (3.1) is
called a time transformation. The function f is chosen to be of the form

f = co r ot
	

(3.2)

where r is the radius vector, a is a real number, and c a is a parameter.

3



Name of angular variable
ff

Mean anomaly

Eccentric anomaly

True anomaly

Elliptic anomaly

8OFM2

Table I indicates the four classical choices for a new independent variable,
which corresponds to the four classical anomalies (mean, eccentric, true, and
elliptic). The definition of the parameter ea involves the semimajor axis
a, the universal gravitational constant times the mass of the central
body U, the eccentricity e, and the complete elliptic integral of the first
kind K(e). The development of the formula can be found in reference 5 or,
following a more general point of view, in reference 6.

TABLE I.- THE FOUR CLASSICAL TIME TRANSFORMATIONS,
f = dt/dT = ca r3

a	 ca

0	 Vra3/u

1	 a/U

2	 lwa(l-e2)]-112

2K(e)

3/2	 ---
n u 1+e

The case of the elliptic anomaly (a particular choice of an intermediate

anomaly, intermediate between the eccentric and the true anomaly) is emphasized
here because the elliptic anomaly is, from a mathematical standpoint, the natu-
ral way to generalize the circular polar angle to the ellipse.

4.0 CANONICAL ELEMENTS IN TERMS OF AN ARBITRARY

INDEPENDENT VARIABLE

In reference 5, a set of canonical orbital elements of the Delaunay type in
terms of an arbitrary independent variable T is proposed. The equations of mo-
tion in the extended phase space are

	

U/(2L)3/2

	 f(T2^

db 	1	 of	 ax
0 	 +V —+f —- F 	(4.1

dT	 0	 aB	 aB

T

	

dB	 of	 a x (av

	

— = - V — - f	 --P	 (4.,`

	

dT	 a 	 3  ax
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where

bT = (R, V, g , h)

is the quadrivector of canonical elements, and

BT = (L, T, G, H)

the quadrivector of the conjugate elements:

R = time element	 L =

= anomaly	 T

g = argument of pericenter	 G =

h = ascending node	 H =

V is a perturbative gravitational potential,

all perturbative forces that are not derivabl,
rivati ve of a scalar with respect to a vector

The Hamiltonian F

total orbital energy

conjugate of the anomaly

total angular momentum

component of angular momentum

perpendicular to the equator

and P is a trivector containing
s from a potential. '. l ie partial de-
is considered to be a column vector.

F = T - u/(2L) 1/2 + fV = 0
	

(4.3)

vanishes in the phase space, where f is the time transformation (eq. (2.2)).

The physical time t is obtained via the time element R and other canonical
variables through the time element equation

t=k+—(u-e sinu -^)
2L

where u is the eccentric anomaly.

Close attention should now be given to the equations of the pair (k, L) of conju-
gate variables

of	 arav	 at

1^' = P/(2L) 3/2 V _ + f—
(ar
— - P	 - --L'	 (4.5)

aL	 aL 	 aL

(4.4)

5
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av
L' = -f 

(i, 

+ P.v_	 (4.6)

where ' is an abreviation for the derivative with respect to T. The par-
tial derivatives of f, r, and t relative to L are

of
aL - of/(2L)

where

c = -3, true and intermediate anomaly,

c = -2, eccentric anomaly;

ar
— = -r/(2L)
aL

at	 ly
--(u-e sin u

aL	 2L2

5.0 A GENERAL TIME ELEMENT

The sum of two terms is recognized in equation (4.4) as

T
t = 2L(u- e sin u)+
 (jt - 12 _L^

The first term is proportional to the mean anomaly and the second term is the
time of pericenter passage. This last term is chosen as a new dependent variable
q, where

q =k -2L^
	

(5.1)

6
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The equation for t now reads

Y'
t = —(u - e sin u) + q	 (5.2)

2L

By differentiation of equation (5.1), the differential equation for q is
ob to ined by

2L	 2L2	 2L
	

(5.3)

By assuming that all perturbations, whether conservative or not, are included
into the vector P, V : 0, and by using equation (4.3) the expression for
T is

Y' = µ/(2L)1/2	 (5.4)

and T '

T' = -UL'/(2L)3/2

Equation ( 5.3) now becomes

q ' = V + 31i*L ' / (2L) 5/2 _ U*'/(2L)3/2

The equation for ^' is needed. According to equation (4.1) and because V : 0,

Dr	 at
f- :P - —L'
3T	 BY

By using two-body relations, after some algebrr

a r	 coo u
-- = -	 (2L)1 /2r
aY'	 pe

7
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and

at
— = (u - e sin u)/(2L)
ay

through (5.2).

By taking equation (4.5) into account, q' becomes

q' = f(1 - cos u/e)P•r/(2L)

+ u/(2L) 5/2 I3u + sin u Leos u - 2(e + 1 /e)^} L'	
(5.5)

The elimination of the variable y, which was the purpose of defining the new
time element q, is apparent.

All quantities in equation (5.5) can be estimated in terms of the Cartesian
state (r, v) with the help of the two-body relations

r • v_ = pe sin u/(2L)1/2

and

r : u(1 - e cos u)/(2L)

Therefore, equation (5.5), together with equation (4.6), are ideally suited for
supplementing the Cartesian equations of motion with a general time equation.

A few remarks about equation ( 5.5) can be formulated as follows:

a. Equation ( 5.5) is valid for any type of independent variable.

b. Equation ( 5.5) is singular for vanishing eccentricity. This is a result
of the development from the Delaunay elements, which are singular for zero
eccentricity. However, this restriction is irrelevant because near-circular
orbits do not require a time transformation.

c. A secular term is present in the coefficient of L'. This tern ► zay cause a
reduction of accuracy for long - term orbit propagation; however, in this case,
using a formulation with Cartesian coordinates is not recommended. Instead,
a set of elements should be used.

8
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d. When the indepeneint variable is the elliptic anomaly, the only elliptical
function to be computed for estimating the right-hand side of the differen-
tial equations is K(e), which is a complete elliptic integral of the first
kind appearing in the time transformation evaluation f. As discussed in
reference 6, a fast algorithm is available for this integral so that the
corresponding overhead is of negligible effect on the computing time.

To be complete, the Cartesian equations of motion, to be integrated with equa-
tions (4.6) and (5.5), are recalled as

r' = fv

_v' - f(P - ur/r3)

6.0 NUMERICAL COMPARISON

In order to have a preliminary assessment of the efficiency of the time element
proposed in the preceding section, a numerical comparison is made. As a sample
problem, a standard transfer orbit between a near-Earth parking orbit and a geo-
synchronous orbit is chosen. Orbital elements of the transfer orbit are as
follows:

semima3or axis	 a = 24 371 km

eccentricity	 e = 0.73

inclination	 i = 300

longitude of ascending node	 J1 = 00

argument of perigee	 w = 2700

initial true anomaly 	 * = 00

As an integration method, the standard fourth-order Runge-Kutta scheme is cho-
sen. By no means should this imply that such a simple method is adequate for
orbit computation; a higher-order Runge-Kutta or a multistep method would be far
more efficient. However, for comparison, the primitive character of the
fourth-order Runge-Kutta scheme will emphasize the stabilizing role of a time
element.

The force models, as defined in reference 7, are chosen. The following four
cases are investigated.

a. No perturbations (table II)

b. Earth oblateness perturbation (table III)

i
ti
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c. Earth oblateness and Moon perturbation (table IV)

d. Earth oblateness and atmospheric drag, and Moon perturbation (table V)

One revolution is integrated with four different stepsizes (25, 50, 100, and 200
steps/revolution) and three anomalies: eccentric (a = 1), true ( a = 2), and el-
liptic (a = 1.5), with and without time elements.

The reference orbits were estimated by a more refined integration. The result
of the experiments, displayed in tables II through V, show the accuracy reached
at the end of an integer number of revolutions by comparison with the reference
trajectory at a given time corresponding to perigee pass. The error measured is
mostly in-track.

It should first be noticed that the use of the mean anomaly for such an orbit
would give totally meaningless results.

With a simple time transformation without the use of a time element, tables II
through IV show that meaningful results are obtained. An accuracy of less
than 1 kilometer after one revolution can be obtained with the true and elliptic
anomaly and 200 steps/rev.

TABLE II.- ACCURACY (KM) AFTER ONE REVOLUTION ALONG A TRANSFER ORBIT OF
ECCENTRICITY 0.73 WITH (WITHOUT) USE OF A TIME ELEMENT - NO PERTURBATIONS

Step/revolution

a	 25	 50	 100	 200

1	 4.4 1.2 0.094 0.0062
(1f 000) (840) (50) (3.0)

2	 15.0 1.2 .079 .0050
(1	 000) (72) (4.7) (.30)

1.5	 2.5	 .1	 .0058	 .00034
(2 700)	 (170)	 (11)	 (.66)

mm
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TABLE III.- ACCURACY (KM) AFTER ONE REVOLUTION ALONG A TRANSFER ORBIT OF
ECCENTRICITY 0.73 WITH (WITHOUT) USE OF A TIME ELEMENT -

OBLATENESS PERTURBATION

Step/revolution

. _	 a	 25 50 100 200,

1	 3.6 1.2 0.087 0.0054
•	 (12 000) (840) (50) (3.0)

2	 15 1.2 .079 .0051
.-	 0 000) (720) (4.7) (.30)

1.5	 2.3 0.097 .0054 .00044
(2 700) (1	 700) (11) (.66)

TABLE IV.- ACCURACY (KM) AFTER ONE REVOLUTION ALONG A TRANSFER ORBIT
OF ECCENTRICITY 0.73 WITH (WITHOUT) USE OF A TIME ELEMENT -

OBLATENESS AND THIRD-BODY PERTURBATIONS

Step/revolution

a	 25 50 100 200

1	 3.4 1.2 0.090 0.0061
(12	 000) (840) (50) (3.0)

2	 15 1.2 .078 .0045
0 000) (720) (4.7) (.30)

1.5	 2.2 .089 .0045 .00014
(2 700) (1	 700) (11) (.66)

11
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1
TABLE V.- ACCURACY (KM) AFTER 10 REVOLUTIONS ALONG A TRANSFER ORBIT

OF ECCENTRICITY 0.73 WITH (WITHOUT) USE OF A TIME ELEMENT -
OBLATE.vESS, DRAG, AND THIRD-BODY PERTURBATIONS

Step/revolution

Q	 50	 100	 200

1	 50	 2.8	 0.17

(15 000)	 (850)	 (41)	 •

2	 11	 0.74	 .047
(250)	 (32)	 (2.5)

1.5	 3.2	 .19	 .011
(2 000)	 (1 200)	 (7.0)

By including the time element, the accuracy is improved by three to four orders
of magnitude, as shown in tables II through IV. For 50 steps/revolution or
more, the elliptic anomaly gives one order of magnitude better accuracy than the
eccentric or true anomaly.

Without time element, the true anomaly performs slightly better than the ellip-
tic anomaly. With the time element, the elliptic anomaly performs considerably
better than the true anomaly, showing that the combination time element and el-
liptic anomaly as independent variable reduces the in-track error most
efficiently.

The eccentric anomaly performs poorly without the time element, while it per-

forms as well as the true anomaly with the time element.

The inclusion of the oblateness (table III) and third-body perturbations
(table IV) does not seem to significantly affect the accuracy after one revolu-
tion. This illustrates the well-known fact that the direct integration of a

Keplerian orbit with Cartesian coordinates is unstable. Therefore, the
perturbative effect of the force model does not add significantly more
instabilities.

This is no longer true with the atmospheric drag perturbation. This perturbation
acts on a highly eccentric orbit like a shock at pericenter. Table V, showing
a comparison including oblateness, drag, and third-body perturbations along
10 revolutions, indicates a strong decrease in accuracy in all cases. The
integration with 25 steps/revolution had to be dropped.

However, even in this worst-case example, a two- to three-order magnitude
improvement in accuracy is shown by including a time element. The ellip-

tic anomaly leaves an error after 10 revolutions 5 times smaller than the
true anomaly, which is about 5 times smaller than the eccentric anomaly.

12
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7.0 CONCLUSION

A general time element valid with any choice of the independent variable is
proposed together with the use of Cartesian coordinates for the integration of
the elliptic motion.

This time element is derived from a set of canonical elements of the Delaunay
type developed in the extended phase space, and is valid for an arbitrary inde-
pendent variable.

By neglecting to separate the conservative from the nonconservative
perturbations, a very simple expression for a general time element differential
equation is found.

Numerical comparisons show that an improvement of about three orders of magni-
tude in accuracy can be obtained by introducing a time element for integrating
eccentric orbits. The accuracy obtained with the elliptic anomaly (an anomaly
intermediate between the eccentri2 and the true anomaly) can be as much
as one order of magnitude better than the eccentric or true anomaly used as inde-
pendent variable.

The spectacular nature of these results, to be confirmed by more refined numeri-
cal experiments, renders the use of the eccentric or the true anomaly obsolete
as the independent variable when used with coordinates, while the elliptic
anomaly combined with a time element appears to be the ideally suited independent
variable for elliptic orbit computation.

13
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