
 

 

 

 

N O T I C E 

 

THIS DOCUMENT HAS BEEN REPRODUCED FROM 
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT 

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED 
IN THE INTEREST OF MAKING AVAILABLE AS MUCH 

INFORMATION AS POSSIBLE 



-.., 
"J. 
~ 

~ 
~--

~ 

" 

NASA Technical Memorandum 78640 

(HASA-T!-78640) INTEB1C~10N OF A 980-17988 
TVO-DI!EiSIONAL STRIP BOUNDARY LAfER WITH A 
THREE-DIMENSIONAL TRANSOftIC SWEPT-WING CODE 
(IASA) 3S P He A03/KF 101 CSCL 011 Unclas 

G3/02 33569 

INTERACTION·OF A TWO-DIMENSIONAL STRIP 

BOUNDARY LAYER WITH A THREf>·DIMENSIONAL 

TRANSONIC SWEPT-WING CODE 

PERRY A. NEWMAN~ JAMES E. CARTER~ AND 

RUBY M. DAVIS 

MARCH 1978 

NI\SJ\ 
National Aeronautics and 
Space Administration 

Langley Research Center 
Hampton, Virginia 23665 

;;;::::;-

~~~~~~.~.~-----------------~-----------------------------

r 

., 
I 

. ~ 



. 
! 

\ 
\ INTERACTION OF A T";O~DIMENSIONA1~ STRIP BOUNDARY LAYER 

WITH A THREE-DIMENSIONAL TRANSONIC SWEPT-WING CODE 

Perry A. Newman, James E. Carter, and Ruby M. Davis 
Langley Researcb Center 

SUMMARY 

A 3-D inviscid transonic analysis code bas been combined 
with a 2-D strip integral boundary-layer technique to form an 
approximate interaction procedure for analyzing the flow over a 
high-aspect-ratio wing near cruise conditions. Converged results 
were obtained using this procedure for an aspect ratio 10.3 
supercritical wing at Moo = 0.80 and CL = 0.53, in which angle
of-attack adjustments were made during the iterative procedure 
in order to compensate for the viscous lift loss. Comparison of 
these calculations with experimental data shows generally good 
agreement and thus demonstrates the usefulness of this approximate 
procedure for obtaining transonic wing-load distributions. 

INTRODUCTION 

The purpose of this report is to present a brief discussion 
of a viscous-inviscid interaction calculation procedure for 3-D 
transonic swept-wing flows appropriate to transport cruise design 
conditions which, in view of successful comparisons with experi
mental data, may prove to be useful until a fully 3-D procedure 
becomes available. This procedure was developed during April 1977 
in order to quickly assess several aerodynamic aspects of the 
engineering design for mounting an NASA supercritical wing on an 
existing drone vehicle. Specifically, an estimate was needed ior 
both the angle-oi-attack setting required to produce the transonic 
cruise desi.gn conditions (Moo = 0.8, CL = 0.53 at altitude of 
14 kID (46,000 it» and the resulting detailed (chordwise and 
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spanwise) load distributions on the wing. Experimental data were 

not available at the time when this information was needed. 

Calculation of cruise design loads at transonic sp~eds for 

a swept wing with supercritical airfoil sections requires the use 

of a nonlinear inviscid 3-D flow solution, in which the geometric 

shape has been corrected to account for a viscous boundary layer. 

This was found to be necessary in 2-D supercritical flows (ref. 1). 

An interactive calculation between the inviscid and ViSCOllS solu

tions should be made because of the dependa~ce of the viScous 

solution on the inviscid pressure distribution and, corresponding

ly, the dependence of the inviscid flow on the displacement body 

shape. This iterative process is continued until convergence is 

obtained. The influence of the boundary layer on aft-loaded wings 

is significant since a sizable lift reduction occurs even near 

cruise conditions where separation effects are small. Hence, if 

a specified lift must be maintained, then angle-'of-attack adjust

ments must also be included in the viscous-inviscid interaction 

procedure. The shock waves which tend to occur at transonic 

conditions further complicate this interactive process. 

The procedure uses an existing 3-D, inviscid, transonic, 

full-potential equation, swept-wing computer program (refs. 2 

and 3) and an integral formulation for calculating 2-D turbulent 

boundary layers (ref. 4) as coded for transonic airfoil applica

tions (refs. I and 5). It is recognized that the use of a 2-D 

boundary-layer calculation along a streamwise strip is only 

approximate since it does not account for sweep and taper other 

than through the inviscid pressure distribution. However, compari

son with some experimental data (unpublished, but taken as part of 

a more extensive study on several supercritical wings (ref. 6» 

which were obtained subsequent to the calculations is encouraging. 

DISCUSSION OF METHOD 

In this section a brief discussion is presented concerning 

the specific inviscid. and viscous computational procedures which 
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were used in the present calculations. The limitations and mOdi
fica:tion'§i of each of these procedures as applied to 1:11'e present 

interaction calculation are also mentioned. 

Inviscid Calculation 
The inviscid 3-D results were obtained using the Jameson

Caughey transonic flow analysis program FLO 22 (refs. 2 nnd 3). 
Reference 3 contains details concerning the methods upon which 

the program is based as well as a user's guide for the program. 
Briefly) this program solves a finite-difference approximation 
to the nonconservative form of the full potential-flow equation 
which has been transformed to a boundary conforming coordinate 
system. A conformal square-root mapping and simple tlumerical 
shearing transformation are used in each spanwise plane which 
allows most of the transformation derivatives to be calculated 
analytically and therefore results in an efficient computer code. 

The trailing vortex sheet is assumed to lie in a surfaoe which 
leaves the trailing edge of the wing smoothly and it is not 

allowed to roll up nor dissipate. The basic Murman-Cole (ref. 7) 
technique of type-dependent operators incorporates Jruneson's 
(ref. 8) IIl0cally rotated" finite differenoe forms and convergent 

relaxation scheme (based on his artificial time-like analogy) in 
order to produce a reliable numerical solution algorithm. These 
solutions are obtained on a rather fine 3-D computational grid, 
almost 150 thousand points (l92X24X32). by using external disk 
storage and buffering information into high-speed core only as 
needed. 

The potential formulation is, of course, isentropic so that 
the re~~lts should not be expected to be a good approximation when 
strong shock waves occur in the solution. Furthermore, the non
conservative form of the governing equation does not produce 

solutions which maintain conservation of mass when shocks appear. 
Neither of these two limitations should prove too severe near 
cruise design conditions, in which case the shock waves tend to 
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be weak. Approximations in treating the wing tip and vortex sheet 

would be less accurate for wings of small aspect ratio. Rec'ent 

experiences with inviscid solutions for highly tapere~/;wings shoW 

a rather severe loss of accuracy, perhaps due to either the span

wise decrease in number of computational grid points on the wing 

or the increased nonorthogonality due to the high leading-edge 

sweep or both. In any case, for high-aspect-ratio transport-type 

wings near cruise design conditions, neither of these latter two 

limitations should be too severe. 

Viscous Calculation 

The boundary-layer program NASHMAC was built around a sub

routine which was extracted from an existing 2-D airfoil code. 

It is based upon the Nash-Macdonald method (ref. 4) for calcu

lating a 2-D turbulent boundary layer. This subroutine was taken 

from thE! Carlson program TRANDES (ref. 5); it is a derivative of 

the boundary-layer code found in reference 1 and is thus very 

similar to it. Modifications and additions were made in order 

to compute the displacement thickness distributions along stream

wise strips at a number of spanwise locations on both surfaces of 

a wing. At each spanwise location, the boundary layer is computed 

along the local streamwise grid where the inviscid analysis code 

gives output pressure data,. Trandi tion from laminar to turbulent 

flow was assumed to occur at a specified trip line wl~ch, in the 

present calculations, was the same for both the upper 'and lower 

surface. The turbulent boundary-layer calculation is started 

slightly in front of the trip line to approximately account for 
the laminar boundary-layer thickness. 

The same two-dimensional empiricisms were used in the present 

calculations as those used in reference 1 for the separation 

criterion and monotonicity conditions and smoothing procedure on 
the displacement thickness distribution. Also, as in reference 1, 

the trailing-edge displacement thickness is extrapolated from the 

upstream values and no' viscous wake calculation is included. 
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Interaction Procedure 

Figure 1 is a simplified flow chart which depicts the major 

steps in the inviscid/viscous Jnteraction. As already indicated, 

it was required that the present interaction procedure include a 

provision for obtaining the sol~tion with a prescribed total lift 

for the given wing. Thus,angle-of-attack adjustments were needed 

in the course of the interaction since the 3-D in~~scid analys~s 
progr&.m FLO 22 does not include an ~ption to spq.cify CL as am 

input. 

The calculation is started with the given wing geometrie shape 

and incidence which produces the prescribed total lift. Note that 

initially it might be necessary to iterate several times in FLO 22 

in order to deduce the value of ex for producing the given CL. 

When one Qas allowed the FLO 22 solution to converge so that the 

CL changes are small between each relaxation iteration, then a 

value of 
6CL 

obtained from successive solutions at somewhat 

different incidence can be used in linear interpolation (or nearby 

extrapolation) to predict a value of ex required to produce the 

given CL. Some computing time can be saved, however, if one has 

an experimentally determined value for dCL/da (perhaps from a 

similar wing) near the given CL condition. Values derived 

both ways were used in the present calculations to estimate the 

next value of incidence, ex, in the i tera t ion procedur~_~ 

For a spanwise fine grid containing 32 points, FLO 22 puts 

21 computational planes on the wing semispan. These are at the 

root station and every 5% semispan location including the tip 

station at 100% for the present results. (Subsequent cases have 

been run with the wing tip centered between computational grid 

planes in which case the output occurs at something less than 

every 5% semispan). However,the input data to program FLO 22 is 
limited by dimension statements (which could be easily changed) 

to 11 stations so that, in the present program, the upper and 
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lower surface boundary-layer displacement thickness distributions 
were computed with NASHHAC at these 11 streamwise strips along the 
span. As is usually found in interaction calculations, under
relaxation of the displacement thickness was required to prevent 

oscillations between successive iterations. 
Due to time limitations, it was not possible to comb.ine this 

interactive procedure into one computer program and build in an 
automatic convergence criterion. Rather 1 the 3-D invi,scid program 
FLO 22 was run until it CO~lv~;r.~e~dafter each new displacement and 
angle of attack were presa;tibed . The magnetic tape restart capa

bility in FLO 22 was used to store the entire solution so as to 
provide a good initial inviscid solution for the next interaction 

cycle. 
Convergence of the interaction process was determined by 

compari~g surface pressure distributions and displacement thick
ness distributions for the two successive interaction cycles. 

Since FLO 22 requires considerable computer resources, the total 
computer time would be redu.ced substantially by correcting ex 
and updating the 0* after 20 or so relaxation cycles in FLO 22 
as is currently done in most 2-D interaction codes. 

COMPARISON OF RESULTS 

Comparison of several calculated and experimental results 
will be made and discussed in this section. All of the calcula
tions were made for a wing alone (no fuselage) before any experi

mental results had been obtained. First, a brief discussion is 

presented for the interaction calculations along with comparisons 
between the inviscid results, and those obtained with a viscous 
correction. Then comparisons are given with experimental results 
for a wing mounted on a fuselage. 

Calculated Inviscid/Viscous Comparisons 

A planform view of the wing used in the calculations is shown 

in figure 2. The assumed trip-line location is denoted by the 
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spanwise dashed line on the forward part of the wing planform 
which, as mentioned previously, was the same for both upper and 

lower wing surfaces. This wing is to be high-mounted on a drone 

vehicle and is about one-fifth the size of a full-scal~ transport 
wing. It has a semispan of 289.3 cm (113.9 inches) with root and 

tip chords of 112.3 and 32.0 cm (44.2 and 12.6 inches), resp~c

tive1y. The break in the trailing edge occurs at 42.6% semispan 

and the airfoil thickness varies from 14.9% chord at tQe root, 

through 12% chord at the break, to 10.6% chord at the tip. The 

sweep of the quarter-chord line of the trapezoidalplanfo~J!l, is 
270 and the aspect ratio is 10".3. The design cruise condt:tions 

of Moo = 0.80, CL = 0.53~ and irn altitu~e of 14 km (46,000 f~ef) 
result in a Reynolds number of 2.3 X 10 based on the mean 

aerodynamic chord of 59.7 cm (23.5 inches). 
The first c.alcu1ation in FLO 22 was(lfor the geometric wing 

shape at zero incidence; this produced a wing lift coefficient 

(based on total planform area) of CL = 0.525. This was deemed 

close enough to the prescribed design cruise value of CL = 0.53 

so the interaction was started; these results are denoted as 
"inviscid" in what follows. About II runs of the Jameson-Caughey 

FLO 22 program were made in the process of adding nine boundary

layer corrections and four angle-of-attack adjustments in order 

to arrive at the design !!ruise condition lift. It should be noted, 
however, that some of these runs, which were made in the early 

interaction cycles, were unnecessary and only served to develop 

the procedure shown in figure 1. Subsequent examples have been 

run with a few less boundary-layer interactions and much less 
computing time due to better use of the tape restart capability 
in FLO 22. 

Figure 3 gives the calculated chordwise distribution of wing 

surface pressure coefficients, Cp ' at 11 equally spaced spanwise 

stations along the wing. These are the 11 statiotis where the 
\l 

"effective inviscid" wing shape is redefined at each interaction 

for the present results. At each station, the interacted result, 

which is denoted'as "viscous" but includes both viscous corrections 
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and angle-of-attack adjustments, is plotted above the inviscid 

one. It can be seen that the principle effect of the viscous 

int(Jraction is to remove some of the aft camber in the wing. 

The resulting lift loss is compensated for by an increased angle 

of incidence, so that the prescribed design lift is achieved. 

The interacted calculation gives CL = 0.534 for an a = 1.Jo. 

Visual changes in the plotted section pressure coefficients were 

barely discernable in the last several interactions, thus indi

cating that the present calculation had converged when the calcu

lations were terminated. The value of CL obtained in the final 

four interactions (after the last angle-of-attack adjustment) 

were, respectively, 0.529, 0.536, 0.532, and 0.534. Large 

pressure changes, primarily due to shock-wave movement, occurred 

in the early stages of the interaction. 

Plots of the streamwise boundary-layer displacement thickness 

(0*), nondimensionalized by the product of the local chord and 

cosine of the local slope angle, are shown in figure 4 at 11 span

wise locations where the lI effective inviscid" shape was defined 

for FLO 22. Three curves are given for both the lower and upper 

wing surfaces. The curve denoted by an X is what was used with 

the geometric shape to obtain the viscous pressure distributions 

given in figure 3 (i.e. I the "old" 0*). The curve denoted by a + 

is the displac~ment thickness distributions calculated using the 

viscous pressure distributions given in figure 3 (i.e., the 

"predicted" 0*). The solid line gives the relaxed correction 
which would be used to obtain the input shape for the next 3-D 

inviscid calculation in FLO 22 (i.e., the "new" 0*). A relaxation 

factor of 0.25 was used at this stage of the interaction. The 
interaction calculation is converged when these three curves 

collapse to a Single one, which, as can be seen in figure 4, was 

obtained at all stations on the lower wing surface and all but 

three on the upper surface. These three upper surface stations 

are at the root and tip, which were definitely the most sensitive 

regions in this procedure. Even at these three stations, these 
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slight differences in the displacement thickness did not alter tht~ 

load distribution and, hence, the interaction was terminated. 

Experimental/Numerical Comparisons 

This wing has been tested on several different bodies for a 

number of conditions. To date, the experiment which most closely 

matches the conditions of the calculation with respect to Reynolds 

number based on mean wing chord, trip-line location, lift match 

on the wing and Mach number shift to approximately account for 

the presence of the fuselage was that done by Bartlett in the 

NASA Langley 8-Foot Transonic Pressure Wind Tunnel. The experi

mental data shown here have not been pu~lishedbut were taken as 

part of a more extensive study by Bartlett (ref. 6). A planform 

view of the wing-fuselage tested is shown in figure 5. The trip

line location is shown as a dashed line and does not correspond 
to what waS used for most of the study in reference 6. However, 
additional experiments were made in which it was set to coincide 

with what had been used in the calculation. 

Bartlett 1 s data show that the transonic flow on this aft
loaded supercritical wing was rather sensitive to Mach number and 

lift changes. The influence of a finite length fuselage such as 

that shown in figure 5 produces not only a spanwise distribution 

of upwash at the leading edge of the wing but also rather appre
ciable chordwise and spanwise variations in Mach number. Henne 

and Hicks (ref. 9) used a subsonic program to determine an average 
Mach number shift at the wing position due to the area distribu

tion of the fuselage; this shift is then applied to the input Mach 
number for the transonic wing calculation. In a similar manner, 

for the body of revolution equivalent to the fuselage shown in 

figure 5, Keller used his transonic axisymmetric code (refs. 10 

and 11) and obtained an average Mach number shift of +0.007 when 
the forebody, cylinder, boattail, and sting shapeiwere included. 

Thus, on the basis of this estimate of the fuselage effects, it 
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was determined that the earlier calculation at Moo = 0.80 should be 

compared with Bartlett's wing fuselage data at about Moo = 0.793. 
Figure 6 is a plot of the spanwise Q1Rtribution of the se<: t'ion 

normal force coefficient for both the 1DViscid and viscous calcu

lations as well as the particular experimental condition which 

most closely fits the conditlon~ of the calcul~tion. The trip 

lines are the same and the Reynolds numbers ba,sed on the mean 

aerodynamic chord are 2.3 X 106 for the calcul~tion and 2.4 X 106 

in the experiment. The difference in Mach number of 0.01 is very 

close to the estimated 0.007 shift obtained independently from the 

axisymmetric transonic calculation. This figure shows then thf~ 

extent to which the lift on the wing of the experimental wing

fuselage !(Iodel matches that on the outboa,rd sections of the wing

alone calculations. It is felt that this type of matching is more 

appropriate than matching either the total lift, CL, or angle-of

attack, a, since the fuselage has not been modeled. It is also 
seen from figure 6 that tUe calculated spanwise load is shifted 

inboard when the viscous correction is included. Both, however, 

still show more load at the tip than the experiment. In these 

calculations, a computational grid plane was placed right at the 
wing tip; in subsequent calculations, the tip bas been located 

between computational grid planes and the resulting load at the 

tip is in better agreement with experiment. The experimental 

values of Cn are obtained by integrating the chordwise Cp 
distrjbutions at the five spanwise locations where data were taken. 

Comparison of experimental and cal'culated surface pressure 
; 

coefficients is shown in figure 7 at five spanwise locat:i!ons. It 

can be seen that the interaction calculation results compare more 
favorably with the evnp~imental results than the invisci~ ones. 

The influence of the boundary layer is seen to be a dec.ambering 

of the airfoil sections which, in the present calculation, has 
been compensated for by increasing the angle of attack to yield 

a desired lift. The agreement between the calculations and 

experiment at the furthermost inboard station is somewhat less 
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than that obtained in other regions of the wing. Th:is is not 

surprising though since the body produces an increased upwash at 

the leading 0ilge of the wing which, of course, is not accounted 

for in the wing-alone calculation. 
Recall that the calculated viscous results were obtained by 

integrating along streamwise strips over the wing. Figure 8 shows 

oil flow photographs on both the upper and lower wing surfa~e at 

very close to the same flow conditions for which the presSt:.n~H 

were taken. The flow over most of the upper wing surface appears 

to be in the streamwise direction, but on the lower wing surface 

a noticeable outflow seems to be established at about 2/3 chord. 

This outflow is in the cove region of the supercritical section 

and is typical of wings which use such airfoils. Thus, the assumed 

stl'eamwise run of the boundary layer probably does not give enough 

thickness toward the wing trailing edge on the lower surface; and l 

thus, the viscous interaction is underestimated in this region. 

This deficit can be seen at all spanwise stations in the pressure 

comparisons on figure 7. 

CONCLUDING REMARKS 

An approximate viscous-in viscid interaction procedure for 

analyzing 3-D swept wings at transonic cruise conditions for 

transports has been developed. This procedure included a means 

of accounting for the viscous lift loss by adjusting the angle of 

attack so as to maintain a prescribed lift. A converged solution 

was obtained for a high-aspect-ratio NASA supercritical wing which 

is to be used on a drone vehicle. These calculations indicate the 

importance of accounting for boundary-layer displacement effects 

on the inviscid flow for wings of this type. Comparisons of this 

calculation with experimental data, which were obtained after the 

calculations were made, shows generally good agreement except near 

the wing root and tip where the assumptions of the present calcu

lation are the weakest. This good agreement indicates the useful

ness of the present interaction procedure for obtaining the load 
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distribution on a wing where the 3-D viscous effects are not 

significant. In addition, the use of a 2-D strip boundary-layer 

technique requires considerably less computer resources than a 

full 3-D boundary-layer analysis. 
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Figu re 1. - Flow chart for vi scous-invi scid interaction calculation procedu re for 3-D tran sonic 
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Assumed trip line 
;/ for turbulent 

boundary-layer 
calculation. 

Upper and lower 
su rfaces the same 

Figure 2. - Planform view of NASA supercriticai wing used in the calculations; AR = 10.3, 
~ Ac/4 = 27°. 
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Figure 5. - Planform view of NASA supercritical wing low-mounted on a wide-body-type fuselage 
as tested by Bartlett; AR = 10.3, Ac/4 = 27°. 
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Figure 8. - Oil flows on a NASA Supercritical wing, 

Moo = O. 79, Cl = 0.52, NRe = 2.4 x 106 (based on MAC). 
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