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COMMENTS ON NUMERICAL SOLUTION OF BOUNDARY VALUE PROBLEMS
OF THE LAPLACE EQUATION AND CALCULATION
OF EIGENVALUES BY THE GRID METHOD

L. A. Lyusternik

Section 1 JUo%

Let us assume we must solve the vector equation

x=Ax+y, (1)

where y 1s the known; x is the unknown n-dimensional vector; A --
n-dimensional matrix. The method of successive approximations in
solving equation (1) consists of the fact that we start with the

arbitrary vector x° and then subsequently formulate the system of

1 LI I
vectors x7, x2, ceey xk’ » where

X=A"4+y. (2)

If the sequence xk converges to the limiting vector x, then
x 1s the solution of equation (1). However, the sequence con-
vergence may be very slow, and the problem arises of extrapolating
the approximations already found of xl,..., xk to the root x, so
as to approximate i1t more closely, avoiding the repeated substitu-

tion of (2).

Let us examine the simplest case when A is the symmetric matrix.
Let us assume Al, Agseees An are the eigenvalues of A, and
MZ2M2Z20 .20 u, 4 .. 4 1s the orthonormal system corresponding to
it of eigenvectors. Subtracting the equation (1) obtained from
(2), we have

—
Numbers in margin indicate pagination of original foreign text.
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£ —x=A(2'—2x)

. (3)
1f P*—x=Ycu, , then
[+ ]
& ’ :
F—x=A(P—D=Yhou, #—x=Ald—n=N1tcu;
: [ ' tml
and, in general,
*—x= V1 ¢ u,.
- (4)
Repeating the estimates used when determining the eigenvalues /50

numerically using the Mises method, we find: 1if |1.|=Ii.'=---=

H
A= i< at J >0, then (5.';*.!) -0 at =+ ang

3 " L4 . '
x’—x=1*<2 8 C u‘+2q4.j (_)L'X'Z) u.--o-j) ~ 2 Siciuy |5|=1

=1 =1 =\

(1f one of the numbers Cys Cpsecey & does not equal 0). For
large k, the expression xk - x may be approximately represented
by the sum of the eigenvectors corresponding to the eigenvalues
which are largest in absolute value. In the case of a symmetric
A and, consequently, real eigenvalues, one or two (opposite in |
sign) eigenvalues (of any multiplicity) may be the largest in ab- 3
solute magnitude. The criterion for the convergence of the method
described of sequential approximations is, as is known, the fact
that the eigenvalue of the matrix A which is largest in terms of
absolute value is less than unity.

For purposes of simplicity, let us examine the case when there
is a singular (of arbitrary multiplicity) eigenvalue of A which is a
the largest. Then ;

—x~ity, _
(53
where u is a certain eigenvector corresponding to the eigenvalue
of A, Similarly,

xl+l_x~1t¢1u’ (6)
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Thus
Xt (1=,
.r'—x’*"*l'(l-—?-*)q. (7)

The vectors z*—x* and s—y+: for large k are almost pro-
portional, and the ratio of thelr components approximately equals

e

Thus, if the sequential approximations . .+ x*+: are known,
then we may approximately find A, and since we have the following
from (5) and (7)

x' -— ~ l__.l_x (xk —x""") —~ ll——!:ﬁ (xt__x!-ﬂ)'

by determining X, we may approximately find xk - X, and this also
means X.

If ) is very close to unity, then it is advantageous to use
similar equations instead of (6)

x‘.’_x.. 1.4" u,

j-fv_x-ﬁ- 7‘%"'2’ u, (6 ' )

from which we have
.l'k . xl'.. Voo )‘l (l . 1’) u,

Xk"‘“ xk..,a' -~ 7‘k (1 — )‘gy) u.

and, consequently, the ratio of the components ,'—, and
X —x"  determines 3143* , and this means A also.

In addition,

—x~ l—_]—_”(x'— £+0),
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Let us now assume operator A has two of the largest eigen-
values for A and 4=—Xk , Then
:
& —x~ N u(—1) ] (8)
(u and u, are the eigenvectors referred to the eigenvalues A and
A;), and in addition '
A~ uer (—1) ),

Ay e (=1 ), (9)
Therefore, the vectors x—x'** and ,_ »«~ have approximately
proportional components, and their ratios approximately equal

1—A
m=1 o pAS

from which we may determine A and in view of (8) and (9) find x
epproximately

—x~ l_l_—x;(x’—i"")~ l—;l-r.(x'—-x'“).

Just as in the previous case, instead of £ P, we
may use xi. xl-o-tr’ x*ﬁr.

Section 2

By way of an example, let us give the numerical solution of
plane boundary value problem of the Laplace equation by the grid
method. Let us first make some preliminary comments.

Let us designate the following operators by vV, v and D = Dh |
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v‘:=-£,—[z(x+b, Y+z(x—h, y)+
+2(x, y+h)+z(x, y—h)—4s(x, y)),
Dz=D‘z=—,':- V"z-o»z=-:—[z(x+lz, y) -+ z(x—h, y)+
“+z(x, y+h)-+ 2(x, y— A},

it 2
Ve="1- s

d .
oyt yt

The operator v? 1s the finite-difference approximation
of the operator V. Let us examine a plane square grid with one
side of the square having the length h and the finite plane
region Q, consisting of the squares of the grid. We shall give
the function z for the grid only at the grid corners. Then
Vh and Dh are changed into finite-dimensional operators (matrices).
If the values of z at the corner of the grid (ih, kh), where 1,k
are whole numbers, can be designated by zik then the operator
pP replaces 23k by the value 4(..01 p+ e a - Zan - Zia-),  Just
like the operator Vv, the operator vh has only negative eigen-
values —M2—%'>...>=3'>.. . The operator D" has the
eigenvalue

s A,

bt} =’—T"d’ (10)

while all L'<1.

If the number of internal grid corners at Q equal N and all

the functions u, subjected to the operation Dh, have the values

0 at the boundary corners of the grid 6, then \7h and Dh have N
difference eigenvalues —3}, —' ..., =M w' uaoony 2’ with the
general eigen function u;. u,..., 4, The eigen functions Uys Up,
..., which corresponds to the first eigenvalues —".'. -=% -+ approxi-
mate the first eigen functions of the Laplace operator y with zero

boundary conditions.

32
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We should note that the eigen function u of the same operator
Dh with an eigenvalue which is inverse in sign corresponds to each
of the eigen functions u of the operator Dh, where

it.t=(—'1-"““¢.r (11)
In the same way, if D'u=:% then
'i"[“m.t +u_, ,+a . +a, - | (12)
and since
'_‘H'I.N ﬁi—i.l' 5&. a0 u.;;_x
differ from

Qi Bizpo 2, ieis By

by the factor (—1)*'=(—1'" , we have the following from (12)
':'['-‘ux.»""i‘a-:.e"' CHRE 3y =iy,

i.e., p'y=—ps - The function U is the eigen function of the
eigenvalue — y. Therefore, the eigenvalue —u of this same opera-
tor with the inverse sign corresponds to each eigenvalue u of the

operator Dh. The smallest eigenvalue l‘;'=—."-:‘. corresponds to the
largest eigenvalue ' , and A= =gy corresponds to the
elgenvalue _.' . We have

1>:"’l.> '-"':> el > :“;’-—i=—:"‘3’>:"‘,\'.=—:"lh>—1'

So that from all lu}<1 » we have the well-known fact that the

iteration process converges by means of the operator D = Dh.

We should note that the eigen functions Uy, Uy,..., COrre-
sponding to the first eigenvalues ', p'. , approximate the first
eigen functions of the operator V. The eigen functions 1'11, 1'12,
..., determined by means of formula (11), which corresponds to the
negative eigenvalues —p', —p' .. , which are largest in absolute
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value, are the singularities of only the grid approximation of
the Laplace operator, but not the operator itself. We shall call
these eigen functions parasitic. Thelr existence must be con-
sidered when stﬁdying the convergence of certain approximation
processes.

Section 3

The approximate solution of the boundary value problem for
the domain of the Laplace equation by the grid method consists of
finding u at the grid corners which satisfies the following equa-~
tion at the internal corners

u=Du

(13)

and certain boundary value conditions at the boundary corners, for
example, finding the values of u at these corners in: the case of
the Dirichlet problems. For simplicity, let us discuss this prob-
lem. Starting with the arbitrary function w at the internal corners
of the grid, which uses the given values at the boundary corners,
let us formulate the sequence of functions wl, wa,..., wk,...,

which satisfy the same conditions at the boundary corners, and

the internal decisive conditions

o't = Do’
The difference wk —w satisfies the zero boundary value conditions.
If U and u are the eigen functions of the operator D, corresponding
to the largest and the smallest eigenvalue of y and —yu, then

o' —w=ca-+si+uv, (14)

where v 1s the sum of the eigen functions referred to other eigen-
values (if w® 1s selected as a smooth funetion, then w — wisa

smooth function and the coefficient ¢, the coefficient with the




parasitic function U which changes sign for each pair of adjacent
corners, is small). Repeating the previous discussion, we find

o' — w ~ p' [eu~+(—1)' cu),
Wt — g ~ a2 [eu + (—1)'ca),
n‘“—n--g“"[en-o—(—l)‘éi],
o' — o't ~p'(l-—1')[cn+(—1)‘cu].
o' — o' ~ ot (1 =) [eu 1 (—1)'CH),

.,v_w-i:l“(,n_wtﬂ)-r_!.ﬁ(,h_wm,' (15)
The functions uw'—a'*, w'—o'*? are approximately proportional, 554
and their ratio approximately equals %
-:—‘_-‘-;-;:l-c-).'
It 1s best of all to set

: where the sums are given for all internal corners of the domain Q.
5 Determining A, we may use formula (15), from which we may find the
approximate value of the function w.

Actually, the calculations ase as follows: We find
| @, ..., wh..., 0% by the successive use of the operationD. We de-

termine the sums zw“,,. EW.'j’. Sw",j‘ for all internal corners, and

in addition, we find 1 + A°

ing formula (15) and find w.

using formula (16), we determine A us-

:
H
k.
I
)

Let us examine the example given in the "Handbook for Numerical
Solutions of Partial Differential Equations," D. Yu. Panov (GTI,
1943, pp. 50-58) for the solution using the method of successive
approximations of the equation Dw = w.

Tables 1, 2 and 3 give the results of the 7, 9 and 11th itera-
tions of the operation D. The values at each corner are located

r'r.!.e_:: s S
]
¢
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to thc }‘Tt and above it. The boundary values ar: only given in
Table 1. 'l'he values at the corners which are symmetric with re-
spect to the diagonal equal "c'.:"'";'.a . They are given only on
one side of the 1iagonal (®{, designates the value at the corner
of the intersection of the ith low and the jth column after the
kth iteration. Tables 1, 2, 3 give the values of wi, ®}, ®i\

Tables 4 and 5 give the differences w.,—®], and wj,—w],
at all corners of the grid. We have 7
¥ (o, —wl)=2(012 +-0.204-022+ 0.17+0.21 +- 0.3 +
<+ 039 +-0.27 + 0.43 + 0.24) +- 0.1 + 0.33 +- 0.48 + 0.41 -+ 0.14==6.68,
3 (0 ,—wt ) =2(0.07 + 0124012+ 0.10-+ 0.12-+-0.21+-0.22+
+ 0.16 -+ 0.25 + 0.14) -+ 0.06 -+0.18 + 0.27 + 0.24 + 0.08 = 3.95.

Using the formula (16)

l -+ ;" =‘£-10735’

from which we have
1—N=2—1735=0265, Ty3==gRs=

Table 6 gives the values of w,,=w] —377(a],~w!) [see
rormula (15)). Table 7 gives the results of applying the averag-
ing operation D to Table 6. Table 8 contains errors in hundreths /56
of unity for the values of Table 8. This accuracy is achieved in
the book of D. Panov after 26 iterations.

For comparison, in Table 9 we give a table of errors in the
values of u]} after 26 iterations D according to the "Handbook."

Interpolation used 14 iterations. If we use the formula
,,=%,~ 1oq(wl,—~wl'), in (15), then the errors are somewhat
smaller. .

sl
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Table 1 (v,

Table 2 (%)

< e

11.92

9 0 .0 0 o
1545 1199 | 934 | 702 | 473]2.40
2989 2300 | 1812 | 1871 | 9.34 )
4045 323 | 2591 | 19.98 o
4158) 512 | 2m o
5200! 4476
Table 3 (w))
1187 | 914 uoé 4.5 } 2.30
271 | 1776 13.32: 9,01
3208 | 2848 | 1950
918 | 241
“e
Table 5 (v~
—;m 012 | 012 | 010 ‘ 0.06
012 | 021 On | 0.8 ?
‘ i
016 | 025 * 037 | \
o4 | 0.24 | l ;
o ]
10

A A R, MK A A

%22 | 690 | 463 | 234
2 | 191 1349 | 36
0214 | 2566 | 197
wau|ns' 0
“es
Table 4 (v ,—<)
012 | 020 | o:2 | o7 l 010
031 | 035 | 039 ! oss l
027 | 043 | 048 z
ou | o4l '
014 *
Table 6
M| 89| 687 41:5 217
238 | 133 | 1288 66
310 | 2497 | 1896
3889 | 31.92
“es 2 o
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Table 7 ' Table 8 ‘ Tadble 9
nn mfm 4% | 217 ol 8| s|s]2 1] 2} 8|31
284 | 1732 ‘ 128 | 862 1] 3| 7|6 $ ' 4 lms 4
M | 139 -t =2] 8 2 6| 7
39 | -1 —:i s ‘
us ’ =1 f i 2 | ]

Section 4

The equation (13) may be replaced by the equivalent eguation

o=D"w, (13')
where

D.‘n-ri—;(D‘o-o-uv).

The eigenvalues p,' of the operator Dbaro connected vith
the eigenvalues ¥ of the operator D® by the formula u, -«’-‘,—2

Since all [s]/<1 , then at 2>0 all [kI<! . The successive use
of the operator D‘,‘h gives a converging process, and to solve the

syctenh(n) or (13'), we may use the successive use of the opera-
tor D",

If 1m0, , then

‘o
Fl‘-h.

However, since there may be values which :re very close to —1
among the eigenvalues J‘, the eigenvalues uah may be less than
-1, If —ll is the first eigenvalue of the Laplace operator

for our domain, for a small h it is close to the first eigenvalue

11
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— Alh for the same domain of the operator 7' —)‘~-—:,
In view of (10), we have

A3 . 2
p~1 =7 Y :‘.r.'zc"'a -~ ‘:‘ Yy --1

which 1s very close to —1. The smallest of the x,3x, is
—I-~3¢--—‘;—i,
D IS

For a very small h and a fixed a==—§, , the smallest
eigenvalue !, becomes less than —1. But then equation (°3)
cannot be solved by iteration of the operator q‘h, since it dis-
turds the necessary convergence condition of the iteration proc-
ess (but not all of the eigenvalues of Dch are less than 1 in
absolute value). 1In this case, the convergence is called the
parasitic eigen function. Only the operators Dah with positive
a can compete with the operator Dh.

The operation D = Dh consists of using the processes of
multiplication individually. In terms of simplicity in perform-
ing the operation with the massive use of operations, operations
which are reduced only to multiplication and division by tens are
of interest (i.e., moving the decimal). Por example, this ie the
case with the operation ror :_-—.-;-. D?,,--}(D" +1)

1
”l..‘ﬂ =T(’& st V8t e + L +2)

The operation D& is reduced to replacing the value of Zep
at each grid corner by the mean arithmetic value, and at 5 corners
-= by the given value and the 4§ adjacent ones. The division of
the number by 5 reduces to doudbling the number and dividing by 10,
i.e., moving the decimal point. The successive use of the opera-
tion DQ is actually reduced to the successive use cf the opera-
tion of multiplication, which may be completely carried out on
adding machines (from simple ones to tabulation machines).

12




If we d0 not take a square grid, but a rectangular grid, in
which the sides are rectangles which are parallel to the z and y
axes, referring both to ¥2 and /3, then for the approximate solu-
tion of the Laplace equation, we must find the function u at the
corners of the rectangular grid which satisfies the following equa-
tion i

'-€s29£;
where .

o U= ‘:T)' {2u,,., c"'z_“é-':.a ~+3a, bet + 3u,, ¢
(ui k 18 the value of u at the corner, which lies on the inter-
]

section of the ith vertical and the kth horizontal. Here the
sequential use of the operation is only reduced to summation.

Similarly, in the three-dimensional problem we may introduce /58
the approximate solution of the boundary value Laplace problem by
the grid method. One of the methods indicated above, or a combina-
tion of them, may reduce all of the successive operations to sum-
mation and division by 10, i.e., practically only to summation,
and only to addition. For example, let us give this method.

Let us consider the following three-dimensional grid: The
plane x0y is divided into triangles with equal sides with the side
h with three series of parallel lines. The apexes of these tri-
angles are corners of a plane grid. This grid is moved parallel
along the z axis and is reproduced on the planes

1=z,= nh!g- (n==1, %2,...).
We obtain a three-dimensional grid, and the function u is given at
the grid corners. Let us assume A is a grid corner (apex of the
triangle) in the plane z = Zpe

Let us introduce the operation Fh, which changes the value of
u(A) at the corner A, divided by 10, and the sum of the value u at
6 corners of the same plane, which ere adjacent to A, and the double

13
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sum of the value u at 2 corners lying above and below the point A
in the plane 2z = 2 ., and 2 = 2 .

As may be readily seen, the approximate solution of the Laplace
equation reduces to find the solution of the equation u = Fh u at
the grid corners. The solution of this equation by the method of
successive approximation is reduced to the successive use of the
operation Fh, i.e., only to summation.

Let us assume we must find the three~dimensional solution of
the Laplace equation with axial asymmetry. The axis of symmetry
is with the ¢ axls, and we assume that the previous grid is con-
structed so that one of the triangle apexes in the z = U plane
(and in the parallel plane z = zn) passes through the symmetry
axis,

The function u must assume equal values at the corners of
each plane 2z = L which are equally removed from the axis. Since
our grid has 6 symmetry planes passing through the axis, the number
of corners corresponding to the different values of u is approxi-
mately 6 times less than the number of corners of the three-dimen-
sional domain, and it approximates a plane grid using the number
of unknown values of the three-dimensional problem thus solved.

Section 5

Let us examine the Sturm-Liouville equation

S IR@WY () - Plo)y (o) =iy () (17)

under the boundary value conditions, for example y(a)=0, y(b}=0.
We will have R(x)> 0 at the segment [a, L]. We shill alsc assume
that on [a, ] P(x) 0.

. Along with (1), let us consider the equaticn

14 j
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%ER(-\’)"“‘;:‘” }_-P(x)m(x")»: _‘_'_%_:;2' (18)

Let us assume ul(x),uz(x),..., uk(x),... is a sequence of eigen /5%
functions of the equation (17), corresponding to the values

PFS W8 - SR W ST 1¢ P(x)<0 on (a, b], then A, are nega-

tive. If o .

= V [} ‘( )o
9(*) ﬂc“ X (19)

then the solution of (18) with the initial value of w(x,0)=%(x)
is o '

wix,t)= Xc‘u‘(x)e)“' (209
=l

Since all ), < 0, then w(x,t) approximately strives to zero at
t-o, and the terms cu'(x)e™ strive to zero more rapidly, the
larger is k. If, for example, ¢y yo 0, then for a very large

t the first term w(x, ) cu'(We™ will be the main term in (19).

4’ " ﬂ] * ”hl L) iey 'n-' ‘"
4

Fig. 1

For a fixed rather large t, the function w(x,t) may become
approximately proportional to the first eigen function u'(x)
with the relative accuracy which 1ncreases as t increases. If
we simulate the equation (18), then we may find the approximate
values of the eigen functions of the equation (17), and the eigen-
values.

The equation (18) may be modeled for a linear electric circuit
of resistances and capaclitances.

15
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Dividing the segments [a,b] into n equal parts with the length

h==tfl and setting f(a+1h)-f1, we replace equation (17) by
its finite difference analog

'a’l"- Ri(%i—9)— R @~y 0]~ Py = (21)

Along with (21), let us consider a system of ordinary equa-
tions which arproximate the partiasl differention equation (18)

IR (0,0, (0 = w, () + R (0,09 — uy (0)] = Pru() == Ca, (9 (22)

All of the previous consideraticns hold if we designate the
"eigen functions" of equation (21) by uk (k =1, 2,...). These
functions are given only at the points a = ih, and we use Ak to [Qg
designate the corresponding eigenvalues which approximate the
eligen functions and values of the initial equation (1) at h-+0.

Let us formulate a linear scheme of resistances and capaci-
tances with the corners A, (1=0,1, 2,..., n) (Fig. 1). Each
corner Ai 1s connected with the corners Ai-l and Ai+1 by the con-
duetivities Ry , and Ry, and currents wlth the conductivity P,
and the capacitance C emanate from it. The voltage equals 0 at
the corners Ao and An' The voltage at the corners A1(1 = 1, 2,
+++y n —1) satisfies equation (22). At the corners A, A,,...,
Ai’ ooy An__1 setting the arbitrary system of voltage, in view of
the previous statements, after a certain time interval t, we ob-
tain a system of voltages wi(t) which is approximatelylproportional
to the system of values for the first eigen function U™ at the
points a + 1h, If we give the voltage in hundreths of volts and
measure them at the time to for a voltage of about one volt, then
the measured voltages at the corners Ai give the approximate
values of the first eigen function at the points a + i1h. Thus,
the sign and overtones =-- of other eigen functlons, are retained.
If the measured values of the voltage -- when we multiply them,
let us say, by 100 -~ are given at the corners Ai and are again

16
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measured in the time interval to, then we may obtain the more
"pure" value of the first eigen function (with weaker traces of
the higher eigen functions).

Let us assume we have obtained the first eigen function “il
which assumes the value u,l at the points Ai(i =1, 2, «o.y N =1).

1
Let us now give the system of voltages w at the corners Ai’ so that

E w,; " u;' =0,
i.e., the initial distribution represents the function w which is
orthogonal to the first eigen function u'. For example, let us
assume that at all of the corners except two, w = 0, and at the
corners AJ and Ak

wiw,=—ultul

Similar measurements would have to give the second eigen
function u2. The given function w is orthogonal to u', and
therefore the coefficlent ¢, = 0 in the representation of (3)
when ¢ 1is replaced by w. Now, with an increase in t, the second
term will decrease the most slowly

c. u*(x) e!

with the following eigen function u2.

The coefficient ¢y does not precisely equal zero for u', al-
though 1t is small, but since the first term decreases more slowly
than the others, the measured system of values at the time to does
not give an expression which is approximately proportional to the
second eigen function. Generally speaking, it may be regarded as
a8 linear combination of the first two eigen functions. However,
the first eigen system 1s known. Therefore, we may determine the /61
second from this linear combination.

17
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The transition to the third eigen function is similar.

Let us assume P(x)>0 in the interval (a, b). If this
condition 1s violated, then it is sufficient to replace the co-
efficient P(x) in (17) by the coefficient JP(x)==P(x)+ C(C==const)
so that it is positive in this interval. This substitution leaves
the eigen functions of equation (17) unchanged, and decreases all
of its eigenvalues by the number C.

We may use a simllar method to model the eigenvalues for i
several plane and three-dimensional self-conjugate equations -- K
the linear system 1s changed toige plane or three-dimensional :
(for example, finding the eigen functions of the equation Vu=ia
ete. i

Note. Let us assume we are solving an experimental problem

of finding the eigenvalues and the eigenvectors for the equation
Ay=)ly
(y 1s the n-dimensional vector; A - square matrix). The solution
of this problem may be modeled very simply if the diagonal terms
have one sign in the matrix A. This can be achieved by adding the
corresnn:iding positive constant C to the diagonal terms. In addi-
tion, the elgenveztors are not changed, and the eigenvalues in-
crezse by C [our equation is replaced by the equation (A + Cly =
(. +Ciy}

We give this in the problem examined.

The answers obtained will] contain inaccuracies following both
from the unreliable estimate of the measurements, and from the dis-
tortion which we assume, as well as by the replacing of the differ-
ential operator by the finite-differenc: operator. For a plane
problem to be solved by the grid method, we may replace an arbi-
trary contour by a polygon contour. However, we may greatly improve
the results by regarding the distortions we introduced as perturba-
tions of the operator and by determining the influence of these
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perturbations on the result obtained. This pertains not only to

the method given, but to any other experimental or numerical method
of solving these problems.

Section 6

Let L be a self-conjugate operator and we shall approximately
solve the operator equation

—_u=0
Lu—"u (23)
under the normalization condition
(v, u)==1. (24)

Actually, we replace the operator L by the approximating opera-
tor L, (we replace the differences by the derivative in the differ-
entlial operator, the integrals by the sums in the integral operator,
ete.), where L,=L-+3L (in the previous exampled§ L is the difference
between the differential and the finite difference operators, which
is expressed by means of the difference of higher orders).

We have found the approximate elgenvalue Al and the approxi-
mate normalized eigen element uy

Li=L+-3L, u==u-+3du,

which satisfy the equation

Liu-—7u=t

(25)
(the nonzero right side 1s determined by calculation errors, mea-
surement errors, etc.).

Substituting (23) from (25) snd disregarding terms of the

second order of magnitude with respect tod2 andé u, 1.e., replac-
ing the difference of the first varlation, we obtain
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Du+3u—33u—Bus=e. (26)

Multiplyirg doth sides of (26) by u and using the equations
(23) and (24), and in addition, due to the self-conjugate nature
of L, we obtain

(Lu — %) du -+~ (3Lu, u) — 8= (s, u),

from which we have

M = (\Lu, u) —(s, 4). (27)

The first term on the right side is the regular expression
for the perturbation of the eigenvalue. The second is determined
by the inaccuracies of solving the "perturbed" equation. Finding
d) and designating A by Y, -8 1, we obtain a more precise value
of A. Equation (26), which is solved with a relatively small
accuracy, determines the correction Su.

In problems for finding the ei-~envalues of the differential
operators, the boundary values are included -- the zero values
at the boundary. Let us use the symbol 62 to designate the varia-
tion caused by varying the boundary. For an approximate solution,
if we assume the distortion of the boundary (for example, in the
plane problem we replace the curvilinear plane contour by a con-
tour with several corners), then the termxﬁgk appears in the right
side of (27) -- the variation of the eigenvalue caused by deforma-
tion of the boundary.

R. Courant developed (see, for example, Part 1 of "Methods
of Mathematical Physics") a variational theory of eigenvalues
based on the method of the minimum-maximum. However, this theory
gives only a qualitative estimate -- the increase or decrease of
the eigenvalues, i.e., only the sign of aex, while the regular
elementary methods of the variational value give tlhie values § 2A,
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i.e., they determine (within an accuracy of the higher variations)
the numerical value of the distortion introduced by the small
deform: tion of the boundary, and make it possible to refine the
result.

Let us assume L is the self-conjugate differential operator
with certain zero boundary data.

Let us use J(u'=(lu,u), to designate /i(W)=/(u)—i(yu) . Equa-
tion (23) is the Euler equation 3¥/(u)=0: . Under the 1soperi-
metric condition (u,u)= 1 or S,w) -0 . The normalized eigen /63

function is the extremum of the equation AJi(u)- 0, and the eigen-
value *>==/J(uu).

We shall vary the boundary. Then &2==38J. . Since the normal-
ization condition retains its form,

M u)=0, t.e Hi=8J)=8J.

The last side of this equation is calculated on the basis of
the regular rules for the variation of the functional from the ex-
tremum with a variation of the boundary.

Example 1. L is the Sturm-Liouville operator. We have the
equation (17) under the condition u(a) = u(b) = 0 and the normali-

zation ,

(u,u,= | udx-—=1.
Here
¢
J()==(Lu,u)~- | (Ru" v Pa’)dx,
!
Jy(u)=| (Ru' v Pui—tw)er.
Setting F--Ru® v Pui—iu , we have
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Fy=2Rvu, F—u'F,=—Ru"* vPu—ru.

’

If the finite abscissas a and b obtain the variation Aa and Ab,

Xa=d, )y =—(F—u'Fp e (F—u'F, %
At the point square x = a, x = b, we have
F—u'F.=—Ru",

Therefore

8 %= R(a) [« (@)} 3a — R (b) [« (b)}: 38, (28)
Since

R(ﬂ)>oo R b)>°l

then at 3.>0, %<0 [i.e., with compression of the integral
(a,b))

Hy>0,

g i.e., the eigenvalues increase. Thus, the qualitative side of 3
the variational serles of eigenvalues is completely obtained.
Formula (28) gives the quantitative estimate.

Example 2. Let us assume L = V i1s the plane Laplace opera-
: tor applied to the functions u(x,y) given in the plane domain Q /64
' with zero boundary values at the boundary q of the domain Q. Then

= v ety = J{(3)T+ 5V e
v {2+ (5] o e

Let us vary the boundary q in the viecinity of its point A, and we
assume };, is the varlation of the area Q. Then

3/, (u) =~ [grad u (A},

n
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and, consequently,
3 =—[gradu(A)]3:,.
‘ (29)
Thus, the qualitative estimate of §,% is obtained: at 4,<0, §1>0,
1.e., the eigenvalues of the operator V increase, if the domain Q
is reduced, changing into the eigen part. However, formula (28)
gives the quantitative estimate.

Let us assume we have found the eigenvalue for X and the
eigen functions of u for the domain Q1 which approximates the
domain Q (for example, for the domain consisting of the quadrile
squares, if we solve experimentally the problem for the plane
square grid). Let us divide the band between Q and Q, into small
parts of the area %,, i=1, 2,...,n, , which are adjacent to the
point Ai’ 1i=1, 2, ..., n of the boundary q. With the transition
from Q1 to Q, the eigenvalue ) receives the increment 52* which ap~
proximately equals

0w =N [rradu(A)] 3,
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