NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE

T A o

S\ el

R T L T T e

G T TR ENRE T SN e s

> N vy . " " P .
¢ ‘xe . o . NS
A : . IR
I ? ot ! i} i .. B P
M R A‘ 2 3 ? ' e v VRN
¢) e, . oy S .
N it . L N)
o ! Con ! T 7o
T P LN . . B
k B o . .) I el
» ; .){)
'

5%

TmS Gammumcahnns Sof huare
anume 2 Cﬂmﬂ fer inierfaees i

v ,f!,..

(VASA CR 160&)1)L TM% CFMMUWILAT10h9 Nﬂ0'17323
SOPTHWARE VOLUMWE 13 COMPUTFPR INTRRFACES

. i ston, Tex. 31 n
(Hltrr“ (’Ork"l Hous L)) cscL 17R iinclas

HC AOS/MF ROT G3/32 12272
M. D. Lenker

 APRIL 1979

A . et e o e

MITRE Technical Report
MTR-4723

Vol. |

TMS Communications Software
Volume |- Computer Interfaces

J. §. Brown
M. D. Lenker

CONTRACT SPONSOR NASA/JSC
CONTRACT NO. F19628-79-C-0001 T5205F
PROJECT NO. 8470
DEPT. D72
THE
C O R P ORAT O N This decument was prepared for authorized
HOUSTON, TEXAS distribution, it has not been approved for public

release.

-1, e —

e

P S I e - R - -

- ‘.'7 %
Department Approval: %,/g

MITRE Prolect Approval: % /% "M/é’\

rae TR T T

LR

e

ABSTRACT

At NASA's Johnson Space Center MITRE has installed a prototype
bus communications system, which is being used to support the Trend
Monitoring System (TMS) as well as for evaluation of the bus concept. As a
part of the TMS bus installation, MITRE implemented hardware and software
interfaces to the MODCOMP and NOVA minicomputers included in the system.
This document describes the system software required to drive the interfaces
in each TMS computer. Documentation of other software for bus statistics

monitoring and for transferring files across the bus is also included.

Yo sk e e deak b de v sk asb sk vk b sl e b e al sk v sl s ok s e e Mok ol s b sl s s e s sl s e e e e e e s s b e e st e e s st s ok e e e e e s e s st o

NOTICE: THE EQUIPMENT DESCRIBED HEREIN IS THE SUBJECT OF

A PATENT APPLICATION PENDING BEFORE THE UNITED STATES

PATENT OFFICE. THIS MATERIAL MAY NOT BE USED IN ANY WAY
WITHOUT AN EXPRESS WRITTEN LICENSE FROM THE MITRE CORPORATION

e S o ol o o e e o o oo o e W o ol e s e e o ol ol ol o ol ol o ol e e e ke ol o s o e s o o o e o o o e st s s o s o o o ol e sl e ot e ol e e o o e sl e sk e ke s e

iii

T —

TABLE OF CONTENTS

List of Illustrations

List of Tables

SECTION 1
1.0
1.1
SECTION 11
2.0

REFERENCES

Page
vi
vii
INTRODUCTION 1
BACKGROUND 1
Overview of This Report 2
MODCOMP SOFTWARE 5
INTRODUCTION 5
The MODCOMP Symbiont 5
MAX 1V I/0 Data Structures Used by
the Symbiont 6
User Communication with the Bus Symbiont 13
Multiprogramming Considerations 15
MODCOMP/BIU Protocol 18
Bus Statistics Processors 37
MODCOMP Programs to Transfer Files between
NOVA and MODCOMP Computers 40

The MODCOMP Boot Storage Program BOOTSV 40
The MODCOMP Terminal Booting Program BOOT 44

DISTRIBUTION LIST

NOVA SOFTWARE 47
"INTRODUCTION 47
The NOVA Bus Handler Programs TBUS
) and GBUS 47
Nova Operating System Interfaces 48
User Task Interfaces 48
Multitasking Operation 49
NOVA/BIU Protocol 50
The NOVA File Transfer Program UPMAIN 67
75
77

ﬁw_wmfﬁmwm BLAK

TUTSERTRE L e T

T T ——

R T T e S

Figure Number
2 . 1 . 1 06_1

2.1.4.3~1
2-1 0406'—1

2.1-4010—'1
2.1.4.10-2

2.2-1
2.2-2
2.3.1-1
2.3.1.2-1

2.3.2-1

3.1.4.5~1
3.1.4.8-1
3.1.4.8-2
3.1.4.8-3
3.1.4.8-4

3.1.4.8-5
3.2-1
3.2-2
3.2-3
3.2-4
3.2-5
3.2-6

LIST OF ILLUSTRATIONS

MODCOMP Operating System Data
Structures Used in Bus 1/0

Packet Format

MODCOMP/B1U Proiocol State
Diagram

Overview Flow Diagram of MODCOMP
Bus Symbiont BUSSYM

Overview Flow Diagram of Bus Symbiont's
STUFF$ Routine

Siatistics Counters RESET Program
Statistics Display Program (STATS)
Format of Bootstrap Program

MODCOMP Boot Storage Program
(BOOTSV)

MODCOMP Terminal Boot Program (BOOT)
NOVA/BIU Protocol State Diagram

NOVA Bus Handler Read Routine RBUS
NOVA Bus Handler Write Routine WBUS
NOVA Bus Handler BIU Reset Routine RSET

NOVA Bus Handler Internal Initialization
Routine SIGNON

NOVA Bus Interrupt Handler

Main NOVA File Transfer Program UPMAIN
NOVA File Transfer Task RDR

NOVA File Transfer Subroutine SEND
NOVA File Transfer Subroutine TOMODC
NOVA File Transfer User Clock Routine CLX

NOVA File Transfer Semaphore Simulator
REC

I S S i o et R

Page

12
22

28

35

36
38
39
42

43
45
56
62
63
64

65
66
68
69
70
71
72

73

ST T e e ST AT

e ERRREE T T

Table Number

2-1.4-6"1

3.104:1"1
3-‘(, -445-1

e TR e ey T RR R - AL R e

LIST OF TABLES

Explanation ©i MCDCOMP/BIU Protocol State
Diagraix Ttunsitions

NOVA DMA Register Usage

Explanation of NOVA/BIU Protocol State Diagram
Transitions

vii

29
51

57

Ty e

s e T TR

]

F“ih"‘?"’\v

TREND MONITORING SYSTEM (TMS)
COMMUNICATIONS SOFTWARE
VOLUME 1
COMPUTER INTERFACES

SECTION I
INTRODUCTION

1.0 BACKGROUND

The Orbiter Data Reduction Complex (ODRC) at NASA's Johnson
Space Center has the responsibility of providing data reduction for measure-~
ments collected during manned spaceflight missions. This data reduction
involves the extraction of requested data from magnetic tapes, the calibration
of the raw measurements and the conversion of the measurements to engineering
units, and the dicplay of the data in any of a variety of output forms. Ordinarily,
the work of the ODRC is done in response to written requests and has a planned

turnaround time ranging from several hours to several days, depending on the
priority of the request.

In 1977, however, as data processing requirements for Operational
Flight Tests (OFT) of the Space Shuttle were being considered, it was
established that NASA/JSC's Structures and Mechanics Division (SMD) needed
to view thermal parameters for the shuttle in near real time. As a consequence,
the Institutional Data Systems Division (IDSD), which is responsible for the
ODRC, chose to implement an interactive graphics system to display plots of
current, projected, and historical thermal data for the Shuttle. The system,
termed the Trend Monitoring System (TMS), was implemented by IDSD's
Engineering and Special Development Branch (FD7) using a MODCOMP 1V/35
host minicomputer and MEGATEK 5000 intelligent graphics terminals (based
around Data General NOVA/3 minicomputers).

In the TMS, the terminals and the host computer are separated by
a distance of about 1600 feet, and the requirements for response time dictate
that a high data rate be provided on the communications path between the host

and the terminals. Conventional communications systems to meet these

1

¥
-t

STTEE

requirements are not readily available. MITRE has developed a coaxial
cable bus communications system [1] which provides a communications
bandwidth of up to 307.2 Kbps over a distance of several miles. 1DSD
consequently elected to install a prototype bus communications system with
the dual objective of supporting the TMS needs and of providing a test bed
for further evaluation of the bus concept's ability to meet digital computer
communication needs.

MITRE has provided both engineering and implementation support
for the prototype bus. This work is documented in a series of reports

({21, (31, (4], [5], (61, [7D.

1.1 Overview of This Report

In the NASA bus system, subscriber devices (terminals or
computers) are interfaced to the bus through microprocessor-based Bus
Interface Units (B1Us). As a part of the prototype installation, MITRE
implemented hardware and software interfaces between the NOVAs and
their BI1Us and between the MODCOMP and its BIU. In each case, system
software is required to deal with the interface.

This report documents the interface software in both the NOVA
and the MODCOMP (Software written for the BIUs themselves is documented
in [6]). Section 11 deals with the MODCOMP symbiont, which provides
queuing, logical-to-physical device mapping, and 1/0 handler control. This
section also describes two bus-connected support programs -- the routines
to report statistics about bus usage, and the MODCOMP prcgram used in
transferring a program file from the NOVA to the MODCOMP. The file
transfer process is needed because software for the intelligent terminals
is developed on a MEGATEK terminal augmented with two floppy disk drives.
The absolute code version of the terminal software is then transferred back
to the MODCOMP. From the MODCOMP, the intelligent terminals can be
bootstrapped over the communications medium on demend. The MODCOMP
must be involved in the bootstrapping because only one of the MEGATEKs ~~
the development terminal —— has a nonvolatile storage medium.

2

Section 111 of this report documents the 1/0 handler developed
for the NOVAs and also the NOVA program used in transferring a program
file from the NOVA to the MODCOMP.

E
3

STmEmemRevL s T T e TR P o T R T R ne T WL m e memmEmmmeeemm o S TR

SECTION 11
MODCOMP SOFTWARE

2,0 INTRODUCTION

This section provides information needed to understand the background,
design, and structure of the MODCOMP software implemented to support the bus
system. The information presented here, togeiher with a listing of the actual
code, is necessary for maintenance or modification of the software.

2.1 The MODCOMP Symbiont

The TMS operations under the MODCOMP-supplied MAX 1V (Modular
Applications eXecutive) operszing system. MAX IV supports both actual 1/0
devices (referenced directly through 1/0 requests to the device handler) and
imaginary devices (referenced through special system tasks, called symbionts).
Symbionts present an imaginary device interface to the programmer while
insulating the user from the peculiar aspects of the protocol for the real device,

The MODCOMP interface to the bus is through a standard hardware
controller, the Model 4805 General Purpose Data Terminal board (described in
[3D). The hardware interface ‘s under the direct control of the MODCOMP
CL.HAN I/0O handler. For the TMS, a symbiont, named BUSSYM, was chosen
to control the handler's operation because the MODCOMP/BI1U protocol is
different from other MODCOMP device interfaces and because the interface
requires that a number of complex functions be performed. Among these are
logical multiplexing of communication with multiple bus devices and blocking and
deblocking of messages. Use of a symbiont permits the actual MODCOMP/BIU
interface to be transparent to the application programmer.

To understand the symbiont's interfaces with MAX 1V, some background
is needed on the operating system and its 1/0 logic. Operating system structures
used for 1/0 are discussed in paragraph 2.1.,1 of this document. The symbiont's
interfaces with a user task are described in paragraph 2.1.2, while the symbiont's

LAY INENROMACLY BLAGR

other relationships to the operating system are discussed in paragraph 2.1.3
Paragraph 2.1.4 discusses the host/B1U protocol and source code structure.

2.1.1 MAX 1V 1/0 Data Structures Used by the Symbiont

There are several data structures in the operating sysiem with
which the symbiont must deal:

1. 1/0 Nodes

2. The symbiont's Physical Device Table (PDT)
3. Logical Device Tables (LDTs)

4. Task Control Blocks (TCBs)

5. User File Tables (U FTs)

The significance of each of these structures to the bus symbiont
is discussed below, and an example of how the structures are related is
given in paragraph 2.1.1.6. The definitions of fields within these structures
are given in [81. 1In general, not all fields are important to BUSSYM; only
those of interest will be mentioned in the following discussion. 1n any of
these structures, a field name is 6 characters long; the first three characters

always indicate in which structure the field occurs. For example, NODBUF
occurs in an 170 node.

2.1.1.1 1/0 Nodes. Every outstanding I/0 request is associated
with exactly one 1/0 node. This node contains pointers to the buffer, to
the issuing task's TCB, to the LDT for the logical device the task is addressing,
and to the PDT for the controller (or symbiont) to which the logical device is
assigned. The node also contains fields specifying the size of the buffer, the
type of operation requested (read, write, etc.), the options requested, and
some workspace in which the operation's progress may be logged. There are
also several other fields not of direct interest to the symbiont.

After MAX 1V creates the 1/0 node for a particular 1/0 request,
the operating system links the node into a chain of nodes queued to either
a physical device controller or to a symbiont, depending on the device being
addressed (see paragraph 2.1.1.3). The node contains pointers to its

)

> ot A r———— T TSI

< o ST T T

predecessor and to its successor in the chain. Ordinarily, the chain is kept

in priority order, with nodes from higher priority tasks higher in the chain.

As i3 discussed below, each physical device and each symbiont have
a PDT, which serves, among other things, as the head of the chain of nodes
queued to that device (or symbiont), This means that the PDT contains a
peinter '""down' to the first node in the chain (called the "current' node) and
the current node contains a pointer '"up'' to the PDT.

A symbiont gets all information about users’ requests for its services
from its own chain. The symbiont is activated by the operating system when the
first node appears in its queue, and the symbiont signals compl :iion of an
operation in part by removing the node from its queue. The bus symbiont may

interleave processing of several nodes, especially when they involve blocking

of data from, or deblocking of data to, the data bus. In order to keep track

of its progress with the node, the symbiont uses a workspace in the node

(field NODACT) which in other devices is ordinarily used for record-skipping
operations.

The maintenance of the node chain is not trivial, since any task may
queue an operation to the symbiont at any time. Queuing of operatious is
discussed in paragraph 2.1.3.

2.1.1.2 The Bus Symbiont's PDT. Every device controller and
symbiont present in the system has a Physical Device Table. These tables
are reserved at system generation (sysgen) time and are linked together
into lists by the system. The PDT is the head element of the chain of 1/0
nodes queued to the device (or symbiont) associated with the PDT. The features
of interest in the bus symbiont's PDT are the pointer to the first node queued
to the symbiont (PDTFNO) and a bit, called the "shutdown' bit, in the device

status word. The shutdown bit is used in part of the coordination among

the various routines which may change the node queue. The coordination
is discussed in detail in paragraph 2.1.3.

et S

R A S it e kot ST e

2.1.1.3 _Logical Device Tables. Every 1/0 device -~ whether
actual or imaginary (supported by a symbiont) -- has a Logical Device Table
(LDT), created at sysgen time, Only the devices present in the system's
chain of LDT's can be referenced by a program. When an 1/0 access to a
logical device is attempted, the MAX 1V Basic 1/0 System (BIOS) searches
the LDTs to determine to which actual controller or symbiont the 1/0 request

should be queued.

In the TMS sysgen, logical devices NOO through NOC and NIO
through NIC are defined to be supported by the bus symbiont BUSSYM, and
each of these devices has an LDT in the system. These device sequences
correspond to the "data' and "boot' addresses, respectively (see paragraph
3.1.4.2), of Bus Interface Units on the network. The bns symbiont uses these
LDTs to translate tne logical device named in an I/0 node to a physical device
name (LDTNAM), and then uses its own internal table to translate the physical
device name to its corresponding address on the bus communications network.

BUSSYM itself accesses the actual hardware interface to the
MODCOMP BIU (see paragraph 2.1.4.1) through the BIOS using logical
devices BIN (for input from the BIU) and BOU (for output to the BIU). BIN
and BOU also each have LDTs in the system, of course.

2.1.1.4 Task Control Blocks. In MODCOMP literature, the
fundamente] entity of control flow is termed a ''task" (this word is used

in the same sense that some authors use the word "process'). Whenever
the MODCOMP is not processing an interrupt, which it performs using
special software in a special hardware state, it is executing some task
(possibly the "idle" task). Tasks are usually started ("activated') by the
system operator, but they can be started by other tasks. A symbiont task
is started by the operating system when the first node is queued to the
symbiont by being placed on the chain headed by the symbiont's PDT.

Each task which is present in the system or which is queued to
enter the system has a Task Control Block (TCB). These blocks are chained

TR S

F’f’?"!' 2 el

together in order of priority. After any interrupt, a system routine
("taskmaster') scans the TCB chain for the highest priority task which is
ready to execute. The taskmaster then gives that task all necessary system
resources, restores the registers and condition codes to the state when the
task was last interrupted, and gives the task control. The task Keeps control
until the next interrupt (which it may issue itself).

Among the resources necessary for a task to execute are map
registers. (See [9] for a detailed discussion of the function of these
registers.) The MODCOMP 1V/35 has 8 map registers, each of which
may be allocated to only one task. The registers permit a task to operate
with a contiguous logical address space by translating the task's virtual
memory addresses into actual main memory addresses. This technique also
reduces fragmentation of system memory.

Each map register is actually a table of 256 entries, in which each
entry contains the actual memory page number of one of the 256-word virtr °
pages used by a task. A program uses only one map register at a time, and
map register selection is determined by the task's Program Status Word
(PSW). A consequence of this arrangement is that the area addressable at
one time by a task is limited to 64K words. Furthermore, on the MODCOMP,
while there are virtual addresses, the size of virtual memory is limited to

the size of real memory since there is no page swapping storage device.

One of the map registers (map zero) is reserved for the operating
system; virtual memory addressed by map zero contains all system data
structures (including 1/0 Nodes, PDTs, TCBs, and LDTs). UFTs are
considered user data structures and reside in a task's addressing space.
Because the bus symbiont is a privileged task, it may address map zero as
well as its own map, though a certain amount of overhead is involved

in map switching.

Since there are only 8 map registers, there may be more tasks
preserit in the system than there are map registers. In this case, MAX IV

selects a task for temporary suspension, copies its map register into a save

9

S I

e e

F?_;ﬁ)w sy T
Y 3

area accessible through map zero, and reallocates the map register to
another task as needed. The saved map register contents are referred

to as a map zero image in the following discussion. The first task's map
zero image will be restored to a map register (possibly a different one from
the one previously used by the task) before the next time the task is allowed:
to execute, This operating system activity requires that a privileged task,
such as BUSSYM, must inhibit system reallocation of its home map register
when it references different address spaces (map zero and user task maps)
so that no problems occur when it again uses its home address spece.

The TCB contains the name of the home address map register of &
task, as well as the map zero address of the contents of the task's map
registers when those registers have been temporarily deallocated, as
discussed above. The bus symbiont may be called to serve tasks which no
longer have map registers allocated. In such a case task memory must
be referenced through the map zero images, rather than through the actual

map registers. This type of referencing is supported by the load-and-store

via map-image instructions (slower than usual memory-referencing instructions).

The TCB also contains a task status word used by the taskmaster to
determine whether the task is waiting for completion of an 1/0 operation.
The bus symbiont must signal the completion of wait-mode operations by
resetting a bit in this status word of the calling task.

2.1.1.5 User File Tables. A user task wishing to request an
1/0 operation from MAX IV first constructs a User File Table (UFT) and
then calls the operating system with the address of the UFT. The UFT
contains all the information that the system needs to perform an 1/0

operation -~ logical device name, command, buffer addresses, options, etc,
(In FORTRAN programs the construction of the UFT is hidden from the
programmer by the compiler.) One UFT is required for each concurrent
1/0 operation for each file.

10

i g Sy NI

After the call to MAX 1V, the operating system sets a bit in the
status word of the UFT, creates, initializes, and queues an 1/0Q node, and
does not further alter the UFT until the operation has terminated (successfully
or not). At that time, the system resets the bit it set earlier (the UFT busy,
or UB, bit) and sets other status bits and the transfer count, as appropriate,
1f the 1/0 operation is performed by a symbiont, the symbiont must set the
status bits and count. A more detailed description of UFT fields and uses is
given in [10].

Since BUSSYM queues operations to physical devices, it too contains
UFTs. These UFTs have the same structure as any other task's UFTs,

2.1.1.6 Example of 1/0 Data Structure Usage. 'Figure 2.1.1.6~1
iliustrates how the MAX 1V 1/0 data structures discussed in the preceding
paragraphs relate to each other. For clarity, some of the operating system
pointers linking such elements as TCBs and LDTs into chains have not been

included. On the diagram, ovals represent hardware components, cross—
hatched rectangles represent code, and unhatched rectangles denote data
structures. Solid interconnecting arrows show data flow, while dashed
arrows indicate pointers, or logical links, among data structures. Control
over hardware is shown by a dotted arrow.

The figure shows the linking which occurs when a user task A
requests an 1/0 operation from the BIOS and specifies a logical device
which was defined at sysgen time to be a logical device connected to the bus.
MAX 1V searches its chain of LDTs and locates the LDT for the requested
logical device. The LDT indicates that the bus symbiont is to be invoked to
handle 1/0 to that logical device, so the operating system builds an 1/0
node and links the node into BUSSYM's node chain (which begins with
BUSSYM's PDT) in priority order. The node also contains pointers to the
requesting task's TCB and UFT for this 1/0.

11

S TR A e L

0/1 Sng ur pasp OINNIIG Ble(wa1s4g Sunjeaadq dWCDOAOW

=91 1°Z san81g

3000 = SUSRW

sna JYNLONUIS ViVa = | N——
- ANIWI T3 IHYMAEYH = D
30iA3C 3UVMALYH 40 1081NGD = ~=000000
MO Vivg - —~—
f3goN o/t JANIT TY21901 HO B3INIOg ~ ———
(i8) Linn A3

IIVIHILINI SNE

ONINVHSAONYH
S08Y/N1Y A8 GIAOW

IHVYMAYVH)
Q4v0d S0ey,

|
|
v
:
!
1
l
|
l
|
|
|
[
l
l
!
[
l
_J
12

o
-]
-1
o

-]
0000°°°°°°0°°0°

-
P
° (NVH10 A8 Qatuvis (31N ~ BIN 50 0N- DON; .
° H34SNVHL) IHVMaNYH SNE " H91A3QIVOID0T fee — — — _ __ ! |
° VNG AS GIAOW 31S3N034 HO4 1q7 i
° I
° r 300% 0/s - ; __ _~
-]
°o I \“\ e — Su3ddng ! -
° i TYNUILNG]
° /./ ~ g I |
o NYH —_— (sngor L]
o ! kil o AL10) 108 ¥O (5@ fe — —] 140 WASSNS A8 GIAOW - m
°o | WOH LN4NI) NiE 301A3Q NN\ Wassng i
g T m——_——— - VIIN0T HO4 1q7 \ LNOIGWAS Sng !
o . i ANNNRISN
000000 /A i ’ d]
WASSNE YNSVL
e ¥04 801 wossor fre— ——]

P - S Y

Bl iR e it Sl

it 45 S

[13]
[14]
(151
[16]

(17]

[18]

Functional Design Specification - Trend Monitoring System, NASA
Johnson Space Center, JSC #13900, February 1978.

Trend Monitoring System Terminal User's Manual, NASA Johnson
Space Center (JSC #14811), 1979.

Diskette Operating System, Data General Corporation, Publication
093-000201-00, August 1976.

Real Time Operating System Reference Manual, Data General
Corporation, Publication 093-000056~06, February 1975.

U&er's Manual ~ Interface Designer's Reference -~ NOVA and ECLIPSE
Line Computers, Data General Corporation, Publication 015-000031,
August 1975.

\ .
Nassi, . and Shneiderman, B., ""Flowchart Techniques for Structured
Progitamming.' Association for Computing Machinery SIGPLAN Notices,
Augus} 1973, pp. 12-26.

76

	1980009063.pdf
	0001A02.tif
	0001A03.tif
	0001A04.tif
	0001A05.tif

	notice_poor quality MF.pdf
	0001A04.JPG
	0001A04.TIF
	0001A05.JPG
	0001A05.TIF

