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SUMMARY

The objective of this study is to provide the numerical sim-
ulation of the transsonic flows of idealized fluids and of income
pressible wviscous fluids, by the non linear least squares methods
of R, GLOWINSKI and O, PIRONNEAU, The complexity o. the geometries
studied in industrial aerodynamics explains the preference given to
the finite elements for the approximation of the equations,

Chapters 1, 2, 3, 4 describe the non linear equations, the
boundary conditions and the various constraints controlling the
two tynes of flow, The standard iterative methods for solving a
quasi elliptical non linear equation with partial derivatives (E.D,
P.) are briefly reviewed in Chapter 5 with emphasis placed on two
examples : the fixed point method applied to the Gelder functional
in the case of compressible subsonic flows and the Newton method
used in the technique of decomposition of the lifting potential,

Chapter 6 presents the new abstract least squares method, It
consists of substituting the non linear equation by a problem of
minimization in a H=1l type Sobolev functional space, which is itself
equivalent to an gptimal control problem and solved by a conjugate
gradient algorithm with metric Hl, The application of this method-
ology to transsonic equations is presented in Chapter 7. We show
how to include within the optimal control formulation two con-
straints of aerodynamics: the condition of entropy, on the one hand,
treated either by penalization or by artificial viscosity, and the
Joukowski condition, on the other hand, taken into account by a fixe
ed point method on circulation,

The Navier-Stokes equations are reduced to a problem of minimie
zation in H=1l in the same manner in Chapter 8, Accordingly, we
show that the state systems of the mixed optimal control problem
are generalized Stokes problems in steady and unsteady cases, after
gquantification in time with the use of implicit Crank-Nicholson
(for example) type schemes, To solve them, a mixed formulation
proposed by GLOWINSKI~-PIRONNEAU and based on certain decomposition
properties of the biharmonic operator, is used, The Stokes algo~
rithm is substitued by a sequence of Dirichlet problems coupled
with an integral equation (L) conditioned on the pressure trace,
defined on the boundary of the domain occupied by the fluid,

Chapters 9 and 10 are devoted to the approximation of a trans-
sonic and Navier=Stokes optimal control formulation by P Lagrange
conform finite elements, with degree k=1 or 2, The numerical imple-
mentation of the conjugate gradient algorithms is developed and
presented in the form of flow charts, The numerical implementa-
tion ¢f the Stokes algorithm (El) is described and the choice of a
direct (Choloshi) or iterative (prcconditionod conjugate gradient)
method for solving it is discussed,

The large amounts of computations, due to complox tridimerne
sional configurations (nacelle, vehicle, air-inlet, airplanc),




stored in the main core of the computer, require an incomplete

Choleski factorization of the discrete Dirichlet matrices shown
on thoe inside of the control loop, The use of auxiliary operators
IL' in the solution of an optimal control problem is presented in
Chapter 11 through comparisons of research results of J,A, MEIJ=-

EREINK=M,A, VAN DER VORST and 0, AXELSSON,

The numerical experiments are described in Chapter 12, The
transsonic calculations obtained from the finite elements=optimal
control codes are compared with those obtained from the finite
differences codes of A, JAMESON on a NACA Q012 airfoil and a Korn
airfoil,

More complex transsonic configurations of .ndustrial aerody-
namics such as multi=bodies or air inlets aie analyzed,

The feasibility of optimal conirol conjugate gradient algo-
rithms is verified on bi and tridimensional Navier-Stokes calcu=-
lations, requiring considerable data processing resources (memory
and CPUS. Separated flows around/in an air inlet and around an
swept—-back wing with high incidence, are simulated numerically
by following at various time cycles the evolutiorn of the field of
velocities, the field of pressures, the streamlines and the vorti-
city.

Finally, the last paragraph of Chapter 12 is devoted to the
data processing efficiency of the auxiliary operators, It shows,
through examples taken from the two flow families, how it is pos=
sible, by using preconditioned optimal control algorithms, to cal=
culate entirely in the main core of the computer, with small per=-
centages of Dirichlet matrices , without reducing the

d/190 (5=d<20)

convergence velocity of the algorithm,
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SOLUTION OF A FEW NON LINEAR PRNBLEMS IN AERODYNAMICS BY THE FINITE
ELEMENTS AND FUNCTIONAL LEAST SQUARES METHODS

Jacgques Periaux
Pierre and Marie Curie University

O, INTRODUCTION

0.1, APPLICATIONS OF NON LINEAR AERODYNAMICS TO THE AERONAUTICS

INDUSTRY .

The calculation of pressures in aeronautics plays an essential
role in the optimization of aerodynamic shapes, The appearance of
more and more powerful computers, over the past decade, both with
respect to calculation speed and to memory capacity, has made it
possible for the aviator to simulate numerically flows which ap=
proximate more and more the flight conditions, To accomplish this
it was necessary to define thecretically and numorically two fame-
ilies of non linear equations : irrotational compressible idzalized
fluids, on the one hand, in order to study the transonic domain of
the airplane, and incompressible viscuous fluids, on the other hand,
modeled by the Navier-Stokes equations to provide a robust tool re-
quired for the study of separated laminar flows in a first phase,
then of turbulent flows in a second phase,

The domaines occupied by the fluid are bi and tridimensional, 3
They belong either to external aerodynamics when relating to air= 3
foils (P) or to wings (V), or to internal aerodynamics when rela-

ting to pipes (T), cavities (CA) or conduits (C). Finally, air in- _
lets belong to a third category : mixed aerocdynamics, The common §
denominator of these domaines is the complexity of the boundaries :
(one region surrounding a multibody, or one 3=D air inlet composed
of extremely complicated geometries, making it difficulz to reduce

it by conform conversion to a standard rectangular (or cubical) do-
main !), Furthermore, the final selection of the physical space as :
calculation domain was subjected to a numerical method by taking b
into account the boundary conditions with fine accuracy : THE FINITE ;

ELEMENTS,
/1N
0,2, Difficulties with respect to industrial configurations —

The numerical analysis of flows around industrial obstacles
points up 3 types of difficulties :

l - geometrical difficultiess the configurations studied are
extremely complex and require a delicate collection of data (descr- |
iption of a 2«D multi-body, or a wing + fuselage + air inlet + em- ;
pennage type airplane configuration). %

2 = theoretical difficulties ¢ the equations to be solved are

non linear and their solutions may be composed of discontinuities,
Furthermore, the following constraints must be satisfied simultan-

eously

=l




sconatraint of aerodynamic reaction or Joukowski condition

for perfect fluids,

sconstraint of physical shock or condition of entropy for
transonic perfect fluids,

sconstraint of incompressiblity for viscuous fluids,

3 - numerical difficulties : the volume of tridimensional calcu=~
lations (several thousands or unknowns) make it necessary to use al=
gorithms which are both rapid for convergence and robust for stabile

ity.

Figure 1 summarizes the situation in industry and describes the
solution selected,

1., - FEASIBLE MODELING OF AN INCOMPRESSIBLE IDEALIZED FLOW

l,1, 2=D Non Lifting Case

If Q and I designate respectively the domain and boundary
of the region occupied by the fluid, as the latter is incompres-
sible and irrotational, it obeys the following equations and boune
dary conditions (1)

6-; =0 ; M continuous
VA = 0 @ (1) ;
W“ieg (D, D=l

where, in (1), U designates the fluid velocity and g the normal
compcnent of velocity on I'; on [ boundary sufficiently removed from
the obstacle to ensure that the latter does not perturb the flow,

g = u .y where 5 is the external standard of the domain, whereas
on 'y "wall of the obstacle (P) g=0 and T,z = 0 means then that the

fluid slides over the wall,
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The irrotational condition is expressod in a standard manner by the

existence of a velocity potential 4 such that

Fig

ure

"~

TP .

It is therefore possible to

reformulate (1) as a problem
with elliptical type linear
boundaries (figure 3)

=0 @ .
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3¢ 2)
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® continuous
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continuous
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Note: As the boundary conditions are the Neumann type, it is pra-
ctical to de#ermine the potential at a defined point of the trail=-

ing edge
$=0 @)

1.2, Lifting Case 2«D

An obstacle brought to light and the boundary of which may not
be differentiated (point of reflection) can 1lift.

The 1ift (C3) is introduced artificially by the Joukowski con-
dition Upp ®* 0 (refer to GERMAIN (1)). In this case, (1) should be
added to an additional scalar equation at the trailing edge

Jy =0  (BF)

This constraint makes it possible for a circulation § to be in=-

duced around the obstacle, depending on the velocity at infinity and
the shape of the body,

A feasible modeling of the Joukowski condition imposes the
equality of the pressures on both sides of the singular geometrical
point (weakening of the condition ;, which is impossible to cal=

culate numerically). By applying the law of Bernouilli

->
p = f([ﬁ[z) = 1..1&1?2 the condition of Joukowski is written
T Y%

*4|2- - (3)
- 'BF

lu = Ullip.

If (3) is added to (2), then a cut should be made (C) origina=-
ting at the trailing edge (BF) up to infinity [, (Figure 3)
. flmgortant Note : On figure
"2 the second stop-point is
not located at the trail-
iz edge : the fluid by=
pi. .es the obstacle, where=
as 1 figure 3, the condi-
ti.i. of Joukowski necessi=-
tates that the fluid does
not by-pass the obstacle,

+
On the other hend, if by starting at a pnint P'eC’  the ob-
stacle is by-passed and we return to point p e ¢ which isc geome=
trically mixed, then we have the relationship (4)

¢;(P+) = o(P )+L ,¥Pe (©) (4)

4

where £ designates the unkown circulation,

b



Taking (3) and (4) into account, the formulation of the lifting
problem analogous to (2) is written

(.1 Af =0 (ﬂ)' H ¢ discontinuous
(5.2) ¢ =7+ 2 (O) .
(5.3) ﬁ@"]z - ‘§¢-|2 (BF) u continuous (5)

3%
(54) gg=g (M Ta=Tur,
(5.5) ¢ =0 (BF)

Tt may be noted that the non linearity c¢f (5) is due to the Jouk-
owski condition and that the solution of the problem (5) is the o, 2.
couple where ¢ is a function and g is scalar,

In the tridimensional lifting case, a discontinuous sheet (ND)
should be introduced at the beginning of the trailing edge line, fol=
lowing the bisecting plane up to bDUndary ‘e and generated by the var-
iations of the circulation in enlargement.(Figure h).

N
‘ND = u (ND),
Cjmt 3
N
LBF = )
j=!

§?

(BF)j

The coiling of this sheet for reasons of cnlculation time
is left out and the formulation of the 3-D problem analogous to (5) is

expressed




® discontinuous on (ND)

|;[ continuous

40 = 0 Q) ;

¢*(P.) = ¢7(P.)+2(y.) ¥ P. .

L5 )+ ny: €y (6)
|V¢(Qj)| - |V¢(Qj)| ¥ Q ¢ (LBF)

2og

It may be noted that the solution
(¢,%)where ¢ is a function and p is a

Figure 5

of problem (6) is the couple
function of the erlargment,
Finally, the formulation (5)

is generclized in the case of

a lifting flow around a multi-
body (MC), by introducing K
cuts originating at the trail-
ing edges of the K~bodies up to
infinity [, as is shown on fig-
ure 5 (Example of a hyper 1lift..
ing force (leading edge + pri=-
mary + flap)).

The problem at the boundaries to be solved is then:

Find 4 ¢ £ =

Ap = 0 [y}

$(P=0(R)42, v b C, ie
[Fo@h)? - |3

g% =g (D

. . . -~ .
i ¢ d1scont1nuous[u1 continuous

(£l,22,23,...) solution of

(5)y
1'2.3’000

272 ¥ Qe (BF), i=1,2,3,..,
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2,1, 2=D Non Lifting Case

As the flow is assumed to be irrotational, the compressibility
model is the isentropic type (refer to LANDAU~-LIPSCHITZ (2) and the
flow is controlled by the equation and the boundary conditions (7)

- > ->
Vepu = 0 3 u continuous

- - U
p=p,(l Yo )
> 5 c*
Vau = 0

<> >
pusn = g

where p designates the fluid density

Y'the ratio of specific heats (ym],4 in the atmosphere)

Cyx the critical velocity
so that if we set

-] 1
pcnl;k.-%—?
*

then the law of compressibility is written

2, = FEASIBLE MODELING OF A SUBSONIC COMPRESSIBLE IDEALIZED FLUID

n
-1 |32 V-1

@

(7)

(T

1

R

. Y=l

+* 5
If we introduce the velocity potential 9 by using VAu =0,

it is possible to reformulate (7
EAR boundary problem (8)

(8.1) VepVob =0 ; 6 - * 3

8.2 o= kWD @
l8.3) o 3-¢ )
(8.4)

(I‘Z) H F-I’lUI'

as a quasi=elliptical type NON LIN=~

- * *¥continuous

(8)




In the compressible case, it is interesting to add the local Mach
number given by -

el )

+]
Y y+l|vél

Furthermore, in the subsonic case, we have at every point of the
fluid occupying the domain, the relationship M2<l

2,2, 2=D Lifting Case

Extension to the compressible lifting case does not present anv
particular problem with respect to the inccmpressible fluid. The for-

mulation is given directly by

.V,'(chp) *=0 ; ¢ discontinuous E continuous

P = (1-k|Tp| 20

- o ) @ (10)
¢ = ¢ + 3 - (©)

%12« (%72 (g

3. - MODELING OF THE POTENTIAL TRANSONIC FLOW FROM A COMPRESSIBLE
IDEALIZED FLUID T

3.1. Equations

A characteristic of transonic flows is in the presence of shocks,
The condition of irrotation necessitates that their intensity is smallg
wl<|.5 ¥here M is given by (9).

If the local Mach variation is observed in a transonic case, it
may be seen that there are what is called supersonic zones where the
local Mach is higher than 1 M> 1) and subsonic zones where the local
Mach is less than | (M<1).
Example : flow around a
circle at M_ = .45

N

M<t /M>1] _ ML

*physical shock

Figure 6




T T

In a transonic state through shock, the flow must satisfy the
RANKINE=HUGONIOT conditions (2) .. .

- Couen]” = [puen)”
- u
n -+ -+
u*s continuous
with t\the region after the shock, -~ region before shock
s, unit vecteor of flow direction

Figure 6=b n, orthogonal at 3§ or in the direct
sense of figure 6-b,

A characteristic of tlie fransonic flow is that the fluid velocity /18
may be locally discontinuous when passing through a shock,

Let us now consider the equations and boundary conditions of a
transonic compressible fluid, They are the same as those for a sub=-
sonic compressible fluid,

-V"Oz =0 VAu=0; P may be discontinuous

p = 1[I @ | (12)
(ouenl® = [puend”

p -g% =g ¢y

The introduction of ¢ , however, by usingiV’A'J = ) leads to a mixed
elliptical type non linear (13) boundary problem 1< 1) ~hyperbolic )
. M>1).

(13.1) 6_“)34’ =0 ¢ continuous
(13.2) o= k|%H* (@ (13)
(13.3)  [oVond* = [p¥gend™

3 .
(13.4) P '3'3' =g (¢ 1 discontinuous

Fundamental Remarks

L T——— T T
oo AN

1) There is no uniquity theorem for the solution of (13) in the
transonic case,
2) The conditions of discontinuity through the shock shall be im=-

plicitely satisfied in the variational formulation of (13,1),

Figures 7, 8 show two possible Mach solutions in the case of a
flow around a circle for M_ = .45
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DECOMPRESSION COMPRESSION PHYSICAL
SHOCK SHOCK SHOCK

M<t M>1 ML M<t /M1 M<t

Figure Figure 8

The equation (13,1), where P is given by (13.2), is elliptical
(nyperbolic resp.) in the regions of 1 where the flow is subsonic(M<])
(supersonic resp. (M>1)). The solution of figure 7 contains 2 shocks
whereas the one on tigure 8 only contains one, The latter is physi=
cally acceptable, whereas the solution with a double shock, including
a decompress,shock, violates the laws of thermodynamics,(refer to LAND-
DAU-LIPCHITZ (2)).

Accordingly, the formulation (12) or (13) is physically iuade-
quate, In order to prevent the appearance of non physical shocks, a
condition of entropy must be added to 13, In the methods of finite
differences, the condition of entropy is satisfied by introducing
(M>1)of decentered differences or an artificial viscosity (see MURMAN-
COLE (3), JAMESON (5), BAUER~-GARABEDIAN=-KORN (4) into the supersonic

zone (M»>1)

Ir the finite elements techniques, the condition of entropy is
treated as an added constraint to (13) or by a technique of artificial
viscosity, similar to the finite differences, by modifying the equation
locally in the supersonic zone (13,1),

3.2, The condition of entropv formulated as a constroint

During the passage of a shock wave, entropy increases and we show




that in the case of a potential flow, this condition may be translated
by a decrease in velocity through the transonic shocks. This charact=
eristic applied to a monodimensional flow is translated by

ut - uT <o (14)

+
where u_ designates the velocity after shock,
u designates the velocity before shock,
(Figure 9)

Ifu-® %% then (14)

-—7< ) (15)

By analogy (15) in bi and tridimen=-
sional becomes

Ap < += 40 8¢ < K with constant (16)
K to be selected

In the variational formulation of the transonic problem, we shall

consider a small shape of (16) given in (17) obtained by integrating
(16) by parts, [

-J V@den <K fwdﬂ ¥ae .D+(ﬁ)
Y] Q

where .D+(9) = {wlwe () ; w20}

A (17)
5 @) = {wjwec (), supp w compact}

It is important to note that in (17) only the derivates of first
order, more accessible in a finite elements approach, are shown,

The transonic formulation selected in this case is:

Vep Vo = 0
o = (1-k[Pe|H®
to¥en1® = [o¥een1" (18)

Ap<K

S—
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3.3 The Condition of Entropy Formulated by the Artificial Viscosity

In roference to M,0, BRISTEAU (6) and to JAMESON (5), (13,1) may
be rewritten in

g in a local reference marked(n.g) or |n| is
the unit vector of the flow direction 3 and + th : —_—u 8
perpendicular orientated in the standard diroation on R«
figure 10,

~p

~—
s u

Figure 10
52 (13
p"%*—P—-(l-V)M-O 2
on l-kV 38

V2 = u2+v2

3 ‘vd L,ud_ .3 _md_.vd . oo 3

WTOURCTE S wcvm vy Vet Gees)

In this form, the elliptical or hyperbolic characteristic of cthe
equation appears, depending on whether or not V is smaller or larger

than 1, In a similar manner to the decentering practiced in the fin-

%te d%fferences, the operator of artificial viscosity is added to
13.1

2
R 326
E(9) = - 5= (([8]3-n* —&— 23
T | 1-k|al? 3 (19)

with (|'5|2-|)’ = sup (0,]3]2-1)

and the transonic formulation selected §
in this case is given by

- -
=Ve(pU¢) + VE(4) = 0 ; v>0

p = (1-k|Ve[%)C @

(20)
(pV¢onT* = [oVoen]”
9
5% =g )




Note t vV parameter of viscosity >0 depends on step h of the triangu-
lation of the domain in numerical applications,

Other artificial viscosity operators mentioned in (5), (37) as E
in (21) have been tested numerically and give very close solutions

B0 = - & (U207 elee) . (21)

3.4 Lifting case

Extension to the transonic lifting case does not present any

problem with respect to the compressible subsonic fluid, The formula=-
tion is given in (22) from (18)

-»> - - T,
VooV = 0 ; ¢ discontin. ; u discontine

b = (1-k|V4| %

[pVéenl* = [oVoeml” (@)

(22)
Ap<K .
¢ = 9" + 2 (C)
V%12 = |76 (EF)
2 R ("
f‘ ¢ =0 (BF)

4, = MODELING OF AN UNSTEADY INCOMPRESSIBLE VISCyYoQUS FLUID

B If 0 and [ designate respectively the domain occupiad by the
. fluid and its boundary, the latter obeys the Navier/ Stokes equations
b without dimensions, increased by boundary and initial conditions, i,e.




-

3 - -
(23.1) 3% - VA: + (G;$)u+ Vp =0

(23.2) Vepao )

, ' (23)
(23.3) U=:
(23.4)  U(x,0) = o°

->
where U is tle fluid velocity

p is the pressura
v is the fluid viscosity ( V=l/Re with Re = Reynolds number)

+ and "o specified; 7., if p_p represent a wall (condition of
2 adhexrsnce
z-q,if ral, represent "infinity"

An example of external flow around an airfoil is given on figure
11,

n .

TP
oo " us0

P

Figure 11

In the steady case (23) is reduced to

- VAy + (:'3); + ﬁp =0

> o (S‘/

Veu = 0 (23)s
- -

Gz )

the fiuid is controlled by a system of

In the unsteady case,
non _linear partial derivatives, where-

cquations wit:: parabolic tvpe non

it obeys u system of equations with clliptical
In

as in the steady case,
type non linear partial derivatives,

23




(23) and (23), the main numerical difficulties are the condition of
incompressiblity, the Reynolds and the non linear convection,

5 = THE STANDARD ITERATIVE METHODS FOR SOLVING EQUATIONS WITH QUASI- /4
ELLIPTICAL NON LINEAR PARTIAL DERTVATIVES

51+ The Model Problem

For reasons of simplicity, we are interested in the solution of
the non linear Dirichlet problem (24)

-4 - T(¢) = 0 @) (24)
$ =0 (') = (39)
with T non linear operator and () a boundary of RZ ,
5.2, The Fixed Point Methods %
The simplest algorithm t. solve (24) is %
o , (25)
n=0 ; ¢ ivem ¢ - ¢°|r -0
(26
For n20 compﬂt°¢n*lknowing ¢" by solving )
' : (27
2™ aTeh @ ‘
°n+l -0 )

(25) (26) (27) is a converging algorithm for subsonic compressible
flows (refer to GELDER (7), NORRY-DEVRIES (8), PERIAUX (9)).

The Gelder algorithm in the case of a 2-D pipe. In this case,

«
is represented by figure 12, )
o
2=} Diver=
‘ _ ging Pipe
] n n

Figure 12




In this case (') = (ryv rp) and (8) is expressed

(28.1)  Fep P =0 @)

(28.2) 5 = (1-k[F2BH% (@) (28)
)

(28.3) 3‘3 -0 r,)

(28.4) o], =n@® (r,)

The variational formulation (29) is obtained by multiplying (28.1)
by a test function " ﬂ' ) and by integrating by sections where
¢

Ri @) = {we Lz(ﬂ)IVuc L2()

/25,

(29)
=0,¢[, =h
] lrl

I (1-kT20) FoeTu dx = 0, woen' (@ , 6],
Q

Let us introduce the functional (30) co(¢) and the space

1 1 M
B (D) = {Ven (n)lvlr. 0}

1 INCALRD!
6,(¢) = - TtaeT) Lz(l k%613 ax (30)

Let us calculate, in the meaning of G&teaux (refer to VAINBERG
(10)), the derivative of Go at a point ¢" of Hl,

d * * ' * *
ii: ax Go(® +280) = <c!(¢)),80 >

The steady state of G, in ¢" is expressed in (31)

. . 31
500 - Go(¢*+6¢') - co(o'> - <G;(¢3.6¢>+ 0(56")  ¥(66™)e uls(n) (51)

By using (28.,2) and (30). (31) is written (32)

5, fn(:-klwlz)%nm- i + 0Ges™ (52)

!
and therefore ¢* is n stcady point of G, in HOS(Q) if it satisfies
(33) s
(33)

- -
f,z(l-k}'i;*lz)u%ﬂ% dx = 0 , Vue nls(sz)




; By approximating (33) from (29) : all the steady points ¢ in
H_(7) satisfying ¢*-h‘r = 0 are solutions of (28).

s
We can now prove the uniquity of (34)

m;n G_(4) (34)

in the 2ase of the subsonic state by demonstrating tkat in this parti-
cular c:se G, is convex. We have only to calculate for that in (33)

d2
Gg = lip =, (G°(¢+k6¢))

A+0 dr

cu(4) = -f (1-k[To| H%Teeee - —HE Fg-F60)" ) ax
f (1-k| V8| ) (35)

- -
By refering to (9) M’ = Xa (I-kl%lz) l|\7¢|2 wit~ M local mach 26
and using the identity ":.g‘ = |a|[b] cos 8 (35) is wrive~ - (36)

G (¢) = -fn p(l--M2 cos? e)|$3¢lzdx (%)

It is now easy to verify that if Mc¢)| in  -subsonic case) G
is convex and that
L ]

¢ = Arg minI G _(4)
¢O-heH ° is the solution of (28)

whereas if M>! in Q@ (transonic case) G! is no longsr convex and that
is only a saddle point of G,

( ) A fixed point algorithm or guasi linearization is described in
37

i) ne0 ¢° initialisé en -A¢° = 0 ¢°—h|r -0
| ]

the continuation {Qn%EI is constructed by solving for ¢n+'glﬂ(ﬂ)

n n+l N
it L o" T Fua .0, Vwculscm (37}
i

(" l-nyip =0
5
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The convergence of (37) in the hardest subsonic cases is obtained in
10 maximum iterations.

Note : The fixed point method. (37) are related to the gradient
methods, In fact, (27) is a special case of (38) with p=l!

¢° given

nx0

-6 ™2 Ly in @ (38)
¢n+'/2 .0 on T

¢! = 0%+ p(e™1 /24

but (38) by eliminating ¢P*!/2 is expressed (38)?
¢ =" - -t (-ag™-T(6™) (38) "

(38)! is a gradient method if T is the derivative a functional, An
example of {38)' described in (41), consists of minimizing the fugct-
ional G, by a gradient method in the metric adapted to standard Hps

written out ” ” where designates the scalar product
of the space ) f f » = ’ -V’f ﬁf an
of Sobolev H%s o
Generally, if . de“ined by (39) is a dual ele-
ment of 5¢€1- (9) H G°(¢)
2 2 27
¢ L)' = L°(Q -+
: o @ <G!(9),8¢> = f pVHVEH a2 . (39)
Q
Let us introduce geuls solution of (40)
r
| f Vg V60 a0 = f oVo-V80dR  , Voo € H (40) :
Then (41) consists of Q Q o8 |

41,1, ¢° initialized in A% =0, ¢°-h|1‘ -0
s

1
I o 1 :
'- alculated b 41
8 € lgg(M cateuiated BY g% = 6 (¢%) (41) ;
we set h° = g°
41,2, “n2l1 knowing o" and gneﬂl {¢n+l} {gn”} eHl is construct~
i ed in two phases : 08 os

Phase 1 : Calculate ,* _ arg min G°(¢’n‘Ahn)
set n+l ¢ - A*hP

®

Phase 2 $¢ Construct the new direction of descent
To accomplish that solve
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Solve - dgn+l = J'(¢n+‘) v gn+'€ ! (L)
J Vgt g™t gy -
Calculate Yn+l= L ° dx
]leg“|2dx
ans set SR g™l ynthn ; n=n+|, and go to 1,

(41) is the version of the POLAK-RIBIERE conjugate (1) in the metric

adapted Hgoge The rapidity of the convergence of (ht) is comparable
to the one of the fixed point described in (37).

The gradient method with metric adapted t» the preconditioning
shall play a fundamental role in the case of transonic fluids.

5¢30 The Newton Methods

Assuming this time T differentiable (24) may be solved by the
algorithm (42)

(42.1)  ¢° given

n
b
(42.2) nz1, ¢“+l is calculated from. ¢ BY (42)

o™ - TieMe™! = M-I 0™ 0" in @

(42.3) Ry

=0 on [

(42) is a special case (p=]) of (43) used for the hardest cases

43.1) ¢° given

o d om ¢"
(43.2) nz2! , ¢n is calculated fr ¢" by

VT T (O o O R L (43)

¢n+‘/2 = 0 on T

| 63.3) o™ = o™ +p(e™* /g™ , 020

g The treatment of the Joukowski condition, differentiable non
| linear constraint, is an application of (42)

Example of the Flow Around an Airfoil

(5) may be solved directly by using the discontinuous velocity
potential in the form of an iterative procedure (Al) including the
Joukkowski condition, the technique of decomposition
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-

of the potential (A2) (refer to NORRIE-DEVRIES (8)).

Al - 1f (C) designates an arbitrary 1ifting cut of the trailing
edge TEF) up to infinity (I, the velocity potential § is a discon=-
tinuous function along (C),

P I
Let us introduce o .5- (0). If K (Q) designates the standard
Sobolev space ¢

y! Q) = {ve Lz(Q) ; Uve LZ(Q)}

then it is possible to give a variational formulation of (5) in
Hi(ﬁc) under the space ot }ﬂ(ﬁc) defined in (44),

H;(ﬁc) ={ve n'(?zc) | v| (BF) " 0; v|c+-v| - =2}, (44)

‘Account taken of the continuity of the velocities along (C) which
is expressed in (45)

>4 e -+ b=
u°*n = g°n

c+

c

(45)
3

‘ 3¢
T

e
+ 3n

C

By multiplying 5.1 by a test function and by integrating in parts
by taking into account (4?)-(5.2), the equation (5.1) is written in
the variational form (4.6

e o 1.> | I (1'6)
< VoV dx = 0 WVuwe HQ) ,¢ecH @)
g _ c c
c ,
. > 2 > 2
Assuming JK(L) ='V¢£| . 4V¢2| _ , the Joukowski condition
is expressed in (47) (c) ()

(47)

IK(®) | g = ©

The algorithm (42) applied to this example is expressed in (48)
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1) Assuming ¢© given ; $° is solution of (46) in HIOGD
L

i3) For n>0 (¢7,2"} being known,
are calculated by the equation

n+l -
270 = o™ - gk ™y ke

with JK'a 2('5“.’65‘»*- $¢:€76¢-), on*! solution of (46)

n H] 5

n
iii) stop test on ¥ satisfied, otherwise n=n+l, go to ii),
The convergence is ensured in several iterations

A2 = The velocity potential ® is the linear combination (50) of
two potentials - ¢;. and @R,¢Np continuous potential and~%{ discontine-

uous potential, solution of (49)yp and 49)R

Adygp = O Q
3

5% NP =g r
bgp = 0 (BF)
A¢R =0 (1))

¢ -¢ = | c
R+ R‘ - ()
Rl -3,
= =0
on* ¢t on ,C-
¢R = 0 (BF)
D= Oyp + L0

If L is selected so that (51) occurs

FUTEUUE L e TR e oo ¥ em R R e a

/

%
{zn+l’¢n+l}
(48)
(5 maximum),
(49) yp
(49)
150)

e s

. P



| JK(L) = lvgl;; - ﬁgl;_ 0 (51)

it is then easy to verify that {¢,2} solution of (49), (50), (51) is
the solution of (5).

l ~
Assuming HB"(Q) = fwet m)““! = 0} oand H (Qc) is the sube
set of 1 “2) of the verifying functions on the cut (C)

The? t?e variational formulation of the equation 49) is expressed
in (52

> ->
‘7¢\y .Vw dx = f l
]‘2 N Pgw dr Yuw € HBF

(52)
onpet -
whereas the one of equation (49)R is given in (53)
. Yot
- . = : | B
5 RVwdx=0 Yoely(2) (53)

[+ 1 ~

The solution of (5) is then given by algorithm (54)

1) ¢y and R solutions of (52) (53) ; ,oinitializes;e° - 0p*2%
R

n+l n+H

ii) For n20 i {20,eM being known {¢ is calculated

by the equation

(54)

n+l

2 = 2" - okt aMake™




with
K™ = [T 2 - g2
BF BF

JK'@™) = n, - %0,
@) = % %R'mv" 73 WRIBF_}

°n+ ]

1
- ¢ NR*‘Q' ¢R

iii) If a stop test is not satisfied by n+] 3 n=n+l
I . we return to ii L

The convergence of (54) is ensured in 3 or 4 iterations,

Remarks : (48) and (54) ave generalized in the two following
directions :

-compressible subsonic and transonic equations
~complex geometries : 2«D multi-bodies and 3-~D airfoils,

Example : Expansion of (54)
to a multi-body in subsonie
Tee ' state; The domain (q) is
. . shown on figure 13.

If P is eliminated in
8.1 by using 8.2, the pro=-

t

—. blem with boundaries to be
Ueo solved is given in (55)
Figure 13
: 2.2 2 2 )
E; (55.1)  (9gma Vo, + (6720, + 26,006, = O
(55.2) o) , -] o =1, i=1,3 (55)
c; c;
> 2 -+ 2
(55.3)  JRQ) = |v¢] -|ve]” _ =0 i=1,3
BF BT

\(55.4) 3, - 8 om I’1=qu(upi)

ey By FO8

A

\
3
‘v
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(55.1) may be reformulated in (55.4) in the form (55.5)

-0¢ + T($) = 0 (55.5)
020, + 038, * 20,00
with T($) = %
- C -
a? = avn|vg|? amalezaenll? Begamm

The method of quasi~linearization developed in (37) is used in
(56) to construct a continuation {s™} EH ) verifying

f Vo* 1w ax —[ g W dx + I T(O™ wdx = 0

Q r Q _

¢n+l (56)
El'bz(Q)

Vmeﬂ -{weH(Q)lwlr. a}

r ¢° nt designates the discontinuous potential of the velocities
and (&, )® the circulations around bodi%s (P ) with iteration n, ¢n+l

is expressed in (57) 1
o™t . ohD + iglgi ki (57)
where ¢§;' and ¢R' are solutions of (58) (59)
i

1

dx. =
r Ak (58)

+1
¢;P EHQz(Q) ; Vmeﬂlz(ﬂ)
j ) 3. 1eg
*Vw dx =
q R x =0 V‘”GHI(QC)

- i (59)
¢, eH, ( ) i=1,3
Ry ™ 74 eyt T

The expansion of (54) is the shown by algorithm (60),

(¢R ) solutions ©f (59) (i)
1 i=!,3

(¢NP) solution of (58) withT = ¢

e solution of J}\ (2° ) =0

1 initialized ¢° = ¢)\,

4 5 20 (60)
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£
%
»
z

o

. +
(11) 721 ©%anda (4™ being known(®™'} (™' lare caiculated by
first using (58) providing n+] » then by solving the equation

NP
|
22y =0 1 n+l
WKy ¢ ! ¢nnp+ * z b ¢Ri.

(i11) if a stop test is not satisfied for jn* : nen+l. @nd go to
i1,

The method of decomposition at phase n+l is reviewed on figure 14,

LI
-

L A el

cf
g

Figure 14




5.4, The Pseudo~unsteady Methods

They consist of associating to problem (24) a problem depending
on time (61)

FEU00 -T6) = 0 @

$(x,0) =0 (0

The solution of (61) : boundary $(t,x) is obtained by using a spatial
approximation, substituting for 2> a system of normal differential
equations integrated numerically on interval (O, ( y T large,

In the case of an undifficult problem, an explicite scheme de=-
scribed in (62) is adequate to integrate numerically (61)

S ‘
n+ n .

ii) nz0 ¢ At“" St -TEM =0 @ (62)
o™ -0 (r)

Examples of the Pseudo=unsteady Approach

l. - Solution of the Navier-Stokes equations (refer to FORTIN (14)) by
the Arrow=Hurwi z algorithm

The variational formulation of (23)s is given in (63).

> > > > > > - (63)
Va(u,v) + b(u,u,v) = (39 Ve, Fe LZ(Q)
1.1
i where J_ = {ve[li(Q) [3 ‘v = 0} (for simplicity we have assumed) ;! - 0)
wjtha(u v) - JQ Tuiy dx !

b(u v V) =f ﬁv/)uov dx

) = /q f'v dx N, dimension ©f ;pace

TE Ty PR Ty, T
- it

i
H
3
3
H
2
i



Let us mnow consider the discrete problem (63)d associated with

d - -

:hc(Pz)h' wh‘(Pz)x’ph5P| and q € pl wvhere Pk designates tho poly
gons with degree k

va(u i [ Ve R
") B )= py T ) (£,5,) (63)
; d
(a'“hoqh) =0

=

The Arrow=-Hurwicz discrete algorithm substituted for (62)d may be
described in (64) in the form of an explicite scheme,

{) '&:,p: initialized
. n _n
ii) n21 ’Gh’ph} known (W™} 18 calculated in (64,1)

-»nq-]_-rn - S -n > - > >
(uh uh’wh) + Kv‘(uh'wh)*xb(uh' 7 9wh)'K(P:;V';h) = K(f ’;h) (66")
2

¥ whe'P : K= At

'y n +n+! n+l
(iii) n21, {Ph} & {% }known » P, 1is computed in (64.2)

n+l n > ne]
(Py Ppedy) * K@ q) =0, wq b (64.2)
(iv) convergence test on (E§+kpg*5 not satisfied, do

n=n+l, go to 11).

Note : The explicit numerical scheme described in (63) is rela-
tively easy to program and economical to place in the computer core,
Nevertheless, the conditions of stability connecting V ,Kand h has an
industrial constraint, TFurthermore, the numerical simulation of separ-

ated flows, relatively hard case, requires several hundreds of itera-
tions,

2-Solution of Potential of Small Perturbations in Transonic State by
Finite Differences (Refer to I,A, ESSER (13)),

To the non linear system (63')

F, «TAL 3 U= (u,Vv) (63)"

cau Lt v e == - eI

F 'x L

2




we relate the hyperbolic system (63") with suitably chosen boundary
czivlitions,

-

6 "
?r:-bl’z : b>0 (3)

where b equal to the initial unity in H, YOSHIHARA (12) is optimized
by teking b = |a| to accelerate the convergence velocity of an ex-
plicit scheme of second order of the Lax-Wendroff type,

In the case of a very "hard" problem, it is better to use an
implicit integration scheme to solve (61) described in algorithm (65%)

) ¢° =9,

ii) n20 : (65)
g‘l‘?‘t - ae™! - 1™ =0 @)

¢n4-l .0 T)

at each step At a non linear (66) type (24), but better conditioned,
non linear problem must be solved,

Id _ AyaBt!l _ o, n+l n
n+l
*r =0 _ )

6., ~ THE FUNCTIONAL LEAST SQUARES METHODS

6.1, Relationshins between a least Squares Method and an Optimal Con-
trol Problem

A least squares type formulation related to a model problem (24)
is given in (67

min IQIAV + T(v)l2 dan = minlIAV*T(V)Ilg (67)

veV veV

lell? - quz @

o
and V a functional space L” (%) for example,




Assuming & now the solution of the boundary problem (68)

-AE - T(V) ’68)
e,r s 0 \

(67) is then equivalent to (69)

min I latv-5)]2 an
veV ‘Q

with { = §(v) via (68),

By referring to J,L. LIONS (15), it is obvious that (68)=(69)
has the structure of an optimal contrcl problem where

@) v designates the CONTROL vector
3) £ designates the STATE vector

Y) (68) is the STATE EQUATION
the functional (69) is the ction »f cost or
criterion

From (68) (69), it may be seen that other formulas are possible
by selecting a different cost function, We may, for example, consider
the optimal control problem (68) (70)

Min | |v-£|? &

veV 'Q (70)

VAth s k(v via (68).

(68 (69) and (68) (70) shall give a solution identical to the
solution of the model problem (24), but with different convergin
velocities, Furthermore, the choice of a least squares method is very
important on the numerical level, In fact, a standard which is ine-
appropriate for the state equation (69) appearing in the cost function
may lead to a slow convergence, A sound choice of the cost function
with respect to non linear Dirichlet problems of the second order is
discussed in paragraph 6.2,

6.2, The Least Squares Method in a Particular Functional Space H-l

L:t us introduce in (71) (72) the Sobolev spaces required for the
study of the model problem (24)

1 -+
H() = {¢¢ LZ(Q)V , T6 e L2(2)) 7

}
H (Q) = {6cu' (), ¢lp = 0} 72




:
l
_,s
]

6, 46,) -fwdmj'%-% an
1*v2 Hl(ﬂ) q 1%2 Q 1 2

(73)
2 *2
lell , =] a2 | fol%an :
W@ o o (74)
|
n: (@ s a sub-space of H (2. cConsequently, if 9 is limi-
ted, y (Q) is a Hilbert space with scalar product (755 and correspone

ding standard (76)

-

(6, 46,) -f% ¥, dQ

Y3

loll , =] 1Fel® e (76)
H (@) 0

- !
Assuming H !UD = U%(Q))' the dual topolocial space of HOGD.
By observing that 2 2 the inclusion (77) is permissible
(L@ "' = 19

B @ cL2@en @ (77)

4= 32 K

Furthermore, the application & = is an isomorphism of H ()

in 'ln IL <+, ,e> designates the bilinear shape of the duality
H () '

and defined in (78) by

betweenﬂ-l ) H;(Q)
<f,0> = sz ddx ¥ £eLi() ; ¥ de nl(n) (78)
then the topology of H (Q) is defined by | .|| in (79) by
using (76) (78) . -1
l<fl>|
’[i";’ - fus (3ol 8 (79)
ded (D -{0} o B @)
Refer to LIONS~MAGENES (16), NECAS (17) for more result s and
characteristics relating to Sobolev spaces,
By using (79) the best formulation in the direction of least
squares for solving the modei problem (24) is given in (80)
(80)

Min |laveT(v) ||,
vcHé(Q)

4
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)

\ By introducing £e¢H'(R) solution of (68), then (80) takes the
5 form (81) °
Min ”A(V'E) ”_ \

By expanding NA(v-g)N_I into (82)

“ASV'€2|9>‘
; A = spp 82
lamolly s e-to lolly (82)
g | ' (-]
E and by applying the Green formula to (82), we have
; ’ - - ?_ - - v - = 7 .6 dQ
|<A(v=£) ,¢>| Ijran (v-£)¢ dF IQV“' £»% da| I,fn Wv-£)+Vé an (83)
7 and (82) takes then the final form (84) |[ 6(V-E).3¢dg|
. Y] ) 1
A(v-B)lj_, = su = |iv-£il
g I I ¢ ¢ B (@)-{0) llell ! @ (84)
;A:

The least squares method in H™' (80) is, then, equal to an optim=
al control problem ain {J(v) 1 I Iv( 5)'2“2' |
Biclv) = v= §eH (Q) -AE =T ’
v:HL(Q) z R solution ¢ ) \85)

6.3, Iterative Solution of an Optimal Control Problem bx a_Conjugate

Gradient AJ)gorithm

The Polak=Ribiére (11) version of the conjugate gradient is used
to solve (85), the algorithm of which is composed of 3 steps.

i) Initialization
o .l
v eHO(Q) given (for example aoiution of -Av® = 0, v°| = 0)
8°¢H'GD gradient of J(v) in H Q) r
]

is calculated in (87) o
=bg" = J'(v°)

' (87)
8lp =0
We sot 3
z° = g" (88)
= n n 1
nel n+1Then for n:x0, assuming v? g 2" known, calculate v"* ,
s Z by
11) descent
. = 3 n_,.n
Calculate A arg ;‘;8 J(v =Az") (89)
and set v“‘"l n wn (90)

= v =)z
iii)Construction of the new descent direction




f

g B

es n+] 1
Défine g € HO(Q) solution of problem (91)

-Agn*l - J'(vn-l-]) . )
n+!
g Il-v = 0
n+l 2)
then calculate ¢ in (9
a g B I D (92) .
n+l _ ,
! [ 717 e
and define zn+1 in (93) 0

do n=n+l and go in ii)

The two important points of the algorithm (86)-(93) are :
1) = The problem of minimization to one variable (89) solved by dicho-
tomy'Z or the Fibonnacci method (refer to "GOLDEX SEARCH" in PO-

1ak (11)).

2) - The calculation of gn+l from vn+l requires the solution of two
?ir%chlet problems at each iteration (68) with v = vn+l, and
91).

The point (91) is detailed below, J! (v) is calculated in a
standard way (derived from a functional in the meaning of Gateaux
(refer to VAINBERG (10)) in (94).

Assuming 5v€H;(Q) <I'(v),Ev> = 1lim J(v+t5:)-J(V) (94)
t*0
t#0

(94) is expressed by using (85)
<J'(v),6v> = J V(v-E)T6 (v-E)da (95)
By differentiating (68) &¢ €H;(Q) Qsatisf'ies (96) =ASE = T'(v)esv
Sl =0 (96)
Using (95) and (96) the final calcvlation of J'(v) is given in (97)
<J'(v),6v> = fgg(v-g)-\-;dv dQ = <T'(v)+8v,v-E> . (97)

We ?ec§gnize in (97)~V(V)EH—IGD linear functional defined on
by (98

6 -+ jQ V(v=£)+T6 dQ = <T'(v)+,v-E> (98)

Then g® is the solution of the variational problem (99)
n 1
(& <H @ (99)

> n 2 > >
u Vg Vg d9=fQV(vn-£n)V¢» @ - <T'(vMg,v £ | woe H;(Q)

v




with g“ solution of

(i00) E%e u",(n) (100)

Z&l

The algorithm (86)-(93) shall be used systematically in the ap-
plications of T to transonic flows and the the Navier-Stokes equations,

7 = THE LEAST SQUARES METHOD IN H-1 APPLIED TO TRANSONIC FLOWS

Tels Subsonic Non Lifting Case

By retaking the problem with limits (8), the non linear operator
T is given in (101) :

T(®) = Vop (9)To (101)

By retakipg (85) with T in the form (101) the least squares for- 5
mulation in H = of (8) is given in (102), (103)

. 1 o112
Min i-] |vE| “ax (102)
de vg Q

with V = {ve H](ﬂ)l\" o 01}
v, - {¢e_vlp(d>),g—n - .g|r2}A
£ = §(9) via (103)

IVg-ﬁwdx=[ p(@)-€¢'-€m dx —J gwdl , YuweV. (103)
Q Q r
2
The physical interpretation of (103) is given in (104)
AE =-6-p(¢)-6(¢) in 8 &eV (104)

3% 2 0
p(®) 52l =g =>gilp =0
7.2+ Transonic Non Lifting Case 7 on I‘2 on 2

In the case of a transonic flow (18), in order to prevent non

physical decompression shocks, a condition of entropy, which may be
treated, must be added to (102) (103)

-either as a linear constraint of inequality (105) /A
Ap< K, (105)

In this case, a penalty functional of type (106) must be added to
(102)

Lz ‘(A¢-K)+| 2 dx where (106)

(86-¥)" = sup(0,4¢-K)
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leading to the least squares method (102)P with penalty

Min 1 ||¥2]2% [ oty 2

with 4 > 0 and ¢- solution of (103)

(102)p

Two possible alternatives of (102)p are given in (102) and
(102), with K=0 : this is a least squares method with reguldrization
- ) l - 2
Min 5-{[|V€| dx + uf I(A¢)+!2dx
¢eV 0
with U>0 and £ 'solution of (103)
. | *> .2 +
Min i'f V] “ax + “l[ a0 *? ax + Uz[ (hea*2 an  (102)p,
. deV Q Q 0
with ( )+ = positive intensity of a discontinuity = sup (0.( ))

(102)Rl

-or by artificial viscosity, in this case the functional (102) re=
mains unchanged, but £ = £(9) via (103)v

J .E,-”V’wdx=fp(¢)€¢-s7w dx + \)J o (®w dx - J g w dr
2 Q Q T,

(103)

3t

VweV ; EeV

In the applications, (102)p is preferred to {102) due to the
sensitivity of uin (102)_, In both methods, H is adde8 to obtain a
same magnitude for both germs of cost function, Finally, it is also
possible to combine the regularization given in (102)_ with the arti=-
ficial viscosity (103)v to eliminate the numerical instabilities in
the region of shock,

0 defined in(19).

7+3e. Transonic Lifting Case

By using the notations of 1.2 and by referriﬂg to the lifting
flow shown on figure 3, the circulation £ ofu = V@ around an airfoil
is in general # O, Thus, § 1is discontinuous and a cut (C) (figure 3)
must be made,

L4

o <N
Assuming Q=0 -C) & JK: R+ R

> 2 2
JK@®) = | (¥5,) -1 @, _| 10
|G 7 - 108 17 (207)

the function defined by

where (f,6,) is the solution of the physical problem (107), (108)

§-p§§£ =0 in 8

3¢
% P ] ‘ (108)
=l = uen , = 0
an I © Bnlig
3 ad
-2 =0 , 2]  + &= = 0

S

L R e———" .
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The method of decomposition described in (49)=(54) is applied
to the lifting transonic case,

By selecting the least squares method with regularization (102)R

or artificial viscosity (103) » the following algorithm o5
is searched for in the form (109)

& = +

g = Onp * My (109)
where¢NP represents the NON LIFTING compressible part of the potential
and ¢, the LIFTING incompressible part of the potential.¢g
tinuous on (C) is solution of (49)ynp
algorithms (TRANSONIC FLOW CHART 1=2

discon-
¢2 is solution of two iterative

1. External fixed point algorithm defines £ solution of the non linear
monodimensional equation (110)

JR(R) = O (110)

2, Internal conjugate gradient algorithm gives dyp» at ¢ fixed, as solu-
tion of optimal control problem (111) (112)

S5




3¢R - o ‘
on T u rp
ELEMENTARY - - = — PORTZNCE
R R ¢R i
¢o(BF) = 0
Bégp = O
INCOMPRESSIBLE 3gp 0 T, |- - - _ INCOMPRESSIBLE
NON LIFTING an = r NON PORTANT
0 NP
éyp (BF) = 0
_1-: o o +12 _ o] o) -12
| 19 (0gpt2°0p) 1% = [Ttogp+2%0) 71 4f
E INCOMPRESSIBIE 8° = 42 +1% INCOMPRESSIBLE
B LIFTING : NP R ---iggrﬁg?
’
2 PREDICTOR Ep = Onp PREDICTEUR

PREDICTOR g°,h®
IN Hi

TRANSONIC LIFT FLOW CHART 1

EO

~ - - PREDICTEUR g°,h°
DANS H1

N

I TN

"RGANIGRAMME TRANSSONIQUE PORTANT 1




OPTIMAL CONTROL

NP
n+l
+] on - r CALCULATION OF STATE
CR) 9 ‘o - = - —=CALCUL DE L'ETAT
o2 (8r) = 0

COST CALCUL,
J = Igl5(€“+l-¢“+1)lzdx+uP(€“+1)-CALCUL DU COUT

= K=K+1
/ KZO n=n+l - P 3
nz20 b
pn = Arg min J(€§P+phn) : '
P _ _ DESCENT i
n+l _ .n n. n NEW CONTROL -~ - - f
Exp = Eypt PR : §
+ %
g™t = a0 ety |
_ CONJUGAISON DANS H™ |
. , : ——==- . {3
pitl _ g+l mpn 'NOUVELLE DESCENTE %
CONJUGATION IN H!
n _ <gn+1_gn'gn> pr DESCENT
Y - n n ;
<g,g > ;
JOUKOWSKI ?
K+l gn+l oK+ly (+12 _ 1@, gn+l oK+l, \=|2|~-NEW
AV (B R TR0 T = [V eRDts op) | CIRCULATION
END
FIN

TRANSONIC LIFT FLOW CHART 2
ORGANIGRAMME TRANSSONIQUE PORTANT 2




-
7,

n+l
M @ = [ B2 0] Jee,"h)? (111)
O ¥ Q a

WITHE = E(byp) via (112), * o0t o °NP+2’M‘¢R *where

. n+l 2. n+l - : e
In VP dx = Inp(% ITH Vo dx jrzgm a veev (112)

Tl Conjugate Gradient Solution of Non Lifting Transonic Problem

For reasons of simplicity, we are limiting the problem to regul=
arization (102)R i.e,

Min J
‘ ¢€13 (4?) (113)
with
J(@) = 5 {Inl'\?g[ dx + ufﬂl (89) | © ax (114)

where V and ¢ defined in (102) (103).

In this caSe the conjugate gradient algorithm similar to the one
given in (86)—(935 consists of three phases :

1°) Initialization

¢° is selected as solution of the incompressible flow i.,e. (115)

¢°=0 in 0
o 3
¢ =0,p =
of which the variational formulation is given in (117)
Ve dx =
[g v dx rzgwdr Vuev ; fey (117)
-

-
(if Y is known on boundary 5 » P is also known by P = po(l‘klu, 2)0)
sinc§ goev is calculated as the solution of the variational equation
(118

L} Vg% ¥ dx = <J'(),w> Vwev, gV (118)

0
Accordingly, we set h = go.. Now for nz (Q,, assuming ¢,n’gn’hn as known,

we compute ¢n+l gn” hn” in two phases,
* )

Vsl

i i i i

————




i
',

R Y i

oy

-
£

2°) Descent to calculate ¢ﬂ"’l by minimizing the functional to one sin=-

gle variable (119) LA
A" = Arg min J@"Ap" r
“Ah")
X2 0 (119)
we can then set
¢n«fl - ¢n - AP (120)
3° Construction of the New Direction of Descent
Define gn”e v as the solution of the variational equation (121)
. o
IQ 3g“+-l§w dx = <30y w> wwev, g eV (121)
calculate the coufficient of conjugation Ynﬂ in the metric relating
to V :
n+l ntl n
g f:z VeV (g™ -gMax (122)
[ 17ei? ex
set then 0
Rt gn*H . Yn-Mhn (123)
and return to (119)
Note : Each iteration requires on the average 5 solutions of the
Dirichlet problems :
=2 for the calculation of the gradient gm'l in the good metric
=3 on the average to calculate the optimal step
Let us now expand the calculation of J'(q,“‘”)
If <o o> represents the duality between V! and V, by using (114)
+
<30 (0,565 = j fedsE ax + u] (86266 dx (124)
0 @ £ o
where SE is the solution of the differentiated variational equation
Bsee ,f \ (125)
fQ £V dx QD(¢)§6¢'$mdx+ Qsp(¢)v¢.$w dx
¥ we V' 65 eV
and 8p is expressed via the relationship p(d) = (l-k['\%[z)a
) (126)
a=l
So(4) = -2k (1-k|Vo) ©)*™Tp Vs




in (124) may then be expressed as a function of ¢ with (126)
and (125) written with w = §

fﬂ Vevse dx = [mevg.m ax-zl&fncm))""“(%-'65) Fo-T60)ax (127)

with (127) <J'(¢) ,w> may then be identified with the linear
functional

w > [prﬁa-% dx - 2ka [Q(pw))"”“(%-?fs) TPy dx + qucAm*Am dx (128)

1

From (121) (128) we obtain g"*" from ¢“*1 by solving

I "0 dx = ftp(e»“"'ﬁs“"‘-%-zm TG Y RIAT (Al T
Q A

N
n+l ¢+

(129)
(%“”-%)J dx + u[ (00" ') wdx , YweV, Bm
Q

l(V
with 5“*' solution of (103) corresponding to ¢ = ¢!,

8. - THE LEAST SQUARES METHOD IN H~1 APPLIED TO THE NAVIER-STOKES
EQUATIONS

8.1, The Steady Case

8.1.1., Functional Least Squares Methed of Steady Navier-Stokes Fqua-
tions

In the following, we shall designate by (130) the scalar product
é;:.;ngetwo functions :;35(H|GD)N N standing for the dimension of

- N
@ - J ViUV dx = ] I Vuo¥v, ax , ¥ 4,0 1 @ (130)
Q i=jig ¥ 1
U= {ul}?_l , v = {vi}§_l.

Let us define i in (131)
2
(131)

W fve @™ T30 100, v =2}

Then the variational formulatjon of the unsteady (132) Navier=-
Stokes problem

—viu + (e +Tp=0 (@ (132)
Veu=0 Q)
A, -3




is given in (133)

vf FueTv dx + J Vet dx = 0 ¥ Ve Wi, Ue W (133)
Q Q

A least squares method of (132) (133) is given by the optimal
control problen (134)

min {JQ) = %fﬁ(ﬁ-?z)lz dx } (134)
\EW;' Q

where £ in (134) is a function of J via the state equation (135)
v

- 88+ Fn -ty )
-0 @ (135)
Bl =3 '

of which the variational fo:rwnulation is given in (136)

> - -+ (136)
v[ 32-33 dx = -[ n-(v-v)v dX ¥ne wo.'Ee W;
Q 'Q

It is essential to note that (135) (136) is a Stokes problem,
acting as a pressure in (135

8.1.2, Conjugate Gradient Solution of (134) (136)
The algorithm is composed of 3 phases:

i) Initializatiom :

Take for 7© the solution of the Stokes problem (137)

‘VA:O + ﬁpo = (Q)

60—:10 = (ﬂ) (137)

>0 ->
u = 2

of which the variational formulation is given in (138)

v ?GT?T dx = 0 VAW W0 e ws
Lz ‘ 0’ z (138)

id

Z&Q




Take for 'Eoewo the solution of the variational equation (139)

Ig ﬁo.ﬁ dxw<J! (-ﬁo),ﬁ> ¥ 'ﬁe Wo ’ '§° € WO (139)

and set %° = 3°,

For n20, assuming as known, calculate by

ii) desceni.pbass (140) (144)

A" = Arg min J(u"-ART) (140)
A>0
PR A (141)

iii) phase of constructing the new descent direction

Take for ™!,y the solution of the variational equation (142)
0

[ T8 ax = <0 @D B ¥ Rew, 7w, (142)
Q
Calculate +1 ;
"1 in (143) f Tt -gMax
RO N (143)
| 1¥g 2 ax
5 n+] Q
vk. The new direction of descent h ' is given in (144)
FAMME LA (144)
do n=n+l1 and go in ii),
) It may be observed that (139) (140) (141) are Stokes problems,
| 8.1.3., Calculations of J' and of En-ﬂ
T By definition, the calculation of J' is given in (145)
b
§] = <J'(3),6;> = v[ §(;-E)'§7'6(\7—E) dx (i145)
Q
]

It is possible to express 5'5: .as a function of d; by using the
differentiation of (136)
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s -> L e e d ->
vf 365-% dx = E{(GV'V)-\; + (\-;“’V)(S;] dx ¥ r.;e wo s 6L Wo (146)
Q

Since (V'g) «W, , let us solect N = v-£ in (146) and §y n
in (145) which is expressed :

(147)
'), - v[ V-Eyn dax + [cG’v-b»(?r-‘?)ﬁ + @B @DV ax
- ] Q
Vr1¢W;
To calculate ;“", we must therefore begin by (""*')j,

which requires the solution of the state equation (145) tor T L antl
giving En+1 (147) may then be expressed in (148) u

<J,(":n+l)’n> - vfnv(-’m-l *nﬂ) v—v dx + [[( n+l -Enﬂ »nﬂ v) (148)

e (u *n+l En+l) (n §-+n#l dx

Finally 3"*! is given by (142),

In conclusion, each optimal control iteration requires several
Stokes problems :

«Stokes problem (136) to calculate the state g”” from u*!
+Stokes problem (142) to calculate the gradient }n#l from  jn*l

and g0+l
.Stokes problem (140) to calculate ).

Furthermore, an efficient Stokes algorithm shall prove to be a
particularly important tool in the solution of the Navier-Stokes equa=

tions via the least squares method {134)- (136) Ite implementation
shall be described later on in paragraph 8,3.




8,2, The Unsteady Case

As was presented in paragraph 4, the unsteady Navier=Stokes pro=-
blem consists of (149) (150) (151)

-

{-g-g St @D s a0 (@) (149)
Vel = 0 ()

(150)
+ -> -> «>
ulr =2z Irz°n dl = 0 (r)

(151)

W(x,0) = B (x)
o
where the function ;, given, wmay eventually depend on t,

8,2,2, Quantification in Time of the Problem (149) (150) (151)

Several schemes may be used to solve (149) (150) (151), For
reasons of simplification, we are presenting two very simple ones
with a constant quantification time step,

8¢24%241, Semi=implicit Scheme
Assuming k = At the quantification time step, A semi-implicit
scheme in time, which is very simple, is given by

. +0 -> D
1) u = uo given (‘5 )

then for nz 0, :n+lis obtained from En by solving (153)

. ;n+l-;n +>n+| n+l *n > -n
ii) % - vAu + VP o =ml=(u 'qV’)u, )

Sl @ (153)

[ PR PP

-+ - -
[ with u" in (153) an approximation of u(nk) wvhere Y is the solution of
: (149) (151), It may be noted that in (153) ut! is obtained from o
g by solving a linear problem, variant of the steady Navier-Stokes pro-
| blem 8.1 (here also the operator S = -yA is substituted by S
Accordingly, it is necessary to develop an efficient
Stokes algorithm relating to Sk in order to solve (149) (150) (151).

-
3
L
}:

1d
k-—k--vA).

B""""W\Mﬂwwwm




842.,2,2, Implicit Scheme

The simplest implicit scheme for solving (149) (151) consists

of
i) '50 - : iv
o &iven (154)
Then rfor n20, Mo is obtained from R by solving (155)
-‘:nﬂ_-&n n4]
) === - va™ @ H T B o
60?*1 0 107)) (155)
“:n"llr - ‘z’n*l

It way ‘v observed that in (155) ™! js obtained from iy
by solving & NON LiINEAR probime, variant ¢ the steady Navier-Stokes
problem 8, (here also, the operator S = -yj is substituted by
s o ld o It is from (155) that we shall present a least
k" TV squares method similar to that given in 8,1 for the

stesdy problem,

o

T .



8.2.3.Abstract ’.cast Sguares Method from (155)

In fact (155) is a special case of a family of non linear pro- /5
blems SQ (a> 0) (]5(3)

ol = VAG + (5.H)% 4 Tp - 2 )

. |
520 o (156)
Elr =z avec fr;.; dl' = 0 )

of which the variational formulation is given in (157)

a]ﬂ 37 dx + vJ Taed dax + ] 3BT dx = ]
Q _

-+ > -+
Bvdmlwgw ; Ue W
Q ° z

Q

By following 8.1 an optimal control least squares method of (156)
(157) is given in (158)

Min J(V .gf Rl v > > 2
Sews V) =3 Q,v Eldx+2fQIV(v—E)| dx

where  is a function of 3 via the state equation (159)

of - vaf + ¥ = F -3V @
VeE=0 : )

. (159)
I

m, acting as a pressure,

8.2.4, Conjugate Gradient Solution of (158) (159)

Tracing paragraph 8.1,2,, the conjugate gradient algorithm for
solving the least squares problem (1583 %159) is given by

o

. -+0
i) u €W, given (160)

calculate g° solution of the variational equation




QI EO.H dx + V[ 680'%' dx = <J'(.\:o):?l> y ¥ HE wo i gogw ('61)
Q Q °

and set h° = zo.

m
u ?

Then, for m20, assuming Em,}?“ ‘s bknown, calculate -l:mﬂ js’mﬂ ‘ﬁmﬂ by
s »

ii) Descent Phase A" = Arg min I - ARD

AN
A>0 (162)
[ L

(163)
iii) Phase of constructing the new direction of descent
Define gm+l solution of the variational equation (164)
" omel | (164)
2 m+ 2 +n+l. + +>n+|
aJng ! dx+v[nv§ Vi ax = <1 @) R y ¥ReW, 8 W
sm+] mt] )
a[ g +(g" -gMdx + v[ T LY ™ e ax
ol 0 - f
-»m 2 my 2
then af |87 % dx + v |87 ¢ ax
Y] Q
the new direction of descent '-t"ul*l is then
raud Emﬂ . Ym]-ﬁm. (165)

do m=m+1 and go in ii),

The calculation of J'(y™!) is not detailed, as it is a trivial

variant of 8.1.3.

In a similar manner as the algorithm (137)- 144), each iteration
of (160) (165) requires the solution of several Stokes problems Sy
of type (149) without non linear term.

.the Stokes problem Sy to obtain ¢™' from w1
«the Stokes problem Sk to obtain J®! from »mt]
u

A"

Note : The algorithm -m (160)=(165) permits the calculation
m
)

2urt]

.the Stokes problems Sk t© calculate » &

ot from Jn as a result n*’ ; is initialized in (160) by sn+l,0

=
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8.3, A Rapid Stokes Algorithm (The Continuous Case),

8.3.1. Summary

Paragraphs 8,1 and 8.2 have demonstrated the necessity of devel=-
oping an efficient Stokes algorithm %xdefined in (166)

au - Al + vp =% ) (166) e
eu=0 @)
Y, =2

r-? ;

for solving the steady and unsteady Navier Stokes equations, 1In
(166) a=0 corresponds to the steady case, whereas a> 0 corresponds to
the unsteady case,

We shall show that the solution of (166) by following GLOWIN-
SXI-PIRONNEAU (18)(19)(49) is reduced to the decomposition of the so-
lution into a finite number of Dirichlet problems coupied with an in-
tegral equation,

8¢3.2., Principles of the Method

Let us note that by taking the divergenceﬁ of the first equa-
tion of (166), we obtain an equation on pressure of type (167)

ap =Tt (167)

-
If we know plp =2 then the solution (4p) of (166) should be
obtained by solving the N+1 Dirichlet® problems (168) (169)

2p=TF @
. 168
3 . -
aui - Aui=—a—§ + fi ®) i=l,...,N N = dimensionof the
i space (169)

“ﬂr =%y

But we don't knowA !

The introduction of ¢ solution of (170) will make it possible to
SET A, i.e., the pressure trace on the edge, so that the constraint
distributed §.7 = pis satisfied,
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Theorem 8,3,3,1. ¢ Assuming AeH

W =V @ (170)
Mr = 0

%n6£?ct, by applying the laplacien A at (170), we obtain (171) via
1

S88) = AW = Te(al) = ap - BeF 4+ B (171)

{Az‘b +add =0 Q)

¢olp =0 (172)

]
If we now select A so that 'a% * 0, then after (172) 950 and /56
therefore ¥.y = 0. The application 3%x via (168) (169) (170)
being affine, there is (A,b) (A 1in-A*§H4r ear operator, b constant)
so that (173) occurs

3
Tl =M b (173)

Also, the (N+1 Dirichlet problems (168) (169) coupled with the in-
tegral equation (174)

AA+b=0 (174)
->
give the solution (u,p) of the problem (166), Let us point out that

the good conditioning of the operator A is necessary to solve (174)
easily,

8.3.3. yunctional Support of the Method

To define (A,b) in (173), it is necessary to introduce

W21y = twen'/2y, Iudr -0} (175)
’ r

The method of decomposing the Stokes algorithm is then based on
the following result ¢
1/2 : - '
/2(ry 3 assuming 2y + w2
the linear operator defined by

(176)
Ap)\ =0 () ; P € Hl ) Py~ Ae H;(Q)
h N . (177)
a0, - 8dy = -ﬁpA @ 5oy e (H (D) (178)
-Agy = Veu, @ byl @
e b

T Y
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T

-1/2
Therefore A i8 an isomorphism of H ')/ R on ul/zaﬁand also the

bilinear form a(®se) defined by (179)

a(d,u) = <Ar, 1> (179)
where <°*,*> designates the duality product between H1/2(F) and
H"/z(p) is continuous, symmetrical and highly elliptical inﬂ"/z(r)/ R.
The application of theorem 8.3.3.1, to the solution of the
Stokes problem will now be possible thanks to theorem 8,3.3.2.
Let Te (Lz(Q))N ;& po';o’q’o defined by
+> 1
bp, =VE @ ;o eH @ (180)
-+ > - > > 1 N
auo-Aup-= f-ﬁgo @ 5 upgmze (BM) (181)
- 1
_A¢° = -Vbouo (Q) H ¢°€ HO(Q) ' (182)

-
Theorem 8,3,3.2, ¢ If (U,p) is the solution of the Stokes problem
1 » then the trace A of p r is the solution of the linear

variational equation (E)

-1/2
rew 2@y R (183)

(E) % )
Ahg> = <2 w2 Vel 120y R

The demonstration of these theorems is given in R, GLOWINSKI-O,
PIRONNEAU (18).

Notes
1; Theorems 8.3.3¢1e = 8:3¢3.2¢ show that the Stokes problem
(166) mav be decomposed into a finite number of Dirichlet problems
(-4) (resp. ald-d) (N+2 to obtain ¢ , N+1 to obtain (> when is
~ o' {U,p} A
known plus the problem (L) ; 3

o

2) In the approximation (Eh) of (E)gg‘ shall not occur explie-

citely due to the Green formula applied in (184%) if py is sufficient=-
ly steady,




3
(3] - - 3 - e - .+ -~
<‘a? 1§ [nv¢o 3‘.! dx IQ uo u dx

(184)

= IQ(§¢°+G;)°33 dx

where M designates a steady rise of u in Q,

3) The main difficulty lies in the fact that the operator A is
not explicitely known,

To overcome this difficulty, a new variational formulation of
the Stokes problem shall be used in the approximation of (E), requ-
iring a quantification into mixed finite elements,

8.3.4, Mixed Variational Formulation of the Stokes Algorithm

Let us introduce

o= {{v,ore @' @) <l (@), Vp =2 f Vol dx = [ ¥ w dx, weH (@
Q Q '

> 1 ->
Wy = {{Vioke @)™, ] VooV dx = J VoV w dx Vue B (D)) . Q8s)
Q Q '

It is easy to demonstrate proposition 8,3.,4,1, :

If {;,tb‘}i W’z’, then: {;,¢} solution of (186)
2=V @ se=32e0 @ (186)

We have only to use the definition of W; and the Green formula
in (185), Let us consider the variational problem (P) (187)

. .
Find {U.W}eWé so that

QIQU‘V dx + ]Q§u0‘vb;; dmjnfc(v+3¢)dx, V{V,¢} € wO (187) (P)

->
Theorem 8,3,4,2, ¢ (P) has only one solution {u,y} where Y0
and 3 is the solution of the Stokes problem (166). The demonst:ration
of this theorem is given in R, GLOWINSKI-O, PIRONNEAU (19) shows that
(r) is a mixed formulation which is interpreted below :

2 1
Ir -\;( (HI(Q)‘{N and I is sufficiently steady Joe H (D) nHo(Q) and

> > | yso that the decompostion (188) is the only one.,
w=Vayxe (H (Q))V

/52
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ve-Voen
(188)

In the formulation (P), insteady of setting directly Vev =0
we try to set ¢ = 0) which is equivalent in the continuous case, but
not in the discrete casee The approximation of (P)h from (P) via i
the mixed finite elements shall be presented in paragraph 10, !

9, = APPROXIMATION BY THE FINITE ELEMENTS METHOD OF THE TRANSONIC
FLOWS

9.1, Summary

In this paragraph the approximations by the Lagrange finite
elements of the transonic flows considered in paragraph 7 are briefly
reviewed, Refer to the works of M,0, BRISTEAU (6), (20) (38) and R.
GLOWINSKI and O, PIRONNEAU (21) for more details,

For reasons of simplicity, only external flows around airfoils
shall be considered,

9.2, 22D Flows

9.2.,1. Case of Non Lifting Airfoils (profiles)

The situation is summarized on figure 15,

Figure 15

The_;ransonic flow around a symmetrical airfoil P is without in-
cidence (u, parallel to the chord of the airfoil) and is modeled by
the relationships of paragraphs 7.1, 7.2. The flow symmetry results
in automatic sa-sisfaction of the Joukowski condition (107).
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9.2.1,1. Approximation of the Space V

By retaking the definition (189) of the space V in 7.1, 7.2

v = {oeH (@ nc’@, ¢=0 at trailing edge (169)

Ii‘nh d signates a polygonal approximation of the domain ? occu-
pied by the fluid and if is the set of triangles (Tx) or TRIANGU=-
LATION such that, in a standard way

B= VT s TynTy =0 aridg (190)
then V is approximated by the space of the finite dimension Va
= W ec®@), 4ITeR ¥ 1€ T, 0,20 at trailing . (191)
Similarly, if we define Vhe by (191)g edee
3
Vg = eVl p(4) L m g} (191),

In (191) P, designates the space of polynomials with two variables
with degree <k, In practice, the numerical tests require k=1 or 2,

92,142, Approximation of the State Equation
The state equation expressed in (103) is approached in (192)

Vgh-th dx = p(¢,) V¢ -V@h dx - g dr
]“h h’ *¥n L.h h “h “h (192)

L‘h

¢h€Vh ;Vw eV

g h ™ 'h

where gp is a suitable approximation of g on the edge Th-

If k=1 §¢h'3bh are piece-wise constant over each Te¢ Qh’ con=

quently, p(¢h) is also constant and (192) may be calculated accura-
tely.,

If k=2, v¢h’§hh are piece-wise linear and a numerical integra-

tion of O(¢h)is necessary, We may proceed as follows : each
is divided into 4 sub-triangles (Figure 16)

S —- e

T




Figute 16
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On each T (4=1,2,3,4) °(°h) is substituted by a linear inter=-

polation P,, This approximation permits again an accurate integra-
tion of (1&2)

via the FORMAC system, A, LAPLACE (22),

9¢2,1.3. Approximation of the Cost Function and of the.Penalty Functe~

ional

We approach the cost function by (193)

! 2
Inp) = 7 Lz ] g, | ax (193)

For the penalty functional, two approximations shall be consie

dered : k=1 3 k=2,

The linear constraint of inequality (105) is expressed in a weak
form (194)

-Iﬁh Wh-?wh dx + L'Zh gy, df S K fﬂh w, dx Vo vy  (194)

where Vﬁ is the sub~unit of Vh according to

vari

(198)

(195
V;-{whevhl w, 20) )

If the bounded K is also defined with the weak meaning by the
ational formulation (197) from (196)

Aq’oh =K (Qh)
: 6
b =0 (T (196)
a¢oh
5m " 8o (Ton)
= \ (197)
Igh Vo 1 Yy, dx = -KIQh w, dx + Irh B Y dry

The constraint (194) is substituted by the discrete condition

-Jﬂh §(¢h-¢,oh)-'v’wh dxs0 Vo e V; (198)

Let @y be a base of Vy produced by the functions of form Ny

N
E = h v '
h {Ni}i=l Withl\h - dlm(Vh)

(199)

P
o
T il




s e

h

Ni(Mj) - Gi.j » ¥ My {nodeszor T} } (Trailing edge node)
(200)

®,

s obvious that
N.20 ¥i on fige
ure 16,

Figure 16

We may then substitute for (198) the N
quality (201)

h constraints of ine=

Q = -IQ $(¢h-¢oh)-$ni dx 0 Wiml,... N
N : (201)

One way of satisfying them is to add to criterion (193) the dis-
crete penalty functional (202)

+2 (202)
Plag = I 1l
1cNh

If k=2, the base functions N, are not all positive, 1In this
case may be decomposed as foll%ws in (303)

By = &y’ @85, s N o= N:‘B + N:SG

Bh23 L
h i » le tops 1,2,3 of triangle Te T;J

24,5,6
B

f . . .
W, iemiddles4,5,6 of triangle Te (?h}
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A function of form Ni of the sub-~families (203) arc shown on
figure (17)

17.1 17.2
Figure |7

456
It is obvious that Yj20ifN.e®

observed that on figure 17,! that

(figure 17.2), but it may be

N, €2 may take on negative vale
ues, i~ "h
In this case, we shall substitute for (198) the N;zB + N:56 con=~
straints of inequality (204)
Q =~ Teoo=s )Nt dxs0 w22 v - vax (O,N)
i 0 h “oh i 1T ™h i et
uh N (201‘)
Q = = F(o=b . )eFN, dxs0 WN, g0
i 0 h "oh i i *~h

h

One way of satisfying them is to add to the criterion (193) the
penalty functional (205)

) + 2
P T lgflPe I lajl
L B 456 ©
ieN ieN, (205)

In the numerical tests, the second term of (203) shall practic-
ally be sufficient, In the cuasc of approximation (1G2)ps, the dis=

crete penalty term of (200)
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A coniribution of S due to

Figure 18 a discontinuity of spued
of positive intensity is
shown on figure 18,

In the case k=2 the dis~
crete discontinuity of
figure 18 is calculated
at intersection 4, 5 or 6
in the direction of the_
bars of two triangles T

and p* The illumina-
t <G tiop + Aand =
oceurs by using the local
Figure 19 speed on figure 19,

-+ ] » =»
Usg = 7 (Us*Ug)  calculated in the middle of bar (23) view of T,

and in the middle of bar (13) view of T, makes it possible to il=-
luminate T;, T2 in T= and T* in the folfowing direction

- :56 is exiting Tl at node 5 #T' + 1

- ;56 is entering T, at node 6 = T, T’

In this semi=node, the discrete constraint to be satisfied is
expressed by (207)

5; = [3-3]1 - (%; - %;)-Kso (201)

discrete analogue of (206) may then be expressed in (208)

+,2
*h ° 455!si| £(B)) ; £(B;) = length of bar - B;
iGNh

which permits the final approximation of 102 in (209) to be fiven ZGi

(208)




min (Jh(¢h) * Ph* HoS5,)
*n (209)

Note ¢t it is possible to form a model when k=1, the condition
of ontropy by adding a penalty to a functional sﬁ odd power of a

ositive step of speed, which is impossible according to fluid dy=-
namics (decompression shocks) given in (210)

a 2

> > 4 4

Sa 'fn [Cun] | & witha=3 (210)
The discrete analogue Sq,is expressed them

+2
s3h ® Zasﬁ Ri Q(Bi) with this time
i(Nh .

Ry = @o; - Tope"3

(211)

Numerical results using (211) with k=1 shall be presented later
on,

M.0., BRISTEAU (20) may be consulted for the numerical approx-
imation of the constraint of entropy by the artificial viscosity,

9.,2.,1.,4, Approximation of the Cost Function Gradient and of the Pen-

alty Functional Gradient

( )The cost function gradient <J'(¢)J%? = Ji is approached by
212

0 (212)

! 0 - [ |-‘/a o\ vy e h
<%®QN3-IQM%W%§%dx xa| otey' T Moy Tepdo, Ty ax
h ' h ‘

VeV 5 BpeVy v OpeVyg

The discrete analogue of the menalty functional g.adient (202)
ig expresscd by (213) (214) (215)

~—
o
" |

|




Frayly> = 2 Z123Q 8Q;(i) with Q Q (i), given in (214)(215) (213)
; h

! +

; Q. = (*[ Ve, ~Vo_, )oTN.dx)*

BQE(i) - f Fteun, ax

If the entropy constraint modellin (211) is used, we obtain [66
the differentiation formulas (216) (217?

. <S' :N-> = 2
= 3k 7§ 355456 3 SR (1)2(3 ) (216)

with sg; given in (217)

GR?' -»4.;#..‘*-2 -> - >
J(1)=3{ (v¢j v¢j) n} "o { (VN;-?N,._)-n} (217)

9.2,2, Case of Lifting Profiles (Airfoil Sections)

9,2,2,1, Approximation of Spaces V, V and Vé

If V. and Vgh designate the approximations *n finite dimensions
of spaces v and Vg s if VC is the sub-space °fli(ﬂ) defined in 7.3
so that

. Y@y, ¢= ilirg . . - -
| Vo = {oew @, =0 trailire . . o[+ - o[- =0, 2 2Dy

. where C designates a cut in the domain occupied by the fluid exiting

the trailing edge and joining a point of [, (Figure 20) and, that Vg i
designates the aprroximation in finite dimension of space VC ;

.
e

1 0,8
\'J h Ld {¢h|¢hfc (Q)g ¢h|vr€ Pk VT€qI’ ¢h‘BP=0 H ¢h’C+ - ¢h'c-
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Figure 20

then the discrete analogue of (109) is given by (218)

& =
2™ ®nph * Wrpe Vi@ Vep (218)

9.2.2.2, Approximation of the State Eguation (112)

In (218) PRy and $yppare the approached so.ations (219) (220)
of the variational equations (52) (112)

> >
. VooV, dx =0 ¥ . 1
fn Rh "“h w, € Vﬁh 5 9xn€ Ven (219)

The step condition on C is treated as a condition of pseudo=
peri- licity., We define

£ which ' pproaches g as solution of the
discrete equation (220) "h

> -+ . > ->
IQ v€h° th dx = szh(\ﬁ'q'h)vézh th dx- + {P ghmn ar
2h (220)

¥ whe Vh

n€Vn 0 9" Onpn * Bopy with Oy Yy
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9.2.2.3., Approximation of the Joukowski Condition

+ -
If Tpp and TBF designate respectively the last element at the
extrados {(resp. at the intrados) attached to the airfoil following a
side of a triangle, and to the trailing edge shown on figure 21,

Figure 2]

we approach JK(2) by JK (L) defined in (221) 168
2 2
ASCIE LN L (221)

If k=1, v¢gh is constant on each trangle and the Joukowski con-
dition cannot be applied punctially on the airfoil, but only as an
average on the two triangles T+ - T—,

If k=2, V¢m 1< Jinear on each triangle, we may selecte one of

the nodes il-h-2) o1 (1=6~3) on the body or an interpolation of
these points (refer to MARTIN (23)).

9.3. 3-D Flows

The numerical implementation of the tridimensional flows is
developed in detail in J. PERIAUX (9). 1In the case of lifting flows
(for example, around a wing), a sheet of discontinuity (ND) must be
introduced, originating at the line of the trailing edge (LBF) and
jo:i.ningp°o as on figure 22,
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Figure 22

The discrete Joukowski condition is applied on (LBF), trailing

edge line of the wing, If L(y) designates the circulation spread,
starting from the socket of the wing up to the "pig" the discreti-

zation of (LBF) into NBF points on which the sheet of discontinuity
is applied, provides NBF Joukowski conditions (non linear) (222)

K (L) = |€7’<z>h|123F+ - [%h[}zm_ ; K=1,NBF

(222)
K

with ¢ decomposed as follows in (223)

NBF 169
b= Onpn * Lk ®Rrnk
K=1 (223)
NBF g
. eV D v )
h€Vh xzx (ND) b

o

R defined
with V(ND)K ein (224)

L

v
(ND)K,h

v
(gl 0pn €7@ » Opylpe B ¥ TeT
(224)

¢RhlBFK =05 gyl =L

o)

S e
M C M




If Ci is a tetrahedron of § then ND shall be the trace of

tetrahedrons having at leanst one node belonging to the sheet of
discontinuity

5

+
§ND§ shall be the trace of the sheet, view [rom above
ND)~ shall be the trace of the sheet, view from below

e The definition + and - are defined from the line of the trail-

g ‘ ing edge by designating by + the extrados of the wing and by - the

1 intrados of the wing., I shall be observecd, then, that the discreti-
zation of (ND), is composed of a set of triangles (see figure 22),

0.C, ZIENIEWICS (24) may be consulted for the approximation Py
k=1, 2 and the coordinates of surface area (L;) used in (225) as
well as the derivatives

a 4 - 10 ~
olp = igl U igl oM (L) 5 blp e, (225)

; of the functions of forms appearing in the exact integrations,

10, - MIXED APPROXIMATION BY THE METHOD OF CONFORM FINITE ELEMENTS
OF THE NAVIER-STOKES EQUATIONS

Ly

10.1, Summary

This chapter presents the mixed approximation of the Stokes
equations and the Navier-Stokes eguations by the method of conform
finite elements taken into consideration in chapter g. For simplie~
city @ shall be assumed to be a bound polygonal of R™, but the nu-
merical implementation extends to the domains of R3, the applica=-
tions of which shall be presented during the presentation of numer=-
ical results in chapter 12,

10,2, Appreoximation of the Functional Spaces

If Ci designates a standard triangulation of the domain57, the
following spaces of finite dimension (226) (227) (228) {(229) (230)

(231) shall be used subsequently 119
H-:, = {6, €C°@ , ¢, | e P, ¥TeT) (226)
Hop Hy @) o Hy = (8, ¢ B, ¢ g = 0} (227)
Vi, = {'5he eoam? , Tzh[Te (Pz)z, ¥Tc G} (228)

h h* vh‘f‘gzh} (229)
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with 2, an appropriate approximation of :.

&nad ) eV x i JV-?«» . [ 2.2 i (230)
h*¥h zh " foh ? Q Pn h dx 96 vhwhdx ¥ w, € Hh}

; A widely used variant in numerical taests consists of
defined in (231)

~ -+ - - 2 i~
Vh/z = {Vh/ze (GO(Q))29 Vh/2IT€ (Pl) ’ ¥ Te thlz} (231)

g
®

wherezilz is the triangulation obtained from t; bysubdivision of

each triangle T¢ T, into 4 sub-triangles obtained on figure 23 by
Joining the middles of the sides,

’.—-———ﬂ
T
T
T,
Figure 23
10,3, Approximation of the Steady Navier-Stokes Equations (11

The approximation of equations (132) by the mixed method (187)
is given in (232)

-
Find - (y¥,}e W, so that

(P,)

v[Q ?uﬁﬁh dx + I(-;h.v)_;h. (-;h+v¢h)dx =0, ¥ {;h’¢h}€ woh (232)

We shall find in P, LE TALLEC (26) reasonable assumptions on

i% and V2 Vo so that (Ph) permits one solution, Moreover, passing to
tlie boundary is the solution of problem (132)

im {0 > (233)
L Guiy b = (3,0
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Tt may be observed that if Yh “ﬂ,' 0 is set in W, and in (P,),
the Taylor-Hood (25) scheme is recovered

10,4, Mixed Approximation of the Unsteadyv Navier-Stokes Equations

Subsequently, k = At shall stand for the discretization time
Presented now are two possible discretization schemes of
which one is semi-implicit and the other one is entirely implicit,

step.

10.4,1, Semi=implicit Scheme

This is the discrete version of scheme (152) (153).

It is com~
posed of (234) (235)
ﬁgevh , 1s an approximation of :°, given (234)
Then, for nz0, by using (232), we obtain (235)
{En+1wn+u from -+ by solving (236)
h ’¥h
&
N b rn+l 2> *n,E.*n >
IQ " v, dx + v[quh ﬁvhdx = -JQ (uh'ﬁ)uh'(vh¥$¢h)dx (236)

¥ {3h,¢h}e W s (;:+',w2+]}e Wy

It may be noted that (236) is a sequence of discrete Stokes
pseudo=problems and that the scheme (235) (236) is a truncation
error g(o¢) and is only conditionally stable.

10,4.,2, Implicit Scheme

The scheme taken into consideration above in (237) (238) is an [72
entirely implicit two step Crank-Nicholson scheme

Ko o iven
**n & ' (237)
n -
Then for n21, ye ob*ain by using (232) G:” from -*,*nl
the solution of (238)
3 »n+l__on _ 1 +n-l
2 Yn 2uy + 2 T odx 4 o v»n#l T d +n+| % +n+l
0 , Vh X Y 0 u . Vh X + (uh N )u_h o (238)

Q

h I. {-G}r:+l swtr:+l} € W

++-> dx = 0 -
fvh Vop) dx ¥ v e W) zh




o A

WA

It may be noted that (238) is a sequence of discrete non=-
linear problems analogous to (232) and that the scheme (237) (238)
has a truncation error O(Atz) and is unconditionally stable,

10,5, Least Squares Solution of Discrete Unsteady Navier=Stokes
Equations

10,5,1+ Discrete Mixed lFormulation of the Problem P%

We are taking into consideration in this paragraph the discrete
analogue of chapter 8,2,3.,, the mixed formulation of which is a gen=-
eralization (239) of (232)

| Find (:h"q'h) €W, so that
af 33 ax + vf AR dx+f @ T -7+, yax =
o ' vh A A e L (239) (B)

- szoh-vhdx + Jgflh-(vhfv’q;h)dx V(Y 00,) € W,

Two terms may be observed in (239)

corresponding to the choices of the quantification

:
- foh time stheme

1 -+n 1 -+n-l]

e JQ(Zuh 7 W )Jdx ( in (238))
-'; density of external forces

lh
P% is a nonlinear problem,

10.5.2. Least Squares Method of Pg.

By analogy with (158) of chapter 8,2,3,.,, the least squares me=-
thod of PL given in (240) (241) (242) is taken into consideration
. -
-> Min Jh(vh !¢h) with

{Vpsbplew,y (240)

> a > 2 - y 2
TnlVpoty) = 3 fnlvh:ghl dx + %Lzm"h'gh” dx (241)

where E is a function of‘{;h,¢h} via the discrete state equation
h

(242)
> =] -*o-’ *.-’
a[g Eh nhdx + vfn$gho§nh9x J fohnhdx + [Qflh(nh+th)dx

f (242)

- 3 N d -3 ; i - .!
fﬂ(vh ﬁ)?h(nh+a“h)dh , ¥ {nh,mh}e Won & $SpoXy) € Vo

(13




10,5.3, Calculation of Gradient Jl;

The differentiation of criterion (241) is given in (243)

- -> >
63, = a[ ‘;vh-th»s(:h-ﬁh)dx + v]ﬂv&ho-th)-ve(vh-th)dx

(243)
-
v (gvh’6¢h) € woh
whereas the one of the state equation is given in (244)
aJrGE"d-r Vo, oF A IS AR
h.nh X \)j h- nhdxg -f (Gv . )V o(n +Vu )dx
Q Q g b Th (244)
- 2. -+ . -+
fg("h V6V« (B, ) dx
with (ézh_:dxh) € woh 3 ¥ ('ﬁh,wh) € woh'
Since {Vh-gh’(bh-xh}‘:woh’ it is possible to express the variation
of criterion 63, uniquely as a function of G;h by using (244),

We obtain (245) by selecting {-ﬁh = -\;h-gh P wy =6, -, }
h 4h

af GEh-(‘Gh-E Jdx + vf VeZ ¥ (v
h E . ( = dx = - B . v >
o o h' Vv Zh) X fg (th -V‘)vh-((vh.gh)

" ’6(¢ - d -f -+ . -+> -+
hXp))dx 5 ﬁ/’)évh-((vh-Eh>+'V’(¢h-xh>>dx (243)

By putting (243) (245) together, éJh is finally given by (246) L[4

6J -aj v, £ )e6v, d +v[ V(v €, )Tov, d
LI PR I U T P I U (246)

+ j«eth-‘v’)th + (s (G, BT 6, x,))dx
Q

By expressing that 5Jh = <Jr"(-‘;h’¢h)’ {-ﬁh’whb , J}'x may be identi-
fied with the linear form :W . P R defined by (247)

AR PRCRTN Q‘{é;h-zg'-ﬁh dx + vfﬂv(z’h-—éh)'ﬁh dx

(247)
. [p((ﬁh-‘?)ih s G (G BT @m0 dx




10,5.4, Conjugate Gradient Solution of (240) (241) (242)

The algorithm given above is the discrete analogue of the one

described in (160)...(165) in chapter 8.,2,4, It consits of 3
phases,

Phase 0 : Initialization (248) (249) (250)

*0 ,0 '
{uh'¢h} € woh given

3
34
1 %atc?late {E:,e:} solution of the discrete variational equation
g 249
' a0 +
, a . : o,
i) ' 249)
: > - , (
$ ¥ {nh,mh}e W s 1g§,e§}e W
with J! defined in (247)
%0 0 +0 .0
set {h ,7.} = {g°,0°}
h’"h By+Y (250)
“m m +m _m
T, 2
ot o ey ot <o+ BTyl <o dmown + calcutae
{ 2 B {gh 0 }{hg ,T:+ }
Phase_1 : Descent (251) (252) (253)
- m . Hm ., m m
A" = arg min J -Ah, ¥, =AT
& e h(Up ANy ¥ mATY) (251)
»m+| -m
u S b
h h h | (252)
ji ol _om o mom
¥ h T Vh T ATy (253)
.70




Phase.2 : Construction of the New Direction of Descent

Compute {-§m+l emﬂ} solution of the discrete variational equa-
tion (254) h

+1,2 | % =
0[ M*len dx + v] Tl - <t oMl o mel,
Q Sh hax% Q gh nh dx <Jh(uh ’wh ) {nh’wh}>

(254)
4 {3utl gmtl
vne e, G e e w
Then calculate the coefficient of conjugation y=*! in (255)
pa-ad e T IR
Q[ g o( - v m+] -»>
h '8 —g)dx + vf Tt m
m+] h 8 (
e g oh U8 ") dx (255)

a]; Ishl dx + vf5|$8:|2 dx

The new direction of descent is given, then, in (256) (257)

o+l - “*m m+l?m
by T+ Y hy (256)
o+l o+l _m

m
. eh + Y T (257)

Do m=m+1 and go in (251)

It may be observed that each iteration of the algorithm (248)=-
(257) requires the solution of several discrete Stokes problems Sah
-one Stokes problem to solve the state (2h2){t:”,x:”}

with > mel o
{vh'¢h} = {uh 'wh }

-one Stokes problem to calculate {E:*I,Gm*‘} fronn{::”"wg*'}
' and

+] + .
e "} via (254)
-several Stokes problems (* 3) to calculate M,
Flow chart 1 of the unsteady Navier=Stokes algorithm is presen-
} ted below, The discrete solution of problems g is presented in
the follow. : chapter, 10,60, ah

10,6, The Stokes Alrorithm (Discrete Case)

10,6,1, Introduction

The presentation of the Navier=-Stokes equations (discrete in
the steady case (10473) and unsteady casc (104%) in the form of a re-
petitive sequence of discrete Stokes problems, implies a highly ef-
ficient numerical algorithm of problem (Sag)(ZSS).

(13

’
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a
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SOLUTION 2.0 BY THE CONJUGATE GRADIENT OF

THE LEAST SQUARES METHOD

0 Initialization : sELECTV € W3
" conpuTe <'§.: y N = (J'(%’:),T‘)') Vo ew,
_S.:e Wo
—p{ { Cllculato-J: solubion of the |..cooeunn...... eeeceanes 7 Dirichleis
: State

ﬂ:ﬂ+1 . l

2 CGlculate the cost k
JLunction

J(B5)eci

neisn “aettn

3 Descent : Calcul. 'A“

-

250 k

k

k

A% Arg Min J’(u".-i-;\ﬁ';)

Set v"*‘gv"+3"h:

 eeenes . 21 Dirichlets

!

k

-l

Set "'1:41. E""'b ¥

4 Construction of the new direction of descdnt

....... 70 cichlets

<4

k vindex (time loop) .
n index (control loop)
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"Find (% W} eV, so that (258) (5,3
1

“J t‘h':'hdx*vf 3uh'§v dx = f T S dx o+ [ T @ Ho rdx v (¥ }
Q R h g o T ) Pt e Vi byt € Wy

In the following presentation, we shall find again the discrete
analogue of 8,3 in the solution of (g h)
a

(27) (28) may be referred to for demonstrations of the theorems
used,

10,6.,2, Characterization of the Solution <zﬁ'%v9h)

We may easily prove that (258) has a unique solution which is
the one of the problem of minimization (259) with distributed linear
constraints

- Min {g—fi‘;lzdx‘v\lfl\;’h:_ dx—f? o;dx-fg o(;+v¢ Ydx 2

where it is recalled that
= /" e 1 . - . l
Hon = Livpedp) € Vo X B Jn%h Fapex JQ'V' Yy Gpdx ¥ q e 1}

1
The pumber of constr ints of (259) is dim(H,), We m?y c;mbine
with (259) the Lagrangien ) . defined by (260
Lp VB By - R

e : (T [ X 260
ih(vh'¢h)qh) = Jh(vh.¢h) + JQVbh' $qth“J{QV’thhdx ( )

where jh(;h,¢h) equals (261)

- -

., - + 2 2 -> -
Ip(vpe0y) = %Lzlvhl dx + ?i-[pﬁvh[ dx - J(Qfohwhdx,- Jnflﬁ(vh+v¢h)dx (261)

(259) being a problem of minimization with linear constraints of
finite dimension for which there is a solution and a distributed
i ! ;= s
Lagrange multiplier phe}% so that t“hﬂﬁfph}j' a saddle point of
.l ! -
ih on vzhxgohxahwith {ﬁ“yh}solution of (258) (259).

The extreme conditions of Zh at point fuh;%“ph} (262) (263)
(264) characterizc the solution of (258)




4
e

5 2 4 .[? . | | (262)
IQ Pp+¥oy dx th%hd""‘%“‘oh"’h"‘h
a[ z'zdt‘»v{.‘m . +'r2 v T o4E T
h ) - 2 / 'V = £ ‘v
g WATE STy Vi ) Yoyt jﬂ(foh"‘n?‘h ax (263)
LI -
Tt Von bV
3w -3q dx [ 7 ! 26
= . ‘
]n A Jo"h On OX ¥apely (264

From (262), it may be deduced that the Lagrange P, multiplier
is the discrete pressure,

10.6'30 The Slzace mh

By using the obse{vations made in 10,2.,
sunplement to H%h in iy , .6,

mh is introduced as a

l ]
= o,
with N = dim On ).

In practice, by using the Lagrange finite elements, mh shall be
defined as follows (265)

uhe?ﬁh = uhIT =0 ¥ Te C’h 80 tLot3Tn ol = ¢ (<.

mh has a Tinite dimer.sion N, It is the number of nodes ofC%
belonging to ., Morzover, (265) implies that

with supp () UI‘ - U Twith lim mes (Q-I. ) = 0.
_ h  TnaRs h~0 b

QF is shown on figure 24,
h

10,6.,4%4. Converting Problem 5 into a Variationnl Problem (E in
Cth h — mh

10,6.441. Approximation of a(*,*)

Tn refereciico to the cbservations made in paragraph 8,3%,%., that
if v is sutficiently steady, the Green formula leads to (2006)




ko el et St S Lo,

TR ,:ﬁ;rv,‘m;¢1
A4 d :

Y
al\,p) = .f A . _f B
u) . 7 p dr . W’A Vi dx - !

Ay, § dx
) g A
= - V vyt f . 11 o= o \+~
Q \U)‘ eu dx + 96 u dxv- - q (—V'wx*"u)‘fVu dx (266)

where I is a measurement of M in Q.

Now let ')‘h"uhc' 7’?1,' If we define ap(*s°) :mhx”‘.h-':R by the
sequence of problems (267) (268) (269) (270)

B B - - g - !
J{ ﬁp)\h ay dx =0 ¥ qp € Hoh » Pyh \he Hoh . (267)

9]

-+ > . g ;_»» L = -»> . > - .
GJQ Uyp Vp 94 + Jﬂ'ulh”vh ax = JQ Py Yy dx ¥ vhevoh’ Y“\h e‘oh (268)
3
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v . 3 .-' l ‘
[ﬂ th $¢h dx Qv 9Ah¢hdx’ V¢he Hh . whe H;h (269)
- . .
a, (A uy) = 'fg'm’xh*“xhw“h dx . (270)
Then, the theorem (10.6.4,1,) demonstrated in (31), dis-
crete analogue of the theorem 8,3.3.1., characterizes the properties

of the bilinear form ah(.,.).

. ¥Te &,
Theorem 10,6.+.1, : Let us assume that T has at the most

one side ¢ 3} , therefore ah(.,.) is a bilinear, symmetrical form
and is defined positive on

%/Rh) x mh/Rh) where

R, = {uhGZhJ My = cste on 30}

Based on theorem 10.6.&.1&. we can now convert the problem sah
into a variational problem in “{, thanks to theorem 10,6,4,2,,
discrete analogue of theorem 8,3.3.2.

10.6,4,2, Approximation of (E)

A
Tneorem 10,6,4,2, ¢ Let P, be the discrete pressure and h the trace
of py on %, . Therefore i® theorem 10.6.4.1, is verified, then )y

is the unique solution ixnmh/gh of the variational linear problem

(i,) (271)

Mhe MylRy /80
s e L (271) (E,)
ap Qi) = [Q (Vwohmoh).%h dx ¥ e m /Ry n

-
poh’ uoh, lp

where oh are defined by the sequence o“ problems (272)

(273) (274)

X1 =1 F . 1 1
fﬂ $Poh th dx = folh vqh dx ¥ qp€ Hoh' Pon€ H (272)
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TN

by SRR

Gf T v dx + vf [ g r. o
oh U v, dx = | (f X ng
Q h Q ° 'h Jﬂ(foh*flh vPoh)'vh dx

(273)

->
v >
VL€ voh~’ Uh€ Vzh

Vy oVs, dx = f %3 o : '
]5 oh ""h f 0 U p®pdx ¥ ¢, € Hp o Yone H:h . (274)

10,6,5, The Solution of Problem (Eh)

10,6,5.,1, Summary

The choice of the method used for solving the problem depends
uniquely on industrial applications, For 2-D fluid flows, the num-.
ber of boundary points Nh (=100) with dim Nh<<dhn}%, the solution

of (E ) by a direct method is preferred, for the core space and man~
ufactﬁring time required for matrice is relativeliy compatible

with the current size of large computers (370/168). On the other
hand, for three dimensional applications (segarated.flows around a
wing with high incidence), the number of boundary points N, (= 1000)
results in an unallowable core use and computation time and in this I
case, a conjugate gradient type iterative method is preferred for ;
the solution of (Eh)’ which does not require information about Ah.

Both methods are expanded in the following text,

10.6.5.2. Solution of (Eh) by a Direct Method

10,6.5.2.1, Construction of a Linear System Equivalent to (Eh)

Eeneral H

g g g

The space Th defined in (263) being of finite dimension, let

b f . That that . m
=={m}Nh ;2 base of T, at means at g B € My
B 957 a N
’ (275)
N
uh - .g uiwi i rhuh = {uls--ouN €R h}
1=] h

The functions w, are defined as follows :

¥ i=l,...,Nh (8

W, Vh wi(Pi) = | (276)

wi(Q) =0 ¥ Q node of?:n » Q # P,




°.
- The hachure zone of figure 25
represents the support of Wie

With the definition (2;6) of the
w;» that means that in (275 By =y (P

The problem (E, ) is therefore equiva-
lent to the linear system (277)

Figure 25

Yy
!

j"l

R v | T
I, T i

. - - 2x
A (wiawdA; = L)(vwohmoh).vwi dx , 1sisN.

a;: =a (w.,w.) ; A = (a A Tt
Set 3y % a(M5avp) i Ay - @iiici,jen, 3% L;(.v"-’oh*‘uoh)mi ax (277
N
= {1 h
by = (o5

According to theorem 10,6.4,.,1,, the matrice Ah is complete, sy=-
mmetrical and semi~defined positive

Construction cf Ah : Ah is constructed column by column according to

the relationship ajj = ah(Wj,Wi).TO compute the jth column of Ah’
the sequence of problems (267)...(269) is solved for *y = ¥: and
(a1§)i=1,...Ny is deduced by using (270). Each coliumn of Ah re=
1 quires, then, the solution of 4 discrete Dirichlet problems (5 in

) the case of Qc R”). As the matrice Ah is symmetrical, the problem
: may be limited to indices j: j.

(270) involve only the functions having a support of about

ﬁ”
} Taking into account the choice of “h, the integrals defining
(Figure 25).

o

[ Flow Chart 2 of the construction of operator A is presented be-
b low,

Construction of b : to construct the second member of (277), the /83
sequence of problems (272) (273) (274) is solved, which requires 4
discrete Dirichlet problems (5 ifQ < R3)

Considering the choice of”’h, the integrals defining the sec-
ond member of (277) involve only the functions having a support in
the proximity of (Figurc QS)o

1006¢e5e242. Solution of System ‘Hfh = b, by the Chloski Method

IY;
¥

‘}
.\‘»

it

PR it

i




) CONSTRUCTION DE L'OPERATEUR SYMETRiQUE
DEFINI POSITIF A (i,j) COLONNE PAR COLONNE

KEY A) CONSTRUCTION CF THE SYMMETRICAL OPERATOR DEFINED
POSITIVE AT (i,J) COLUMN BY COLUMN
B) For all nodes,

BYy—> Pour tous lss nceuds Ier /82
!
v UMda =0
YALR
Pele= 91k

./74) VMdn /Vu Mda
¢’k|"'
|

A (1,3):/?7'.?,‘ M; + @’q;kfﬁmj dn

support J , Je I

—
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Account taken of theorem 10,6,4,1, and of the definition of

! N
®h Ker(h) = (VeR My = vy = vy}

and since the matrix Ap is singular, it is necessary to fix a com-
ponent of Ay aNh =0 , for example) in order for the sub matrix

%1. (aij)kdqiSNh“ to be symmetrical, defined positive.

The sube-system to be solved is therefore expressed (278)
A‘hrh)‘h - bh where - (278)

l‘h. Ah = {xl,oon,ANh_l} ’ bh = {b‘,bz,au-,buh-l}

(278) is solved by the Choleski method via the standard factori-
zation (279)

~ ~'~t -~

Ah almbh wvhere H1is a non_singular lower triangu- (279)
lar matrix

In summary, the solutions to be computed to obtain the solu-

tion (* ) derived from (E,) by the Choleski method are the fol-
uh’Ph h
lowing @
* ~
=4 discrete Dirichlct problems to calculate pohﬂﬂm’woh b,
(5ifQ < R)

~4(N -l) discrete Dirichlet problems to construct Zh
(GO -1 ifQ < R%)
-2 triangulaf or dgsceqt-climb systems to calculate Ah
Ly = by 5 LEN = Fy
) ~ 3 discrete Dirichlet problems to obtain p, and ﬁﬁ from Ah
‘ (4 if 2 ¢ BY),
Flow Chart 3 of the rapid Stokes algorithm is presented telow,

1 In practice, the matrices of the Dirichlet problems are fact- f8§

orized once and for all outside of the control loop. They are two
symmetrical matrices defined positive, one approaching -p by ele=

ments P1, the other al-A by clements P2 (or P; on a triangulation
t%lzdefined in (213),

10.64503. Solution of (Eh) by a Conjugate Gradient Methoc

General 3 It is interesting to solve (Eh) by an iterative method

- e - -

28]
DA
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SOLVEUR RAPIDE DESTOKES

RAPID STOKES ALGORITHM

=
INPOT ¢ f '

APo=-V°F
polr =0
|

Yy
40,V AT, = (T, + F)
-Jo |r=-z'

h 4
Ag, = _V.U,
(Pc 'l': 0

l

Y.

Bj = —/V- UoWj +V tPo.Vtu_j da

wJ defined on,'-

| l
SCIELTAN Y

¢

APA IO

PA"-:A
l

h 4
GIIA-\) AU;\: —vp;\
-LT)\ 'r =0

Y -4
J—
P=Ppotp f”’lo‘ifl“‘ —{ U=u,+ 0
A (“:P) ° A
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wi:ich does n-t require the EXPLICIT computation of Ap, but only, at

each iteration, the solution of 4 discrete Dirichlet problems
(5 ifﬁh:n3). It is subsequently interesting to introduce the iso-

morphism
N,

rh =7Rh + R h defined by

Fpy, = {0, '“2""'“Nh} ¥ Hpemy,
h

N
with'h = E Hi{¥; 3 W e 5, base of 7y, introduced.in (275)

(eys)p shall designate the standard euclidian scalar product in
the corresponding standard,

N
R"e [l

By using the observations above, the two members of problem
(Ey) (271) are expressed

a3, Qi) = (G rpdparip)y ¥ A e my

{ -+ (280)
JQ Ty gy Wy dx = (dpar )y ¥ e my
Description of the Algorithm in (281) ( 82) (283) (284)
Pbasa_0.2 Initialization
N
o -'h
rh)‘hGR is given arbitrarily
o _ o (281) g
°o_ o
hh"gh
Then, for n20, A" o" 14 being known, compute AW”,g“*'h“*'
1] ’ n!g-n) h ? h h h by
Phase_ 1 : Descent n n 80
(h',g )h
Pu ™ n,n
(Ahhn’hn)h (282)
n+! n _ n
{ rh)‘h rhl phhh B
83)
ntl _ n _ n
h Eh pnAhh




i
e -

T

RU L

*
K
a2

Phase 2 ¢ Construction of the New Direction of Descent

+1
ey 12
n ny 2
Wepl (284)
hnfl " n+l

= n
h gh + Yhhn
-n=n+l, go in 282,

Notes

As the matrix A is symmatrical, semi-defined positve, it may
be shown that the sefuence {A\} converges toward hsolution of
(Eh)' The component of Xh defining the pressure level is the same
one as the initial pressure )\°. The implementation of (281),..

(284) requires_,the solution of 4 Discrete Dirichlet problems to
obtain Pp pne Yy yno wn,h“ at each iteration (5 ifQ ¢ n3) in order
to compute

Ahh: via (285)

ap (h0up) = (Ahr,rpu)y
{ (285)

) Jn‘(wh,hﬂ ¥ -‘:h,hn)'wh dx

The prefactorization phase of the discrete Dirichlet matrices,
recommended in the direct method, is also obvious, upstream of al=-
gorithm (281).,.(284) and leading to considerable gain in calcula-
tion time,

10.6,5.4, Acceleration of Algoritbm (281),..,(284) by _Preconditioning
s, ¢y xXm» *+R
Let h ‘h “*h be a symmetrical bilinear form defined positive
?o w?ich the symmetrical matrix defined positive S, is related via
28¢)

a, (A ,u) = (S, A ,ru)
h* " h’"h "h h’"h"h’h (286)

S, is an auxiliary preconditioning operator in the sense of O, ZBZ
AXELSSON (32). The conjurate gradient variant using a scalar pro=-
duct (O )y relating to Sy is defined by (287)

S, - s !
(288) (289) (290), P oSy 1)

Phasg O : Initialization

oz

i 8 TR N
" b




N
r,A0¢ R h selected arbitrarily

h™h
o = ° -
& = AnTh'n by
hO = g1 40 (287)
"h &y
For n20 A:, g:, hg KN iy comp.ute )\:”, gg”, h;” by
Phase_l1 : Descent
= (hP n)
0" . h*8 h
n.a
(Ahhh.hh)
rAn+l- r D fn (288)
h"h KR TP hy
n+l - n - n n
Phase_2 : Construction of the New Direction of Descent (289)
' n+! =1 n+l
n n .~ n
(e,»Sy, &) (289)

n+! -1 n+l n
( hy =S8 Yy

n=n+1l, go to (288)

Notes : If S, = Id (identity matrix) is selected, algorithm (281,..
(28%) is found again,

Different choices of S, are proposed by GLOWINSKI-PIRONNEAU (29
(29) guided by two ¢ .fferent types of contradictory arguments (info-
rmatics and theoretical),

1, Select S, (.,.) leading to a hollow or even diagonal matrix
Sh° In this case, sh may be factorizd once and for all by
the Choleski method S = ThT; upstream of the algcrithm
(informatics argument?.

2. Since ah(.,.) is an approximation of a(.,.) defined on

-1/2 -1/2 .
Hl/'(m and elliptical H‘/“(r), select S (.,.) ap?roxima-
tion of a bilinear form S(.,.) also ellipt¥cal TRRAT

This alternative, however, leads to a complete matrix S

(theoretical argument )

We give to (290) (291) (29 ) threec possible Sp(.,.) leading to [&8

sparse 5, matrices, provided that the boundary nodes r have been
numtered properly (rmirnimum band width).




SpQpoky) = !rxhuh dr (290)
S Ay Hy) = faﬁkh-Vuh @ . (292)

Assuming , defined in {275) (276) and that the Lagrange finite

elements are used for the problem (271), it is then possidle throug&h

numerical integration to combine with (290) (291)

.1linear forms for
which Sh is diagonal,

This is the approximation /291) for (290)

RS DR B LR T

i-1i
= 2
Sy Oy M) Ay (293)
2
M) x .
i’i=1,Ny  described on figure 26
Wi e Misal
..... M.t A Whereas approximation (294
294) is related to (291);
i M,) describes figure 27
Th i
Figure 26
) X l‘ih |
Sh( h’uh) = Z °3° mes (Supp (Mi))k‘u'
! i1 (294)
; L Support Wi
Y
»
Figure 27
- -
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In (294) we recognize the scalar product L~ approached (.,.)h /89
defined on V, by (295)

h
(£,,8,),= s J 3 N
*&h’ 1" (V1) mes(T) | f,(M)g (M) 1fRc R, N=2 or3
h* B/ n" (WD) < (& M B (295)

with mes &?) t area or volume of T
1 ¢t nodes of triangle or tetrahedron T.

We shall check whiather the matrix S. is diagonal by using the
definition of B, give: in (275) (276) ahd (294), In fact, in this

case (Jhkh,wi)h = %-mes(supp Mi)li.

Finally, it seems interesting to select Sh the inverse of
the matrix (292) in an approached space of R-lIZ(r)' y 1.0, (296)

s;'(xh.uh) - fnﬁxh-ﬁuh dx (29€)

Various numerical tests of possible conditioning of (290) (291)
(292) have been applied to the solution ol the discrete Stokes pro-

blem via (287) (283) (289), The rapidity of convergence (number of
iterations) and the calcu: ation time are presented in chapter 12,

11, - ON THE METHODS OF INCOMPLE’ . E FACTORIZATION

11,1, Summary

This chapter deals with the difficulties of informatics imple-
mentation of least squares algorithms on two and three dimensional

configurations of large dimension,

We show how to use the methods of incomplete factorization as
auxiliary operators of preconditioning or as auxiliary metrics in
order to overcome ex-essive transfers of data on auxiliary memories
(disk and or bands) outside of the main computer center,

11.2., Auxiliary Operator of a Problem of Model “volution

We shall now consider the parabolic linear problem of standard
evolution define. .in (297) (298§ (299)

3¢ (297)

xe =80 = £(x.t) in 2% 10,10

¢ir =0 onTlx]O,T( (298)




$(x,0) = &, (%) when t=0 (299)

£90
where U designates a bound domain of R" of boundary r with f and
¢o sufficiently stable,

Any quantification in implicit time of (297) such that

gz 0" - 00 @ o 0f 4 £k (300)

k -
with ¢ = ¢(x,k8t), &t time step leading to the solution of a line
ear system (301) after quantification of space (of finite differ.
ences or finite elements type)

k+li k
AP = F (301)

- T 3 \{
whereA (aij) Psi,j<N is usally a positive defined symmetrical ma-

trix (N X N) with half band width m (N representing the nuumber of
nodes strictly included in the quantified domain Qh)'

Since (301) must be solved numerous times and that A is inde-
pendent from k, it is better to use a Choleski type direct method,
Since A is symmetrical, defined positive, there is an invers.ble
and unique lower triangular matrix L, having the same band width
as m, so that

A« Lt (302)
With p‘ii>0 s 1si<N
where lii » 15iSN are elements of the diagonal of L.

if g , are elements of L so that
1

R'ij =0 4+ 1si<jsN

We braing back the algorithm of factorization of A (303) (30&)

11

1 (104)
a1
9—- T e— » V 2‘_:1

g for Jj=I
(L, = va

s, .
bl‘

112
—
-

11




{‘For 28 j<N (304.1)
j=t
L., = . - 2,1/2
i3 = (3 k§, %
1 j=t (304.2)
L,, = - .. .
iJ Eii (llJ k§; R'ikljk) ¥ J¥IsisN

Once L is calculated, the determination of ,k+¢! is immediate /191
via a "descent-climb" (305)

Ly~ F¥
{ (305)

Lt ¢k*' = w

In industrial applications N may he very large ! (5 10000),
making the storage of A and L in the main core of the computer even
impossible, Moreover, even though the non zero elements of A are
not numerous (A is a sparse matrix); as { .~ the matrix L, it is un~
fortunately always full,

Consequently, auxiliary core stations (disks or bands) must
therefore be used, and this requires costly data transfers, which
becomes excessive in an industrial context (problems of input-oute
put, process time, etC.ss).

In order to preserve the advantages of direct methods such as
the Choleskil factorization, it is desircable to find a sparse lower
triangular matrix | close to L regarding their spectrum, and kept
COMPLETELY in the main memory.

With [ it is possible to construct A for (306)
A= it {306)
We substitute, then, for (301) the iterative process (307)

A kel

= (a-a):k 4 pK (307)

In (307) A plays the role of auxiliary operator of A, It may

be pointed out that the strategy tu be adopted is different in scle-
ecting ~ depending on whether 307) must be solved once or . veral

times. ¢




In the first case, we shall look for incomplete, fast and ef- [22_
ficient factorizations in storage usage L (see MEIJERINK and VAN DER
VORST (30)) or similar iterative techniques (see VARGA (31)), AXEL=-
SSON (32), MANTEUFEL (33)), whereas in the second case, it is worth-
while to perform a significant computation upstream of (307) (proces
time, memory) to benefit from extremely fast solutions at each At.

e a1 M, Bl ot S

~

According to AXELSSON (32), A may be used in another way, by
having it play the role of a preconditioning matrix for a conjugate
gradient solution of (301), If i is used to define the scalar pro-
duct (308) in R instead of the usual scalar product (309)

<d,yP> =‘¢t :{ ) (308)

0,9 = o% (309)

Therefore, the conjugate gradient solution for solving (301)
corresponding to the minimization (310)

J(9) =-%-¢tA o - FO (310)
is given in (311) (312) (313)

Phase. Q0 : Let ¢° be selected arbitrarily
Calculate G°% = 4¢° - F

(311)
o _ A—lco
Set
; Ko = R
n> n_.n.n kn lcul n+l oo+l |
el ;hen, for n20, assuming Gt as own, calculate g4 , 6" ;
v |
Phase 1 : descent a nt n
A" = Arg min J(¢™-A") = H_G
Az0 nt, "0
. H AH
¢n+| - (:)n - Xan (312)

Phase 2 : Construction of the New Direction of Descent




Gn+l n

= 6" - )\" an

Rn*l - R-l Gn+|
t (313)
n+l Gn+l n+l

cnt g

Hn+| - Rn+l + Yn+l y®

do n=n+l1 and go to (312)

Note : The closer X is to A, fewer the iterations are required
to obtain the convergence of (311) (312) (313)., At the extreme, if

= A, the algorithm converges easily in on iteration, The number
of iterations required for convergence is a verification, a poster-
iori, of the efficiency of ;,

11,3. Auxiliary Metric Related to a Functional Least Squares Method

A situation similar to 11,2 exists for another class of equa=-
tions with nonlinear partial derivatives : this is for solving tran-
sonic and Navier=Stokes equations expanded below by the functional
least s uares method,

We combine with (314) (315)
@) = oDV = ¢ @ (314)
olp = 0 (™) (315)

where p is a nonlinear, positive, bound,.given value of Iﬁ&lz
The minimization (316) in H~1 of (314)

min 3(9) = ||B(&)-£ 2
deH] (2) R PP (316)

is equivalent to the optimal control problem (317)

. 2 ;2
min { f Vel "dx |de = G(d)-f . =
el U (317)

The qua ~“fication of (317) leads to the problem of minimiza-
tion in RN wi  constraints (318)




min_ {E® BE| BE = T($) - F}
oo | (318)

where B designates the matrix corresponding to the discrete Diriche
let operator and T the transonic operator obtained by quantifica

tion of (314), 33

) v d . @
g g TN I R ISR A SRR

Now, let us assume we know how to construct 5 close to B as in 3
11,2, then in place of (318) we propose to solve (319)

. bl A
min {E" BE|BE = T($) -~ F
m&@ l ’ (319)

If B is defined positive (318) and (319) are strictly equiva- 13
lent. . However, if § is not selected well (319) may be not as well i

conditioned as (318) and consequently, a conjugate gradient solu- 3
rion)of (319) shall require considerably more iterations than of ;
318).

~

In this case, B defined in (320) is the auxiliary metric of the
nonlinear operator T

*t~
W = B O, (320)

-~

11.4, Construction of the Auxiliary Operator A (resp. metric B)

y We shall expand, in this paragraph, a methodology giving access
i to a class of sparse matrices } or g close to A or B,

z Let A = (aij)lsi,jsN a positive defined symmetrical matrix !%
with half band width m so that (Figure 28) :

. . (321)
n aij =Oif!]_-JI>m
. Since A is factorized by the Choleski method (304) (305)
| A =1Lt (322)

L is a lower triangular matrix, also of band width m, Further-
more, it may be observed that even if A has MANY zero elements IN-
( SIDE the band (Figure 28), it is not the case of L, which has NONE
B (Figure 29).

Definition : Let us define in (323) the set of indices K of
zero elements of A inside band m

= 0} (323)

k= (G0 12y
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and let us designate by n(K) the number of elements K, Since n
positive constant~c is now given, it is possible to define 2 auxe
iliary operators LC and 1. as follows

C

4

is defined
C by (324)

il G

i” = s ey L
{ ij = 04if (,Deke lzij[sc (324)

ﬂij = Eij otherwise

i' is defined
~C by (325)

{21’5 =0 (i,)eke lz l<c min (L. JJ.) (325)
1,j

L. - zij otherwise “.

The constructions of L and i' bring to light the fe¢llowing
observations c '

o s e

1. IfCSrﬂn[

. . i C
1,] J '.Q. l
. < 3 r ~' = N
2. 1rC ain “‘—”_"'—Tmmm then Lg = L
Toi,j
3. 1f£CSmax [R; { then {(1,3)19. i =0} =K
i,j
< . 1 . . > - TS
'14. 1rC t‘n:.ak {mﬁ_%i_}} then {(1,3)[ Q;J 0} K.
ST PR SRR B

In cases 3 and 4,4 L and L have their non zero elements lo-
cated in the same position as tgose belonging to A and are very 3
close to the incomplete Choleski operators proposed by MEIJERINK-

VAN DER_VORST (30) and D. KERSHAW (34). Nevertheless, they cen=- |
struct L DURING the factorization of A (whlch means that L is NEVER
constructed ; and economize store usage with the possible disadvan-~

tage of obtalning a singular L matrix (to be pointed out that

(304.1) requires_the root of a positive number !), In the construc-

tion selected, L, and L' are always non singular ; furthermore, if

A is the dominant diagonal, iC and i& are equivalent,

Finally, it may be observed tnat if the construction of‘LC orlé
leads to an allowable dimension in the main core of the computer,
it is impossible to construct L for very large systems without auxe
ilieary disks, Nevertheless, these external trunsfers to the main
center arc required ONLY ONCE during the phase of factorization,

For practical applications, having a size of a main core which
is not to be e¢xceeded, it is worthwhile to choose the constant C so




a given percentage d/100 of non zero olements of L.or of Lé are mem=/97
orized, Therefore, since <100, We may define L and Lv
as follows 3 d d/100 d/100

For a given constant C, let us define E:zuuiié in (326) (327)

. - (326)
KC = {(13.])' 2'1'._‘] # 0}

-~

K = L, e); # 0} (327)

ir n(K) and 'KK ) designate respectively the number of elements of

’ then the relatlonshlps between the sets IL

KC (resp.Kc) d/IOO’Ld/|oo)

(@e,L)
I~‘cl/loo = ic withC 432y n(f(c) = n(K)d/100 (328)
Li/100 = L¢ withe they  MED = n(®d/100, (329)
By analogy to remarks 3.4
I£ =100, L0000 & L1 00/100 ool i‘;“”‘“' L

If d=0, ; L & L' correspond to the Mei jerink-
Van der Vorst type Choleski
incomplete factorizations,

It should be pointed out that there is another va construct=-
ion, which is interesting theoretically, even though in 3=«D appli=
cations it leads to excessive d/100 percentages, This construction
is valid only for matrices using the finite elements method.

If ¥ designates a standard triangulation of domain o, T is a set
of adjacent polyhedrals T, composed of (Mi) nodes,

The complementary KV of X may be expressed then (330)

N = {(i,j)ﬂ‘“i::"j eT for at T ofT} . (330)

least one

From Ky it is possible to define in (331) Kyy serving in the
constrtction of ivv(332)

R

;
4
§
3
b

T T



Ry =T w80 M, €T, (331)
Mi,MjeTz

for at least one couple Tl’ T2 of t&}

T 2 ) - S~ 2 2
‘w'“ij“ij 25 A0 (1) e Ky ) (332)

E_. ~ 0 otherwise
1]

- /98
With such a construction, va is independent from the numbering
of + Unfortunately, the case is that L has few zerc element:.

within its band ( 20% in 2-D, 50% in 3=D),

Remarks ¢ The introduction of Lé is also motivated by the finite %
elements method, In fact, it is easy to verify that if‘Q::R3, then 21
= 0(h) where h is_the average length of the sides of T¢ {Z,vhere-
as if Q < R? sy then i3 T 0(l)., It is also necessary to eliminate the
small elements by a test along their width relating to the diagonal
elements and not along thair absolute width,

11.5 Applications of Incomplete Factorizations to Transonic Flows and
to the Navier-Stokes Equations.

-~

The matrices IH/IOO’Lé/lOOJWV have been introduced in the
lifting least squares meciiods on industrial applications of large
dimrnsion in order to treat the algorithm ENTIRELY within the main
cor2 of the computer,

Two strategies are presented and compared with respect to infor.
matics (computation time, memory space).

Sl Ld/]OO’L&/loolTv are used uniquely as preconditioning oper-
ators in the solution of discrete Dlrichlet problems within the algo=~
rithm, thus keeping the metric Hl. We have only to substitute for
the direct descent-climb LLt, a preconditioned counjugate gradient ale
gorithm E d/100 of which the convergence speed depends essentially on
the percentage d/lOO. Two iterative algorithms on the pressure of
the Stokes algorithm are presented on Flow Charts 4 and 5.

] v
lSZ'IH/IOO’Ld/IOC”T“ are used as auxiliary metrics i1'odifying
this time the convergence speed of the least squares algorithm, The
direct descent-climbs LL' are substituted by the direct descent-
climbs itt. In this case a minimum percentage d/100 is required to

keep the convergence velocities at an acceptable rate,

-




ITERATIVE SOLUTION ON THE PRESSURE IN Lz(n)

OF THE STOKES ALGORITHM P1/P2 (TAYLOR-HOOD ELEMENT)

WITH (*) SOLVED BY PRECONDITIONED CONJUGATE GRADIENT frt

s ! e +> 3 T T2 1 N
s . B . '3 - = e -
( Trl) pEmI1‘121( ){J(p) 3 I p up dx] Aup_ p+ , up zZe (HO(SZ)) } (%)

§ > 2
- (8 ~+ Anp = Ve is coer=
In 8 TH) P p Up : 5 L (Q)

30> (Aq,a) ,2 allall®, ¥ qel’@
: L L

FLOW CHART 4

Preconditioned Stokes Algorithm (T-H)




FLOW CHART 4 (cont)

ALGORITHME (STH) - Initiali ation

p°e L2
(*) - a8 = F-%° , W%e (1l @)V
g° = ¥.0°
. ho = 80 ;-iou ;O
> —
Descent . 2
— lie™l <,
P = — :
.{'n (V,xn’hn) )
L
a+l n a
p =p - th
\
New direction
+] \
g = g" - p UeX"
+1 :
el
'Yn - -—-——E—-
"l
L
hn+l - gn+| + Ynhn
>n+l |
* ST @)
WV
n=n+]|

(*) N Dirichlet problems decoupled by iteration, solved
by preconditioned gradient AeLLt

N = dimension of the space

s > s B e AR o B R




ITERATIVE SOLUTION OF THE PRESSURE TRACE IN
4~1/2(r) OF THE STOKES ALGORITHM P1/p2 /101
(GLOWINSKI-PTRONNEAU ELMENT) WITH (*) (%**)

SOLVED BY THE PRECONDITIONED CONJUGATE GRADIENT

Lt
ALGORITHM =1t ; A= 85t
§§
. | b= VoE, pren @
h min { -—f AX A 4r A T3 -> =
- 2 Ay = £=v - I N
rei 2y g7 T AT e o)
| b= Vou, , sen! (@)
(**) (x) .
3¢
Im B A+ A= - El is coercive in ﬂ'”z(p)
3a>0 -A '2 -
o SALR 2 oA ¥ den™H2(ry
y-1/2 o {
where <« _«> designates the dua |
, ; 1it -
boodona Y H12(ry a0 w12

N = dimension of the space
*

N+2 Dirichlet problems in 2: solved by preconditioned

con.jugate gradient ~>t
Jug i LL

** doscent=climb on -~ witih A =

~

e
e




ALGORITHM (Eh)

102

Initialigation ?
A% emy
(%) 20p° =%, p°A% e @)
. i3
() W = 9%, Wk e@an” i
(») 84° = [ 231 , ¢° tHIoGZ) 3
0 .m0 .9 ° _ }'
(2¢) . | £© = rlgo ’
ho-ro;-’o':o ‘
AN -
4 A4 at
Descent '
(h", g™
®  (antn"
Anﬂ P pnhn
, New dir:ction N7
n+l n n
g =g OnAh ,
(++) o ! g -
. ('n+l r“")
x (gnurn)
5 n+l _ _n+l n
‘ h + Ynh
n+l n+l  n+l 1
(%) Lp =0,p ~h ‘¢ HO(Q)
, *) XM= T X ol @)
‘ *) ae™! < T o™ el )
E ;
: 4 ARDY! BQ‘)MI
; 1 on 'T aa
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Numerical experiences of these two strategies applied to 2D,

3=D transonic flo s, on the one hand, and to the Stokes algorithm

(Eh) 2D, 3=D, eoxpanded in chapter 10, from the Navier-Stokes equa=-
tions, on the other hand, are presented in chapter 12,

12, « NUMERICAL_ EXPERIENCES

12,1, Data Processing Aspects

The numerical simulations presented below have been applied on
the IBM 370-168 computer,

In the case of the approximations P, k=2, the various integrals
involved in ‘the derivation of nonlinear systems with finite dimension
discrete transonic equation (T) = discrete Navier-Stokos equations
(Ns) are computed EXACTLY with FORMAC (A. LAPLACE (22)).

For examplej (T) requires the implementation of a polygonal with
degree 3 (333), whereas the (NS) convection terms require the inte-
gration of polynomials with degree 5 (334)

. L (2L =1) k=1,2,3 (333)(T
[o%-?ukdx;b}-{k k ‘
Q k

4LiLj ke4,5,6 idj .i,j=1,2,3

> g @ (334) (Ns)
n (U‘ )u 'kk dx

The expression of (333) (334) as a function of area coordinates
(Ly) together with their derivatives (refer to 0.C, ZIENKIEWICZ (24))

the standard relationships (335) (336) following dimension 2 or 3 of
the space,

a By aBryt 2 f
IT{ ch L|L2L3 dl' = (Q+B+Y+2)! (T) : . Li -1, (335)
i=]
asBey S 5, a8,y 2 0
488 gr By 6
I’I‘c < L]L2L3L4 di = m) Vol(T) ; f Li s |} (336)
h iml

a+B+y+8 < 5 . G,B,Y,5 20

The various trinngulationst% used .0 generated (case 2=D) autoe-
matically by the MODULEF techniques (35). ‘he large number of solu-
tions of the discrete Dirichlet problems justifies the choice of a
Choleski bhand or Choleski-profile type direct methor (35).

103
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it is obvious that the factorization phase of the Dirichlet ma=-
trices shall always be performed ONCE AND FOR ALL prior to the iter=- /104
ative procers, The matrices are sobiod entirely in the main core in

the case of simple 2~D tests, whereas in most applications in induse-

try 2-D/3«I', their memorization requires ONCE AND FOR ALLdata transe-

fers with the use of auxiliary disks, For more details, MODULEF (35)

may be consulted,

Finally, mention should be made of the preliminary phase of re-

numbering the triangulation nodasc'hfor reducing the band widths of
the Dirichlet matrices, by the CUTHILL-MCKEE algori hms (36),

12,2, Calculations of Transonic Flows
12.,2,0, Characteristics of a Transonic Calculation

12,2,0.1, The_Outputs

For each case of calculation (difference of potential) o,
incidence), we have acces, in the form of plottings, to the flow
analysis

-~either in_the fluid by the Machs distribution (337) on elemenin

or the iso=Machs
Wa 2 [J_Mz ]w-l

-, 2 337
(y+l) 1= %T{VM ¢ (337)

=0r on the bodies by the suface distribution of pressures Kp
(1ntradoa-axtradoo in the case of an airfoil profilo)

- I 2\v/y=1
Kp = = P‘°T - 1~ yar %l -1 1 (338)
[ -> -
IPRILAR T | NN

Remarks

1) The pressure and the Mach depend on the gradient of tha po-
tential, In the case of the approximation Pl, the velocity @55 is
constant on each triangle, The Mach and the pressure on the profile
are from two ADJACENT triangles, In the cease of the approximation
r2, the speed (Ts) i3 linear., We may therefore represent the Mach
and the pressure on the profile by a1 linear variation on the bar of
the DJACENT triangles, but a discontinuity at the inter=bars may be

observed, (Figure 30),
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sdiscontinuity of the pressure
and of the Mach depending on
(T1,T2y T3)

/105
xcontinuity of the pressure and
of the Mach depending only on

Tl or T3

2) The location of the shock (numerical) depends on the approx-
imation,

In Pls a shock is located necessaritly at the inter-elements

(Figure 31), whereas in P2 it may be taken into account inside an
element (Figure 32)

T‘TE
T T ™
(] ‘
— ' :
T % Ty ;
Figure 3! Tisnre 32
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12,2,0,2, Finite Elements P1/Finite Elements P2 Comparisons

For a same domain and a same case of computation {, = .45 for

example for a flow around a circle), we have tested the effect of the

triangulations of Figure 33 (P1) and 34 (P2) on the convergence of th
the schemes,

TRIANGULATION 21

h

TRIANGULATION P21 iso P2
h' = h/2

Figure 33




o

2 R

Figure 34 - Triangulation P2

Bringing to mind the terminology "Pl iso P2" : it is an approx-
imation composed of the same degrees of freedon as the triangulat-
tion P2, each triangle P2 gives 4 sub-triangles Pl by joining the
middles of the sides.,

The convergence of the schemes of optimal control formulations

with regulation, penalty or artificial viscosity is verified during
N iterations of control in the form of plottings on which are shown

-the evolution of the cost function (C°, cl, ,.. cV)

~the evolution of the gradient (G°,Gl,,...cN} ; o = (gN,gN;‘/Z
~the determination of the circulation (Joukowski condition
-the determination of the physical shock (supersonic-subsonic
domain)

-the local . action of the penalty terms to prevent the devel=-
opment of shock decompression,

12,2,0,3., FINITE ELEMENTS[_EENIEg_DIFEERENCES Comparisons

The unconservative and cons2rvative codes of A, JAMESON have

served as reference for numerica. tests on the NACA 0012 airfoil
and the KORN airfoil,

It has proven to be instructive to compare locally the shock
INTENSITY and LOCATION in 1lifting and non lifting cases between the
two conservative codes (Finite Elements + Penalty) and (Finite Ele=-
ments+ Artificial Viscosity) of the coptimal control and of the two
JAMESON codes (Conservatife Finite Differences) and ( conservative
Finite Differences) at 150 degrees of freedom (on the airfoil pro-
file) and iso case of computation ( and identical incidence),

Moreover, the difficulty of treating the Joukowski condition
in finite elements (p¥=p~™ measured in AVERAGE at trailing edge in P1,
exactly on airfoil profile in "2) was able to be disconnnected from
comparisons (Vinitc Elements Pl - Iinite Difterences ) by calculating
with iso CZ (CZ : aerodynamic reaction of airfoil), Most of the re-
sults whicih follow have already been presented either in GP4B (37),

" ﬁﬁ W .
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or in contrac: J.ABORIA/IRIA/DRET (38).
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12.2.1. The “onverging=Diverging Pipe [102

The potential¢ is given at the pipe inlet and outlet, whereas
the condition of tangency aﬁ = 0 is applied on the sides.

an
The domain of the flow is quantified in 384 TRIANGLES on figure
for an approximation Pl - rough card-index or P2 (resp 1536 in the
case Pl ISO P2),

The number of corresponding nodes was 221 (resp 825) for a lin=-
ear approximation (quadratic resp. or Pl ISO P2°,

Figures 36 and 37 give a comparison without condition of entropy
and with condition of entropy treated by REGULATION with UM =,l(resppI
= .2 ,u,=.1) of local Machs on axis (3) and the side (4) of the :
pipe. ~ t

Lo iterations (resp 60) were required to obtain the convergence
of the conjugate gradient algorithm thereby requiring 1,30 mn of pro-
cess (resp 7mn),

Figures 38 and 39 show a plotting of the iso-machs resulting
from P2 mcasurement in the regions (subsonic =supersonic) and (super=-
sonic = subsonic) of the flow with shocks,

The agreement of the two approximations may be verified,

12,2.,2. The circle [112

The NON LIFTING flow around a disk has a double numerical value:
the equal distribution of the points of quantification on the circle
due to a constant curve and of the compression and decompression
shocks with equal intensity located symmetricallly., We have select-

} ed a case of transonic calculation M. = .45,
]
i For this problem the boundary conditions are the NEUMANN type
| 3 _ Y, .0 at infinity, 3% - o on obstacle).
an an

Numerical considerations require the substitution of a bound do-
main for the infinite domain with ', sufficiently far from the ob-
stacle in the following sense ¢ if ¢ is the chord of the obstacle,
the distance of ¢ from the obstacle is equalt to about 4 or 5 times

-

The domain is divided into 3456 TRIANGLES (resv 8134) corres-
ponding to 1813 NODES for one linear approximation (resp. quadratic),

The condition of entropy was treated by PENALTY and the conver-

gence of the algorithm is obtained in 50 iterations (resp, 60) cor=-
responding to 4 mn of process (resp. 8 mn),
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Figure 40 shows a comparison Pl ISO P2/P2 of pressures (Kp)
calculated on the ADJANCENT triangles to the circle,

Figure 41 shows in an iso=mach form the case in P2 of the shock 111}
on a single element ADJACENT to the circle,

It may be observed that there is a strong shock intensity for
the computation case AL obtained by the two codes,

12,2,3. The NACA 0012 Airfoil Section (Profile

A rough triangulation brought about by a WINSLOW algorithm (39)
(resp. fine) (60 points on the airfoil) with enlargement near the

obstacle, is given on figure 43, It is composed of 1080 triangles [117
(resp. 4380) and 600 nodes (resp. 2280),

12,2.3,1. The symmetrical non lifting cuse (without JOUKOVSKI condi-
tion

Two test cases have been calculated

(1) - (.\1,, = '8 ; INC e 0°) "non scitf" case

(2) - (M, = ,85; INC = b‘)' "stiff", case

Figures 44 through 48 relate to (1)

On figures 44, 46, 47 we have plotted the distribution of pres-
sures on the airfoil profile,

The results of figure 44 (resp.45) correspond to a treatment of

the conditicn of entropy with PENALTY (resp ARTIFICIAL Viscosity +
REGULATION) (y = 00,5

; K= 4)(respy =.05; {= .00000%)
In the two cases, the convergence of the conjugate gradient al-
gorithm was obtained in 40 iterations corresponding to 3.5 mn of pro=

cess, One may notice the clearness of the shock obtained with Pen-
alty.

Figure 46 compares the solution obtained by PENALTY in Pl on
the fine triangulation with the ones derived from the conservative
and non conservative codes of JAMESON in finite differences

A comparison in the sense of approximation Pl ISO P2/P2 is made
on figure 47 with the PENALTY (P1 ISO P2 : u = .5 ; K= o ;
p2 Py e d o K= 4 My ® .0l1),

One may take note of the shock case in P2 on a single element
ADJACENT to the airfoil profile together with the recompression after
the shock, which marks the conservative form of the equations., The
iso Machs near the airfoil profile derived from computations Pl and
P2 with the entropy=-penalty condition have been plotted on figure 48
and give an idea of the location of the shock and of its intensity
in the fluid,
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The effect of the artificial viscosity is represented on
figures 58 - 59 with the local Machs near the trailing edge (58)
and in the shock region (59). ;

A Fintes Elements comparison is given (on a rough and fine
triangulation) on figure 60.

It may be observed that the quality of the compression shock is
restored by the PENALTY at the supersonic - subsonic passage,

Finally, a result (P2 -« PENALTY) with predictor Pl ISO P2 of
artificial viscosity type gives a good result on figure 61, The
supersonic zone of the two calculations Pl and P2 in the fluid,
in the vicinity of the profile defining the position and the intensity
of the shock is represented on figure 62 3§ it may be observed that the
shock is taken into account in P2 on a single element adjacent to the
profile,

e e

AT

The interpolation problem P1/P2 makes it possible to give to
code P2 a good predictor Pl and is presented in (40),




Figures 49 through 52 relate to (7),

The PENALTY has been used on figure 49 with u™!* The conver=-
gence is obtained after 60 iterations corresponding to a process
time of 4 mn,

The local effect of these terms of PENALTY during the itera-
tions *s shown at the bottom of the decompression shock on figure 50.

It may be pointed out that at the end of the computation, the
constraints remain active and this brings to light the unstable na-
ture of the solution,

A comparison in the sense of the approximation Pl ISO P2/P2
@ =1./u=land u,=.01) plotted on figure 51. The location and
intensity of the shock on the airfoil are shown by the iso-Machs of
computations Pl and P2 on figure 52,

12.2.3.2, = The Lifting Case (With JOUKOVSKI Condition)

Two test cases have been calculated :
(3) (M = .6 ; INC = 6°)

= Small supersonic'zone, but strong inten-
sity decompression shock very near the com=
pression shock,

- Large Supersonic Zone.
4) (Mm = ,78; INC = 1°)
Figures 53 through 56 relate to (3).

Figure 53 compares the pressions on the airfoil with the JAME=-
SON finite differences non conservative and conservative method with
the pressures obtained in Pl with ARTIFICIAL Viscosity + REGULATION
(v=.,005, u= .00001) on a rough triangulation, The local Machs
in the shock region at the extrados of the airfoil are shown on fige
ure 54, A comparison of the supersonic zones in the form of iso
machs P1/P2 shows a good agreement between the two approximations on
figure 55,

A Pl Finite Elements comparison (PENALTY~VISCOSITY (ARTIFICIAL)
on figure 56 brings to light the good behavior of the code with PEN=-
ALTY which at the same time in a very narrow zone, restores the phy-

sical shock and resists the high intensity decompression shock,

Figures 57 through 61 relate to (4),

Figure 57 compares the JAMESON finite differences conservative
and non conservative solution with the solution obtained in Pl with
ARTIFICIAL VISCOSITY + REGULATION (v = ,005, | = SJo-b) on a fine tri-
angulation, 20 iterations on the JOUKOWSKI condition have been por-
formed, representing 80 optimal control iterations for a process time
of 15 mn,

[124
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12,2,4, The KORN Airfoil Section (Profile) (1&0

The Korn airfoil sectirn is a non symmetrical section designed
to produce a transonic flow without shock if M.= .75 and INC = 0°,
Since the flow is not symmetrical, the JOUKOVS condition is applied
at the trailing edge.

The domain ~f calculation surrounding the section has been divi-
ded into 2880 tr.angles (resp 1362) for a piece-wise linear approxi=-
mation (resp. quadratic) with 1560 NODES of which 120 on the section,

The triangulation with detail near the section is provided on
figure 63.

Figure 64 shows an effect of the triangulation (rough and fine
on the location and intensity of the shock for the test case M, = 75
INC = 0° with artificial viscosity + Regulation v = (05 ;
u = .00095).

It may be observed that the shock intensity decreases with h,
quantification step.

Comparisons (Finite differences, JAMESON conservative scheme) =
(P1 finite elements (rough tiriangulation))- (P2 finite elements) =
are presented on figure 65, The condition of entropy was treated by
PENALTY, 60 iterations for a process time of 30 mn are required to
obtain the convergence in case P2,

Another case of computation with iso CZ (M., = 75 ; INC = 0.1)
disconnecting in order to treat the JOUKOVSKI condition demonstrates
the agreement of finite elements + artificial viscosity with conser-
vative JAMESON finite differences on figure 66,

A second test case has been performed M, = «75 and INC = ,5 Z1h1

A comparison Finite differences = Finite elements with PENALTY
( u =.1)at 150 degrees of freedom is presented on figure 67. Att-
ention shall be brought to the compression shock clearness of the
solution with penalty.,

Finally, the conservative case M.= ,75 and INC = ,5, calcula-
ted either by the JAMESON Finite differences, or by the Pl Finite
elements with artificial viscosity (v = ,008, ¥ = .00005)duct of very
similar solutions on figure 68,
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12,2,5. The Multibody (NOZZLE ¢ AIRFOIL SECTION!

The l1lifting transonic flow around an industrial configuration of
multibodies has been calculated and compared for approximations P1,
1l 4s0 P2 and P2,

[148

The triasngulation around the MUL 2 for a linear approximation
(resp., quadratic) consists of 2936 eloments (resp., 734) corresponding
to 1553 Nodes, The matrix factorized by Cholevski is composed of

200 610 coofficients (resp, 256 276) whereas the number of non zero
coefficionts of the DIRICHLET matrix is 10533 (resp 17725). Details

of the rough t:iangulation »f the nozzle and of the slot is given on
e 69, 7The Joukovski condition is applied to the trailing edges
of the nozzle and of the airfoil section,

The condition of entropv is treated by REGULATION,

The test case M_ =,5; TNC=10°calculated un MUL 2 #.. FINITE [149
ELEMENTS P1 + REGULATION (u = .2) (resp. P2 uy= .5 & U= .03
required 80 ¢.iitrol iterations corresponding to a process time of 15
mn (resp, 23 mn),

FMgures 70, 71, 72 show the surface Mach distribution on the
nozzle %g) and the airfoil section (2) for rough triangulations P1,
fine Pl iso P2, and P2, One may see the presence of a shock at the

extrados of the airfoil section (2).

Details near the mulibodies of the local Machs in the fiuid in
the form of the Mach number (Pl) or iso-Mach (P2) shows the g o5d oper
operation of the nozzle, the passage at Mzl at the neck on fi ures 73
74, 75 (downstream from the slot) and the satisfactory Joukowski con=
dition on the nozzle (1) at the subsonic limit I (Mgp = .95).

The determination of the circulations during the iterations de-
pending on the approximation selected is shown on figure 76, whereas
the evolution of the cost function and of the gradient of the critor-
ion depending on the approximation selected are compared on figures
77 and 78 .

It may be pointed out on figure 78 the "periodic" discontinuity
of the gradient corresponding to the calculation of a neow circulation
(Joukowski condition) and requires a restoration of the conjugate

gradient algorithm in the sense of POWELL (41),

12.2,6, The BI-NACA Multibody AIRFOIL SECTION + AIRFOIL SECTION

The interest of a transonic calculation around a (BT=NAC) con=-
figuration lies in the mixed nuature of the simn)tanecusly internal-
extornal flow, In fact, the internal domain Uu) made up by the ex=
trados of tnc lower airfoil scction (2) and intrados of the upper
airfoil section (1) is the converging-diverging pipe type, wheoreas
the one (,) formed by the intrados of (2) and b, the extrado: (1)
(rigure 79.1) represents an external flow around a body,
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The possiblity of several shocks appearing simultaneously and having (150"
d;ffeient intensities is therefore a fundamental numerical test for '
ndustrial applications 2«D 3«D composed of several shocks,

The triangulation around the BINAC is made by the MODULEF tech=
nique and consists of 3298 elements corresponding to 1739 nodes, The
number of non zero coefficients of the Dirichlet matrix is 11,800,
the one factorized by Choleski has 147,117 coefficienta. Details of
the triangulation near the 2 airfoil sections showing the internal
domain is given on figure 79.2, The Joukowski condition is applied
to the trailing edges BF1l and BF2 of the 2 airfoil sections 12,

Two cases of computation taking up 2500K of d. ble precision
memory 1) (M, « .6, INC = 0°) (non ‘1ifting)
2) (M. = .6, INC = 6°) (1ifting)

in finite elements Pl with PENALTY are presented and have required 80
iterations corresponding to a process time of 20 mn,

Figures 80-81 show the surface distribution of the pressures on
airfoil section 1 and airfoil section 2, It may be observed that
there is a perfect symmetry of results o) the pressure intrados of (1
(1) is mixed with the pressure extrados of (2) and vice versa, Case
1 has only one shock inside the domain £,, pipe type, whereas in

case 2) a seccnd shock is placed extrados of (2), in the external
domain Ql’

Details near the two airfoil sections of the local Machs on
figures 82~83 in the fluid, in the iso=Mach form show a good opera=
tion of the internal domain ( and the satisfaction of the Joukow=
ski condition, The penalty prevents simultaneously the formation of
two decompression shocks,

12.2.7, The Converging-Diverging 3-~D Pipe f167

This is an ajustment test case of code 3-D, The appearance of
compression shocks is verified in the diverging part of the pipe,
as the formation of decompression shock was prohibited by the penalty
of the condition of entropy.

As in cane 2-D, a difference of potential is applied at the in-
13t and outlet of the pipe which is sufficiently high to obtain a 3
case of transonic operation, On the sides, the tangency conditionsrg
= 0) of homogenous Neumann standard type are implicity applied,“”
The domain of the flow is quantified into 1920 tetrahedrons on fig-
ure 84,and is composed of 24 sections., 40 iterations lead to con=-
vergence of the algorithm in 3 mn of process time,

On figures 85 through 90 may be seon the evolution of the Mach
numbers, constant on each tetrahedron, on several fronts adjcent to
the sections located in the converging zones (without shock) and di-
verging zones (with shock) of the pipe, ON¢ may note the satisfact=
tion of the entropy condition in a region near the pipe axis,
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12.2.8. The 2-1) Air Inlet 1
This is an industrial application, Figure 84 shows a detailing

of the TETRAHEDRONIZATION (see J.G, NAVES (52)) near the air inlet

in a vertical plane, whereas on figure 91 there is shown the geometry

of the air inlet together with one part of the tetrahedronigation

(fronts of the tetrahedrons attached tov the air inlet) used for a

:piaceewise linear approximation of the potential,

The external aud internal domains of the air inlet are made up
of 25664 tetrahedrons corresponding to 3732 Nodes., To give an idea
of the complexity of the problem,one may obsérve that the Cholevski
matrix p(a=Li®) (of the discrete Dirichlet operator) is made up of

about 2 million coefficients and that its factorization requires 15
mn of process#ime,

REGULATION has teen used to treat the condition of entropy.

The computation test case(M, = .8 ; M = .55 ; INC = 6°,

DERAP = 0°) has required 40 iterations cor?%sponding to 60 mn of
process time,

Figgfevgz gives the Macﬁs interhal and external aurface distri-
bution or the tetrahedrons - DJACENT (in the direction of one front)

at the air inlet and shows the narrow supersonic _band on the upper
external part of the air inlet,

The long computer usage time, due to inputs-outputs of the
factorized matrix L, is the reason for the incomplete numerical fac=

~

torization tests L presanted . in paragraph 12,4,

12,3.0, Characteristics of an Incompressible Viscous Calculation ZLZQ
Tha.lnputs

In the velocity-pressure formulation, a Navier-~-Stokes calcula-
tion required of boundary conditions on 7, and sometimes on p.

Three
situ tions are encountered jin the applications,

1, Dirichlet conditions on the entire boundary R’.E[F..;

2. Neumann conditions on- one part Fs of T ,gﬂl =0
+ Dirichelt condition on the pressure p| - n rs
3. Mixed conditions on the co%Ponents ' Ps 9
of velocity : us ..
Milp =2 Gelp, "0 Fi

-
but such that uen dT = 0,

constraint required by the condition of
Feu =0 in 2.

compressibility,
-

1
As the equations are without dimensions ’WJ = l,an external cal-
culation around an obstacle (airfoil section - air inlet)

the assumption of an incidence and ot the Reynolds number
with

requires
]
}A)

QG = -
, fluid viscosity, RV
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The Reynolds is reduced to a characteristic lenght L, which in
the example shall always be the unit (cavity 1 x 1, diameter circle
d=1 j chord profile fuj,, air inlet deviation hel),

e e Sl A sl e |

As the velocity and pressure approximations may vary (figure 93)
;1; pressure Pl = velocity Pl

L S

2) pressure Pl = velocity Pl SIO0O P2

3) pressure Pl = velocity P2
one computation requires the simultaneous presence of two card inde
ices in the computer correaponding to two triangulations “%"ﬁuv)

for example, The discrete Dirichlet operator A is therefore
constructed twice, depending on whether it is applied to the pressure
(G%) or to the velocity thxZ) « Furthermore, it may be observed, in
the unsteady case, that it aepends on the time step :t and on the
Reynolds number Re, since in this case the metric of the generalized
Stokes algorithm is expressed

-

|

A 4
The two trianguletions "h and h/2 are therefore numbered twice

by the Cuthill-MacKee algorithm in order .to obtaln band widths my
and m2 at minimum

The_Qutpuis

The (velocity-presaure) formulation permits directi acces to the
fields of velocities (1) and pressures (2) and to the vorticitv in-
tensity (37_333 constant on each element if J; is Pl, piece-wise lin-
ear when }; is P2, The streamlines (4) are obtained by solving a Dir-

ichlet problem {(340) at a given field of velocity

- AL = VAT (@ |
(340)
vl =8 )

The visualizations of magnitudcs (1) (2) (3) (4) in the form of plot-
tings at various time cycles /.t make it possible to follow the evo=-
lution o1 the flow in time (origine of eddies, appearince ol spoara-
ted zone, alternating emission of eddies in the fluid, correspouding
pressure fluctuation on the bodies).,

The plotting of the iso=streamlines, the iso=pressures and the
iso=vorticities is ensured by the TRACO modulus (refer to MARROCCG -
INTERLID {42)).

W.A0) =y (k1dare . (339) L1739




H
H

| ol
As the values "MTN and "MAX are determined after solving (340),
N desired values of (D, iﬁldh with possible cubical concentra=
tions om pariicuiar (J;,= 0 ) values +es (change of sign mark-
ing the eddies in the iluid) are marked geometrically (x,y) on the

bars of triangulations €§ with a linear connection from one
bar to mother on each " h h/2* €lement,

The convergence of the schemes of apprcximation is verified
during N control iterations by plotting

-the evolution of criterion (c°,cl ,,,,cN)
~the evoiution of gradient (G°,cl,,..,GN) ; 6N = (gN,gN)l/2
-the values of constraint $.0 = 0.
->

The controlW is initializd following the applications either
by the solution of the Stokes algorithm, or by the idealized fluid
solution, In external flows, the Stokes solution proves to be a
poor predictor, .

In the unsteady case, the sequence of optimal control problems
is initialized at the solution- of the preceding time cycle, each

problem requiring a few control itera;ions if the time steps are not
too large,

Finally, industrial applications require numerically high lam-
inar Reynolds (Re=1060), 2 climb in Reynolds by a parabolic law of
-+ ‘ 11k-10 . (k=1,10) type shown on figure 94 makes it possible to
ool = o0 5 =D simulate in a wind tunnel the transitory
phase of determining the solution by Rey=-

nolds calculations,

V.
1

For each value V; of the viscosity, the matrix AK is not re-
constructed (which would be a penalty in computer time), but is sub-

stituted by an equivalent modification of the velocity boundary con-
ditions expressed in figure 94.

Most of the following results are shown in R, GLOWINSKI-B, MAN-~
TEL - J, PERIAUX-O, PIRONNEAU (43}, in IRTIA/LABORIA~DRET (19), AMD/
BA-DRET (44),

12,3.1, The 2=D Test Cavity

The Stokes flow in a Cavity {1 x 1) was tested to verify the
error estimates of schemes ((h”) of BERCOVIER-PIRONNEAU (45) for

three approximations (P1/P1) (P1/P1 ISO P2) (P1/P2) of the (pressure-

veloci.y) formulation,

g - M P

The characteristics of the 3 triangulations studied h ’cz’t%

cerresponding respectively to the values hg = ,125, h
are defined in (341)

M = ,1, hp= 5

/180
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c
Ch = {145 podess 256 ¢léments)
n A (341)
C!x = {221 nodes, 400 éléments}
CP L (g4

h nodes, 1600 éléments)

The calculation of @ defining the convergence of the scheme
is obtained to satisfy the constraint 3

V.-v = 0 evaluated numerically
in (342) and (343), ’
DIVGLO = ]W’-K!zdx (s42) [181
Te Cﬁl f |
DIV MAX = S (W-'GIT) (343)
h

For each approxiration, ® is defined for the possible couples
(G,M), (5,P), (M,P) by the formulas (344) (345) (346)

DIVGLO (G)
Log Fivero o

(344)
Log 1.25

1

a(G,M)

DIVGLO (G)
DIVGLO (P) (345)

Log 2.5

Log DIVGLO (M)
aQ1,P) = —o DIVCL )

Log 2.

Log
a(G,P)

(346)

For data Cl on the edge of the cavity (u = 16 x?(1=-x)2, v=0),

we have plotted on figures 95 and 96 a Log~Log scale, the slope of

o of the straight line Log Divglo = o Log h. characterizing the
scheme O(Hﬁ depending on the approximation chosen for the GLOWINSKI-
PIRONNEAU Stokes algorithm and the optimal control Na r-Stokes
method at Re = 100, after 30 control iterations, Sche O0(h) is
verified approximately for the case P1/FPl1 1S0 P2 and O(hg) for the
case P1/P2, Tor more details, (46) may be consuted,
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Log Divglo STOKES

R

_ale® A2 2.4 1.0 -9 .8 -1 -6 Log

A ?
(18&

P
s

-.5.

Divglo = ,279

Cavity G .
h=.125 ;
Divglo = .268

Cavity M
h = .1
Divglo = .216

Divglo=.224

w74  PI/Pl iso P2

a(G,M)=,984
a(G,P)=1.006

a(M,P)=1.013 P1/PI

a(G,M)=.967
a(G,P)=.982
~ a(H,P)=.987

Cavity :
h=.2 .
Divglo=.0% '

-09 -l
Divglo// Divglo=.109
Cavi(:y P . )

h=.05 . P1/P2

-84 “Cavity ™

h=.2
Divglo = .098

i 2k o

oo

-’olu

a(G,M)=1.598
a(G,P)=1.718
a(M,P)=1.757
=42

~1.3]
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12,3.2. The 2-D Conduit With Sudden Enlargment

~

C & T
The characteristics of triangulations h h/2’  prought /186
about by MODULEF (35), are given on figure 97,

It may be observed that there is a concentration of elements in
the recirculation zone., The calculation domain (8x >> 8y), the
boundary conditions (u = zj(y) ; v=0) and the Reynolds number are
proposed by A,G, HUTTON (47). Two cases Re = 100, Re = 191 are ob-
tained by making the unsteady code steady Pl/Pl ISO P2 in 180 iter-
ations corresponding to one time step ,: and requiring 3h, of
process time,

Superposing the streamlines with those of (heHUTTON code (fig-
ure 98) shows a good agreement along the length of the blister (if
ix enlarge= and h designates the height
| ment of the enlargement

8¢ = 6xh a2 Re = 100, 62 = 8xh Re = 191).-

8 =

T gg%ggcg{on

The appearance and the developement of the separated zone throug
through various time cycles At at Reynolds 100 are shown on figure

A ———

On figures 99 through 102, the field of pressures and stream=-
lines of the flow at the two Reynolds numbers under consideration
may be compared,

12,343 The Alternating Eddies Behind the Circle ZIQQ

The The triangulation T%(ﬂﬁp't%ﬁz) is composed of 144 elements and
84 nodes (resp. 576 triangles and 312 nodes), the solution (%,p )
looked for is composed f 708 degrees of freedom, 1" h

e

At Reynolds 50, the Navier=Stnikes solution is steady, as the
streamlines show on figure 103, after 40 time cycles. Nevertheless,
with this Reynolds, the Stokes solution is already a poor predictor
on figure 104 at time cycle 1,

At Reynolds numbers above 80, the steady solutions of Navier-
Stokes equations being unstable, we consider the unsteady case, as
the flow is initialized at t=0 by the incompressible idealized flow,
Since the approximation keeps the symmetry and the triangulations

,Ch/2 are also symmetr’ sal, the solution (u?10,p!0)as shown on fig-
ure 105 (a) corresponding to K=10 (t= 10 At) is symmetrical and must
therefore be perturbed at a point of fluid not i1ound on the axis, Ac~
cordingly, we may observe behind the circle the formation of a Karman

path, The results presented on figure 105 (a)=(f) correspond to
Reynolds Re = 200 and are obtained by «n implicit Crank-Nicholson i
type scheme with a time step At = .1, The process computatiocn time
is about 1 hour, We have verified the good agreement of the results
obtained by FORTIN~THMASSET (48) by using a different unconform mixe
ed finite elements method,
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Figures 106=-107-108~109-110 show a flov Re = 200, with Nemann /193

condition behind the circle, which is inadequately perturbed to pro=-
voke alternating eddies in 50 time cycles,

12,34, Separated Flow At Extrados of Airfoil Section In Incidence 1323

We are taking into consideration an unsteady flow around an
airfoil with Reynolds 200, placed at 30° incidence,

The calculation domain is substituted by a triangulated bound
domain by MODULEF (T, : 412 triangles, 221 nodes ; g h/2 $ 1648 tri-
angles, 8%4 nodes), The solution looked for(*'p) is composed of
1929 degrees of freedom, The quantification :h time is accomplished
by a completely implicit Gear scheme with two steps, with one time
step At = .). The predictor 30 is the solution of the incompress-
ble idealized fluid, h

80 time cycles (corrosponding to a period of 8 seconds) have
required 90 mn of process time and a core space of 1500 k octets,
The number of control iterations per cycle of time is 4,

T P 11 N O

The velocity distribution and streamlines on figures 111 (a)=(f)
and 112 (aj=(f) show the formation of eddi¢ ;xtrados of the airfoil
which alternately expand and escape in the iiuid to be finally absor-
bed by the downstream boundary conditions,

12.3¢5.1. The Air Inlet In Incidence z201

The mixed flow around inside an idealized air inlet with high
incidence is a typical example of a separated viscous flow, Iun a

first phase, the air inlet is placed at an incidence of 30° as is
shown on figure 113,

¥

-

Figure 113
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There are two types of boundary conditions verified by the /J207
velocity

- ' -
-Dirichlet on ‘e ¥ rgA v U - (é}
-mixed Dirichlet=-Neumann on _ unl’
‘s {3\:

w0

Thus we define the velocity satisfving the constraint
- - where designates the external per=-
J“ . uen 7 = 0 pendicular to T.
., “ufsb‘r.
The domain is triangulated by the MODULEF techniques (35). Th
The triangulations q\ and ﬁ‘ the characteristics of which are given

n/2
on figures 114-115, are relatively rough, but on the other hand, f
they cannot sustain a large Reynolds number (Re::!09, Re reduced to
h, distance of the 2 airfoil sections 1 = 2),

12,3.5.2, Solution of the Stokes Algorithm A /208

In a first phase, we have compared from the point of view of
informatics (calculation time) and of theory (accuracy of the scheme)
the solution of the Stokes algorithm cither by mixed formulation (u,4)
FLOWINSKI=TTRONNEAU, or by the TAYLOR-HOOD formulation dLo) +« The
first approach relates the the numerical solution of (E ) expanded
in 10,6,5.3. by a conjugate gradient iterative method on the pressure
trace » on ' , whereas in the second one, the conjugate gradient al-
gorithm is used on pressure p in Q , described in R, GLOWINSKI-O, PI=-
RONNEAU (49),

The two algorithms converge for a same approximation P1/P2
toward a pressure distribution in @ which is very similar, on
figures 116-121 after satisfaction fot the stop test on go :

g" (gn.gn)llz <, in 30 iterations, (€= .1D-6 )

The conditioning S occurring in the solution (342) (343) is
taken in L?, optimal choice in the TAYLOR-HOOD approach, since

+1 n h S
s A a5 - p Az with ¢, = ——
h h h Aa®n = Tdn (342)
n+l n _ n - Ton
s, P = Spp -0 Az with Aa = Vi
(343)

=172,
but not in the GLOWINSKI=PIRONNEAU one, since ‘' I ). Weo can

therofore cxpect to improve the convergence speed of (342),
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12,345.3. Comparisons of Codes P1/P1 ISO P2 and P1/p2 . :

Comparisons of the two codes are based on the following case 3

=unsteady Navier-Stokes flows with Dirichlet or Neumann condi=
tion downstream,

Two cases have been calculated if i = 30° , Re = 100, The time
step selected is At = .2,, the number of time cycles selected is 100,
the number of control iterations at each At is 6., The process compu=-
tation time is about 100' in the P1/P2 case, 55' in the P1/P1 IS0 P2
case, :

It may be stated that on the whole the numerical simulation of
the flow obtained by one or the other code is very similar,

Figures (122) (123) (124) show through the means of streamlines
at Re = 100, the appearance, the development and the discharge of
large structures on the upper external part of the air inlet and in
the internal part, the formation of a quasi=steady eddy, which re=
mains attached to the lower side,

Since the domain of calculation is voluntarily selected to be
small, the boundary conditions downstream interfere considerably
with the entire flow as soon as the ejected eddies reach the downe
stream boundary, which is shown by the gobal flow at time cycle 100
(velocities, streamlines and pressure of figures 125-127 (resp. 128-
130) for Dirichlet type conditions (resp., of Neumann type).

Interpretation of the results confirms the choice of Neumann
type downstream boundary conditions for larger Reynolds,

It is interesting to observe the numerical operation of the two
codes by following the evolution of vaiues of criteria and gradients
through time cycles and within one of them, It may be observed that
when the Reynolds number increases, it takes longer for the conver-
gence of the uptimal control problem to be obtained (3 to 4 itera-
tio?s for Re = 50, whereas 6 to 8 iterations on the average for Re =
100),

Figures 131 through 133 show the evolution of the criterion and (218
of the gradient within a time cycle without much alteration in the
flow, The following 134 through 136 figures relate to a time cycle
(75) close the the emission of a new eddy.

It may be observed that code P1/P2 absorbs "better" the altera=-
tion in configuration, whereas code P1/Pl ISO P2 shows more resis-
taiice (jump of criteria and of gradients) and requires more itera-
tions to control the new fluid state,
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Finally, it may be observed on figure 137 that, in code P -
P1P1 ISO P2, the Neumann type condition downstream facilitates
the measurement of the alteration in configuration (smaller jumps

of criteria and of gradients).

The comparison of the process computation times between the
two codes, brings to light a ratio of 2 in favor of P1/P1 ISO P2,
this figure is directly related to the amount of calculation for
the creation of various second members according to the approxima=
tion P_, k=1 or 2 through time cycles and especially to the amount
of qua%tified Laplacien Choleski coefficients (as the band width m2
of P2 is about 2 times higher than for band width m2 of P1/Pl ISO P2,
In the case under consideration m2 = 129, ml = 68, the corresponding
core space is 987 K for the case P2 and 540 for the case Pl,

We shall see that, given the Reynolds range considered in ine
dustrial applications, the compromise P1/Pl1 ISO P2 is a sensible
choice,

12,3.5.4., The Industrinl Configuration i=40°, Re = 250 [235

The operation of the air inlet, proposed by ONERA (refer to H,
WERLE (503§ around/in which is simulated the separated flow, has
been studied experimentally in the form of visualizations with Rey=
nolds . o* The case computed (Re = 250) 3 4i=40°) is composed of
6893 degrees of freedom, Triangulationst',za,zcroatad automatically
by MODULEF (35) are shown on figures 138=139."“The density of the
nodes near the air inlet is shown on enlargmeats 140-141, The large
amounts of factorized discrete Dirichlet matrices requires the use of
auxiliary disks with a Choleski "shyline®" FLIP=~FLOP method escribed

in MODULEF (35).

Due to the high incidence, a parabolical flow € = .4 inside the
air inlet (percentage of |u_) applied in order to prevent a poss=
ible blocking and to suck tne eddies formed at the air suction inlet,

100 time cycles calculated with a time step At = .05 have required
several hours of process time,

Figures 142 (a)=(f) (velocities), 143 (a)=(f) (iso-pressures)
show the formation, the development and the ejection of several ed~
dies inside and outside the air inlet, It may be seen on figure 144
(f), which represents the streamlines, the existance of 5 eddies with
altrrnating signs, ¢f which 2 are inside the air inlet spreading a=-
long the entire height and sliding slowly toward the aspirator ! It
may also be observed that the streamlines in front of the air inlet
are drawing closer together, which wiil effect the quality of the
approximation, (density of nodes) the more the Reynolds is higher,

One may have a better idea of the complexity of the flow by
looking on figure 146 at the superposing of the time cylce 100 of

142-F, 143=1, 144=gf,
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12,3.6. The 3-D Sphere ' | (245

The incompressible viscous fluid flow around a sphere with dia=
meter 1 proves to be an interesting informatics test to check the
satisfactory operation of a 3«D Navier-Stokes code from the symmetry
properties of the flow, the obstacle and the tetrahedron formation,

The conditions applied to the boundaries are the Dirichlet type

->

H ulr =

SO -

o«

i, l

Informatics problems due to the 3«D and to the analysis of re-
sults on this example are immediatly sufficient, The domain of com=-
putation ! is formed into a tetrahedron containing. 624 elements and
154 nodes in P1 CGh), y decomposing in P1/ISO P2 Qﬁdzl into 4992
elements as on figure 147 and into 970 nodes (reachlng thus 2000 de-~
grees of freedom the solution (:h”m) obtained by the optimal control,

Minimization of the band width proves to be an essential pre-
liminary step if we want to work with factorized Dirichlet matrices
having a size acceptable in the main core, requiring 60' process and |
1900 X of core space, i

Since the time step is At = .1, 40 time cycles at Re = 100 is
sufficient to induce behind the sphere a separated zone shown on fig-
ure 148,

Visualization of the retiurn velocities is shown from the side
- and globally by hachuring the tetrahedrons, of which the component
i of the velocity 3} is negative,

§ 12,3.7. Swept-back Wing at Large Incidence Z248

In this industrial example, we have taken into consideration the
: 3-D flow of an incompressible viscous fluid at Re = 200, around a
) complete left-right idealized wing, placed at 30° incidence,

' The triangulationz; consists of 2060 tetrahedrons and 560 nodes, ‘
‘ Due to the importance of the factorized Dirichlet A matrix (A -Iit, .
A constructed from an approxin *-n Pl), 74562 coefficients, we are
focusing in a first phase on a i.near approximation of the velocity 3
on'GhJAQ)nonstructed like A). We are assuming that there are enough
node. in £ for us to solve (Eh).

H N
¢ The calculation (70' process) consists of 40 time cvcles, with
the time step being A¢ = ,} , the number of control iterations at
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each cycle being 4, The use of auxiliary disks for solutions AX = b
brings us to consider two different computer times : one time t, of
process for the computation volume itself and one time ty; machine

space due to external transers to the main core t2 = nt1 with

sns10, highly dependent on the informatics environment at the
moment of computations,

The solutions (u,p) at various time cycles are registered on disk
to be analyzed after the computation. Visualisc.ions make it poss=
ible to identity the separated zones which are obtained in the fol=
lowing manner,

l. Several angles are plotted (views from the front, side, rear
from above, below, in perspective) at various time cycles, the set of
tetrahedrons TC‘C] in which the component u of velocity V = (u,v,w)
is negative., The support of the entire wing is represented by a
plotting with a different color, making it possible to locate the se~
parated zones and to evaluate the intensity of them (figure 149 (a)

(b) (c))v

2, From a separated zone, we can plot the lines upon which the
vorticity is applied (vorticity tube lines) to visualize the eddy
intensity (A. MARROCCO (51)).

Depending on the starting point (end of the wing, for example),

we may represent, in the separated zone, the complex path of the
fluid particles,

Various views of the three dimensional eddies are shown on fig-
ures 150 (a)=(d), 151 (a) (¢) corresponding to two integrations with

different initial conditions,

On figure 150 (a)-zd), we are focusing on eddies which escape
at the end rf the wing (left or right), whereas n figure 151 (a)=
(c), we are placed initially in a less turbulent separated zone,

It may be stated that the two separated zones interact, since the
integration of the vorticities from the wing-right provides traject=-
ories leading to the separated zone of the wing-left via the socket.

The numerical integration of the lines is obtained by the fol=
lowing process : given a point 7 of the separated zonezoiToof X
we calculate the vorticity ¢ =7su_ constant in T,, the velocit: 7
being P., Since we .are looxlng 10:° the geometrical intersection Zl
of i’ with frontS(p{Ui‘,a of T and a point Z, at Z,. The front
F. found gives & new tetrahedron T, < t% (close to T, in the dir=
ection of Fk). We calculate the new vorticity;:of element T1 and so

forth... !
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12,4 Data Processing Efficiency for Functional Least Squares Algo-
rithms Using Auxiliary Operators or Metrics [253

12,4,0, Characteristics of a Preconditioned Computation

The examples of 3=D transonic and incompressible viscous flows
have demonstrated the need for auxiliary disks which serve to memore
ize the factorized Dirichlet matrices L (= 5.10 coefficients). These
matrices are read numerous times during the descent~climbs of a so=
lution LLYX = B and result in excessive memory use time (5 times more
than process time).

It may be recalled that one optimal control iteration requires
5 Dirichlet solutions in the transonic case and 35 Dirichlet solu-
tions in the Navier-Stokes case,

The objective of these examples is to show that preconditioning
operators Lg/100, constructed in chapter 11, make it possible to
solve entirely in main core a problem which initially exceeds the
computer capacity. We present two ways to use conditioning operators
in an optimal control problem.

1) The matrix Hl is kept in the penalty (344) or B plays the
role of the discrete Laplacien

min ' IE'BE | BE = R($)} (344)
$<R (*)
5o = Lasiog B
but, d/100 d/100 “d/100 is used as auxiliary operator of Laplacien

in the sense of O. Axelson to solve (*), In this case, the conver=
gence speed of the algorithm is not slowed down,

2) The metric Hl is approached in formulation (345) by B

plays, then, the role of the auxiliary metric. » B

min, {E'BE | BE = R(¢)) (345)
PeR™ (xx)

but in this case, it shall %e fair to choose percentages of Bdhoo

such that d/100>d°/100& so the algorithm does not slow down excess=~
ively, It may be pointed out, on the other hand, that (¥¥) has_an
extremely fast solution ¢ a descent-climb of one operatorlu/lOOLdmog
representing, for example, 20 of the Laplacien if 4=20, The choice
of d in case 2 is the better compromise between (3&5) and the pos-
sible size of the computer, Examples of { .. are shown on figure
152, Attention shall be brought to the ' /109 proximity of

non zero coefficients of 7 d=100 kept to those of A,
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12,4,1, Auxiliary Operators and Metrics in Transonic .4

12,4,1,1, 2=D Laplaciens Preconditioned by {ft

: In a first phase, it is worthwhile to test a conjugate gradient
¥ algorithm to solve the problem (346) by the finite elements method,

ming {7 #%A9~ F$) (346)
®eR

in which , = I1' is intrcduced as an auxiliary operator of the La=-
placien operutor A in the sense of O AXELSSON (32).

is constructed from the factorization L (11267 coefficients

of A and L4q/100 represents various percentages of i constructed in
accordance with the procedure described in 11,

.

*
H
¥

We have plotted on figure 153 the number of iterations reauired
to solve (346) with a specified accuracy ¢ =.10-6 , by using La/1c0
and [+ 4'/100 constructed in (324) (325) for differert d's. We may
note the interest of the interval (5%, 25%) for memory decrease, and
compare the convergence velocity with other auxiliary operators such
as the Van der Vorst operator L, , which does not require factori- A
i zation L or still L",constructed by keeping only the coefficients d

: very close to L and representing a small percentage (20%) in 2=-D. At .o
both cunds -of the curve, we find the solution of (346) in one itera- E
tion for 1100“00 and the standard conjugate gradient, without pre- L
conditioning, P

B+

Ay

~ ~

1]
On figure 154, we have superposed two curves 1‘d/lOOI‘d/lOO
as a function of the number of iterations with f and i'constructed
in (324), but from two different renumberings of the Cuthill-McKee
algorithm : L contains 11267 non zero coefficients and L' 13569, The
agreement of the two curves may be verified when working with iso-
percentages on the two auxiliary operators,

12,4,1.,2. 3=D Laplacien Preconditioned by

The solution of (345) has been also found on an industrial con-~
figuration with 5328 degrees of freedom, of which the Choleski ma=~
trix L contains 1,5 D° coefficients' and could not be held in the main

store.

Figure 155 _describes the number of reasonable iterations
when eperators Ly, g9» with d/100 <20/100 are used in the main store
of the computer, We may note the number of excessive iteratio
{1462) of the standard conjuage gradient when (346) must be sol
sevoral hundreds of times,
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12,4,1,3, Transonic Optimal Control 2-D With Metric H! and Auxiliary
Ogerator ‘i

( )The approach 12,4,1,1 is used to solve the state equation (*) of
344

BE = R(¢) (*)

~

by preconditioning the conjugate gradient al?orithm by dHOO We
shall point out the safety of the algorithm [ 34&) which converges in
N iterations regardlesc of the conditioning d/100 selected to solve
(*)s We have shown on figure 156 the process computation time to
perfcrmua transonic computation on a NACA 0012 at (M, = .8 ; i=0°) by
using d“(@for several values of d, We shall bring our attention
to the interest of the pointss of the curve in the interval 5%, 25%
producing about the same process times as those using high percen=
tages, The optimal control formulation using the standard conju=
gate gradient as Lagplacien algorithm is very costly. The curve sta=
bility is kept by working on another numbering of the triangulation

ch L]
12,4,1,4, Transonic Optimal Control 2-D With Auxiliary Metric ILt.

When the metric attached to the solution of the transonic oper=-
ator is perturbed in the sense of (345), N iterations required
for a transonic computation may increase if the metrics =1Ltis too
weak (percentages too low of d/100 comparing the initial metric Hl
with the metric L),

Figure 157 shows for various choices of d/100 the evolution of [256
the error g,taken in the good standard g Be, committed to solve the
equation R(¢) = in the functional space H'l, as a function of the
control iterations.

When the metric Ld/lOO is acceptable in the sense of the con-
vergence, the solutions of (343) prove to be faster and more econ-
ical in store than the standard solution,

It may be observed that the Van der Vorst
operator used as auxiliary metric to solve an optimal control Pro=
blem via(345) is inadequate. On the other hand, the metric
composed of very close coefficients and representing in 2-~D about
20¢% of the coefficients of L, appears to be an acceptable auxiliary
metric on figure 157,
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The quality of the transonic soiution as a function of the
various auxiliary metrics (various percentages d/lOO, Ven der Vorst
after 80 control iterations is represented by shock restoration on
the airfoil section, on figure 158, It may be concluded that 15%
is the minimum allowable percentage for an auxiliary metric. It
still represents a considerable gain in memoxy for industrial
applications,

12,4,1,5. 3=D Transonic Optimal Control With Metric Hland Auxiliary [256 :

Ogeratorjif_

The solution of (344) using the preconditioning Lafioo  of (*)
has been tested60n an industrial type air inlet configuration com-
posed of 1,5 107 Choleski coefficients and 5328 degrees of freedom,
at M« .8,

w

-~

The curve of figure 159 represents the _process time of N=10
control iterations for percentages d/100 ofLy/100 entirely in the
main store, We may note the vertical slope ol the curve as soon as
d/100> 57, » expressed by.the constant number of iterations required
to solve {*)~AS LONG AS Ll ;o9 is in THE MAIN CORE, The point ob=-
tained with l|55/j00 and an auxiliary disk depend on the working con=-
figuration of the computer at the moment the computation is performed,
Fluctuating usage times may be obtained for the same calculation at
various phases.

12,4,1,6, 3-D Transonic Optimal Control With Auxiliary Metric iit‘ /257

The same industrial configuration has been tested by solving
(344) via (345). The error evolution for various auxiliary metrics
B d/100 is shown on figure 160 during the control iterations. It
may be seen that B is the minimum metric leading to an ajllow=-

able erroxr curve clompared to referexice 3100/100'

Since the Van der Vorst metricl%pv is too far from the fact-
orized L of the Laplacien, it is poorly suited for the solution »f
(345) and leads to an insufficient convergence velocity.

It may be conciuded, after examining figure 160, that d/100 =
20% is an auxiliary metric making it possible to treat (345) entirely
in the rain core and to ensure the convergence of the preconditioned
algorithm with a sufficient safety margin,

e, A
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12.4,2, Navier-Stokes C .se Around/In an Air Oulet (2-D) a:d Around 26
A_J=D Wing ~207

12,4,2,1, The Stokes Algorithms (T-H) and (G-P)

12,4,2,1,1, Preconditioning of the lLap’acien in the Iterative
Stokes Algor:thm !T-Hf

We have introduced in the iterative algorithm of Flow Chart 4
(see Chapter 11), a preconditioning (i in the solutions in 2-D and
3=D of the GLlreichlet problems, Figures 161 and 162 show the evolu-
tion of calcluation time for solving the Stokes algorithm (T=H) with
accuracy € = ,10-6 ~ given on the pressure, for various precondition=-
ing percentages Ld“oo'xt may be pointed out that the optimal worke
ing zone, hachurated on the figures, the economy 5/100< d/100< 20/100
of memory (= 907) does not penalize at all the computer process time !
The 2-D example (resp. 3=D on the shpere) was initially composed of
9342 (resp.149734) Choleski coefficients on the air inlet for the
factorized matrix L., Algorithm 4 does no§ ¢all for preconditioning
on the pressure, since the conditioning L< in the Taylor=Hood ap

proach is optimal,

~..t ~e
12,4,2,1.2, Preconditioning L." of the laplacien and _5st of the
Pressure Trace ii the Iterative Stokes Algorithm (G=P

We have introduced in the iterative algorithm of Flow Chart 5
(see Chapter 11), first, a preconditioning / = [L'_ in_the solution
of Dirich'at problems, second, a preconditioning A = ss' on the pres-
§ sure trace, since the conditioning L in the Glowinaki-Pironneau ap-
}; proach is not optimal,

Fiﬁgres 162, 164 show in 2-D and 3-~D the eveolution of calcula-
tion time for solving the Stokes algorithm (G=P) with accuracy € =10-6
given on the pressure trace, for various preconditigning percentages

LdHOO and Sdnoo. + Since matrix A is conplete AdhOO is ob=

é tained by a test, absolute in 2-D, and relative in 3=-D, on the amount
of coefficients of factorized A.

Figure 163 shows the optima) working zone, hachuraved, correos-

'i ponding to L24/|00<‘i<8!100 and §34/100" It may be observed that the
preconditioning .12 (5 ).is inadequate, Figure 164 shows thc fast

decline in computatiox’ time in 3-D, as soon as percentage of
which is too small, is used,

E If a comparison is made of the calculation time of the two ap-
proaches (T-H) and (G=P), it comes to light that it is better to
work on the pressure trace (factor 3 to 4),

In any case, the numerical tests shown on figures 160 through 2068
163 clearly show that the proconditioning problem of a Dirichlet ope
erator in 2 is perfectly solved, whereans the problem of a trace
operator on_ I remains open.
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12.4,2,2, Optima) Control (2=D)(3=-D) Navier 3tokes metric Hl - /2713
Auxiliarx Ogeratnrs >t ~~t
~ LL » SST.
In industrial applications (2-D) (air-inlet) and 3-D (wing), the

informatics memory problms are due to the storage of the Dirichlet
operator (a1d-vd) 4 on the one hand and of the trace operator ) . A\ =

2
§F4r

on the other hand,

An alternative T e in order to gain is memory space is proposed
for solving the Navier-Stokes equations via Flow Chart 1,

D Apply the direct algorithm of the Stokes algorithm (G=-P)(Flow
Chart 3) with preconditioning LLt to solve the sequence of Dirichlet
problems. In this case, we must construct upstream of the optimal
control loop the trace gperator A + A\, symmetrical but complete, with
the use of auxiliary operator iit s Tthen factorize it (A = SS and
store S (flow chart 2). The imp&rtance of S may require auxiliary
memories for direct solutions of Ep :14) = witli the auxiliary c_.er-
ator idnoo being completely stored in the main memory.

@ Apply the iterative algorithm of the Sotkes algorithm (G=-P)
(Flow Chart 5) with preconditioning |t to solve the sequence of Dir-
ichlet problems, In this case, a preconditioning §§t of the trace A
operator is necessary in order for the time required for solving,
compared with the direct method, is still competitive., Nevertheless,
making the choice remains delicatel] Two auxiliary trace operators g
are suggested,

2,1, We use §NO) =J A Nfdr, conditioning L2, restricted to the
icl

boundary node supports of figure 24, With this choice, operator A

is never constructed., It may be observed that 3 is sparse, its

memorization prescents no problem, N

~

2,2, We use a percentage SdHOO of the complete matrix A = sst after
constructing the latter upstream, For various percentages d/100 re-
lating to the relative .value of coefficients (Sj3) (j>i), we obtain
conditioning operatorsSdHOO of which the eftficiency is measured

a_posteriori by the convergence velucity.

The use of auxiliary operators i and §3% in a Navier-Stokes [274
algurithm is presented on figures 165 (2-D) and 166 (3~D). We have
set in a! ssa the process time for treating the Navier-Stokes com=-
pletely ... the main memory in 10 iterations with a small Reynolds
number (Re -~ 50) 71 n function of percentages d/100 and d'/100 of
operators 1L and S. Attention may be brought te the fast increase
in calculation time for percentages d'/100 of g Which are insuffi.
cient (d'<50), On the other hand, for a given S, the interest of
operators Ld ”x)(SSdszg) may be pointed out, as they have very
little efiect on the process time, wihile representing a gain in mewm-
ory space of about 90%!
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CONCLUSION

The quality of the numerical results of this study confirm that /277
the functional least squares methods coupled with preconditioned
conjusrate gradient algorithms proves to be a tocl which is particu=
larly suited for multiple industrial configurations, The possibility
of treating correctly the boundary conditions of any complex geometry :
by a finite elements method, gives to the codes obtained from the me=
thod presented, a flexibility which is indispensable to the three di=
mensional aerodynamics of today and of the future (optimum desi .

In the case of transonic flows, it appears that Lagrange P, ap-
proximation by confornm finite elements (resp. mixed) of the reldted
optimal control problem, including the condition of entropy treated
by penalty (resp, artificial viscosity), is of sufficient accuracy,
after comparison with results derived from the A, JAMESON finite dif-
ferences codes,

With respect ot the incompressible viscous fluid flows, the com=-
Plexity of the Navier-Stokes equations suggests the use of quantifi-
cation schemes of lower order, P; for velocity and P; for pressure,
The convergence, however, is ensured cnly if the triangulation of the
domain used for the velocity is twice as fine as the one required for
the pressure,

In the two flow families considered, the approximation by mixed
finite elements (artificial viscosity in idealized fluid, Stokes al=-
orithm in viscous fluid), as presented in P,G, CIARLET=P,A, RAVIART
?51;), R, GLOWINSKI (55), GLOWINSKI-LIONS-TREMOLIERES (56) and J,.M,
THOMAS (57) for the biharmonic problem and more recently in FORTIN=-
THOMASSET (48) by the Navier-Stokes equations, remains a very impore
tant point,

Sophisticated codes, obtained from the optimal control=Stokes
algorithm combination, and the convergence of which is ensured by the
absolutely stable CRANK~NICHOLSON :implicit schemes, while being per=
haps more costly in machine time and memory usage, are easier to use
in industry (no convergence parameters to set !) than the tradition-
al codes requiring domains of reduced stability,

The numerical simulation of three dimensional separated large
structures, the dimension and location of which play a fundamental
role in aerodynamics with large incidence (interaction of eddies em-
itted by several bodies, life~time of eddies in the air inlets) is a
demonstration of feasibility of the optimal control tool, which is
indispensable in the subsequent phase of combining Navier Stokes with
turbulence models, In any case, calculations with a large Reynolds

number is still prohibitive, if not impossible, with the size of com=
puters currently available (sequential organization of computations),
the memory capacity of which proves quickly to be inadequate for as-

sociated quantification (]00 calculation points for 3= applications

is not an excessive number !),

263




The incomplete factorization methods presented in the nonlinear (218

context (solution of the Dirichlet problem several hundreds of times!
brings a gain in memory space of the order of a factor 10, Introdu-

ced in the conjugate gradient algorithms coupled with optimal control
in _ths _form of auxiliary operators (preconditioning =~ {Lt of the Dir-
ichlet problem LL') = F) or auxiliary metrics (minimization in j~! of
F(3) = C), they make it possible to solve entirely in the main memory
3=D configurations taken from the two flow families, and this is ac-

complished in acceptable machine times.

They represent, however, only an intermediary stage, if compared
with the possibilities of parallel calculators of tomorrow,
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