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1 . INTRODUCTION 

1.1 General 

This document presents the f i n a l  repor t  on the Shuttle/TDRSS 

Communications Syste~., Performance hnalysis performed fo r  NASA Johnson 

Space Center under Contract NAS 9-15799 directed by Wil l iam Teasdale 

and Sid Novosad. It represents a por t ion of the w m  k accomplished 

during the period Ap r i l  20, 1979 through January 24, 1980. 

The general object ives of the overa l l  contract are the following: 

( 1  T2 modify and re f i ne  the ex is t ing  Shuttle/TDRSS l i n k  simulat ion 

programs t o  model the post-RFI TORS hardware and t o  provide the 

a b i l i t y  t o  evaluate the l i n k  performance degradation due t o  

RFI ef fects.  This analysis had t o  include the S-band synchroniza- 

t i o n  vu lnerab i l i t y  t o  the TDRSS RFI environment. 

(2) To use the refined l i n k  models t o  determine, evaluate and assess 

expected l i n k  performance t ha t  w i l l  r esu l t  from not meeting each 

TDRSS user constraint;  ind iv idua l ly ,  and i n  various combinations. 

The effects and system performance implicat ions of the l a t e s t  user 

constra int  values had t o  be evaluated. The re f ined resu l t s  o f  

t h i s  task were t o  be used by JSC as a technical base f o r  negot iat ing 

in ter face parameters between Shutt le and TDRSS. 

(3) To continue the i-eview of ESTL Task 501 TDRSS system configurat ion 

(using f l i g h t  equivalent TDRSS hardware) and recommend changes 

anlor  modifications as required. LinCom continued i t s  support 

of ESTL Ta sk 501 TDRSS system performance pred ic t ion capabil i t y  

by providing math modeling and computer models necessary t o  provide 

v a l i d  system level  performance predict ions f o r  fgrward and re turn  

1 i nk . ce r t i f i ca t i on  test ing.  



(4) To i d e n t i f y  t e s t  requirements t o  evaluate user-constrai  n t s  fo r  

the ref ined TDRSS model and update Shut t le  Ku-band and S-band 

system charac ter is t i cs .  

In  what follows an ove ra l l  descr ip t ion  o f  t he  contractual  e f fo r t  

and a b r i e f  sumnary o f  t he  r e s u l t s  i s  given. This i s  fo l lowed by backup 

mater ia l  which includes s imulat ion data and analyses from which our 

summary resu l t s  and recommendations have been drawn. 

1 .l. I Fina l  Report Contents 

This repor t  addresses and documents LinCom's f ind ings  on the 

task statements de ta i l ed  i n  the  Statement o f  Work. A l l  task statements 

pe r ta in  t o  the  performance p red ic t i on  o f  Shut t le  forward and r e t u r n  

l i n k s  through the  Tracking and Data Relay S a t e l l i t e  System (TDRSS). 

Chapter 2 presents user const ra in t  s e n s i t i v i t y  data f o r  Shut t le /  

TDRSS S-band and Ku-band re tu rn  l i n k s .  These s imulat ion r e s u l t s  a re  

oased on ref ined TDRS model and up-to-date user cons t ra in t  values. 

They apply t o  l i n k s  wi thout  RFI problems. The current  system 

parameter values are a lso  l i s t e d .  

Chapter 3 contains a comprehensive performance ana lys is  f o r  the  

Shuttle/TDRSS ground s t a t i o n  c a r r i e r  and t im ing recovery c i r c u i t s .  

It contains performance data f o r  t ne  c ~ r r e n t  system parameters and 

l i n k  budget f o r  both Ku-band l i n k s  and S-band l i nks .  The e f f e c t s  of 

RFI are not  considered i n  t h i s  analysis. 

Chapter 4 discusses the  effects o f  RFI on l i n k  performance. The 

RFI environment i s  described i n  d e t a i l  and the  RFI-related hardware 

changes i n  the  TDRS and TDRSS ground s t a t i o n  are indicated. The 

ana ly t i ca l  models used t o  character ize t h e  b i t  e r r o r  r a t e  and 

synchroni'zation performance are described. Prel iminary r e s u l t s  fo r  



the BER and synchronization vu lnerab i l i t y  t o  RFI are a lso included. 

I n  Chapter 5 the problem of s imulat ing the RFI ef fects w i th  

ESTL's f l i g h t  equivalent TDRSS hardware i s  addressed. The RFI pulse 

character ist ics which might have t o  be considered i n  the design of 

an RFI t e s t  generator are discussed and a simple implementation based 

on unclassi f ied RFI character ist ics i s  presented. 

Chapter 6 comprises a  number o f  small studies performed under 

t h i s  contract i n  response t o  spec i f i c  requests by JSC. 

1.2 Sumnary and Recomendatiofis 

1.2.1 Shutt le S-band Return Link Performance Study 

The per fonance degradation o f  the Shu t t l  e/TDRSS r e t u r n  1  i n k  

due t o  ~ h u t i l e  s ignal  ieper fec t ions has been evaluated f o r  the 

expected Shut t le  d i s t o r t i o n  values based on cur rent  l i n k  budgets 

and TDRS/grourid s ta t i on  hardware data. The resu l t s  show a loss 

r e l a t i v e  t o  idea l  BPSK o f  1.65 dB a t  the nominal b i t  e r r o r  

p robab i l i t y  o f  The TORS and ground s t a t i o n  con t r ibu te  

.9 dB t o  t h i s  loss and the Shut t le  the remaining .75 dB. This i s  

i l l u s t r a t e d  i n  Fig. 1.1. 

The s ing le  biggest con t r ibu to r  t o  the  Shu t t le  degradation 

i s  the phase noise which i s  speci f ied as 10" rms i n  the frequency 

i n te r va l  0 t o  270 Hz. We recornend t o  separate the phase noise 

i n t o  components l y i n g  ins ide  and outside the c a r r i e r  t rack ing  loop 

bandwidth, respect ively,  since these components a f f ec t  the b i t  

e r ro r  r a t e  performance diTferent ly.  Such a refinement o f  the 

spec i f ica t ion could g rea t l y  improve the accuracy of the predicted 

performance resu l ts .  Since our present p red ic t ion  i s  based on 

worst-case assumptions the overa l l  degradaticn would be reduced. 
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Fig.  1 .l. Performance o f  Shut t le  S-Band Return Link. 



1.2.2 - Shutt le  Ku-Band Return L ink Performance Summary 

In  the user cons t ra in t  s e n s i t i v i t y  analys is  f o r  t he  Ku-band 

r e t u r n  l i n k ,  Mode 1, i t  was found t h a t  t h e  t o t a l  degradation i n  l i n k  

performance due t o  the  TDRS, t h e  ground s t a t i o n  and t h e  u s e r  

cons t ra in t s  s e t  a t  t h e i r  nominal values r e s u l t s  i n  a s i g n a l - t o -  

no ise  r a t i o  l oss  o f  3.9 dB f o r  channel 1, 4.6 dB f o r  channel 2 

and 2.3 dB f o r  channel 3. (These values do n o t  i nc lude  t h e  e f fec ts  

o f  hardware imperfect ions.) The p o r t i o n  a t t r i b u t a b l e  t o  t h e  TDRS 

and ground s t a t i o n  i s  1.9 dB, 2 dB, and 1.2 dB fo r  channels 1, 2, 

and 3, respect ive ly ,  w h i l e  2 dB, 2.6 d3, and 1.1 dB, r e s p e c t i v e l y ,  

r e s u l t  from the  user  c o n s t r a i n t s  s e t  t o  t h e i r  n o ~ i n a l  values. 

1.2.3 Shuttle/TDRSS Ground Sta t ion  Synchronization Performance 

The c a r r i e r  and t im ing  recovery performance was analyzed f o r  t he  

Shuttle/TDRSS S- and Ku-band re tu rn  1 i n k  subcar r ie r  e x t r a c t i o n  was 

studied. The c a r r i e r  and c lock j i t t e r  values f o r  t y p i c a l  l i n k  budgets 

and s tab le  o s c i l l a t o r s  a re  summarized i n  Tables 1-1 and 1-2. From these 

data i t  may be concluded t h a t  the e f fec ts  of band 1 i m i t i n g ,  nonl inear  

amp1 i f i c a t i o n  and thermal noise on the  synchronizat ion performance w i  11 I 
4 

not g r e a t l y  a f f e c t  t he  ove ra l l  f l n k  performance. 

1.2.4 RFI Ef fects on ShuttlejTDRSS Links 

The e f f e c t s  o f  R F I  both on the  b i t  e r r o r  r a t e  and t h e  synchronizat ion 

performance of the  Shu t t l  e/TDRSS S-band r e t u r n  1 i n k  was evaluated . 
For the  TDRS West (which sees a l ess  severe RFI environment than 

the TDRS East) and the  S-band frequency, 2217.5 MHz the YEP, Yas 

found t o  be degraded by .2 dB fo r  4 degrees of f -point ing,  by .6 dB 

f o r  1.5 degrees o f f -po in t ing  and by almost 6 dB when t h e  Shgt t le  i s  

d i r e c t l y  over the RFI zone. This i s  i l l u s t r a t e d  i n  Fig. 1.2. 



Table 1-1 .  Carrier and Subcarrier Recovery Performance. 



Tab1 e 1 - 2. Timing Recovery Performance. 
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Figure 1.2. R F I  E f f e c t s  on S h u t t l e  S-Band keturn L ink.  



1.2.5 EST1 Hardware RFI Testing - 
The question o f  designing an RFI t e s t  generator f o r  use i n  conju- 

t i o n  wi th  the ESTL TORSS f l i g h t  equivalent nardware i s  addressed and 

a simple tes t  generdtor implementation i s  proposed. This design i s  

based on unclassified data bases describing the RFI s ta t i s t i c s .  I t  

i s  recomnended t o  review the more detai led c lass i f ied data base p r i o r  

t o  the f ina l  hardware design t o  insure tha t  . a l l  pert inent RFI pulse 

characterist ics 2re properly modeled. 



2. LinCsim PREDICTIONS OF SHUTTLE/TDRSS RETURN LINK BER PERFORMANCE 

2.1 Introduction 

The Shuttle re turn  l i n k  communications hardware does not  meet a l l  

the specifications set f o r t h  i n  the User Constraint Table o f  the TDRSS 

Users' Guide [I]. Since the TDRSS performance predict ions are based 

on these inter face parameter values they may not be appl icable t o  the 

Shutt le l inks .  I n  t h i s  chapter the performance s e n s i t i v i t y  t o  these 

user constraint values i s  documented. The design po in t  i s  based on the 

l a tes t  hardware data and user constra int  values avai lable. A l l  data 

apply for  a non-RFI environment. 

Section 2.2 presents sens i t i v i t y  data f o r  the Shuttle/TDRSS S-band 

return l i n k ,  Mode 2. Since t h i s  i s  the high r a t e  mode i t  i s  more 

susceptible t o  most of the d i s t o r t i on  e f fec ts  and the resu l t i ng  sens i t i v i t i e s  

are the-refore an upper bound on the degradations i n  the low-rate mode. 

Section 2.3 presents the resu l ts  f o r  a l l  three channels o f  the Ku-tand 

return l i nk ,  Mode 1. 

2.2 Performance Predict ion f o r  Shutt le S-band Return Link 

This section presents the s e n s i t i v i t y  o f  the Shutt le S-band re tu rn  

l i n k  BER performance t o  variat ions o f  tne user constrairrt values 

based on current l i n k  budgets, nominal user constraint value estimates 

and TDRS/grour.d s ta t  ion hardware data. 

The l i n k  character ist ics assuned are summarized i n  Table 2.1. 

The nominal values o f  the user constraints are l i s t e d  i n  Table 2.2. 

They agree wi th the expected Shutt le values obtained from JSC. The 

l i n k  budget i s  reproduced i n  Table 2.3. It i s  based on the budgets 

contained i n  Ref. 2 wi th  some updates obtained from D r  Kwei Tu. 

Table 2 - 4  J i s t s  the user constraints whose effect  on performance was 

studied. 



Table 2.1. Shuttle S-band Return Link Characteristics 
Used for LiqCsim 

Data Rate 

Data Format 

Coding 

Carrier 

Design Error Rate 

192 Kbps 

BPSK, Ziphase , Unspread 

Rate 1/3 Convolutional 
Code 

Noncoherent vi t h  Forward 
Link 



Table 2.2. Nminal User Constraint Values Used for 
Li nCs im 

Oata Bit Jitter (30) 

Modulator Phase Imbalance 

~ d u l a t o r  Gain Imbalance 

Data Asynmetry 

Phase Nonl i neari ty 

Gain Flatness 

Gain Slope 

AM/W 

3 dB Bandwidth 

Phase Noise 

1 Hz - 10 Hz 

10 Hz - 100 Hz 

100 HZ - 1 kHz 

1 kHz - 6 MHz 

.6% 

11° 

.1 dB 

3.8% 

3" 

.4 dB peak 

-1 dB/Muz 

14" /dE 

100 MHz 



Table 2.3. Shutt le S-Band Return Link Power Budget. 

Shuttle-to-TDRS Link 

Shuttle EiRP 16.7 dBW 

Space Loss 192.1 dB 

Polarization Loss .5 dB 

TORS GIT 9.55 dBI0K 

TDRS-to-Ground Link 

TORS TkiT max Output Power 13.4 dBW 

TCCT Output Bsckoff 2 dB 

SSA Power Al locat ion 6-10 dB 

TORS Hardcare Losses 2.46 13 

TDRS Antenna Gain 45.9 dB 

Pointing Loss .65 dR 

Space Loss 207.7 d6 

Polarization Loss .1 dB 

Atmospheric Loss .8 dB 

Ground Station G/T 40.3 dBI0K 



Table 2.4. Parameters '..tudied. 

Modulator Gain Imbalance 

Modulator Phase Imbalance 

Data Asymnet ry  

Data B i t  J i t t e r  

Data Stat ic Timing Offset 

XTR AM/AM 

XTR AM/PM 

Stat ic  Phase Error 

XTR Gain Slope 

XTR Gain Flatness 

XTR Phase Nonl inear i ty  

Phase Noise R.M.S. 



The resu l ts  are shown i n  two d i f f e ren t  forms. The BER curves - 
show the b i t  e r ro r  probabi l i ty  as a function of Shuttle-to-TDRS l i n k  

carr ier-to-noise r a t i o  (CNR) var ia t ion  around the nominal 1 i n k  budget 

of  Table 2.3. The horizontal distance between the b i t  e r i o r  r a t e  curve 

and the design point shown represents the margin i n  carr ier-to-noise 

r a t i o  which can be al located t o  the various subsystems f o r  hardware 

degradations. The sens i t i v i t y  curves show the increase i n  the Shutt le- 

to-TDRSS CliR needed t o  o f f se t  the perfomlance degradation (re1 a t  i ve t o  

the nominal performance) due t o  the va r ia t ion  o f  a s ing le  parameter a t  the 

design e r ro r  ra te  o f  

The e r ro r  ra te  curve i n  Fig. 2.1 represents the BER performance o f  

a Shutt le transponder t ransmit t ing a perfect  signal ( i  .e., a l l  

user ccnstraints sre set t o  zero).  The CNR loss shown ( .9 dB) 

can be a t t r i bu ted  t o  the TDRS and the ground stat ion.  This BER curve 

i s  reproduced on a l l  other BER p lo ts  and labeled "Perfect User.'' The 

horizontal distance between t h i s  curve and one of the other BER curves 

represents the CNR loss due t o  the combined effect of a1 1 the user 

constraints. For the nominal conditions t h i s  loss an~ounts t o  .75 dB. 

Fig. 2.20 shows that  by far  the biggest cont r ibut ion of degradation 

comes from the phase noise which i s  specif ied as 10" ms i n  the 0 t o  

270 Hz frequency range. As a worst-case assumption t h i s  noise power 

was concentrated i n  the 100-270 Hz range (i .e. outside the t racking 

loop bandwidth). A more accurate performance p red ic t io r~  could be 

made if the noise power i f is ide and outside the t racking loop bandwidth 

were known separately. 

Tables 2.5 and 2.6 contain a complete l i s t  of a l l  nominal system 

parameters used i n  LinCsini, inc luding those perta in ing t o  the TDRS and 

TORSS ground stat ion.  

-1  5- 
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Table2.5. Conplete L i s t  o f  Sinlulation Parameters. 

-1 6- 



Table 2.6. Complete L i s t  o f  Simulation Parameters. 

PRlSENT UIERE OAT E 5OURCE 
t-4RAHETER VALUE OBTAlt4ED OBTAINED OLD VALUE OLD VblUt 

1TR EIRP: UNCOMD -- - - 
DATA - 
IIR ElWP: COOED 
M I A  19.2 dBU 

$5 Cf r c u i  t t!arqin.!/77 

SPACE LOSS -192.1 $5 C i r c u i t  YarqinJ/77 

POLARIZAI 1O'J LOSS 0.5 dB ISS ~ i r c r i  t lar9 in . r  

ATF!OSPH!RIC LOSS 0 dB '55 C i r c u i t  P'.trgin,V77 

1DRS G/T 3.55(nomina ) TFH 31 78 8.3 dBi0i: SS C i r c u i t  )rargin.Y77 

TDRS T i i T  .Mix 
OUTPUT PUn'ER 

13.4 dB TPM 31 78 12.5 dBU XU Proposa1,7/76 
P 

TDRS 1W1 OUiPUT 2.0 dB TPM 2.0 dBbl XU Proposal. 7/76 
BACKOF F 

POWER ALLOCATION -10.0 dB T F;; 3/ 18 -9 .F o6U .iU ~ r o p o 3 m  ' 

CHANSEL FOitR 1.4  dB TFH 3/ 78 0.6 dBW 6U Froyosal,7/;6 . - 
TDaS HAPDYLRE LOSS 2-56  dS T 7FI I 5178 1.7 dB Xi PI-cposal, 7/76 

TDRS ANTEK';A WIN 4 5 - 4 9  d6 T PM 3/78 41.3 dB 211 Proposal. 7/76 - 
POINT 115 LOSS 0.65 d~ T FM 3/ 76 0.7 dB XU ~r- - ,----- 
SPACE LOSS 207.7 dB XU Pro:osal, 7/76 -- ----. - 
POLAR1 ZAT 1 ON LOSS 0.1 dB XU Proposal. 7/76 

ATKOSPHERIC LOSS 0.8 dB PU Pro9osal. 7/76 

RX ANlLhNA G/T 43.3 dB 123 Proposal, 7/76 - 
PHASE fiOlSC BUDGET 

XT OSC .CGiiERENT 
TUI;::AP.Oi;!iD 
i t o  10 Hz I' rms 
10 Hi? t o  1 kHz I I 1" m s  
1 kHz t o  G f54z 1' nns --- - 

XT OSC ROXCOHERENT 
TU!?!i4icOl~Ii3 

1 t o  l i )  Hr 
10 to&-il hz -- -r-+z- 
100 hz ~D%I---- 
I ktiZ 10 b K?z I' ms 

TORS OSCILLATORS 3.ZCrz; TFH 31 73 3 O  S-805-1 

RX OSCILLATORS 1 0 S-855-1 

RX CuRliR TG4CRING 
- LOP 

STAT lC f ! i i i S E  ERROR incorn Est ica te  
6.4:iVdIfiTti TF.4, 

I nCom t s t l m t e  

SQUkRlNG LOSS 2 dB LinCom Estimate - 



Figure 2,1 .CEK P l o t  f o r  Perfect S h u t t l e  T r a n s n ~ i t t e r .  
,,<:, Ff\-; ;~ 
C . '  
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Figure 2.2. B E R  Plot for Gain Imbalance. 



MODULATOR GAIN IHBALANCE 

Figure 2.3. Sensitivity Curve. 
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Figure 2.4.BER Plot for Phase Imbalance. 
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Figure .ZlOBER Plot for Timing Offset. 



Figure 2.11 .BER Plot for AM/AM. 
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Figure 2.1.2. BEF: P l o t  f o r  AM/PM 

-29- 



DELTU CNR C 3 5 3  

Figure  2.13.BE9 P l o t  for  S t a t i c  Phase E r r o r .  
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Figure 2.15. BER Plot for Gain Slope. 



@ 
DESIGN POINT 

9ELTFl CNR C9b3 

Figure  2.16.BER P l o t  for Gain F latness.  
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Figure 2.17.BER Plot for Phase Nonl inearity. 
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F igure  2 .18. S e n s i t i v i t y  Ctirves. 



Figure 2.19. BER P l o t  f o r  Low Frequency Phase Noise. 



Figure 2.zo. BER P l o t  for Medi urn Frequency Phase Noise. 
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Figure 2 -22. Sensit iv i ty Curves f o r  Phase Noise. 



2.3 Performance Prediction for Snuttle Ku-band Return Link, W e  1 

This section presents the sens i t i v i t y  of the Shuttle/TDRSS 

Ku-band return l i n k  BER performance t o  variations of the user 

constraint values. The a l l - d i g i t a l  mode 1 i s  considered and resul ts 

are given f o r  a l l  tnree data channels. The l i n k  characterist ics 

ass& are suam~rized i n  Table 2.7. The naninal values of the user 

constraints are l i s ted  i n  Table 2.8. They agree wi th  the expected 

Shuttle values thereever such data were available fruu JSC. The 

l i n k  dubget i s  reproduced i n  Table 2.9; i t  i s  based on Ref, 2. 

Table 2-10 1 i s t s  the user constraints whose effect on performance was 

studied. 

The msul  t s  are shown i n  two different forms. The 8ER plots  show 

the b i t  er ror  probabi l i ty as a function of the Shuttle-to-TORS l i n k  

carrier-to-noise r a t i o  (CNR) var iat ion around the nminal  l i n k  budget 

- of  Table 2.9. The horizontal distance between the b i t  e r ro r  ra te curve 

and the design point shown represents the m r g i n  i n  carrier-to-noise 

ra t i o  which can be allccated t o  the various subsystms f o r  hardware 

degradations. The ser, r i t i v i  t y  curves show the increase i n  Shuttle-to- 

TDRSS CNR needed t o  offset the performance degradation ( re la t i ve  t o  

the nominal performance) due t o  the var iat ion of a single parameter a t  

the design error ra te o f  lo5. 

The error rate curves i n  Figs. 2 -23, 2 -40 and 2 -57 represent the 

8ER performance o f  channels 1, 2, and 3, res?ectiv?ly, for a Shuttle 

transponder transmitting a perfect signal ( i - e .  a l l  user constraints 

are set t o  zero). The CNR ~ O S S  shown (Table 2 .11) can be at t r ibuted t o  

the TORS and the ground station. This BER curve i s  reproduced on a1 1 

other BER plots and labeled "Perfect Shuttle. " The horizontal distance 



between th i s  curve and one of the other 8ER curves represents the 

CNR loss due t o  the canbined effect of a l l  the user constraints. 

For the nominal conditions t h i s  loss i s  shown i n  Table 4.11. Table 

4-12 l i s t s  the major contributors t o  t h i s  loss for each of the three 

channel s . 
Table 4.13 contains a complete l i s t  of a l l  nominal system 

parameters used ?'n LinCsim, including those pertaining t o  the TORS 

and TORSS gr~cnr! station. 



Table C.7 .Shuttle Ku-Band Return Link Character i s t i cs  
Used f o r  LinCsim. 

Data Rate Channel 1 192 kb/sec 

Channel 2 2 Mb/sec 

Channel 3 50 Mb/sec 

Datt Format Channel 1 B i  -phase 

Channel 2 NRZ 

Channel 3 MRZ 

Coding Channel 1 none 

Channel 2 none 

Channel 3 ra te 1/2 

Carrier Noncoherent with Forward Link 

Subcarrier Square Wave 

Design Errol Rate 1 o - ~  



Relative Phase Between 

I and Q Channels 

Data Asymmetry 

Modulator Gain Imbalance 

Gain Flatness 

Gain Slope 

Phase Nonl ineari  t y  

AM/Pt.1 

Data B i t  J i t t e r  

3 dB Bandwidth 

2" 

10% 

.5 dB 

.3  dB 

.01 dB/Wz 

7" 

!iO/dB 

-01 X m s  

200 MHz 

Carrier Phase Noise 

100 Hz - 1 kHz 

Subcarrier Phase Noise 

17" rms 

3 O  m s  

lo rms 



Table 2.9.Shuttle Ku-Band Return ~ i n i  Power Budget. 

Shutt l  e-to-TORS 

Shutt le EIRP 48.1 dBW 

Space Loss 208.5 dB 

Polar izat ion Loss .3  dB 

TDRS G/T 22.6 dB/OK 

TORS-to-Ground Link 

TDRS TWT max Output Power 12.5 dBW 

TWT Output Backoff .5 dB 

TDRS Hardware Losses 1.2 dB 

TORS Antenna Gain 41.3 dB 

Pointing Loss .7 dB 

Space Loss 207.7 dB 

Polarizat ion Loss . l .  dB 

Atmospheric Loss .8 dB 

Ground Stat ion G/T 40.3 d%/OK 



Table 2.10. Parameters Studied. 

Carrier Power Spl i t  

Mddulator Gain Imbalance 

Relative Phase Betwzen I and Q Channels 

Data Asymmetry 

Data B i t  J i t t e r  

Transmitter AM/AM 

Transmitter AM/PM 

Carrier Phase Noise 

Gain Flatness 

Gain Slope 

Phase Nonlinearity 



Tab le  2.ll.CNR Loss. 

I CHANNEL I CNR LOSS (dB) I 
PERFECT NOMINAL USER 
SHUTTLE SHUTTLE CONSTRAI NTS 

1 1.9 3.9 2.0 

2 2.0 4.6 2.6 

3 1.2 2.3 1.1 



Table 2.12Major Contributors t o  CNR Loss. 

Channel 1 : 

Modulator Gain Imbalance .25 dB 

N4/M .5 dB 

Data Asymmetry .7 dB 

Subcarrier Power Spl i t  E r r o r  .9 dB 

Channel 2: 

Modulator Gain Imbalance 

C a r r i e r  I/Q Relat ive Phase 

AM/ PM 

Data Asymmetry 

Channel 3: 

Modulator Gain Imba 1 ance 

Carr ier  I/Q Rela t ive  Phase 

Data ksymmet ry 

AEI/PM 

Phase Pion1 i n e a r i t y  

Gain Flatness 

Gain Slope 





Table 2 91.3 ( t on tbd )  

r 
PARAMETER 

XIR EIRP. 

SPACE LOSS 

PQlAHIZATlOn LOSS 
v 

AIROSP;(ERIC LOSS - 

PRESENT 
VALUE 

WHERE 
OBTAItiEO 

TORS G/T 

TORS TUT MAX 
OUTPUT PO;JER 

TORS 1YT OUlPUT 
BACKOF F 

PUdER kLLOCAll0N 

CHAntiEL POVER 

TORS Hh2O;lARE LOSS 

TDRS I\:iTEti!iA GAIN 

POINTItiG LOSS 

SPACE LOSS 

POLAR1 ZAT I O:I LOSS 

ATKOSPHERIC LOSS 

RX &?iTEh'fiA G/T 

> 
DATE 

OBTAINED 

!. * 

. - .- 

-2.5 dB 

. 
I 

.. . 
I 

41.3 dB 

SOURLt 
OLD VALUE OLD VALUE 

L I E ~ ~ G E T  

I 

TX OSC. NOilCOHtRLNT 
JjJR!iAfiOLlriD --- - 

1 t o  10-Hz 
10 t o  10!:l 111 
100 Hz t o  1 t t lz  
1 kHz t o  150 niz 

TORI; OSC I I.LAT0RS 
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- RX ~>itfi TK4CKlfiC 
LOOP 
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3.4' 
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Figure 2.24. BE2 Plot fo r  Fici;:inal Shut t le  Tr ,mi t t e r .  
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Figure 2.25.6~~ P l o t  f o r  Carrier Power S p l i t .  
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Figure 2.26 .BEf! Plot for Carrier Kodulator Gain Imbalance. 
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Figure 2.29.BEA Plot  f o r  D a t a  Asymnctry. 
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. Figure 2.30.BER Piot for Transmitter B i t  Jitter. 
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F igure231  .BER P lo t  for  Transmitter AH/AH. 



Figure 2.32.EER Plot for Transmitter AM/PK. 
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Figure 2.33.  Sensitivity Curves. 
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Figure 2.34. BER Plot for Subcarrier I/Q Phase. 
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Figure2.35. BER Plot for SubcaiArier Gain Imbalance. 
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Figure 2.36. B E R  Plot for Subcarrier Power-Split Error. 



Figure2.37 .Sensit i v i  t y  Curves f o r  Subcarrier Modulator Parameters. 



Fic~ure2.38. BER Plo t  for Subcarrier Phase Noise .  
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Figure 2 .40 .BER Plot f o r  Perfect S h u t t l e  Transmit ter .  
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Figure 2.41.  B E R  Plot for  tlominal Shutt le  Transmit ter .  



I Figure2.42. BER Plot for Carrier Power S p l i t .  
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Figure 2.43. BER P l o t  fo r  t lodulator Gain Imbalance. 
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Figure2.44.BER Plot for  Relative I/(! Carrier Phase. 
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Figure2.45. S e n s i t i v i t y  Curves. 



Figure 2.46. EER P l o t  f o r  Data Asymmetry. 
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Figure 2.47.  BER Plot fo r  Data Bit J i t t e r .  



Figure 2.48.BER Plot for Transmitter AM/AM. 



- ''I 
1 D 

3ELT.R CNR C 3 & 3  
- .  

Figure 2.49. BE!? Plot for Transmitter Al.l/P!l. 
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Figure 2 -51 . BER Plot  for Subcarrier 110 Phase. 
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Figure 2.53.SET; Plot fo r  Suocarrier Pokier : p l i t  Error. 



Figure 2.54.Ser.sitivity Curves for Subcarrier Parameters. 
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Fiyure3.55.  BER P l o t  for Subcarrier Phase l!oise, 
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Figure 2.56. Sensitivity Curve for Subcarrier Phase Noise. 



SELTR CNi? CRB3 
Figure 2.57. 3EFI Plot  for Perfect Shuttle T ransmi t te r .  
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Figure 2.63. BER P l o t  for Data Asymmetry. 



Figure2.64. BER Plot for Data Bit Jitter. 
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Figure 2.65. BER P l o t  f o r  Trnnsn~i t ter Al.t/AM. , 
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Figure 2.66.BER Plot for Transmitter AM/PM. 
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Figure 2.67. Sensit iv i ty Curves. 
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Figure 2.69. BER Plot for  Gain Flatness. 
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Figure 2.70. BER P l o t  for Phase Nonl inear i ty .  
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Figure 2.71. Sensi t iv i ty  Curves. 
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Figure 2.73. S e n s i t i v i t y  Curve f o r  Carrier Phase Noise. 
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3. LinCsim MODELING OF CARRIER AND TIMING RECOVERY 

3.1 Introduction 

This chapter presents models o f  car r ie r  and timing recovery f o r  - .  

the Shuttle/TDRSS S-band and Ku-band mode 1 return l inks  i n  the absence 

o f  radio-frequency interference (RFI ) . The general ized nonl ine& 1 ink 

i s  described i n  Section 3.2. Sections 3.3 and 3.4 present expressions 

f o r  the S-curve and r.m.s. recovered phase error  for the S-band and 

Ku-band mode 1, respectively. Two sections are taken for car r ie r  

recovery because the two l i nks  use different loops. The car r ie r  i s  

assumed t o  have constant phase and frequency. Section 3.5 presents 

expressions f o r  the S-curve and normal i zed r .m. s . recovered timing 

error f o r  both NRZ and biphase (5 .e., Manchester) symbols. 

The chapter following t h i s  one gives models for  the RFI effects 

on the. loops and gives numerical results i n  the form of curves f o r  
+ .  

both no-RFI and RFI sifxations, assuming some typical  1 ink parameter 

values . 
3.2 Generalized Link Description 

I n  order t o  study the phase and symbol-timing recovery, we must 

characterize the signal a t  the input t o  the White Sands ground station. 

The general l i n k  diagram used herein for both S-band and Ku-band mode 1 

return l i nks  i s  shown i n  Figure 3.1. For S-band, only one symbol stream 

i s  present. The three symbol streams on the Ku-bznd return l i n k  are 

handled by t reat ing channel 3 and the modulated square-wave subcarrier 

as one UQPSK signal and then channels 2 and 1 as another. 

Let us s ta r t  by assuming that  the Shuttle tracsmits the signal 





where 

dl a uni t-power stream of NU or  biphase symbol s, i = 1,2 

( I t  may be the output of an encoder. Nonetheless, any 

two symbols are assumed independent and are equally 1 i ke ly  

t o  have e i ther  polar i ty.)  

t h  
Pi = power of i- symbol stream, i = 1,2 

w = radian car r ie r  frequency 

Also, PI 2 0 and P p  . 0. 

The TDR sate1 1 i t e  f i l t e r s  the modulated car r ie r  plus up1 ink  thermal 

noise. The bandwidth of t h i s  f i l t e r  i s  wide enough t o  pass the data 

undistorted; thus, the signal a t  the output can be wr i t ten 

y2(t) = yl(t) + nu(t) (2) 

where 

n,(t) = fl nUl (t)cos ~t - fl nU2(t)sin ~t (3)  

and nUl , nu2 are independent, ident ica l l y  distr ibuted, baseband Gaussian 

processes. ye can be rewritten 

where 

s i n  v ( t )  = 5d2+nu2 
r , COS ~ ( t )  = qdl +"Ul 

r ( 6 )  



S t i l l  i n  the TDR sa te l l i t e ,  the signal goes through a bandpass 

nonl inear i ty  characterized by AM-AM and AM-PM d i s t o r t i on  functions 

f(r) and g(r) ,  respectively. The nonl inear i ty  consists o f  an ALC/MIC 

c l i ~ p e r  followed by a TWT ampli f ier.  The signal a t  the output can be 

w r i t t en  

where 

The l a t t e r  equation i s  a characterizat ion o f  the nonl ineari ty, where 

6 i s  an average phaie s h i f t  introduced by g. It should be noted t ha t  

i f  the nonl inear i ty  i s  l inear,  then h2 = 0. 

The signal a t  input  t o  the ground s ta t ion  i s  

y4(t) = y 3 ( t )  + nd( t )  

where nd, the downlink thermal noise, i s  expressed 

The input  signal has quadrature components xl and x2; i.e., 

y,(t) = fl Re{Cxl ( t ) + j x 2 ( t ) l e  3 ( ~ t *  1 (11 

The appropriate characterizat ion o f  xl and x2 depends on the loop 

under considerat i  on. 
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3.3 - Carrier Tracking wlth Costas Loop 

3-3.1 Introduction 

The f i r s t  loop we'll study i s  the Costas loop f o r  use on the S- 

bad return l i n k  vith i t s  BPSK signal. 

3.3.2 Further Characterization o f  Link 

Since I(slband mode 1 return l i n k  w i l l  not use the Costas loop, wn 

can specialize the sianal t o  the S-band characteristics. The trans- 

mitted signal i s  given by (I). where n a  PI = 0 and d2 i s  a stream o f  

biphase symbols. The s-1 stream has two possible rates R2, 288 b p s  

(mode 1) and 576 Ksps ( d e  2). These rates are three times the data- 

b i t  rates since the data b i t s  are convolutionally encoded a t  rate 1/3. 

The best way t o  wri te the quadrature components xl and x2 of the 

ground station input signal i s  as follows: 

x, = (Ehl (r))m;dz + N2 (1 2) 

where 

N, = -(h2(r)-Eh2(r))%d2 + vl + ndl 

We see that x p  contains most o f  the data and xl j u s t  a l i t t l e .  Since 

most o f  the power entering the TORS bandpass nonlinearity i s  due t o  

noise and not data and the noise i s  a much faster process than dp, 

then the r process defined i n  (5) i s  pract ical ly independent of d2. 

Similarly, hi (r)d2 i s  pract ical ly indepecdent o f  d2, i=1,2. Thus, 



we w i l l  assume that the noise part  Ni of xi i s  independent of d2, 

1.1.2. However, N1 and N2 are not independent. 

)fe w i l l  obtain some s ta t i s t i cs  of the processes tha t  w i l l  be 

useful later, namely, the correlat ion functions. They are given as 

f o l l ~ ~ s  : 

R ( 1  = Rh * (t) + R,, (t), i=1,2 
i 1 u i  

(16) 

% 9 ~ 2  
(t) ' -p2Rhl ,h2(t) + Rv 

1' 2 
(t (17) 

(t) = 
"u l 'h2nu 1 

(t (18) 

Now that we know a l l  about the signal tha t  enters the loop, we 

are prepared t o  see what the loop does. 

3.3.3 Costas Loop Operation 

The Costas loop i s  chown i n  Figure 3.2. Input i s  the signal yq 

with quadrature components x, and x2. After mul t ip l icat ion by 
A 

rin(wt+;(t)) an. cos(ut+e^(t)), @ere e( t )  i s  the loop's phase estimate, 

the signal i n  each arm goes through the arm f i l t e r  G, which has bandwidth 

on the order of the symbol rate. When RF 1 i s absent the power 

spectral densities (psd's) o f  N1 and N2 are much wider than G, so that  

a f te r  f i l t e r i n g  by G, N, and N1 are prac t ica l l y  Gaussian and thus not 

too hard t o  handle. The method o f  analysis o f  the loop i s  t o  study a 

conti nuous-wave ( W) phase-1 ocked 1 oop w i  th  the same dynamic phase error  



Figure 3.2. Costas Loop. 

figure 3.3. Equivalent CW Phase-Locked Loop. 



process z entering the loop f i l t e r  F as we have here. 

The phase error  9 i s  defined by 

It i s  the difference between the actual (constant) phase 6 and the 

loop estimate. Since Y varies slowly, the z process can be broken up 

i n t o  two parts: 

z ( t )  = + %(t) (20) 

&ere 

S(g1 = E l z ( t ) b l  (s-curve ) 

%(t) E z( t )  - S(q), Y fixed (equivalent noise)(21) 

The equivalent loop i s  shown in  Figure 3.3. 

~(4 i s  given by 

where we define f o r  any signal a, 

3t) = G(p)a(t) 

The second term i n  the S-curve de f i n i t i on  i s  0 i f  eO has been properly 

defined so tha t  S(0) = 0. This requirement allows us t o  calculate 6 ,  

as we w i l l  do la ter .  The S-curve i s  needed for nonl Sneer analysis of 

the loop, which w i l l  not be pursued here. 

2 Our main goal i s  t o  obtain the variance-agof phase error. To 

do so, we assume tha t  191 i s  almost always small so that  the equivalent 

loop can be linearized. Since [I] gives f u l l  de ta i l s  o f  how t h i s  i s  

done, we need only say that  



where H i s  a f i l t e r  and n 5 no. Then when the psd o f  n i s  much wider 

than the bandwidth of H, we have 

(25) 

&re BL i s  the one-sided noise bandwidth o f  H and Nh i s  the one-sided 

2 psd o f  n. Therefore, t o  calculate g we need S'(0) and Nh, which we- 

w i l l  l a t e r  express i n  terms o f  s ta t i s t i cs  of and %. 
3.3.4 Stat is t ics  o f  jil and % 

Ye reca l l  (c f  . (12)) t ha t  each of Tl and 3 consists o f  some of 
- 

the f i l t e red  symbol stream a2 plus an independent noise part, N1 and 

H2, respectively, the important s ta t i s t i cs  o f  which are given below. 

R- - (t) r 
tdi ,Nk 'N, sNk (O)G*(p)G(p)6(t), i,k = 1 2  (27) 

The expression fcr R- it) i s  va l id  only when tkermal. noise i s  the only 
"k 

interference i n  the l ink.  

3.3.5 Expression for8 

Before we go on t o  express S'(0) and N i ,  l e t  us f i r s t  f i n d  the 

angle 6. It has been defined as that  angle which allows S(0) = 0, 

which ensures that  the loop has been l inearized near the lock-up point. 

From (22) we f ind 



SO fm (12)' (26)' (27)' (28)' (17), and (18)' the requirement i s  

seen t o  be that 

(@l)(Eh2)P2Ra2(0) ' 2BGSW J ( 0 )  (30) 
1 2  

where BG i s  the one-sided nof se bandwidth of the b f i l t e r .  

Tinis equation i s  solved below for 6 i n  terms of s ta t is t ics  obtained 

by assuming 6 4 .  

The f f r s t  step i s  t o  note from (8) that 

m c o s ( g ( r ) - a )  = cos 6-hlO(r) + s in  6-hz0(r) h,(d = ,, 
- .  

hZ(r) = f(LL r sin(g(r)-6 ) = cos 6 -hZ0(r) - sin 6 =hl0(r) (31 ) 

whet%! 

hlO(r) + f h20(r) z f ( r ) / r - e x ~ ( j g ( r ) j  (32) 

Then 

'hl 'h2 (0) = ~os (26 )S~  10 sh 20 h~~ 20 
( ~ ) - s i n ( a  13s (01-s,, (01 (34) 

s (O) =cos(a)Csh h n (")-sh n h n 
10 u2' 20 u2 

(0 ) l  
"1 sV2 10 u l '  20 u l  

1 - sin(26)$Sh (0)-Sh n (0)-sh n (OIrSh n 
20 u2 

(0) J 
10 u l  20 u l  10 u2 

(35 

Ur i t ing  5, , (0) as 
1' 2 

1 
(0) = cos(26)A - s in (26)g  

'vl '9 (36) 

where the'def ini t ions of A and B are obvious, then one finds 



3.3.6 Expressions for S'(0) and 

Now that  we have the 6 tha t  properly defines 9, we may proceed t o  

obtain the quantities S1(0) and needed i n  the calculation of the 

2 phase error  variance given i n  (25). Since now 

~ ( q )  = sbn[20)€G(t  )-<(t) J (38) 

then the derivative a t  0 i s  

The equivalent noise n ( t )  and i t s  two-sided psd N i l 2  are given by 

Since i n  the absence of EFI El and are usually not very correlated 

and since the G f i l t e r  i s  RC-type, i t  i s  su f f i c i en t  t o  approximate 



3.4 Carrier Tracking with Two-Channel Costas Loop 

3.4.1 Introduction 

The Shuttle KU-bandkode 1 return l i n k  w i l l  use a two-channel 

(4 .e., quadriphase) Costas loop wi th  hard-limi ters t o  track each of 

the carr ier  and subcarrier. In order t o  study both cases wi th  the 

same model, we keep the f u l l  general i t y  of the l i n k  model shown i n  

Figure 3.1 and o f  the signal characterization given i n  Section 3.2. 

3.4.2. Further Characterization o f  Link 

Since now both symbol streams dl and d2 are t o  be used for car r ie r  

tracking , the most useful expressions for the quadrature components x 
1 

and x2 of the loop input signal are different from before; they are 

XI = (hl)JP;dl + N1 

x2 = (Eh, )f12d2 + N2 

N1 = (hl (r)-hl)fi,dl - h2(r)m2d2 + vl + ndl 

N2 = (hl(r)-hlS)fl2d2 + h2(r )qdl  + v2 + nd2 (43) 

where vi.hi, i = 1.2. are as defined before i n  (8) and (13) and now6 

i s  defined by 

6 = tan-' [ ~ ( f  ( r ) / r - s in  g(r))/E(f ( r ) l r - cos  g(r ) ) ]  (44) 

so that  

It w i l l  be shown la te r  that  th is  def in i t ion o f  6 i s  adequate. 



Just as  f o r  the Costas loop, we assume that  the symbol streams 

dl and dd are independent o f  Nl and N2. For channels 2 and 1 (those 

on the subcarrier) t h i s  i s  pract ica l ly  t rue by the same reasoning as 

for the Costas loop used a t  S-band. This applies also t o  roughly h d l f  

o f  the transmission on channel 3 (on the carr ier) ,  the most powerful 

channel. For the highest data rates o r  f o r  the highest values of 

Eb/Nou (data-bit energy t o  one-sided psd o f  uplink noise) which w i l l  be 

used for any part icular data rate on channel 3, we must appeal t o  the 

argument that hl(r)-Eh, and h2(r) are small i n  order t o  j u s t i f j  the 

assumption. 

We w i l l  need l a t e r  the correlation functions o f  dl and Ni, given 

be1 ow. 

1-39 It 1 s  It[ 2 112Ri 

1 /2Ri c It 1 5 1 /Ri (Biphase) 

It1 :l/Ri - (46) 

where Ri i s  the symbol rate o f  di , i = 1,2, and where correlat ion 

functions of vl and v2 are the same as given i n  (16) and (18). 

We now know what the signal i s  tha t  enters the loop, so we can 

s t a r t  t o  look at  the loop. 



3.4.3 Operation of 'Two-Channel Costas Loop 

The two-channel (i .e., quadri phase) Costas loop wi th  hard-1 imi ters  

that w i l l  be i n  the ground stat ion i s  shown i n  Figure 3.4. As opposed 

t o  a mow optimal implementation [I], t h i s  implementation uses the . 
sam f i l t e r  6 i n  a l l  the arms. The r a t i o  CgCl w i l l  be 2 when P2/P1 = 4. 

Just as f o r  the Costas loop, the method o f  analysis i s  t o  study an 

equivalent CW phase-locked loop with the same dynamic phase error  

process E input t o  the loop f i l t e r  F. 

Since the operation o f  t h i s  loop i s  f u l l y  described i n  [I], we 

w i l l  go over i t  only b r ie f l y .  The phase error  LP i s  defined as i n  (19). 

The process i s  the sum o f  two others, as shown i n  Figure 3.4: 

The S-curve S(*) and the equivalent noise n7(t) are glven by the 

following: 

S(q) = ~(€19) (50) 

nq(t) = E (t) - S(S) f o r  fixed* (51 

We obtain below the S-curve and the quantit ies S '  (0) and Ni) for  

the equivalent loop. The l a t t e r  two are used t o  calculate the variance 

o f  .p using (25). A1 1 are expressed i n  terns o f  s t a t i s t i c s  o f  5 and x2. 
3.4.4 Properties o f  Til and % 

The bandwidth o f  the G f i l t e r  i s  chosen t o  pass most of the 

power o f  both dl and d2. Unlike f o r  the Costas loop, we need t o  assume 

here that the effect o f  G on dl and on d2 i s  merely t o  reduce t h e i r  

power; i.e., 





In the absence of RFI HI and m2 are approximately Gaussian. The 

correlation functions o f  a, and Kk are as given i n  Section 3.3.4. 

3.4.5 S-Curve S(c9) 

Now we are able t o  wr i te  an expression for S(9), which from (49) 

i s  seen t o  be the sum of two terms. 

S ( 4  = -sl (4 + s2 (4  

siC1 2 El+) 171 (53) 

From [I] we obtain 

sgn[cosV.Al dl -sinV-A d2+( cor YeR, -sin'P.s )] (54) 

so that  f o r  correlated Hl and %, 



where 

dnd the facts have been used that for Gaussiar. random v a r i a b l e s  u ,v 

and constant  A, 

2 X 2 
erf (x) z ( e-y ddy 

S i m i l a r 1  c2 i s  given by 

~ 2 ~ ~ 2  ; Icos4'. (A, dl+Nl )-s inY.(A2 d2+r2 )]sgn[-sin* (Al dl+rl ) 
-cos'P*(Ap dZ+T2 )] (59 )  

so that 
1 

sinV.A, +cosp-A2 
S2(*)/CZ = - Z-(corV.li 1 -sinY.% ~ e r f ( - - ~  

"2 



ClAlS2A2 and S(0) i s  much less. 

3.4.6 Psd N; o f  Equivalent Noise 
w 

S t i l l  needed t o  evaluate (25) f o r  the phase e r ro r  variance i s  

the one-sided psd Yi) of n ( t )  z no(t). One f inds  

The expression f o r  Ni) i n  the case o f  5 ,m2 uncorrelated i s  given i n  

(79) of [I]. 

3.5 0 
3.5.1 Introduction 

The d i g i t a?  data-t ransi t ion t racking loop (DTTL) w i l l  be used 

f o r  both NRZ and biphase symbol synchronization on the  Shuttle/TDRSS 

S-band and Ku-band mode 1 re turn  l i  , The loop input  i s  one of the  

quadrature components xl and xt of ... e ground s ta t ion  input  yq, given 

by (12) f o r  S-band and by (43) f o r  Ku-band mode 1. Figure 3.5 shows 

the loop, the exact operation o f  which i s  described i n  123. The input  

t o  the loop i s  of the form Ad(t+c)+w(t), where d i s  a unit-power 

stream of NRZ o r  biphase symbols and w i s  whi te Gaussian noise of 

one-sided power spectral density (psd) No. We obtain below the S-curye 

and the noise psd t o r  an equivalent CW phase-locked loop, shown i n  

Figure 3.3; then we compute the sigma o f  the normalized t iming e r ro r  



where 

The derivative of the S-curve at cB=O is, therefore, 

where the signal-to-noise ratios a+ have been defined by 

In order that the range of values of where 14 i s  small include 

the loop lock-up point, it is necessary that S(0)/S8(O) be small. This 

has previously been assumed to follow when 6 is as defined in (44). Let 

us now check it. blith thisb, S(0) is 

If Al(t),A2(t) are little correlated, as f s  the case, then S(O)/S1(Cj 

is small. It i s  also small if 9.9 are large because then S1(0) : 



Figure 3.5. DTTL. 

for the 1 inearized equivalent loop. 

3.5.2 Tracking l R Z  Symbols 

The performance of the DTTL on NRZ symbols is extensively analyzed 

i n  133. The S-curve and equivalent-noise psd expressions given below 

come from that source. 

The notmalized timing error A is defined by 

* 

where A is the timing of the data signal, c is the timing estimate 

produced in the loop, and 1 is the symbol time. The S-curve g(~) 

of the equivalent loop is defined by 

and is given by 

t o  

= i e r f (  - erf(xs(l-2~))] for A 5 3 ,# = g,(d 

'O erf(%(l-~~)) 60 1 2 for 7 5  A 



where 

The two-sided psd of  the equivalent noise when A = 0 i s  given 

- .by 

From (68), we see .that 

# 

so we find that for  the linearized loop 

where BL i s  the one-sided loop bandwidth. I n  order t o  compare 

l a te r  the loop's performance for NRZ and biphase symbols, we note 

that 

Iim cA - 
Rs- 



3.5.3 Tracking B i  phase Symbols 

bfe assume that me DTTL tracks a stream of biphast symbols as 

i f  it were a stream o f  double-rate MRZ symbols, Figure 3.5 st111 shows 

the loop operation i f  T is replaced by Ti2 and if now E,, i s  a fraction 

o f  T/2, the duration of ha l f  a biphase symbol. 

The normalized timing error A i s  s t i l l  defined as i n  (66). The 

S-curve g(n) now has period \/2. Starting from Equation (A-14) i n  J 

f i nd  the S-curve: 

I t s  derivative a t  zero i s  given- by 

Fran Equations (9-37) and (B-42) i n  P ] after some work we obtain 

E[ekek,lx=O] = 0 f o r  a l l  m 2 1 

so that the psd of the equivalent noise f o r  A = 0 i s  given by 

T 2 S(0,O) = E[ekl n=03 

From Equation (B-30) i n  [3] we obtain 



when R, i s  defined as i n  (69). Then a1 i s  given by (73). 

In the case o f  low noise, for the same values o f  to, RS , and BLT 

biphase symbols w i l l  give a smaller t iming sigma than NRZ symbols w i l l ,  

as can be seen from (74) and the fac t  that  f o r  biphase symbols 
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4. RFI EFFECTS Old SHUTTLE/TDRSS LINK 

4.1 Introduction 

The Russian a i r  defense system uses large numbers o f  powerful 

radars whose car r ie r  frequencies coincide wi th  the TDRSS SSA return 

l i n k  frequency band. The TDRSS payload and ground s ta t ion  hardware 

had t o  be redesigned t o  minimize the deleterious effect o f  the radio 

frequency interference (RFI) resul t ing from these radars. The overal l  

effect o f  the RFI and the hardware changes i s  impaired system perform- 

ance both wi th  RFI and without. 

This chapter gives a s ta t i s t i ca l  descript ion o f  the RFI environment 

and l i s t s  the hardware changes i n  the TDR satel 1 i t e s  and ground station. 

Then analytical models are described t o  assess the performance impact 

both f o r  the b i t  er ror  probabi l i ty and f o r  ca r r i e r  and data tracking. 

Final l y  , prel  iminary performance resul ts are given, 

4.2 RFI Environment 

The radio frequency interference i s  caused by large numbers of 

high-powered radars (peak EIRP i n  excess of 100 dB#) i n  eastern Europe 

and Russia. The radar region as seen from the o rb i ta l  locations of 

the two active TDRSS sa te l l i t es  i s  shown i n  Figs. 4.1 and 4.2. The 

i l luminat ion o f  the TDRS occurs through the radars' main, side, and 

backlobes, resul t ing i n  a large dynamic range of the composite RFI. 

The radar pulses consist o f  pulsed sine waves (Of) accompanied 

by wideband Gaussian noise (Fig. 4.3). The pulse duration i s  i n  the 

2 t o  5 microsecond range. Table 4.1 shows an unclassif ied coarse 

approximation t o  the actual d is t r ibut ion o f  pulse power and pulse 

duration. The f i r s t  two 1 f nes correspond t o  radar pulses whose CW 

component 1 ies outside the TORS input band; hence, only the wideband 



noise affects performance. The remaining l ines  represent CW pulses 

a t h i n  the TDRS band. Since the CW power by far exceeds the wideband 

noise power i n  t h i s  case, the l a t t e r  may be neglected. The f i r s t  

column shows the RFI EIRP i n  the d i rect ion of the TDRS (for noise-1 i ke  

pulses it i s  measured i n  a 20 MHz bandwidth) quantized i n  ten-dB steps. 

The pulse durat 'on has been quantized i n t o  two values, two and f ive 

microseconds. The numbers i n  the second and t h i r d  column represent 

the number o f  pulses per second wi th  a given power and duration. The 

duty cycle l i s t e d  i n  the fourth column i s  the product of repet i t ion  

rate (PPS) and pulse duration. The environment shown i n  Table 4.1 

applies t o  the TDRS over the Pacific and f o r  the center frequency 

2217.5 MHz. It i s  generally referred t o  as the non-benign Shuttle 

environment [I]. The RFI environment encouatered by the eastern 

TDRS . is worse, the other Shuttle S-band frequency, 2287.5 Mz,  i s  

less severely affected on both sate l l i tes.  Table 4.2 shows a more 

severe TDRSS SSA RFI environment which i s  being used f o r  program 

testing. 

The TDRS S-band antenna pattern can reduce the interference 

when the Shuttle i s  not too close t o  the RFI region. The antenna gain 

drops about 12 dB a t  1.5 degrees off-pointing and about 24 dB a t  

4'degrees off-pointing (Fig. 4.4). Figs. 4.1 acd 4.2 show where 

thcse off-pointing angles are reached. 

4.3 TDRSS RFI Hardware Changes 

The TDRSS RFI hardware modifications have the purpose o f  removing 

powerful spikes from the signal. This i s  accomplished by cl ipping the 

signal when i t exceeds a certain level. 



Figure 4.1. TDRS Nest View of Radar Interference Region. 



Figure 4.2. TDRS East V i e w  of Radar Interference Region. 





Table 4.1. Moderate SSA RFI Environment. 

S I tJPL I ED TEST ENVI RO:4f-;ENT 
(PACIFIC TDRS)  

k d e r a t e  SSA (Incl ulri ng Ron-Benign Shut t l e )  

Interference 

BW - 
PPS - 

5usec  -- 2 m e c  
Duty Cycle 
(percent) 

1.2 

-14 
. ooi  

a n a l  -- TE 

Noise 
Noi re 
cw 
cw 
Cld 

CW 



Table 4.2. Severe SSA RFI Environment . 

SII'IPL I ED TEST ENVI ROtli<EriT 
(PACIF IC TDRS) 

Severe SSA 

PPS -- 
5 s e c  2 ysec -- 

Duty Cycle 

(percent ) 

0.5 

2 .3  

5 .O 

3.9 

0.4 

-03 

N/ A 

Signal Type - 

Noise 

Noise 

CW 

cw 
CW 

CtS 

CW 



~ F F - P O I  WING 
ANGLE (deg) 

Figure 4.4. TORS S-Band Antenna Discrimination. 



I n  the s a t e l l i t e  t h i s  c l i pp ing  i s  performed by a l i m i t i n g  micro- 

wave integrated c i r c u i t  (MIC) ampl if i e r  located i n  the automatic l eve l  

control  (ALC) c i r cu i t .  This set-up i s  shown i n  Fig. 4.5. The 

character ist ic  o f  the M I C  ampl i f i e r  (Fig. 4.6) shows good 1 i nea r i t y  

below the c l ipp ing l eve l  and a sharp cutof f  a t  t h i s  point .  Presently 

the nominal operating leve l  i s  set  6 dB below saturat ion but t h i s  

se t t i ng  can be varied between 2 and 10 dB below saturat ion i n  steps 

of .5 dB. 

Unfortunately, the 1 im i t e r  a lso introduces nonl inear phase 

d i s t o r t i on  i n  the form o f  AM/PM conversion. This character is t ic  i s  

shown i n  Fig. 4.7. 

There w i l l  a lso be a c l ipper  i n  the TDRSS ground stat ion.  However, 

i t s  character ist ics and nominal operating leve l  are not  defined a t  

present. 

4.4 LinCsim Modeling o f  RFI Ef fects on B i t  Er ror  Rate 

4.4.1 Introduction 

This section presents the models and algorithms used i n  LinCsim 

t o  compute the b i t  e r ro r  p robab i l i t y  o f  the nonlinear TORS channel 

i n  the presence o f  RFI. 

The RFI environment as presently characterized f o r  the TDRSS 

consists o f  RF pulses, e i the r  noise- l ike o r  pulsed CW, of approximately 

2 t o  5 psec duration anld a wide range o f  power levels.  Typical ly, a 

large number of the pulses exceed the signal power 1 eve1 . The duty 

cycle of the R F I  , i .e. , the product o f  pul se tJuration and number of 

pulses per second, i s  used t o  characterize the sever i ty  o f  the 

disturbance. Typical values are between 20 and 30%. 





u-l se-lnpu 7,-S !-gria;j5+ P.,,,,, .-,. 
G E Z E Z E F r e o u e n c v  -1 200 INHZ~- I  -I C. 

Figure 4.6. M I C  Amplitude Characteristic, 





The basic approach i s  t o  condition f i r s t  the error  probabi l i ty 

on the sa te l l i t e  repeater output. (The conditioning i s  not done on the 

complete repeater output waveform but rather on a parameter which 

provides a suff ic ient s ta t i s t i c  f o r  the signal i n  the detection process. 

This parameter, called the decision variable ZII( below. i s  the demodulate 

repeater output integrated over a symbol time.) Since the only random 

disturbance l e f t  i s  the downlink noise th i s  conditional error rate i s  

given by a simple expression involving the standard error  function. 

This conditional error rate i s  then averaged over the s ta t is t ics  of 

the decision variable. 

For t h i s  averaging o f  the conditional e m r  ra te  different 

approaches are used for low and high data rates, where the break- 

point i s  the inverse o f  the RFI pulse duration. The f i r s t  approach 

4s t o  compute the probabi l i ty density function (p.d.f.) o f  the 

decision variabf e using the classical Rment technique and then 

t o  average the conditional BER over t h i s  p.d.f. This applies t o  

the case o f  low data rates since the RFI pulse duration i s  only a 

fract ion of the data symbol time. The second approach, used for 

the case o f  high data rates, i s  based on the assumption tha t  one 

b i t  i s  only affected by a t  most one RFI pulse. The er ror  rate i s  

therefore computed conditioned on the presence o f  a par t icu lar  RFI 

pulse characteristic and then averaged over the probabi l i ty  d is t r ibu t ion  

of  the pulse characteristics. 

The detailed description o f  these two approaches i s  given i n  

Section 4.4.3,4.4.4. Section 4-42 defines the models for the channel 

and for  the RFI and defines the notation used i n  the remainder of the 

chapter. Section 4A 5 addresses the problem o f  computing the moments 



needed in the approximation'of the decision variable p.d.f. These 

ganents are derived fran the character is t i t  function, i n  part 

analytically, i n  part t h m g h  fast numerical algorithms, depending 

on the character o f  the random variable. 

4.4.2 Description of Hadel 

4.8.2.1 RFI W e 1  

The HFI environment as seen by the TDRSS satel l i tes consists o f  

tm classes: pulsed wideband Gaussian noise and pulsed CW tones. 

These two classes are further divided in to  groups wi th di f ferent 

power levels. The pulses frm each such group are assumed t o  ar r ive  

a t  the TORS as a Poisson process and independently fm a l l  other 

groups. We w i l l  however assume that no pulse overlaps occur which 

i s  true w i t h  good accuracy for duty cycles up t o  30% and provides 

an upper bound on the error rate for higher duty cycles since 

effect ively a larger portion of each symbol i s  affected by RFI. 

The pulsed 2FI i s  represented as follows 

where 
. . Nc 4 

Jc(t) = C C J e x p ( j ~ , t i * ~ , ~ ~  1p(t-tk I 1 (2a) 
k =1 5.1 kc C C 

C 

n(t)  = a complex baseband Gaussian random process 
with mean zero and variance 112. 

1 O < t < r  - 
0 e l  sewhere 



t = Pulse duration 

number of groups o f  the RFI f o r  aJ tone and noise-1 i ke, 
respectively . 
number o f  RFI pl~lses i n  group k (or k 1 arrived i n  
the observation interval (to,t)$ 9 

to = the beginning o f  the observation time, usually the 
beginning of a symbol. 

ti I 
= the a r r i va l  time of the t t h  - RFI pulse i n  the i t h  - group. 

Herr, the variables nt and nt are homogeneous Poisson random variables kc ks 
The. CSI tone RFI w i l l  be fur ther expressed as follows: 

C J P (t-tk I )s in ek 
I( -1 rc=l 1 C C C C 

$ 1  = tan -1 c 
N, nkc 

Note that lJcl and $.(t) are functions of time because o f  the pulse 
u 

p(t- tk , ). However the variations o f  IJ,I and @J(t) are much slower 
C C 

than the carr ier  frequency w0/2n and they remain constant over the 

RFI pulse duration r .  



Figure4.8. Hathematical Model for TORS Link. 
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4.4.2.2 Channel Model . 

The mathematical model o f  the TORS l i n k  i s  depicted i n  Fig.-4.8 

where there i s  RFI i n  the upl ink channel and Gaussian noise i n  the 

uplink and down1 ink channels. The signal transmitted i s  a BPSK 

signal or a QPSK signal modulated w i th  independent inphase ant quadrature 
data streams, so a t  the receiver the data messages are detected 

for the inphase and quadratlire phase separately. I n  t h i s  study 

we shal l  discuss the BPSK signal *case. The signal received a t  the 

s a t e l l i t e  transponder can be expressed as 

where 

v2/2 = signal power 

e ( t )  = transmitted phase 

ud2u = car r ie r  frequency 

J(t) - =  R F I ,  as defined by eq. (1) 
2 

nu(t) = upl ink channel noise with mean zero and variance ou 

Using the R F I  model o f  eq. (I), the expression f o r  x ( t )  i s  rewr i t ten 

as 

x( t )  = V exp[ j (~~t+ t .e( t ) ) )  + Jc(t) + nI(t) (6) 

where 

Note that the noise process nl(t) s t i l l  has zero mean but i t s  variance 

changes with time (conditioned on the R F I  ar r i va l  process) because 

of the presence o f  the noise-1 i ke RFI  . By the assumption tha t  the 

. channel noise process and the R F I  are s t a t i s t i c a l l y  independent of 



2 each other, the variance o f  n, ( t )  may be e i t h e r  equal to a, or 
2 ( + J /2. depending on which group of RFI i s  present. Here we assume 
kc 

that samples taken from these noise processes a t  t he  Nyquist r a t e  
a 

are s t a t i s t i c a l l y  independent o f  each other  w i th  variance a! if no 
2 2 U RFI i s  present, o r  a,, + JkgI2 if RFI of k t h  group i s  present. 

Y .  
190w the signal x ( t )  passes through the s a t e l l i t e  transponder 

and becomes 

~ ( t )  = f ( ~ ) e x ~ ( j i ~ ~ t + e ( t )  +n+ g ( ~ )  )) (7) 

where 

R = the envelope o f  x ( t )  

rr = the phase of x ( t )  
f(R) = KQ/W d is to r t i on  

g(R) = AM/W d is to r t i on  

One can show, [see 21  t ha t  the probab i l i t y  density function o f  R and 

Q, a f t e r  averaging over the rand'i  phase of RFI, $J, 

where 

R 
P1(R.n) = 1 exp 

1 2 2  - -2 (R +V -2RV cos rJ 
2.0~ 

I ( x )  = 6 exp(x cos 0)de 

If IJ,I equals 0, the expression P(R,s,O) reduces t o  t h a t  f o r  normal 

channel condition, tha t  i s  



4.4.3 Condi t i onal Error Proba b l  1 l ty  

A t  the ground station, the received signal can be represented 

as 

where nd(t) is the downlink Gaussian noise with mean. zero and 
2 variance ad i n  t h e  receiver channel band. The signal i s  f i r s t  

demodulated by a local carrier 2 c o s ( ~ ~ t + a ,  ideally tracking the 

received phase of the signal and processed through an integrate-and- 

dump (184)) device which gives 

where 

"z '= basebznd noise process whose mean is zero and variance 

a! 1s .(u:/T~) 

Td 
= integration interval of the I&D, assumed to be the same as  

the data symbol interval. 

The integral term represents the desired signal for the detection i n  

the absence of u p l i n k  interference such a s  channel Gaussian noise 

and RFI. Denote tho power associated w i t h  this term as Ed, then the 

d ~ w n l i n k  b i t  energy to  coise spectral density ratio (EdNO) i s  defined 
2 

-- . 
as E 10 where i s  the variance of the downlink noise i n  the data . 

- 
d 2 

bandwidth. 

When the uplink interference i s  present, the power Ed i s  shared 

by the retransmitted signal and interference. Therefore, the effect 

of the uplink interference i s  two-fold--power robbing and signal 

perturbation. Since the integrand i n  (11) i s  a nonlinear function 

of the uplink signal, noise and RFI tbe s ta t is t ics  of the associated 



Integral  cannot be found exactly. However, t h i s  in tegra l  can be 

well approximated by the sum o f  slgnal samples taken a t  the Nyquist 

ra te o f  the repeater input  signal: 
' 

Z1 = ZIn + nz (12) 

where 

N = product o f  the channel bandwidth BIF p r i o r  t o  the 

nonl inear i ty  and the data symbol time Td 

The samples ai , taken every B;: sec, are s t a t i s t i c a l l y  independent 

of each other, but not necessarily i den t i ca l l y  d is t r ibu ted  because 

o f  the possible presence o f  RFI. The impact of an RFI pulsed on 

the variable ZIH can be classi f ied i n t o  two cases--(l) a l l  ai are 

affected-by an RFI pulse, (2) parts o f  the samples o f  ZIN are affected. 

Denote the pulse duration of an RFI pulse by T. I f  B l F 1  i s  smaller 

than N, i .e., the data symbol i s  longer than the pulse duration T, 

only some uf the samples ai are affected by the RFI. Me shal l  group 

those independent and ident ica l l y  d is t r ibuted ( i i d )  ai i n t o  groups 

as follows 

where 



(1 5q) 
Td 

the number of pulses from the k - t h  o r  (t  -th) 
= { LFI group arr ived i n  a symbol i ( t ~ v . 1  T~~ -- 

"kg 
a,(O) = samples not af fected by any RFI pulses 

,For  a high data rate, a11 o f  the samples are completely h i t  by a 

single RFI pulse. So the variableZIM for symbol detect ion i s  

conditioned on the k g  group o f  RFI  pulses. Equations (1 5) and (16) 

point  out the difference between the low and high data r a t e  models 

alluded t o  i n  the introduction. I n  both cases the  e r ro r  p robab i l i t y  

conditioned on the decision variable ZIN takes the form 

where 

The averaging over ZIM however i s  done d i f f e r e n t l y  i n  these two cases. 

  his w i l l  be explored i n  the next section. 

4.4.4 B i t  Error Probabi l i ty 

Due t o  the d i f fe ren t  impact o f  RFI pulses on the decision var iable 

ZIH, two approaches are needed t o  evaluate the  b i t  e r ro r  p robab i l i t y  

for high and low data rates, respectively. 



4.4.4.1 Low Data Rate Case 

I n  pr inciple,  the er ro r  p robab i l i t y  for  low data rates can be 

obtained by averaging the condit ional e r ro r  probabi 1 i t y  oi' eq. (1 7) 

over the s t a t i s t i c s  o f  the vari-able ZIn, which i s  not e x p l i c i t l y  

known. 

- 
pe 

- (18) 

However, we shal l  use the classical  moment technique t o  construct 

the'approximate probabi l i ty  density o f  ZIn To do. t h i s  we need t o  

evaluate the moments o f  ZIN with respect t o  the s t a t i s t i c s  o f  the RFI  

pulses and t h e i r  a r r i va l  d i s t r i bu t i on  and the upl ink channel noise.- 

For example, the k th  - moment o f  ZIM can be found i n  a straightforward 

manner as below: 

kc=l r = l  k =1 r = l  
9 

One can recognize tha t  the evaluation of the zbove equation i s  non- 

t r i v j a l .  Thus the character ist ic function w i l l  be used t o  evaluate 

the needed momenti, as discussed i n  Section 42.5. Based cn the 

calculated moments o f  the classical  moment technique, the expectation 

of the error probabi l i ty  i n  eq. (18) can be wr i t ten  as 

where (wk,ZIk) i s  a discrete probabi l i ty  density funct ion (p.d.f. ) 

approximating the continuous p.d.f. o f  the var iable ZI,,, and v i s  

the number o f  points Z I k  with nonzero probab i l i t y  ut. 



4.4.4.2 High Data Rate Case 

Since the duration of an RFI pulse becomes longer than the 

symbol duration for a high data rate, the error probabil ity 

conditioned on a type of RFI pulse shou:d be computed, then averaged 

over the arrival distributlcn of the RFI pulses. Cenot~ by Pe(kk) 
the bit error probability conditioned on ka-th - group of RFI pulses 
Then the overall bit error probability is (see Appendix) 

= ;C: P(L c e c  )P (k ) * 2 P(kg)Pe(kg) + POPe(0) (21) 
k;l kg=) 

where 

Probability of a symbol being hit by an RFI 
pulse o f  kc-th - (or k -th) group 

9 - 

= Probability of a symbol not hit by any RFI pulse 

P,(O) = Error probability conditioned on the absence of RFI 
- pulses 

One can express Po as below: 

The probability P(ka) takes the form 

where 

k 
= Arrival rate of the kg-th - group RFI pulses 

a 
r = Pulse duration of the k th,group RFI pulses 
kt 

a- 

Here we have assumed that the overlaps between RFI pulses are negl i g i  ble 

and that X T is small (less than one). 
kt kt 



4.4.5 Evaluation of Fbments - 
I n  computing the condit ional e r ro r  probabll i ty  for  high data rates 

. o r  overall er ror  p robab i l i t y  for low data rates, the moments o f  the 

decision variable ZIH are needed i n  constructing the p robab i l i t y  densi ty  

funcrion o f  ZIH. In  t h i s  study, the character is t ic  function approach 

i s  used. 

Denote the character ist ic function t o  be rZ ( j w )  
IM 

E = expectation taken over a l l  random variables 

A comparison between eq. (15) and (16) shows tha t  the  high-rate 

model can be evaluated as a simple special case o f  the low-rate 

model, hence only the averaging f o r  the low-rate case i s  discussed 

be? ow. 

Substitut ing eq. (15) i n t o  eq.(24) and based on the assumption 

that  samples i n  each group are s ta t  i s t i c a l l y  independent and 

samples among one group are i i d ,  we can wr i te  the character ist ic 

function as follows: 

where 

ao( jw) = E[exp(j.ar(0)] 



Here we denote r (jw) (or s+k (jw)) to be the characteristic function ' kc 9 
of a single sample ar(kc) (or a (k )), divfded by the characteristic 

r 9 
function of a single sample ar(0), and r (j") (or r (.I)) to be the 

''C 
resultant characteristic function averagzd over the statistics of 

the Poisson arrival rate of thr kc-th - or (k -th) group of RFI pulses. . 
9 - 

For a given data rate R, the total number N-of samples ar(kl). 

kg = OS1,2...., can be written as 

N = BIF/R (30) 

Thus the variable nk . defined by Eqs. (15a) and (15b) can be 
11 

expressed as 
T 

and Eqs. (29) become: 

(324 
T 

and 

){ere n' and are the only random variables and their probabil ity 
kc 

distributions are characterized as Poisson processes: 



where 

P) = Pulse repet i t ion  ra te  of r t h  group of RFI - 
T = Observation period. 

To simplify the notations, we denote 

and 

Ho(j.1 = E( O W  j 7 

Then, a f te r  taking the expectation wi th respect t o  HI for Eq. (32a) - kc 
or t o  N; for Eq. (32b), we have 

9 

In general, the functions H ( j w )  can be expanded i n  terms o f  power 

series i n  (j,) and H0(jw) i n  -terms of i t s  semi-invariants: 

Note that the variable mi (kt) i s  not the moment o f  some physical 

random variable. However i t  i s  a function of the moments of the 

sample ar(0) and the moments o f  the es a,(kl), 
n 

kc 
either a r k )  or  

r=  1 

NOW using Eq. (37a) and (37b) we have 



This  yields t h e  r e s u l t a n t  i - t h  s m i - i n v a r i a n t  o f  ZIH - 

for i = 1,2,3,...m 

Therefore, t h e  moments of Zln can  be recursively computed from t h e  set 

o f  semi-invariants  ni as fol lows 

% = I  

where 

4.5 LinCsirnPbdeling of RFI Effects on fynchronization Loops 

4.5.1 Introduction 

RFI will degrade carrier phase and syubol t iming t racking  h e n  

4 t  is present on t h e  Shutt'2/TDRSS S-band r e tu rn  l i nk .  In t h i s  s ec t ion  

the RFI environment of Table 4.1 i s  assumed. The duty  cycles a r e  s o  

low t h a t  we can well assume t h a t  no pulses  overlap. The way i n  which 

t h e  RFI will a f f e c t  each t racking  loop depends on t h e  r e l a t i onsh ips  



amng the symbol rate, RFI pulse durations, and RFI pulse repet i t ion  

rates. Ue w i l l  give new expressions f o r  r.m.s. phase er ro r  snd t iming 

error, t o  replace those presented i n  Chapter 3, t ha t  take RFI i n t o  

account . 
4.5.2 RFI Effect on Ground-Station Input Signal 

Let us examine what the RFI effect i s  on the signal a t  input t o  the 

ground station. We re fer  t o  the generalized l i n k  shown i n  Figure 3.1. 

Since the correlation t i u e  o f  the TWlS input f i l t e r  (about -05 wsec) i s  

much less than the pulse durations, that  f i l t e r  passes the RFI essent ial ly 

undistorted except for band1 i m i  t i n g  i t  . The nonl inear i  t y  (combination 

cl ipper and TUT) i s  ~lemoryless. Thus, a t  the input t o  the ground 

stat ion a set o f  signal s t a t i s t i c s  something l i k e  those i n  Section 3.5.2 

can be found conditioned on each RFI s i tuat ion. Since the power levels 

o f  the W[;H RFI are re la t i ve ly  low, during no RFI o r  a WGN-RFI pulse 

the cl ipper doesn't hare much effect. The noise power entericg the 

Tlir i s  j us t  somewhat larger during a Wh-RFI pulse. However, the power 

levels of the CU RFI are mch higher than those o f  the data and uplink 

noise, so that  the cl ipper suppresses the data; l i t t l e  more than a tone 

enters the TUT, 

Me now proceed t o  t reat  the car r ie r  and symbol tracking loops 

separately. 

4.5.3 RFI Effect on Carrier Tracking 

4.5.3.1 General Description o f  RFI i n  the Loop 

We need t o  model the effect on the Costas loop, shown i n  Figure 3.2, 

o f  each RFI process. Fortunately, the general behavior i s  the same for 

a l l  since the pulse duratiorl and repet i t ion rates o f  a l l  bear the sane 

relationships t o  the two S-band symbol rates. The meaning o f  t h i s  w i l l  

be made clear beloi. 



Fi rs t  step i n  the modeling i s  t o  concider the response of the 

a m  f i l t e r s  G t o  a signal with a RFI pulse. The one-sided noise 

banbtidth ttG of 6 i s  .471 Wiz for S-band mode 1 (symbol rate 288 Ksps) 

and .942 Wz fo r  mode 2 (symbol rate 576 Ksps) 133, corresponding t o  

a correlation time of 1/486, hi& i s  -.53 psec and .27 rsec f o r  

modes 1 and 2, respectively. This i s  much less than the pulse duration, 

especially since most o f  the h igher -per  R f I  pulses, the ones that 

matter the most, have duration 5 psec. Therefore, we assume that a t  

the output of each of the arm f i l ters,  signal s ta t is t ics  can be obtained 

conditioned on each RFI situation. 

The next step i s  t o  realize that since the loop sterely mu1 ti p l  ies 

the outputs o f  the arm f i l t e r s  t o  obtain the dynamic phase error process 

z, then the stat is t ics o f  z are simi lar ly conditioned. 

Therefore, because of the def ini t ion (3-21 ) of the S-curve S(q), 

S'(0) for use i n  the calculation (3-25) o f  phase-error variance i s  

given by 

S8(0) = [S'(3; !no RFI]-Pr[no RFI] 

% 
+ [Se(0)l in a pulse of kth - WGN-RFI process] 

k=l 

- (duty cycle o f  kth - WGN-RFI process ) 

Mc 
+ [S' (0) l i n  a pulse of kth - CW-RFI process] 

k= 1 

.(duty cycle of kth - CW-RFI process) 



where it i s  assumed tha t  the pulses o f  each RFI process occur a t  a 

constant ra te a d  where I$, and PC a n  the  nunhers of UO(- and W-RFI 

processes, respectively. Since phase error  V i s  j us t  scaled z 

passed through a f i l t e r  ti of very long correlat ion time (cf. (3-24)), 

then for use i n  (3-25) i s  given by a s imi lar  equation t o  (40). 

bk must now obtain conditioned quantities. 

4.5.3.2 S'(0) and #A During NG RFI o r  UGtU RFI " 

The s i tuat ion during a W-RFI  pulse i s  l i k e  tha t  o f  no RFI since 

WGN RFI looks l i k e  increased uplink thermal noise. Therefore, S'(0) 

and conditioned on one of these si tuat ions are calculated from 

(3-39) and (3-41 ) using the conditioned values of Ehi and S ( 0 ) .  
Ni 

i = 1.2. of S,, (0). Since the c l ipper  doesn't 
1' 2 

do u c h  during WGiI RFI, then Ill and ti2 are s t i l l  almost independent, 

so (3-42) can be used t o  approximate SK (0). 
1 2  

4-5.3.3 S'(0) and N,; Durinq CU RFI " 

The signal a r r i v ing  a t  the ground stat ion during a CW pulse i s  

essentia71y j us t  a tone o f  constant power. This i s  because the RFI 

power i s  a t  least 15.7 dB above that  o f  uplink thermal noise i n  the 

bandwidth o f  the TDRS input f i l t e r  and the noise power i s  greater than 

that of  the data. The TDRS cl ipper cuts down the power t o  a fixed levs l  

and the T#f amplifies the signal. The downlink noise i s  inconsequential. 

Let nr consider what the loop's arm f i l t e r  G does t o  the tones. 

Since the correlation time o f  G i s  much less than the pulse durations, 

the tones appear t o  G t o  have i n f i n i t e  duration. The f i l t e r e d  quadrature 

components xi and x2 o f  the loop input signal during the i* pulse are 



BG i s  the one-sided noise bandwidth c f  G, Q i s  the maximum power out 

o f  the TDR sate l l i te ,  oi/2r and oi are chosen with uniform pdf's on 

1-10 EHr, 10 Wz] and [0,2r], respectively, and ndl and nd2 are the 

quadrature components of the downlink noise. 10 H z  i s  h a l f  the 

bandwidth o f  the TORS input f i l t e r .  

The contribution o f  the CW pulses t o  S'(0) i s  given by 

iS'(0) 1 i n  a pulse o f  CW RFI] = 0 (43 

This i s  because during such a pulse of a tone characterized by 

Ui and ei , 

sin  ojrO 
~ @ ( t ) - < ( t ) l  = - ~ r c w ~ )  -- cos ( ~ ~ ~ $ 2 9 ~  ) (44 

O i  '0 

where To = 5 pse'c i s  pulse duration. Averaging over ui and el y ie lds 

zero. 

Now l e t  us obtain Ni conditioned on the presence of C1-l RFI. 

N i  i s  the one-sided psd o f  n, which i s  the same as the z process 

when 9 = 0. During the i t h  - pulse n i s  given by 

- I 
n( t )  = -xl(t)z2(t) = -Qs(wi) s in  2(wit+ei) (45) 

where we have leglected downlink noise. Since r0 cc 1/2BL (the 

correlation time of the H f i l t e r ) ,  then n during the pulse looks l i k e  



70 s i n  o, T 

a (-function input t o  H of area -Q.(ui) 7 , , O sin(uir0+2Bi). 
s i n  uiro 1 0  

The f i r s t  zero crossing of I s  a t  ~ ~ 1 2 . 0  = 1/2r0 = .I 12. 
"iT0 

while s(Ui) i s  s t i l l  close to-one for ui/;n several times greater 

than that. So the operation of integrat ing over a pulse duration 

passes only a small fraction o f  the tones that  G does. I f  we assume 

that  the H f i l t e r  integrates over intervals o f  length 1/2BL and 

mult ip l ies the resul t  by 26', then the output o f  H due t o  CU RFI 
s in  q r o  

4.4,) sin(ui ro+2ei) where A i s  the 
("i b 

r e p e t i t h n  ra te  o f  the 01 RFI process. Since A >> BL we can assume 

that i n  any interval  o f  length 1/2BL the d is t r ibu t ion  o f  the 5 ' s  and 

oils o f  the tones i s  about the same as the s t a t i s t i c a l  d is t r ibu t ion  

of u and e say. So the variance of tha t  part  o f  H(p)n(t) due 1 ' 
t o  CW RFI i s  given by 

2 '0 Var = BLAr0Q -2 
01 

where u,/b i s  uniformly distr ibuted on 1-10 Mz, 10 MHZ]. But we 

have -\ 

1 

1 10 MHz 

Therefore, the conditioned Ni i s  

2 1 .  1 [ ~ b l i n  pulse of Cld RFI] = Q m NIz (48) 

I n  the evaluations o f  phase error  f o r  S-band done i n  Section 4.6.3, 

the contribution t o  the sum Ni made by Cll RFI i s  an order o f  magnitude 

greater than that made by the more powerful of the two WGN RFI 



processes and on the same order as t l iat  made by the no-RFI situation, 

which has much larger duty cycle. 

4.5.4 RFI Effect on Symbol Tracking 

4.5.4.1 General - Description of RFI i n  the Loot 

We need t o  obtain a model f o r  the RFI i n  the d ig i ta l - t rans i t ion  

tracking loop (DTTL) shown i n  Figure 3.5 and then a new expression 

f o r  timing-error variance. The loop handles the stream o f  biphase 

symbols as i f  i t &re a st&. o f  double-rate NRZ symbols. Just as 

f o r  the car r ie r  loop, the modeling for RFI effects depends on the 

part icular S-band symbol rates and RFI environment. The relationships 

among the important parameters aren't as favorable here as f o r  the 

carr ier  loop, so t h i s  model i s  probably not as good as that  one. The 

parameters we cons'der a t  t h i s  point  are two: T, the duration o f  

ha l f  a biphase symbol which has value 1.736 vsec (mode 1 ) o r  .868 

psec (mode 2); and pulse duration, which i s  5 psec f o r  almost a1 1 the 

more powerful RFI pulses. 

I n  order t o  analyze t h i s  loop i n  a way s imi lar  t o  the car r ie r  

loop, we make t h i s  loop be continuous-time by considering step 

functions I, J, and e which take on, respectively, the values Ik, Jk, 

and ek (shown i n  Figure 3.5) on intervals of length T. Then e i s  j u s t  

the dynamic phase error process, l i k e  the z process for the Costas loop. 

The correlation ti ires o f  I and J ara, respectively, 2T and T, so tha t  

the correlation time o f  e l i e s  betwxn those values. Now, 2T = 3.5 

vsec or 1.7 psec. We w i  11 assume, not with great accuracy, that  

pulse durations are enough greater than the correiat ion time o f  e 

so that e has two types o f  characteristics; one during no RFI 

or a pulse o f  WGN RFI and the other during a pulse of Ctl RFI. 



Then (40) holds f o r  S'  (0) and so does a s imi lar  equation f o r  

Nb. S8(0) = g'(0) and N; = 2S(0,0) i n  the notation of Section 3.5. 

We must obtain the conditioned quantities. 

4.5.4.2 S'(0) and NA During No RFI o r  WGN RFI 
V 

Just as f o r  the car r ie r  loop, the s i tuat ion during a WGN-RFI 

pulse i s  l i k e  that o f  no RFI except f o r  an increase i n  uplink thermal 

noise. SO the conditioned values o f  S1(0) and o f  Ni) are j us t  obtained 

from (3-76) and (3-79) using conditioned values o f  symbol r.m.s. 

voltage A and one-sided noise psd No. It should be noted tha t  "T" 

i n  those equations refers t o  biphase symbol duration. 

4.5.4.3 S8(0) and NA During CW RFI " 

Just as fo r  the car r ie r  loop, we combine the CW RFI processes 

i n to  one with pulse duration r0 = 5 psec and say tha t  during the 

i t h  pulse the loop input i s  merely a tone 4 c c s ( ~ ~ t + e ~ ) ,  where Q 

i s  the maximum power out o f  the TDR s a t e l l i t e  and wi/2n and ei are 

chosen with uniform pdf 's over [-I0 H z ,  i O  MHz] and [0,2n], respectively. 

Then the important loop quantities have the values given below: 

- 1 [sign ( ""(wiT") )] 1 
I k  - 2, [sign cos(oi (k- $T+ei ) 

ai T/2 

1 - sign cos(k+ $T+ei 11 (49 

s i n ( ~ ~ 0 ~ T 1 2 )  
Jk = K 2 f l  F T FowiT/2 cos (mi kT+ei ) (50 

The contribution t o  g'(0) i s  zero f o r  the CW RFI. 

Me must f ind an equivalent Ni conditioned on the occurrence 

of CW RFI. I t  niust be recalled that  i n  the l inearized CW phase- 



locked loop equivalent t a  the DTTL, a f i l t e r  H f i l t e r s  the scaled 

equivalent noise process n t o  y i e l d  t iming e r ro r .  The n process 

equals the e process when t iming e r r o r  i s  zero. Since ro <c 1/2BL, 

where BL i s  the one-sided loop bandwidth (o f  H), then the i t h  
M 

pulse looks 1 i k e  a s - funct ion inpu t  t o  H o f  area T ek, where 
k= 1 

M = t/T = 2.9 (mode 1) o r  5.8 (mode 2). I f  H eorresponds t o  

in tegrat ion over an i n t e r v a l  o f  length  1/2BL and m u l t i p l  i c a t i o n  by 

2BL, then the variance o f  the f i l t e r  output due t o  the  CW RFI i s  
2 M 2 

ZBLnT E ( ek) , where A i s  the  Ckf pulse repe t i t i on  rate, 
w i  soi k= l  

2~~ so that  the equivalent N i  value i s  - 
TO mi .ei k= l  

I n  the evaluations of r.m.s. t iming e r r o r  f o r  the  S-band done 

i n  Section 4.6.3, the cont r ibut ion t o  the sum Ni) made by CW RFI 

i s  about the same as tha t  made by t h r  Ire powerful o f  the two 

WGN RFI processes. 

4.6 Prel iminary LinCsim Performance Predict ions 

4.6.1 Introduct ion 

Sections 4.6.1 and 4.6.2 have been on i t ted  pending 

c l a r i f i c a t i o n  o f  NASA Headquarters TWX 1/0083 o f  2 January 

1980 which pertained t o  the handling o f  information re la ted 

t o  TDRSS vu lne rab i l i t y  information analysis, data, etc. 
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4.6.3 Predicted Synchronization Performance 

Parts o f  t h i s  section have been omitted pending 

c l a r i f i ca t i on  of NASA Headquarters TWX 1/0083 o f  

2 January 1980 which pertained t o  the handling o f  

information re lated t o  kDRSS vu lnerab i l i t y  information 

analyst s , data, etc. 

This section gives the predicted .performance of the ground-station ca r r i e r /  

subcarrier phase and symbol-timing recovery f o r  the Shutt le Ku-band 

mode 1 and S-band re turn  l inks .  Results were obtained from ana ly t i ca l  

models implemented as computer programs f o r  the two-channel Costas 

loop ui th  'h?r-d-1 irni te rs  , single-channel Costas loop, and data t r a n s i t i o n  

tracking loop. Plots o f  the r.m.s. phase e r ro r  due t o  noise arc given 

f o r  the ca r r i e r  and square-wave subcarr ier o f  Ku-band mode 1 and for- 

the S-band c a r r i e r  f o r  the allowable range o f  data rates and symbol 

types (NRZ o r  biphase). Plots o f  the r.m.s. t iming e r ro r  due t o  noise 

are given f o r  a l l  three channels of Ku-band mode 1 and the one S-band 

channel f o r  the a1 loir~able range o f  data rates and symbol types. For 

S-band, resu l ts  are shown both w i th  and without the RFI model given 

i n  Table4.l. Tables 4.5,-4.6'and 4.7 l i s t  the l i n k  parameter values,assur~~ed. 

One conclusion tha t  can be drawn from t i le p l o t s  i s  tha t  f o r  Ku- 

band subcarr ier recovery, t!RZ and biphase symbols i n  channel 2 g i ve  

.pract ica l ly  the same results, f o r  any data rate. 
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T~31e 45 . LinCsim Parameter Values for Figures 436 through 420 , 

Link: Ku-band mode 1 dedicated return l i n k  

Signal Modulation: UQPSK 

Power Sp l i t  (I/Q): 4/1 

I Channel (Representing Channel 3): 

Data rate = 2 Hbps t o  50 Nbps, NRZ symbols, 

unspread , convolut i ma1 1 y encoded a t  rate 1 /2 

Q Chan~rel : Modulated square-wave subcarrier 

TDRS Front-End F i l t e r  Bandwidth: 225 WH2 

TDRS TKT: max AM/Pi4 = 10°/dB, input backoff=lO dB 

Eb/WO on Down1 ink: - > 30 dB 

Receiver Carrier-Recovery Loop : 

Two-channel loop w i  t h  hard 1 i m i  ters and amp1 i tude 

r a t i o  2/1; arm f i l t e r s  noise bandwidth = 
x $ x 

max{ 2x1-channel data rate, 22.666 MHz 1 ; one-sided loop 

bandwidth = 1 KHz 

Receiver Symbol -Timing Recovery Loop : 

Data t rans i t ion tracking loop with Fo = .25 and w i t h  

(loop bandwidth)/(2xl-channel data rate) 

- 1 .267%, 2 Wps - < I-channel data rate - < 37.5 Hbps - 
( 200 KHzl(2xI-channel data rate), 

37.5 Mbps - I-channel data ra te  
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figure 4-17. R.H.S. Carrier Phase Error on Ilu-lbnd kturn Llnk 
Wsdc 1--Chamel-3 Data lbte a 50 taps. 
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Table 4.6 . LinCsim Parameter Values f o r  Figures 421 through 4 32. 

Link: Ku-band mode 1 dedicated re turn l i n k  

Signal Modulation : UQPSK 

Power S p l i t  (I/Q): 411 

I Channel (Representing Channel 2) : 

Data ra te  = 16 #bps t o  2 rlbps (MRZ) o r  16 Kbps t o  1024 Kbps 

(b iphase) , MRZ o r  b i  phase symbol s , unspread , uncoded 

Q Channel (Representi ng Channel 1 ) : 

Data ra te  = 192 Kbps, biphase symbols, unspread, uncoded 

TDRS Front-End F i l t e r  Bandwidth: 225 MHz 

TDRS TWT: max AM/PM = 10°/dB, input backoff = 10 dB 

EdNO on Down1 ink: > 30 dB - 
2 Signal Power i s  Reduced i n  Receiver (by mul t ip ly ing i t  by 8/a ) 

t o  Reflect Effect of Demodulating the Square-Wave Subcarrier 

w i th  a Sine Wave. 

Receiver Carri er-Recovery Loop : 

Two-channel loop w i th  hard-l imiters and amplitude r a t i o  2/1; 

I 
-3 ,  300 Kbps c %ax < 600 Kbps - - 

arm-f il ters  noise b.w. = x .6 ,  600 Kbps 5 Rmax 5 1.5 Hbps 
i n  f>iHz 

1.2, 1.5 blbps 5 Rmax < 3 R p s  - 

- I  max(384 Kbps, I-channel data r a t e l ,  I NRZ 
where Rmax z 

max(384 Kbps , 2x1-channel data ra te?,  I biphase; 

one-sided loop b.w. = 1 KHz 

Receiver Symbol-Timing Recovery Locp: 

Data t rans i t i cn  tracking loop wi th Eo = .25 and w i th  loop 
i 

bandwidth/data ra te  = .01% for  chanqels 1 and Q. 
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Figure 4.24. R.M.S. Sulcarrler Phase Error on Ku-Band Return Llnk 
Node I - -  Channel-: Data Rate = 2 llbps. NRZ. 
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APPEND I X 

A DERIVATION 11 EQ. (21) 

Here we der ive the eq. (21 ) o f  t h e  t c ~ x t .  Suppose t h a t  we observe 

the stream o f  received data over T sec during which period there are 

Ns = T R  symbols. The average e r ro r  p robab i l i t y  over N, symbols can 

be wr i t t en  as 

where 

Note tSe t  he have assumed NO(NS) > 0 and a lso al loxed t o  have non- 

integer values f o r  the ra t i os  ( T  T ) In practice, it i s  always 

possible t o  choose T s u f f i c i e n t l y  large so t h a t  ilo(NS) i s  l a r ~ e r  than 

0. The noninteger ( T  /T ) implies t h a t  the  symbol p a r t i a l l y  h i t  by 

a RFI pulse i s  counted as the symbol e r r w  caused by the RFI pulse 

weighted w i th  the frictional par t  of the r a t i o  ( r  T . This w i l l  

y i e l d  a s l i g h t l y  pessimist ic r esu l t  when th-  r a t i o  (T /T ) i s  near 
k, 

uni ty.  And i t becomes i ns ign i f i can t  

eq. (A.l) we 

Pe(NS) = 1 + 

have 
.r 

Rewriting 



By the assumpti on that  the variables n' and are random processes 
kc - 

with a Poisson d is t r ibu t ion  

where 

t h 
$ = pulse repet i t ion  rate o f  5- group of the RFI 

T = observation period. 

He average the Pe(Ns) over the s t a t i s t i c s  of nT and n T 

kc kg 

whSch i s  independent o f  1. Imp l ic i t l y ,  we have assumed that  T i s  

su f f i c i en t l y  large such that  the s t a t i s t i c s  o f  the variables n T 

kc 
sat isfy the eq. (A.4). Therefore, we ccnclude tha t  

Pe = l i m  %(IS) 
T- 

P ( k )  + 2 P r P ( k )  +POPe(0) ( A . 0  'k 'k e c c c k g k g e  g  kc= 1 k = l  
9 

wiiere 

and also that  eqs. (22) and (23) of the tex t  hold. 
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5. PROPOSED ESTL RFI TESTING 

5.1 Introduction 

Since NASAIJSC has a complete hardware simulation system f o r  

the non-RFI ShuttleITDRSS Link i t  i s  ce r ta in ly  worthwhile t o  

extend t h i s  simulation capabi l i ty  t o  RFI environments by adding 

an RFI t es t  generator. For the design o f  such an RFl t e s t  generator 

several things must be taken i n t o  account. F i r s t  the avai lable data 

on the RFI sources have t o  be reviewed and a l l  useful s t a t i s t i c a l  data 

must be extracted. Then the l i n k  performance s e n s i t i v i t y  t o  these 

RFI features must be estfmated i n  order t o  decide which s t a t i s t i c a l  

parameters must be modeled i n  the simulator for  reasonably accurate 

performance predictions. The t h i r d  consideration would be the 

complexity o f  the resu l t ing simulator. 

. Section 5.2 reviews some o f  the features which might be found i n  

the RFI signal and which, from our experience w i th  LinCsim may 

substant ia l ly  a f fec t  the overal l  l i n k  performance. Section 5.3 presents 

a simple RFI t es t  generator implementation based so le ly  on the s t a t i s t i c a l  

information contained i n  the RFI t es t  environments. It i s  i n  our 

opinion the simplest t es t  generator which might s t i l l  give meaningful 

resul ts.  

5.2 Desirable Features f o r  RFI Simulator 

The R F I  tes t  generator should dupl icate a l l  those known RFI 

character ist ics which a f fec t  tile overal l  Shuttle/TDRSS 1 ink  perform- 

ance. This includes the following features: 

(1) Type o f  inter ferei~ce.  There i s  a s ign i f i can t  difference i n  

the e f fec t  o f  wideband Gaussian noise and pulsed interference 

on BER performance, even i f  both have t:!e same power. Therefore, 



both inter ference types must be generated. 

(2) Power l eve l .  The wide range o f  power l eve ls  could be approximated 

by the  histogram defined by the unc lass i f ied  RFI t e s t  environments 

discussed i n  Chapter 4. The real ism o f  t h e  s imulat ion can be 

improved however by approximating the  actual d i s t r i b u t i o n s  w i t h  

steps smaller tb~an 10 dB. 

(3) Pulse durat ion. The act.ua1 pulse length d i s t r i b u t i o n  cari be 

approxinlated t, the two values used i n  the RFI t e s t  environment or, 

preferably, by a d iscre te  d i s t r i b u t i o n  over more sample points. 

(4) CGJ frequency. The p.d.f. o f  t h e  center frequency of the  CW 

pulses should be known and modeled. 

(5) Per iod ic i ty .  If there i s  any co r re la t i on  between the  RFI pulse 

a r r i v a l  times i t  should be modeled i f  the cor re la ted -11lses are 

separated by less than the demodulator memory time. 

(6) Hodulation. I f  thc radar pulses have signatures such as c h i r p  

o r  phase coding t h e i r  modeling as CW pulses may be very pessimist ic .  

I n  ce r ta in  cases i t  might be more appropriate t o  use a narrowband 

Gaussian noi;e t o  simglate such modulated pulses. 

( 7 )  Pulse overlaps. The simultaneous presence o f  more than one CW 

pulse might be worth simulat ing because o f  the  intermodulat ion 

e f fec ts .  Yowever ,the probabi 1 i t y  o f  such over1 aps should be 

compared accuracy o f  t h e  pulse r a t e  estimates before such 

a decis ivn i s  made. 

5.3 Proposed ESTL RFI Simulator - - 
The RF I  sirnulato!- design t o  be proposed i s  based on t h e  consider- 

a t ions  l i s t e d  i n  the previous sect ion, on the RFI  t e s t  environment 

discussed i n  Section 4.2 and on the assurnptio~s l i s t e d  there. 



For the  RFI generator design i t  was decided t h a t  no e f f o r t  

should be made t o  model the  overlap of pulses. This i s  based on 

the fo l lowing reasons: I f  pulses w i t h  d i f f e r e n t  power l e v e l s  i n te rac t ,  

t he  r e s u l t i n g  intermodulat ion leve ls  a re  so much smal ler than the  

l a r g e r  o f  the two s ignals tha t  they may be neolected. The overlap o f  

two pulses o f  t h e  5ame power l e v e l  on the  o ther  hdlld has n e g l i g i b l e  

probabi 1 i t y  . 
The proposed RFI t e s t  se t  up i s  shown i n  Fig. 5.1. The RFI t e s t  

generator produces an S-band output s ignal  whose bandwidth and center  

frequency agree w i t h  the values o f  t h e  Shut t le  S-band l i n k  under tes t .  

This s ignal  i s  added t o  the  r e t u r n  l i n k  s ignal  between the  spaceloss 

s imulator  an4 t k  'r.:; : i~nu la to r .  

The R : 1:st , ~ r * :  i r  shown i n  more d e t a i l  i n  Fig. 5.2. It 

contains thme cqi): \ t~ i s ,  one t o  zsnerate noise burs ts  and two t o  

generate CW bursts. The sa t i ng  and pvwer l e v e l  se lec t ion  i s  done by 

a prugramnable at tenuator  under cont ro l  o f  the burs t  t im ing  and power 

con t ro l  l og i c .  

The frequency of the CW tone burs ts  i s  given by the instantaneous 

frequency o f  the  sweep generators. To avoid generatins c h i r p  s igna ls  

the sweep ra te  has t o  be s ! o ~  enough t o  leave the  frequency approximately 

constant over one bgr-st. T h i q  means however, t h a t  consecutive CI.1 

pulses have very s i m i l a r  center frequencies. The e f f e c t  o f  t h i s  

unwanted c o r r e l a t i c n  i s  minimized by using twc, sweep gener to  r s  , one 

covering the data bandwidth, the o ther  the  r e s t  o f  the chdnnel bandwidth. 

Since i h e  inband sweep generator i s  gated a t  a very low duty cyc le  

i t  can change i t s  freauercy by an adequatd ei?o~;nt between pulses t o  

minimize the unwanted cor re la t ion .  



SHUTTLE S-BAN 

Figure 5.1,  Proposed EST1 RFI Test Setup. 
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6. DIISCELLANEOUS ANALYSES aQJO RECOHB1EIYDATIOTS 

6.1 Introduction 

This chapter documents several analyses performed under the 

current contract. These studies were short-term ef for ts  i n  support 

of JSC but not d i rec t l y  related t o  the contract task statements. 

The findings and recommendations #ere comnunicated t o  JSC personnel 

i n  the form of short memos. 

6.2 Waveguide Effects on PSK Signals 

6.2.1 Introduction 

I n  a typ ica l  s a t e l l i t e  terminal there may bea long waveguide 

section from the low-noise amplifier near the antenna t o  the 

remaining signal processing equipment. Based on measurements taken 

a t  KSC i t was predicted that the l inear  d is tor t ion i n  a 100 a 

section o f  UR62 copper waveguide could resul t  i n  more than 10 dB 

performance degradation. LinCom predicted the degradation analytical l y  

using LinCsim and found i t  t o  be a f ract ion o f  a dB. A s imi lar  

analysis was then made f o r  the ESTLISAIL tes t  setup and an interpreta- 

t i on  of the KSC measurements was found. 

6.2.2 Linear Distort ion of a Waveguide 

The major l inear  d is tor t ion i n  a long waveguide section i s  the 

quadratic phase nonlinearity . Fig. 6.1 shows the phase characterist ic 

of a 100 m section of waveguide WR62 for the center frequency 15.0034 

GHz. The resul t ing performance degradation for a 50 Mb/sec BPSK NRZ 

bitstream i s  shown i n  Fig. 6.2. 

The ESTL Shuttle/TDRSS l i n k  s i w ~ l a t o r  uses a 275 ft section of 

the same waveguide and i t s  ef fect  was also analyzed using LinCsim. 

The resul ts depend on the center frequency of the signal. For the 



Figure 6.1. Phase Characteristic of 1 OOm Kaveguide Section. 









SSO-to-TDRS l i n k  (f, = 15.0085 GH2) the  degradation i s  approximately 

. I  dB as shown i n  Fig. 6.3. For the TDRS-to-Ground l i n k  (fc = 

13.9375 GHz) the CNR ioss i s  close t o  -4 dB (Fig. 6.4). This i s  

due t o  the increased l i nea r  d i s t o r t i on  i n  closer proximity t o  the  

cutoff-frequency fo = 9.49 GHz. 

6.2.3 In terpreta t ion o f  KSC Measurements 

The system assumed for  the above computations i s  sketched i n  

Fig. 6.5. There are two loss components which w i l l  be observed i n  

the measurement setup, v i  z., signal attenuation -and phase dispersion. 

Note tha t  the signal-to-noise r a t i o  i s  set  by the LNA before the 

waveguide run. The signal d i s t o r t i on  effect which the waveguide 

produced on Eb/NO i s  a l i nea r  phase dispersion which degrades 1 ink  

performance by .2  dB f o r  100 m waveguide i n  a coded system and may 

be -5 dB i n  an uncoded system. If the LNA a t  the antenna output i s  

not  present the signal -to-noise r a t i o  i s  set a f t e r  the waveguide 

and the waveguide attenuation shows up as an Eb/NO loss. This loss 

i s  tabulated i n  Table 6.1. From the magnitude o f  t h i s  loss i t  i s  

obvious tha t  no system should be implemented i n  t h i s  fashion. Also, 

the problem could not be solved by using a d i f f e ren t  type o f  waveguide. 

The two sources o f  loss have d i f f e ren t  e f fec ts  on the shape of the 

BER vs CNR curve and i t  i s  recommended tha t  the measurement resu l t s  

o f  KSC be analyzed i n  order t o  f i n d  the source o f  the losses. I f  

the BER curve looks 1 i ke  a sh i f ted  ideal  BPSK curve of Fig. 6.6, 

the source o f  the loss i s  pure attenuation! I f  the curve leve ls  

o f f  as i l l u s t r a t e d  i n  Fig. 6.7, the source o f  loss i s  phase dispersion. 

6.3 S-Band Low Power Mode -- 
6.3.1 Introduction 

There i s  a requirement f o r  the Shutt le S-band 1 ink t o  operate w i th  



ANTENNA 

Figure 6.5. Receiver Configuration Assumed. 

I + 
CMR (dB) 

Figure 6.6. BER Curve f o r  Attenuation Loss. 



Figure 6.7.BER Curve for Dispersion Loss. 

Length Attenuation (dB) 

280 ft 14.4 ( K S C  Experiment 

100 m 16.8 

200 m 33.7 

Table 6.1. Waveguide Attenuation. 

CNR 



reduced prime power consumpti on during periods not  requ i r ing the trans- 

mission o f  high data rates. This section addresses the options avai lable 

t o  reach t h i s  goal w i th  minor modifications of the present hardware. 

F i r s t  the options and the functional requirements of the relevant TDRSS 

services are discussed, then the avai lable Shutt ie equipment i s  reviewed 

and the necessary modifications are iden t i f i ed .  F i na l l y  a so lu t ion i s  

recommended. 

6.3.2 TDRSS Services and Functional Requi rements 

For S-band return l i n ks  the TDRSS offers the  SSA and MA services. 

However, MA requires a greater user EIRP f o r  a given data ra te  without 

providing any compensating advantages, hence i t s  use i s  not  recornended 

if the TDRSS SSA service i s  available. Tables 6.2 and 6.3 l i s t  the 

pert inent  SSA re turn  1 ink character ist ics f o r  PN-spread and unspread 

signals, respectively. It must be noted t ha t  during acquis i t ion the 

data ~ o d u l a t i o n  must be inh ib i ted  i n  both cases. Also, despite the fact 

tha t  the acquis i t ion E IRP i s  presently speci f ied 10 dB higher f o r  an 

unspread signal than f o r  a PN-spread one, there i s  no reason t o  

expect the hardware t o  show t h i s  dif ference i n  performance. Hence 

the unspread signal can be expected t o  be acquired wi th  the same 

user E I R P  as the PN-spread signal. 

6.3.3 Shutt le Equipment Options 

The Shutt le uses f o r  i t s  d i rec t  l i n k s  t o  GSTDiI, i n  addi t ion t o  

the regular SSO-TDRSS configuration, a low power mode of the above 

system and an FM l i n k ,  both equipped w i th  an omni antenna. 

6.3.3.1 Low Power PM Mode 

Making the low power PM mode (output power ZW, EIRP 1 dBW) 

avai lable f o r  SSO-TDRSS 1 inks would require PN spreading t o  meet the 

acquis i t ion EIRP requirenlents. However, since there i s  no j u s t i f i c a t i o n  



Table 6.3. SSA Return Link Characteristics for Unspread Signals 

Minimum Data Rate 1 kb/s 

EIRP f o r  Above Rate -6 dBW 

Min. Acquisition E I R P  4 dBW 

Table 6.2. SSA Return Link Characteristics for PN-Spread Signals . 

Minimum Data Rate 100 b/s 

EIRP f o r  Above Rate -15 dBW 

Min. Acquisition EIRP -6 dBW 

.h 
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f o r  t h e  r e s t r i c t i v e  spec i f i ca t i on  on the  unspread s igna l  i t  should be 

poss ib le  t o  have the  requi red acqu is i t i on  EIRP spec i f i ca t ion  reduced t o  

less  than 1 dBW. Otherwise, the  PN modulation would have t o  be included. 

Since the design 1-dB bandwidth i s  greater  than 5 MHz, i t  should be 

s u f f i c i e n t  f o r  t he  spread s ignal .  

Since the  r e s u l t i n g  s ignal  s a t i s f i e s  regular  SSA spec i f i ca t i cns ,  

except f o r  the fEC code used, the impact on the  ground s t a t i o n  i s  

minimal: the sof t -decis ion symbois from the low-rate demodulator have 

t o  be routed t o  the  r a t e  1/3 V i t e r b i  decoder. 

6.3.3.2 FM Equipment - - 
The FM l i n k  (output power ION, EIRP 4.1 dBW) s a t i s f i e s  t h e  present 

TDRSS EIRP spec i f i ca t ion  f o r  s igna ls  wi thout  PN spreading. However, a  

phase-modulator would have t o  be provided i n  order t o  ob ta in  a  s igna l i ng  

format compatible w i t h  the ground s t a t i o n  equipment. Otherwise, the 

TDRSS I F  service can be used w i t h  FM demodulation performed by NASA. 

This l a t t e r  approach may su f fe r  from the  fac t  t h a t  t he  I F  channel 

cha rac te r i s t i cs  arc present ly  no t  we l l  defined due t o  the  RFI 

hardware changes. 

6.3.4 Reconmendati ons 

I n  the l i g h t  o f  the above discussion we propose t o  use t h e  low 

power PM mode fo r  low r a t e  data transniission. A cliscussion w i t h  Goddard 

personnel about the minimum acqu is i t i on  EIRP f o r  unspread 1  i nks  i s  

recommended before the decision i s  made t o  add PN s t iead ing  t o  t h i s  

l i n k .  

6.4 E f fec t  of Spacelab --------- Data Trans i t ion  Density on Clock Recovery and BER --- 
6.4.1 - Introduct ion  

The Spacelab data do not  meet the speci f icat ions imposed on the  



t rans i t ion density an4 on the inaxinnrat length of t ransi  tion-free runs. 

The rf fect of these two factors on the qual i ty  of the recovered clock 

and on the b i t  er ror  probabi l i ty was estimated using a worst-case 

analysis. Tt,z results show that  for a reasonable loop bandwidth 

(-1% o f  symbol rate) the tracking loop can track well through the 

t rans i t ion free runs and that  the recovered clock and the b i t  er rnr  

ra te are only s l i c h t l y  degraded by the low t rans i t ion density. The 

error ra te  degradation i s  expected t o  be less than .I dB. The follow- 

ing sections surnarize the k n m  facts about the data t rans i t ion 

s t c t i s t i cs  and the analysis supporting the above results. 

6-4.2 -- Characterization o f  Spacelab Data Transition Density 

Kaxisnrm all-zero o r  all-one runs i n t o  ~ , ~ c o d e r  are 128 b i t s  long. 

Maximum runs occur frequently; up t o  one every 256 b i ts .  

Average density i s  300 transit ions i n  1536 b i ts .  

After the cotivolutional encoder the maximum all-zero runs w i l l  be 

ap~roximately 256 sy&ols, spaced 256 symbols epart. The average 

t rans i t ion density w i l l  be more than (300/1536), most l i k e l y  i n  the 

range 30% t o  40%. 

6.4.3 Analysic- 

The above transi t ion s ta t i s t i cs  can affect the clock recovery 

loop performance throuch three mechanisms : 1 ) the recovered clock 

Frequen-y may d r i f t  o f f  during transition-free periods due t o  loop 

stress, 2) the noise-induced phase j i t t e r  may increase during such 

periods since the restoring force i s  niissing, 3) the loop signal-to- 

noise r a t i o  i s  lowered i f  the t rans i t ion density i s  less than 502. 

I f  a second-order tracking system i s  used the f i r s t  effect may 

be neglected since tk d r i f t  time-constant i s  the time-constant o f  



the (imperfect) integrator which i s  t yp i ca l l y  many times higher 

than the inverse of the bandwidth. 

The second e f f ec t  may be upper-bounded by assuming a f i rs t -order  

tracking loop. Then the phase e r ro r  i s  described by a f i r s t  order 

Gauss-krkov process during the t rans i  t ion-free period and the variance 

increases by a factcr o f  4 over 512 symbol-times (neglecting the 

reduction of the variance which takes place between t i c  256-syllbol 

a l l -zero str ings). 

The e f fec t  o f  the low t rans i t ion  density i s  t o  reduce the 

effect ive loop SMR by approximately 2 dB. Since the r.m.s. t racking 

e r ro r  for a t rans i t ion  density o f  50% i s  epxected t o  be 1.4% the 

resu l t ing tracking e r ro r  i s  1.74,, y ie ld ing  i n  an incremental CNR 

loss of .92 dB [23. Adding t i le effect of long a l l  zero s t r ings resu l ts  

i n  3.5: r.m.s. t racking e r ro r  o r  approximately .1 dB CNR loss f o r  the 

b i t  e r ro r  rate. 

6.5 Spacelab Risetime and J i t t e r  Specifications 

6.5.1 Introduction 

The predicted Spacelab symbol r ise-t ime was increased from 3.5 ns 

t o  4.5 ns and the combined b i t  j i t t e r  and data asynmetry from 1 ns t o  

2 ns. I n  t h i s  sect i  ,n the ef fect  o f  these changes on the overal l  l i n k  

performance i s  computed. 

6.5.2 Analysis 

The basic pulse shape f o r  the highest data ra te  i s  sketched i n  

Fig. 6.8. Due t o  data asynmtry and b i t  j i t t e r  the actual t rans i t ions 

are w i th in  - +1 ns from the i r  expected time (Fig. 6.9). Since the 

scrubber implementation assures that  the szmpling po in t  i s  a t  least  

5 ns from the warst case t rans i t ion [I] i t  occurs always beyond the 

90%-point o f  the t rans i t ion and the signal -to-noise r a t i o  i s  very 
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l i t t l e  degraded. The m i n i n g  8 ns interval a l l o m  approximately 

6% r.sa.s. j i t t e r  on the recovered clock while the predicted value i s  

less than 2% 121. This value increases only sl ightly for  increased 

b i t  j i t t e r  since i t  i s  dominated by thermal effects [2,p.126]. We 

may therefore conclude that the overall l ink  performance i s  not 
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