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Abstract

A light scattering technique is combined with a tomographic transformation

to convert line of sight integrated data, measured in sprays, to measurements

of droplet size and concentration in volume elements within the spray. The

technique is developed and assessed by systematic experiments in axisymmetric

sprays generated by twin-fluid atomi3ors. The angular distribution of forward

scattered light from a laser beam passing through the spray is measured

fir a series of scans with the beam passing through different sections of

the spray at the same axial position. This data is transformed numerically

into 'point' measurements of droplet size dis tribution and volume concentra-

tion and these measurements are compared with data obtained by analysis of

spark photographs obtained in the same spray. The good agreement found

shows that, provided certain conditions are satisfied by the local spray

structure, the new technique provides information on spray structure,

similar in detail and extent to that derived by photography, but with

reduced experimental time. The technique is applied to an investigation

of a kerosene spray vaporizing in a hot gas stream. Measurements are made

a

of local droplet size distributions and vapu ization rates in the spray.	 f

Tomographic data analysis increases the useful information which can be

derived from light scattering measurements in sprays and the method provides
a

useful data on the detailed physical structures of twin-fluid atomised sprays.
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1.	 Introduction

The investigation, prediction and modelling of the vaporization and

combustion of fuel sprays, require detailed information on the local spray

structure, as specified by spatial distributions of volume concentrations,

droplet size distributions and volume fluxes. For certain cases more

detailed information, such as droplet size/Velocity correlations, are of

importance. There is a need for diagnostic tools for obtaining this information,

accurately and rapidly. Imaging techniques, such as spark photography  and

holography, have been developRd to provide measurements of droplet size

distributions and concentrations with optimum experimental accuracy. However,

even when using automatedi— ge analysis systems, the imaging techniques

tend to be very slow and inconvenient when detailed measurements of spray

structure, involving m?ny measurement positions, are required. Thus there has

recently been considerable development work on the application of light

scattering techniques to investigate spray structure. When photodetectors

are interfaced with computers, light scattering techniques have the potential

for very rapid measurement of particle size. Light scattering techniques

can be divided into two types: Single Particle Counting techniques, where

individual particles are measured as they pass through a measurement volume,

and Particle Cloud techniques, where the scattered light from many particles

in a light beam is analysed to provide an overall size distribution. The two

techniques are compatible: the Single Particle Counting technique 2 provides

very detailed, time dependent information on local spray structure, including

size and velocity data, while the Particle Cloud  technique has only been

used to produce a very rapid measurement of overall size distribution for an

integrated path a `r.oss the spray. During our previous investigations of

fuel sprays, it became apparent that the Particle Cloud technique has the

potential for providing more detailed information on spray structure. In

addition, overall maize distributions can be very misleading when the
{

distributions of droplet sizes and numbers across a spray are inhomogeneous,
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as is often found to be the case.

This paper describes the development and application of a Malvern

Instruments ST 1600 particle Size Meter and its software to provide informa-

tion on local size distributions and volume concentr6tions in sprays, with

good spatial resolution, rather than an overall spray size distribution.

The technique is applied to an investigation of fuel sprays vaporizing

in a hot gas flow.

The spray structure and the interrelationship between structure and

the measuremeril:z produced by the light scattering and photographic techniques

have been investigated and potential

sources of error and discrepancy between different techniques are discussed.

2.	 Size Distribution Measurement by Light Scatterin

In the standard Malvern instrument, a parallel 9 nun diameter HeNe laser

beam is passed through the spray and the forward scattered light is collected

by a Fourier transform lens arrangement. By using this arrangement, particles

with the same diameter and the same uniform illuminating light intensity, produce

the same radial, scattered light intensity distribution at the focal plane of

the lens. The .cattered light energy contributions from all droplets in the

beam are summed directly so that the light power distribution at the focal

plane is unambiguously related to the size distribution of particles illuminated

by the laser beam. As described by Swithenbank et al,' a photodetector, which

consists of 30 concentric annulli, is used to measure the angular distribution

of scattered light power, from which the particle size distribution is

calculated by using Fraunhofer diffraction theory.

In practice the illuminating intensity is not the same for all droplets,

because of the non-uniformity of the radial light distribution across the laser

beam. However this does not affect the shape of the measured size distribution

provided that the spray is homogeneous across the beam. In addition, in spite
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of this non-uniformity, it is possible to calculate the volume or number

density of particles in the beam when a calibration coefficient is established

for the system (by comparison with photographic results or by measurements

in a known, well defined particle laden flow).

Thus, in its standard farm, Chis particle sizing instrument is designed

to derive rapidly an 'overall' size distribution for a complete width of a

spray. Difficulties arise when a more detailed knowledge of the spatial

distribution of droplets in the spray is required, or when the spray is

highly structured. The 'line-integral' nature of the particle size distribution,

does not directly provide information on how droplets are distributed across

the spray. In highly structured sprays such information is of practical

importance. For example, many atomisers produce sprays which have narrow

regions containing relatively large droplets or relatively high volume con-

centr,itions of droplets. The detection of these regions is essential and

furthermore, the line-integrated size distribution, derived from the

particles in the beam, will differ according to whether the beam passes

through this region or not. In addition the size distribution of droplets in

a relatively narrow beam, passing through the centre of the spray, will not

correspond exactly to the size distribution for all droplets passing through

the plane containing the beam, and perpendicular to the spray axis. This is

particularly true for sprays which are radially non-homogeneous. For example,

for an axisymmetric spray, the size distribution measured by passing a beam

through the spray centre, is weighted towards droplets near the centre of

the spray because, effectively, a line integral is used to approximate a

distribution which should be obtained by integrating over a complete cross-s,?ction.

It is also noted that there is a separate problem created by droplets moving

with different velocities in different regions of the spray, and in certain

cases, large droplets may have significantly different velocities than Small

droplets. However we reGtrict ourselves here to the consideration of spatially

averaged size distributions, whilst recognising that temporally averaged

distributions are also of interest, but require separate or simultaneous



- 5 -

measurement of droplet velocities.

3.	 Tatno raEhic Transformation of Scattered Light Data for Sprays

With the authors' requirements for making detailed spatial mappings

of droplet size distributions and concentrations in vaporizing sprays, it

was considered worthwhile to i.nvestigate the further development of the

Malvern Instrument to overcome some of the restrictions noted above, while

retaining the instrument's advantages of experimental speed and convenience.

The problem under consideration here, is the transfonmation of scattered

light data measured, effectively, for line integrals along the laser beam

traversing different parts of the spray, into two dimensional distributions

of particle sizes and concentrations in a plane across the spray. This

data transformation is known generally as 'tomography' (tomos Gk - a slice)

and it has been used for several types of system in recent years; particularly

for the cases of medical X-ray brain and body scanners. With the latter

applications in mind, Cornack 4, 5 derived general formulae by which a two

dimensional distribution of a function (the gamma ray absorption coefficient)

is represented by its line integrals, which are measured by the scanner.

The data inversion required for transforming these integrals into the

required distribution, is achieved either by direct numerical solution or

by Fourier transform procedures.

Figure 1 shows how this approach is applied for the present case of

a laser beam traversing a spray. The cross-section of the spray is shown

to be circular, but in general this is not a necessary condition. The

total power P of the uiiscattered laser beam decreases as the beuim tra-

verses the spray in a manner determined by the distrli bution of extinction

coefficient k along the beam. We divide the problem into two interc,_nnected

components: derivation of the k distribution in the r, 8 plane across the

spray and derivation of distributions of particle sizes and volume

concentrations in this plane. It is assumed that the spray structure

is statistically stationary so that all quantities used here are

A
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t`	 time averaged and the effects of fluctuations with time are not considered.

As shown in Figure 1, scan 'L' corresponds to a measured power P L for the

attenuated beam Ieaving the spray (causing the delta function at the centre

u:	 of the detector) and a scattered light intensity distribution IS (w) is
L

measured in the form of the light power collected at a series of annular

detectors. This scattered light power can be zepresented by P S (w)f the
L

i	 scattered light power falling on a disc with radius a, where w = a/f

It is assumed that the width of the laser beam is very much less than

the width of the spray, and r'_so less thin the scale of any inhomogeneity of

internal spray structure. For convenience the complete spray is assumed

to be contained by the circle r = 1. The beam attenuation is related to

the line integral of k along the beam, for scan L, by:

	

PL	 Po exp L - J k (s) ds	 (1)
L L

where Po is the laser power on entry to the spray.

The incident light power at a point distance s along the beam is

(1-p 2 )^ + r sin (o-6)
P(r, 6) = Po exp r - to k(s)ds	 (2)

	One can define P'(p,	 Zn (Po/PL ) = f k(s)ds where P' can be measured
L

from scan L. The general problem is thus to convert measurements of P'(p, 0),

obtained with variation in both p and ^, into the distribution k(r, e). The

domains of both P' and k are unit circles and, for the analogous radiological

absorption problem, Cormack4 showed that by expanding these quantities in

their Fourier series:

T
k(r, 6) = E kn (r) exp(in6)

n=-00

then the Fourier coefficients

the coefficients for the meas

and P' (p, ¢ ) = E P I (p) exp (infl ,
n=-oo

kn of the required variable can be derived Isom

ured variable by the solution:
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P'(p) cos ( n
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1 n	
cos-1 (p/r)) PdP

k  (r) _ -	 -	 -	
2	
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(3)ar r
	 (P - r2 ) P

The particle size distribution, at any point in the spray cross-section,

must be derived fxom the angular distributions of scattered light power Ps(w),

measured for scans with variation in both p and f. Because of the Fourier

transform lens system, the scattered light power collected within a circle

radius a at the detector, is the linear summation of all the light scattered

within the angle, w w a/f, for the full length of the beam in the spray.

'	 In the general case the light power of the beam is attenuated as it passes

through the spray in accordance with Equation 2. Thus the size distribution

derived from the overall scattered light P s (w) is not necessarily a linear

summation of all the droplets within the laser beam but, rather, there is a

bias towards that part of the spray nearest to the laser, where the illumina-

tion is greatest.

At this point two assumptions are made: firstly the light scattering

from the particles at a distance s along the beam, is assumed to correspond

to that produced by an illuminating power P at that position; secondly the

effects of multiple scat^ pring are assumed to be insignificant.. For scan L

the scattered light within angle w, from an elemental unit length of the

spray in the laser beam, is Ps (s, w). This is related to the local absolute

volume distribution of droplets V(D) by an equation of the form

D
max

Ps (s, w)	 - c P (s) j	
D 

X (D, w) d (D)	 (4)
D
min

where D is droplet diamete=r, c is a constant which depends on the distribution

of light across the laser beam and X is the scattering function, which can

either be derived from geometrical optics 5 or the full Mie theory. The total

collected light in angle w, for one scan, with coordinates (p, ^) is given by
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t
t

MPWPW

Ps (w, p, m)	 f Pa (s, w) do	 (5)
L

One can again write the known and unknown distributions, P s (w, p, #) and

Pa (w, r, ©) respectively, as Fourier expansions:

Ps (w• PI	 Ps (w, p) exp(in^) and Pa (w, r, 8) _	 Ps (w, r) exp(in8)
n=-W n	 n=-m n

and the known and unknown Fourier coefficients are related by the equation,

l
P (w, P) cos (n cos-1 (p/r)) pdp

1 d r sn

	

Ps (w ' r) - - n dr J	 (p 2	 2 )	
(6)

n	 r	 - r	 p

For the general case of a spray which may have no symmetry in its

cross-section, and across which a significant proportion of the incident laser

light power may be scattered and absorbed, the routine required to derive

droplet size distributions at points within the spray would consist of:

(i) Measurement of the light extinction and angular light scattering,

from P'(p, ¢) and P
s 
(w, p, 0), for a series of scans of the laser beam with

systematic variation of p and 0 so that each point in the spray is intersected

by sufficient scans to obtain the required spatial resolution.

(ii) Transformation of this data, obtained in the (p, ^) domain, into

distributions within the spray, in the (r, e) domain, of the local angular

light scattering Ps (w, r, e) and extinction coefficient Mr, e). This can be

achieved by Fourier transforming the measurements and solving equations (3) and

(6). obviously, in practice an exact solution cannot be obtained as a finite

number of terms in the Fourier expansions are used, depending on the number

of scans measured across the spray. An alternative transformation routine,

utilised in certain radiological devices, would be to obtain directly a

finite difference solution of equations 1 and 5 , by splitting the spray

W_



- 9 -

cross-section into many small elements and solving a set of simultaneous

equations.

(iii)	 The local illuminating power P(r, ©) is derived from Equation 2

and Equation 4 is solved to obtain the local particle volume size distribution

V(D). Because V(D) is in terms of absolute volume, the local volume concentra-

tion of particles in the spray can be derived, provided that the constant c,

for the system, has been established.

As a first step, to establish the feasibility of this transformation of

the light scattering data, investigations have concentrated on sprays which

are closely axisyimnetric. The existence of symmetry simplifies the data

analysis procedure. Furthermore the sprays have been selected so that the

extinction of light is not significant so that P L ^'Po for all scans. For

these conditions all but the first Fourier expansion terms are zero and

Equation 10 becomes

_ d r 
fl Ps (ai. P) dP

Ps (w, r) =	 "a _r C,i r (P 2 - r )
2 i P I	 (7)

This is analogous to the Abel transformation of spectroscopic data  used

for measurements in axisymmetric gas flames.

4.	 Experiment and Results

Measurements have been made in sprays produced by twin-fluid atomisers

in which both the liquid and atomising gas are introduced symmetrically so

that the sprays should be axisymmetric. In the first set of experiments a

Spraying Systems type II atomiser was usod with air as the atomising fluid.

This produces sprays which are nominally of the full cone type. The hulk of

data have been derived for the spray ejecting vertically downwards into the

ambient atmosphere and at an axial plane 150 mm from the atomiser. At this

distance the total spray width was approximately 8o mm. The liquid flow rate
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was 1.43 x 103 mm3/s and the air flow rate was 6.8 x 104 mm3/s. The

measurements consisted, in the first place, of an extensive series of spark

photographs which were taken using a 1.5 m long MPP technical camera W th

(	 90 mm focal length lens, and 5 x 4 Polaroid Type 54 film. The magnification

j	 was 16x and droplets Inrger than approximately 5 jan could be detected. A 20 kV
t

spark source, developed at Sheffield, was used. The photographs were analysed

by a Cambridge Instruments Quantimet Image Analysis Computer using a technique

developed by Yule. 1 This technique uses a prior calibration of the photographic

and Quantimet systems obtained by photographing known particles with systematic

variation of distance from the camera. By using this calibration the light

distributions across images of droplets V., spray photographs are analysed to

derive the true droplet diameter and the position of the droplet in the

camera depth of field. This permits the operator to define a depth of field

within which droplets are to be measured. This was fixed at 7.5 mm for the

present measurements givinc a measurement control volume 7.5 mm x 8.7 mm x 11.4 mm.

Photographs were taker, at intervals of 9 man across the spray with

the spray traversed in the direction along the axis of the camera. Sufficient

photographs were taken to permit measurement of at least 2000 droplets at

each position. The data were analysed to give droplet size distributions,

volume median diameters Dvo.5 and droplet volume concentrations at each

position. The volume median diameters across the spray are plotted in

Figure 2. The spray was found to be closely axisymmetric with Dvo.5 increasing

from 40 Um at the centre of the spray to 90 um at the outer edge. Figure 3

shows cummlative undersize distributions at two different radial positions:

the centre of the spray and the outer edge (36 mm radius). The overall

distribution through the spray, plotted on a cumulative volume basis,is also

shown in Figure 3. The relative span, (D 	 - D	 )/D	 is also plotted
ve.8	 vo.2	 v0.5,

in Figure 2 showing that the central portion of the spray, out to a radius of

approximately 18 mm, is rather broad with a relative span of -1.0. nutside
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this .;^gion the relative c,e.in drops sharply to a value of '-0.4 at a radius

of 36 mm, indicating a narrowing of the distribution with increasing mean

size. The local spatially averaged volume concentrations of liquid droplets

at different positions across the spray are plotted In Figure 4. The results

are normalized by the peak valve where the measured volume concentration is

9.7 x lo-2 % by volur.

The spray was also studied under the same conditions using the standard

Malvern laser diffraction instrument to measure the overall scattered light

power distributions for a series of scans in which p was varied, firstly in

4 steps of 9 mm from the spray centre and secondly in 14 steps of 3 mm. This

variation of step size (Ap) provided information on the optimum spacing of

scans. These line-integrated data were transformed numerically into distribu-

tions within the spray by using the transformation routine described in

Section 2. Particle size distributions were derived from the scattered

light distributions by solving Equation 4 using two alternative iterative

techniques. The two techniques? used were: (i) ti obtain a best fit to

the data by assuming a Rosin-Rammler size distribution, and (ii) to obtain

the droplet volume concentrations in 15 size ranges of the size distribution

which gave the best fit to the light distribution (the 'Mode], Independent'

solution). The size distributions at different radial positions were found

to be in satisfactory agreement with the Rosin-Ranimler distribution and there

were no major differences between these distributions and those obtained using

the Model Independent technique. Thus only the Rosin-Rammler data are reported

here.

Figure 2 compares the photographic data for volume median diameters

and the relative span, with that obtained from the tomographically transformed

scattered light. There is seen to be excellent agreement between these two

sets of results. Significantly better agreement is obtained when the short

(3 mm) steps are used rather than the long (9 mm) steps in p. This improve-

ment was no-,ed throughout the data obtained. Photography, as for all particle

sizing techniques, is liable to possible inaccuracies. However, spray

k:_____



conditions where these occur can generally be recognized in photographs, and

it is therefore reasonable to use these photographic measurements as	 E

reference data. Results obtained by topographic data transformation are	 x

also included in Figure 3 where the cumulative size distributions are presented.

There is excellent agreement for the outer edge data throughout the size

range, however the central and overall curves both show a discrepancy at

the lower end. From these two curves it can be seen that the light diffraction

technique indicates that there is of the order of 5% of the spray below 10 Eim

whereas the photographic data shows no droplets below 10 Um. However the

photographic technique becomes less reliable once droplets below -15 Um are

encountered due to resolution problems and it is con,.i.dered that the light

diffrac"lor. data is more reliable in this size range. This is borne out

by the fact that this effect is only noted when there is a significant volume

of droplets below 25 um and not in the coarser etstribution observed at the

outer edge of the spray.

The total light power falling on the detector can be related to the

volume concentration of droplets in the beam if the drop size distribution

is known. This gives a relative volume concentration which is related to

the true concentration by a constant determined from the optical system.

In the absence of this constant the concentration obtained is normalized

with respect to its peak value and is plotted in Figure 4 showing excellent

agreement with the photographic data.

In the second set of experiments a twin-fluid atomizer was used to

give a narrow anglz spray, consisting of a narrow jet of liquid injected

axially into a narrow annular air jet. The spray thus produced was introduced

axially into a co-flowing secondary air stream which is capable of bung

heated up to 400°C and of which the velocity and turbulence could be varied

(Fig. 5). The whole system could be moved relative to the laser beam both

hcrizontally and vertically, the spray being ejected vertically downwards.

The results reported here were obtained for three axial planes 45, 95
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and 145 mm below the atomizer both at a secondary air temperature of

20or' and 1.500C. 1"he liquid u:3ed was kerosene, flaw rate 1.5 x 10 2 mm 3/s, the

atomizing air flow rate was 6.8 x 104 in,n 3/s, and the secondary air flow rate 	 I

was 4.8 x 10-2 m 3/s through a 75 mm diameter orifice.

This spray was studied using the Malvern laser diffraction instrument

using a modified beam expander unit which gave a beam of 2 mm di^uneter.

The overall scattered light power distribution was measured for a series of

scans in which p was varied in steps of 2 mm. These line integrated data were

transformed as before and the droplet size distributions were calculated,

again using the Rosin - Rammler function. Relative volume concentrations

are also calculated as before.

The volume median diameters and relative span factors are plotted

against radial position for each plane in Figure 6. This shows that the

spray in cold air consists of a broad size distribution at the centre which

changes to a narrower distribution with a larger mean size as the outer

edge is reaches?, thus showing that the air flow deflects the smaller particles

towards the inside of the spray leaving an outer cone of larger droplets 	 {

which are not deflected. 8 The overall s'ze distributior of droplets does 	 !^

not significantly change from plane to plane, with axial distance along the 	 ti

spray. However there is a marked change in the radial distributions of

size distr_butior from plane to plane. The values for the spray with hot

secondary air are also presented for planes 1 and 2 in Figure 6. However,

the signal strength at plane 3 was insufficient to allow calculation of size

distribution or volume concentration thus indicating that the majority of
s
F

droplets had evaporated. These results show that there is only a slight

change in the volume median diameter in both of these planes whereas the

span of the distribution is greatly reduced, thus indicating the disappearance

of the smaller drops dice -to evaporation.

The relative volume concentrations are plotted in Figure 7 for all three

planes in the case of ambient secondary air and for planes 1 and 2 for hot
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secondary air for the reason stated above. In the non-evaporating case the

concentration falls with increasing axial distance and the spray diverges.

In the evaporating case the concentration is seen to fall steadily relative

to the non-evaporating value as axial distance is increased. Insufficient

drops were detected from plane 3 to allow size distributions or concentrations

to be calculated Indicating that most of the drops had evaporated. An

interesting feature of the results in plane 1 is that a cold cone is still

observed where evaporation has not occurred significantly, but this has

disappeared by plane 2.

The above results form only the initial stages of a detailed mapping

of dreplet size and concentration in an evaporating spray which will be

carried out in conjunction with local measurements of velocity and tempera-

ture. These measurements will allow us to build up a complete picture of

the local spray st:•ucture under evaporating conditions which is of great

importance in calculating evaporation rates and modelling the combustion of

fuel sprays.

5.	 Conclusions

A method of transforming .line of sight light scattering data to yield

measurements of drop size distribution and concentration in volume elements

within the spray (tomography) has been described. The technique was investigated

using an axisynimetric spray generated by a twin-fluid atomiser and the results

obtained compared with those from a parallel photographic study. The good

agreement obtained shows that the technique can provide information on local

spray structure comparable to that from photography, with substantially

reduced experimental time. The technique has been used to investigate the

structure of a fuel spray both at room temperature and under vaporizing

conditions in a hot air stream, and the changes in droplet sizes and volume

concentrations accompanying vaporization are measured.

['
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' Figures

Figure 1 Light scattering diagram for light beam passing through spray.

Figure 2 Comparison of droplet mean diameters and span of size distributions
measured by laser tomography and photography.

Figure 3 Comparison of cumulative size distributions measured by laser
tomography and photography.

Figure 4 Comparison of droplet volume concentrations measured across
spray by photography and lase:: tomography.

Figure 5 Apparatus for investigation of fuel spray vaporizing in a
hot air stream.

Figure 6 Laser tomography measurements of mean drop sizes and size
distribution spans in kerosene sprays in ambient and heated air.

Figure 7 Local spatially averaged volume concentrations of droplets in
kerosene sprays in ambient and heated air.
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FIGURE 5 Apparatus for investigation of fuel spray
vaporizing in hot air stream
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Figure 6	 Laser tomography measurements of mean drop sizes and size
distribution spans in kerosene sprays in ambient and heated air.
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Figure 7	 Local spatially averaged volume concentrations of droplets in
kerosene sprays in ambient and heated air.
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