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49*

Let us assume we must solve the vector equation

x=Ax+y,	 (1)

where y is the known; x is the unknown n-dimensional vector; A

n-dimensional matrix. The method of successive approximations in

solving equation ( 1) consists of the fact that we start with the

arbitrary vector x  and then subsequently formulate the system of

vectors x , x2, ...$ x k,..., where

X`=Ax"-' +y. 	 (2)

If the sequence x  converges to the limiting vector x, then

x is the solution of equation (1). However, the sequence con-

vergence may be very slow, and the problem arises of extrapolating

the approximations already found of xl,..., X  to the root x, so

as to approximate it more closely, avoiding the repeated substitu-

tion of (2).

Let us examine; the simplest case when A is the symmetric matrix.

Let us assume 
X1' .;2,..., In are the eigenvalues of A, and

12 1 >1'121	 •^i?» u„ u„ . • ., u» is the orthonormal system corresponding to

it of eigenvectors. Subtracting the equation ( 1) obtained from

`	 (2), we have

Numbers in margin indicate pagination of original foreign text.
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rte.: MW--j

n -

it--x=AW-1-4
(3) .

If'— x•=^ ct t4, , then

x'—:=A(x°—x)=^,^ctut. x°—x=A(x'-4=ivaiu.;
and, in general,

M

X`— X 
J

t c; It;.
t=t	 (4)

Repeating the estimates used when determining the eigenvalues

numerically using the Mises method, we find: if i^^i= 1^4' _ • • • _
X,1—), P'+)<^	 at J > ^0, then (".+J)e..,0 at k-► OO and-17

x'—x='Xt (Z a. c u +t:	 u l^a` Z  Ci Uff I 1 1
t=1	 t_i

(if one of the numbers el , 02 ,...
2
 ve does not equal 0). For

large k, the expression x  - x may be approximately represented

by the sum-of the eigenvectors corresponding to the eigenvalues

which are largest in absolute value. In the case of a symmetric

A and, consequently, real eigenvalues, one or two (opposite in

sign) eigenvalues (of any multiplicity) may be the largest in ab-

solute magnitude. The criterion for the convergence of the method

described of sequential approximations is, as is known, the,fact

that the eigenvalue of the matrix A which is largest in terms of

absolute value is less than unity.

For purposes of simplicity, let us examine the case when there

is a singular (of arbitrary multiplicity) eigenvalue of A which is

the largest. Then

X` -- X ~ At u '	

(3)
where u is a certain eigenvector corresponding to the eigenvalue

of A. Similarly,

Xk+l — X ^. IR+1

Xk+s — X j,+! U.
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Thus

The vectors x'`--xt+' and 	 for large k are almost pro-

portional, and the ratio of their components approximately equals

Thus, if the sequential approximations A x'+% xt+_,are known,

then we may approximately find a, and since we have the following

from C5) and (7)

J? - x -- r LX (xt - X4,) . 1-r (x.- 
+=).

by determining X, we may approximately find x  - x, and this also

means x.

If a is very close to unity, then it is advantageous to use

similar equations instead of (6)

P-P — x ' 1&+P u'

from which we have

t'
x^ X 	 (1— ^p^ u,

and, consequently, the ratio of the components xk —x'+r and

xk .-z+=P determines	 , and this means A also.

In addition,

+	 c

E

i
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Let us now assume operator A has two of the largest eigen-

values for A and	 Then

Cu and ul are the eigenvectors referred to the eigenvalues A and
A1 ), and in addition

x'+2 -x- *°[U-,--	 U'],

(9)

Therefore, the vectors ^ ` —xt+s and x —x44 have approximately
proportional components, and their ratios approximately equal

from which we may determine A and in view of (8) and (9) find x
approximately

Just as in the previous case, instead of .4, v+s, xk+4 , we
may use

Section 2

By way of an example, let us give the numerical solution of

plane boundary value problem of the Laplace equation by the grid

method. Let us first make some preliminary comments.

Let us designate the following operators by 77 , 0" and D a D 
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-*-s(x, y-+-h)+z(x, y—h)--4s(x, y)^,

Dz= D"z=4 V"z-i s= 4 [z( .r-+- h, y)-+ s(x—b, y)+

+z(x, y+h)-# z(.r, y—h&
d= s 	 d=s
, 1.r=	 "y

The operator 7  is the finite-difference approximation

of the operator V. Let us examine a plane square grid with one

side of the square having the length h and the finite plane

region Q. consisting of the squares of the grid. We shall give

the function z for the grid only at the grid corners. Then

ph and Dh are changed into finite-dimensional operators (matrices).

If the values of z at the corner of the grid (1h, kh), where i,k

are whole numbers, can be designated by z ik; then the operator

Dh replaces zi k by the value-̂ (:^..,.1•+-^-1.i+z^ , t+^-+ zr."-^).. Just

like the operator v, the operator v  has only negative eigen-

values — 11,1>— - ).'" > 7"- ^ " ^ ••	 The operator Dh has the

eigenvalue

At
a.,	 4^ -- l --	 i.^ .

while all	 Eli" 
C I.

If the number of internal grid corners at Q equal N and all

the functions u, subjected to the operation Dh , have the values

0 at the boundary corners of the grid	 then V  and Dh have N

difference eigenvalues —a,,'—^,", , —1H; µ,', •^_',	 Ls	 with the

general eigen function u,, ay, • . •, u,,.	 The eigen functions ul , u2,

. . e , which corresponds to the first eigenvalues —'.:'. ­ 12"s • • approxi-

mate the first eigen functions of the Laplace operator p with zero

boundary conditions.

..

(10)
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We should note that the eigen function u of the same operator

Dh with an eigenvalue which is inverse in sign corresponds to each
of the eigen functions u of the operator Dh , where

°r.r = (-1)+"a:.6.	 (11)

In the same way, if V u = : - a, then

4^ur+l.k ♦ u :.c+^-:+: ♦ a:.t_1 =-Attr.^• 	 (12)

and since

differ from

Ur+1. t • ^^-:. t • 2r :+. • a,. s-i

by the factor (— i)4i=(-1}`'' , we have the following from (12)

I- - .__

i.e., p"u = 	 The function u is the eigen function of the

eigenvalue — u. Therefore, the eigenvalue — u of this same opera-

tor with the inverse sign corresponds to each eigenvalue u of the

operator Dh . The smallest eigenvalue PSI =—:',". corresponds to Vie

largest eigenvalue •̂ ;" , and '``•-: z—,^• •	 corresponds to the
eigenvalue ^`	 We have

So that from all	 1, •,") < 1 , we have the well -known fact that the
iteration process converges by means of the operator D - Dh.

We should note that the eigen functions u l , u2 ,..., corre-

sponding to the first eigenvalues ;•,"• µ,". , approximate the first
eigen functions of the operator V. The eigen functions ul , u2,

..., determined by means of formula (11), which corresponds to the

negative eigenvalues —µ,', — 4.. •	 , which are largest in absolute
M

zu
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value, are the singularities of only the grid approximation of

the Laplace operator, but not the operator itself. We shall call

these eigen functions parasitic. Their existence must be con-

sidered when studying the convergence of certain approximation

processes.

Section 3

The approximate solution of the boundary value problem for

the domain of the Laplace equation by the grid method consists of

finding u at the grid corners which satisfies the following equa-

tion at the internal corners

u= Du	
(13)

and certain boundary value conditions at the boundary corners, for

example, finding the values of u at these corners in the case of

the Dirichlet problems. For simplicity, let us discuss this prob-

lem. Starting with the arbitrary function w at the internal corners

of the grid, which uses the given values at the boundary corners,

let us formulate the sequence of functions wl , w2 ,..., wk,...,

which satisfy the same conditions at the boundary corners, and

the internal decisive conditions

W41 = Don}.

The difference wk — w satisfies the zero boundary value conditions.

If u and u are the eigen functions of the operator D. corresponding

to the largest and the smallest eigenvalue of u and —u, then

where v is the sum of the eigen functions referred to other eigen-

values (if w  is selected as a smooth function, then wo — w is a

smooth function and the coefficient F. the coefficient with the

T
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parasitic function u which changes sign for each pair of adjacent

corners, is small). Repeating the previous discussion, we find

tell -a(—Itia],

- m - .-j+t! [OR t (- I t CK].

► t" 0 	 [CU +(- 1j`cuj,
Wk W42	 11 ten

(m+ —m++=) — -  (WO —m'4X	 (15)

The functions w1 -- W+4' ",' — a Fk *=	 are approximately proportional,

and their ratio approximately equals

i_5=;=i -44%

It is best of all to set

S (mi.,
	 (16)

where the sums are given for all internal corners of the domain Q.

Determining A. we may use formula (15), from which we may find the

approximate value of the function w.

Actually, the calculations aee as follows: We find

mo t • • u" v • • m+'" by the successive use of the operation D. We de-

termine the sums	 Yw Va►';` for all internal corners, and
in addition, we find 1 + a 2 using formula (16), we determine A us-

ing formula (15) and find w.

Let us examine the example given in the "Handbook for Numerical

Solutions of Partial Differential Equations," D. Yu. Panov (GTI,

1943s pp. 50-58) for the solution using the method of successive
approximations of the equation Dw a w.

Tables 1, 2 and 3 give the results of the 7, 9 and 11th itera-

tions of the operation D. The values at each corner are located

8



t2 _eft and above it. The boundary values art only given in

Table 1. The values at the corners which are symmetric with re-

spect to the diagonal equal 	 They are given only on

one side of the diagonal ( wILf designates the value at the corner
of the intersection of the ith low and the jth column after the

kth iteration. Tables 1, 2, 3 give the values of w7l.jo

Tables 4 and 5 give the differences w:., —w,"j and w; i—w',
at all corners of the grid. We have

V (uPi.,—.vAi,' f)= 4(0.12+0.40-#-0.22+0.17+0.21+0.16+
Aw

+0.39+0.71+ 0.43+0.24)+0.1 +0.3.3+0.46+0.41+0.14=6.68,

v(a;;, —w'̂ ,^=2(0.07+ oi4 +0.12+0.10-+ 0.12-*0.21+0.22+
+0.16+0.45+0.14)-+-0.06+0.18+0.71+0.24-+-0.S=3.95.

Using the formula (16)

1.735,
from which we have

1-1+ -2-1.735=0265. p==M=3.77.

Table 6 gives the values of	 [see
formula (15)). Table 7 gives the results of applying the averag-

ing operation D to Table 6. Table 8 contains errors in hundrethe

of unity for the values of Table 8. This accuracy is achieved in

the book of D. Panov after 26 iterations.

For comparison, in Table 9 we give a table of errors in the

values of wy , after 26 iterations D according to the "Handbook."

Interpolation used 14 iterations. If wo use the formula

wo ='1 ,— T 
I (w; 	 in (15), then the errors are somewh at

smaller.

9
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Table 3 (W6 r)

11.87

22.79

32.03

39.15

44A2

9.11 6.50	 4.56	 i	 2.90

15.32	 9.01

19.30

17.76

23.45

32.41

{w;Table 1	 . ^1► "

0	 0	 0	 0 0

16.43 11.94	 9.54	 741 ` 4.73 2.40

" I 	15	 1 71 ^	 y12 	 !.	 9,54

40.46 3x3D t 25.91 19.94

47.68 31.4232.82

52.00 44,76

Table 2 (%)

11.91 9.23	 6.90

1791	 1149

25.66 i 1971

4.65

9.16

2.34

22.55

32.14

39.x! 32.68

44.68 1

Table 4 (Willi-•;.)

0.12 020 0.22 0.17 0.10

0.11 036 039 0.33

1	 _

0.27 0.0

0.41

0.0

04

0,14

M

Table 5 (.,^^_•^;,^1	 Table 6

0.07	 0.120.12	 0.10	 0.06	 11.73	 5.44	 6.57	 4.3$	 2.17f

	

22.35 17.33 12A	 5.660.12	 0.21	 om	 0.15

416	 an ; 0.27	 31.70 24.97 1&%

1.14 ` 0.24 '	 3959	 31.92

y	 44.46
OA 1

"
k

y	 10



Tab le 8

01 'sl slslz

i	 ! 7 i

—1 —Z s

s	 4	 S	 4

Z	 i	 7

s	 4

-;-12	 1

Ot

Table 9

1	 2 1	 s 1 s 1 1

Table 7

11.72

ZL!4

&91	 U3

17JI	 12A

435

U2

247

61,71 "A ^ isas

44.45

The equation (13) may be replaced by the equivalent equation

W =D
..

W,	 (13' )
where

•	 3D. aW'^s W W tM4

The eigenvalues p„' of the operator DQ are connected with

the eigenvalues vh of the operator Dh by the formula u; _ +" •
Since all 1j►1<1 , then at aj0 all	 The successive use
of the operator Do gives a converging process, and to solve the
system (13) or (13 1 ), we may use the successive use of the opera-
tor Do .

If x=— ) <0, , then

s 0TT'

However, since there may be values which •."re very close to —1 	 /57

among the eigenvalues UP , the eigenvaluem ii may be less than

—1. If — 11 is the first eigenvalue of the Laplace operator

for our domain, for a small h it is close to the first elgenval.ue

it



Ah for the same domain of the operator '7

In view of (10), we have

_
11AX an

which is very close to —1. The smallest of the 	 p^, is

For a very small h and a fixed acs--p, , the smallest
eigenvalue K;,, becomes less than —1. But then equation (13)
cannot be solved by iteration of the operator Da h, since it dis-

turbs the necessary convergence condition of the iteration proc-

ess (but not all of the eigenvalues of D a h are less than 1 in

absolute value). In this case, the convergence is called the

parasitic eigen function. Only the operators Dah with positive

a can compete with the operator Dh.

The operation D • Dh consists of using the processes of

multiplication individually. In terms of simplicity in perform-

ing the operation with the massive use of operations, operations

which are reduced only to multiplication and division by tens are

of interest (i.e., moving the decimal). Por example, this It the

case with the operation for %= 3 e D^,,:^(fl" +i)

^^., s1^ ^ s ts6 Iii -1- s•. i-^ ♦ s•^i." ♦ s• -r.1 ^ s•. ")•

The operation D,°,, is reduced to replacing the value of z,,
at each grid corner by the mean arithmetic value, and at 5 corners

-- by the given value and the 4 adjacent ones. The division of

the number by 5 reduces to doubling the number and dividing by 100

i.e., moving the decimal point. The successive use of the opera-

tion D,',+ is actually reduced to the successive use of the opera-

tion of multiplication, which may be completely carried out on

adding machine& ( from simple ones to tabulation machines).

12



If we do not take a square grid, but a rectangular grid, in

which the sides are rectangles which are parallel to the z and y

axes, referring both to A and .A, then for the approximate solu-

tion of the Laplace equation, we must find the function u at the

corners of the rectangular grid which satisfies the following equa-

tion

a^sl^ w

where

_ 1

10- 12u.*:.	 3n,, t.., 3u:.,_J

Cui,k is the value of u at the corner, which lies on the inter-

section of the ith vertical and the kth horizontal. Here the

sequential use of the operation is only reduced to summation.

Similarly, in the three-dimensional problem we may introduce

the approximate solution of the boundary value Laplace problem by

the grid method. One of the methods indicated above, or a combina-

tion of them, may reduce all of the successive operations to sum-

mation and division by 10, i.e., practically only to summation,

and only to addition. For example, let us give this method.

Let us consider the following three-dimensional grid: The

plane xOy is divided into triangles with equal sides with the side

£=	 h with three series of parallel lines. The apexes of these tri-

angles are corners of a plane grid. This grid is moved parallel
=`	 F

along the z axis and is reproduced on the planes

We obtain a three-dimensional grid, and the function u is given at

the grid corners. Let us assume A is a grid corner (apex of the

triangle) in the plane z - zn.

Let us introduce the operation Fh , which. changes the value of

u(A) at the corner A. divided by 10, and the sum of the value u at

6 corners of the same plane, which are adjacent to A. and the double

i

13

D" nw i =



sum of the value u at 2 corners lying above and below the point A

in the plane z - zn+l and z - zn-l.

As may be readily seen, the approximate solution of the Laplace

equation reduces to find the solution of the equation u - 0 u at

the grid corners. The solution of this equation by the method of

successive approximation is reduced to the successive use of the

operation Fh , i.e., only to summation.

Let us
the Laplace

is with the

strutted so

(and in the

axis.

assume we must find the three-dimensional solution of

equation with axial asymmetry. The axis of symmetry

z axis, and we assume that the previous grid is con-

that one of the triangle apexes in the z - 0 plane

parallel plane z - z n ) passes through the symmetry

The function u must assume equal values at the corners of

each plane z - z u , which are equally removed from the axis. Since

our grid has 6 symmetry planes passing through the axis, the number

of corners corresponding to the different values of u is approxi-

mately 6 times less than the number of corners of the three-dimen-

sional domain, and it approximates a plane grid using the number

of unknown values of the three-dimensional problem thus solved.

Section 6

Let us examine the Sturm-Liouville equation

lR(x),v'(.r)l	 ^'(Y)y(.t^-:;.y(r)	 (17)

under the boundary value conditions, for exninple y(a) n0, y(b)-0.

We will have R(x) ? 0 at the segment [a, b). We shall also assume

that on (,,, hj t'(.r) • 0.

Along with (1), let us consider the equation

14
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r ^R(x)I ode t, ^--P(x)w(x^!) — ^off 
	
(18)

Let us assume ul(x),u2(x),..., uk(x),... is a sequence of eigen	 fa
functions of the equation (17), corresponding to the values

i,>X,>).a>.;. ^`„ >...c	 if P(x)<0 on [a, b], then A. are nega-
tive. If

0,
" ZI (191

then the solution of (18) with the initial value of w ( x,0)-4.(x)

is
a+

^^ ► 	 (20)

Since all A  < 0, then w(x,t) approximately strives to zero at

and the terms c,u"(x)e"' strive to zero more rapidly, the
larger is k. If, for example, c l f 0, then for a very large

t the first term w(x,e)c,u'(x)a'''. 	 will be the main term in (19).

1	 P 1-t,

Fig. 1

w(x,t) may become

function u,' (x),

t increases. If

nd the approximate

(17), and the eigen-

For a fixed rather large t, the function

approximately proportional to the first eigen

with the relative accuracy which increases as

we simulate the equation (18), then we may fi

values of the eigen functions of the equation

values.

The equation (18) may be modeled for a linear electric circuit

of resistances and capacitances.

15
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Dividing the segments Ia,b] into n equal parts with the length

h z= i°- and setting f(F.+ih) ufi , we replace equation (17) by

its finite difference analog

v (Rd (x+1 — 9) — R. -, (y; -' y; _ ► ] --- P y ; ; ^.q, ,	 (21)

Along with (21), let us consider a system of ordinary equa-

tions which approximate the partial differention equation (18)

V IR; (w;+, (_) -- w: C=)) -t- R: (u,	 u;_ (03 — P, u,W = Cwr (_)•	 (22)

All of the previous considerations hold if we designate the

"eigen functions" of equation (21) by u  (k - 1, 2, ....) . These
functions are given only at the points a - th, and we use X  to

designate the corresponding eigenvalues which approximate the

eigen functions and values of the initial equation (1) at h-► 0.

Let us formulate a linear scheme of resistances and capaci-

tances with the corners A i (i - 0, 1, 2,..., n) (Fig. 1). Each

corner Ai is connected with the corners A i-1 and Ai+l by the con-

ductivities Ri-I and Ri , and currents with the conductivity Pi

and the capacitance C emanate from it. The voltage equals 0 at

the corners A  and An. The voltage at the corners A i (i - 1, 2,

..., n --1) satisfies equation (22). At the corners A 1 , A2.9 "

Ai , 0.., An-1 setting the arbitrary system of voltage, in view of

the previous statements, after a certain time interval t, we ob-

tain a system of voltages w i (t) which is approximately proportional

to the system of values for the first eigen function u l at the

points a + ih. If we give the voltage in hundreths of volts and

measure them at the time t o for a voltage of about one volt, then

the measured voltages at the corners A i give the approximate

values of the first eigen function at the points a + ih. Thus,

the sign and overtones -- of other eigen functions, are retained.

If the measured values of the voltage -- when we multiply them,

let us say, by 100 -- are given at the corners A i and are again

16
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measured in the time interval t o , then we may obtain the more

"pure" value of the first eigen function (with weaker traces of

the higher eigen functions).

Let us assume we have obtained the first eigen function u11

which assumes the value uil at the points Ai (i - 1, 2, ..., n —1).

Let us now give the system of voltages w at the corners A i , so that

J u►; ' Urt 0,

i.e., the initial distribution represents the function w which is

orthogonal to the first eigen function u'. For example, let us

assume that at all of the corners except two, w - 0, and at the

corners Ai and A 

iii : iik = — Ukl : U fl.

Similar measurements would have to give the second eigen

function u2 . The given function w is orthogonal to u', and

therefore the coefficient c  - 0 in the representation of (3)

when ^ 3s replaced by w. Now, with an increase in t, the second

term will decrease the most slowly

C_a= (4e^j e

with the following eigen function u2.

The coefficient c  does not precisely equal zero for u', al-

though it is small, but since the first term decreases more slowly

than the others, the measured system of values at the time t o does

not give an expression which is approximately proportional to the

second eigen function. Generally speaking, it may be regarded as

a linear combination of the first two eigen functions. However,

the first eigen system is known. Therefore, we may determine the
F	 second from this linear combination.

/61
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The transition to the third eigen function is similar.

Let us assume P(x)>O in the interval (a, b). If this

condition is violated, then it is sufficient to replace the co-

efficient P(x) in (17) by the coefficient A4=P(44-C(C =const)
so that it is positive in this interval. This substitution leaves

the eigen functions of equation (17) unchanged, and decreases all

of its eigenvalues by the number C.

We may use a similar method to model the eigenvalues for

several plane and three-dimensional self-conjugate equations --

the linear system is changed to be plane or three-dimensional

(for example, finding the eigen functions of the equation D a =),a

etc.

Note. Let us assume we are solving an experimental problem

of finding the eigenvalues and the eigenvectors for the equation
Ay =)#

(y is the n-dimensional vector; A - square matrix). The solution

of this problem may be modeled very simply if the diagonal terms

have one sign in the matrix A. This can be achieved by adding the

corresnnAing positive constant C to the diagonal terms. In addi-

tion, the eiganve tors are not changed, and the eigenvalues in-

crease by C four equation is replaced by the equation (A + C)y =

(), +C).v)•

We give this in the problem examined.

The answers obtained will contain inaccuracies following both

from the unreliable estimate of the measurements, and from the dis-

tortion which we assume, as well as by the replacing of the differ-

ential operator by the finite-differenc:: operator. For a plane

problem to be solved by the grid method, we may replace an arbi-

trary contour by a polygon contour. However, we may greatly improve

the results by regarding the distortions we introduced as perturba-

tions of the operator and by determining the influence of these

18
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perturbations on the result obtained. This pertains not only to

the method given, but to any other experimental or numerical method

of solving these problems.

Section 6

Let L be a self-conjugate operator and we shall approximately

solve the operator equation

Lu —Xu=0	 (^3)

under the normalization condition

(u,u) =1. 	 (24)

Actually, we replace the operator L by the approximating opera-

tor L1 (we replace the differences by the derivative in the differ-

ential operator, the integrals by the sums in the integral operator,

etc. ), where L, — L -F- EL (in the previous example 6 L is the difference

between the differential and the finite difference operators, which

is expressed by means of the difference of higher orders).

We have found the approximate eigenvalue X1 and the approxi-

mate normalized eigen element u 

L, =L-f-M, u,==u--Au,

which satisfy the equation

L, u, --- 3., u	 t	
(25)

(the nonzero right side is determined by calculation errors, mea-

surement errors, etc.).

Substituting (23) from (.25) And disregareling terms of the

second order of magnitude with respect tod A and6 u, i.e., replac-

ing the difference of the first variation, we obtain

19
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LAu +$Lu—).8u—bu=1.	 (26)

Multiplyir.g both sides of (261 by u and using the equations

(23) and (24), and in addition, due to the self-conjugate nature

of L. we obtain

from which we have

4 = ( ,̂Lu. u) —(s, u).	 (27)

The first term on the right side is the regular expression,

for the perturbation of the eigenvalue. The second is determined

by the inaccuracies of solving the "perturbed" equation. Finding

6A and designating Al by yl —&A, we obtain a more precise value

of A. Equation (26), which is solved with a relatively small

accuracy, determines the correction 5 u.

In problems for finding the ei-envalues of the differential

operators, the boundary values are included -- the zero values

at the boundary. Let us use the symbol 6 2 to designate the varia-

tion caused by varying the boundary. For an approximate solution,

if we assume the distortion of the boundary (for example, in the

plane problem we replace the curvilinear plane contour by a con-

tour with several corners), then the term 6 2A appears in the right

side of (27) -- the variation of the eigenvalue caused by defo rma-

tion of the boundary.

R. Courant developed (_see, for example, Part 1 of "Methods

of Mathematical Physics") a variational theory of eigenvalues

based on the method of the minimum-maximum. However, this theory

gives only a qualitative estimate -- the increase or decrease of

the eigenvalues, i.e., only the sign of 6 2A, while the regular

elementary methods of the variational value give the values d 2A,

20



i.e., they determine (within an accuracy of the higher variations)

the numerical value of the distortion introduced by the small

deformr.tion of the boundary, and make it possible to refine the

result.

Let us assume L is the self-conjugate differential operator

with certain zero boundary data.

Let us use J(uI=(Lu,u), to designate J,(u)=J(u)--a(u,u) . Equa-
tion (23) is the Euler equation AJ(u) -d:	 Under the isoperi-
metric condition (u,u)- 1 or 111 t0 0 . The normalized eigen

function is the extremum of the equation Ail(u) - 0,	 and the eigen-

value 1=40,11).

We shall vary the boundary. Then 	 Since the normal-
ization condition retains its form,

A,(u,11) =0, T. e. $=i.:-32J=A; J,.

The last side of this equation is calculated on the basis of

the regular rules for the variation of the functional from the ex-

tremum with a variation of the boundary.

Example 1. L is the Sturm-Liouville operator. We have the

equation (17) under the condition u(a) - u(b) - 0 and the normali-

zation

(u, u,— .^ u dx -=1.

Here

J (u) = (Lu, u) = 1 (Ru" 1 Pd) dx,

!lu' i Pu= --) u`) ,r 1.

Sett ing F- -- Ru" i • Pu- --1 u	 , we have
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FM, = 2R6', F — u' FN = — Ru" +- Pn- — %_u

If the finite abscissas a and b obtain the variation as and Ab,

ka=83 jj =— iF—u' F.,1 ,,ba - (f' — u'F^,^+►6.

At the point square x a a, x - b, we have

— u F,,. — Ru -.

Therefore

^.: R (Q)	 34— R (b) [u' (6)1' ^b•	 (28)

Since

R(4) >0, R b) > o.

then at 3a> 06 Nb<o [i.e., with compression of the integral

(a,b)]

3)=> 0,

i.e., the eigenvalues increase. Thus, the qualitative side of

the variational series of eigenvalues is completely obtained.

Formula (28) gives the quantitative estimate.

Example 2. Let us assume L - V is the plane Laplace opera-

	

tor applied to the functions u(x,y) given in the plane domain Q
	
L

with zero boundary values at the boundary q of the domain Q. Then

!(u)= f (V u)udxdy-=J J Llax^^  ^ay^ ^`^xdy^
Q	 V

J,(u)= Ja
J TI.X)=-r(,y^Y—xu" ]dxdy.

Let us vary the boundary q in the vicinity of its point A. and we

assume X% is the variation of the area Q. Then

as li (u) - [ffrad u (A)y &At

22

l_A



Thus, the qualitative estimate of 82A is obtained: at 
4'.< 0, 8,a>0,

i.e., the eigenvalues of the operator 0 increase, if the domain Q

is reduced, changing into the eigen part. However, formula (28)

gives the quantitative estimate.

Let us assume we have found the eigenvalue for A and the

eigen functions of u for the domain Q1 which approximates the

domain Q (for example, for the domain consisting of the quadrile

squares, if we solve experimentally the problem for the plane

square grid). Let us divide the band between Q and Q1 into small

parts of the area	 XT A, i=1, 2* ... o nt , which are adjacent to the

point Ai , i - 1, 2, ..., n of the boundary q. With the transition

from Q1 to Q, the eigenvalue A receives the increment 6 2 A which ap-

proximately equals

23
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