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by R. Houdeville and J. Coustsix

FIRST RESULTS OF A STUDY ON TURBULENT BOUNDARY LAYERS IN
OSCILLATING FLOW WITH A MEAN ADVERSE PRESSURE GRADIENT

The development of a turbulent unsteady boundary layer with a /1*

mean pressure gradient, strong enough to induce separation, is studied

in order to complete and extend the results obtained for the flat plate

configuration.

The longitudinal component of the velocity is measured using

constant temperature hot wire anemometer. The investigation of the

region where negative velocities exist is performed with a laser

Doppler velocimeter system with BRAGG cells.

As in the flat plate configuration, the boundary layer responds

by a forced pulsation to the perturbation of the potential flew. Due

to the experimental conditions, the unsteady effects are very important;

for example, the average location of the zero skin friction point moves

periodically at the perturbation frequency.

The study of the longitudinal component of turbulence deals with

its standard deviation as well as its moments of order 3 and 4 which

give.some information about the development of turbulence.

The comparison of average velocity profiles, obtained at different

instants in the cycle, with profiles deduced from similarity solutions
a

shows a good agreement up to values of the shape parameter close to the

separation value. Moreover, the existence of a logarithmic region

enables a simple calculation of the maximum phase shift of the velocity

in the boundary layer.

To conclude, an attempt of calculation by an integral method of

the boundary layer development is presented, up to the point where

reverse flow starts appearing.

1-INTRODUCTION

Numbers in the margin indicate pagination in the foreign text.
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The study of fiat piano boundary layers subjected to periodic

oscillating flows is mainly conducted in the reduced frequency range

Vh1oh is not too high. If such experiments allow for the definition
of s certain number of important theoretical data, they must neverthe-
less be quite far from practical cases encountered in unsteady aero-

dynamic problems encountered, for example, the problem of the dynamic

jitter of a helicopter blade.

In order to approach such a situation and also to provide experi-

mental data required for the development of calculation methods, we

shall study the development of a pulsated boundary layer with a positive

mean pressure gradient which may lead to separation. The experimental

study deals mainly with the longitudinal component of velocity as well
as with its fluctuating components characterized by its standard devi-

ation and its higher moments.

2 - EXPERIMENTAL CONDITIONS

2.1. - Experimental Devibe

A turbulent boundary layer subjected to a pulsating external flow

is developed on the floor of a test section which is rectangular: 160 x

220 mm. Abrasive paper, glued 100 mm ahead of the inlet of the test

section along a length of 105 mm in the collector of the wind tunnel
allows the transition to be triggered and measured.

suc ion	 displacement
(mechanism of the

movable arts `sucrproms

flexible .n s

lateral
scale 1/4	 ,boundary layer suction ,`

_perforated _body

Figure 1. Diagram of experimental assembly
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	 Upstream from the study section is located a swirl vane, the rota-

tion of which induces the flow pulsation by changing the total pressure

a	 loss of the aerodynamic circuit.

A streamlined body, composed of rigid parts interconnected among

each other by flexible connections, induces on the floor of the test
b	 section a longitudinal mean pressure gradient which is adjustable.

Suction of part of the higher rate of flow prevents blocking from taking

place toward the trailing edge of the main body, as this would induce 12
considerable overvelocities on the floor at the test section inlet. A

correct adjustment of the upper suction area equalizes the pressures

of the streamlined body at the test section inlet.

To prevent a separation of the lateral boundary limits and, hence,

spurious tridimensional effects, a suction of these lateral boundary

layers is produced in a region located upstream from the one where the

unsteady separation occurs, which is the objective of this study, which

permits the passage of the light beams from the laser anemometer.

Visualizations of the parietal streamlines, which are performed in an

unsteady state with a mixture of oil and black smoke have made it pos-

sible to state that it was possible to obtain an average two dimensional
flow over about half of the space across the test section and over a

length ekceding 600 mm.

As previous studies have demonstrated the detrimental effect of

the presence of static pressure intakes on the development of a boundary

layer in unsteady state, none have been placed on the floor in the

measuring region.

Considering the extreme vibratory environment, particular attention

has been brought to the attachment of the test section. For example, the

translation mechanism of the measuring centers is not mechanically con-

nected to the wind tunnel, but is attached to a stable support fixed

directly on the ground. With these precautions taken into account,

there is no visible evidence of vibration of the measuring sensors, nor

of the floor of the test section from the sighting telescope.

2.2. - Methods of measuring. Data processing.

The measurement of instantaneous velocities is performed in a

3
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REPRODUCIBILITY OF THEORIGINAL P1Gr IS POOR

standard manner with the use

of DISA 55 M type hot wire

anemometer with a constant temp-

erature. The range of application

of the hot wire was limited to

positive speed flows, the use

of the laser anemometer has

made it possible to measure the

velocity in regions where there

are return flows.

,, The velocimeter used, of the_ T

6 vit.ss.	 w+)	 , uat.V'(t) Doppler type, was developed at
h Moyenne d'fnstn-bb 	 U41) • LuMnM11

i	 is tMPS	 II `
ONERA [1-21;   we shall review

Moyrw* dons

j Cwrd moy.n do a	 <u" 4e Y)%1I	 1.nT1 briefly its operating principle.

' nt"io" A coherent light beam ( X =514.5
mm) of 2.8 watts emitted by a

Figure 2. System of acquisition nitrogen laser source is divided
and treatment of data

into two parallel beams of equal

•

Key:	 a) wind
intensity symmetrical in relation

b) hot wires
to the measuring volume; this is

c) rotating butterfly valve
carried out with the use of two

d) synchronization
BRAGG cells, located behind the

e) system of data acquisition
beam divider, which separates

f) treatment
the light ray frequencies of 200

g) velocity
and 204 MHz respectively.	 The

h) overall average
interband, about 7.85 um, was

determined by the measuring vol-
i) time average

J) mean square fluctuation
ume on a photomultipl.ier.	 There

is no special problem concerning

space requirement in the case of our mounting, diffusion takes place

toward the front.	 The processing of the Doppler signal is done using a

DISA 55L90 computer, directly connected to a Hewlett Packard 21 MX

computer through its digital output. The two windows having dimensions

of 200 x 100 mm, are made of antiglare treated glass with an evenness

of 10 a along their longest length.
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Technique of measurement analysis

As the flow is periodic and turbulent, a statistical analysis of

data is required to separate the average component of velocity from the

turbulent part. To accomplish this each cycle is considered as the

occurence of the same phenomenon; the averages # i.e. overall averages, are

computed by always placing the various successive periods in the same

phase. The phase data is provided by the rotation of the swirl vane

which induces the periodic flows. This rotation generates, through a photo-

electric cell, a series of impulses which always correspond to the

specified values of the phase angle. The signal from the hot wire

anemometer is digitized at each impulse; we have, then, the velocity

of 24 moments in each cycle.

In the case where the laser velocimeter is used, the procedure is

a little more delicate, a s in principle the velocity data is sampled

and supplied randomly in time. The measured speed is the last value

at the counter prior to the corresponding impulse. In order to effect-

ively obtain the velocity at a given phase and not an average over

1/24th of a cycle, which would systematically result in substantial

errors, for example, in the rate of turbulence, the flow is seeded with

sensor particles in order to insure very high measuring rate at the

counter which would exceed 50,000 measurements per second, corresponding

to an average lag between two measurements of less than 1/1000 th of a

cycle. In the relatively improbable case where no particle passes into

the measuring volt-ne between two impulses, the value computed by the

counter is not taken into account.

By definition, the random fluctuation of the velocity u' has an

overall average of zero. u' is obtained by the difference between the

overall average of the velocity U and its instantaneous value. u' may

then be analyzed by using its standard deviation <	 or its

moments of higher orders.

In order to obtain a certain accuracy for the values of U or for

averages must be calculated from a sufficient number of results;

we have selected to work with 600 or 1200 cycles depending on the rate

of turbulence. We shall estimate the accuracy thus obtained from the

statistical theory of errors. The law of large numbers indicates in

5



^y	 n is %	 n . 600

V h . 7 `/..
(region-quite far from the separation) (1)

,̂L - So %	 n - 1200

V h - 2.4 2
(region near the separation) (2)

fact that if Xl , X` ....,Xn are the values taken by a random variable X

during n independent computations, whereas when m_,,., the variable #xji"

leads to a random variable which follows a standard deviation law raw

where	 is the standard deviation of X; m being the mean value of

X- r. jx'. - . We have then:

The accuracy obtained for the mean velocity U by U - 2: ",/, , can be cal-

culated if it is given that the probability of error is below h; with F = 0. 9,

we have then:	 1.914Ir

Let us assume the following conditions:

The determination of the accuracy on the turbulence rate is

obtained in a similar manner, X i represents now the standard deviation

of the velocity. Let us compute the standard deviation of X i :

^^.	 _	 c

L	 f

If we assume a Gaussian distribution for the turbulence, we have

then:

37-.t 1 1

	

and	 #414

Always with a probability of 0.9, the error made on the turbulence

rate is given by:

It may be observed that it is independent from the turbulence level.



For n - 600 and 1200, we have then h - 10% and 7% respectively.

It would have been possible, of course, to use more points in

order to insure a better accuracy. However, it should be observed

that it increases as f; , or 1200 points which represent data acquisition

during one minute for a simple point of the boundary layer.

The computations made above for estimating the measurement accuracy

depend on the independence of the various results; if account is taken of

the relatively large difference between the oscillating frequency and

the characteristic turbulence frequencies, it may be considered that

this last condition has been accomplished, especially since the averages

are computed every 2 cycles.

2.3. - Laser velocimeter - hot wire compar ison.

Before beginning the presentation of the experimental results, we

shall make a comparison between the measurements made with the laser

velocimeter and the hot wire in the same conditions used for our ex-

periment; for example, we use the BRAGG cells, even though they are not

ind ispensible in this particular case. To accomplish this we shall

place a station at 435 mm from the test section inlet where return

flows never occur.

Treatment of the data processed bythe laser velocimeter is the

same as for measurements made with the hot wire; overall averages are

computed by selecting a given phase in the cycle; as the rate of par-

ticle flow is high for such sampling no correction is required to

compute the averages. on the other hand only the data located in the

standard deviation interval 1 5 are taken into account; it is important

not to reduce this interval in order to avoid the likelihood of making

a large error in the calculation of the moments of orders 3 and 4 of

the speed fluctuation. Finally, it is necessary to define the size

of the measuring volume, limited by the diaphragm located in front of

the photomultiplier, which is 0.3 mm; as the boundary layer thickness

is more than 30 mm, the error in calculating the moments with even

degrees by the average speed gradient in the measuring values is small A

compared to other causes of error, it is thus not necessary to make a

correction in the calculation of these moments.

i
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In figure 3 we shall compare the evolution as a function of time
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of the mean velocity relative to its continuous component; this is
	

S

performed in the boundary layer at various distances from the skin and

1200 cycles are used for this measurement.

x.t^ awe

U — Lasn (with Sr&U ce112)

...:. Hot wire	 r ^

---	 3o

The deviations observed are small

and are not significant; in fact, for

practical reasons, it was not pos-

sible to make estimates during a

single test by placing the hot wire

just behind the measuring volume of

the velocimeter.

The turbulence intensity pro-

files, obtained at three different

instants in the cycle (Fig. 4) show

a satisfactory agreement. It should

nevertheless b e observed that the

laser velocimeter always indicates

an excessive turbulence rate out-

side the boundary layer; this comes

from a limitation in the counter

efficiency, with the accuracy of each

individual measurement being about

1.5%.

Figure 3. Anemometer comparison

of laser-hot wire. Mean velocity. 	 To extend our comparison further

we present in Fig. 5 the evolution of the dissymetrical and flattening

factors in the boundary layer at a given instant in the cycle. The good

agreement observed would not have been obtained if we had to eliminate

in the case of the laser velocimeter the velocity values outside of

the interval ± 2.5 or 3,r ; this was made possible due to the good

quality of the Doppler signals and to the effectiveness of the circuits

eliminating incorrect counter measurements.

As the coherence of the two measuring methods used, laser velo-

cimeter and hot-wire, was established within the framework of our

study, we shall not define in the presentation which follows the ex-

perimental results the measuring method used. Let us add only that the

8



Key: a) Laser (with egg
cells)

b) Hot wire 
dye►

x. asm w t.V

40. Low
b... w .h" 1

•

probes of the boundary limits performed up to the location x a 390 mm
have been measured with the hot wire, the laser velocimeter then took

its place. The external velocity was especially measured with the hot

wire.

f

i

Q^

^a

0

0

0	 O	 01	 70

Y""
Figure 4. Anemometer comparison of

laser-hot wire. Turbulence.

3 - EXPERIMENTAL RESULTS

/

I	 ^

I

.I

*`F

1

0	 iD	 10
Y (M" ...r

Figure S. Anemometer comparison of laser-
hot wire. Dissymetry factor and flattening.

3.1. - External velocity

As we have seen the pulsation of the flow is created by the rotation

of the swirl vane located upstream from the test section. It may be

observed that there is a resonance frequency for which the pulsation is

practically sinusoidal. The entire study presented is made of this

special frequency equal to 38 Hz.

The harmonic analysis of the external velocity limited to the

fundamental frequency is presented in figure 6. The harmonics of

higher order remain low, below 10% of the fundamental value, except

9
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Figure 6. Harmonic analysis of
exterior velocity.

upstream from the region with the return flow (X > 550 mm) where they

become quite high.

Us • . ML 	 ♦ ••• 	 The continuous component of ve-

4.90 "0	 Fe soft	 locity, close to 27 m/s at the test

section inlet, increases up to 30 m/s

in the region of the constant section

under the streamlined body: this ve-

locity increase comes simply from the

decrease in this section due to the

main body. it may be observed that

it would be considerably higher with-

out the suction of one part of the

flow rate passing above the obstacle.

After X • 200 mm, the divergence of

the channel creates a constant de-

crease in the continuous component.

The variation amplitude, approx-

imately 200 of Uo at the test sec-

tion inlet, decreases considerably as
it moves farther upstream = it should

nevertheless be observed that the rel-

ative fluctuation amplitude, is the

one related to the local continuous component, remains essentially con-

stant and ranges between 15 and 200.

The phase angle remains low with a slight increase in the decelerated

part of the flow in addition to the Reynolds number which remains an

essential parameter to characterize the flow, ither parameters must be

considered in the unsteady flow. Among the most important ones, we shall

draw to attention the Strouhal number Xw - w.X/Um3 the relative fluctu-
ation amplitude of the external velocity: &Ue/Ve, the frequency of the

periodic flow w and a characteristic turbulence frequency fe a u'/d.

As the study of the boundary layers is c&.-tied out on the floor of the

test section, the length X is counted from a fictive origin of the

turbulent boundary layer determined by using a flat plate law for the

mean flow. The table below defines the values of the various parameters.

For the calculation of ft the characteristic velocity u' of the turbulence

10



under consideration is taken as equal to the mean value of ; ,

next to the skin. This frequency is considerably higher then the

periodic frequency of the flow, except in the vicinity of the region

where the negative velocities exist; we may then expect a certain

interaction of the pulsation on the development of turbulence and

therefore more accentuated unsteady effects in this region.

3.2. - Integral values
x	 I aM. 1• 'l	 :wx	 )
geometric u :^	 ^ = Ff )

^-	 +	 s	 I	 Observation of the development of
100	 a 0019	 0,74	 s 390 : 350	 )

U0	 c o.1i , o.st1 ; ^,^ ; no ) displacement thickness and of the shape
c	 )

»o	 : 0,16	 1.00	 7,0 s =30 ) parameter as a function of time at var-
ions locations depending on X permits

fill	 : 0,13	 1,15	 s 10,0 s	 70

:	 a first global description of the de-

velopment of the boundary layer and of

the beginning of separation. Figure 7 shows a substantial increase in

the mean displacement thickness as the location of the probe recedes;

between the extreme locations studied, the mean value of A l goes from 1.5

to 18 mm. In the upstream parts of the zone under study d l varies in a

steady manner as a function of time, with only a very small variation

f-om a sinusoids the same is the case for the shape parameter H (Fig.8).

Furthermore, S and H are practically in phase opposition in relation to the

external velocity; the boundary layer thickness passes through a maximum

when the velocity is low. This has already been observed during studies

performed on the flat plate configuration without the mean pressure

gradient [3-4-9].

The unsteady effects seem to increase when one moves upstream, it

may be observed in fact that the variations of H and of d l are

increasingly larger. This may be explained by observing, as we shall see

later on during the study of similarity solutions, that the pressure

gradient parameter due to the flow fluctuation has the shape - w _ ;/6

this term is larger as the boundary layer is thicker and the parietal

friction is lower, i.e. when we approach the region of separation.

It is not easy to locate at each instant the zero friction point;

for example if we consider that cf - 0 corresponding to a value of the

shape parameter close to 2.6 ( 5), it may be observed that a further lo-

cation of the zero friction point is close to 450 mm. The displacement

amplitude of this point is quite high as at the last location of this

11
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measurement (X 604 am), there are

stili instants in the cycle where H

remains less than 2.6. The presence

of considerable harmonics may also

be observed in this region, as well

asfor6l and for H; these har-

monics disappear toward the upstream

regioni

3.3. - Harmonic analysis of velocity

in the boundary layer

The study of unsteady effects on

the boundary layer profiles may be car-

ried out on the basis of the harmonic

analysis of velocity. As the latter

is almost sinusoidal, we are interested
Figure 7. Thicimess of	 only in the first harmonic.

displacement.

The continuous veloaty ' component profiles shown -in figure 9 for the

various locations depending on X 	 do not demonstrate any special charac-

teristics showing a large difference compared to the unsteady boundary

layer profiles.	 This confirms a fact already observed in the case of
a flat plate configuration, mainly the low effect of the nonlinear
equation term on the development of the average bouldary layer component.

The amplitude - fluctuation profiles reduced by the external velocity

fluctuation, are shown in figure 10 at various abscissas. The locations
X = 100 and 196 mm correspond 	 to a region where the mean velocity

gradient is zero; the excessive amplitude in the boundary layer, less

than 10%, is similar to what has been observed by various authors for

such a configuration [3-9]. 	 The positive mean pressure gradient begins

to act after X = 220 mm which is shown on the amplitude profiles by con-

siderable increase in the excess of AUe near the skin which could reach

nearly 60% at X = 390 mm.	 Also observed toward the outside of the boun-

dary layer are values of the relative amplitude considerably lower
than 1.

The phase angle profiles develop more as one inoves upstream, i.e.

12
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when the mean pressure gradient is higher. For sensor locations farther

back no more positive phase angles are observed near the skin.

i

H

4

3

I

3.4. - Mean velocity profiles. /8

Study of turbulence.

After describing the over-

all evolution of the velocity

profiles according to X , we shall

now present the same profiles

but fixed at various instants

x..^• in the cycle, and that for two
measuring locations.	 These

profiles, as well as the tur-

bulence intensity profiles, have

been estimated as overall

averages from 600 and 1200 cycles

for the stations 240 and 604

mm respectively (Figs. 12 and

13).

At station x = 240 mm, i.e.

+	 at the location where the mean

pressure gradient begins to move,

the velocity profile varies 	
i

0	 +	 -;. Vr
	 moderately over the cycle, as

the boundary layer is subjected

to an instantaneous variable

Figure 8. Shape parameter.	
pressure gradient. The effect

of this gradient is easier to

observe on the evolution of turbulence profiles (Fig. 12), their shape

presents at instant 21 a pattern similar to the one observed for an

unsteady boundary layer which is slightly decelerated.
F	 •

The location of station 604 mm is very different (Fig. 13) at

13
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Continuous component.
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Figure 10.
Harmonic analysis of the
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certain instants, 17-21, the mean velocity direction is reversed

near the skin. The return flow region, which takes up 13% of the

boundary layer thickness, is perfectly visible on the corre sponding

profiles. At instants 5 and 9 the pattern of the profile is character-

istic of a retarded boundary layer. At instant 1 it assumes an inter-

mediary shape having a less standard pattern. It may also be observed

that the variation is smaller for the thickness of the boundary layer

during the cycle , which seems quite surprising if one recalls that the

displacement thickness varies almost by a factor 2.

The question arises here for

this station whether or not at in-

stant 17-21, the boundary layer is

separated. Contrary to the

steady c as e , in fact the sep-
aration does not correspond to the

point where the friction is reduced

to zero and where it is very possible

to have a negative mean velocity near

the skin without the boundary layer

being separated (14-5).	 Theoretical

studies on laminar flows (13) or

numerical studies for turbulent cases

(11-5) demonstrate that the unsteady

separation must be combined with a

fast thickening of the boundary

layer. Such a thickening does not

seem to exist in the present study.

Perhaps a visualization of the bound-
ary layer with the use of smoke would

make it possible to resolve the

indeterminacy about the nature of

the flow.

The intensity profiles of turbulence at this station show a quite

maximum ranging between 11 and 17% of Ue i which is quite charac-

stic of an intense positive pressure gradient. It should be pointed

L

gure le. Yrorlles or velocity
nd turbulence at X = 240 mm.

• I
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out that the high value of the turbulence rate in the external flog

comes uniquely from the limitation of the accuracy of the laser

anemometer. In fact, the hot wire show3 an external turbulence close

to 1% of Ue at this station. Finally it may be stated that a sub-
stantial harmonic rate on the external velocity exists and this perhaps

is explained by a strong coupling between the potential flow and the

boundary layer in this region.

The study of moments of order 3 and 4 of the fluctuating component

of velocity contributes additional information relating to the develop-

ment of turbulence. 	 Figures 14 and 15 show the evolution of the

dissymeterical factors S = <_''>/<"`' and flattening factors
F	 at two locations of the probe and at various instants

in the cycle.	 The evolution of these two parameters makes it possible

to define the state of the distribution function u' related to a Gauss

curve for which S	 0 and F = 3. Near the skin, at the station

M	
yaw

X = 100 mm, X is moderately negative

but remains near 0 whereas F is about
n

•	 ^, 3.	 The distribution function of u'

must therefore not vary very much

from a Gaussian distribution.	 This

has already been observed in the case

of steady boundary layers and unsteady

,.' flat plate configurations (4).	 This

' is not the case at station X = 604 mm

o and especially at instant 21 which
V`

44
corresponds to a value close to 4.4

AT
of the shape parameter ., therefore to

4a '	 ^^,r	 f a return flow profile.	 Compared to
j a Gauss curve, the distribution u'

near the skin is longer with a peak
„ on the side of negative values of the

velocity fluctuation.

Figure 13. Profiles of velocity
and turbulence at X = 604 mm.

On the outside of the boundary

layer it may be observed that the

dissymetrical factor becomes strongly

R"

•
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Figure 14. Factor of
dissymetry and flattening

X = 100 mm.

negative and that the flattening factor increases , and this is shown

on the u' histogram by a larger peak on the side of the positive

1 it fl t ti	 Th	 All t	 k	 d	 ive oc	 y	 uc ua	 ons.	 is contr	 u CO some	 nowle ge concern ng the

motion of the three zones of the boundary layer.	 The location of this

zone has a random size, of which the distribution function is called

the intermittance factor; provided that some assumptions are made, the

intermittance factor y is computed simply from the flattening factor

by the relationship y = 3/F; at a

given instant y(y) represents the

^• probability for which the zone of the

boundary layer is farther from the

wall.	 The curve variations of y

corresponds to a mean motion of the

boundary layer zone induced by the

g=<U> / ; flow pulsation.	 The amplitude of
tuy ^`^^^ this forced oscillation of the free

_^ 1
T zone, related to the mean thickness

^•.^ of the boundary layer, is greater

than X = 100 mm than at the station

where negative velocities are present.

In the external flow, a Gaussian

distribution of turbulence is

found again.

In the region where a return

flow exists at certain instants, it is

important to know the probability so

that at a specified instant the

velocity is negative. The curves on

Fig. 16 show this probability as a

function of the distance from the

skin at various points of

the maximum of the shape parameter H.

When H increases, the zero friction

point goes back upstream, whereas it

displaces in the direction of the

mean flow when H decreases. Quali-

tatively the curves corresponding

•
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to the instants where the point Cf - 0 reverses (t = 21,23,25) are

very similar to the ones obtained in the case of unsteady separation

[6]. This in no longer the case when the point C  = 0 goes back up-

stream. It is observed that the negative velocities seem to be located

closer to the skin at instants 13 and 15. This is more clearly obvious

on Fig. 17 where there are plottings of the isoprobability lines for a

negative velocity. as a function of X and y at various instants. The

negative velocities take up a thin region near the skin when the zero

friction point goes back up t h e flow	 (instants 15 and 17). On the

other hand, this region is thicker when the point C  = 0 recedes

(instants 21-23). The slope of the isoprobability lines is then much

higher.
According to the first results

S-	 of our study, it doesn't seem that
ZS

0	 +	 the unsteady characteristic of the 
X10

s	 flow profoundly modifies the be-

t+	
45	

-^ MT 4	 havior of the boundary layer sub-

o°•	 jected to a positive mean pressure
!	 yQ 

t	
A gradient which is quite intense.

For example the mean velocity pro-

files have standard patterns, as

is also the case for the instanta-

neous profiles of turbulence. In

order to define this first conclusion

which is somewhat subjective, we

shall now attempt to analyze the

experimental results already shown

t h r o u g h the use of similarity
solutions.

4 - ANALYSIS OF EXPERIMENTAL RESULTS.

SIMILARITY SOLUTION?S.

Figure 15. Factor of dissymmetry 4.1. - Determinting the similarity

and flattening at X - 604 mm. 	 solutions

18
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Figure 16. Profiles of probability of having

negative velocities at X a 604 mm.
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The theory of connected asymptotic solutions shows that if the

Reynolds number moves toward infinity, it is possible to distinguish two

regions in the boundary layer:

The region of the skin in which the phenomena depend mainly on the

friction of the skin and on the viscosity and where the variables used

are.	 U's wAir.e ^': v%A with VC + V4 ^ -

--External region in which the friction is due uniquely to the turbulence

and for which the flow is considerable for external conditions and

- especially for the pressure gradient, in this region the variables

are used:
F': ^= and it

As the Strouhal numbers for flows which we consider not to be too J11
high, we shall simply assume that the law of this skin defined in its

state remains valid. This leads then to the overlapping regions,

i.e. where y+ moves toward infinity and n moves toward zero, at a ve-
locity profile represented by a logarithmic law:

	

U•L 
X 

4 1*- UTWith	 X - 0.41	 ^1)

To determine the velocity profile shape in the external region we

are making the assumption that the adverse velocity profile F' s We-u)iVt is

a function uniquely of pis this is a similarity assumption, 6being the

standard thickness of the boundary layer function of x and t:

	

U.. - u _ F'(-W)	
C2)VT

Since the Reynolds number moves toward infinity, the viscous friction

r	 can be omitted in the presence of the Reynolds stress - c^^^'>

this stress is expressed simply by using a combined length model (10):

	

^' y
	

(3)

with	 _ #, off	
o rs^
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By using the similarity assumption (2) in the turbulence

dia am wa can write the local a cation for the uaM-A of motiong=' ,	 q	 q	 y
Cdr the variable F'. the assumption of an infinite Reynolds number

makes it possible to expand this equation in , relation to the small parameter
T*	 . We shall select only the terms of order fl; ; we thus

F: /7F'Jj

Ass ^^
1	

^
P^ ` r Jul ;e

with the boundary conditions: r 0 and F' • 0 in h 1 leading

to the relationship:

V IA of	 r	 > = 
Fi

with	 r' z ̂F#47

and equation ( 4) is finally put in the form:

Iit  tF"t i F	
PIF,

s

Pwith	 = F •^FS,

The local equation of the quantity of motion has thus become

a common differential equation for the adverse velocity F l . Its

solution does not depend only on the parameter B s as F1 is determined

when the solution is known. 'he only modification relating to the

steady case is the substitution of the parameter 20, by St + 26x.

'his means that the family of profiles obtained in the unsteady state

Is the same as that obtained for the steady case parametered by

-using Bt + Bx and not 26x.

have:	
V,n ( 

p`^ : t

At
1

with 	 Noi ts

r = ( 
CO/_)L

(4)

(5)

(6)

i

f

•
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4.2. - Analysis of the Similarity, Solutions

the parameter B' does not allow analysis of the family

of profiles. as it is directly r e l a t e d t o the local gradient
of external velocity which is usually incompatible with the existence

of a similarity law which implies that B e must be constant, therefore

Independent of x and t; this is a condition which is not rigorously

fulfilled except for the boundary layer in equilibrium. In general
It is preferred to use as a parameter of t1:e family of profiles a quantity
which characterizes the shape of the profiles themselves. We have

selected the Clauser factur defined by:

.t

By definition F' - We - v) /UT
 

will have the following
relationships:

(7)

G: (M - t)/ NY

It  s T Fl.

(8)

where Fl is a function of a determined by the similarity solutions

w h i c h are represented analytically by the formula:

F, =Qitss -(3,C • *4se(!3s - •,ti4^)/a

In order to be able to compare the experimentall y measured

profiles to the profiles deduced from the similarity solutions, it

is necessary to use a law of friction to determine the parameter

rs ^j.. This law is obtained simply by over-
lapping the skin law for y

♦♦ 
• and the law of adverse velocity

for n ♦ 0 . The similarity solutions show that when n -* 0 adverse

velocity profiles follow a lorarithmic l a w of the s h a o e:

22



FIX ^tV : 
X 

L4 -I+ VO

where D is a function-of 0, determined by these solutions.

7hef relationship (8) and the law of the skin ( 1) lead to 1

friction law:
^ : 

X 
L* ^ ; stt • D

assuming (10)	 r = x ^" v	 • s • s C" 
fit

	 )

D* • 5.25 + D - (1/x) L  F1 is a function of 0 which may be

computed from the similarity solutions and represented analytically

by the expression:

(11)

The relationship (7) combined with the friction law (10) permits

the letermination of the Clauser parameter 0 of a given experimental

profile if H and dl are known. In figure 18 a - comparison is provided of

the experimental profiles obtained at various instants in the cycle

with profiles deduced from the similarity solutions and corresponding
	

i

to the samevalue of the parameter 0. It may be stated that a good

overall agreement exists, including one for the profiles of which the

shape parameter is Quite high, of order 2. We may then conclude

that the unsteady profiles may be represented by a profile family

for a parameter, even for boundary limits subjected to intense

positive pressure gradients.

The presence of a logarithmic region for velocity profiles tL2

Is shown in Fig. 19. The coefficient of friction present in the

logarithmic law (1) was determined to have the beat possible agreement.

It may be stated that as with a steady flow, the extent of the logarithmic

23
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Figure 16 - Adverse velocity. Comparison with a family of

similar solutions.
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Figure 19 - Logarithmic law of velocity.
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region decreases as the shape parameter increases, while the

experimental Reynolds number remains finite.

4.3. - Development of the logarithmic law.

Calculation of the phase angle.

The existence of a friction law (10) and of a logarithmic:

velocity profile in the overlapping region (1) permits the cal-

culation of the phase angle for velocity in this region. For

that we make the assumption of small perturbations, i.e. we assume

that the amplitude of the various values present in these relation-

ships remains small, which must be the case if the amplitude of the

external velocity fluctuations is not too high. We have V -n:

U . V, . V< t1-4 '/4.4c i

where only U1 is complex. Adding these developments togethe r :. nth

those of y. H, 8 9 d 1 and 0 in the relations' ( 1) (1 0), we obtain

the following expreesion for velocity In the logarithmic region:

ri
(12)

We see then that the phase angle of velocity in this region

Is independent of y ani is equal to the phase of Y1/ ys + Uel/Ues,
which is also the phase of 	 V.u&= sr^e . 1he velocity phase in the

overlapping region is therefore constant and equal to that of the

parietal friction.

Based on the law of friction (10), on r e l a t i o n (7)
and on making an estimate of the small perturbations, we obtain

for the phase velocity the expression:

{C. D) cnjj4 DlC."
Ack (13)
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where Oe, edl, 08 representing the fluctuation amplitudes of

Ue , 61 and 8 and Where the coefficients C and D do not only depend

on the mean flow:

xA	 T

With

The phase angle Which is thus calculated is represented by the

arrows on Fig. 11 for several experimental profiles. It corresponds

to a maximum of the phase angle located i n the logarithmic

region. Rhe values of y+ Which correspond to this maximum are

included, for the various profiles represented, between 30 and 100.

Experimentally, it r..y be stated that the phase angle decreases near

the skin which does not seem very concordant with the fact that the
parietal friction phase must be equal to that of the velocity in the

logarithmic region. 2) eliminate this difficulty we must assume that

the flow of velocity in the sub-layer is not unique but is a function

of time. We must in any case insist on the difficulty arising when

measuring a phase angle requiring an accuracy of several degrees.

Moreover, the decline in the phase occurs very close to the shin,

in a region where it is not excluded that a certain interaction of

the skUh on the thermic field of the hot wire exists. The measurements

computed with the laser anemometer nevertheless confirm the results

observed. This difficulty shows the importance of a detailed

study of the sub-layer, unfortunately impossible to carry out in the

present case due to the limited thickness of the boundary layer.

A comparison between the measured values and calculated values

of the phase angle of velocity is shown in Fig. 20 for the

experiments presented. The two points shown . in black which deviate

from the first bisecting section correspond to the stations where

at certain instants there is a return flow. Their dispersion

should not be surprising, since the law of friction loses its meaning

when the parietal friction reduces to zero. We have also reported

26



in this figure the results obtained by M.H. Patel [1$] for a
configuration in which the external flow perturbation is displaced

considerably b y' the mean flow velocity:

4 s U. v i &rn "(**)d t h Q it LU

In such a configuration the instantaneous pressure gradient

is created both by time derivatives and in X of the external velocity.

Experimentally, we have considerably larger phase angles which are

quite predictable by the present calculations. Let us note that in

the case of the Patel study, there was no decline in the phase near
the skin.

4.4. - Integral Method.

Application to the

`
measured value	

experimental case.
I 

50•,

U.: Us. * U,, sin Wt # u)

U : Uo . U, sin(wt.w,) ^^	 e-with r
turn flow

_50•
	

^	 50•
calculated
value
( formula 35)

0 eausieec_oESOr.eR_M000Crau(^

o
	 1 • MAIM. MMKVXLc t9

• M N. Mtn VV

Figure 20 - Phase angle

calculation. Comparison

with the experimental case.

We have seen that the

experimental profiles obtained

at various instants in the cycle

are correctly represented by a

family of profiles, with only one

parameter, deduced from similarity

solutions. .This permits the use

of a simple integral method to

calculate the unsteady flows

which may lead to . separation of the
boundary layer. Such a method

has already given good results in

the case of isolating boundary

layers on a flat plate configuration

[3-4]. We shall recall briefly

its principles.

• 1
The overall equations of continuity and quantity of motion-

are integrated step by step over time. :these equations are

written in the incompressible case:
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(14)

i as	 w as Z^

6 is the thickness of the boundary layer and is placed in

a steady state:
1	 ^

it) J,	 e,/ „js_sj)jj
O 4	 pie

M = ti /e ^ Ci/^: Zr/^w'

'fie five unknowns which appear in the system 	 cF rt - •^ _.^ /14
are estimated by using additional relationships deduced from the

similarity solutions already presented.

CALCULATION-07 THF_:D R I VE COEFFICIENT

This coefficient, having the shape 	 )s/^x -^/^^	 , appears
in the overall equation of continuity. It may be calculated from

the local equation of continuity by making an assumption of similarity

and by using the small parameter 	 r. rc•I	 which was already

used for the equation of speed momentum. We have then the

relationship:

^y ;/ue = Y t% I

which permits the expression of vertical velocity V.

At the external zone of the boundary layer we have then:

%vv, _ Y ( L

.The drive coefficient is expressed then from this relation-

ship and from (5) in the form:

Js _ u< c 
P - v,, Tta: e	 (i8)

(16)

(17)

i
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where P is a function of 0 which results from the similarity

solutions and which has been represented by the relationship:

	

1.0957 i c	 (19)

In comparison with the steady case, it may be observed that

an additional term is added in this drive coefficient: -

Tie other closure relationships of global equations have been

obtained in paragraphs 3.2. Mils is the law of friction (10) and

of relationships (7) and (0) deduced directly from the definition
of the adverse velocity profiles. It is recalled that these

relationships-are:

r x V

T' YF1

G	 W_;.i
Mr	 .

The integration of the global equations of momentum and of

continuity (14) (15) to which the closure relationships may be added

requires knowledge of the boundary conditions. We must know the

external velocity as a function of X at each instant and at the

initial conditions of the boundary layer: at instant t - 0 it is

necessary to know the state of the boundary layer as a function of

X and by giving, for example, the distribution of d l and e. In the	
4

case of a periodic flow this condition does not affect the result,

the latter also becomes periodic after a sufficient period of

calculation. ,The other initial condition deals with the given

boundary layer in X - 0 and at each instant. This assumption is

important, because in the steady state the accurac y of the estimates,may

depend on it.

29



the integral method which we have described has been-applied
to the experimental case presented. 	 The external velocity

Is introduced from the harmonic analysis, limited to the second term,

of the experimental distribution of velocity. the data of d and 8

as a function of time at the first point of calculation in X are also

deduced from the harmonic analysis-of integral thicknesses measured.

Figures 21 and 22 demonstrate the estimated development of-the

displacement thickness d1 and of the shape parameter H represented

by their harmonic analysis. Ahe relative amplitudes of the fluctuation
of H and of 8 1 are related to those of the external velocity.

t
Key:

a) Experiment

b) Unsteady measurement

c) Quasisteady measurement

d) Steady measurement of the

mean flow

j

1

C

40

Ns N. ^ W eeir •'Ihl ^..

^^. ^ •lid wF •'^y) ^ • • • •

a	 .	 Expirit:ce

-- CA1CY1 insq tionnsire •

---Ca1Cr1 quasi stetlemsire

-----Ce1CV1 stetiewire M
1'kft1Wl * my"

•	 w	 M•

Figure 21. Harmonic analysis of

the shape factor. Measurement — experiment.
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>The measurement does not exceed the RtAti_en X - 450 mm.aince down-
stream from this point begins a return flow which implies the

transmission of data from the downstream toward the up otreaw end

and thus requires knowledge of the additional boundary conditions

at certain instants. A more detailed discussion and careful study of

this problem relating to these boundary conditions is presented in [5].

.'he evolution of mean values has been determined from a steady

measurement for the mean flow. The small difference between this

measurement and the unsteady measurement confirms what has already been
observed experimentally, namely the small effect of the unsteady

state on the development of the mean flow, an effect which is due

essentially to the nonlinear terms of the equations. We must never-

theless point out that this effect becomes more important as the

shape parameter increases, i.e. when we come near a _'region with

return flow.

,To dctpermine the importance of these unsteady effects in the

configuration under study, we present also-a quasi-steady measurement.
Tlis consists of a definition at each instant of the boundary layer

development by a steady method but by applying the natural velocity

distribution which exists at this instant. 4his means that the

unsteady terms will be omitted in the equations. The developments'

which are thus calculated from the various values deviate consider-

ably from t h o s e measured o r calculated by the unsteady

method. %is is particularly obvious for the fluctuating values.

The deviations which appear between the unsteady calculation

and the experimental results relate to the evolution of the fluctuation

amplitudes or to the phase angle of d l and H does not seem very

large, if account is taken of the difficult y in measurine these values with

a good accuracy. If it is assumed, for example, that there is an accurac y of

3% on the measurement of d l and 1% on that of Ue, the accuracy obtained

on the amplitude relative to the variation of d l related to that of

Ue is about 20%. Ale accuracy of the phase angles of d l and H is
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714.5,.	 '.

j more difficult to determine but

fl, At•
must be close to 10 or 20 °.^' 
5 - CONCL USm N

0

•'

I

She experimental study of an

•Sp
i oscillating boundary layer sub-

- I jected to a quite high mean pressure
t  -- -•	 - gradient resulting in separation

demonstrates that the development

,^^	 • of the boundary layer is not

(	 • profoundly modified by the unsteady
0 1

20 - --- characteristic of the flow. 	 A bis
14 S S4• +&64	 "'t ' 	 ' result extends to the new case
U.• U.,+ o U• i;n(wt+f4 which we have obtained during this

j	 • study of the flat plate configuration,

(
a •	 tawleme
b— c.lcul 1*st1t+eeeelre	 ! always for moderate Strouhal numbers.

10 -- - COW wasist 'ttemiire—e We may nevertheless conclude with
d---  calcul stet'amsire de	 i

s 1lcwle.eet soyee' certainty that this study is not
S4• c completed.	 In fact, if the measure-

f
1 ments of mean	 velocity, in the

sense of overall average, as well as

0 200	 400	 640 of the longitudinal turbulence
X^mna component have been performed up to

a point where the return flows

exist and even beyond that due to

Figure 22. Harmonic analysis of the use of a laser velocimeter, we

the thickness of displacement. have available for the present time
Measurement. experiment.

no information about a value which
Key: a) Experiment	 is as important as the turbulent

b) Unsteady measurement
c) Quasi-steady measurement friction <u' v'>. 'iis shall be
d) Steady measurement of 	 dealt with in the study that follows.

the mean flow

Comparison of the experimental profiles of velocity with the

profiles deduced from the similarity solutions shows a good agreement,

including for those high values of the shape parameter close to 2.
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2io existence of a logarithmic region is also brought to light. ,'1e

development by a method of small perturbations of this logarithmic
i

law gives important results relating to the shape of the phase angle

profiles of velocity in the boundary layer and permits an accurate	
i

estimate to be made of the maximum phase angle.

Finally, an unsteady integral method using the global equations

of momentum and of continuity together with the closure relationships

deduced from the similarity solutions, makes it possible to predict

quite accurately the development of the boundary layer in the con-

figuration presented. Such a method is nevertheless limited to a

range where there are no negative velocities, on the one hand because

the closure relationships are used, and on the other hand because of

the problem of the boundary conditions. -'he interest of such a

calculation method is in its simplicity, which is important for

applying practical solutions. It remains now to define its range of

validity, especially f or h i g h. values of the Strouhal number.
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