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ABSTRACT

A series of tests was carried out by the Jet Propulsion laboratory

(JPL) under the sponsorship of NASA to evaluate the performance of a

unique crash barrier designed to protect the occupants of an automobile

from terious injury. The JPL barrier design is a configuration of empty

aluminum beverage cans contained in a tear-resistant bag which, in turn,

is encased in a collapsible container made of plywood and steel. Tests

were conducted with a driven vehicle impacting the barrier. The basic

requirements of NGHRP Report 153 were followed except that speeds of

30 mph rather than 60 mph were used. Accelerometer readings on the

driver's helmet showed that he was never subjected to dangerous decelera-

tions, and in no case did the driver experience more than temporary

discomfort. Also, all of the requirements of the cited report were met..

An extrapolation of data indicated that the JPL barrier installed

in front of a tree or telephone pole along a roadside would also have

met the requirements at a speed of 40 mph.
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SECTION I

'

INTRODUCTION

A series of vehicle crash tests was performed by the Jet

Propulsion Laboratory (JPL), under- the sponsorship of the NASA Office

of Technology Utilization, to evaluate and demonstrate the performance

and effectiveness of the JPIa barrier design. The JPL barrier design is

a configuration of empty aluminum beverage cans contained in a tear-

resistant bag which, in turn, is encased in a collapsible container

made of plywood and steel.

A.	 PROBLDI

An evaluation of data from the Federal Coordination Program Project

(Reference 1) showed that in the category of non-superhighway accidents,

`	 200,000 involved trees, 4,000 of which caused fatalities, and 240,000

involved poles, 25,000 of which caused fatalities. The data showed

that crashes at automobile speeds of 30-35 mph are common, and discus-

sions with highway engineers have confirmed tile, problem's importance.

Since thero is a definite need for protection against crashes into

roadside trees and poles at speeds as low as 30 mpla, a natural step in

the development of the JPL concept was to perform tests at autoillobile

crash speeds at less than the 55-60 mph for which the present gore

barriers are designed. The Appendix contains additional pertinent

l	
accident data.

I	 B.	 BACKGROUND

Several of the safe: and effective crash barrier systems that have

been developed for use on highways provide impact protection tap to

L	 l-1



60 mph. These are generally placed in front of rigid highway obstacles

such as roadway gores (off-ramp wedges) and abutments. One such system

was investigated by JPL in 1976 and 1977 (Reference 2) under a program

sponsored by NASA. The feasibility of using empty aluminum beverage

cans in a crash barrier was demonstrated by JPL during that investiga-

tion for speeds up to 30 mph. The crushing-force history is very

orderly and of a nature that is expected to be more benign to the

occupants of vehicles than the gore barriers note in use. It should be

noted that field tests at 30 mph can be more readily carried out than

similar tests at the higher speeds.

C.	 GOALS

Because available data are based on a great variation in tree and

pole locations and dimensions, it was decided to contact several high-

way departments to set reasonable standards for the tests. An 11-in.

diameter pole located with its center line 24 in. from the paved road-

way was established as a reasonable "standard" tree (pole) to protect

with a barrier. Also, tests at 30 mph would be appropriate since

crashes at speeds of 30-35 mph are common, as stated above.

Design goals were:

(1) A total installation cost of less than $500.

(2) A barrier that would meet the requirements of NCHRP

Report 153 (Reference 3) except that the impact speed

would be 30-35 mph.

(3) A device that would be non-proprietary.

1-2
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SECTION II

CRASH BARRIER DESIGN

AND

INSTALLATION REQUIREMENTS

A.	 SUMMARY OF PREVIOUS WORK

1.	 Laboratory Tests

3tatir tests carried out at JPL in 1976 showed that compressing

one 12-oz aluminum beverage can will dissipate 28 ft-lb of energy at

72% can compression. These tests were essentially static tests in that

compression took place over a #.,* rind of several minutes. When similar

tests were carried out on a large number of cans that formed a nodule,

the energy absorption per can remained about the same. In all of these

tests the. cans were loaded axially.

Vehicular crash tests indicated that the dynamic energy dissipa-

tion per can was substantially higher than the static (about two or

three times). To verify this in laboratory tests, weights were dropped

from various heights, axially, on empty aluminum beverage cans. Typi-

cally, a single can absorbed in excess of 60 ft-lb of energy at about

80% compression. However, when a 300-1b weight was dropped a distance

of 7 1/2 ft on a container containing 48 axially-oriented cans, the

energy absorbed per can was 36 ft-1b at about 80% compression. This

value was somewhat higher than the static test but substantially less

than that of the dynamic test on the single can or the actual crash test.

The reasons for the differences in the results of the various dynamic

tests were not clear.
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In an attempt to better understand the reasons for the increase

in energy absorption of dynamic static compression, calculations were

made on the effect .1 internal pressure in the can on the buckling

loads. Results are tabulated in Table 2-1. The difference may be

explained by assuming that no air leaks through the tab opening or

elsewhere during impact. When the can is compressed to 80% of its

original Length using an isentropic compression (n = y = 1.4), the work

to compress the air is calculated to be 1.8 times the work to crush the

can in a slow manner. Actually, each can had a bole where the tab had

been removed. This hole is an effective vent for "static" tests.

However, during rapid crush it w ,)uld act as a restriction to the

escaping air even if not blocked off by an adjacent can. Hence it

seems reasonable that there could be an internal pressure of some

amount. The amount of this buildup would govern the energy absorption

performance of the can.

Table 2-1. Internal Pressure vs Allowable Axial Load

Internal Pressure 	 Allowable Axial Load

	

(p si)	 (lb)

	

0	 215

	

5	 449

	

10	 520

	

20	 607

2-2
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2.	 Field Tests

a. Vehicle. In a previous series of tests performed by JPL, 	 3

y

both at JPL and at the Caltrans Sacramento facility, the test vehicle

was pushed by .a pick-up truck into the JPL crash barriers. To do this

it was necessary to accelerate the truck continuously to maintain con-

tact with the test vehicle. Before impact the pusher would decelerate,

and, after contact with the test vehicle was lost, the rusher could

safely change its course. It was found that controlling the test

vehicle direction accurately by pushing in this manner was easy at

speeds up to 25 mph, but it became difficult at 30 mph and not feasible

at higher speeds.

b. Barrier. In early tests, when all rows of cans were oriented

axially in the crash direction, is was found that deflections were less

than expected and that g loads were: high. Placing randomly-oriented

cans in the front part of the barrier bag resulted in greater deflection,

much more uniform deceleration, and lower g loads.

B.	 RECENT CFANGES

Because empty 12-oz beverage cans weigh only about 1/20 lb each,

the modular crash cushion is quite light, is easily handled, and can be

arranged in a wide variety of configurations. The crash barrier design

used for the current field tests was based on and was influenced by the

results of previous work. The JPL concept is the primary element of

this test barrier as shown in JPL Drawing 10091568 (Figure 2-1). The

entire barrier is fabricated from readily-available materials and is

easy to install. It is approximately 6 ft long, 3 ft high, and

3-1/2 ft wide. On impact, the side panels slide past the backstop as

the beverage cans collapse. The two 4 in. x 6 in. wood posts prevent

f
	 2-3
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Lateral motion of the barrier and also prevent it from rotating. The

11-in. diameter poles serve as a backstop support, and also help to

prevent rotation to the side. The fabric bag contains the cans and pre-

vents them from spilling out of the container on impact. It is made of

a flame-retardant weather-resistant fabric.

C.	 MODIFICATION TO ACCOtZIODATE TREES AND POLES

To control the stiffness of the JPL barrier effectively, a brief

investigation was made fQr randomly-oriented empty aluminum beverage

cans (the cans are simply tossed into a container). Several dynamic

tests (dropping weights) (see Paragraph A.1.) were carried out to de-
TM

termine the energy absorption capability. The results showed that the

energy absorption of a given volume of randomly-oriented aluminum be-

verane cans under dynamic crush is about the same as that of the same

volume of cans under static crush. It should be noted that the number

of cans in the random orientation is about 85% of the number of

uniformly-oriented cans in the same volume.

In previous tests, in which 1/4-in. mesh metal screening (hard-

ware cloth) was used as the can-containing vessel, a large number of

cans scattered on the roadway after impact. The use of a fabric bag

effectively prevented this scattering.

In establishing test goals (see Section 1, Paragraph C), the

assumption that the pole center-line would be placed 24 in. from the

road edge precluded the use of a longer barrier, because such a barrier

itself might be a hazard if it extended too close to the roadway.

t ;.	 2-4
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SECTION III

TEST PROGRAM

A.	 OBJECTIVE

The purpose of the test program described herein was to evaluate

the performance of the JPL barrier concept by a series of tests that

were representative of actual crashes. 	 The barrier was therefore sub-

jected to the conditions of NCHRP Report 153, except as noted, to deter- j

mine whether it met its requirement. The barriers were designed to pro-

3

tect the occupants of an automobile from serious injury at speeds of

30-35 mph should their car be directed at a tree or telephone pole pro-,

tected by the barrier.	 Also, the tests were to provide subjective in-

formation from the driver of the vehicle pertaining to aspects of the

crash and the physics); effect of the impact upon himself.

i
B.	 APPROACH

It was decided to use instrumented vehicles driven by a profes-

sional driver for the following reasons;

(1)	 Confidence had been firmly established in the JPL concept
9

during the pushed-car tests.

(2)	 Much better control of the impact of the car with the crash

i
barrier would result than by pushing.

f
t. (3)	 It would be valuable to have first-hand experience 	 fromP	 (

an occupant of the crashed vehicle).

(4)	 Tests conducted with a driver were determined to be

actually less expensive than with towed or pushed cars.

3-1



Discussions with Caltrans (California Department of Transportation)

engineers led, in turn, to discussions with California Auto Research

(CAR), an organization that had satisfactorily performed tests for

Caltrans. An agreement was reached with CAR to perform the JPL test

procedures and to use the Orange County Raceway facilities in Irvine,

California, for the tests. It was decided that CAR would provide the

driver, the test cars, and the labor required to install the barriers,

which included digging the holes for support posts. JPL would prepare

and supervise the test program, and provide the barrier, materials,

technicians, and equipment for photographic and accelerometer

measurements.

C.	 PREPARATION FOR TESTS

1.	 Car

Cars were prepared for crash tests in two weight categories, 2250

and 4500 lb. Each ear was weighed, and ballast was added, if required, to

meet the requirements of Reference 3. The speedometer in each car was

checked in the 30 mph range. The cars were painted yellow in order to

enhance motion picture data.

For safety, the door on the driver's side of the car was removed

and two steel pipes were welded in its place. This served as a sure

escape area and also enabled a high-speed camera to photograph the

driver's reaction better during impact. In addition, steel tubes were

placed between the hood and the windshield so that if the hood came off

it would slide up the tubes rather than penetrate the windshield.

3-2
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2. Driver

To provide safety for the driver, he was provided with a helmet,

seat belt, and shoulder harness. One of the accelerometers (see

Paragraph 3.a.) was installed on his helmet to monitor head motion.

3. Instrumentation

a. Accelerometers. Three accelerometers were used within each

test vehicle; two were installed to measure axial acceleration on the

car frame and a third was fastened to the driver's helmet. The acceler-

ometers used were Donner Servo-accelerometers, No. 4130. Each acceler-

ometer output went through signal conditioning equipment and was

recorded both on a direct-write Brush 680 recorder and on an Ampex

CP1Q0 magnetic recorder.

Basic accelerometer calibration was performed both at JPL using

an Unholtz-Dickie 350B vibration system calibration and at the test site

by a turn-over calibration to verify +1 g and -1 g accelerations.

b. High-speed Cameras. Two high-speed 16 mm motion picture

cameras having a nominal rate of 500 frames/sec were used to photo-

graph the impact. The first camera was located with its axis perpen.-

dicular to the side of the barrier. The second camera photographed

the impact from behind the car as it impacted. Its axis was almost

parallel to the barrier axis. The first camera recorded a pulse on the

film each 1/120 sec. This pulse, together with a grid near the impact

point, was used to establish the impact speed. These. cameras were used

to observe. the trajectory and motion of bath the car and the driver

during impact with the barriers.

3-3
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4.	 Barrier
t

In the 15 mph tests (the first tests run with a driver) as

described in Paragraph D below, conventional telephone pole installa-

tions were used. They were inserted vertically only about 3 ft into the

ground, and slow speed tests showed this to be inadequate. The pole

was then inserted about G ft into the ground, but at 30 mph it was found

that the 11-in. diameter telephone poles would often shear or split.

Consequently, in the final tests, steel poles with fins (for strength

and stabilization) were used to simulate the telephone poles. These

poles, inserted vertically G ft into the ground, would sustain the three

or four impacts during a test period; i.e., remain upright and unbent.

The crash barrier installation, as defined in Figure 2-1, was

then completed.

D.	 DESCRIPTION OF TESTS

The tests were carried out as planned on a portion of the

3000-ft long drag strip at the Orange County Raceway located in Irvine,

California. Initial impact tests were made at 15 mph to check out the

test procedures, the instrumentation, and especially the effects upon

the driver. Modifications in the instrumentation, in the barrier back-

stop, and in the method of retaining cans in the barrier had all

resulted from early test findings (see Section II).

Seventeen (17) tests were made during the period of August 1978 -

July 1979. The instrumented vehicles were driven by a professional

driver, Mr. Paul O'Shea of CAP.. Tests that were carried out in this

series are listed in Table 4-1. Note that several of these tests were

carried out on barriers consisting of empty 55-gal chemical drums.
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Different configurations of these drums were investigated for purposes of

performance comparison with that of the JPL barrier design.



SECTION IV

RESULTS

Test results indicated that the JPL barrier met all of the

requirements that were imposed upon it and, through the subjective com-

ments of the driver, that the shock was Less than that of impacting

55-gal drums. instrumented test data also showed that both peak and

overall accelerations were higher for 55-gal drum barriers than for

JPL barriers.

A test summary that shows the configuration of the test barriers

for each of the 17 final tests is presented in Table 4-1 and Figure 4-1.

The CAR personnel were most cooperative in all phases of the test pro-

gram, and they performed very well.

A.	 BASIC DATA

1.	 Car

Three accelerometer traces for each test run were obtained.

Examples appear in Figures 4-2, 4-3, and 4-4. From these data the

average ace:=^: :arations were computed and are Listed in Table 4-2.

In all tests for each car weight using the JPL crash barrier, the

duration of impact was greater than 300 ms; hence the average accelera-

tion for each test was less than 5 g (refer to Table 4-2). The peak

decelerations were greater, but for much shorter periods of time. The

average decelerations for shorter durations are also shown in Table 4-2.

Note that the peak acceleration recorded for the car is only around

13 g with the maximum average over 50 ms being only 9 g.
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Table 4-1. Test Summary
M;'

Test Configuration

Gar
Weight
(lb)

Impact
Speed
(mph)

Off-
axis

Angle*
(deg) Offset ** Notes

1 Panelled 4500 15 15 None Earth moved; pole
enclosure; tilted (pole dia
oriented cans 11 in.)

2 Same as 1 4500 15 15 None Same as 1

3 Similar to 1 4500 15 15 3 ft Same as 1

4 2 - 55-gal 4500 15 15 None Same as 1; front of ca
drums captured by barrel

5 3 - 55-gal 4500 15 15 :None Same as 1
drums

6 Same as 1 4500 30 20 None Pole sheared; pole
imbedded in ground
6 ft

7 Same as 1 4500 30 20 None Same as 6

8 3 rows of 55- 2250 30 0 1 ft Same as 6
gal drums; 2
drums per row;
oriented cans
in rows 1 and 3,
empty drums in
row 2

9 Same as 1 4500 30 0 1 ft Steel pole with
welded fins; no pole
motion

10 Same as 1 4500 30 0 1 ft Same as 9

11 Panelled 2250 30 0 1 ft Same as 9;
enclosure, cans scattered
random cans

12 Similar to 8; 2250 30 0 1	 ft Same as 9
all drums empty;
no hole in top
of 1sL row

I
*off-axis angle is the angle between the vehicle center line and the
barrier center line measured in degrees (see Figure 4-1)

**Offset is the lateral distance between the vehicle center line and the
barrier center line measured in feet (see Figure 4-1)
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Table 4-1. Test Summary (Continuation)

i

f

Test Configuratiot,t

Car
Weight
(lb)

Impact
Speed
(mph)

Off-
axis

Angle*
(deg) Offset** Notes

13 Panelled 4500 30 0 2 ft Same as 9; low g
enclosure;
combination;
of oriented
and random
cans

14 Same as 13 2250 30 0 None Same as 13

15 Same as 13 4500 30 0 None Same as 13

16 Same as 13 4500 30 0 None Same as 13

17 Same as 13 4500 30 15 2 ft Same as 13

*Off-axis angle is the angle between the vehicle center line and the
barrier center line measured in degrees (see Figure 4-1) ,

**Offset is the lateral distance between the vehicle center line and the
barrier center line measured in feet (see Figure 4-1)

It should be noted that most cars were used for two crashes,

although some were used three times. This was possible because the

damage incurred was not critical to the car operation. However, each

crash did use up some of the car's inherent impact absorption capability,

hence making each succeeding test with the same car a more severe demon-

stration of the JPL barrier capability.

Selected photos from the motion picture data of Runs 13 through 17

were analyzed. Acceleration data obtained from these pictures match the

accelerometer data except that the peaks are not as pronounced. This is

due to the averaging technique used in the photo data analysis method.
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RUN 17 (7-12-79)
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Figure 4-4. Accelerometer 'traces; Run 17
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The predicted average acceleration is given by:

V = a t	
a

where

V = 44 ft/sec

t = 0.300 sec

a	 0430 = 147 ft/sec t = 4.6 g

This is consistent with optical and accelerometer data.

2.	 Driver

Accelerometer 3 was fastened to the driver's helmet with its axis

horizontal when the driver's head was upright. However, at impact the

driver's head rotated as shown in Figure 4-5, and the accelerometer

measures acceleration along the arc of rotation.

To observe the deceleration traces due only to helmet rotation, a

series of 64 laboratory tests was carried out. In most cases, the

helmet was placed on an engineer who suddenly rotated his head forward

until his chin hit his chest. Test 5H* was such a test. In other

cases, the helmet was dropped on a foam pad that was on a table. Test

62H was such a test.

It was found that for Runs 13, 14, 15, and 17, the superposition

of the Test 5H trace on that of the car frame resulted in an acceler-

ometer trace that closely approximated the actual helmet acceleration

trace (see Figures 4-6, 4-7, 4-8, and 4-9).

In Run 16, the helmet trace indicated a high acceleration for less

than 50 ms. This was probably due to the impact of the helmet against

the steering wheel.

*H signifies a test conducted in the laboratory on a helmet.
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Figure 4-6. Combined Field and Laboratory Traces for Helmet; Run 13
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RUN 15
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i
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Figure 4-8. Combined Field and Laboratory Traces for Helmet; Run 15
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Figure 4-9. Combined Field and Laboratory Traces for Helmet; Run 17
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The impact of the heimet against the steering wheel had been

simulated by Test 62H. The superposition of Test 62H on the Channel 2

acceleration for Run 16 closely approximates the helmet accelerometer

trace (see Figure 4-10).

It should be noted that Reference 3 does not require accelerometer

measurements to be made on the driver. Since humans can safely with-

stand accelerations of 40 g for durations of less than 50 ins (see

Figure 4-11), at no time was the driver in danger because of excessive

accelerations.

The driver performed all impacts accurately. In no case did he

experience more than a temporary discomfort. His comments appear in

Table 4-3.

3. Instrumentation

To verify the accelerometer data, comparisons were made with the

motion picutres through use of their timing marks (see Figure 4-12).

4. Barrier

Pictures of the barrier before and after impact appear in

Figures 4-13 and 4-14.

B.	 ANALYSIS

Figure 4-15 shows the theoretical relationship of the average

acceleration experienced in a crash versus the impact velocity for

various compression distances. The compression distance includes that

of both barrier and car deformation.
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Figure 4-12. Deceleration Rates
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To illustrate, if the average acceleration for the first 250 ms

were 9 g and for the last 50 ms were 20 g, the average deceleration

would be 11 g. Referring again to Figure 4-11, the short term (50 ms)

exposure to 20 g acceleration is not dangerous to a passenger with a

shoulder harness restraint and the 11-g average deceleration is less

than the 12 g that Reference 3 permits.

Since the car crashes never did utilize the full energy absorption

capability of the JPL barriers, it is clear that these barriers would

have provided for impacts above 30 mph that would satisfy the require-

ments of Reference 3. The following analysis is used to predict realis-

tically what the situation would be for a 40-mph impact.

If the same force were to act for a 6-ft travel distance, the

energy absorbed would be increased by 20% (6/5 - 120%). This corres-

ponds to a velocity increase of 9.5% ( 1.20 = 1.095). The impact

speed could thon be about 33 mph (1.095 x 30 = 33).

From an energy absorption standpoint, the 4500-1b car traveling at

30 mph (44 ft/sec) has a kinetic energy of:

1 
M 

V2 _ 1 x 4500 x 44 2 = 135,000 ft-lb
2	 2	 32.2

Assuming that the average force acts for the entire: 5 ft of travel,

the average force is 135,000/5 = 27,000 lb.

Tests on empty beverages cans show tliat as bottoming is approached,

the average force increases non-linearly. Assuming that this non lin-

ear force increases by a factor of 4 for the additional travel, the energy

absorbed by 108,000 ft-lb (5 x 27,000) to 243,000 ft-lb which is suffi-

cient to permit a 40 mph crash. This could correspond to a 9-g accelera-

tion for a 6-ft travel impact speed of 40 mph, as shown in Figure 4-15.
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Table 4-3. Driver's Comments After Each Test

Test No.	 Comment

	

9	 That's a hard hit. A severe shock.

	

10	 About the same as 9.

	

11	 Not bad at all.

	

12	 That time I knew I hit something solid.

	

13	 Not too bad.

	

14	 Not too bad,

	

15	 I've been hit harder before. Not too bad but harder than 13 and 14.

	

16	 Harder than the last one, (15) but not as bad as some earlier tests.

	

17	 Harder than the last tests. My teeth bit my tongue. That has
happened before in tests many times. Still not as hard as 9 or 10.

Based on Tests 13 through 17, the average deceleration over the

	

300 ms	 period was 4.6	 This corresponds to a compression distance

of 6 ft, which is about the observed combined deformation of car and

barrier. Extrapolating the ' I S = 6 ft" curve to a 40-mph impact

velocity curve, this would correspond to about 9.3 g -- a little above

the 6-8 average g recommended in Reference 3, but well below the 12 g

permitted. It should be noted that at higher speeds the excursion

would increase until "bottoming" occurred. Considering both, car and

barrier deformation '
I
S" at bottoming is probably in excess of 7 ft.

Referring again to Figure 4-15, this would mean an average deceleration

of about 9.7 g at 45 mph — also well below the 12 g permitted. There

is a danger in extrapolating to high speeds in that a rapid increase in

acceleration will occur once bottoming occurs. But even if this happens,

the average acceleration may s t ill be satisfactory.

4-23



Even at 45 mph, the average g level is less than the 12 g permitted in

Reference 3. Reference 3 states "the preferred )aximum vehicle accelera-

tion average is 6-8 g and the maximum average permissible vehicle dece-

leration is 12 g as calculated from vehicle impact speed and passenger

compartment stopping distance."

Based on the above, it seems reasonable to assume that the barrier

is capable of protecting the occupants for vehicular impacts in excess

1
of the 30 mph tested, and that 40 mph appears to be a reasonably safe

crash speed with 45 mph the likely upper limit.
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SECTION V

CONCLUSIONS^
i

'a
a

The JPL barrier described in this report meets the requirements of

Reference 3 at 30 mph and probably would meet that requirements at 40-45 j

mph.	 The design is non-proprietary.	 The design goal of having a cost
a

of less than $500 per installation still needs to be verified.

The basic JPL barrier design can be extended for higher speed

applications, in cases such as gore protectors, where longer crushing

distances are feasible.

The use of a live driver for the tests (as opposed to remote

operation) provided confirmation that g loads were not excessive. 	 The

driver also verified that the shock he experienced in the 55-gal drum

tests was greater than that of Tests 13 and 17 on the JPL design.

It should be noted that where space limitations preclude the use
1

of a 6-ft long barrier, a stiffer, shorter barrier could be used with-

out exceeding the 12-g average acceleration permitted in Reference 3

(see Figure 4-11).
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APPENDIX

SIGNIFICANCE OF PROBLEM OF CARS IMPACTING TREES AND POLES

The following data were provided by the Bureau of Accident

Analysis, Pennsylvania Department of Transportation. Statistics are for

the State of Pennsylvania during the period January -- December 1976.

Table A-1 provides data on various fixed objects that were hit.

The main causes of both major injuries and moderate injuries wert', trees

and utility poles.

Table A-2 provides data on fatalities for various first objects

hit. As might be expected, the largest number of deaths (556) resulted

when automobiles were hit first. This was followed when pedestrians

(346) and trucks were hit first. But closely behind were deaths result-

ing when trees (188) and poles (166) were the first objects hit.

Table A-3 provides a set of data on injuries that is in general

agreement with the other tables.

Table A-4 provides data on accident description and severity of

damage. The "hit fixed object" category is the type that caused the

greatest number of fatalities and the most property damage, and was

second in the number of injuries. Trees and utility poles are not the

only fixed objects that are hazardous, but, as shown in Table A-1, these

are the principal offenders in this category.

Table A-5 provides data on accident description vs severity of

injury. Again the largest number of major injuries and the significant

number of other injuries are clearly the result of hitting a fixed

object.
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