

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH

INFORMATION AS POSSIBLE

0

1
MITRE Technical Report

MTR•4723

Vol. I

TITIS Communications software
Volume I- Computer Interfaces

J. S. Brown
M. D. lenker

APRIL 1979

	

CONTRACT SPONSOR	 NASA/JSC

	

CONTRACT NO.	 F19628.79-C-0001 T5295F

	

PROJECT NO.	 8470

	

DEPT.	 D72

THE

MITRE_
This document was prepared for authorized

HOUSTON, TEXAS	 distribution. It has not been approved for public
release.

Department Approval;

T

MITRE Project Approval;^''^'^^

a

ABSTRACT

At NASA's Johnson Space Center MITRE has installed a prototype

bus communications system, which is being used to support the Trend

Monitoring System (TMS) as well as for evaluation of the bus concept. As a

part of the TMS bus installation, MITRE implemented hardware and software

interfaces to the MODCOMP and NOVA minicomputers included in the system.

This document describes the system software required to drive the interfaces

in each TMS computer. Documentation of other software for bus statistics

monitoring and for transferring files across the bus is also included.

o^ob;Y;Y9e;ti;Y^C^CO'v9e;'ede;4;Yx;Ye8o4;'r;'e;Y^CO4*;t';Y;ti9roY^9e^r^C;k;'cue;4;eat^>Y;koY;'e;'e4eYroY;`e;2;'eoti^v4;Y;Y9e;k;'C;c;'c;4;Y;Y;Y^e^c;'e;Yok;'e^;Yko'e;t

NOTICE: THE EQUIPMENT DESCRIBED HEREIN IS THE SUBJECT OF

A PATENT APPLICATION PENDING BEFORE THE UNITED STATES

PATENT OFFICE. THIS MATERIAL MAY NOT BE USED IN ANY WAY

WITHOUT AN EXPRESS WRITTEN LICENSE FROM THE MITRE CORPORATION
;?;Y^c;Y o4^e;ti 9e SYda;ti;Yoti;tdc>ti ^e;Y;tioe;e oe ee;'c;^o4 ^e;e>'e oY:4;ti;Y 9e;Y oY;ti;Y ^e s4;4dr ^e ^r;k;Y>t;F9c;^ oY^e;4 oY;'e;l';Y;^ o'ro4;tio0;Y9e ^e;'roti;Yo?;'eoti9ceti oti;Y;4 tc

iii

TABLE OF CONTENTS

Pale

List of Illustrations vi

List of Tables vii

SECTION I INTRODUCTION 1

1.0 BACKGROUND 1

1.1 Overview of This Report 2

SECTION II MODCOMP SOFTWARE 5

2.0 INTRODUCTION 5

2.1 The MODCOMP Symbiont 5
2.1.1 MAX IV I/O Data Structures Used by

the Symbiont 6
2.1.2 User Communication with the Bus Symbiont 13
2.1.3 Multiprogramming Considerations 15
2.1.4 MODCOMP/BIU Protocol 18

2.2 Bus Statistics Processors 37
2.3 MODCOMP Programs to Transfer Files between

NOVA and MODCOMP Computers 40

2.3.1 The MODCOMP Boot Storage Program BOOTSV 40
2.3.2 The MODCOMP Terminal Booting Program BOOT 44

SECTION III NOVA, SOFTWARE 47

3.0 -INTRODUCTION 47

+	 3.1 The NOVA Bus Handler Programs TBUS
and GBUS 47

3.1.1 NOVA Operating System Interfaces 48
3.1.2 User Task Interfaces 48
3.1.3 Multitasking Operation 49
3.1.4 NOVA/B I U Protocol 50

3.2 The NOVA File Transfer Program UPMAIN 67

REFERENCES 75

DISTRIBUTION LIST 77

LIST OF ILLUSTRATIONS

Figure Number Page

2.1.1.6-1 MODCOMP Operating System Data
Structures Used in Bus I/O 12

2.1.4.3--1 Packet Format 22

2.1.4.6-1 MODCOMP/BIU Protocol State
Diagram 28

2.1.4.10-1 Overview Flow Diagram of MODCOMP
Bus Symbiont BUSSYM 35

2.1.4.10-2 Overview Flow Diagram of Bus Symbiont's
STUFF$ Routine. 36

2.2-1 Statistics Counters RESET Program 38

2.2-2 Statistics Display Program (STATS) 39

2.3.1-1 Format of Bootstrap Program 42

2.3.1.2-1 MODCOMP Boot Storage Program
(BOOTSV) 43

2.3.2-1 MODCOMP Terminal Boot Program (BOOT) 45

3.1.4.5-1 NOVA/BIU Protocol State Diagram 56

3.1.4.8-1 NOVA Bus Handler Read Routine RBUS 62

3.1.4.8-2 NOVA Bus Handler Write Routine WBUS 63

3.1.4.8-3 NOVA Bus Handler BIU Reset Routine RSET 64
3.1.4.8-4 NOVA Bus Handler Internal Initialization

Routine SIGNON 65

3.1.4.8-5 NOVA Bus Interrupt Handler 66

3.2-1 Main NOVA File Transfer Program UPMAIN 68

3.2-2 NOVA File Transfer Task RDR 69

3.2-3 NOVA File Transfer Subroutine SEND 70
3.2-4 NOVA File Transfer Subroutine TOMODC 71

3.2-5 NOVA File Transfer User Clock Routine CLK 72

3.2-6 NOVA File Transfer Semaphore Simulator
REC 73

vi

LIST OF TABLES

Table Number
	 Page

2.1.4.6-I	 Explanation Q. 1 MC)COMP/BI U Protocol State
Diagrau-, Tt %nsizinris, 	29

3.1.4.1-I	 NOVA DMA Registe Usage 	 51

3.1.4,5-I 	 Explanation of NOVA/BIU Protocol State Diagram
Transitions	 57

vii

Y

q^

r

TREND MONITORING SYSTEM (TMS)
COMMUNICATIONS SOFTWARE

VOLUME I
COMPUTERINTERFACES

SECTION I
INTRODUCTION

O

1.0	 BACKGROUND

The Orbiter Data Reduction Complex (ODRC) at NASA's Johnson

Space Center has the responsibility of providing data reduction for measure-

ments collected during manned spaceflight missions. This data reduction

involves the extraction of requested data from magnetic tapes, the calibration

of the raw measurements and the conversion of the measurements to engineering

units, and the display of the data in any of a variety of output forms. Ordinarily,

the work of the ODRC is done in response to written requests and has a planned

turnaround time ranging from several hours to several days, depending on the

priority of the request.

In 1977, however, as data processing requirements for Operational

Flight Tests (OFT) of the Space Shuttle were being considered, it was

established that NASA/JSC's Structures and Mechanics Division (SMD) needed

to view thermal parameters for the shuttle in near real time. As a consequence,

the Institutional Data Systems Division (IDSD), which is responsible for the

ODRC, chose to implement an interactive graphics system to display plots of

current, projected, and historical thermal data for the Shuttle. The system,

.	 termed the Trend Monitoring System (TMS), was implemented by IDSD's

Engineering and Special Development Branch (FD7) using a MODCOMP IV/35

host minicomputer and MEGATEK 5000 intelligent graphics terminals (based

around Data General NOVA/3 minicomputers).

In the TMS, the terminals and the host computer are separated by

a distance of about 1600 feet, and the requirements for response time dictate

that a high data rate be provided on the communications path between the host

and the terminals. Conventional communications systems to meet these

1

requirements are not readily available. MITRE has developed a coaxial

cable bus communications .system [1] which provides a communications

bandwidth of up to 307.2 Kbps over a distance of several miles. IDSD

consequently elected to install a prototype bus communications system with

the dual objective of supporting the TMS needs and of providing a test bed

for further evaluation of the bus concept's ability to meet digital computer

communication needs.

MITRE has provided both engineering and implementation support

for the prototype bus. This work is documented in a series of reports

([21, 131, [4], [5), [61, [71).

1.1	 Overview of This Report

In the NASA bus system, subscriber devices (terminals or

computers) are interfaced to the bus through microprocessor-based Bus

Interface Units (BIUs). As a part of the prototype installation, MITRE

implemented hardware and software interfaces between the NOVAs and

their BIUs and between the MODCOMP and its BIU. In each case, system

software is required to deal with the interface.

This report documents the interface software in both the NOVA

and the MODCOMP (Software written for the BIUs themselves is documented

in [61). Section II deals with the MODCOMP symbiont, which provides

queuing, logical-to-physical device mapping, and I/O handler control. This

section also describes two bus-connected support programs -- the routines

to report statistics about bus usage, and the MODCOMP program used in

transferring a program file from the NOVA to the MODCOMP. The file

transfer process is needed because software for the intelligent terminals

is developed on a MEGATEK terminal augmented with two floppy disk drives.

The absolute code version of the terminal software is then transferred back

to the MODCOMP. From the MODCOMP, the intelligent terminals can be

bootstrapped over the communications medium on demend, The MODCOMP

must be involved in the bootstrapping because only one of the MEGATEKs --

the development terminal -- has a nonvolatile storage medium.

2

e

x

• 1

J

Section III of this report documents the I/O handler developed

for the NOVAs and also the NOVA program used in transferring a program

file from the NOVA. to the MODCOMP.

3

t

t

SECTION II
MODCOMP SOFTWARE

	

2.0	 INTRODUCTION

This section provides information needed to understand the background,
design, and structure of the MODCOMP software implemented to support the bus
system. The information presented here, together with a listing of the actual
code, is necessary for maintenance or modification of the software.

	

2.1	 The MODCOMP Symbiont

The TMS operations under the MODCOMP-supplied MAX IV (Modular
Applications eXecutive) operr,x. ng system. MAX IV supports both actual 1/0
devices (referenced directly through I/O requests to the device handler) and
imaginary devices (referenced through special system tasks, called symbionts).
Symbionts present an imaginary device interface to the programmer while
insulating the user from the peculiar aspects of the protocol for the real device.

The MODCOMP interface to the bus is through a standard hardware
controller, the Model 4805 General Purpose Data Terminal board (described in
C3]). The hardware interface 's under the direct control of the MODCOMP
CL.HAN 1/0 handler. For the 'TMS, a symbiont, named BUSSYM, was chosen
to control the handler's operation because the MODCOMP/BIU protocol is
different from other MODCOMP device interfaces and because the interface
requires that a number of complex functions be performed. Among these are
logical multiplexing of communication with multiple bus devices and blocking and
deblocking of messages. Use of a symbiont permits the actual MODCOMP/BIU
interface to be transparent to the application programmer.

To understand the symbiont's interfaces with MAX IV, some background
is needed on the operating system and its 1/0 logic. Operating system structures
used for 1/0 are discussed in paragraph 2.1.1 of this document. The symbiont's
interfaces with a user task are described in paragraph 2.1.2, while the symbiont's

5

other relationships to the operating system are discussed in paragraph 2.1.3
Paragraph 2.1.4 discusses the host/BIU protocol and source code structure.

2.1.1 MAX IV I/O Data Structures Used by the Symbiont

There are several, data structures in the operating system with
which the symbiont must deal:

1. 1/0 Nodes
2. The symbiont's Physical Device Table (PDT)

3. Logical Device Tables (LDTs)
4. Task Control Blocks (TCBs)
5. User File Tables (UFTs)

The significance of each of these structures to the bus symbiont
is discussed below, and an example of how the structures are related is
given in paragraph 2.1.1.6. The definitions of fields within these structures
are given in [81. In general, not all fields are important to BUSSYM; only
those of interest will be mentioned in the following discussion. In any of
these structures, a field name is 6 characters long; the first three characters
always indicate in which structure the field occurs. For example, NODBUF
occurs in an 1/0 node.

2.1.1.1 I/O Nodes. Every outstanding I/O request is associated
with exactly one I/O node. This node contains pointers to the buffer, to
the issuing task's TCB, to the LDT for the logical device the task is addressing,
and to the PDT for the controller (or symbiont) to which the logical device is
assigned. The node also contains fields specifying the size of the buffer, the
type of operation requested (read, write, etc.), the options requested, and
some workspace in which the operation's progress may be logged. There are
also several other fields not of direct interest to the symbiont.

After MAX IV creates the I/O node for a particular 1/0 request,
the operating system links the node into a chain of nodes queued to either
a physical device controller or to a symbiont, depending on the device being
addres,ed (see paragraph 2.1.1.3). The node contains pointers to its

6

L. -..,_.

t'

F

^^	 e

.

predecessor and to its successor in the chain. Ordinarily, the chain is kept

in priority order, with nodes from higher priority tasks higher in the chain.

As i..a discussed below, each physical device and each symbiont ha: -P_

a PDT, which serves, among other things, as the head of the chain of nodes

queued to that device (or symbiont). This means that the PDT contains a

pointer "down" to the first node in the chain (called the "current" node) and

the current node contains a pointer "up" to the PDT.

A symbiont gets all information about users' requests for its services

from its own chain. The symbiont is activated by the operating system when the

first node appears in its queue, and the symbiont signals compl . z,ir of an

operation in part by removing the node from its queue. The bus symbiont may

interleave processing of several nodes, especially when they involve blocking

of data from, or deblocking of data to, the data bus. In order to keep track

of its progress with the node, the symbiont uses a workspace in the node

(field NODACT) which in other devices is ordinarily used for record—skipping

operations.

The maintenance of the node chain is not trivial, since any task may

queue an operation to the symbiont at any time. Queuing of operations is

discussed in paragraph 2.1.3.

2.1.1.2 The Bus Symbiont's PDT. Every device controller and

symbiont present in the system has a Physical Device Table. These tables

are reserved at system generation (sysgen) time and are linked together

into lists by the system. The PDT is the head element of the chain of I/O

nodes queued to the device (or symbiont) associated with the PDT. The features

of interest in the bus symbiont's PDT are the pointer to the first node queued

to the symbiont (PDTFNO) and a bit, called the "shutdown" bit, in the device

status word. The shutdown bit is used in part of the coordination among

the various routines which may change the node queue. The coordination

is discussed in detail in paragraph 2.1.3.

2.1.1.3 Logical Device Tables. Every 1/0 device -- whether

actual or imaginary (supported by a symbiont) -- has a Logical Device Table

(LDT), created at sysgen time. Only the devices present in the system's

chain of LDT's can be referenced by a program. When ar. 1/0 access to a

logical device is attempted, the MAX IV Basic 1/0 System (BIOS) searches

the LDTs to determine to which actual controller or symbiont the 1/0 request

should be queued.

In the TMS sysgen, logical devices NOO through NOC and NIO

through NIC are defined to be supported by the bus symbiont BUSSYM, and

each of these devices has an LDT in the system. These device sequences

correspond to the 01data" and "boot" addresses, respectively (see paragraph

3.1.4.2), of Bus Interface Units on the network. The bias symbiont uses these

LDT;, to translate the logical device named in an I/O node to a physical device

name (LDTNAM), and then uses its own internal table to translate the physical

device name to its corresponding address on the bus communications network.

BUSSYM itself accesses the actual hardware interface to the

MODCOMP BIU (see paragraph 2.1.,4.1) through the BIOS using logical

devices BIN (for input from the BIU) and BOU (for output to the BIU). BIN

and BOU also each have LDTs in the system, of course.

2.1.1.4 Task Control Blocks. In MODCOMP literature, the

fundamental. (:antity of control flow is termed a "task" (this word is used

in the same sense that some authors use the word "p%,ocess"). Whenever

the MODCOMP is not processing an interrupt, which it performs using

special software in a special hardware state, it is executing some task

(possibly the "idle" task). Tasks are usually started ("activated") by the

system operator, but they can be started by other tasks. A symbiont task

is started by the operating system when the first node is queued to the

symbiont by being placed on the chain headed by the symbiont's PDT.

Each task which is present in the system or which is queued to

enter, the system has a Task Control Block (TCB). These blocks are chained

.g

together in order of priority. After any interrupt, a system routine
("taskmaster") scans the TCB chain for the highest priority task which is
ready to execute. The taskmaster then gives that task all necessary system
resources, restores the registers and condition codes to the state when the
task was last interrupted, and gives the task control. The task keeps control
until the next interrupt (which it may issue itself).

Among the resources necessary for a task to execute are map
registers. (See I91 for a detailed discussion of the function of these
registers.) The MODCOMP IV/35 has 8 map registers, each of which
may be allocated to only one task. The registers permit a task to operate
with a contiguous logical address space by translating the task's virtual
memory addresses into actual main memory addresses. This technique also
reduces fragmentation of system memory.

Each map register is actually a table of 256 entries, in which each
entry contains the actual memory page number of one of the 256—word virt,
pages used by a task. A program uses only one map register at a time, and
map register selection is determined by the task's Program Status Word
(PSW). A consequence of this arrangement is that the area addressable at
one time by a task is limited to 64K words. Furthermore, on the MODCOMP,
while there are virtual addresses, the size of virtual memory is limited to
the size of real memory since there is no page swapping storage device.

One of the map registers (map zero) is reserved for the operating
system; virtual memory addressed by map zero contains all system data
structures (including I/O Nodes, PDTs, TCBs, and LDTs). UFTs are
considered user data structures and reside in a task's addressing space.
Because the bus symbiont is a privileged task, it may address map zero as
well as its own map, though a certain amount of overhead is involved
in map switching.

Since there are only 8 map registers, there may be more tasks
present in the system than there are map registers. In this case, MAX IV
selects a task for temporary suspension, copies its map register into a save

9

f

area accessible through map zero, and reallocates the map register to
another task as needed. The saved map register contents are referred
to as a map zero image in the following discussion. The first task's map
zero image will be restored to a map register (possibly a different one from
the one previously used by the task) before the next time the task is allowed
to execute. This operating system activity requires that a privileged task,
such as BUSSYM, must inhibit system reallocation of its home map register 	 C

when it references different address spaces (map zero and user task maps)
so that no problems occur when it again uses its home address spece.

The TCB contains the name of the home address map register of 0i

task, as well as the map zero address of the contents of the task's map
registers when those registers have been temporarily deallocated, as
discussed above. The bus symbiont may be called to serve tasks which no
longer have map registers allocated. In such a case task memory must
be referenced through the map zero images, rather than through the actual
map registers. This type of referencing is supported by the load-and-store
via map-image instructions (slower than usual memory-referencing instructions).

The TCB also contains a task status word used by the taskmaster to
determine whether the task is waiting for completion of an I/O operation..
The bus symbiont must signal the completion of wait-mode operations by
resetting a bit in this status word of the calling task.

2.1.1.5 User File Tables. 	 A user task wishing to request an
I/O operation from MAX IV first constructs a User File Table (UFT) and
then calls the operating system with the address of the UFT. The UFT
contains all the information that the system needs to perform an I/O
operation -- logical device name, command, buffer addresses, options, etc.
(In FORTRAN programs the construction of the UFT is hidden from the
programmer by the compiler.) One UFT is required for each concurrent
I/O operation for each file.

C 10

After the call to MAX IV, the operating system sets a bit in the
status word of the UFT, creates, initializes, and queues an 1/0 node, and
does not further alter the UFT until the operation has terminated (successfully
or not). At that time, the system resets the bit it set earlier (the UFT busy,
or UB, bit) and sets other status bits and the transfer count, as appropriate.
If the 1/0 operation is performed by a symbiont, the symbiont must set the
status bits and count. A more detailed description of UFT fields and uses is
given in (101.

Since BUSSYM queues operations to physical devices, it too contains
UFTs. These UFTs have the same structure as any other task's UFTs.

2.1.1.6 Example of I/O Data Structure Usage. 'Figure 2.1.1.6-1
illustrates how the MAX IV I/O data structures discussed in the preceding
paragraphs relate to each other. For clarity, some of the operating system
pointers linking such elements as TCBs and LDTs into chains have not been
included. On the diagram, ovals represent hardware components, cross-
hatched rectangles represent code, and unhatched rectangles denote data
structures. Solid interconnecting arrows show data flow, while dashed
arrows indicate pointers, or logical links, among data structures. Control
over hardware is shown by a dotted arrow.

The figure shows the linking which occurs when a user task A
requests an I/O operation from the BIOS and specifies a logical device
which was defined at sysgen time to be a logical device connected to the bus.
MAX. IV searches its chain of LDTs and locates the LDT for the requested
logical device. The LDT indicates that the bus symbiont is to be invoked to
handle I/O to that logical device, so the operating system builds an I/O
node and links the node into BUSSYM's node chain (which begins with
BUSSYM's PDT) in priority order. The node also contains pointers to the
requesting task's TCB and UFT for this I/O.

11

I

^—i

r--1

N
N
Fi

.r,w

Q

as

bv
U)

v

U

U)

fLJ

Q

v

U)

bD

v
a

nn
O
PL4

Q
U
P

0 000 0 0 0 0 0 0 0 0 0 0 0 0 6 06
O
0	 _
O

0
O

r^^^^
	 0

O

W
J

I

1^
I	 ^

H

O
0

1y	 Q

OQp

i	
O
0

1
I Q	 O

Si
(v 0 Y

, W	 000000 O^ a

^ wr ' J ^
I

cc
I F,gym_ MSIn

;wocI J

II `L)z
Ste'

^_

H	 7qy

101*
Y7 O

^^ H

wig

` 10
H^ 2W^q^	

WLL
^.	 0x pz W

Nod	 _^
m	

°_ ^ p

I	 ^

I	 I
it
II

m ^Z	 I

I

W

O

W^^Z	 I
W	 0	 I

Z	 LUJ	 Q
f [u¢ o 	 I a

U.	 I	 I Y a
N (7 ^	 I	 I J	 S J^
OJ,.

I	 I O ^ O ^

¢U
J

2

I	 I SO	 N
Q H

m^

ŝ	 W
Q IL¢Q^^

I

I	 i	 t

Z	 Q W
N	 O

S o cz°, = o ^°,

r^ y .^ I
N	 M	 N	 N	 N	 N

I	 I

I I	 I

I 0
O

L__ _ J I O

12

When BUSSYM services the node, it buffers all data through its

own initial buffers so that data packet headers (see paragraph 2.1.4.3)

can be handled. For output requests, BUSSYM consults an internal table

to determine the actual network address for the logical device and prefixes

a message header which will ultimately be employed by the BIU, but which

appears only as data bytes to the MODCOMP operating system. BUSSYM

then requests an I/O either to logical device BIN (for reads from the bus)

or BOU (for writes to the bus) and invokes BIOS to carry out the request.

The BIOS treats the symbiont's request with the same procedures

as followed for the user task's request. A search of the system's LDT

chain shows that BIN (or BOU) is associated with the 4805 handler CL.HAN,

and an 1/0 node is therefore constructed and queued to CL.HAN's PDT.

When the handler services the BUSSYM request, the handler issues

physical commands to the 4805 board to transfer data to (or from) the

symbiont's buffer from (or to) the BIU .

2.1.2 User Communication with the Bus Symbiont

The following paragraphs describe first the procedures by wilich

a user task communicates with BUSSYM and then discuss briefly some of

the options supported by the bus symbiont.

2.1.2.1 Procedures for Communication with BUSSYM. The

application task directly communicates with the bus symbiont only through

the task's UFT (BUSSYM references the task's buffer area, of course,

using the map imaging technique discussed in paragraph 2.1.1.4). The task

indirectly queues an operation to the symbiont by issuing a write to one of

BUSSYM's imaginary devices.

While the operation is pending, the UB (unit busy) bit is set in

the application task's UPT status word. The task may check this bit

periodically if the operation was issued in quick-return mode; if the

operation was issued in wait mode, the task is suspended until the operation

is done. No other bits in the status word are changed until the completion of

the operation.
13

It should be noted that the bus symbiont places no time limit on
how long a request may wait for service. If a task needs to limit the time
to wait for a read, for example, it must issue the reed in quick-return
mode and use MAX IV timer services. The task may, of course, terminate
any of its outstanding I/O operations at any time for any reason.

If the operation is successful, the status word is reset to zero,
and the count of bytes transferred is placed in the UFT field UFTBCT.

If the user tries to specify a buffer which falls outside his
allocated memory, the status word is returned with bits 0 and 8 set
(bit 0 is the leftmost, or most significant, bit). If the UFT option word for
the operation specifies system recovery for errors, the application task is
aborted and the following message displayed on the operator console:

!ABORT (BUS XLM nnnn)/taskname/overlayname
where "taskname" and "overlayname" identify the user task and "nnnn"
gives a task address near where the offending operation was issued.

If the application task references an imaginary device DDD which
was not installed in MAX IV at sysgen time, the operating system aborts the
task and shows an error code of I FN DDD or ASG DDD (depending on the
type of reference) in a message of the form shown above. If, on the other
hand, the imaginary device was specified at sysgen but has not been
inserted in the symbiont's internal table of device names, BUSSYM sets
bits 0 and 3 in the UFT status word, and, if the system recovery bit is
set in the UFT option word, the task is aborted and an error message
showing a cause of BUS DEV (format as shown above) is given.

2.1.2.2 Request Options. Most of the capabilities usual to
communications devices are provided by BUSSYM and can be requested
through UFT options.

14

r.

i.

For example, both binary and ASCII modes of I/O are supported.
When the BI (binary) bit is set in the UFT option word at the time of request,
completion of the operation is determined by the buffer size specified either
in the UFT or in registers at the time of the I/O operation request. Reads
and writes proceed until the user buffer is filled or emptied, respectively,
unless an abnormal termination is encountered. Special characters are
forwarded by the symbiont without any action being taken on them.

When the binary bit is not set, however, the usual MODCOMP
ASCII rules are followed. This means that for a write, the operation
proceeds only until a word containing binary zero is written; for a read,
the operation is ended on the receipt of binary zero.

The symbiont does not support data chaining or use of a buffer
in any map other than the calling task's.

2.1.3 Multiprogramming Considerations

In a multiprogramming system, such as MAX IV, many tasks may
be taking turns using a single processor. A task proceeds until it is
interrupted, or until it must wait for some I/O operation to complete.
At that time, control of the processor is given to other tasks until the first
task is again ready to run and no higher-priority tasks are ready.

Ordinary tasks are independent of each other and have no need for
intertask coordination beyond what the operating system provides in the
allocation of system resources. When a user task is interrupted and later
regains control, the interruption is transparent to the task because its state
is saved at the time of the preemption and restored before control is
returned.

A symbiont, however, faces a more complex situation. First, the
queue of 1/0 nodes with which it works is accessed by other routines
asynchronously. The symbiont, for example, may be interrupted by the
system so that a node can be added to (or deleted from) the node queue.

15

K^L4

The node queue may thus change while BUSSYM is working with it. Second,

the buffers used to exchange data with a calling task are also subject to

outside control. If, during the course of an interrupt (during which the

symbiont is preempted), the calling task is killed and its memory deallocated,

the symbiont may attempt to access memory which has been deallocated. In

that case the symbiont is aborted by the operating system.

These two situations are representative of the general problems of

insuring that the node queue is correct when it is used and insuring that

memory is not deallocated while the symbiont is accessing it, The node queue

problem is mitigated by use of the shutdown bit in the PAT, which is at the

head of the node queue. Whenever another operating system'routine alters the

queue in any way, it resets the shutdown bit before releasing control. In

order to insure that a node is truly present in the queue, BUSSYM therefore

first sets the shutdown bit, then follows the chain to the node, and finally

tests the shutdown bit main. If the bit is still set, then the node is still in

the queue. If the bit has been reset, however, the node may have been

removed. Any time BUSSYM finds the shutdown bit reset, it restarts its

search of the queue from the top after setting the bit again, and continues

until it finishes its search without being interrupted.

The problem of memory deallocation is solved by a second feature

of MAX IV: a privileged task may lock out the taskmaster. Any interrupts

occurring while the taskmaster is locked out are handled normally, but-

during the lockout time, the taskmaster does not scan the list of tasks to

decide which one next receives control. Instead, control always returns

to the task which was interrupted. If, during the interrupt processing, the

interrupt routine decides to abort a task (for a reason such as the occurrence

of an I/O error), it does this by setting a bit in the victim's TCB. The

interrupt routine itself does not deallocate the aborting task's resources:

these resources remain allocated until the taskmaster is again enabled, at

which time it reviews the task queue, deallocates any tasks with the TCB

abort bit set, and gives control to the highest priority ready task.

16

The symbiont must lock out the taskmaster whenever BUSSYM

enters map zero addressing space so that the symbiont's own map registers

are not deallocated (see paragraph 2.1.1.4). In addition to this lockout,

to avoid having any user task's buffer deallocated while BUSSYM is

interrupted, the bus symbiont does not release the taskmaster until either

the bus symbiont is finished with the user task's buffer or the bus symbiont

is willing to check that the node is still present in the queue before addressing

the buffer again. The node's continued presence in the queue implies the

buffer's continued allocation in memory, since the node is removed before

memory space is deallocated.

These problems combine to force the symbiont into the following

sequence of steps when it wants to address a user task's buffer:

1. Lock out taskmaster

2. Select map zero operand addressing

3. Set shutdown bit in PDT

4. Find I/O node in the queue

5. If shutdown bit is reset, return to Step 3

6. Move data to/from user's buffer or UFT

7. Select symbiont's own map

8. Release the taskmaster

The bus symbiont consequently has the taskmaster locked out

for a large precentage of the bus symbiont's execution time. If the system

has many tasks at higher priorities than BUSSYM, this taskmaster lockout

may degrade system performance by letting the bus symbiont keep control

for relatively long periods while higher priority tasks are ready to run.

In the TMS, however, the bus symbiont is the highest priority task

which needs to do any significant amount of work.

17

2.1.4 MODCOMP/BIU Protocol

As described in [11 and 141, a Bus Interface Unit (BIU) is a
microprocessor-based high-speed modem,which communicates simultaneously
with other BIUs (via the data bus) and with its subscribers (via the subscriber
interface). The method of inter-BIU communication is discussed in [4] and

[61 and will not be further considered here. The MODCOMP's BIU communicates
with the MODCOMP using a Direct Memory Access (DMA) interface, the hardware
of which is described in [31 and [111. The following discussion gives design
and implementation details for the protocol.

Paragraph 2.1.4.1 gives background on the DMA interface hardware,
as it influences the software. Paragraph 2.1.4.2 discusses the requirements
levied upon the protocol used in BIU/MODCOMP communications. Paragraphs
2.1.4.3 through 2.1.4.10 describe the detailed design of the protocol from
several perspectives. A bus symbiont overview flow diagram appears in
paragraph 2.1.4.10.

2.1.4.1 The MODCOMP/BIU DMA Interface . Interaction
between the MODCOMP and its BIU occurs via a standard MODCOMP 4805
DMA interface board (see [31 and [111). In each direction, data are passed
in 16-bit parallel mode. The interface is fully handshaken so that neither
the MODCOMP nor the BIU ever passes a data word unless the other party
is ready. This handshaking is transparent to the communications software
and is consequently not further mentioned here.

In the MODCOMP the standard computer link I/O handler CL.HAN
is used to control the interface (see Figure 2.1.1.6•-1). Its purpose is to
mediate between the 4805 hardware and the operating system by issuing
commands to the 4805 and interrogating it. Unlike the symbiont, the handler
is an interrupt routine. It is invoked whenever the symbiont issues an
operation to the BIU, whenever the BIU interrupts the MODCOMP, and
whenever the 4805 completes an operation to the BIU. The handler will
not be discussed further in this paper, since it is a standard MODCOMP
software product and is transparent to the symbiont.

18

The 4805 can pass data in only one direction at a time -- it is a

half--duplex rather than a full-duplex device. Therefore, to reverse the

direction of data flow, or " turn the line around y"" whatever operation is

using the 4805 must be ended, and a new operation started in the opposite

direction. The protocol signals described in paragraph 2.1.4.4 are used

to coordinate ? iii s process.

The BIU includes a status register which the 4805 interrogates

when an interrupt occurs on the MODCOMP/BIU interface. (The interrupt

may be triggered by the BIU or internally by the MODCOMP.) The MODCOMP

handler then takes a "snapshot" of the BIU status (passed through from

the 4805), merges it with some internal status bits, and returns the result

to the bus symbiont. If the operation is "terminated" (aborted) by the

symbiont, however, no interrupt is issued, and the BIU status is not

interrogated. The symbiont gets no status information about operations

that it aborts.

The BIU uses two bits in its status register to signal the symbiont

(see paragraph 2.1.4.5). These are the '"timeout" (referred to as S4 in

hardware discussions such as in 131, but termed TO for clarity in this

paper and in [61) and "more data" (S5 in hardware references, MD in this

paper, and INRDY in [61) bits. Like any other status bits, they are

available to the symbiont only after the handler has read them from the

4805 1, c. ^,:.Iware lines. This only happens after an interrupt, so changes

made by the BIU to its status register are not seen by the symbiont until

the next interrupt has occurred on the MODCOMP/BIU interface.

The 4805 also has some status lines, which the BIU may interrogate.

One of these, the "busy" line (BUSYN), tells the BIU whether the 4805

is working on an operation or not. That the 4805 is working does not

necessarily mean that data are being transferred, since both the BIU and

the 4805 must cooperate to transfer data. It does mean that the handler

associates some operation request with the 4805, and that the 4805 is

ready, or very shortly will be ready, to send or receive data.

19

t

When the BUSYN line is asserted, the BTU may end the operation

by issuing an interrupt (accomplished by pulsing the 4805 EXTSIN interface

line). If the BIU interrupts while BUSYN indicates that no operation is

running, the handler detects the interrupt as an error and writes an error

message to the system console. If the BIU interrupts a write operation

from the MODCOMP, the handler and operating system consider that a

serious I/O error has occurred.

Because of these handler reactions to BIU interrupts, in the NASA

TMS MODCOMP, an artificial operation (termed a "dummy read" because

there is no demand for data transfer) is issued to the BIU by the symbiont

w" +.ver there are no other operations to be done. This action causes

BUSYN to be true and also provides an operation whose interruption does

not cause the handler to take error action. The BIU can then obtain the

symbiont's attention by interrupting the dummy read, or the symbiont can

terminate the dummy read and issue a write if the need arises.

Dummy reads are like "real" reads except that (1) the symbiont

may terminate them at any time, (2) the symbiont expects no data from them,

and (3) while they are outstanding, the symbiont periodically searches the

node queue for writes. When a write request appears, the read is

terminated by the symbiont before the write is issued. Only the symbiont

knows whether a read is a "dummy read" or a real read; it keeps track of

the difference by making note of the circumstances under which the I/O

was issued.

The portions of the interface operation dealing with dummy reads

are discussed more fully in paragraph 2.1.4.5.

2.1.4.2 Design Requirements. The rn,_ in requirement upon the

MODCOMP/BIU protocol is that it permit either parti ipant to limit the

flow of data. The BTU has finite internal buffers and may not be able to

pass data into the gable bus as fast as it is getting data from the MODCOMP.

E'

20

k

S -

Similarly, the symbiont may not be able to process its input immediately,

since it operates in a multiprogramming environment. Therefore, the

symbiont and the BIU both need to be able to limit the data rate.

The data transfer must be fast in both directions, but especially

on output from the MODCOMP, because for the TM5 application, the volume

of data output is much greater than input. Because of the large data volume,

the processing overhead in the MODCOMP must be kept small.

The issue of error control need not be addressed in the MODCOMP/

BIU protocol because the short physical connection f>etween the BIU and

the 4805 is expected to be relatively error-free, and the additional work of

checking error-detecting codes would be a significant burden on the

MODCOMP. (The BIU uses error-detecting codes in its conversations

with other B 1 Us see 141). Any process requiring very low error rates

may, of course, implement error-checking with a higher-level protocol

in its own code.

2.1.4.3 Packet Formats. Messages (or "packets") are passed

between the BIU and the MODCOMP in almost exactly the same form as they

are passed between BIUs on the data bus. The formats of all messages

on the bus are described in 141; the format of messages passed by the

MODCOMP BIU to the symbiont is reviewed below.

.

	

	 input packets may be up to 128 bytes long (64 MODCOMP 16-bit

words). They consist of an eight-byte header, followed by up to 60 words

of data. On the network, the packet is followed by one byte of error-

detection code. This last byte is the only difference between packets as

they appear on the cable network and input packets as they are passed to

the MODCOMP. Figure 2.1.4.3-1 illustrates the packet format, which is

further discussed below.

21

Number

	

of Bits: 16	 16
	

$	 $	 8	 8	 Up to 960	 $

	

DA	 OA	 SN	 MT	 RT	 PL	 Data	 ARITY

DA =	 Destination Address

OA =	 Origin Address

SN =	 Sequence Number of Packet

MT =	 Message Type

RT =	 Retry Count

PL	 Packet Length

PAR I TY =	 Longitudinal Parity Byte

Figure 2.1.4.3-1	 Packet Format

The first two bytes in the packet (bytes 0 and 1) are the

Destination Address (DA), which is the network address of the device

to which theacket was sent. All acketG with a DA. of 0000 are given toP	 P	 g
the symbiont by the BIU. In the TMS, the only packets with this DA are

network status messages (see paragraph 2.2). Data packets (indicated by

'	 a special value in the MT field, which is discussed below) which are

li	 addressed to DA 0200 are also passed to the symbiont.

Bytes 2 and 3 of the pack::;. are the Origin Address (OA). This is

the network address of the device which created the packet. The MODCOMP

accepts packets from any origin on the network.

Byte 4 of the packet is the Sequence Number (SN). Successive

packets transmitted by any BIU are given sequence numbers in the range

hexadecimal 00 through FF, so that receiving BIUs can detect duplicate
R packets.

22

r
a,

Byte 5 of the packet is the Message Type (MT). Several types of

messages are transmitted on the TMS bus system. Only two types of

messages, however, are transmitted to the MODCOMP from its BIU --

status messages (coded as hexadecimal DB) and data messages (coded as

hexadecimal 02). The symbiont takes the data messages from the BIU

and passes them on to user tasks to satisfy outstanding I/O requests.

Status messages, however, are processed by the symbiont and are not

seen by applications software (see paragraph 2.2).

Byte 6 is the retry count (RT), which indicates how many times

this packet has been retried (because of a missing acknowledgement) on

the network.

Byte 7 of the packet (and the last byte in the header) is the

Packet Length (PL) field. This field contains a number which is one less

than the byte length of the packet, where the length includes the header,

but not the error—checking byte. In input packets, this value never

exceeds 127. Odd byte counts may occur. In this case, the MODCOMP

BIU pads the input packet with a trailing byte of unspecified bits, to be

able to transfer a full 16—bit word to the 4805. The BIU does not alter

the PL field on input packets, however, so the symbiont may check the PL

to see whether the last byte is data or filler.

The rest of the input packet (after the header) is data, for data—type

messages, or a variety of status fields, for status messages. BUSSYM

always strips off the packet header before passing data to a requesting

program.

Output packets from the MODCOMP symbiont are the same as

input packets, except for the following differences:

23

1. Output packets may be up to 1024 bytes long,

including the header, which is added by BUSSYM.

The length is indicated in the RT and PI, fields

(considered together as one 16-bit unsigned integer).

2. The OA field in output messages is present but

ignored by the BIU. The BIU inserts the proper

OA before passing the packet to the network.

Permitting the bus symbiont to send a large packet to the BIU

(which then reformats the large packet into several small packets before

transmitting the information on the network) reduces the MODCOMP's

processing overhead, since MAX IV requires about 1 millisecond to

process a write request.

Transfers between the BIU and the user task are fully buffered

within the symbiont. Consequently, if a user task requests a read of

more than 128 bytes (one network packet), the symbiont actually issues

multiple reads to the BIU to obtain the requested amount of data. Similarly,

if a user task issues a write of more than 1024 bytes, the symbiont breaks

the write into several pieces, each of which is performed separately.

2.1.4.4 Protocol Signals. The word-by-word transfer of

data between the BIU and the 4805 uses the 4805's standard handshaking

lines and logic, in which the recipient signals each time it is ready to

accept another word of data. The lines are described in 131 and [111, and

the use of the lines by the BIU is discussed in [61, so further discussion

of the word-by-ward handshaking is not included here. BUSSYM does not

have access to these handshaking lines.

The "more data" (MD) bit is set by the BIU if and only if the

BIU has an input packet ready for the MODCOMP, in addition to any

packet the MODCOMP may already be reading.

24

The "timeout" bit (TO) is set by the BIU whenever an operation
seems to be taking too long, The purpose of the BIU's interrupting in this
case is to ascertain that the MODCOMP has not crashed. Timeout values
and lengths of reads and writes have been chosen so that under normal
conditions, I/O operations for transfers of data (not "dummy reads")
should not be interrupted because of the occurrence of this condition.
During an idle period, however, dummy reads are routinely interrupted
by the BIU at regular intervals. The interrupts may be interpreted as the
BI U's saying "I'm okay; are you okay?".

The BIU uses. the 4845's "busy" line BUSYN to find out whether
the last operation is still active, i.e., whether the symbiont or a system
failure has ended the operation. The line is set indirectly by the symbiont,
whenever it issues an operation. It is reset automatically when the
operation ends (either normally or abnormally).

2.1.4.5 Protocol Events. The normal idle state of the MODCOMP/
BIU interface is for the MODCOMP to have a dummy read outstanding to the
BIU. As mentioned above, this provides an interruptible operation which
can be abnormally terminated by the MODCOMP if a user task generates a
write request, or which can be terminated by an interrupt from the BIU
if a packet arrives from the network for the MODCOMP. Occurrences
which disturb the idle state or which cause transitions between various
active states are termed "events."

An "event" significant to the MODCOMP/BIU protocol occurs
when one of the following three things happens:

1. the symbiont issues an operation to the BIU,

2. the BIU interrupts the MODCOMP while no
operation is underway between the BIU and
the MODCOMP, or

25

3.

	

	 some operation to the BIU is ended in one of the

following ways:

(a) terminated by the bus symbiont

(b) interrupted by the BIU

(c) completed by the transfer of the requested
number of words

(d) aborted by a timeout in the handler

The first class of events requires no comment. Operations issued

to the BIU are treated like any other 1/0 work by the operating system. The

BIU discovers when an operation has been issued to it by polling BUSYN

(the 4805 "busy" line), and it determines whether the operation is a read

or a write by testing the 4805's handshaking lines.

Events in the second class occur only when the MODCOMP has

suffered some failure, causing it not to issue any operation (even a dummy

read) to the BIU for about 0.1 second.

The third class of events consists of the four possible ways in

which an operation may be ended. The first way is that the symbiont may

"terminate" (abort) the operation. This is normally done to end a dummy

read when the symbiont discovers that some user program has requested a

write operation, but may also be done at the request of the user task which

issued the I/O.

The second way an operation may be ended is by an interrupt from

the BIU. When this interrupt is issued, the BIU status register contents are

recorded and passed to the symbiont, and the symbiont is signalled that the

operation is complete. This is the usual way of ending reads by the MODCOMP

from the BIU, but this interrupt can also be generated if an operation takes

too long. Presently, the BIU interrupts the MODCOMP if the transfer of an

incoming packet (up to 128 bytes) to the MODCOMP takes more than 0.02

seconds or if the transfer of an outgoing packet (up to 1024 bytes)

takes more than 0.05 seconds. A dummy read (issued when neither the BIU

26

nor the MODCOMP has traffic for each other) is terminated after 0.1 seconds

if it is not ended earlier by the arrival of traffic.

The third way an operation may be ended is by reaching the requested

byte count. When this happens, the 4805 interrupts the MODCOMP, the BIU's

status is recorded and passed to the symbiont, and the symbiont is signalled

that the operation (usually a write) is complete.

The fourth and final way in which an operation may be ended is

when a timer expires in the MODCOMP device handler. In the sysgen of

MAX IV for TMS, the bus is specified as an untimed device, but because of

operating system bugs, the device is considered timed nonetheless. The

time interval and one status bit meaning are set in MAX IV Level C using the

following sysgen patches:

ORG TCTCL

DFC #8000	 (Patch status bit)

ORG PDTCL-10

DFC 5000	 (Set timer value)

Any time an operation lasts longer than about 50 seconds the

handler aborts the operation and signals an error to the symbiont. The BIU

is always supposed to interrupt operations before this point, so the handler's

abort of the operation always means that the BIU has failed.

2.1.4.6 State Diagram of MODCOMP Interface Protocol.

Figure 2.1.4.6-1 represents the states of the MODCOMP/BIU protocol, and

the legal transitions between ti.,)se states. Each transition is numbered,

and the key given in Table 2.1.4.6-1 shows in decision table format the

conditions which cause the transition and the ensuing results. The

transitions are described with principal emphasis on how they affect the

MODCOMP; details on BIU behavior in the corresponding situations are

found in [6].

27

11

Figure 2.1.4.6-1

MODCOMP/BIU Protocol State Diagram

28

Table 2.1.4.6-I

Explanation of M(,'Dr-OMP/BIU Protocol State Diagram Transitions

Transition

Conditions

a. Reason for BUSSYM activation

b.MD bit set

c . TO bit sex

d. BUSSYM has a queued write

Actions

a. BUSSYM issues dummy read

b. BUSSYM issues read for datal

c.BUSSYM terminates dummy read

d. BUSSYM issues next write

e.BUSSYM reissues last write

f.BUSSYM reissues last read

NOTES:

1.BUSSYM will always issue a read if the BIU offers data. If no read
request is queued, the data are discarded

2. If BUSSYM is awakened by a request from a user task and the interface
state is not idle (state A) the request is queued and BUSSYM awaits
the next interrupt

Key to "reason for BUSSYM activation":

B = Interrupt from B I U

W = Arrival of write request from user task

D = Completion of DMA operation

29

2; 3 4 5 6 7 3 910 11,12

r

B BBB IB W D BID D B B B B

N Y Y- N- N N N Y N Y Y N

- - NYN- NYN,NNY - -

- - - - N -Y - N -1 Y - -

X X X

X X X X X

1

21X X

X X

X

Whenever an event occurs, the protocol makes some transition.

(The events are described in paragraph 2.1.4.5.) Which transition is made

depends on which event occurs, what the state of the protocol was before the

event, whether the symbiont has write requests in its queue, and whether the

MD and TO bits of the BIU status are set. As will be seen in the figure,

some transitions do not change the state of the protocol.

State D ("MODCOMP Reading With 'Write in Abeyance") differs

from State B ("MODCOMP Reading"), even though in State B the MODCOMP

may also have new writes ready to begin. "Write in Abeyance" means that

when the MODCOMP again gets a chance to write, the data transmitted will

be a repeat of the last write the BIU interrupted. Since the symbiont's

request queue of I/O nodes is ordered by priority instead of being simply

First-In-First-Out (FIFO), this differs from pushing the write back into

the request queue. The same write must always be retried first because

the BIU will discard as many bytes of the retried write as it passed to the

network on the first attempt.

2.1.4.7 Symbiont's Rules. A protocol may be defined through

the set of rules obeyed by each participant. The rules which govern the bus

symbiont are given below. The B IU's rules are given in the next section,

and the protocol states and transitions resulting from the participants'

following these rules appear in paragraph 2.1.4.6.

1. At MODCOMP system startup, the symbiont issues a read

to the BIU and waits for a response, even if the symbiont has writes ready

almost immediately. (The symbiont therefore must be an autostart task,

which is given control at boot time.)

2. The symbiont always issues a dummy read to the BTU when

the symbiont has nothing else to write, unless the BIU has indicated with the

MD bit that there is input ready for the MODCOMP. The dummy read is used

so that the BIU may signal the symbiont immediately, by interrupting and

ending the dummy read, whenever input arrives at the BIU from the network.

30

Without the dummy read, the handler would not know what to do with an

interrupt from the BIU.

3. The symbiont "terminates" (aborts) the dummy read and issues

a write if it discovers a write request from a user program before the BIU

ends the dummy read.

4. At the end of a write, the symbiont examines first the count

of the words actually transferred and then the TO and MD bits from the BIU.

(a) If the number of words transferred is less than

the number of words requested, the symbiont

reissues the last write at once.

(b) Otherwise, if only the TO bit is set, the symbiont

reissues the last write (from its internal buffer

shown in Figure 2.1.1, 6-1) immediately.

(c) Otherwise, if only the MD bit is set, the symbiont

considers the write to have been successful (since

the data were accepted by the BIU) and issues a

read to the B I U for an input packet.

(d) Otherwise, if both bits are set, the symbiont

saves the contents of its internal output buffer

for later retransmission, and issues a read to

the B I U for data.

(e) Finally, if neither bit is set, the symbiont considers

the write to have been successful and either starts

another write (if one is available) or enters the idle

state by issuing a dummy read to the BIU.

5. After completing any read (dummy or other), the symbiont

issues a read for data if and only if the MD bit was set after the first read.

The symbiont thus issues reads for data until the BIU indicates by resetting

the MD bit that no more input is ready. Reads "for data" are distinguished

T

31

from dummy reads in that the symbiont never aborts a read "for data,"

while it may abort a dummy read at any time, in response to a write request

from a user task.

Reads "for data" are for one word more than a network packet to

insure that the read is always terminated by an interrupt from the BIU rather

than by an interrupt from the DMA word counter's reaching zero.

6. When the bus symbiont finally stops reading for data, because

it finds the MD bit reset, it retries any interrupted write before starting a

new write, regardless of the priorities of tasks requesting the write.

2.1.4.8 BIU's Rules

1. The BIU interrupts the MODCOMP whenever an operation

exceeds the time limits defined in paragraph 2.1.4.5. The purpose of these

interrupts is to confirm that the MODCOMP is still properly operating and to

indicate that the BIU is also still healthy. When the BIU interrupts according

to this rule, the TO bit is always set in the BIU status word, The MD bit

is also set if appropriate at the time of the interrupt.

2. When the BIU has data for the MODCOMP, it transmits only
after it has signalled the MODCOMP by interrupting with the MD bit set.

3. The BIU ends reads issued to it by interrupting the MODCOMP.
It ends dummy reads (i.e., reads issued before the BIU has signaled the

MODCOMP that there is input) without passing any data. Other reads (i.e.,

the symbiont's reads • "for data") are ended only after a full network packet

has been passed to the MODCOMP (unless Rule 1 requires an interrupt.)

No more than one packet (maximum of 1.28 bytes) is ever passed between

interrupts. If Rule 1 requires that the BIU interrupt the MODCOMP in

mid-packet, the TO and MD bits are both set, and when the MODCOMP
next reads the BIU, the BIU retransmits the same packet from the

beginning.

32

t

4. When the BIU interrupts the MODCOMP in mid-write, as may

happen due to Rule 1 above, it keeps a count of how many by Les from the write

have been released to the network. This is to avoid duplicating data on the

network when the MODCOMP later reissues the write.

5. The BIU passes the MODCOMP symbiont all data packets

addressed to the MODCOMP and all packets addressed to network address

0000.

2.1.4.9 Protocol Operation. In order to further clarify the

protocol description, some possible sequences of events are given below.

First protocol initialization will be discussed, then a typical write by the

MODCOMP, and finally a typical input to the MODCOMP from the BIU.

Normally, when the MODCOMP is booted, the BIU will already

be powered up. Whenever it is powered up and idle, the BIU issues

interrupts to the MODCOMP at the rate of one every 0.1 seconds, regardless

of whether the MODCOMP is "alive." When the bus symbiont is activated at

MODCOMP system startup, it issues a read to the BIU. The next time the

BIU issues its interrupt, the interrupt is detected and a status word passed

to the symbiont.

The symbiont examines the MD ("more data") bit in the status

returned from the read. If the bit is set, the symbiont issues another read.

If, on the other hand, the "more data" bit is reset, the symbiont examines

its queue of requests for services (I/O nodes). If the symbiont finds a

write, it issues a write to the BIU. Otherwise, it issues a dummy read to

the BIU and continues occasionally scanning its request queue in case a

write should appear.

Any write issued by the symbiont continues until one of three

things happens. Either the byte count for the write expires, indicating that

the message has arrived successfully at the BIU, or else the 0.05-second	 •

timer in the BIU runs out before the write is done, or else the write is

ended by the MODCOMP without the transfer of all the requested bytes

33

(this latter condition results from unexplained behavior within MAX IV). At

the completion of the write (normally or abnormally), the symbiont follows

the rules described in paragraph 2.1.4.7.

The s ,^mbiont issues "real" reads (as opposed to "dummy" reads)

whenever it detects the "more data" bit set on any status from the BIU.

These reads are only terminated by the BIU, or, in the event of BIU failure,

by the timeout feature in the MODCOMP handler. Dummy ,reads, on the other

hand, may be terminated either by the symbiont (whenever it discovers a

write request in its queue), or by the BIU.

On completion of a read, the symbiont checks the message type

of the input packet. If the packet is a status message, the bus symbiont

updates its network status records. If the packet is a data message, the

symbiont notes the packet ' s origin address and searches its queue for

read requests issued to the corresponding device. If such a request is

found, the symbiont moves data from the packet into the requester ' s buffer;

if no request is found, the data is discarded. If the MD bit is set, the

symbiont then issues another read. Otherwise, it issues a dummy read or a

write, depending on whether any write requests are in the queue.

2.1.4.10 Symbiont Flow Diagram. Figure 2.1.4.10-1 shows

an overview flow diagram of the bus symbiont, and, in particular,

illustrates how the MD and TO status bits from the BIU are used to control

the MODCOMP's responses to the MODCOMP/BIU protocol. An important

module of the bus symbiont is the STUFF$ routine, which disposes of

incoming data from the network. Figure 2.1.4.10-2 is an overview flow

diagram of STUFF$ and shows particularly how the taskmaster lockout and

shutdown bit considerations discussed in paragraph 1.1.3 are handled.

The flow diagrams in this paragraph show the logical structure

and operation of the bus symbiont, but omit some detail for the sake of

clarity. The flow diagrams (a-A others in this paper) are in the form of

Nassi-Shneiderman charts, the structure of which is described in [181.

34

t.

Initialize Statistics Accumulation Area

Issue read to BIU for one packet (max 128 byte

Wait for completion

rror?

Write error message on console

Call STUFF$ to dispose of data, if and

Do until BIU has no input for MODCOMP (MD bit reset)

I s there a write node waiting?

Issue "dummy read" to BIU

While "dummy read" is not finished do

Write node waiting?

Terminate

	

	 Relinquish CPU until
"dummy read" awakened by taskmaster

or I/O int-rru t

Was "dummy read" terminated?

Remove write node from queue

Issue write to BIU

Wait for completion (Relinquish CPU)

Error?	 N

Write error message on console

Do while last write was interrupted
(TO bit set)

Does BI U have input ready?

Issue read to BIU

Wait for completion

Call STUFF$ to dispose of data,
if an

Do until BIU has no input for MODCOMP
(MD bit reset)

Reissue last write

Wait for completion

Frror:,

I	 I Write error message on console

Do until BIU has input for MODCOMP (MD bit s

Do forever

Figure 2.1.4.1,0-1

Overview Flow Diagram of MODCOMP Bus
Symbiont BU S SYM

i

35

Were any bytes transferred?

Is this in ut Dacket a status	 s

Update Status
Message Fields

Lock out task master

whic tno a
i t (arag a h 2.1.3) in finding to

Node found?
Calculate number of bytes to give to user

[minimum of (number of bytes remaining in
request) and (number of bytes in input pAcket)]

Update byte count in 1/0 node

K-Is this an ASCII mode read?	 N

Do number-of-bytes times

Move byte to user buffer
Wab to a Controlcl

Do	 -of-

Move word to
user buffer

Replace character
with NUL

BREAK
Has request been satisfied. (b	 tob	 count

WO 	 control character in

Free 1/0 node

Release taskmaster

Figure 2.1.4.10-2
Overview Flow Diagram of Bus Symbiont's STUFF$ Routine

36

r

All reads for data issued by the symbiont are issued in quick-
return mode, so that the symbiont must explicitly wait for an operation to
complete, by using the MAX IV RELTILL (relinquish until an event occurs)
service, when that waiting is desired. When the symbiont has issued a
dummy read, however, it relinquishes the CPU only until the next interrupt,
at which time BUSSYM rechecks its node queue and the BIU status. Writes
are issued in wait mode, so that the symbiont does not receive control back
until completion of the write.

2.2	 Bus Statistics Processors

As indicated in paragraph 2.1.4.9, BUSSYM processes incoming
status messages itself and maintains a set of counters for each status message
field for each BIU active on the bus system. The structure of a status message
is described in 141, and the meaning of each field is discussed in [7].

The fields are maintained in an 809-ward shareable common area
STATAB, in which the first 8 words contain the date and time of the last
reset of the statistics counters, the next word contains the number of MODCOMP
handler--detected bus errors (roughly equivalent to the number of writes
interrupted by the 'BIU), and the following 800 words contain status data for the
terminals on the net. The 800 words provide space for information about
16 active B1Us; for each BIU, 25 words are used to contain the last status
message and 25 words are used to maintain cumulative counts of status
fields.

The statistics counters may be reset to zero by the MODCOMP
program RESET and may be displayed by the MODCOMP program STATS
(called STATS2 when activated from the operator console). Reference [12]
contains procedures for using these programs.

Figure 2.2-1 contains a flow diagram of the RESET program,
while Figure 2.2-2 illustrates the flow of the STATS program. The versions
STATS and STATS2 are identical except for output formatting; STATS is

designed for an 80-column-wide CRT, while STATS2 is implemented for a
132-column-wide printer.

r
I

37

Doi-1to800

Set Statistics Accumulator (l) to zero

Insert current date time into Time--of-Reset field

Output advisory messa

NOTE: This routine references statistics accumulators located
in a common block accessed by the bus symbiont.

Figure 2.2-1

Statistics Counters RESET Program

38

Initialize and get time of day

Output headings, time stamp, bus error count

Do I = 1 to 16 (loop over sources of status messages)

Has this status entry been used?

Output most recent status message for this sourc

Output cumulative status message totalsfart}is sourc

NOTE: This routine references statistics accumulators located
in a common block accessed by the bus symbiont.

a
p

Figure 2.2-2

Statistics Display Program (STATS)

39

v	 t-

2.3	 MODCOMP
	 rams to Transfer Files between NOVA and MODCOMP

The basic MEGATEK 5000 terminal as used in the TMS contains a

NOVA computer with volatile main memory and no mass storage, so that if

the unit is powered off, the terminal program is lost. A copy of the terminal

program is consequently kept on mass storage at the MODCOMP and downloaded

over the communications bus into terminals as needed. Procedures for this

bootstrapping of terminals are given in [12].

The development and maintenance of the terminal software, on the

other hand, is conducted on a single MEGATEK which is equipped

with floppy disk storage, but which is not planned to be a regular part of the

TMS. As a result, programs have been developed to transfer the absolute

(executable) terminal program from the development MEGATEK to the

MODCOMP, and to transfer the program from the MODCOMP's storage to

any MEGATEK terminal. These programs all use the bus system for

communications.

The following paragraphs describe BOOTSV, which is the

MODCOMP program which receives the absolute from the development

MEGATEK, and BOOT, which is a MODCOMP program to boot MEGATEKs.

The MEGATEK program corresponding to BOOTSV is discussed in

paragraph 3.2. One should note that the booting function is included within

the TMS monitor [13]; the BOOT program exists primarily to permit booting

of different terminal programs, as described below.

2.3.1 The MODCOMP Boot Storage Program BOOTSV

This paragraph describes first the protocol used between the

development terminal and the MODCOMP for transferring a bootable

MEGATEK program, and then discusses the operation of the BOOTSV

program. The BOOTSV program is used both for transferring the TMS

terminal program and for transferring various MEGATEK-supplied diagnostic

programs which are available only on floppy disks.

40

t

2.3.1.1 File Transfer Protocol. Programs from the development

terminal are transferred to the MODCOMP using a simple protocol. The NOVA

writes on the bus a series of 33-word segments, in which the first word is a

sequence number for the segment, and the following 32 words are part of the

program being sent. The sequence numbers are positive integers beginning with

one. The MODCOMP keeps track of the sequence numbers it receives, and, after
each segment, replies with a one-word message consisting of the highest sequence

number successfully received. If the MEGATEK fails to receive an acknowledgement

or if the acknowledgement is not the same as the number of the last segment trans-

mitted, the MEGATEK retransmits the last segment. The MEGATEK transmits

a dummy segment with a sequence number of -1 when it has finished sending

the program.

The absolute, or bootstrap, programs sent by the development

terminal to the MODCOMP follow a simple format, as illustrated in

Figure 2.3.1-1. The first 512 words are always a small loader program.

The following 127 words are zero, and the next word is the number of words

in the absolute program to be transferred. The next N words (where N is a

multiple of 128) contain the absolute program (possibly padded with zeros).

Finally, 128 identical words, each of which is the NOVA instruction for a

jump to location 2, are sent. Paragraph 2.3.2 explains how this structure is

used during bootstrapping of a terminal.

2.3.1.2 Operation of BOOTSV. Figure 2.3.1.2-1 gives a logic

flow diagram of BOOTSV. The program utilizes logical device DB9 as the

storage area for the boot program, and assumes DB9 to be assigned to an

actual disk file large enough to contain the entire boot program. BOOTSV

begins by preformatting every sector of the file so that each sector (128 words)

contains 127 words of zeros followed by a word containing the one-origin sector

number.

41

r-

Length	 Word

512	 0
words	 Loader Programs

511
512

127
words	 Zeros

639

1 word	 Size of Absolute Program (Words)
	 640

641

n worasI	 Absolute Program

640+n
641 +n

128 I	 Words Containing the NOVA
words i	 Instruction JMP 2

768+n

Figure 2,3.1-1

Format of Bootstrap Program

42

1

Initialize data area and rewind boot storage file DB9

Preformat next sector of boot storage file to 127 words
of zeros followed by a one-word sector number

Do until end of boot storage file

Output advisory message

Set exit flag EXFLAG to 0 and JACK to 0

Initialize segment count IRECNT to 0

While IRECNT is less than 4 do

Get next segment from bus

Y	 Is segment serial number -1?

Set IRECNT
to 4

Is the serial no. the
Y	 one expected?	 IN

.Set EXFLAG
to 1

Increment
IRECNT

Is serial no. less than
Y or equal to expected value N

Copy segment to
disk file buffer

Set IRECNT to 4
Set EXFLAG to 1

Set JACK to serial no. of record

Write JACK to bus as acknowledgement

Write out disk file buffer

Y	 Did error occur on 1/0?

Output error message

Terminating

Do until exit flag EXFLAG is not 0

Write end-of-file on DB9 and output normal termination message

Figure 2.3.1.2-1

MODCOMP Boot Storage Program
(BOOTSV)

43

BOOTSV then reads segments from the bus according to the protocol described

in paragraph 2.3.1.1, blocks the segments into 128-word units, and writes
them to logical device DB9. BOOTSV reads from logical device NOO which

is normally assigned to the MEGATEK development terminal. When BOOTSV
receives a segment with a sequence number of -1, it terminates normally.

Procedures for using BOOTSV, together with typical file
assignments, are given in (12].

2.3.2 The MODCOMP Terminal Booting Program BOOT

The MODCOMP program BOOT reads a MEGATEK bootstrap program
(formatted as in Figure 2.3.1-1) from a disk file and writes the bootstrap
onto the bus system. BOOT takes its input from logical file DB9 (which can
be assigned to any physical MODCOMP file containing a boot program) and
reads until either an end-of-File or a sector matching the preformatting
(see paragraph 2.3.1.2) is found. BOOT directs its output to logical
device NIO, which can be assigned to any MEGATEK terminal on the bus.
Detailed procedures for operating the BOOT program are found in [121.

Figure 2.3.2-1 gives a flow diagram for BOOT and shows that the
program is simply a utility to copy from a disk file to the bus. At the
MEGATEK, when the reset and program load switches are toggled, a 32-word
loader program is read into the MEGATEK from a Read Only Memory (ROM) 	 i
and the terminal's NOVA is started. This small program reads in the 512 -word
loader at the beginning of the bootstrap (see Figure 2.3.1-1), and this
second loader reads the next 128 words to determine the length of the program
element. The second loader initiates a DMA transfer for the length of the
program plus 128 words, places a JMP * (jump to the current location)
instruction in the next 128-word interval following where the program will
lie, and transfers control to the JMP * instruction. The last word read in
by the DMA command will overlay the JMP * instruction with a JMP 2 command,
and the computer will then jump to location 2 to begin execution of the loaded

Rewind input file and output starting message

Do forever

Read a sector from input file

End of file ?

Are first 127 words of sector equal to zero and
128th word equal to sector n 	 er?

BREAK	 Output sector to bus

Output stopping message

Figure 2.3.2-1

MODCOMP Terminal Boot Program
(BOOT)

45

r°
c

SECTION III
NOVA SOFTWARE

	3.0	 INTRODUCTION

The principal communications software in the NOVA computers (which

are the major active component in the TMS MEGATEK terminals) are the bus

handler programs TBUS and GBUS. One additional program, UPMAIN, is

used in the transfer of bootable absolute programs from the development

MEGATEK to the MODCOMP; UPMAIN is the companion program to BOOTSV

(described in paragraph 2.3.1). The following paragraphs describe this

NOVA software.

	

3.1	 The NOVA Bus Handler Programs TBUS and GBUS

The program TBUS is used with the TMS graphics terminal program

(see reference (51), while the routine GBUS is used with the boot transfer

program UPMAIN (paragraph 3.2). TBUS and GBUS each attempt to "sign

on" (establish a logical bus connection) to the TMS MODCOMP when they are

first activated, but the two routines differ in their action if the TMS system

is not available. TBUS calf a graphics routine in the terminal to output a

message and waits for the user to specify an alternate logical link; GBUS,

on the other hand, simply continues to retry the establishing of the link to

TMS until it is successful. This difference in behavior was chosen to avoid

requiring that a number of graphics routines be included in any NOVA utility

program which needs access to the bus. Ordinarily, such utility programs

are not run unless TMS is known to be operating.

Other than this difference, TBUS and GBUS are identical and the

remaining discussion of the bus handler refers to both routines.

The following paragraphs present the NOVA bus handler in a discussion

which has a structure parallel to the description of the MODCOMP Bus

Symbiont in Section II. The NOVA handler, however, is much simpler than

the MODCOMP symbiont because the NOVA routine deals with a simpler

47	
a /^

operating system, and because the NOVA bus interface program has a simpler
user interface. These differences are considered more fully in the following
paragraphs.

The NOVA bus handler is composed of three user-callable entry
points (which are used to queue read, write, and reset operations), plus
a handler for interrupts from the BIU. Paragraph3.1.1 discusses briefly
the interrupt handler's interface to the operating system, while paragraph 3.1.2
describes the user task interface to the entry points. Paragraph 3.1.3
considers multitasking operation with the bus, and paragraph 3.1.4 provides
detailed information about the protocol between the NOVA and its BIU.

3.1.1 NOVA Operating System Interfaces

The NOVA bus handler is designed to operate with either the Diskette
Operating System (DOS - [151) or the Real Time Operating System (RTOS -
[16]) provided by Data General Corporation. Both of these operating systems
permit a user-written handler (as opposed to vendor-supplied handler) to be
inserted easily into a program by the .SYSTM call .IDEF. After having been
inserted by this .SYSTM call, a user handler is automatically given control
whenever the device for which it is registered interrupts the NOVA. The
handler is given full physical control over the device and can interrogate
its status directly and issue 1/0 commands directly (the status and commands
do not pass through the operating system).

TBU S and GBU S take advantage of these facilities by including a section
of code which is registered as a user interrupt handler.

3.1.2 User Task Interfaces

A NOVA user task communicates with the bus through FORTRAN or
assembly language subroutine calls to the routines RSET, RBUS, and WBUS.
All of these routines are "wait mode" (the calling program does not receive
control again until the requested operation has been completed).

48

RESET is a parameterless subroutine which is used by an application

task to reset the NOVA BIU by pulsing the BIU's hardware reset line; this

has the effect of reinitializing the BIU and causing it to discard any messages

currently held in its buffers. Furthermore, the logical lank which exists

(if any) between the NOVA BIU and any other network BIU is broken by the

reset activity; a logical link must then be established before further traffic

can be successfully sent on the network. For more details on establishment

of logical links ("signing on"), consult reference 14a.

The call to read information from the bus is of the form

CALL RBUS (Buffername, Bufferlength)

where Buffername is the address of the first word of the buffer into which

information is to be read, and Bufferlength is an integer variable giving the

maximum number of words to be read. A user task is then suspended until

completion of the read. The requested physical read is not actually issued

to the BIU until the BlU indicates that there are data waiting for the NOVA.

The read is then performed and is considered completed when the BIU has

transferred all the words it has queued for the NOVA, or when the requestea

word count has been reached, whichever occurs first. When the user task is

reactivated after completion of the read, the actual number of words read

(up to the limit specified in the call) is returned in the location Bufferlength.

To write information onto the bus, a user task first sets the one

word of the common block BUSCOM to contain the number of words to be

transferred. The task then issues a call of the form

CALL WBUS (Buffername)

where Buffername is the address of the first word of the output buffer.

3.1.3 Multitasking Operation

The NOVA bus handler is structured to operate within a multitasking

environment, in which a single user program may consist of a number of

separate activities running logically asynchronously, but all referencing the

same copy of the bus handler code. The NOVA operating systems do not

49

I- . a

support multiprogramming, and if more than one copy of the bus handler code
were simultaneously in use, the bus interface would not work properly.

In the multitasking environment, the bus handler insures that at
most one physical operation is outstanding to the bus interface at any time,
and further allows at most one user task read and one user task write to be
candidates for execution at any time. The NOVA operating system's semaphore
capability is used to block other tasks which request bus I/O until previous
operations of the same type are complete.

Whenever any user program which accesses the bus is started, at the
first bus operation the BIU is reset by the bus handler and certain other
initialization is performed. This initialization must be performed regardless
of whether the first operation is a call to RSET, to RBUS, or to WBUS, and
the initialization must furthermore be done only once. The bus handler is
consequently structured so that at the beginning of each of the user-callable
subroutines is a call to an internal initialization subroutine SIGNON. When
this subroutine is first used, it modifies itself so that it returns immediately
from all future calls. This method was chosen to provide a low-overhead
safe method of mutual exclusion.

3.1.4 NOVA/BIU Protocol

The NOVA in a MEGATEK terminal communicates with its BIU through
a DMA interface which is described in L31. The following discussion
gives design and implementation details for the supporting protocol.

Paragraph 3.1.4.1 contains information about the DMA interface,
while pai agraphs 3.1.4.2 and 3.1.4.3 discuss design requirements and
traffic formats for the interface, respectively. Protocol signals are
described in. paragraph 3.1.4.4, and the protocol state diagram is discussed
in paragrapn 3.1.4.5. Paragraph 3.1.4.6 deals with the significant events
in the protocol. A detailed description of the interface protocol appears in
paragraph 3.1.4.7, and flow diagrams of the NOVA bus handler are given
in paragraph 3.1.4.8.

50

3.1.4.1 The NOVA AMA Interface. The NOVA is connected to

the B1U through a Data General Model 4040 general purpose interface

board (see [171), to which interface circuitry (see [31) has been added. Data

are transferred over this interface in 16-bit-parallel DMA mode. A full

complement of handshaking signals is present, so that both the NOVA and

the BI U can control the speed at which the other party is sending data across

the interface. Because the transfers are DMA-operated, this handshaking

is transparent to the NOVA communications software and is therefore not

discussed further here.

Physical I/O instructions issued to the DMA interface are interpreted

by circuitry on the 4040 board. The board has three registers -- the A,

the B, and the C registers -- which are used to control I/O operations.

These registers have the general functions shown in Table 3.1.4.1-I

(more details are given in [31), and are ac:1ressed by the 'NOVA 1/0

instructions DIx and DOx, for inputting from and outputting to the registers,

respectively, where the x is one of the register designators (A, B, or C).

Table 3.1.4.1-I

NOVA DMA Register Usage

Meaning when Read
Register	 ('Referenced with DIx)

A	 Status of interface

B	 Next memory address to

be written

C	 Two's complement of number of

words remaining to be

transferred

Meaning when Written
(Referenced with DOx)

1/0 command

First memory address to

be read or written

Two's complement of number of

words to be transferred

51

F
___ , -^_,

Also visible to the BTU as a prt of the interface is the state of the

"booted" flip-flop on the 4040 board. This flip-flop can be set by the NOVA

through an ordinary I/O operation to the board (see (31). The flip-flop is used,

as described in paragraph 3.1.4.4 in bootstrapping the MEGATEK terminals.

In addition to these control registers, the standard NOVA BUSY and DONE

interface signals play a part in the bus interface. The BUSY signal is

asserted by the 4040 board whenever an I/O operation to the board is in

progress; the signal is removed when the word count 	 cified in the DMA

transfer is satisfied. It should be noted that during a ^ • .DVA write the BUSY

signal is removed as soon as the last word is transferred to the 4040 board,

which occurs before the last word is taken by the BIU.

The DONE flip-flop serves as an interrupt request flag for the

NOVA; this signal is set by the 4040 board whenever the word count in a

transfer is satisfied. The DONE signal can also be set by the BIU to cause

an interrupt of the NOVA.

3.1.4.2 Interface Design Requirements. The requirements for

the NOVA/BTU protocol are essentially th-e same as those for the MODCOMP/

BIU interface (paragraph 2.1.4.2). The protocol must permit full handshaking

so that either the NOVA or the B I U can limit the flow of data to accommodate

its own limited buffer space.

Speed of data transfer is important between the NOVA and its BIU. 	 i

Because of the structure of the TMS, however, where a choice arises, input

into the NOVA should be favored over output from the NOVA. This choice is

important in the TMS for two reasons. First, a single MODCOMP computer

(coupled to a single BIU) serves a number of user te rminals, and second, the

volume of traffic from the host to the terminals is from 100 to 1000 times as

great as the volume of traffic from the terminals to the host. Consequently,

in order to avoid choking the host with data, the terminals need to be able to

accept and dispose of data from the host as fast as possible.

52

c'

The interface protocol must also be able to support bootstrap

loading of the NOVA in -^ MEGATEK terminal, as described in paragraph 2.3.2.

Bootstrapping of the NOVA is initiated by the NOVA's program load ROM, which

performs bus 1/0 differently from the way the TMS terminal program operates.

First, the ROM loader uses slightty different 1/0 commands, and second, the

loader is incapable of handling interrupts from the BIU.

Because of these differences, then, the BIU must handle boot

program transfers differently from the way in which it handles data transfers,

and the BIU must consequently be able to detect when the NOVA is requesting

a boot program. This detection is handled through the use of the "booted"

flip-flop described in paragraph 3.1.4.4. Furthermore, the BIU must be able

to distinguish between incoming network packets which are data and incoming

packets which are parts of a boot program.

This latter requirement is met by causing the NOVA BIU to

respond to two network addresses (a "boot" address and a "data" address,

each unique to the BIU). Only limited discussion of his two-address operation

is contained in the following paragraphs; more information is given in [4] and

[6).

3.1.4.3 Interface Traffic Format. Unlike the MODCOMP/BIU

interface protocol., the protocol between the NOVA and its BIU does not provide

for the passing of network packet headers between the BIU and the NOVA.

The BIU .regards data from the NOVA as a continuous stream of words. The

BIU buffers the words until either the NOVA stops offering data to the BIU

or until 60 words of data have been received without a pause from the NOVA.

At that point, a packet is queued for output to the network. Data from the net

for the NOVA are also buffered, and are treated as a continuous stream of words

which are given to the NOVA one-by-one as the NOVA requests them.

4

53

r

The packet format of Figure 2.1.4.3-1 is, of course, used for
all packets emitted to and received from the network by the NOVA BIU.
The Destination Address (DA) field of the packet header is filled in by the
NOVA BIU either to be a broadcast address (for BIU status messages- see
141) or to be the network address of the other BIU to which the NOVA BIU
is currently "signed on" (for all other messages).

3.1.4.4 Protocol Signals. There are three bits in the BIU
status word which are used by the NOVA bus interrupt handler to determine
the state of the interface. These bits are OUTPUT READY (bit 15 [low-
order bit] of the status word), INPUT READY (bit 14), and BIU ERROR
(bit 13). Other bits of the status word are not used.

The INPUT 'READY bit is set when the BIU is holding data which
is to be transferred to the NOVA, and the OUTPUT READY bit is set
whenever the BIU is ready to accept data from the NOVA. The BIU ERROR
bit is not presently used in the interface protocol.

The BIU determines the status of the interface by examining
the word-by-word handshaking lines, by looking at the BUSY and DONE
signals, and by observing the "booted" flip-flop on the 4040 board. When the
BIU detects that the NOVA is offering a word of data, the BIU assumes that
a NOVA output operation is in progress and accepts words from the NOVA
until the NOVA has completed its write. When the NOVA asserts both the
BUSY signal and the "word-desired" signal (and not the "word-offered"
signal), the BIU recognizes that a NOVA input operation is in progress and
passes words to the NOVA until either the BIU has transferred all the data
it has or the NOVA input operation ends. When the BIU exhausts its supply
of input words for the NOVA, it examines the DONE flag before interrupting
the NOVA; the BIU interrupts only when the DONE flag is not asserted so
that its interrupt is not lost because of a previously requested interrupt
(all interrupt requests are signaled by asserting DONE). Descriptions of
how these signals are used in normal operation are found in paragraph 3.1.4.7.

54

The BTU examines the "booted" flip-flop to determine whether or

not the NOVA is executing a program which is capable of accessing the bus.

3.1.4.5 Protocol State Diagram. Figure 3.1.4.5-1 shows the

states of the NOVA/BIU protocol together with allowable transitions between

the states. The conditions leading to each transition and the consequent actions

which occur are described in the decision table shown in Table 3.1-4.5-1.
The protocol events are described more fully in paragraph 3.1.4.6 and a

detailed description of protocol operation is given in paragraph 3.1.4.7.

Four states of the protocol are illustrated. The "Booting" state

means that the BIU is accepting packets addressed to its secondary (boot)

network address, and that the BIU is expecting that the information it is

receiving is a program for the terminal to execute.

The "Idle" state means that no I/O operation is in progress to

transfer data between the NOVA and its BIU.

In the "NOVA Input" state, data are being transferred from the

BIU to the NOVA, Find in the "NOVA Outpnrt" state, data are being transferred

in the opposite direction. Further information about these states and about the

transitions among them is given in the following paragraphs.

3.1.4.6 Protocol Events. The normal idle state of the NOVA/

BIU interface is for neither participant to have an operation in progress.

When the interface is active, an I/O operation is underway to transfer data

in exactly one direction -- either from the NOVA to the BIU(NOVA output or

from the BIU to the NOVA (NOVA input). Occurrences which cause the

interface to leave the idle state or which affect an active state are termed

events.

An "event" in the NOVA/BIU protocol occurs when one of the

following four things happens:

55

r

7

Figure 3.1.4.5-1

NOVA/BIU Protocol State Diagram

8

56

Table 3.1.4.5-I

Explanation of NOVA /BIU Protocol State Diagram Transitions

Tr. n — +i nn

Conditions

a. Handler activated 1 .

b. Possible to Start Read2

c. Possible to Start Write 3

d. "Booted" Flag Set

Actions

a. Handler starts read

b. Handler starts write

c. Handler awaits next event (BIU
interrupt or user task call for
read or write

d. BIU stops listening to network
"boot address and starts
listening to "data" address

e. BIU stops listening to network
"data" address and starts
listening to "boot" address

1 2 3 4 5 6 7 8 9 1011 12 13

- IY IY Y Y Y Y Y Y l y - -

- - N Y- - Y- Y N N --

-- N Y - Y- N Y --

Y N Y Y Y Y Y Y Y Y Y N N

X

X x x

X

X'

X X X

NOTES:

1. Transitions can occur only when the booted flag is reset (either by front
panel switches or by program control) or when certain parts of the NOVA
bus handler are activated. Activation of the handler can occur by the
following ways:

a. Interrupt of the NOVA by the BIU
b. Interrupt of the NOVA by the DMA board (transfer count satisfied)
c. Call of RBUS or WBUS by user task (call to RSET resets BIU but

does not in itself cause a transition)

2. "Possible to Start Read" means that the handler has a read operation
queued (or is activated by an RBUS call) and the BIU INPUT READY
signal is asserted.

3. "Possible to Start Write" means that the handler has a write operation
queued (or is activated by a WBUS call) and the BIU OUTPUT READY
signal is asserted.

57

1. The NOVA bus handler issues an operation to the

interface.

2. The BIU receives bus traffic for the NOVA when

the interface is idle.

3. An outstanding operation is ended in one of these

ways:

(a) the requet, ted number of words are transferred

(b) the operation is interrupted by the BIU

4. The state of the "booted" flip—flop on the 4040

board changes.

The first class of events occurs only when the interface is idle.

Whenever a user task calls the RBUS, WBUS, or RSET entry points of the

bus handler, the handler checks the status of the interface, and if the interface

is idle, the herd'Ar may initiate an operation. Similarly, when an operation

ends, the bus interrupt handler, having serviced the, interrupt, knows that

the interface is now idle and checks to see whether any queued operation can

be started. A NOVA input operation is not started unless the BlU indicates

in its status word that the BIU has data for the NOVA, and a NOVA output

operation is not started unless the BIU indicates that it is ready to accept

output.

The second class of events occurs when a network Packet is

received by the BIU, but no operation is in progress on the interface.

The BIU then sets the status word bit to indicate that data are available for

the NOVA, and then interrupts the NOVA so that the bus interrupt handler

will be awakened. The interrupt handler can then issue a read operation if

one is queued (the issuance of the operation is an event of the first class

above) .

E

58

An event of the third class occurs normally on NOVA output when
the stated word count to transfer is exhausted and the 4040 board consequently
interrupts the NOVA. On NOVA input, the operation may be ended either by
satisfaction of the word count or by the BIU's transferring of the last word
available to the NOVA. In either case, an interrupt to the NOVA occurs.
If an operation is ended by an interrupt in any other case, an error condition

"	 has occurred.

The fourth category of events deals with the program being
executed by the NOVA. If the NOVA is to use the bus but does not contain
an executable program in its memory, the "booted" flag is reset, and the BIU
knows to accept input from its "boot" network address and to treat the
information as a program to be loaded. (The "booted" flag is reset when the
NOVA is powered on or reset from the front panel switches, and can also be
reset under program control-through the handler's RSET entry point.)

When a program load into the NOVA is completed, the program
begins execution and promptly sets the "booted" flag so that the BIU knows
that the program is executing, and that no further executable code should be
accepted from 'the network "boot" address until the "booted" flag is again
reset. Further traffic with the bus is handled throu g h the BIU's "data"
network address.

Each of the first three classes of events causes the NOVA bus
handler to be invoked, while the fourth may or may not invoke the handler,
depending on how the-flip-flop state is changed.

3.1.4.7 Protocol Operation. This paragraph describes how
the protocol operates under various circumstances. Reference to the protocol
state diagram, Figure 3.1.4.5-1, may be helpful.

When the NOVA is initially powered on, the "booted" flag on the
4040 board is forced to its reset state, and the BIU consequently begins to
listen to the network at its "boot" address rather than its "data" address.

f

59

At this point, the BIU does not expect (and will not accept) output from the

NOVA. While the BIU is waiting for boot packets to be received from the
net, it periodically polls the "booted" flag in case an executable program
is loaded to the NOVA by some means other than the bus (such as from a
floppy diskette on the development terminal). As packets of boot information
come in, they are passed to the NOVA over the interface using the normal
word-by-word handshaking. When the BIU notices that the "booted" flag
is now asserted by the NOVA, the protocol makes a transition to the idle
state .

In the normal idle state, neither the BUSY nor the DONE
signals are asserted, the "booted" signal is asserted, the OUTPUT READY
bit in the BIU status word is set, and the NOVA "waiting for input" handshaking
line is asserted (this last condition is a quirk of the hardware, as described
in [31). The interface will stay in the idle state indefinitely until either input
arrives to the BIU from the network, an I/O operation is started by the NOVA
bus handler, or the state of the "booted" flag is changed.

When input arrives from the network for the NOVA, the BIU sets
the INPUT READY bit in the status word (paragraph 3.1.4.4)• If neither
the BUSY nor the DONE signal is asserted, the BIU then interrupts the NOVA.

Within the NOVA, when a user task calls the RBUS entry point
to read from the bus, if the interface status is "idle" and the BIU's INPUT.
READY bit is set, a DMA, read operation is started for the number of words
specified in the RBUS call. If either of these conditions is not true, the
request is queued by the handler and the calling task is blocked.

When a user task calls the WBUS entry point, if the interface
status is "idle" and the BI U's OUTPUT READY bit is set, a NOVA output
operation is started to transfer the number of words stated in the call.
Otherwise;, the write request is queued and the calling task is blocked.

When a user task calls the RSET entry point, an operation
is immediately issued to reset the BIU.

60

4

Interrupts of the NOVA occur under the following three conditions:

1. When the word count specified in an I/O operation is

satisfied.

2. When, on input of data, the BIU transfers all the

words which it currently has buffered for the NOVA.

3. When input from the net is received by the BIU and

the interface state is "idle".

In any of these cases, the NOVA bus handler checks the previous

interface state and unblocks the user task which was waiting on the now-

completed I/O if the interrupt occurred under conditions 1 or 2. The handler

then checks to see whether an input operation can be started (a user task

read must be queued and the BIU INPUT READY bit must be set), and if so,

the operation is initiated. If an input operation cannot be begun, the handler

checks to see whether an output operation can be started, and, if so, begins

a DMA write. These checks to see whether operations can be started are also

performed when interrupts occur under condition 3.

3.1.4.8 Flow Diagram of the NOVA Bus Handler. The preceding

paragraphs have discussed the broad operation of the NOVA/BIU protocol,

and have indicated the general structure of the NOVA bus handler. Figures

3.1.4.8-1 through 3.1.4.8-5 are flow diagrams of the user-callable entry points

RBUS, WBUS, and RSET, the internal initialization routine SIGNON, and the

bus interrupt handler, respectively. The routine SIGNON is shown as it

"	 appears in the TBUS handler.

The operation of the various parts of the NOVA bus handler is

coordinated principally by the NOVA operating system's semaphore capability.

As can be seen from the flow diagrams, the semaphores READER and WRITER

are used to insure that only one user task at a time presents a read or write

operation, respectively, for the bus handler to consider. Other tasks wishing

to perform the same operation as presently being serviced are blocked, or

P-.

61

r

RBUS (buffername)	 [common block BUSCOM contains length]

Copy arguments

Call initialization subroutine SIGNON
Seize READER semaphore (block if -not available) to

single-thread RBUS code

Zero user buffer area

Seize IDLE semaphore (block if not available) to be sure no
operation is in progress on interface

Fetch read length and negate; save length
store buffer address in RDADDR to indicate queued read request

Mask interrupts

Nvoes BIU have input ready for NOVA?
Issue input command to 4040board 	 Release IDLE

Set interface state variable to "readin	 semaphore

Unmask interrupts
Seize RDDONE semaphore (block if not available) to block

RBUS until read-complete interrupt
Return actual count of words read to caller

Release READER semaphore

Exit

Figure 3.1.4.8-1
NOVA Bus Handler Read Routine RBUS

62

WBUS (buffer name,	 qth)
O

Copy arguments'
1

Call initialization (i ' routine SIGNON

Seize WRITER' 	 emaphore (block if not available) to
single-thread WBUS code

Seize IDLE semaphore (block if not available) to be sure
no operation is in progress on interface

Fetch Write length and negate; save length
Fetch	 u	 -7	 r.ess; store address in
WRADDR to indicate queued write request
Mask interrupts

Y 	
Is B I U ready for output from NOVA?

Issue output commanc to 4040 board Release IDLE
and set interface state	 variable to "writin sema hore

Unmask interrupts

Seize WRDONE s ,emaph Ire (block if not available)
to block WB US until wri .e-com alete interrupt

Return actual coup	of words written

Release write semi hore

Exit

Figure .1.4.8-2

NOVA Bus Handler rite Routine WBUS

63

RSET

Copy arguments

Call initialization subroutine SIGNON

Seize IDLE semaphore (block if not available) to be
sure no operation is in pr2gress on interface

Issue command to reset B I U

Wait for completion of reset

Release IDLE semaphore

Exit

Figure 3.1.4.8-3
NOVA Bus Handler BIU Reset Routine RSET

64

r

SIGNON
Modify code to do an immediate "return" on all future

invocations

Issue command to clear 4040 board

Request system to insert bus interrupt handler

Issue command to set "booted" line on 4040 board

Issue command to reset BIU
Issue input command to	 read "Which System?"	 query

from BIU and discard

Issue output command to specify TMS system

Issue input command to read BIU response

Y	 Was response that link was established?	 IN
Call graphics routine SCROL to write rejection

messy a on terminal

Release writer semaphore to permit WBU S activity

Release reader semaphore to permit RBUS activity

Release Idle semaphore to permit operation to be started

Exit

NOTE: This code is self-modifying since the technique offers the
easiest way of insuring that the code will be executed only
once in a NOVA multitasking environment.

Figure 3.1.4.8-4
NOVA Bus Handler Internal Initialization Routine SIGNON

65

Save registers and fetch word count and status

Was interface state variable "idle" ?

Was interface state variable "reading" ?

Return count of words Was write completed?read to RBUS
Clear read request Clear write re- Adjust writflag (RDADDR) q est fla^gg

WRADDR) starting
address and

length
Release RDDONE sema- Release WRDONE

semaphore tophore to unblock RBUS unblock WBUS

Does BIU have data for NOVA? (check status)

X
Is read request flag (RDADD

set?

Is sue input
	 Is write request flag (WRADDR) set?

-4040 board	 Y 	 z
s BIU ready for data from NOVA?Set interface ^

Y si,state

variable to I ss ie output command to 4040 board
"reading"

Set interface state variable to
"writing"

Clear IDLE semaphore to indicate Release	 TF-
opegatigll underway semaphore

Clear DONE	 bit on 4040 board, restore registers, and exit

Figure 3.1.4.8-5
NOVA Bus Interrupt Handler

66

F

suspended, until the previous requests are completed. The semaphore IDLE
is used to insure that at most one I/O operation at a time (either a read or a
write) is issued to the DMA interface; IDLE serves to coordinate the
independent activity of the RBUS and WBUS routines.

3.2	 The NOVA File Transfer Program UPMAIN

Paragraph 2.3 discussed the TMS requirement to transfer files
containing absolute (boot) programs from the development MEGATEK terminal
to the MODCOMP, and from the MODCOMP to any TMS terminal,. The MODCOMP
program to receive these file transfers, BOOTSV, was discussed in paragraph
2.3.1. This paragraph discusses the NOVA program UPMAIN, which sends
the boot file to BOOTSV over the bus system.

The NOVA file transfer program UPMAIN is actually a multitasking
program composed of the main routine, UPMAIN, which performs initialization
and activates the task RDR before beginning to listen for input from the bus,
and the daughter task RDR. RDR constructs the boot program in the format
shown in Figure 2.3.1-1 and calls the subroutines SEND and TOMODC to
write portions of the program to the bus. The module CLK contains a user
clock routine (task timer) which is started each time a segment is written to
the bus; the timer provides assurance that the program will not become
irretrievably stuck if an acknowledgement is not sent or not received properly.
The routine REC is used to simulate semaphores for communication among
CLK, TOMODC, and UPMAIN. (Simulation of semaphores was necessary
because of problems encountered with using the operating system semaphores
concurrently with a user clock.)

Figures 3.2-1 through 3.2-•6 are flow diagrams of these program
elements.

The multitasking structure of UPMAIN arises from the file
transfer protocol described in paragraph 2.3.1.1, in which the boot program 	 •
is sent from the MEGATEK to the MODCOMP in 33-word sequence-numbered
packets which are individually acknowledged by the MODCOMP. At the NOVA,
the file transfer program should be able to transmit a segment, therefore,

67

Initialize

Initiate RDR task

Do forever

Call t'OVA bus handler routine RBUS to read from bus

Update IACK with first word of read

\Is IACK less than zero?

Output termination	 Set wake-up simulatedmessage	
semaphore IWAI T to 2

'RREAK

Figure 3.2-1

Main NOVA File Transfer Program UPMAIN

68

y

C	 Initialize timeout interval to about 1.7 seconds

Call SEND to send 256 words of the boot loader program

Count the number of words J in the program of interest
Call TOMODC four times to send &JotaL,of,,12,7 woad' of zeros

followed by one word containing the value

Call SEND to send J words of the program of interest

Call TOMODC four times to send 128 words of the NOVA
instruction IMP

Call TOMODC to send a packet with a stopping flag (first
word less than zero)

Figure 3.2-2

NOVA File Transfer Task k.DR

69

r--r

SEND (filename, number of words)

Initialize and open file to be sent

Calculate number of 32-word blocks to send

Do number-of-blocks times

Is this the last block?

Pad buffer to 32 words if necessar Set LENG to 32 wordsSet LENQ to number of words
remaining

Read next LENG words from file to be sent

Call TOMODC to send buffer

Output summary messages

Close file to be sent

Figure 3.2-3

NOVA File Transfer Subroutine SEND

70

4

I

TOMODC

Increment serial number

Call RUCLK to remove user clock

Call CLK to insert and start) user clot k
Call NOVA bus handler routine WBUS to write buffer and

serial number to bus

Call R BC to await an event
Do until event is receipt of a nonzero acknowledgement

or a timeout

Was event a timeout?
Was acknowledgement out of synchronization with

serial number by more than one packet?
Output error me s sage

Stop (abort program)

Do until last event was receipt of the expected acknowledgement

7

Figure 3.2-4

NOVA File Transfer Subroutine TOMODC

LK (ICYCLE) — Entry Point

Fetch ICYCLE parameter describing frequency of user
clock interrupts

Call operating system function .DUCLK to define user
clock

RUCLK - Entry Point

Call operating system function .RUCLK to remove user
clock

Clock Interrupt Routine

Set simulated semaphore IWAIT to 1

Figure 3.2-5

NOVA File Transfer User Clock Routine CLK

r

r

72

4

Khc: (s emaphore, return variable)

While semaphore is zero do

null

Set return variable to semaphore value

yet semaphore to zero

Figure 3.2-6
NOVA File Transfer Semaphore Simulator REC

73

! ,
	 - -^

4

and block itself until either an acknowledgement has been received, or until a

timeout period has elapsed. A convenient method of accomplishing this end

is then to allow the RDR task (through its subroutines SEND and TOMODC)

to emit a segment to the MODCOMP and then to block itself on the semaphore

IWAIT. RDR is reawakened either by the main routine UPMAIN (when input

arrives from the bus) or by the user clock routine CLK when a task timer

expires. At that point, the subroutine being executed in RDR (SEND or

TOMODC) checks to see how it was awakened and if it was awakened by an

acknowledgement, whether the acknowledgement is correct. The subroutine

can then either retransmit the last segment, transmit the next segment, or

terminate, according to the outcome of the checks.

When RDR has completed sending the entire boot program (together

with the auxiliary records shown in paragraph 2.3.1), it sends a dummy

segment with a sequence number of -1 to the MODCOMP. This sequence

number signals the end of the process so that the programs in each computer

can terminate normally.

74

7.

r

REFERENCES

[1] Hopkins, G. T., A Bus Communications System, The MITRE Corporation,
MTR-3515, November 1977.

[2] Roman, G. S . , The Johnson Space Center Broadband Communications
System, The MITRE Corporation, MTR-3 21 JSC #14495), 1 July 1978.

131 Brown, J. S. and Weinrich, S. S. , Trend Monitoring System (TMS)
Communications Hardware - Volume f-- Computer Interfaces, The
MITRE Corporation, MTR-4721 (JSC #14682), February 1979.

141 Brown, J. S. and Hopkins, G. T., Trend Monitoring S stem (TMS)
Communications Hardware - Volume I I - Bus Interface Units, The
MITRE Corporation, MTR-4721 JSG 14723 , March 1979.

(51 Brown, J. S . , Trend Monitoring System (TMS) Gra hies Software,
The MITRE Corporation, MTR-4725 QSC #14795), April 1979.

[6l Gregor, Paul J . , Trend Monitoring System (TMS) Communications
Software - Volume I1 - Bus Interface Unit BIU Software, The
MITRE Corporation, MTR-4723 QSC 114793), April 1979.

171 Brown, J. S. and Lenker, M. D . , Diagnostic Procedures for Trend
Monitoring System (TMS) Communications, The MITRE Corporation,
MTR-4724 QSC #14794), April 1979.

[8l MAX IV Technical Manual - Volume I - General^ Operating System,
Modular Computer Systems, Inc., Publication 22-- 0-61034-000,
May 1977•

191 Technical. Manual - MODCOMP IV/35 Central Processor, Modular
Computer Systems, Inc., Publication 220-130000-001, April 1977•

[101 MAX IV Basic 1/0 System, Modular Computer Systems, Inc.,
Publication 210- 10501-OO0000, May 1977.

[111 Technical Manual - Data Terminal Model 4805-1, Modular Computer
Systems, Inc. Manual is in three sections: publication numbers
225-200125-001 (August 1977), 225-200125-002 (February 1977),
and 225-200125-003 (August 1975).

[12] Brown, J. S., Procedures for Building Trend Monitoring System (TMS)
MODCOMP Graphics Library and MEGATEK Terminal Program,
The MITRE Corporation, WP-6214 QSC #14826), March 1979•

75

[131 Functional Design Specification - Trend Monitoring System, NASA
Johnson Space Center, JSC 13900, February 1978.

[141 Trend MonitorinjR S stem Terminal User's Manual, NASA Johnson
Space Center Q SC 14811), 1979.

1151 \ Diskette Operating System, Data General Corporation, Publication
093-000201-00, August 1976.

[161 Real Time Operating System Reference Manual, Data General
Corporation, Publication 093-000056-06,,, February 1975.

[171 User's Manual - Interface Designer's Reference - NOVA and ECLIPSE
Lirie Computers, Data General Corporation, Publication 015-000031,
August 1975.

[181 Nassi, 1. and Shneiderman, B., "Flowchart Techniques for Structured
Progz ,amming." Association for Computing Machinery , IGPLAN Notices,
A.ugus\ 1973, pp. 12-26.

a

76

	1980009063.pdf
	0001A02.tif
	0001A03.tif
	0001A04.tif
	0001A05.tif
	0001A06.tif
	0001A07.tif
	0001A08.tif
	0001A09.tif
	0001A10.tif
	0001A11.tif
	0001A12.tif
	0001A13.tif
	0001A14.tif
	0001B01.tif
	0001B02.tif
	0001B03.tif
	0001B04.tif
	0001B05.tif
	0001B06.tif
	0001B07.tif
	0001B08.tif
	0001B09.tif
	0001B10.tif
	0001B11.tif
	0001B12.tif
	0001B13.tif
	0001B14.tif
	0001C01.tif
	0001C02.tif
	0001C03.tif
	0001C04.tif
	0001C05.tif
	0001C06.tif
	0001C07.tif
	0001C08.tif
	0001C09.tif
	0001C10.tif
	0001C11.tif
	0001C12.tif
	0001C13.tif
	0001C14.tif
	0001D01.tif
	0001D02.tif
	0001D03.tif
	0001D04.tif
	0001D05.tif
	0001D06.tif
	0001D07.tif
	0001D08.tif
	0001D09.tif
	0001D10.tif
	0001D11.tif
	0001D12.tif
	0001D13.tif
	0001D14.tif
	0001E01.tif
	0001E02.tif
	0001E03.tif
	0001E04.tif
	0001E05.tif
	0001E06.tif
	0001E07.tif
	0001E08.tif
	0001E09.tif
	0001E10.tif
	0001E11.tif
	0001E12.tif
	0001E13.tif
	0001E14.tif
	0001F01.tif
	0001F02.tif
	0001F03.tif
	0001F04.tif
	0001F05.tif
	0001F06.tif
	0001F07.tif
	0001F08.tif
	0001F09.tif
	0001F10.tif
	0001F11.tif
	0001F12.tif

	notice_poor quality MF.pdf
	0001A04.JPG
	0001A04.TIF
	0001A05.JPG
	0001A05.TIF
	0001A06.JPG
	0001A06.TIF
	0001A07.TIF
	0001A08.TIF
	0001A09.TIF
	0001A10.TIF
	0001A11.TIF
	0001A12.TIF
	0001A12a.JPG
	0001A12a.TIF
	0001B02.JPG
	0001B03.TIF
	0001B04.JPG
	0001B04.TIF
	0001B05.JPG
	0001B06.JPG
	0001B07.JPG
	0001B08.JPG
	0001B09.JPG
	0001B10.JPG
	0001B11.JPG
	0001B12.JPG
	0001B12a.JPG
	0001C02.JPG
	0001C03.JPG
	0001C04.JPG
	0001C05.JPG
	0001C06.JPG
	0001C07.JPG
	0001C08.JPG
	0001C09.JPG
	0001C10.JPG
	0001C11.JPG
	0001C12.JPG
	0001C12a.JPG
	0001E02.JPG
	0001E03.JPG
	0001E04.JPG
	0001E05.JPG
	0001E06.JPG

