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SUMMARY
	

L
The objective of this study is to provide the numerical sim-

ulation of the transsonic flows of idealized fluids and of incom-
pressible viscous fluids, by the non linear least squares methods
of R. GLOWINSKI and 0. PIRONNEAU. The complexity o: the geometries
studied in industrial aerodynamics explains the preference given to
the finite elements for the approximation of the equations.

Chapters 1, 2, 3 9 4 describe the non linear equations, the
boundary conditions and the various constraints controlling the
two types of flow. The standard iterative methods for solving a
quasi elliptical non linear equation with partial derivatives (E.D.
P.) are briefly reviewed in Chapter 5 with emphasis placed on two
examples ; the fixed point method applied to the Gelder functional
in the case of compressible subsonic flows and the Newton method
used in the technique of decomposition of the lifting potential.

Chapter 6 presents the new abstract least squares method. It
consists of substituting the non linear equation by a problem of
minimization in a H- 1 type Sobolev functional space, which is itself
equivalent to an optimal control problem and solved by a conjugate
gradient algorithm with metric H l . The application of this method-
ology to transsonic equations is presented in Chapter 7. We show
how to include within the optimal control formulation two con-
straints of aerodynamics: the condition of entropy, on the one hand,
treated either by penalization or by artificial viscosity, and the
Joukowski condition, on the other hand, taken into account by a fix-
ed point method on circulation.

The Navi.er-Stokes equations are reduced to a problem of minimi-
zation in 11- 1 in the same manner in Chapter 8. Accordingly, we
show that the state systems of the mixed optimal control problem
are generalized Stokes problems in steady and unsteady cases, after
quantification in time with the use of implicit Crank-Nicholson
(for example) type schemes. To solve them, a mixed formulation
proposed '_^y GLOWINSKI-PIRONNEAU and 'cased on certain decomposition
properties of the biharmonic operator, is used. The Stokes algo- 	 L"'
rithm is substitued by a sequence of Dirichlet problems coupled
with an integral equationE conditioned on the pressure trace,
defined on the boundary of the domain occupied by the fluid.

Chapters 9 and 10 are devoted to the approximation of a. trans-
sonic and Navier-Stokes optimal control formulation by PIc Lagrange
conform Finite elements, with de,-roe k=1 or 2. The numeric<<1 imple-
mentation of the conjugate Gradient algorithms is developed and
presented in the form of flow charts. The numerical implementa-
tion cf the Stokes algorithm (L I ) is described and the choice of a
uirect (Cho.loshi) or iterative ^prccondi.tioned conjugate jradient
moUjod for solvi iii; it is discus-sod.

`i`he large at:nounts of computations, clue to complox trill i;nci;-
sional confi;-urations (:1.1celle t vehicle, air-inlet, ..irplr^nc^^,



storey in the main core of the computor, require an incomplete

Choleski factorization of the discrete Dirichlet matrices shown
on the inside of the control. loop, The use of auxAliary operators
LLt in the solution of an optimal control problem is presented in
Chapter 11 through comparisons of rosearch results of J.A. MEIJ-
ERFINK-M.A. VAN DER VORST and 0. AXELSS0N.

The numerical experiments are described in Chapter 12. The
transsonic calculations obtained from the finite elements-optimal
control codes are compared with those obtained from the finite
differences codes of A. JAMESON on a NACA 0012 airfoil and a Kern
airfoil.

More complex transsonic configurations of industrial aerody-
namics such as multi-bodies or air inlets u,e analyzed.

The feasibility of optimal control conjugate gradient algo-
rithms is verified on bi and tridimensional Navier-Stokes calcu-
lations requiring considerable data processing resources (memory
and CPUJ. Separated flows around/in an air inlet and around an
swept-back wing with high incidence, are simulated numerically
by following at various time cycles the evolution of the field of
velocities, the field of pressures, the streamlines and the vorti-
city.

Finally, the last paragraph of Chapter 1 2 is devoted to the
data processing efficiency of the auxiliary, operators. It shows,
through examples taken from the two flow families, how it is pos-
sible, by using preconditioned optimal control algorithms, to cal-
culate entirely in the main core of the computer, with small per-
centages of Dirichlet matrices Ad/170 (5`d<20) without reducing the

convergence velocity of the algorithm.
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SOLUTION OF A FEW NON LINEAR PROBLEMS IN AERODYNAMICS BY THE FINITE
ELEMENTS AND FUNCTIONAL LEAST SQUARES METHODS

Jacques Periaux
Pierre and Marie Curie University

0, INTRODUCTION

0.1. APPLICATIONS OF NON LINEAR AERODYNAMICS TO THE AERONAUTICS
INDUSTRYr

The calculation of pressures in aeronautics plays an essential
role in the optimization of aerodynamic shapes. The appearance of
more and more powerful computers, over the past decade, both with
respect to calculation speed and to memory capacity, has made it
possible for the aviator to simulate numerically flows which ap-
proximate more and more the Flight conditions. To accomplish this
it was necessary to define theoretically and numerically two fam-
ilies of non linear equations : irrotational compressible idealized
fluida, on the one hand, in order to study the transonic domain of
the airplane, and incompressible viscuous fluida, on the other hand,
modeled by the Navier-Stokes equations to provide a robust tool re-
quired for the study of separated laminar flows in a first phase,
then of turbulent flows in a second phase.

The domaines occupied by the fluid are bi and tridimensional.
They belong either to external aerodynamics when relating to air-
foils (P) or to wings	 , or to internal  aerod amics when rela-
ting to pipes (T), cavities (CA) or conduits (C . Finally, air in-
lets belong to a third category : mixed aerodynamics. The common
denominator of these domaines is the complexity of the boundaries
(one region surrounding a multibody, orone3 U air inle-t composed
of extremely complicated geometries, making it difficult: to reduce
it by conform conversion to a standard rectangular (or cubical) do-
main 0. Furthermore, the final selection of the physical space as
calculation domain was subjected to a numerical method by taking
into account the boundary conditions with fine accuracy : THE FINITE
ELEMENTS.

0.2. Difficulties with respect to industrial configurations

The numerical analysis of flows around industrial obstacles
points up 3 types of difficulties t

1 - geometric_ difficulties: the configurations studied are
extremely complex and require a delicate collection of data (descr-
iption of a 2-D multi-body, or a wing + fuselage + air inlet + em-
pennage type airplane configuration).

2 - theoretical difficulties : the equations to be solved are
non linear and their solutions may be composed of discontinuities,
furthermore, the following constraints must be satisfied simultan-
eously :

i



.constraint of aerodynamic reaction or Joukowski condition
for perfect fluids,
.constraint of physical shock or condition of entropy for
transonic perfect fluids,
.constraint of incomp:essiblity for viscuous fluids.

3 - numerical difficulties s the volume of tridimensional calcu-
lations (several thousands of unknowns) make it necessary to use al-
gorithms which are both raid for convergence and robust for stabil-
ity.

Figure 1 summarizes the situation in industry and describes the
solution selected.

1. - FEASIBLE MODELING OF AN INCOMPRESSIBLE IDEALIZED FLOW

1.1. 2-D Non Lifting Cam

If S2 and r designate respectively the domain and boundary.
of the region occupied by the fluids as the latter is incompres-
sible and irrotational, it obeys the following equations and boun-
dary conditions (1)

Q• u • 0 ; u continuous

whereq in (1), u designates the fluid velocity and g the normal
component of velocity on r; on r boundary sufficiently removed from
the obstacle to ensure that the latter does not perturb the flow,

$ 'r• ' .n where *.is the external standard of the domains whereas
on F

 wall of the obstacle (P) g=0 and + + 0 means then that the
fluid slides over the wall. 	 u'n

--A
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The irrotational condition is expressed in a standard manner by the
existence of a velocity potential  0 such that - x

L' a

Figure 2

It is therefore possible to
reformulate (1) as a problem
with elliptical type linear
boundaries (figure 3)

AO - 0 	
(2)

ao

continuous

U continuous



Notes As the boundary conditions are the Neumann type, it is pra-
ctical to determine the potential at a defined point of the trail-
ing edge

0 ' 0	 (8F )

1.2. Liftin& Case 2-Dr

An obstacle brought to light and the boundary of which may not
be differentiated ( point of reflection) can lift.

The♦ l;. ft (CZ ) is introduced artificially by the Joukowski con-
dition uBF  0 (refer to GERMAIN (1)). In this case, (1) should be
added to an additional scalar equation at the trailing edge

J(u)	 0	 (BF)

This constraint makes it possible for a circulation % to be in-
duced around the obstacle, depending on the velocity at infinity and
the shape of the body.

A feasible modeling of the Joukowski condition imposes the
equality of the pressures on both sides of the singular geometrical
point (weakening of the condition u=0 which is impossible to cal-
culate numerically). By applying the law of Bernouilli

p = f(`u1 2 )	 1 -.-z'22	 the condition of Joukowski is written
UW 1 .

}

_'l

If (3)

ting at the

BF	 BF

is added to (2), then a cut should be made ( C) origina-
trailing edge (BF) up to infinity ra, (Figure 3)

: iportant Note : On figure
2 the second stop-point is
not located at the trail-

edge : the fluid by-
4 C+ p;.-.es the obstacle, where-

BF- - as i figure 3, the condi-
ti.i. of Joukowski necessi-
tates that the fluid does

onot by-pass the obstacle.

On the other bend, if by starting at a _nnin_t
stacle is by-passed and we return to point p e C
trically mixed, then we have the relationship (4)

Q ( P+ ) , ^(P-)+z , V P E (C)

where Z desi-nates the unkown circulation.

P+ a C+ the ob-
which io geome-

(G}



U o.r..

Taking ( 3) and ( 4) into account, the formulation of the lifting
problem analogous to (2) is written

(5.1)	 0	 (f2)

(3.2)	 m+ - 0-+ 1	 (C)

(5.3)	 ^70 2 - ^V4^ 2 (BF)
(5.4)	 an - g ( r)	 r - rp u rm

(5.5)	 0 - 0	 (BF)

^ discontinuous

u continuous	 (5)

It may be noted that the non linearity cf (5) is due to the Jouk-
owski condition and that the solution of the problem (5) is the
couple where 0 is a function and Z i s scalar.

In the tridimensional lifting case, a. discontinuous shoot (ND)
should be introduced at the beginning of the trailing edge line, fol-
lowing the bisecting plane up to boundary ra, and generated by the var-
iations of the circulation in enlargement .(Figure 4).

N
• ND	 u (ND) .

.l- 1
N

LBF - I (BF)

j-1	 ,

Figure 4

The c.oilin(; of this shoot for reasons of calculation time
is left out and the formulation of tho 3-D problem analogous to (5) is
expressed t



discontinuous on (STD)

lul continuous
66 • 0	 M i
4+ (Pj )	 (P j)+R (Yj )	 V P  E (ND)^	 (6)

I 7m(Q
+
)1 2 • 1 00(Q

-
) 1 2 	 K Qj a (LBF)

• a	 cr)

It may be noted that the solution of problem (6) is the couple
jLjt where is a function and R is a function of the erlargment.

Finallyq the formulation (5)
is generalized in the case of
a liftin- flow around a multi-

C,	 boc (tiC t by introducing K
cuts originating at the trail-
ing edges of the K-bodies up to

cl)	 infinity r
' 

as is shown on fig-
8F	 (Cl	 ure 5 (Example of a hyper lift.-

8fs	 ing force (leading edge + pri-
^^	 P,	 P) erg	 many + flap)) .

Figure

The problem at the boundaries to be solved is then:

Find ^ & t - (z1 .42.123 s, , ..) solution of

0	 +	 discontinuousIul continuous

d( P ) =^(P )+^ i 	 is p E C	 i•1,2^3,...1
V	 + 2	 I^	 24(Q )1	 170(Q- )^	 V Q E (BF)i i=1.2.3....

an	 (:')

(541



2. - FEASIBLE MODELING OF A SUBSONIC COMPRESSIBLE IDEALIZED FLUID

2.1. 2-D Non Lifting Case

As the flow is assumed to be irrotational, the compressibility
model is the isentropic type (refer to LANDAU -LIPSCHITZ ( 2) and the
flow is controlled by the equation and the boundary conditions (7)

V-pu - 0 ; u continuous

P ' Po 0 ' Y 1	 )	 (n)
(7)

VAu - 0	
*

pu-n ' g	 (r)

where p designates the fluid density
Y'the ratio of specific heats (yul -4 in the atmosphere)
C* the critical velocity

so that if we set

Po' 1 ; k.' Y1 12 ; a - Yi;
C*

then the law of compressibility is written

P - (1-klu,2)a

If we introduce the velocity potential 0 by using Vnu - 0,
it is possible to reformulate (7 as a quasi-elliptical type NON LIN-
EAR boundary problem (8)

4. 4-

(8.1)	 V-P0o 0 ; -	 u - *	 *continuous

(8.2)	 P = (l-kl Vol 2 ) a	 R

(8.3)	 P ao ° 8	
(r1)	

(^)

(8.4)	 oi r	 0	 (r2)	 r a r  u r2
2
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In the compressible case, it is interesting to add the local Mach
number given by

-► 2

M2	 2 [120Y+1
1- Y=! ob 2 ] .

Y+, I	 1 .J

Furthermore, in the sub` sonic case, we have at every point of the
fluid occupying the domain, the relationship M2<1.

2 9 2. 2-D Lifting  Case

Extension to the compressible lifting case does not present anv
particular problem with respect to the incompressible fluid. The for-
mulation is given directly by

(P discontinuous .., continuous

P s (1-k1^^12)a	
02)

+	 (10)
+R	 (0)

i cm+i 2	 -12	 (BF)
MODELING OF THE POTENTIAL TRANSONIC FLOW FROM A COMPRESSIBLE
IDEALIZED FLUID

3.1. Equations

A characteristic of transonic flows is in the presence of shocks.
The condition of irrotation necessitates that their intensity is smalls
M2<1.5 where M is given by (9).

If the local Mach variation is observed in a transonic case, it
may be seen that there are what is called supersonic zones where the
local Mach is higher than 1 (M > 1 ) and sub- sos ni_ zones where the local

Mach is less than 1 (M < 1) .

-	 Example : flow around a

M <' M	
_ 

M ^'
	 circle at % - .45

11

*physical shock



In a transonic state through shocks the flow must satisfy the
RANKINE-NUGONIOT conditions ( 2)	 .... +

..	 Cpu•n] ' Cpu•n)
-+	 u
n	 + -►

u's continuous
with + . the region after the shock, - region be_ fob shock

S,	 unit vector of flow direction
Figure 6-b	 n,	 orthogonal at s or in the direct

sense of figure 6-b.

A characteristic of the fransonic flow is that the fluid velocity	 in_
may be locally discontinuous when passing through a shock.

Let us now consider the equations and boundary conditions of a
transonic compressible fluid. They are the same as those for a sub-
sonic compressible fluid.

V• pu M 0 pnu 0
	

u may be discontinuous

(12)

[ pu • n]+ - [pu'n]

P ^ - s	 (r)

The introduction of 	 however, by using p A U . 0 leads to a mixed
elliptical type non linear (13) boundary problem (2i<1) -hyperbolic{M> 1).

^ -I.
(13.1)	 V•p0O . 0	 0 continuous

	

(13.2)	 p • (1-kjV0j 2)°1 	 (S2)	
(13)

	

(13.3)	 COO-n]+ - COO-n'r

	

(13.4)	 p ^ . g	 (t)
	

u discontinuous

Fundamental Remarks

1) There is no uni_ g_uity theorem for the solution of (13) in the
transonic case.

2) The conditions of discontinuity through the shock shall be im-
plicitely satisfied in the variational formulation of (13.1).

Figures 7, 8 show two possible Mach solutions in the case of a
flow around a circle for M • .45

1n



-A.40..UC'*:

--u-*}
U ee

DECOMPRESSION	 COMPRESSION
	

PHYSICAL

SHOCK	 SHOCK
	

SHOCK

M< 1	 M>t	 M <1
	

M <i M >1	 M<1

Fi re
	 Figure 8

The equation (13.1),
(hyperbolic resp.) in the
(supersonic reap. (M> 1)) .
whereas the one on figure
cally acceptable, whereas
a decompress.shock, viola
DAU-LIPCHITZ (2)).

where P is given by (13.2), is elliptical
regions of where the flow is subsonic (M < 1)
The solution of figure 7 contains 2 shocks

8 only contains one. The latter is physi-
the solution with a double shock, including
tea the laws of thermodynamics.(refer to LAND-

is

Accordingly, the formulation (12) or (13) is physically inade-
quate. In order to prevent the appearance of non physical shocks, a
condition of entropy must be added to 13. In the methods of finite
differences, the condition of entropy is satisfied by introducing
(M>1)of decentered differences or an artificial viscosity (see MURMAN-
COLE (3), JAMESON (5) 9 BAUER-GARABEDIAN-KORN (4) into the supersonic
zone (H> 1) •

In the finite elements techniques, the condition of entropy is
treated as an added constraint to (13) or by a technique of artificial
viscosity, similar to the finite differences, by modifying the equation
locally in the supersonic zone (13.1).

3.2. The condition of entropy formulated as a constraint

During the }passage of a shock wave, entropy increases and we show



(15)

If u dx then (14)

2

dx

that in the case of a potential flow, this condition may be translated
by a decrease in velocity through the transonic shocks. This charact-
eristic applied to a monodimensional flow is translated by

u+ - u <0
	

(14)

where u+ designates the velocity after shock,
u designates the velocity before shock,

(Figure 9)

By analogy (15) in bi and tridimen-
Figure 9	 sional becomes

40 < +°D or Q¢ < K with constant	 (16)
K to be selected

In the variational formulation of the transonic problem, we shall
consider a small shape of (16) given in (17) obtained by integrating
(16) by parts.	

fn
r I(Ow 4 s K w do V cisE B

1 

	

where 9+ (n)	 (wjw c (S2) ; w Z 0)	
(17)

	

B (tt)	 {w{w a C"(t2) , supp w compact)

It is important to note that in (17) only the derivates of first
order, more accessible in a finite elements approach, are shown.

The transonic formulation selected in this case is:

V•p Vo n 0

P • (1-kj$O`2)a

(18)

a^
P	 g

eo<K

?p

3.

1
.L

R	
p



3.3 The Condition of Entropy Formulated by the Artificial Viscosity

In reference to M.O. BRISTEAU ( 6) and to JAMESON

	

be rewritten in (13).E 	 .a local reference marked (n,$)
the unit vector of the flow direction + and -► the
perpendicular orientated in the standard direction on
figure 10.

An

	

S	 LL

(5), (13.1) may
or Inj	 is

(13)1

Figure 10

2
P a 2O +--p (1-V2)^=0

	

ant 	1-kV 2 	as 

V2 = u2+v2

a	 'va	 ua	 a	 ua	 va	 a	 a
an - V ax + V ay ; as ` V az + V ay ; 

(V)1. 
(as an )

In this form, the elliptical or hyperbolic characteristic of the
equation appears, depending on whether or not V is smaller or larger
than 1. In a similar manner to the decentering practiced in the fin-
ite differences, the operator of artificial viscosity is added to
(13.1)

E(0) - -	 ((Ju^2-1)+ - 
Pi 

2 a21)	
(19! R1u^	 as	 )

with (IuI 2-1) + w sup ( O,^u^ 2-1)	 and the transonic formulation selected
in this case is given by

-V • 070) + VEM 0 ; v > 0

P	 (1-k Vq' .2) a	 (n)
	

(20)

[P70 • n7`	 [P70•n7

Lrn
a^ 

9	 (r)

a

?1.



Note i V parameter of viscosity >0 depends on step h of the triangu-
lation of the domain in numerical applications.

Other artificial viscosity operators mentioned in (5)9 (37) as E
in (21) have been tested numerically and give very close solutions

3.4 Lifting case

Extension to the transonic lifting case does-not present any
problem with respect to the compressible subsonic fluid. The formula-
tion is given in (22) from (18)

V • PVO = 0 ; 0 discontim. ; u discop.iin.

P	 (1-k^V^^ 2)a

[PVC n9+ _ [PVO• n]-	 R	
(22)

O <K .

^+ '
	

+ R (C)

1 V0
+ I 2

 = IVO 
I2

(BF)

8^ = $ (^
0 (BF)

#. - MODELING OF AN UNSTEADY INCOMPRESSIBLE VISCUOUSFFLLUID

If n and r designate respectively the domain occupi9d by the	 22
fluid and its boundary, the latter obeys the Navier'Stokes equations
without dimensions, increased by boundary and initial conditions, i.e.

(21)



- va„ + (u • Y)u + I  . 0

0 • u	 0
{ {
u . z

(W)
(23) s

(23.!)	 t - v!!u + (u• 0)u+ pp . 0

(23.2)	 G•u . 0
	 (a)	

(23)

(23.3)	 u

(23.4)	 u( 0) uo

where u is tte fluid velocity
p is the pressure
V is theme fluid viscosity ( va l /Re with Re a Reynolds number)

-► and uO specified; i=0 if r.r represent a wall (condition of
Z adhersnce	 P

z cif r.r„ represent " infinity"

An example of external flow around an airfoil is given on figure
11.

A

U 04 Z	
r	

u. 0

	

P	 roo

Figurere 11

In the steady case (23) is reduced to

In the unsteady casep th y± V uid is controlled by a system of
	 zu

equations wit-., narriho] i c type to o ].i^ l ear pt► rtial dorivativass where-

as in the steady case, it ui,c v U sv5tom of equation-, with elliptical
type non linear partial de!'i%-.:itivts. In



2-D Diver-

ging Pipe
r, r,

(23) and (23)s the main numerical difficulties ire the condition of
incompressiblity, the Reynolds and the non linear convection.

5. - THE STANDARD ITERATIVE MEHOD :S FOR SOLVING EMUATIONS__ WITH _QUAS_
ELLIPTICAL NON LINEAR PARTIAL DERTVATIVES

5.1. The Model Problem

For reasons of simplicity, we are interested in the solution of
the non linear Dirichlet problem (24)

-	 TO - 0	 W	 (24)
- 0	 (r) - (an)

with T non linear operator and (n) a bouudary of R 2

5.2. The Fixed Point Methods

The simplest algorithm tt, solve (24) is

n-0 ; 00 given	 0 1 .	 (25)
Rio that	 0 ^ r - 0

For n 2: 0  compute n+1	 (26)
m knowing mn by solving

e,n+1 - 
T (on)	 M)	

(27)

°+1 - 0	 (r)

(25) (26) (27) is a converging algorithm for sub„ onic compressible
flows (refer to GELDER (7), NORRY-DEVRIES (8), PERIAUX (9)).

The Gelder algorithm in the case of a 2-D pipe.
is represented by figure 12.

In this case, (a)

Figure 12



In this case (r) - (r2 u rp) and ( 8) ie expressed

(28.1) p.p po	 . 0 (n)

(28.2) P _ O-kIVO I )a (n)
(28.3) a -

an
0

(28)

(rp)

(28.4)
0fr

- h(x) a
s

The variational formulation (29) is obtained by multiplying (2801)
by a test function 	 1	 and by integrating by sections where

we H

8 i GO - (we L2 (Q) I OW E L2 (a)

	

( i -k^24)°5^•^w dx - 0, VwEH^ (n) . w^r	 0 . o^r	 h	 (29)

S2	 s	 s

Let us introduce the functional (30) Go (o) and the space

His (S2) - { ^ E HI (n) I v{ r - 0)
M r.

G°t0)	 - k1a
+,) 

fa

( 1-k ) a•1 dx	 (30)

Lot us calculatep in the meaning of GAteaux ( refer to VAINBERG
(10)) t the derivative of Go at a point 0* of Hjs

lim d G (o*+Ado*) 	<G^(o*).do*>
k►0 dT °

The steady state of Go in o* is expressed in (31)

	

dGo - G°(0*+d0*) - G° (o* ) _ ^Go(0^^d0>+ 0(d0* )	 V(60*)E RI (n)	
(31)

By using (28.2) and (30) 1 (31) is written (32)

	

SC  - fn 
(I _k j 701 2)^O*. 

NO* dx + 0(60* )	 (32)

and therefore O+ is Fs steady 2oint of Go in 
Hos(n) if it satisfies

(33)
(33)

+I	 2

t 

(l-k^^ +* 
2)	

(33)

 dx - 0	 Vc^E r.^ (^;)1	 W
os



1 By approximating ( 33) from ( 29) s all the steac'.y points 0 in
02 (11) satisfying 0 -h' r . 0 are solutions of (28).

We can now prove the suniquity of (34)

min Go(0)
3

in the :ase of the subsonic state by demonstrating that in this parti-
cular c_--se Go is conve=x. We have only to calculate for that in (33)

2

G" - liv d (G (0460)°	 a' 1.0 d)► 2	 0

Got 	 —^ (1-k^V0^2)a{^6^^d0 - 
2kq	

(j0.^60)21dx
ft	 (1-kjQO) )	 (35)

	

By refering to (9) M2 2kot (1^c^V 2) -1
'001 2 	wit', M local mach

and using the identity 11-bI - I&I (bi cos 8, (351 is wriv& . (36)

G"
0
	 a -^ P 0 

_Y12 
cos t 8) I VdO 1 4dx	

(36)
f2

It is now easy to verify that if Mc1 in n 
-subsonic case) Ge

is convex and that
•

0	 Ars min	 G (0)
0- fit Hos 	 is the solution of (28)

whereas if M>1 in i2 (t.,ansonic case) Go is no longer convex and that
is only a saddle point of Go.

A fixed point algorithm or quasi lineation is described in
(37)

i) n-0 0° initialisi en -A0° a0 0°-hlr 0 0
s

the continuation {0n)n21 is constructed by solving for 0n+1 c H 1 (Q)

	

on :n+lT
^.w do = 0 , VWc H1 M	 (37)

os

(C"+i—
h)II'

 = 0

(34)

?-



The convergence of (37) in the hardest subsonic cases is obtained in
10 maximum iterations.

Note : The fixed point method .2 (37) are related to the gradient
methods. In fact, ( 27) is a special case of ( 38) with p=1

° given
nQ 0 n+1/2 = T(f) in ^	 (3$)
^n+1J2 z 0	 on r
^n+1 = 4n + P(On+1/2-,n)

but (38) by eliminating 4n+1/2 is expressed (38)1
^n+1 = ^n _ p( -A)-1 (-AOn-T(On))	 (38) 9

(38)' is a gradient method if T is the derivative a functional. An
example of (38)' described in (41), consists of minimizing the fuYct-
ional Go by a gradient method in the metric adapted to standard Hog 	 !<
written out 	 where	 designates the scalar product
of the space	 1'
of Sobolev Ho g .	 «f1 ,f 2^	 i^^fj .Vf 2 dSt

Generally, if 
d^ E L 2 G	

defined by ( 39) is a dual ele-
ment of	 o

L2 (Z) ' = L2 (S2) <G r (0) d >	 D ;d dS2	 ( 39) ?7o . 0	 fn P ^

Let us introduce gEH1	 solution of (40)
os

ff
 ^g. ddb M - 1 P00 • 160dil , V60 E Has	

(40)

Then (41) consists of	 11	 S2

41st. ^o initialized in 

A
^o = 

0 00_h)

	

r	 0
S

go E H I (S2) calculated by (41) 
= G'( 00 )os

we set h° = g°

41 .2. - n ' 1 knowing ^	 g EH	 } {g }EHn and	 n i	 n+l	 n+l	 l	 is construct-, { ^
ed in two phases :	 os	 os

Phase 1 : Calculate *	 n n

set	 n+1 = ^n _ X*hn °

Phase 2 : Construct the new direction of descent
To accomplish that solve

e



Solve	 - A8 n+1 x J' { fi
n+l 

)	 8n+
^ 

a No s (:t)

^9n+I.^($n+1 n)
Calculate	 Yn+^ _ ^- dx^x
gins set	 hn+l . 9n+1 + Yn+ lhn ; n-n+l , and go to 1.

(41) is the version of the POLAK-RIBIERE conjugate (1) in the metric
adapted 110

I
s. The rapidity of the convergence of (41) is comparable

to the one of the fixed point described in (37).

The gradient method with metric adapted to the preconditioning
shall play a fundamental role in the case of transonic fluids.

5.3.	 The Newton Methods

Assuming this time T differentiable (24) may be solved by the
algorithm (42)

(42.1)	 ° given

n
(42.2)	 n Z 1	

+l
$	 is- calculated from . O by	 (42)

-AQ
n+1 

- T'(,n),n+l 
s T(on)-T'(^n)•^n in SZ

( 42.3 )	 n+l
^	 0 on r

(42) is a special case (pal) of (43) used for the hardest cases

(43.1)	 ° given

(43.2)	 n Z 1	 n+1 is calculated from 	 n by

-Ain+1/2 - T	
nn+1/2	 T(^n)-T'(,n)n in	 (43)

^
n+1/ `	 0 on r

(43.3)	
n+l , m

n +Mn+1/2-fin) . p>0

The treatment of the Joukowski conditions differentiable non
linear constraint, is an application of (42).

Examplo of tho Flow Around an Airfoil

( ^) m4iN he solvod directly by usinm the (llscontliliiolA8 v (,loci.ty
l)otent_i^il _in the f'orITI Of ;ill iter'aCive procedure (AI) includinf the
Joukowski c.oildit:ion, the technique of decomposition

/mar



of the potential ( A2) (refer to NORRIE-DEVRIES ^8)).

Al - if (C) designates an arbitrary lifting cut of the trailing
edge TBF) up to infinity (r.),the velocity potential @ is a discon-
tinuous function along (C).

Let us introduce S2^) , 	 If H1 (f2) designates the standard
Sobolev space	

c

H I (S2) - {v c L2 (n) ; ^v E L2 (S2) }

then it is possible to give a variational formulation of (5) in
H 1	 ) under the space of H1 (6 ) defined in (44).
R ( c	 c

Hj
V

(n c) - {vE H (SZc) IA (BF) - 0 ; v) 
C 
+w C-_ ' Z ) •	 (44)

Account taken of the continuity of the velocities along ( C) which
is expressed in (45)

-++ -++	 -r-+-U n 1 C+ u	
C

n _

(4s)
4	 ao

'fin+l C+ ' a n 
I C

By multiplying 5.1 by a test function and by integrating in parts
by taking into account (4j) -(5.2)9 the equation (5.1) is written in
the variational form (4.6

f
^ VO • Vw dx - 0 VWC HR (S C) , ^e Hi (6C)	

(46)

S2
C

Assuming	 JK(!t) - (V^L^ 2 + - ! 7021 2 _	 the Joukowski condition
is expressed in (47)	 (C+ 	(C )

JKM I BF - 0
(47)

The algorithm (42) applied to this example is expressed in (48)



i) Assuming; to given ; 0 0 is solution of (46) in Hl0M)
ii) For n,% 0 (on .,n)	 boing known p	 { ,n+1 10n+1

 }	
k

are calculated by the equation

Rn+1	 $n - JK' -1 (tn) oJK(Rn)	 (48)

with JK I = 2(_j# :$'6O+_ ^^ V8^ ) 
^
n+1 solution of (46)

in 

H + 1 MC ) .

n
iii) stop test on k satisfiedp otherwise n=n+1 9 o to ii).

The convergence is ensured in several iterations (5 maximum.

A2 - The velocity potential 0 is the .linear combination (50) of
two potentials ^'NP and ^R+ONP continuous potential and ^R discontin-
uous potential, solution of ( 49)NP and 49)R

AQNP ' 
0	 S2

a
I NP = g	 r	 ( 49) NP

ONP = 0
	 (BF)

e0R = 0
	 (n)

(49)R

^n 	 (r)

ORIC+ - OR IC_ _ !	 (C)

a +R I C+ ' an-RIC_ = 0

4)
R = .0	 (BF)

4 a 
0 N + to 

(50)

Zf A is selected so that (51) occurs



JK(!Z) - IVJ1 2 + - 10 12 	 . 0
BF	 BF

it is then easy to verify that (09 1) solution of (49), (50)y (51) is

the solution of (5).

Assuming	 HBO: (R) {w a H I (n) y w1 BF - 0)	 and H1 02 ) is the sub-
set of H1(nc) of the verifying functions on the cut (C)c

W1 +
 -W1 _ - 1.

C C

Then the variational formulation of the equation 1 49)NP is expressed
in (52)

t

	

	 ^fr
7? N,PVw dx =	

F
gw dr Yw c H
	 (52)

ONP c

whereas the one of equation (49)R is given in (53)

^^ VAR• Vw dx - 0 VW e Hi1

	

(ttc )	 (53)

OR E H^ (S2 )
C

The solution of (5) is then given by algorithm (54)

i) ONR and OR solutions of (52) (53) ; Ro initializes; 00 =
SNP+toOR

ii) For n a 0 ; f2 n 
, , ^ n) being known fZn+l ,,n+l } is calculated

by the equation

(54)

Rn+1 = k  - JK'-1(Rn)JK(Rn)

(51)



E.

t+ri th

JK(,,n)	 nl 2 + -	 nf 2

BF	 BF

JK1Qn} 2{ih"0R1 + 14^ n•VO R, _ }
BF	 BF

eL +Rr*1O^	 R

iii) If a stop test is not satisfied by R n+1 ; n=n+l
we return to ii

The convergence of (54) is ensured in 3 or 4 iterations.

Remarks : (48) and ( 54) aMe generalized in the two following
directions :

-compressible subsonic and transonic equations
-complex geometries 2-D multi-bodies and 3-D airfoils.

Example : Expansion of (54)
to a multi -body in subsonic
state; The domain (^j) is
shown on figure 13.

If P is eliminated in
8.1 by using 8.2 1 the pro-
blew with boundaries to be
solved is given in (55)

Figure 13

(55.1)	 4X-a,)¢XX + 	 y a 2 )c^1,y + 2¢X^y^Xy - 0

(55.2)	 + - ^, _ ` ii	 i-1,3	 (55)
C i	 Ci

(55.3)	 JK(Q) = ip^l2 + -^^¢(^ _ 	 0	 i=1,3
	BF.	 Br.

	

i	 z

(55.4) an = g on r t = r^ u ( u P i )	 = 0 on r ) = tBF 3}

i

--4k-

U 00



(55.1) may be reformulated in (55.4) in the form (55.5)	 '1?

-0 + T(0 - 0	 (55.51

2
+ 2^ 0

wi tli T(0) _ 
^xmxx + ^Y Yy

2	
x Y

a

a2 	
A+BID0I2	 A = a2 + 2 (Y-1) 1u ao{ 2 	B = 2 (I -Y)

The method of quasi-linearization developed in (37) is used in
(56) to construct a c-3ntinuation { On ) E H 1 (il)	 verifying

D¢n+lvw dx - 1	 g W dx + f
a

T(on)Wdx - 0
s^	 r 	 - 56)(

on+1
i^2(S2) 

^

Vw E Hot	 (w E	
1

H (1) 1 w1	 - 0}r
2

If On+1 designates the discontinuous potential of the velocities
and	 (Ri ) n the circulations around bodies ( Pi ) with iteration n, a+1
is expressed in (57) 3c0

n+1 = 0n+I +	 E i i ski (57)
i-i

where 0n+1	 and	 are
NP	 Ri

solutions of (58) (59)

I D,n+!Dwdx -I g w dx + ( T(^ n)w dx. = 0
r	 !	 (58)n

SNP 1 E H02(g) : VW C H 02 02)

L Ri

	

^	 1	 (59)

OR, E Hi. (Qc ) i-1,3
1	 1	 1

The expansion of (54) is the shown by algorithm (60).

(0R. )	 solutions of (59)	 (i )
i i =1,3

	

(^°0 	solution of (58) with T = 0

	

10	 solution of JKO(SZ°)	 0
33

° initialized ^o- 
tiP 4 F koi R.	

(60)
1	 i

r'



(ii) n Z I {,, ni and {Rn} being known 
( ,,n+l) {,n+l }are calculated by

first using (58) providing n+1 9 then by solving the equation

n+l
	 SNP

JKn+1 (i )	 0	 Qn+1	 ^n+1 + in+1 0NP	 1	 Ri
i

( iii) if a stop- test is not satisfied for I+I ; nun+I. and go to
ii.

The method of decomposition at phase n+l is reviewed on figure 14*

amp.=g	a^ 4^ so
an	 al

O^Nr+T(^", s 0 Ii Ci _ ^mq^ 04

	

an	 ^'	 in

U..	 n+1

fl ♦ 1_ ^RN ^	 h^l

a^ n
♦ l
rs

an

+ -	
(Cz

iz

V p



5.49 The Pseudo-unsteady Methods

They consist of associating * to problem ( 24) a problem depending
on time (61)

CC
30 - 

6^ - T (m)	 0	 (^)

^Ir ' 0	 (t)	 (61)

4 (x,0) _ 0 o(x)

The solution of (61)	 s boundary 0(t,x) is obtained by using a spatial
approximations substituting for (61) 	 a system of normal differentialequations integrated numerically on interval (O.T( 9 T large.

In the case of an undifficult problem, an explicite scheme de-
scribed in (62) is adequate	 to integrate numerically (61)

3

0° r_ 
00

n+l	 n

n t 0	 at 	
- 60  - T (,n) = 0	 ((2)

	 (62)

^n+1
 ' 0	 (r

Examples of the Pseudo-unsteady Approach i

1. - Solution of the Navier-Stokes equations refer to FORTIN (14)) by
the Arrow-Hurwi z algorithm

The variational formulation of (23 ) $ is given in (63).

-► -► 	 -► _* -
► 	 -+ .1p. 	

i

	

Va(u,v) + b ( u , u , v )	 (f,v) V vE Jo 	f E L2(Q)

where Jo = {vE (H' ((2),I"I^•v = 0} ( for simplicity we have assumed) uI r = 0)►̂-.....with a(u,v)	 J^ 4u • 7v dx

b(u,u,v)7) u•v dx= js^(u•'
'r ^	 -0."►
(f,v) = 10 f•v dx	 N, dimension Of space

(63)



Let us now consider the discrete problem (63) d associated with

(P2) 
K^ wh E {p2) N^ ph_ PI	

and qh t pl where Pk designates tho poly-

, gone with degree k
y y

va(uh
' wh)+b( % ,uh' wh )`(Ph• V ' wh )	 (f,wh)	 ( 63 ) d

O '
-.
uh ► gh ) - 0

The .Arrow-Hurwicz discrete algorithm substituted for (62) d may be
described in (64) in the form of an exnlicite scheme.

`7	 i
1

0uh'ph initialized I
n21	 'uh,ph) known, {u+1 } is calculated in (64.1)

( uh+1 uh'wh) + ICVa(uh,wh)+K3(uh.'uh ,wh) -K ( Phn ,O 'wh ) - K(f,w h 
)(64.1)

V wh EP2 ; K - At

g

(iii) n2 1 , {ph} & {uh+1 } known , Ph+1 is computed in (64.2)

( Ph+1 -Ph + qh ) + K(p uh+I 9%) - 0	 V q E PIh (64.2)

(iv) Convergence test on (n+1 .Ph+1) not satisfiedp do
n=n+l t go to ii).

N, ote t The explicit numerical scheme described in (63) is rela-
tively easy to program and economical to place in tho computer core.
Neverthelessp the conditions of stability connecting,K and h has an
industrial constraint. Furthermorev the numerical simulation of separ-
ated flows, relatively hard case, requires several hundreds of itera-
tions.

2-Solutiolk of 2 gnlial of Small Perturbations in Transonic State b
Finite Differences Refer to I.A. ESSER 13

To the non linear system (63')

^ -#I

F, = 9AU ; u = (U,V)	 (63) '
2F2 - 01 U	 + v	 a 00-M 00 - (y" + l) Moo u)

,X

?R



we relate the hyperbolic system (63") with suitably chosen boundary
c^atiitions.

au
rt 

0 F^

av	 (63)"
r bF2 ; b> 0

where b equal to the initial unity in H. YOSHIHARA (12) is optimized
by taking b an la) to accelerate the convergence velocity of an ex-
plicit scheme of second order of the Lax-Wendroff type.

In the case of a very "hard" problemp it is better to use an
implicit integration scheme to solve (61) described in algorithm (65)

7.^

0 moo
nt 0	

(65)

^n+.4 n - p,n+i - T(mn+l )	 0	 (^)
t

^n+ 1 a 0	 (r)

at each step At a non linear (66) type (24), but better conditioned,
non linear problem must be solved.

(d - ^)m
n+1 

- T(0n+l)	
n	

(^)
(66)

^n+1	
0

I r	 (r)

6. - THE FUNCTIONAL LEAST SQUARES METHOD

6.1. Relationships between a Least Squares Method and an Optimal Con-
trol Problem

A least squares type formulation related to a model problem (24)
is given in (67)

min	 (Av + T(v)I 2 
do - min11nv+T(v)112 	

(67)

VEV fn	 VC 

IIfi12 = j i .f1 2 do
2

and V a functional spaco L`̂  ( ) for example.



Assuming ^ now the solution of the boundary problem (68)

-6C - T(v)

CIr -0

(67) is then equivalent to (69)

min 
fil

IA(v-&)12 dig

vEV 

with & - Vv) via (68).

By referring to J.L. LIONS (15), it is obvious that (68)-(69)
has the structure of an o ptima] control problem where

a) v designates the CONTROL vector

designates the STATE vector

Y) (68) is the STATE EQUATION

6)	 the functional (69) is the 
ful

ction of cost or
criterion

From ( 68) (69) 9 it may be seen that other formulas are possible
by selecting a different cost function. We mays for examples consider
the optimal control problem (68) (70)

Min
fi

l I v-& 12 dig
vEV 	 (70)

with
^ _ ^(v) via (68).

(68 (69) and (68) ( 70) shall give a solution identical to the
solution of the model problem (24), but with different converk-in jz
velocities. Furthermore, the choice of a least squares method is very
important on the numerical level. In facts a standard which is in-
appropriate for the state equation ( 69) appearing in the cost function
may lead to a slow convergence. A sound choice of the cost function
with respect to non linear Dirichlet problems of the second order is
discussed in paragraph 6.2.

6.2. The Least Squares Method in a Particular Functional Space H 1

,.--L us introduce in (71) (72) the Sobolev spaces required for the
stu<ay of the model problem (24)

H 1 (0)	 {m a L 2 (Q)	 Vb E L 2 (n) )	 (71)

Ho (S?)	 {Qe H^{^2), ^^r
	 0)	 (72))

168)

7r^



:o 1 +02 ) i	 -	 olo2d"1 + fVol.702do
n 	 ^t	 (73)

11011HI (a) -
 fn  

0 2  d4 + f Q 1 4701 2 dn	 (74)

If' (n)	 s a sub-space	 of H1 (^) • Consequently if Q is limi-
tedv H1(.2) is a Hilbert space with scalar product ( 751 and correspon-
ding standard (76)

(01-02) H I 
(n) • 

fn 
Vo 1 ' 702 do	

(75)
0

11011 
H1 (n) ' 

(j 17o 1
2 

dQ)1 
/Z	

(76)
_	 o

	

Assuming H i (n) - (11 I (n))'	 the dual topolocial space of H0(n)'
By observing that	 2 °	 2	 the inclusion ( 77) is permissible

Ho (n) c L2 (n) c H I (n)	 (77)

Plirthermorep the application d ` f2 is an isomorphism of Hn(n)
in H71 (n)	 If <• ,.> designates the bilinear shape of the duality
between H- 1 ( n) and 1	 defined in (78) by

<f,O> - 
fn

f 0 dx V f c L2 (n) : V 0 c H 1 (n)	 (78)
-1 	 °

then the topology of H (Z) 	 is defined by 11'11 _ in (79) by
using (76) (78)	 1

UP	
<f p>

{{ f {{ _, - oEH?
 (n) -(o} 1141! H1 (n)	

( 7s )
0

Refer to LIONS-NIAGENES (16), ?NECAS (17) for more results and
characteristics relating to Sobolev spaces.

By using ( 79) the best formulation in the direction of least
squares for solving the model problem ( 24) is given in (80)

1

	

Min	 11dv+T(v) 11_I	
(80)

vcHo(0)

f.^

Lam;



By introducing	 t c Ho (t2) solution of (68)	 then ( 80) takes the	 1
form (81)

Min	 Il e ( V-E) II_, l81
vE HaM

By expanding JJA(v-Q II_, 	 into (82)

{ <n v-^	 > {
II A(V-&) II _, -
	 gyp

OcH
(	 )

0
and by applying the Green formula to (82), we have

I <d(v-E) .^> I- I	 L (v-&)m dr -	 V 	 dS21	 I'V(v-^ )' m 41
fnan	 J r (83)

and ( 82) takes then the final form ( 84)	 I r ^(v_^).j^dS2{
n	 •	 VIIo(v-){I_^	 -	 sup

H1	
li

^e	 0 (S2)-{0}	 II^'IIHI	 No(S2) ($4)
_	 The least squares method in H" 1 (80) is, then, equal to an optim-

al control problem	 gdni	 - 
^nl	 I	 I	 tH ;n)

	 ^^ • T(v))vin (	
so l

utionunion
;E5)

6.3. Iterative Solution of an Optimal Control Problem by a Conjugate
Gradient -- A7go^23m

The Polak-Ribiere (11) version of the conjugate gradient is used
to solve (85), the algorithm of which is composed of 3 steps.

i) Initialization

CH o(t2)	 given ( for example so0 lution of -pv° - 0, v°I r - 0)
g° E H (n)	 gradient of J(v) in H	 (^)

0

is calculated in (87)

(87)
' e°Ir - o

We set s

z° m g" (88)

?"non for	 n-0,	 assuming vn t gn g zn known, calculate vn+l^+1 znt7.bygn

ii) descent

Calculate	 a* - arg min J ( vn-azn)
az0	 (89)

and set	
vn+t = vn_^!zn	 (90

iii)Cor-struction of the new descent direction



Define gn+1 E H I M) solution of problem (91)

_Qgn+I a J , (vn+1 ) 	(91)

8n+1I r ° 
0

n+1 in 
(92)

then calculate

gn+1 - (

	 n+1.^(gn+1_9 )dp 	 (92) .

L
n+1 Y

	
^ ( V 

gn 1 
2 dQ

and define z	 in (93)	 n

Zn+1 = gn+1 + Yn+t Zn	 (93)

do n=n+1 and go in ii)

The two important points of the algorithm (86)-(93) are
1) - The problem of minimization to one variable (89) solved by dicho-

tomy or the Fibonnacci method (refer to "GOLDEN: SEARCH" in PO-
lak

2) - The calculation of gn+l from vn+1 requires the solution of two
Dirichlet problems at each iteration (68) with v = vn+l. and
(91).

The point (91) is detailed below. J' (v) is calculated in a
standard way (derived from a functional in the meaning of Gateaux
(refer to VAINBERG (10)) in (94).
Assuming av E H I (n)

	

	 <J' (v) .6V> = lim J(v+tdy)-J(v)	 (94)
ro

(94) is expressed by using ( 85)	 t#0

<J'(v),dv> = I V(v-Q JV6(v-E)M	 (95)
1Z

By differentiating ( 68) 8E E Ho (Q)	 satisfies ( 96) -ME = T'(v).6v

g ar = 0	 (96)

Using (95) and (96) the final calculation of J I (v) is given in (97)

<J,(v).dv> _f 
V(v-0-V6v dQ — <T'(v)-dv,v_^>	 (97)

We recognize in (97) J' (v) e H 1 (^)	 linear functional defined on

by (98)	
r

^ -0. 
1 

0(v-^) • V^ dQ - <T' (v) •0,v-^>	 (98)
S2

Then gn is the solution of the variational problem (99)

r g  E Ho (Q)	 (99)

	

Vg -•^ CM= V(vn-E
n
 V^ dQ - < T I (vn)^,vn-^n>	 V E H 1 (0)

:+O

7



with 	 solution of

(1001 n  Ho(it)	 (100)

The algorithm (86)-(93) shall be used systematically in the ap-
plications of T to transonic flows and the the Navier-Stokes equations.

7. - THE LEAST SQUARES METHOD IN H -1  APPLIED TO TRANSONIC FLOWS

7.1. Subsonic Non Lifting Case

By retaking the problem with limits (8), the non linear operator
T is given in (101)

T(0) O• P (m)^o	 (101)

By retaking (85) with T in the form (101) the least squares for-
mulation in H of (8) is given in (102), (103)

Min 1
	

I V^1 2dx 	(102)
OE Vg 	i2

	

With V - { V E H 1 (n) V I 	- 0 }

Vg = {0CV P m, an = g l r }
2

via (103)

	

• ^wdx =
f r

p(0) 04w dx -	 gwdr	 Y w  v.	 (103)
n	 n	 2

The physical interpretation of (103) is given in (104)

0 • P(0) 0 O) in n	 CV	 (104)

P(0) an d r = 8 ==> ran r
7.2. Transonic Non Lifting 	 2	 2

In the case of a transonic flow (18), in order to prevent non
physical  decom ression shocks, a condition of entropy, which may be
treated, must be added to 	 2) (103)

_either as a linear constraint of inequality (105)

AO < K .
	

(105)

In this case, a penalty functional of type (106) must be added to
(102)

J

I (AQ-K)
+ I 

2 dx where

S2

(60°K) + ` sup(O,A^-K)

(106)



I

leading to the least squares method ( 102) with penalty
P

Min 1 f VE 2 d + u^ (0O-K) + l Zdx	 (102) P
4E V 2152	 S2

with tit > 0 and ^- solution of (103)

TWO possible alternatives of (102)p are given in (102) 	 and
(102)R2 with K=0 i this is a least

(
 squares method with regu Jrization

Min 2 {fI0&2dx + ui ((Q¢)+12dx
QE	 S2	 Sl	

(102) R1

with u > 0 and solution of (103)

(loz)Min 2 ^,^^^2	 +2dx + u1(^ ^^ ^^	 dx + u 2 Cu•nJ+2 ^	 R2

with ( )+ = positive intensity of a discontinuity = sup (O.( ))

-or by artificial viscosity t in this case the functional (102) re-
mains unchangedg but ^ _ ^(^) via (103)V

	

-.(	
6. _
	 (	 (103)

1
 W?y • vwdx= J p(^)V' -V^ dx + vJ aWw dx -	 g w dr	 V
P	 S2	 sZ	 J

r2

	

VW CV; EIEV	 a defined in ( 1 9) .

In the applications, (102)p is preferred to (102) R due to the

	

sensitivity of1lin (102)	 In both methods, P is added to obtain a
same magnitude for both terms of cost function. Finallyq it is also
possible to combine the regularization gi^sn in (102) R with the arti-
ficial viscosity (103) V to eliminate the numerical instabilities in
the region of shock.

7.3• Transonic Liftinr, Case

By using the notations of 1.2 and by referr3.- to the lifting
flow shown on figure 3, the circulation: £ of u = 31 around an airfoil
is in general # 0. Thus, ^ is discontinuous and a cut (C) (figure 3)
must be made.

e

Assuming Q - 0 - (C) & JK ; It -r g	 the function defined by

JK(Z) _ 1(0^,) 
BF 

+^ 2 -I (^ R 
BF_

_^ 2	 (107)
where (Z,q) is the solution of the physical problem (107) 9 (108)

I . OV jt - 0 in Q

	

a^zI	

=u•n ^ 	 -0	 (108)

	

an roo 0	 an r 



The method of decomDOSition described in (49)-(54) is applied
to the lifting transonic case.

By selecting the least squares method with regularization (102)R
or artificial viscosity (103) f the following algorithm VL
is searched for in the form (Y09)

0R a 
ONP + 'OR
	

(109)

where^NP represents the NON LIFTING compressible part of the potential
and QTR the LIFTING . -incompressible part of the potential .h discon-

	

tinuous on C is solution of 9 NP	 is solution of two iterative
algorithms TRANSONIC FLOW CHART 1 -23

1. External fixed point algorithm defines k solution of the non linear
monodimensional equation (110)

	

JK(Z) = 0
	

(110)

2. Internal conjugate gradient algorithm gives ^ NP P at e fixed, as solu-
tion of optimal control problem ( 111) (112)

-^

-



.a
^. A

^J

3

A0  = 0

3 ^R
Tn— j r,.u,r- 

p 
0

ELEMENTARY 	 PORV._vCE
LIFT	 ^+ ^- + 1 (C)	 ELEMENTAIRE

R	 R	
OR

OR (BF)= 0

n0NP 0

INCOMPRESSIBLE	 aloe0 r
p	 _ _ _ INCOMPRESSIBLENP

NON LIFTING	 8n =
	 NON PORTANT

	

g r^	 00
NP

00NP (BF) = 0

lv(^NP
+Rod )

+1 2 
= jj(^NP

+Rod 	
I2

INCOMPRESSIB	 00 	 0 +10
LIFTING	 SNP ^R

PREDICTORNP SNP

- Ag0 =
	 0

PREDICTOR g 0 qh°	 - - - PREDICTEUR go,h0
IN H1	 h0 = g0	 DAMS Hl

TRANSONIC LIFT FLOW CHART 1

'l RGANTGRe'1:' lME TRANSSONIQUE PORTANT 1

h

INCOMPRESSIBLE
---PORTANT

(00 PLO )

PREDICTEUR
.^o

'	 s



I OPTIMAL CONTROL I

A,NP 1 = 
T (VCn+1)

aoNPl	 0 I'P
-In-
	 g rm

^NP1 (BF) = 0

n+l = o n+1+ R
NP	 K+1 R

CALCULATION OF STATE
- - - - CALCUL DE V ETAT

COST CALCULI
J = r	 (fin+l_n+l ).) 2dx+up ( fin+l ) - CALCUL DU COUT

n

K=K+1 I

K Z 0 ?i=n+1
n ? 0

n	 n	 n	 {_p = Arg min J (^ +ph )
p	 NP 	 DESCENT

n+1	 n	 n n	 NEW CONTROL
SNP -NP p h

! j 3

CONJUGAISON DANS H1

NOUVELLE DESCENTE

CONJUGATION IN H1
NEW DESCENT

Agn+1 = J , ^n+l
NP

hn+1 gn+l+Ynhn

n	 <gn+1_gn,gn>

Y - <gn gn>

JOUKOWSKI
ZK+1^v. ( cNp1+ZK+1 R)+^2 = (f(cnp+1 +R

K+1 ^ R ) - ^ 2 " CIRCULATION

END
FIN

TRANSOtiIC LIFT' FLOW CHART 2
ORGANIGFcA";',".E TRANSSONInUE PORTANT 2

i

3p



Min J

,0+1 
(e NP)	 2 1 I V^ ( 2 d + 111

J
 (&0 g n+i ) + I 2 dx	

(111)

^N^ V	 f2	 i2

WITH9 - E 0 Np) via (112) ,	 ^n+1 = ^Np+Rn+1^R	 *where

1
 V& •Vw dx = i^w P (^R+1 )0^I+1 dx -	 gw dr	 vw E V	 (112)
sZ	 n	 r 2

7.4. Conjugate Gradient Solution of Non Lifting Transonic Problem

For reasons of simplicityg we are limiting the problem to regal-
arization (1O2)R i.e.

Min J M
^CV	 (113)

with	

/	 r

J0) - 2 {
J tt ( 7 

Zdx + p ( (A$) + 1 2 dx	 (114)
i2

where V and ^ defined in (102) (103).

In this case the conjugate gradient algorithm similar to the one
given in (86)-(93; consists of three phases :

1 0 ) Initialization

^° is selected as solution of the incompressible flow i.e. (115)

0o = 0 in R

0
^o Ir = O p a' -n lr ` 8

1	 2 (116)

of which the variationalformulation is given in (117)

1
 Vwlw dx=fr "w dr vweV : 4o E V 	 (117)S2 	 P

2

(if u is known on boundary r2 PP is also known by P - Po(1-klul2)a)

since go E V is calculated as the solution of the variational equation
(118)

fo 
^g o• t dx - <J' (^o) ,w> V we V , g o E V	 (118 )

Accordingly, we set 11 0 = go.. Now for n' 0,, assuming Cn,gn,hn as known,
we compute	 n+1 n+1n+1 in two phases.

► g	 ,h



2 0 ) Descent , to calculate O n+1 by minimizing the functional to one sin-
Z-J4gle variable (119)

,n	
Arg min J(On-Ahn

Az 0

we can then set
n+I	 n _ Xhn (120)

3° Construction of the New Direction of Descent

Define	 gn+ J 
C V as the solution of the variational equation (121)

dx - <J' (¢ n+1 ) 'W>	 V we It , g
n+ 

1 C V (121)

calculate the coefficient of conjugation	 n+I in the metric relating
to V	 Y

^gn+J.J(,n+I	 n
-g )dx

n+ I (122)
Y

1^ 
9
n i 

2 dx
set then

n+I	
9 
n+ 1 + Y n+I hn

h
(123)

and return to (119)

Note	 Each iteration requires on the average 5 solutions of the
Dirichlet problems

n+1-2 for the calculation of the gradient 9 in the good metric
-3 on the average to calculate the optimal step

Let us now expand the calculation of ji(On+1 )

if <*,,> represents the duality between V I and Vt by using (114)

<J M I &P -	 dx + P1(A¢) +A60 dx	 (124)
12 

a)	
fl a

where 6^ is the solution of the differentiated variational equation

j
^a^ • ^w d x-- (0)

	

	 d x+
( 125)

,I	 f^f	 f
	 dx

we V, 6&C V

and 6p is expressed via the relationship p(,,

(126)

6P(¢) - -2ta(I-kl^o1 2



in (124) may then be expressed as a function of dm with (126)
and (125) written with w .

1060 dx = ( P( A-160 dx-2i. (P(^))1- 1 /a(^^•^E) (^^•^6^ )dx (127)

	

n	 Jn 

With ( 127) <J' (0),w> may then be identified with the linear
functional

i

n 	i n
P (m)^&-^w dx - 2ka 	 (P (0) )1-1/a(^04• ) (^^4w) dx + u'.AO) +Aw dx (128)

From ( 121) (128) we obtain g +l from 0n+1 by solving

+;	 n+1	 n+I	 1-I /a	 n+I	 n+I
y • Vw dx =

 f
rPc¢ )^^ 4w-2ka ( P ( O

n+1

	

))	 c ^. •^^	 )x
n	 A	 (1^9)

	

(10n+1	 n+i

	

4w) ] dx + U ( 
(,pn+1 ) +Ow dx , V w e V. g

	
E V

#_	 n

with to+1 solution of (103) corresponding to ^• ^n+1.

8. - THE LEAST SQUARES METHOD IN H-1 APPLIED TO THE NAVIER-STOKES

8.1, The Steady Case

8.1.1. Functional Least Squares Method o! f Steady Navier-Stokes Equa-
tions

In the followingp we shall designate by (130) the scalar product
<. ,.> of two functions -11 v e (H I (D)) N N standing for the dimension of

	the space	 '
-► ^	 N

<u,V> _ f ^-u•r	
fn,

dx - cc u i 4V i dx , V u,v a (HI (n))N	 (130)
L

U _ 
{U
di-1 , V - {Vi}i-1'

Let us define W+ in (131 )
z-+(131)1i = {VE(H I (SZ)) N ,^• V-0 in n, V r z }

Then the variational formulation of the unsteady (132) Navier-
Stokes problem

t -U	 0	 (n)

u^r^z



is given in (133)

	

V
1 r

• 1^v dx + fi v (u•V)u dx = 0 if vE Wog uE WZ

n 

	 (133)

ct

A least squares method of (132) ( 133) is given by the optimal
control proble::i (134)

min mv) 2 
J 
(^ ( -V Z dx }	 (134)

vE WZ	
S2

where t in (134) is a :unction of * via the state equation (135)

- A+ fir =-(vV)v	 ^^)

^' = 0	 (^)	 (135)

^Ir = 2

of which the variational formulation is given in (136)

(	 (
^ 	

(136)

V1
q•r dx -I raj• (v4)v dX V TIEE Wo . S

i 
E i

n	 1

It is essential to note that ( 135) (136) is a Stokes problem,
acting as a pres sure in (135)
8.1.2. Con3ugate Gradient Solution of (134) (136)

The algorithm is composed of 3 phases:

i) Initialization :

Take for uo the solution of the Stokes problem (137)

-VAU + ^po = 0	 (S2)

• u0 = 0

	

	 (137)
(n)

-►O 	 -1-
U = 2

of which the variational formulation is given in (138)

fl

.	 .,0
V 	 u•Tl COX0	 V( E W0 U E W*
 (138)

i

:j ^

--..._.	
_ _
	 - _:	 _	 ___	 a ..-`	 --	 -•	 --



V nE G , 2°E %

as known, calculate

f^'-rn dx-<J ' (u°),n>
n

and set to . g°

For n 2 0, assuming

ii) dsaaBat-abase (140) (144)

An - Arg min J(u°-Xhn)
a>o

un+! - un - lnhn

(139)

r0

by

(140)

(141)

Take for g EWo the solution of the variational equation 0 39)

iii) phase of constructinf
----
the ---enw descent direction--------------------	 --------------------

Take for gn+l E W the solution of the variational equation (142)
0

J ! gn ^! n dx - <J' (un+l ) ,^> V n e o. 8 +! E o

Calculate^ I(
Yn+l in (!43)	 g +!• g +!-g)dx

Yn+l - I Ignl 2 dx

The new direction of descent hm+l 3s given in (144)

hn+i gn+l + Yn+l 0*

do n=n+l and go in ii).

(142) {
i

(143)
1

(144)

It may be observed that (139) (140) ( 141) are Stokes problems.

8.1.3. Calculations of J 1 and or Sn+l.

By definitions the calculation of J 1 is given in (145)

6J - <J' (v) ,6v> - v
l 

^(v -) • V6 (v-I )dx	 (145)
S2

It is possible to express 6" as a function of dv by using the
differentiation of (136)



	

v1
^6 •^►i dx ̂ n-[Ov-V)v + ( G)6v; dx V n a Wo ; 6^ E Wo 	(146)

f,

Since (v-&) t Wo 	 let us aolect. v "i n ( 146) and 6v . n
in (145) which is expressed s

(t47)

<J '(v).n> vl 1(v-Wn dx + f[(^ )°(v )n + (^ ) • (n •^)v] dx

	

.0. J 0	 a
Y n  o

I

To calculate 8*l we moat therefore begin by	 <J^ (vr+;) ,n>

which requires the solution of the state equation (145) ibr ! vn+l
giving .►̂n+1 (147) may then be expressed in (148)

<J'(un+1).n>	 v{ ^(un+fin+^)•	 dx + 
f[(un+1-n+^)•(un'^•^)^ +	

(148)

	

t2	 t2	 n

+ (un+l &n+i)•(n•^)un+1] dx

Finally gn+l is given by (142).

In conclusion, each optimal control iteration requires several
St_ ohs problems s

.Stokes problem (136) to calculate the state £n+l from un+^

.Stokes problem (142) to calculate the gradient in+1 from 1Vn+1
and *n+1	 8
.Stolces problem (140) to calculate X.

Furthermore, an efficient Stokes algorithm shall prove to be a
particularly important tool in the solution of the !Wavier-Stakes equa-
tions via the least squares method (1,310-036). Ite implementation
shall be described later on in paragraph 8.3.



8.2. The Unsteady Case

8.2.1.Fe^^{ sn o,.-, ft—Unarm Navier-Stoke U2kllem

As was presented in paragraph 4 9 the unsteady Navier-Stokes pro-
blem consists of (149) (150) (151)

au	
VVQu + (u•^)u + 	- 0	 n	 (149)

at	 p	 ( )

1 •u 0	 M

(150)
ul r - 'z ; fr

z •n dr -o	 (r)
 (151)

u(x,0) - uo(x)

where the function z, given, waay eventually depend on t.

8.2.2. Quantification in Time of the Problem (149) (150) (1$1)

Several schemes may be used to solve (149) (150) (151). For
reasons of simplification # we are presenting two very simple ones
with a con, sw t_nt quantification time step.

8.2.2.1.Semi-implicit Scheme

Assuming k - At the quantification time step. A semi-implicit
scheme in time, which is very simple, is given by

..o	
(15^)

then for n  0, un+h is obtained from un by solving (153)

un+, un - v0un+l + n+1	 ^'n. ^nk	 p	 -(u V)u.	 01)

^- un+ ^ 	 0	 (n)	 (153)

un+1 ^ r zn +1 ' z((n+1)k)

n	 i
with u in (153) an approximation of u(nk) where u is the solution of
(149) (151). It may be noted that in (153) u + l is obtained from u
by solving a linear problem, variant of the steady Navier-Stokes pro-
blem 8.1 (here also the operator S = -vA is subst!t l ited by S . Id _ VA).

accordingly, it i.s noces:;ary to develop an efficient	 k	 k
Stokes algorithm relatin(- to Sk in order to solve (149) (150) (151).



8.2.2.2. Implicit Scheme

The simplest implicit scheme for solving (149) (151.) consists
of

;o +0 u a U  given	 (154)

Then for n t 0, u +] 	 is obtained from u by solving (155)

- n+ 1 +n
u 

k
-u 	 VA +1 + LU +i•^)y +1 + n+1	

0 (A)

0	 P
	 (155)

u+1l r Z+1

-•n
It real^ ,R, observed that in (155) u +i is obtained from u

by solving a NON LINEAR problee, variant ca the steady I;avier-Stokos
problem 8.? (here also, the operator S = -VA is substituted by
S .	 -	 It is from (155) that we shall present a least
k is

Id 
v6) squares method similar to that given in 8.1 for the

ste&dy problem.



r	 ^f

i

8.2.3. Abstract '.e-ast _Squares Method from (155)

	

In fact 055) 3s a special case of a family of non linear pro- 	 ZL
blems S  (a" 0) ( 156)

au - vAu +(u •V)u + ^p ` (n)
-.	 (156)

^• u 0	

r 

r	

(^)

u^ r = z avec	 J ^ •n dr = 0	 (r)

of which the variational formulation is given in (157)

°

	a1 u•v dx + v^ 1uu- v^ dx + f
a

v• (u•V) i dx = J I• v dx, VV E W;u E W,	 (157)

St	 a2 	 a2 	 z

By following 8.1 an optimal control least squares method of (156)
(157) is given in (138)

V
in J(v) = 2 fo ^v-^^dx + 	 ^p(v-t)I dx
EWZ

where t is a function of v 
via the state equation (159)

at - vet + Vn = I -(v4)v (St)

(159)

t (-►r=Z

'R, acting as a pressure.

8.2.4. Conjugate Gradient Solution of (158) (159)

Tracing paragraph 8.1.2., the con u ate gradient algorithm for
solving the least squares problem (158) 159) is given by

i) u° E 6N , given	 ( 160)z

calculate g° solution of the variational equation



C1 g° • raj dx + v^ ^g° •r dx - <J' (u ) .n> > Y n E Wo ; go E Wo	 (161 ))J 	 11n

and set ' h°

Then for m z 0, assuming um ,gm,r, ° =s Lnown t calculate - M+l .8 +1 . +1 by

ii) Descent Phase	
AID . Arg min J (um - Ahm)

A> 0

u 1 s um - A mh*ID

iii) Phase of constructing the new direction of descent

Define gm+l solution of the variational equation (164)

(164)
im+ 1 +	 jj	 m+ 1	 -+n+ 1 -+	 -0.-►n+ 1g •n dx + v1,,rg •rn dx = <J' (u ) .n> , V n E W° • 8	 E c

-+m+ i -+M+ 1 -►
a g •( gm -gm)dx +'v{ ^m+ l.^(8m+1 8m )dx

-+m 2
then	 a1 I g I • dx + v1 Vgm ^ 2 dx

the new direction of descent	 is then

hm+1 = 8 +l + Y m+l hm	 (16.5) 

do m=m+l and go in ii).

The calculation of J , (b'm+l ) is not detailed, as it is a trivial
variant of 8.1.3.

In a similar manner as the algorithm (137)- 144), each iteration
of (160) (165) requires the solution of several Stokes problems Sk
of type (149) without non linear term.

.the Stokes problem Sk to obtain f +1 
from	 um+1

. the Stokes problem Sk to obtain -+m+l from	 -►m+1 -W+1
the Stokes problems Sk t° calculate	 n	 u

	

A , 	 r;

;dote : The algorithm -m (160)-(165) ;permits the calculation
un+1 from -►n as a result in+' m is initialized in ( 160) by - ► n+l ,e

u	 (u	 )	 u	 +

IL_

z

(162)

(163)
54
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8.3. A Rapid Stokes Algorithm (The Continuous Case).

8.3.1. Summary

Paragraphs 8.1 and 8.2 have demonstrated the necessity of devel-
oping an efficient Stokes algorithm S

a 
defined in (166)

au - Du + 1p = f	 (f2)	 (166)

1• u = 0	 (^)

-I
ulr=z

for solving the steady and unsteady Navier Stokes equations. In
(166) a=0 corresponds to the steady casev whereas a> Ocorresponds to
the unsteady case.

We shall show that the solution of (166) by following GLOWIN-
SNI-PIRONNEAU (18)(19)(49) is reduced to the decomposition of the so-
lution into a finite number of Dirichlet problems coupled with an in-
tegral equation.

8.3.2. Principles of the Method

Let us note that by taking the divergence ^ of the first equa-
tion of (166), we obtain an equation on pressure of type (167)

AP - Mf
	

(167)

If we know P r =^ then the solution (u •P) of (166) should be
obtained by solving the N+1 Dirichlet' problems (168) (169)

^p = 14	 (S2)

PI r = a
(168)

aui - Au i= - ^ + f (Q) i=1 ,...,N N = dimension of the
i	 space	 (169)

uil r = z 

Put wo don I t knows I

The introduction of v` solution of (170) will make it possible to
ioe. tk,a pressure trace on the edge, so that the constraint

ciistributed	 u = p.is satisfied.

rr



-^^ ' ^' u	 (n)	 (170)
k	 Or =0

In fact, by applying the laplacien at (170) t we obtain (171) via
(166)

(171)

O
r = o	 (172)

a
If we now select so that an = 0, then after (172) 0 20 and

therefore ^. 0 0. The application 
^a	

via (168) (169) (170)
being affine there is (A 9 b) (A lin- X

 2n r ear operators b constant)
so that (1733 occurs

N^r = AX +b
	

(173)

Also, the (N+l Dirichlet problems (168) (169) coupled with the in-
tegral equation (174)

Aa+b =0
	

(174)

give the solution ( u,P) of the problem (166). Let us point out that
the good conditioning of the operator A is necessary to solve (174)
easily.

8.30. functional Support of the Method

To define (Apb) in (173), it is necessary to introduce

^
1/2 (r) 	 {u E H1/2 (r), f Pdr = o }	 (175)

r
The method of decomposing the Stokes algorithm is then based on

the following result

Theorem 8.3.3.1 . : Assuming X E H 
1/2 (r)  ; assuming C 1 12 M  ., H1/2(r)

the linear operator defined by

(176)

(177)

(178)

APX a 0	 (Q). ; PX a H 1 (n)	 pX - A e HI (n)

OtuX - Qua _ -^Px

as
A-a^^an^r

(^)	 ; ux F MOM))N

Ho (n)



Therefore A is an isomorphism of H-1/2 (r)  / R oil U 1/2 mand  also the
bilinear form a( 6 96) defined by (179)

a (A,U) _ <AX,p>	 (179)

where <•,•> designates the duality product between H 1/2 (r) and
H- 1  /2 (r) is continuous p symmetrical and highly elliptical in H- 1/2 (r)  / R.

The application of theorem 8.3.3.1. to the solution of the
Stokes problem will now be possible thanks to theorem 8.3.3.2.

Let f 
E (L2

GWI;	 Po'uo'0o defined by

Apo ' ^' f	 (Q)	 Po E Ho(S1) 	(180)

au-,uo f-Vp0 (0) ; uo zE (H0(Q) ) No 	 (181)

-^^o = ^• uo	 (^)	 ^o E Ho (S2)	 (182)

Theorem 8.	 .2. : If (u,p) is the solution of the Stokes problem
(166) t  then the trace A of p	 r is the	 solution of the linear
variational equation (Ir)

X  
H

l 12 (w  R	 (183)
(F)

<AX,11> a <an° ,11> V Il e  H- 1 /2 (r) / R

The demonstration of these theorems is given in R. GLOWINSKI-0.
PIRONNEAU (18).

Notes :
1 Theorems 8.3,3.1. - 8.3.3.2. show that the Stokes problem

(166) may be decomposed into a finite number of Di.richlet problems
(-,^) (resp. aId-,^) (ti+2 co obtain ^o, N+1 to obtain {u,p} when x is
=1L plus the problem (L) ;---	 ao

2) In the ai)proximation (1:0 of (L) ,, shall not occur expl_-
cit:ely due to the Groan formula al^plife, in ( 18 14) if' p -is suff'ieiernt-
ly steady.

M

U
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<ano I"> 

_ fri 4
04 dx -	 uo u dx

^	 (184)

_ ffj (^00+uo) •1u dx

where P designates a steady rise of N in ^•

3) The main difficulty lies in the fact that the operator A is
not explicitely known.

To overcome this difficultyv a new variational formulation of
the Stokes problem shall be used in the approximation of (E), requ-
iring a quantification into mixed finite a elements.

8.3.4. Mixed Variational Formulation of the Stokes Algorithm

Let us introduce

WZ = {{ V .^) E (H1 (9))Nx 
O(n), 

v^ r z, f VO4w dx = fnVv"  w dx, Wa E H l 01)

W
O 

=	 E (Ho(w ) N+1 , 1 ^04w dx = J Q•v w dx 8wE H l (11))	 (18S)
9	 Q

It is easy to demonstrate proposition 8.3.4.1.

if	 WZ, then; {v,¢} solution of (186)

-n^ _• V (n); = a = o (r)	 (186)

We have only to use the definition of W Z and the Green formula
in (185). Let us consider the variational problem (P) (187)

Find (UM E W  so that

a	
^S2 'u-'v! S2 	J

dx+ 1 Vu•ry dx=( f • (v+j^) dx, Y{v,4} E W o
	( 187) (P)

Theorem 8.3.4.2.	 : (P) has only one solution	 {u.o	 where	 v'0
a and n is the solution of the Stokes problem (166).	 The demonst-:-ation

of this theorem is liven in R. GLOWINISKI-O. PIRONNKAU (19) shows that
(P)	 is a mixed formulation which is interpreted below

If ve rand	 is 3^c H2 (S^) n Ho(S2)	 sr► <i(H	 (21V - ' sufficiently steady
-► 	 +	 -r
W

Nso that the decompostion (183) is the only one.
OAXe (h	 (S2))`

r

ZLE



4	 +
V V^CW

(188)
Lo

In the formulation (P), insteady of setting directly 0 •v ° 0
we try to set	 = 0 + which is equivalent in the continuous case, but
not in the discret e case * The approximation of (P)h from (P) via
the mixed finite elements shall be presented in paragraph 10.

9. - APPROXIMATION BY THE FINITE ELEMENTS METHOD OF THE TRANSONIC
FLOWS

9.1, S_
In this paragraph the approximations by the Lagrange finite

elements of the transonic flows considered in paragraph 7 are briefly
reviewed. Refer to the works of M.O. BRISTEAU (6) 9 (20) (38) and R.
GLOWINSKI and 0. PIRONNEAU (21) for more details.

For reasons of simplicity t only external flows around airfoils
shall be considered.

9.2. 2-D Flows

9.2.1. Case of Non Lifting Airfoils (profiles)

The situation is summarized on figure 15.

-0.	 Qmm^^
voc	

FP	 r^
r

Figure 15

The transonic flow around a symmetrical. airfoil I' is without in-
cidence (u., parallel to the chord of the airfoil) and is modeled by
the relationships of paragraphs 7.1 9 7.2. The flow symmetry results
in automatic sa ,,isfaction of the Joukowski condition 007)-



9.2.1.1. Approximation of the Space V

By retaking the definition (189) of the space V in 7.1 P 7 .2

V - {O E H I (ft) n Co (i2), 0-0 at trailing _sdge
(1t

If 11h d signates a polygonal approximation of the domain 'l occu-
pied by the fluid and if ;h is the set of triangles (Tk) or TRIANGU-

LATION such that, in a standard way

- u Tk ; Ti n T i - 0 ifif j	 (i90)
K

then V is approximated bV the space of the finite dimension Vh

Vh - {Oh E Co(?^) , 0h I T E Pk V T e Z, h , Oh-0 at trailing	 (191)
edge

Similarlyp if we define Vhg by (191)g

(191)9

In (191) P designates the space of polynomials with two variables
with degreesk. In practice # the numerical tests require k=1 or 2.

9.2.1.2. Approximation of the State Equation

The state equation expressed in (103) is approached in (192)

fah 
VCh-% dx - { P (0h) hh dx - f

r
gh wh drh

 nh	 h 	 (192)

Oh a Vhg , V wh E Vh

where gh is a suitable approximation of g on the edge rh.

If k=1 kf ^wh are piece-wise constant over each TE f2h , con-
quently, P($ h) is also constant and (192) may be calculated accura-
tely.

If k=2 1 ^4h • dwh are piece-wise linear and a numerical integra-
tion of Mh) is necessary. We may proceed as follows s each
is divided into 4 sub-triangles (Figure 16)

1  ̂4

"
Vhg - {Oh a Vhi Pod .

. g }



Figure 16



+
% - (wh e Vh I wh Z 0)

(195)

3 ^=fir

On each Tj ( J=1,2,3 9 4) p(oh) is substituted by a linear inter-
polation P. This approximation permits again an accurate integra-
tion of ( 1j2) via the FORMAC systemv A. LAPLACE (22).

9.2.193. Approximation of the Cost Function and of the..'Penalty Funct-
ional

We approach the cost function by (193)

Jh (^h) - 2 fn I^^hl2dx	 (193)
h

For the penalty functionalp two approximations shall be consi-
dered : k=1 ; k=2.

The linear constraint of inequality (105) is expressed in a weak
form (194)

-J	 h•Lh dx +1	 Jgwh dr s K 	wh dx V wh E Vh	 (194)
"hr2h 	 11 "t,

where Vh is the sub-unit of Vh according to

r, 1

If the bounded K is also defined with the weak meaning by the
variational formulation (197) from (196)

'&0 
oh	 K	 (Slh)

Ooh - 0	 (rIh)

a^oh
^n = 9N p 

(r 2h)

J
Vooh Dinh dx - -K

J
Rh

wh dx + J
r

gha+hdrh
h

(196)

(197)

(198) The constraint ( 194) is substituted by the discrete condition

-I ^(Qh-Qoh) • w
h dx s O	 wh a Vh	 (198)

Let ah be a base of V1, produced by the functions of form Ni

Y
/=h - (Ni}ihJ with-;h - dim(Vh)	

(1()g)



N iEVh

N i (M
i
) = diJ , V Mi a {nede orrh} (Trailing edge node)	

(200)

M4

y	
Ni

If kal
It is obvious that
N. :-. 0 Y i on fig-

ure 16.

Figure 16

We may then substitute for (198) the N  constraints of ine-
quality (201)	 .

Qi = _ f 
Ioh_^oh)-IN i  dx 0 Vi-1,..  . ONh

Jnh	 (201)

One way of satisfyin g* them is to add to criterion ( 193) the dis-
crete penalty functional 2202)

	

c	 20z

	

P 123 = L	 Qi 1 2
ieNh

If k 2 t the base functions IN are not all positive. In this
case	 may be decomposed as folAws in (303)

a= r' 1 ' 2 '3 rn 4 ' 5 ' 6 ; N = N 123 + N456	 (203)
h	 h	 h	 ' h	 h	 h

/31'2'3
h	 = {N. , i e ,tops 1 , 2,3 of triangle T E `^h}

^ h ' S ' 6 = {Pl i , i c mi.ddles4,5,6 of triangle. T E C }
h

LLI 1



3

^• i

17.1 17.2•

1

A function of form N i of the sub-families ( 203) aro shorn on
figure (17)

N1
•	 Ni

I•

Figure 17

456
It is obvious that N it 0 if v i e °h 	 (figure 17.2), but it may be

observed that on figure 17.1 that NiE ^h23 may take on negative val-
ues.

In this casep we shall substitute for (198) the N 123 + N456 con-
rtraints of inequality (204)

Qi	
f 

I (Oh-^oh}.s#,Ni dxs 0 VN i F,^h23 vi - Max (0,Nj)

	

S:h 	
(204)

Qi - _ j	 (`^h^oh)-7N i  dx s 0 VNi e ^h56

^h

One way of satisfying them is to add to the criterion (193) the
penalty functional (205)

v	 r	 IQi42 + I IQ14_
'h	 !, 56

i e vh' 3 	iCNh 	(205)

In the numerical tests, the second term of (:20;) shall pr,tciic-

	

allh• be sufficient.	 In thcs c.1sa of ahProxim:ition (1 tJ ,) jt •,, tl^` cli s-
crete penalty term of (20())



t .► .. '42
S _ ;	 emu• n j	 dx 

(206)

164

I

A contribution of S due to
Figure 18^._	 a discontinuity of sAoed

of positive intensity is
shown on figure 18,

mo

U local

t f

Figure 19

In the case kk2• the dis-
crete discontinuity of
figure 18 is calculated
at intersection 4 9 5 or 6
in the direction of the
bars of two triangles T
and T+ E r . The illumina-

"h tion + and -
occurs by using the local
speed on figure 19.

I

u56 r 2 (u5+u 6)	 calculated in the middle of bar (23) view of T1
and in the middle of bar ( 13) view of T2 makes it possible to il-
luminate T1: T2 in T- and T + in the following direction

- U56 is 
exiting T  at node 5	 TI T

- u56 is entering T2 at node 6	 T2 i T'F
4

In this semi-node, the discrete constraint to be satisfied is
expressed by (207)

-' -► (207)Si = [u•n3i	 (^^i - 10i) •n s 0

dis
CC
crete analogue of (206) may then be expressed in (208)

Sh 
s .ty456IS112 

£(Bi )	 £(Bd = length of bar - Bi	 (208)
1 +h

which Permits the final approximation of 102 in (209) to be riven



^t

,/6'}
min 0h (Oh) + u 1 ph + P2Sh)

Oh (209)

Mote i it is possible to form a model when k_1, the condition
of entropy by adding a penalty to a functional SS odd power of a
ositive step of speed, which is impossible according to fluid dy-

nnmics decompression shocks) given in (210)

f

	 a 2	 ,210
S ' a C u • n) I dx wi th a=3

The discrete analogue SJhis expressed then

S3h 4 5456 Rig VB i ) with this time

iENh 	(21 1 )

Numerical results using (211) with k=1 shall be presented later
one

M.O. BRISTEAU (20) may be consulted for the numerical approx-
imation of the constraint of entropy by the artificial viscosity.

9.2.1.4. Approximation of the Cost Function Gradient and of the Pen-
alty Functional Gradient

The cost function Gradient <J'(p),N i> - Ji	 is approached by
(?12)

<J'(o ),N> _	 Po )^ • ^N. dx - Zca! P(4h) 
1-1 /a(^0 

• ^	 •^N.) dx
h n	 i	 h	 li	 z	 J 	 h	 h	 i	 (L12)

Y t i E Vh ; Eh E uh r 4h E 
Vhg

The discrete analor,11e of the menalty functional 1*_ •adient (202)
;s expressed by (x'13) ^='1^{)



<P
123' Ni

>
 = 2 UN1i123Q+ 6Q+ ( i ) (i) with Qj . Qj (i), given in (214) (215) 	 (213j

h

Q^ _ (-f (`^/¢h-^oh) pNjdx) +
	(2)4)

6Qj (i)

	f, ^Q]•VNi dx (215)

If the entropy constraint modelling (211) is used, we obtain	 66
the differentiation formulas (216) (217}

P

<$3h 'Ni> n 2 1456 R+ 6R
+(i)i(B)	

(216)
jc%	 3 j	 j

with 6R- given in (217)

6Rj(lk3{(V^j 
V1) A} 2• {(`INi VNl)•n} 	 (217)

9.2.2. Case of Lifting Profiles (Airfoil Sections)

9.2.2.1. Approximation of Spaces Vp Vg and C

If V11 and Vgh designate the approximations 	 finite dimensions
of spaces V and Vg ; if VC is the sub-space of 

H1() 
defined in 7.3

so that

V = {^ E H (6) , 0=0 trailirg	 ; ^^ + _ ^^	 _	 ^, any
C	 edge	 C	 C`	 value

where C designates a cut in the domain occupied by the fluid exiting
the trailing edge and joining a point of r. (Figure ?0) and that V1
designates the approximation in finite dimension of spice VC 	 Ch

V
Ch
	 { ^h 

1 Oh E Co 
(^) Ohl T 

E P
k 

VT 
E '^'h' Oh' BP=o ; O h I C+ - 

^h, 
C- _ ( }
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Figure 20

then the discrete analogue of (109) is given by (218)

	

0th 0 0 NPh + 
10 

Rh a 'h 9 VCh	 (218)

9.2.2.2. Approximation of the State Equation (112)

In (218) ORh and ONPh are the approached so-ations ( 219) (220)
of the variational equations ($2) (112)

	

f • VORh Owh 	wdx - 0 v E V1
h Ch	 Rh 

E 
VCh	

(219)

The step condition on C is treated as a condition of pseudo-
peri • licity. We define	 which -pproaches & as solution of the
discrete equation (220) h

	

` V^h Owh dx - _ L Ph(' ^h^^'Zh•Vwh dx + 	 ghw;^ dI'
	Q 	 r2h (220)

V w  a Vh

^h e Vh 9 'D Rh m 
O NPh + k^Rh wi th ONPh e 

Vh



9.2.2.3. Approximation of the Joukowski Condition

If T F and TBF designate respectively the last element at the
extrados Uesp. at - the intrados attached to the airfoil following a
side of a triangle, and to the trailing edge shown on figure 21.

3

2

Figure 21

we approach JK(Z) by J%(R) defined in (221) 	 68

	

JKh(l) _ 1 ^tZh 12+_ 1%Zh 1 2_ 	 (221)
T	 T

If k=19 ihZh is constant on each trangle and the Joukowski con-
dition cannot be applied punctially on the airfoilp but only as an
average on the two triangles T + - T-.

If k-2 P ^hjb i linear on each triangle ] we may selecte one of
the nodes7l-4-2) oz (1-6 -3) on the body or an interpolation of
these points (refer to MARTIN (23)).

9.3. 3—D Flows

The numerical implementation of the tridimensional flows is
developed in detail in J. PFRIAUX (9). In the case of lifting flows
(for examples around a wing), a sheet of discontinuity (ND) must be
introduced ? originating at the line of the trailing edge (LDF) and
joining r as on figure 22.

.CO
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pig	 -.-. _ _
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Figure 22	 R QUAL(TM

The discrete Joukowski condition is applied on (LBF) t trailing
edge line of the wing. If ►,(y) designates the circulation spreadq
starting from the socket of the wing up to the "pig" the discreti-
zation of (LBF) into NBF points on which the sheet of discontinuity
is applied t provides NBF Joukowski conditions (non linear) (222)

JKh (!^K) _ 14,1 ' + - 
1hh I 

2 - ; K=1 ,NBF	 (222)
BF 	

B11 

with Oh decomposed as follows in (223)

NcBF

h ONPh + KL 1 2K ORh, K
(223)

NBF k
K

4DhE V  O( K11 V(ND)K,h)

R

with V (ND)K	 defined (224)
K in

V(ND)	 _ {hhIORhEC'o(S2) . ORh1T	 '6hE Pk Y Te,
K,h	 (224)

-ORh I BFK 	Rh I 
(ND) K 

^	
K

=^}R Ih (ND)o 
=o; m	 K

C'L



If Ch is a tetrahedron of n than ND shall be the trace of 	 o
tetrahedrons having at least one node belonging to the sheet of
discontinuity

^
ND + shall be the trace of the sheets view from above
NDi shall be the trace of the sheet, view from below

The definition + and - are defined from the line of the trail-
ing edge by designating by + the extrados of the wing and by - the
intrados of the wine. I shall beobse er'.v them that the discreti- 	 3
zation of (ND) h is composed of a set of triangles (see figure 22).

O.C. ZIENIEWICS ( 24) may be consulted for the approximation Pk
k=1 9 2 and the coordinates of surface area (L i ) used in ( 225) as
well as the derivatives

cc4
	 0

1CC
0{ T a 

L ^i Ll ; ;1	 G OiNi( Li) 01T6 Pk	 (225)1=1	 T ial

of the functions of forms appearing in the exact integrations.

10. - MIXED APPROXIMATION BY THE METHOD OF CONFORM FINITE ELEMENTS
OF THE NAVIEER-STOKES EQUATIONS

10.1, Summary

This chapter presents the mixed approximation of the Stokes
equations and the Navier-Stokes equations by the method of conform
finite elements taken into consideration in chapter ^. For simpli-
city J1 shall be assumed to be a bound polygonal of R • but the nu-
merical implementation extends to the domains of R3, the applica-
tions of which shall be presented during the presentation of numer-
ical results in chapter 12.

10.2. A TT—ni.mation of the Functional Spaces

If q designates a standard triangulation of the domain S2 9 the
following spaces of finite dimension (226) (227) (228) (229) (230)
(231) shall be used subsequently

. 
{^h E Co (S1)	 Oh I T E P1 V T E L°h} (226)

Hoh	 H (Q) n	
{Oh E 
	 hI T a 01	 (227)

Vh . 
{vhE l^°(^)) 2 , vh l T e (P2 ) 2 ,	 T	 h }	 (228)

VZh	 ivh s Vh vh,r'lh}	 (229)

M.



T E r Ti E ';h/2

with zh , an appropriate approximation of z.

fn v
hwhdx	 wh E}i1(230)zh 	 `uh'^'hj EVzh 

x
H oh J^S^^

h • (wh dx	 V•

A widely used variant in numerical tests consists of
defined in (231)

o(SZ))2,	 2V	 = {v,	 ^	 2 1h/2	 h/2
E (C	 v	 E (Ph/2 T	 1)	

V Te h/2 } 	( 3 )

where h/2 is the triangulation obtained from Vh bysubdivision of
each triangle TE 4'h into 4 sub-triangles obtained on figure 23 by
joining the middles of the sides.

Figure 23

10.3. Approximation of the Steady Navier—Stokes Equations 	 La

The approximation of equations (132) by the mixed method (187)
is given in (232)

Find` - { Uh
,^h} E Wzh so that

(Ph)

vI
S2

 'ruh• ^vh dx + I (uh•V)uh• (vh+N)dx - 0 , V {vh .o h}E oh	 (232)1	 1

We shnil find in P. LE TALLEC (26) reasonable assumptions on
rind v ' vo so treat (I'h ) pormits one solution, Moreover, passing* to

Ulie boundary is the solution 

(

o

'

f problem (1j2)

Ti { u
h " h} a { U10)	

(233)



7t may be observed that if ^h *Oh ^ 0 is set in Wzh and in (Ph)t
the Taylor-Hood (25) scheme is recovered

10. 11. Mixed Approximation of the Unsteadv Navier-Stolces Equations

Subsequently, k - At shall stand for the discretization time
step. Presented now are two possible discretization schemes of
which one is semi-implicit and the other one is entirely implicit.

10.4.1. Semi-implicit Scheme

This is the discrete version of scheme ( 152) (153 ) . It is com-
posed of (234) (235)

uhE Vh , is an approximation of u° 0 given	 (234)

Then, for	 n Z 0 ,	 by using (232),  we obtain (235)
-►n+l n+l	 from -)-n by solving ( 236 )

{ uh 4h }	 %

( +n+ 1 -+n
-uh

1 	 k	 'vh d  + v 
r 
uh+l•^vhdx = -^ (uh•^)uh•(vhh)dx	 (236)

^	 n

{vOh} E oh , {uh+1't h+1 } E Wzh'

It may be noted that (236) is a sequence of discrete Stokes
pseudo-problems and that the scheme (235) (236) is a truncation
error 0(p t) and is only conditionally stable.

10.4.2. Implicit Scheme

The scheme taken into consideration above in (237) (238) is an /72
entirely implicit two step Crank-Nichalson scheme

^o -0.1
u , uh given	

(237)

Then for n> l	 we obtain by using	 (232)
solution *n

+1
-sn -►

from	 uh,uh
the	 of (238)

3 -).n+1
-2 -

►n	 1`	 2 uh	 uh + 2
-n-1uh

•vh dx + v^^rn^^• dVhdx + ! (uh+1•V)uh+1. (238)
^	 k n
+	 4.

(vh+V^h) dx	 0	 V
-►(V 	 E Woh -+n+ 1	 n+ I

{ uh	 '^h } E Wzh



It may be noted that (238) is a sequence of discrete non-
linear problems analogous to (232) and that the scheme (237) (238)
has a truncation error 0(Gt2) and is uncondittion_lly, stable.

10.5. Least Squaress Solution of Discrete Unsteady Navier-Stokes
Equations

10.50. Discrete Mixed Formulation of the Problem Ph

We are taking into consideration in this paragraph the discrete
analogue of chapter 8.2.3., the mixed formulation of which is a gen-
eralization (239) of (232)

Find (% '^h) E Wzh so that

a1 uh •vhdx + v1 etv* dx+	 dxVuhh ^ (uh•^)uh•(vh+^^h) =	 I
n	 SZ	 (239) (Ph)

J,2toh	
f

•vhdx + I 11 1h•(vh+N)dx V(vh' Oh) E Woh

Two terms may be observed in (239)

corresponding to the choices of the quantification
- fohf^2(

2

	time scheme

k	 2uh - 2 uh-1 )dx ( in (238))

- f 1 density of external forces

Ph is a nonlinear problem.

10.5.2. Least Squares Method of Ph.

By analogy with (158) of chapter 8.2.3., the least squares me-
thod of P^ given in (240) (241) (242) is taken into consideration

^ Min	 Jh(vh,oh) vith
{vh.oh}EWzh	 (240)

-►
Jh(vh.oh)	 2 ^` vh th) 2dx + 2

	 ' ^ (vh th) 2dx	 (241)

where	 is a function of {Vh,oh} via the discrete state equation
(242) h

•;	 n = I • n dx + (f • (rl +^w )dxafS, than 	 + of Q^h ^ hdx `^ foh h	 f 1h h h
(	

J	
(242)

(vh • V)vh.(rij h+^( h )dx	 V {nh'^h} E Woh i (Sh OX 'i a WZh

^o



10 .5.3 • Calculation of Gradient Jh

The differentiation of criterion ( 241) is given in (243)

dJh - aJ (vh-th ) • 6(vh- h)dx + vf
n

p(vh-th) •V6(vh th)dx

	

S2 	 (243)

V 0vh -60h) a Woh

whereas the one of the state equation is given in (244)

	

f -I-.b..

	
fr

rdCh•11hdx + v^ V6^h '%dx= -
J
^ (6vh•^)vh• (nh4wh)dx

(244)

-	 (,Vh•^J)6vh•(nh+^wh)dx
fa

with (6^h,64) E oh ; 
V (nh'wh ) 

E oh.

Since {vh-t0h Xd `'Woh,	 it is possible to express the variation
of criterion 6Jh uniquely as a function of 6v h by using (244).

We obtain (245) by selectingn = v -1
h h -h : wh c0h -XJ

f s
^ (v -tx+ 

J	 x
a	

6 h• h h )d	

v 52^6^h'^(vh- 
h )dx - -( (6vh• )^h •((v -S )1^	 h h

S2 

h )dvh ((vh-th)+^(Oh-Xh)) dx 	 (245)

By putting ( 243) (245) together, 6j  is finally given by (246)

6Jh = a
J 

(vh h) • dvh dx + NJ ^(vh h) •16% dx
S2

	
fn	 (246)

+ f(
( 6-v,.ah• ^)vh + (vh • t^ )6 v^ • ((vh ^+^h-Xh))dx

S2

By expressing that6 Jh a <Jh(vh .Q h) , {nh .wh
} >	 Jh may be identi-

J
fied with the linear form :W oh 11 It defined by (247)

^Jh ( vh .d h ) . { nh ,wh) > = a J1 P(.^• nh dx + V 	 (vh4 • h dx

+ J ( (nh- ) yh + (v
h• )^ ti ) • ((,h-th ) 4, (^h-Xn)) dxn.



-+o 0
{ uh ,^h} a Woh given (248)

10.5.4. Conjugate Gradient Solution of ( 240) (241) (242)

The algorithm given above is the discrete analogue of the one
described in (160)... ( 165) in chapter 8.2^It consits of 3
phases.

Phase 0 : Initialization ( 248) (249) (250)

Calculate {gh,9h} solution of the discrete variational equation
(z49)

c^f2 gh
• nhdx + v1 Vgh • n dx-<J 	 I {n ,w }z

R	 h h

(249)

{nh,Wh} a W+h , Igh ,8h} e Woh

with Jh defined in (247)

set {hh, Th} _ {gh,eh}	
(250)

Then for mz O ,assuming {h.^Vh} E Wzh , {h ,Th} E Woh ^U , calculate
{^+i ,^m+1 } : 

-#m+ 
1 ' 00+1 }{hm+1 

Tm+l}uh 	 h	 h

Phase-1 : Descent (251) ( 2 52 ) (253)

Am ! arg min Jh(uh-Ahh ^ h,
 -ATh)

X>0	(251)

um+ um - a taih	
a h
	 h	 (252)

f

W	 _ `m+1	 m - ^ Tmm
O
h 	 1h	 h (253)

n
r ^



Pbase-2 t Construction of the New Direction of Descent

Compute (+̂lm+l solution of the discrete variational equa-
tion (254)	 gh ' 8h }

a	 gh+I • n dx + v^^ygh I.^nh dx f <yTh(Uh	
'^h

l)
{nh•Wh)>

(254)
V 

0,1	 Wh } E Woh
{ gh i 8h+1 ) a 

Woh
,

Then calculate the coefficient of conjugation Ym+1	 in (255)

^	 4^2^M+
"'m+ i	 -*M+ I
Bh ' ( gh 	 -gh ) dx +

vfil
ugh+l • ^(gh+l_g) dx

(255)

a1 n 
1-g*
	 2 dx + vJ I 

l
gh 1 2 dx

The new direction of descent is given,	 then, in	 (256) (257)

hh+l : g 	
+ Y°+1hm (256)

h

TM+I '8h + Ym+I Th 	 (257)

Do m-m+1 and go in (251)

It may be observed that each iteration of the algorithm (248)
-(257) requires the solution of several discrete Stokes problems Sah

-one Stokes problem to solve the state (242) (th+I ►Xh 1)
with {^ ,(P )	 {^+I ^	 }h h	 uh ' h

-one Stokes problem to calculate{g I ,Ei hni+l }	 from {	
I'^h

h	

I }
and	 m+1 m+1

{^	 ,Xh }via (254)

-several Stokes problems( = 3) to calculate Xm.

Flow chart 1 of the unsteady Navier-Stokes algorithm is presen-
tod below. The discrete solution of problems S	 is presented in
the follow, : chapter.10. 6. 	 ah

10.6. The Stokes Algorithm (Discrete Case)

10. 6. 1. Introduction

The presentation of the Aavier-Stokes ogtiations (discrete in
the steady case (10. ^) rind unsteady case (10.4)  in the form of it re-
poti.tive sequence of discrete Stokes problems, implies a highly ef-
ficien t ntimerical algorithm of problem 

(Soh) 
(258).



SOLUTION  2 . 0 BY THE CONJUGATE GRADIENT OF

THE LEAST SQUARES METHOD

O Initialization : SELECTV.o E WZ

corinvTE	 ^ s q> s f (v;^ } d 9 a we
9 Wo

1 Calculat U k Solution of theSate

L2 GJculate the coat J(%i" ) n 4U n+'v" Un+' v n
function	 k	 k	 k+ k — k

3 Descent : Calcul • X

= Arg Min 7 ^vk + h is	 ........ w 21 Oirichlets
%

^►
	

--.&	 -P.
Set v k+4 = v" Nnh 	 k

A Construction of the' new direction oX desc nt
.......7 Q,"ichlets

Set	 hn ♦ ^e n 41 + n +^ tin	 ':
k	 k	 k

3 `	 :richlets

k : index ( time loop
h index (control loop)
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Find ( u h  t Wzh so that (258) (S ^)

a^t2 V v
hdx+vJ Iuh• 'vh dx 1 # 'v dx +	 ) dx 8 { v^ } t W'If'	

.0

 h	
fn 

# ih (^h h	 h	 oh

In the following presentations we shall find again the discrete
analogue of 8.3 in the solution of (

ash)

(27) (28) may be referred to for demonstrations of the theorems
used.

10.6.2. Characterix »*_ion of the Solution ( 'uh ". h'ph)

We may easily prove that ( 258) has a unique solution which is
the one of the problem of minimization (2S9) with distributed linear
constraints

4 M) }aW { J,2 :^ 
v ^ 2dx +h	 2 fQ j4 ^ dx - J^ oh* hdx - J^f1h(vh+VOh)dx (259)

{ (vh' hzh 

where it is rocalled that

W	 M ( '1141 
.4 ) e 4 x H 1 	 4 ' ^q dx -	 JJ • v q dx V	 E 1)zh	 ` h h	 zh oh' fQ h h	 fil h h	 qh %

The number of constr ints of (259) is dim(Hh). We may combint,
with (259) the	 ^Lagrangien ^ 	 ^ x I x 1	 defined by (260)

h h %o %]R

me h ( vh , 4h' gh) - j h (vh ,O h) + j 
SZ 
7^ti Ighdx

-J 
S2 

7•vhghdx

where j h (vh• 4 h)	 equals (261)

jh(vh,dh)	 of 
Ja i vh

1
 2dx + 2 f'j^	 2vh ^ dx - J„f	 f	 )dxoh• vhdx.- 

	
Ih(vh+^Qh

R

(260)

(261)

(259) being a problem of minimization with linear constraints of
finite dimension for which there is a solution and a distributed
Lagrange multiplier phe 1	 so that i^^yh ^ ph } is a saddle point of

^h on V 2h ” Foh" with (^► 'Yh} solution of (258) (259).

The extrenio conditions of ;'-Oh at point "'h ► ^ii' Ph (26L,) (263)
(264) characterize the solution of (258)



fn	

I	 2
^ph % dx l £ 1h* ^^h dx Y ah E Hoh ph N.

	
( 62)

c^ utivy ds + v^	 v dx+ l w
P 'v dx= ( ft	 +: •`• dx

;^	 1 ^ a	 h	 Jn h h	 f^ oh 1	 h	 (263)

7 r r
Bch	 uh ' ^zh

1^ h 'lgh dx ' ^ " uh qh dx V q h E	 (264)
n

From (262)p it may be deduced that the Lagrange P h multiplier
is the discrete pressure.

10.6.3. The space
h

By using the observations made in 10.2. 9 7/`h is introduced as a
supplement to Hoh in 1(	 i.e.

=HohS'Ph

with Nh = dim- (?V

In practice, by using the Lagrange finite elements,j/ h shall be
defined as follows (265)

u h E h ^ "hjT	 0 ii Te ^'h so t}:c.t3Tn 'an	 (L.

7% has a finite dimension Nh. It is the number of nodes of
belonging to M. 

Moreoverg (265) implies that
with	 I '

supp(uh) 71i = U T with Jim mes (fir ) = 0•

_	 h TnM14	 h''0	 h

^r is shown on figure 24.
h

10.6.4. Convortint*, Problem ^h into a Variation.i.l Problem (E^^) in 7^h

1O. 6.4.1. Approximation of a(" 9'

Tn referei;co to the cbser •.•ations ni xde in p;ir. rrilph L^.3.3. j th.it

3f J is stli'fic;ienLly steady, the Green forllftilu leads to (:'t,())



3
3

9

Fh

_a

Figure24

a^
a(a,u)	

any u dI' _	 ^^,^ •^u dx - f dx
jr
	 S:	 n a

^^ ^^^•4^u dx 
+fill. 1^ u dx = -(

n 
4, +u, WD dx	 (266)

where u is a measurement of u in Q.

	

Now let A h'uh E ^'h'	 If we define ah ( ' ' •) ' 74 h x T' h -+ R by the

sequence of problems (267) (268) (269) (270)

	

1px h • ^gh dx = 0 V qh E 
H
oh pXh-Ah E Hah	(267)

a u • V u^c + f
	 h	 h	 oh

V ux =- 	^	 V dx V V E V	 L E V
\h h 	 a.h	 h	 ^''	 ' ah	 oh	

(268)



fn ^^'ah^^4h dx"^ h^hdx, V^ E I	 ^^ E 
HI	 (269)

f	 h	 h oh

ah (7^h'u h) a 
-J (^'xh+ul^h)^^uh dx	 (270)2

Then,	 the theore::i (10.6.4.1.) demonstrated in (31), dis-
crete analogue of the theorem 8.3.3.1., characterizes the properties
of the bilinear form ah(.v.).

Theorem 10.6.4.1. : Let us assume that 	
TE 	 T has at the most

one side E aSl I therefore ah ( . t .) is a bilinear t symmetrical form
and is defined positive on

eh/Rh) X ("Ph/Rh) where

Rh 
-
 {ph 

E7)?h ' 1j h = cste on rill

Based on theorem 10.6.4.1;x , we can now convert the problem Sah
into a variational problem in i t5anks to theorem 10.6.4.2.E
discrete analogue of theorem 8.3.3.2.

10.6.4.2. Approximation of (E)
A

Theorem 10 2 6.4.2. : Let Ph be the discrete pressure and h the trace
of ph on ti . Therefore if theorem 10.6.4.1. is verified, then X 

is the unique solution in /R of the variational linear problemh h 
(r-h] ""I

A h 'E 	 / h

( ^	 +
ah (X h .U h) J	 oh	 u E m+uoh).%h dx V	 /^	 h	 h Rh	

(271)(Eh)

where Pohl uoh' doh are defined by the sequence o -^ problems (272)
(273) (=74)

J	 •^	 _ f i0 ^Poh L'qh dx	
Q f 1 h*^qh dx V q h E Hoh' pohE Hloh

	 (272)

$0

s

-



"OR

fuoh^ vhdx + v( ax r	 i _	 +a 	 h	 J (f oh+f I h ^P ).w dx
n	 oh h

V v e V , u e V	 (2?3)h oh	 oh zh

1^ ^^'oh ^ h dx = ' ^-u oho hdx V	 e HI	 W	 I	 2S2	 h	 oh	 oh
e H oh	 ( 14)

10.6.5. The Solution of Problem (Eh)

10.6.5 . 1. Summary

The choice of the method used for solving the problem depends
uniquely on industrial applications. For 2-D fluid flows 9 the num
ber of boundary points N  (-100) with dim 

Nh<<dim Hh,	 the solution

of (Et,) by a direct method is preferredq for the core space and man-
ufacttring time required for matrice A h is relative^y compatible
with the current size of large computers ( 370/168). On the other
hand, for three dimensional applications (separated.flows around a
wing	 with high incidence) 9 the number of boundary points N (= 1000)
results in an unallowable core use and computation time and in this
case, a conjugate gradient type iterative method is preferred for
the solution of ( Eh ) . which does not require information about Ah.

Both methods are expanded in the following text.

10.6.5.2. Solution of (Eh ) by a Direct Method

10.6.5 . 2.1. Construction of a Linear System Equivalent to (Eh)

General :

The space ^7(h defined in (263) being of finite dimensionp let
N  , a base of T7 h . That means that V V E '//Ih

Sh	 i i=1	 N

	

h	
N	 (275)

uh -	 _
i=1 ulWl
	

rhu	 hh	 { u l ,... uN c1R }
h

The functions wi are defined as follows :

V i-I....,Y
h

Wi `- Vh	 wi ( p i ) = I (276)

wi (Q) = 0 V Q node ofd'	 Q # pw



Pt
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^^^ 
JuppcK 

^`	 The hachure zone of figure 25
represents the support of wi.

Q JAIL	 With the definition ( 276) of the
'

	

	 wi, that means that in (275) ^' i = ''h (Pi ) .
The problem ( Eh ) is therefore equiva

Figure 25
lent to the linear system (277)

"h

j i g ah(wj'wi)Ai	 (4.h+uoh) 
•Cwi dx	 1 S i S Nh.

^Z

Set aij s ah(wj 'wi) ' Ah = (aij ) 1<i'j<:lh i b 	 'yoh+uoh) 7wi dx	 (277)
Y

b	 lb },hh	 i I-I

According to theorem 10.6.4. 1., the matrice Ah is complete, sy-
mmetrical and semi-defined positive

Construction ^ f Ah : Ah is constructed column by column according to

the relationship a id = ah (wj,wi ).To compute the jth column of Ah,

the sequence of problems ( 267) ... ( 269) is solved for Ah ° wj and
(aij)i=l,...Nh is deduced by using (270). Each column of A re-

quires, then, the solution of 4 discrete Dirichlet problems (5 in
the case of Qc M )• As the matrice Ah is symmetrical, the problem
may be limited to indices

Taking into account the choice of "h, the integrals defining
(270) involve only the functions having a support of about an
(Figure 25).

Flow Chart 2 of the construction of operator A is presented be-
low.

Construction of b 1 : to construct the second member of (277), the
sequence of problems ( 2 72 ) (273) ( 274) is solved, which requires 4
discrete Dirichlet problems

	

	 3(5 ifSZ c 1Z ) ,

Considering the choice of M''h, the integrals defining the sec-
ond member of (277) involve only the functions having a support in
the proximity of (Fi^;urc 25).

10.6.5.2.2. Solution of Systora Aha h = b  by the Chloski Method

7 
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Account taken of theorem 10.6.4. 1. and of the definition of

^'h +	 Ker(Ah) • { V ERNh j v 1 ' V7 ' vNh}

and since the matrix Ah is singulars it is necessary to fix a com-
ponent of ah (XN '

h	
for example) in order for the sub matrix

. (aij)i'i,]5Nh 1 to be symmetricalq defined positive.

The sub-system to be solved is therefore expressed (278)

M -	 I
AhrhXh - b 	 where	 (278)

rh - a h = [X I ,...IxN h -1 } ' bh ' {bl,b2' ... ,bN h-1}

(278) is solved by the Choleski method via the standard factori-
zation (279)

tAh LhLh	 where L  is a nonsingularsingular lower triangu- (279)
lar matrix

In summaryq the solutions to be computed to obtain the solu-
tion("' ,P ) derived from (Eh ) by the Choleski me.thod are the fol-
lowing-: h

-4 discrete Dirichlet problems to calculate poh' uoh'^oh	 b 
(5 if 2 c R3)
-4(N

h 
-1) discrete Dirichlet problems to construct Ah

(5(Nh-0 if 2 c R3)

- 2 triangular or descent-climb systems to calculate X 

LJ
_	 `t_

h b  ' L 
Yh - yh

- 3 discrete Dirichlet problems to obtain p h and "from ah

(4 if 41 c K3 ) .

Flow Chart 3 of the rapid Stokes algorithm is presented below.

In practicev the matrices of the Dirichlet problems are fact-
orized once and for all outside of the control loop. They ar-e--fwo
symmetrical matrices defined positive, one approaching -A by ele-
ments Ply the other airs-A by .lements I'2 (or P1 on a triangulation
-Ch/2 defined in (213).

1.0.6.5,3. Solution of (Eh) by-,a Conjufrate Gradient Methoe

General s It is interesting to solve (I; h ) by an iterative method

^n

ZU
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wi:ich does n , t require the EXPLICITLICIT computation of Ahp but only, at
each iterationp the solution of 4 discrete Dirichlet problems
(S ifS1cR3).	 It is subsequently interesting to introduce the iso-
morphism

N

r  :74 h -I. R h defined by

rhu h - {ul,u2,...,uN } V 
uhEmh

	

Ncch

	 h

withuh - ; u iwi ' wi E sh base of 74h introdu-ced. in (27i)

( . P . )h shall designate the standard euclidian scalar product in
N	 the corresponding standard.

R h & 11' 11 h

By using the observations abovep the two members of problem
( Eh ) (271) are expressed

ah ( ah .u h ) - (Ahrhah,r huh) h ^` ^h , uh e V'h

f+Uu All dx - b , r u )	 V	 e 91t	
(280)

S2	
oh oh h	 h h h h	 h	 h

Description of the Algorithm in (281) ( 82) (283) (284)

Pba88-9 Initialization
N

rh^h E R h is given arbitrarily
0	 0	 (281)

gh - Ahrhah^bh

ho0h gh

Then, for n ? 0, An, 9n ' hh being knownp compute ah+' ,gh
+t'hh

+1 
by

Phase-1 1 Descent
(hn,gn)h

A -

n 	 (Ahhn,hn)h	 (282)

r X n+1 r an	 n
h 	 - hn - phN

(283)
n+1 - n	 n

gh	 gh - pnAhhn

Lak



Phase 2 : Construction of the New Direction of Descentr rrr rrr

Il sh+ ' ll h
n	

(Igh ll h 	 (284)

h
n+l	

9
n+1	 Y hn

+ h n

n=n+1, go in 282.

Notes :

As the matrix A is symrietricalp semi-defined positie t it may
be shown that the se4uence{X1 ►} converges toward ^h solution of
(Eh ). The component of ah defining the pressure level is the same
one as the initial pressure ah. The implementation of (281)...
(284) requires -,the solution of 4 Discrete Dirichlet problems to
obtain Ph.hn, un,hn ' ^n,hn at each iteration (5 if Z c R 3 ) in order
to compute

nA h h n via (285)	 ah(hn,Uh) _ (Ahhn'rhUh)h

r(285) + uhIhn) •I%h dx

The prefactoriTation phase of the discrete Dirichlet matricest
recommended in the direct method, is also obvious t upstream of al-
gorithm (281) 9 ..(284) and leading to considerable gain in calcula-
tion time.

10.6.5.4. Acceleration of Algorithm 281 ... 28

	

(	 ( 4 by Preconditioning
x n. -► R

Let sh ' ^h ' %^h	 be a symmetrical bilinear form defined positive
to which the symmetrical matrix defined positive S h is related via
(286)

ah(Xh,uh) _ ( S it rhah)rh%)h
(286)

S is an auxiliary preconditioning operator in the sense of 0. /8
AXFLSSbN (32),  The con jur-ate rioadie.)t variant using a ocalar pro-
duct	 ((Xh,11h))h,Sh	 (ah.Sh1,,z) 

relating to Sh is defined by (287)
(288) ( 289) (290)•

L12aeta 0 : Initialization

ex



(z87)

N
rhA o cIR h selected arbitrarily

8h a AhrhAh - b 
ho = 

S-1 o
h	 h gh

For n 2 0 A n , gh, hh kn ,--..,,, compute ah+1 , gh+1 hh+ 1 by
Phase-1 : Descentr -rrr

pn	
(h11 	h

( h h, hh)

r n+1n	 n n
h h	 rho h - p hh

n+1	 n	 n8h	 gh - p Ahhh

(288)

Phase-2 : Construction of the New Direction of Descent (289)

(gn+1^S-1Sn+1)
Y = ^h	 h h h
n	 (gh,shlgh)h

hn+!	 S-1 n+1 +	 h 
h = h gh	 Ynh

n=n+1, go to (288)

n

I 

(289)

Notes : If Sh = Id (identity matrix) is selected, algorithm (2810..
T-28-7 is found again.

Different choices of Sh are proposed by GLOWINSKI-PIRONNEAU (29
(29) guided by two c.fferent types of contradictory arguments (info-
rmatics and theoretical).

1. Select S (.,.) leading to a hollow or even diagonal matrix
Sh . In Vhis case, S  may be factorizd once and for all by
the Choleski. method S = T Tt upstream of the algorithm

(informatics argument	
h h

.

2, Since ah (• p .) is an approximation of a(.,.) defined on

H 1/2 (r)	 and elliptical x 1/2 (r), select Sh(•••) approxima-
tion of a bilinear form S(.,.) also elliptical H- 1/2(r)

This alternative, however, leads to a complete matrix S 
(theoretical argument)

We give to (290) (291) (29 ) three possible St j (.,.) leading to	 h
sparse 61i matrices, provided that the boundary nodes r have been
numtered properly (rd_--imum band width).

f.



Sh(Xh)uh)
	

fr 

a hV h dr	
(290)

Sh (X h .uh) J ' tA da	 (291)

Sh(X0h) '' 
R 
%h "

h 
dt2 .	 (292)

Assuming h defined in ( 275) (276) and that the Lagrange finite
elements are used for the problem ( 271) t it is then possiale through
numerical integration to combine with (290) (291) ilinear forms for
which S  is diagonal. This is the approximatioi. ' 291) for (290)

N  IM i-I M  f + I M
iN

+1 I
CC

Sh ( X h oV h) ° ;	
Xiui	

(293)
2

(Mi) iui + hh described on figure 26

Mi	
Mi +1 	Mi+2 _...

...... M(.1

rh

Figure 26

Whereas approximation (294

^
294) is related to (291)=
Mi ) describes figure 27

Nh
ISh(Ah"it)	 i 3 tees (supp (rii))^iui

///^ Support Iii

M`	 Mitt	
Mit2......

Figure 27

(294)



In (294) we recognize the scalar product L 2 approached (er•)h
defined on Vh by (295)

(fh 98h) h= ( y+1) 	 mes(T) i fh (Mi ) gh0i ) ifn^' RN , N•2 orl	 (29S)T E S	 i-i

with mes`) t area or volume of T
1 t nodes of triangle or tetrahedron T.

We shall check whither the matrix S is diagonal by using the
definition of Bh give .i in (2?5) ( 276) aid (294). In factp in this
case	 (" h A h 'W dh  f mes(supp MdAi'

Finallyp it seems interesting to select 	 Sh the inverse of
the matrix ( 292) in an approached space of H7 1/2(r) , 	 i.ee (296)

sh i (Xh ouh) _ ^ah •VUh dx
S2

(296)

Various numerical tests of possible conditioning of (290) (291)
(292) have been applied to the solution of the discrete Stokes pro-

blem via (287) (283) (289). Tho rapidity of convergence (number of
iterations) and the calcu;ation time are presented in chapter 12,

11. - ON THE METHODS OF INCOMPLE'. E ^ACTORIZATION

11,1. Summary

This chapter deals with the difficulties of informatics imple-
mentation of least squares algorithms on two and three dimensional
configurations of large dimension.

We show how to use the methods of incomplete factorization as
auxiliary operators of preconditioning or as auxiliary metrics in
order to overcome ex-:essive transfers of data on auxiliary memories
(disk and or bands) outside of the main computer center.

11.2. Auxiliary Operator of a Problem of Model 'volution

We shall now consider the Rarabolic linear problem of standard
evolution define, in (297) (298) (299)

1 - Q4 = f (x, t) in S2 x 3 0,T1	
(297)

^' j r = 0 on r X ] O,T C	
(298)



( X . 0) - 0O N) when t-0
	

(299)

where u oesignates a bound domain of Rn of boundary r with f and
^o sufficiently stable.

Any quantification in implicit time of (297) such that

rt 0k+1 _ ^^k+1 - ^t 
ok + f(x,kat)
	

(-100)

with 0 = O(x ,kA0 , Lt time step leading to the solution of a lin-
ear system (301) after quantification of space (of finite differ•
ences or finite elements type)

AO 	 - Fk
	

(301)

where	 iJ	 is usally a positive defined symmetrical ma-
trix (N X N) with half band width m (N representing the number of
nodes strictly included in the quantified domain Slh).

S:.nce (301) must be solved numerous times and that A is inde-
pendent from k, it is better to use a Choleski type direct method.
Since A is symmetrical, defined positive, there is an invers.Lble
and unique lower triangular matrix L, having the same band width
as m, so that

A v LL 
	

( 302)

with	 iii > 0 ; 1 S i <,,;

where lii 1 < i `N are elements of the diagonal of L.
if	 zre elements of L so that

iJ

Iij - 0 i f 1 si<j5N

We br:,nr7 b.tc]c the algorithm of factorization of A (303) (304)

for j61

{ 30'3 )

` £it	 ai1	 V 2si_N
'' 1 I

L9_0



For 2S j<N

c	

(304.1)

Rjj	 (ajj	 ,L I Z 2)1 /2

kal A

I	 j-1	 (304.2)

2 ^ i.l
ii •	 (a • -	 1t 

ik I jk ) V j+1 S i S N
k=1 

Once L is calculated, the determination of 0k+1 is immediate
h	 via a "descent -climb" (305)

LtyFk

Lt © k+1 
e	

(305)

In industrial applications N may be very large I O r 10000)9
making the storage of A and L in the main core of the computer even
imposa ble. Moreover, even though the non zero elements of A are
not numerous ( A is a sparse matrix); as t : 7 the matrix L, it is un-
fortunately always full.

Consegnently, auxiliary core stations (disks or bands) must
therefore be used, and this requires costly data transfers, which
becomes excessive in an industrial context ( problems of input-out-
put, process time, etc...).

In order to preserve the advantages of direct methods such as
the Choleski factorization, it is desirable to find a sparse lower
triangular matrix L close to L regarding their spectrum, and kept
COMPLETELY in the main memory.

With L it is possible to construct !for (306)

A LL t	 1306)

We substitute, then, for (301) the iterative process (307)

(3071)

7n (30,^) A plays the role of auxiliary operator of A. It may
be pointed out that the stratei 3• to be adopted is different in Sol-
ert,ingd(, pvndin4; on whether ("307) must be n(Aved once or	 %c>ra?.

L21.



In the first case, we shall look for incompleteg fast and ef- /92
ficient factorizations in storage usage E ( see MEIJERINK and VAN DER
VOR3T (30)) or similar iterative techniques (see VARGA (31)), AXEL-
SSON (32) 9 MANTEUFEL (33)), whereas in the second ca ep it is worth-
while to perform a significant computation upstream :f (307) ( proces
time g memory) to benefit from extremely fast solutions at each At.

According to AXELSSON (32)9 A may be used in another wayp by
having it play the role of a preconditioning matrix for a conjugate
gradient solution Of ( 301 ). If 3 is used to define the scalar pro-
duct (308) in RN instead of the usual scalar product (309)

<0,0> . . Ot a ^	
(308)

o 	 - o to	 (309)

Therefore t the conjugate gradient solution for solving (301)
corresponding to the minimization (310)

-L Ot A 0 - FO	 (310)2

is given in (311) (3 1 2) (313)

Rhaag_Q : Let (DO be selected arbitrarily
Calculate Go M, 

0 - 
F	

(311)

R 
0	

G 
0

Set
HO R 

0

theng for n >0, assuming Dn G 
n , ,n as known, calculate on+l, G 

n+1
lin+l by

Phase-1 : descent	
n 

= Arg min J(^)n_,, n) - H
H n t 

G 
n_' A 
H

C_
n+1	 n	 nH n	 (312)

Phase -2 : Construction of the New Direction of Descent

(L - I-



Gn+1 = G  _  n AHn

Rn+1 = A 1 Gn+1

n+1	 Gn+l t Rn+1
Y Gnt R 

0+1 Rn+ 1 + Yn+1 H 

(313)

do n=n+1 and go to (312)
LU -

Note : The closer A is to A. fewer the iterations are required
to obtain the convergence of (311) (312) (313). At the extreme, if
= A. the algorithm converges easily in on iteration. The number

of iterations required for convergence is a verification, a poster-
iori t of the efficiency of A.

11.3. Auxiliary Metric Related to a Functional Least Squares Method

A situation similar to 11.2 exists for another class of equa-
tions with nonlinear partial derivatives : this is for solving tran-
sonic and Navier-Stokes equations expanded below by the functional
least s uares method.

We combine with (314) (315)

IrM _ 1• P-OO1 2)4 - f (St)	 (314)

^Ir = 0	 (r)	 (315)

where p is a nonlinear t positivep bound t .given value of 'p0I2

The minimization (316) in H-1 of (314)

min	 J(^) _ ^^^() -f ^^
O	 x-1	 (316)E 110 (^)	 (12)

is equivalent to the optimal control problem (317)

-^
min {	 GE 

2 
dx j OB = ^(^) -f . 

E I I'
	 0}	

(317)

The qua 'fication of (317) leads to the problem of minimiza-
tion in RN vi	 constraints (318)



min{E
[
 BE BE T(@) - F)

@ e RN
(318)

where B designates the matrix corresponding to the discretR Dirich-
let operator and T the transonic operator obtained by quantifica
tion of (314).

Now, let us assume we know how to construct B close to B as in
11.2, then in place of (318) we propose to solve (319)

0 I N {EL B E^ B E = T(@) - F)
@ER

(319)

If B is defined
l ent.. However, if B
conditioned as (318)
tion of (319) shall
(318).

In this case, B
nonlinear operator T

positive (318) and (319) are strictly equiva-
is not selected well (319) may be not as well
and consequently, a conjugate gradient solu-
require considerably more iterations than of

defined in (320) is the auxiliary metric of the

*t

	

< 1 , 2> = v 1 B 42	
(320)

11.4. Construct_on of the Auxiliary Operator A (resp. metric B)

We shall expand, in this paragraph, a methodology giving access
to a class of sparse matrices A or B 

close to A or B.

Let A = (ai j ) 1 < i, j s N a positive defined symmetrical matrix
with half band width m so that (Figure 28)

—

	

aij = 0 if Ii-]I >m	
(321)

Since A is factorized by the Choleski method (30 11) (305)

A = LL L	 (322)

L is a lower triangular matrix, also of band width m. Further-
more, it may be observed that even if A has MANY zero elements IN-
SIDE the band (Figure 28), it is not the case of L, which has NONE
(Figure 29).

Definition : Let us define in (323) the set of indices K of
zero elements of A inside band m

K = 10J) I aij = 0} (323)
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and lot us designate by n(K) the number of elements K. Sinco a
positive constant C is now given, it is possible to define 2 aux-
iliary operators 1,C and L' as follows

C

i

LC is defined (324)
by

R• • a 0 if	 (i,j) E K &iJ

i j Zi j otherwise

L^ is defined	 (325)
_ by

^Z i • = 0 if ( ij ) E K &J

' • 2	 otherwise13 iJ

;he constructions of L	 and
observations : C

I $i jl s C	 (324)

l^ijl < C min 
(Z ii,
	 )	 (325)

i ^j	 JJ

L^ bring to light the following

1. If C< min JZ ij j then LC	 L

i ' J	 Ik 

iJ
•I

2. If C :5 mint	 } then L' = L
i	

miniki	 C

i.J JJ

3..	 IfCsmax l t ijl then { ( i ^J)1 L i j = 0}	 K
i,j	 (Ri•`

4.	 IfCsmax{min 
2	

} then {(i,j)1 !Z' = 0}	 K.
i;	 ii' JJ^	 iJi;

In cases 3 and 4.4LC and L' have their non zero elements lo-
cated in the same position as tL se belonging to A and are very
close to the incomplete Choleski operators proposed by MEIJERINK-
VA1 DER VORST (30) and D. KERSfUW (34). Nevertheless, they con-
struct L DURING the factorization of A (which means that L is NEVER
constructed 7-and economize store usa a with the possible disadvan-
tage of obtaining a singular L matrix (to be pointed out that
(304 .1) requires the root of a positive number !). In the construc-
tion solectedg L and L' are always non singular ; furthermore # if
A is the dominant diagonal, L and	 are equivalent.

C	 G

Finally, it may be observed treat if the construction of LC or L^
leads to an alloe-able dimension in the main core of the computer,

it is impossible to construct L for very large systems without aux-
iiicary disks. Nevertheless, these external transfers to the main
center are required ONLY O. NC.. during the phase of factorization.

For practical applic.'t.ions, having; a size of a main core whic1l
is not to be exceeded, it is worthwhile to ctlaose t.ho constant C so

i



a given percentage d/100 of non zero elements of LC or of	 are mom-/97
orized. Therefore  since d5100, we may define Ld/100 and L'^
as follows t	 d, 100

For a given constant C 9 let us define k  and K^ in (326) (327)

(326)
KC ={ (ij ) l Z#0}

Qij)lk! # 0}	 (327)
Li

if n(KC) and n ( K^) designate respectively the number of e)Rmpnts of

	

then the relationships between the sets !L	 L'KC (resp . K')

	

	 L,)	 d/100' d/100)
( LC t C

(328)
`	 Ld/100 = LC withC that n(KC) = n(K)d/100

L'	 L' wi the s o	 (329)d/100	 C	 that	 n(KC) = n(K)d/100.

By analogy to remarks 3.4

If 'd=100, L
100/100 & L100/100

	

	
are identi- L
cal to

If d=0, ; Lo & Lo correspond to the Meijerink-
Van der Vorst type Choleski
incomplete factorizations.

It should be pointed out that there is another EvV construct-
ion, which is interesting theoretically, even though in 3-D appli-
cations it leads to excessive d/100 percentages. This construction
is valid only for matrices using the finite elements method.

If t designates a standard triangulation of domain 0, his a set
of adjacent polyhedrals T p composed of (Mi ) N nodes.

The complementary KV of K may be expressed then (330)

V = Uij ) l'• 1 i ,:i^ E T for at	 T ofC}	 (330)
least one

From K  it is possible to define in (3'31) K 1,V serving in the

constriction of -
	

(332)



KK_^^ .{(i,7) ( 3 M .	 so	 M.	 E T 	 (331)-W	 ^ that	 i' ,ik 1
Mi ,M

i
 E T2

for at least one couple T I t T2 of t^}

	

I V- ( i i
iI

i ij - lid	
j) E Kam,}	 (332)

X
i.i - 0 otherwise

With such a construction, LVV is independent from the numbering
of	 Unfortunately, the case is thatI..^^ :gas few zero element:,
within its band ( 20% in 2-D, 50% in 3-D).

Remarks : The introduction of L' is also motivated by the finite
elements method. In fact, it is easy to verify that if r2 c -_%3 P then zij

0(h)	 where h is the average length of the sides of TE*6,where-
as if Q c R2 , then Zij = 00), It is also necessary to eliminate the
small elements by a test along their width relating to the diagonal
elements and not along their absolute width.

11.5 Applications of Incomplete Factorizations to Transonic Flows and
to the Navier-Stokes Equations.

The matrices Ld/1 GG' Ld/ 100' T ;1'	 have been introduced in the
lifting least squares mezi:ods on industrial applications of large
dimension in order to treat the algorithm ENTIRELY within the main
cora of the computer.

Two strategies are presented and compared with respect to infor.
matics (computation timer memory space).

El
L
d/100' Ld /100 11 -11 are used uniquely as preconditioning oper-

ators in the solution of discrete Dlrichlet problems within the algo-
rithin t thus keeping the metric F l . We have only to substitute for
the direct descent-climb LLt , a preconditioned conjugate gradient al-
gorithmL d/100 of which the convergence speed depends essentially on
the percentage d/100. Two iterative algorithms on the pressure of
the Stokes algorithm are presented on Flow Charts 4 and 5.

S` ''d/100' L di l OG	 are used as auxiliary metrics codifying
this time the convergence speed of the least squares algorithm. The
direct descent-climbs LL t are substituted by the direct descent-
climbs %L[. In this case a minimum percentage d/100 is required to

keep the convergence velocities at an acceptable rate.



ITERATIVE SOLUTION ON THE PRESSURE IN L 2 M

OF THE STOKES ALGORITHM P1/P2 (TAYLOR-HOOD ELEMENT)

WITH (*) SOLVED BY PRECONDT.TIONED CONJUGATE GRADIENT LLt

(STii)	 min {J(P)	 ZLp V • up dx l - aup - alp +	 , up z E (H 
0 61))

N
(*)

p E L (S2) 

In fSTH) p `+ Ap = ^ • u	 is coer-	 L2(Q)p cive in

3a X0	 (A9.9). L2 2: ajjgjj 2	 V 4eL2M)

FLOW CHART 4

Preconditioned Stokes Algorithm (T-H)

"6



FLOh- CHART 4 (cont)

ALGORITIDIE (STH) - initiali ation

p° a L2

(*)	
' Duo 

s - fPo • u°-i E ( Ho(S2) )N

g° = V • u°

h°= 8 X°=u

Descent	
li 
gnll 22

P
L=	 i

n	 (I•Xn'hn) 2
L

pn+1
	

pn - Ph h``

New  direction

gn+ 
1	 gn _ P ^-*n

n

gn+ (^ 2

Yn	
L

llgn ll 2
L

hn+1 = 
gn+ 1 + Y n 

h 
n

(*^	 AXn+1 	 $hn+I	 x+ I C (H1(^))N
0

n-n+I

O N Dirichlet problems decouplod by iterations solved

by preconditioned gradient ALLt
N = dimension of the space

()7



ITERATIVE SOLUTION OF THE PRESSURE TRACE IN

H-1/2( r) OF THE STOKES ALGORITHM Pl/P2

(GLOWINSKI-PIRONNI;AU ELMENT) WITH (*) (**)

SOLVED BY THE PRECONDITIONED CONJUGATE GRADIENT

ALGORITHM LLt	 d at ; A SSt
SSt

DPA _ ^• f , P- A a Ho (S2)
(E 

h )

AEH
_1/2a,	 2 	 A dI' -Q^= f-JPA, u ze (Hotn))`^

t ") / R

	 frAX

 
-^^A= ^ • UA , 0 E Ho(Q)

a^
In (Eh)	 AX _ - dnA is coercive in 1;'/2

^a>0	 <Aa,A> z a {{ A {i2	 ^ Ae.H-1./2(r)
H-1/2

where < • ,.> designates the duality	 1/2	 -1 /2product	 H	 (r) in 11	 (r)

N = dimension of the space

*	 N+2 Dirichlet problems in Qr solved by preconditioned
cox,jug:sto gradient -

descent-climb on	 witii A = £St

101
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ALGORITHM (E,) 	 1102

Initialisation

a° (74 h

s0
'AX

0 • °
a
Pnn' f r'

0 -1 0

0	 0 -+0	 1►0
h • r	 X = u

Descent

On. gn)
°	 (Aht,hn)

Xn+l • ^n - P hn
n

New direction

n+ 
l • sn - P Ahn
g 

n

(**)	 rn+l • A-1 sn+l	
3

Yn	 (8n+l,rn+l)(gn,rn)

hn+l	 rn+l + Y h 
n

(*)	 Apn+l ` o , Pn+l -hn+l E H l (S1)0

(*)	 AXn+I ` VPn +. n+l a (H0(M)'^

(*)	 A,n+l = Vex 11+1	 Cn+l E H 1 01)

Ah
n+l 

= a©n
+l,

a Pr	 r

n =t1 +l



Numerical experiences of these two strategies applied to 2-D,
3-D transonic flo s, on the one hand # and to the Stokes algorithm 	 10

(Eh ) 2-D, 3-D, expanded in chapter 10, from the Navier -Stokes equa-
tions, on the other hand, are presented in chapter 12.

12. - NUMERICAL EXPERIENCES

1291 * Data Processing Aspects

The numerical simulations presented below have been applied on
the IBM 370- 168 computer.

In the case of the approximations P k , ka2 9 they various integrals
involved in 'the derivation of nonlinear systems with finite dimension
discrete transonic equation (T) - discrete Navier-Stokes equations
(NS) are computed EXACTLY with FORMAC (A. LAPLACE (22)).

For exam 101 (T) requires the implementation of a polygonal with
degree 3 (333 p whereas the (NS) convection terns require the inte-
gration of polynomials with degree 5 (334)

r	 Lk(2Lk 1) k-1.2,3	 (333) (T)
jl p V^•^Nkdx N k -

4LiLj 	k •4,5,6 iOj i, j-1 ,2,3

.+-b.r 	( 	 (334) (NS,

1 	 i
u• )u • Nk dx

n

The expression of (333) (33 4 ) as a function of area coordinates
(Li ) together with their derivatives ( refer to O.C. ZIENKIEWICZ (24))
the standard relationships (335) (336) following dimension 2 or 3 of
the space.

LaLSLY dr - a 18 !Y! 2	 (335)
1 2 3	 (a+ +Y+2) !	 (T)	 Li - !Te '

Ch	 i-1

a+S +Y s 5, a, S ,Y Z 0

LaLS LY L6 d"-	 a ! 3 ! 
6 

!Y ! 6	 (336)
fTe V.	 i 2 3 4	

(a+v+Y+ +3) Vol (T) ; ) Li - !
h	 i-1

a+S+Y+6 s 5 , a, S ,Y , 6 z 0

The various trinnt7ulations th ust d .-re generated ( case 2-D) auto-
matically by the MODt;LKI" techniques (35), '.'he large number of solu-
tions of tiro discrete Dirichlot problems justifies the choice of a
CholEski )jand or Choicski-profile t.ypr direct roethol' (35).



is is obvious that the factorization phase of the Dirichlet ma-
trices shall always be performed ONCE AND FOR ALL prior to the iter- LLO.4
ative procots. The matrices are soW%od entirely in the main core in
the case of simple 2-D testa, whereas in most appl ;.cations in indus-
try 2•D/3-I ► g their memorization requires ONCE AND FOR ALLdata trans-
fors with the use of auxiliary disks. For more details, MODULEF (35)
may be consulted.

Finally, mention should be made of the preliminary phase of re-
numbering the triangulation nodee rhfor reducing th q band widths of
the Dirichlet matrices, by the CUTHILL-MCKEE algori hms (36).

1292. Calculations . ofd^onic Flows

12.2.0. Characteristics of a Transonic Calculation

12.20.1. Tha Outputls

For each case of calculation ( difference of potential) ¢..
incidence), we have acces, in the form of plottings, to the flow

analysis
-either in the flu d by the Macho distribution (337) on elementn

or the iso-Macho

M2	 . 2 ot2	 .^
(337)

(Y±1) 1-{v"4(	
C

Y

-or on the bodies by the suface distribution of pressures Kp
(intrados-extrados in the case of an airfoil profile)

^_	 (4^^ 2 Y/Y-11
Kp •	 -2 ----^-	 ---Y -----^ -1	 (338)

Re mar_ t

1) The pressure and the Mach depend on the g-. •adient of tho po-
tential. In the case of the approximation P1, the velocity (70 is
cinstant on each triangle. The Mach and the pressure o_ntile profile
are from two ADJACENT triangles, In the case of the approximation
I'2, the speed (",e ) is linear. We may therefore represent the Mach
and the pressure on the profile by % linear variation on the bar of
the DJACENT triangles, but a discontinuity at the inter-bars may be
observed .(Ficure 30).
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.discontinuity of the pressure
and of the Mach depending on
( T1tT2f T3)	 10

xcontinuity of the pressure and
of the Mach depending only on
T1 or T3

2) The location of the shock (numerical) depends on the approx
-imation.

In P1 a shock is located necessaritly at the inter-elements
(Figure 3 1 % whereas in P2 it may be taken into account inside an
element (Figure 32)

12.2.0 . 2. Finite Elements Pl/Finite Elements P2 Comparisons
-------------------------------------------------

For a same domain and a same case of computation : _ .45 for
example for a flow around a circle t we have tested the effect of the
triangulations of Figure 33 (Pl) and 34 (P2) on the convergence of th
the schemes.

Fi,^ure 33

10"

Y



M= - . 45

106

Fi ure 34 - Tri angulation P2

Bringing to mind the terminology "P1 iso P2" : it is an approx-
imation composed of the same degrees of freedon as the triangulat-
tion P2 t each triangle P2 gives 4 sub-triangles P1 by joining the
middles of the sides.

The convergence of the schemes of optimal control formulations
with regulation, penalty or artificial viscosity is verified during
N iterations of control in the form of plottings on which are shown

-the evolution of the
-the evolution of the
-the determination of
-the determination of
domain)
-the local. action of
opment of shock decor

cost function^	 .C ° t Cl 	.. C N )
gradient (G a t e t ...GN I 3 ;** a ( gN tCN 112
the circulation (Joukowski condition;
the physical shock ( supersonic-subsonic

the penalty terms to prevent the devel-
apression,

12.2.0.3. FINITE ELEMENTS-FINITE DIFFERENCES-Comparisons

The unconservative and conservative codes of A. JAMESON have
served as reference for numerica- tests on the NACA 0012 airfoil
and the KORN airfoil.

It has proven to be instructive to compare locally the shock
INTENSITY and LOCATION in lifting and non lifting cases between the
two conservative codes ( Finite Elements + Penalty) and (Finite Ele-
ments+ Artificial Viscosity) of the optimal control and of the two
JAMESON codes (Conservatife Finite Differences) and ( conservative
Finite Differences) at 150 degrees of freedom ( on the airfoil pro-
file) and iso case of computation. (	 and identical incidence).

Moreovers, the difficulty of treating the Joukowski condition
in finite elements rp+ .p measured in :1VEIUGL at trailing; edge in P1 t
exactly on airfoil profile in "2) was able to be disconnnected from
comparisons (Finite Elements PI. - Finite Differences ) by calculating
with iso C! (CL : aerodvnamic reaction of airfoil). Most of the re-
sults which follow have tslroady been presented dither in G1 111B (37) t



or in contract 1_ABORIA/IRIA/DRET (38).

12.20. The ';onverging-Diverging Pipe
	

10

The potentialf is given at the pipe inlet and outlet 9 whereas
the condition of tangency ?D = 0 is applied on the sides.

an
The domain of the flow is quantified in 384 TRIANGLES on figure

for an approximation P1 - rough card-index or P2 (resp 1536 in the
case P1 ISO P2).

The number of corresponding nodes was 221 (resp 825) for a lin-
ear approximation (quadratic resp. or P1 ISO P20.

Figures 36 and 37 give a comparison without condition of entropy
and with condition of entropy treated b REGULATION with V= ,1(respp
= 2 , u .) _ , 1) of local Machs on axis (3T and the side (4) of the
pipe. `

4o iterations (resp 60) were required to obtain the convergence
of the conjugate gradient algorithm thereby requiring 1.30 mn of pro-
cess (resp ^mn).

Figures 38 and 39 show a plotting of the iso-maehs resulting
from P2 mcLaurement in the regions (subsonic -supersonic) and (super-
sonic - subsonic) of the flow with shocks.

The agreement of the two approximations may be verified.

12.2.2. The circle
	

11

The NON LIFTING flow around a disk has a double numerical value:
the equal distribution of the points of quantification on the circle
due to a constant curve and of the compression and decompression
shocks with equal intensity located symmetricallly. We have select-
ed a case of transonic calculation P1. =.45.

For this problem the boundary conditions are the NEUMANN type

an	
6",•n at infinity. 

an = 0
	 on obstacle).

Numerical considerations require the substitution of a bound do-
main for the infinite domain with 1'_ sufficiently far from the ob-
stacle in the following sense : if p is the chord of the obstacle,
the distance of	 from the obstacle is equalt to about 4 or times

The domain is divided into 3456 TRIANGLES (resp 834) corres-
ponding to 1813 NODES for one linear approximation (resp. quadratic).

The condition of entropy was treated by PE,NALTl' and the conver-
gence of the algorithm is obtained in 50 iterations (resp. 60) cor-
respondint; to 4 mn of process (resp. 8 mn) e

i_.^	 1 n4
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Figure 40 shown a comparison P1 ISO P2/P2 of pressures (Kp)
calculated on the ADJANCENT triangles tQ the circle.

FYgHre ,.41 shows in an iso-mach form the case in P2 of the shock 1.1
on a single element ADJACENT to the circle.

It may be observed that there is a strong shock intensity for
the computation case ,Iobtained by the two codes.

12.2.3. The NACA 0012 Airfoil_ Section (Profile)

A rough triangulation brought about by a WINSLOW algorithm (39)
(reap. fine) (60 points on the airfoil) with enlargement near the
obstacles is given on figure 43. It is composed of 1_ triangles 	 117
(reap. 4380) and 600 nodes (reap. 2280)6

12e2.3.1. The symmetrical non lifting cu ye (without JOUKOVSKI condi-
tion

Two test cases have been calculated s

(I) - 01,v	 t .8 ; INC a O°)	 "non sent" case

(2)	 - .85; INC = 0°)	 "stiff", case

Figures 44 through 48 relate to (1)

On figures 44, 46, 47 we have plotted the distribution of pres-
sures on the airfoil profile.

The results of figure 44 (resp.45) correspond to a treatment of
the condition of entropy with PENALTY (reap ARTIFICIAL Viscosity +
REGULATION) (^, - ,OOt5 ; K - .4)(respv -.05 ; - .00000 )

In the two cases, the convergence of the conjugate gradient al-
gorithm was obtained in 40 iterations corresponding to 3e5 mn of pro-
cess. One may notice the clearness of the shock obtained with Pen-
alty.

Figure 46 compares the solution obtained"by PEN, ALTY in P1 on
the fine triangulation with the ones derived from the conservative
and non conservative codes of JAMESON in finite differences .

A comparison in the sense of approximation P1 ISO P2/P2 is made
on figure 47 with the PENALTY (PI ISO P2 	 _ .5 ; K - .0
P2	 ^,^^ _ .1 ; K - •4 ; 1^ 2 = .01).

One may take note of the shock case in P2 on a single element
ADJACENT to the airfoil profile together with the recompression after
the shock, which marks the conservative form of the equati3ns. The
iso Machs near the airfoil profile derived from computations P1 and
P2 with the entropy-penalty condition have been plotted on figure 48
and give an idea of the location of the shock and of its intensity

in the fluid.

1 I (^
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The effect of the artificial viscosity is represented on
figures 58 - 59 with the local Macho near the trailing edge (58)
and in the shock region (S9).

A Fintes Elements comparison is given (on a rough and fine
triangulation) on fixure 60.

It may be observed that the quality of the compression shock is
restored by the PENALTY at the supersonic--subsonic passage.

Finally * a result (P2 - PENALTY) with predictor P1 . ISO P2 of
artificial viscosity type gives a good result on figure 17i . The
supersonic zone of the two calculations P1 and P2 in the fluids
in the vicinity of the profile defining the position and the intensity
of the shock is represented on figure 62 , 1 it may be observed that the
shock is taken into account in P2 on a single element adjacent to the
profile.

The interpolation problem P1/P2 makes it possible to give to
code P2 a good predictor P1 and is presented in (40).

U



124Figures 49 through 52 relate to (').

The PENALTY has been used on figure 49 with u' 1• The conver-
gence is obtained after 60 iterations corresponding to a process
time of 4 mn.

The local effect of these terms of PENALTY during the itera-
tions =.s shown at the bottom of the decompression shock on figure 50.

It may be pointed out that at the end of the computations the
constraints remain active and this brings to light the unstable na-
ture of the solution.

A comparison in the sense of the approximation PI ISO P2/P2
U = 1./ Ula land 'j2 = .01) plotted on figure 51 . The location and
intensity of the shock on the airfoil are shown by the iso-Machs of
computations P1 and P2 on figure 52.

12.2.3.2. - The Lifting Case (With JOUKOVSKI Condition)

Two test cases have been calculated t

(3) Qq.. = .6	 IBC = 6,1)
Small supersonic zone # but strong inten-
sity decompression shock very near the com-
pression shock.

Large Supersonic Zone.

Figures 53 through 56 relate to (3).

Figure 53 compares the pressions on the airfoil. with the JAME-
SON finite differences non conservative and conservative method with
the pressures obtained in P1 with ARTIFICIAL Viscosity + REGULATION
( v - .005, ti = •00001) 	 on a rough	 triangulation. The local Machs
in the shock region at the extrados of the airfoil are shown on fig-
ure 54. A comparison of the supersonic zones in the form of iso
machs P1/P2 shows a good agreement between the two approximations on
figure S5•

A P1 Finite Elements comparison (PENALTY-VISCOSITY (ARTIFICIAL)
on figure 56 brings to light the good behavior of the code with PEN-
ALTY which at the same time in a very narrow zone, restores the phy-
sical shock and resists the high intensity decompression shock.

Figures 57 through 61 relate to (4).

Fire 57 compares the JAMESON finite differences conservative
and non conservative solution with the ;solution obtained in P1 with

ARTIFICIAL VISCOSITY + REGULATION (v - .005, ; - 5.10 6 ) on a fine tri-
anCulation. 20 iterations on the JOUKOWSKI condition have been per-
formedp representing 80 optimal control Iterations for a process time
of 15 mn.
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12.2.4. The KORN Airfoil Section ( Profile)
	

140

The Korn airfoil. section i s a non symmetrical. section designed
to produce a transonic flow without shock if K,,- ,75 and INC = 00.
Since the flow is not symmetrical f the J017i0VS	 condition is applied
at the trailing edge.

The domain f calculation surrounding the section has been divi-
ded into 2880 tr-angles ( resp 1362) fog a piece-wise linear approxi-
mation ( resp. quadratic) with 1,560 NODES of which 120 on the section.

The triangulation with detail near the section is provided on
figure 63.

f

Figure 64 shows an effect of the triangulation (rough and fine
on the location and intensity of the shock for the test case M,= .75
INC = 00 with artificial viscosity + Regulation v
p - .00005).

It may be observed that the shock intensity decreases with hp
quantification step.

Comparisons ( Finite differeneesp JAMESON conservative scheme) -
(P1 finite elements ( rough triangulation))- ( P2 finite elements) -
are presented on figure 65. The condition of entropy was treated by
PENALTY. 60 iterations for a process time of 30 mn are required to
obtain the convergence in case P2.

Another case of computation with iso CZ 01- _ 75 ; INc = o*. 1)

disconnecting in order to treat the JOUKOVSKI condition demonstrates
the agreement of finite elements + artificial viscosity with conser-
vative JAMESON finite differences on figure 66.

A second test case has been performed ,1^ = .75 and INC = .5	 141

A comparison Finite differences - Finite elements with PENALTY
( u = .1)at 150 degrees of freedom is presented on figure 67. Att-
ention shall be brought to the compression shock clearness of the
solution with penalty.

Finally, the conservative case ^4,_ .75 and INC = .5, calcula-
ted either by the JAMESON Finite differences t or by the P1 Finite
elements with artificial viscosity ( v = Q0g, U = .00005 ) duct of very
similar sol.utions on fil*ure 68.
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12.295. no^,ultibody (NOZZLEAIRFOIL _ TI,_)	
t48

The lifting transonic flow around an industrial configuration of
mui iibo_e_ has been calculated and compared for approximations Pit

PI iso P2 and P29

The triangulation around the MUL 2 for a ,linear approximation
(reap. quadratic) consists of 2936 elements ( reap. 734) corresponding
to 1553 Nodes. The matrix factorized by Cholevski is composed of
200 610 coefficients ( reap. 256 276) whereas the number of non zero
coefficients of the D.IRICHLET matrix in 10533 ( reap 17725). Details
of the rough triangulation of the nozzle and of the slot is given on
figure 69. Tthe Joukovski condition is applied to the trailing edges
of the nozzle and of the airfoil section.

The condition of entropv is treated by REGULATION.

The test case Mm s 9 S1 TNC:10 0 calculated on MUL 2 ! FINITE	 LL4
s	 ELEMENTS P1 + RFM ATION	 2) (rasp. P2 ji .5 & u2•

required 80 c,j-, rrol iterations corresponding to a process time of 15
mn (reap. 23 mn).

Fires 70, 71 9 72 show the surface Mach distribution on the
nozzle (1) and the airfoil section (2) for rough triangulations P1,
fine P1 iso P2, and P2 9 One may see the presence of a shock at the
extrados of the airfoil section (2).

Details near the mulibodies of the local Macho in the fluid in
the form of the Mach number (P1) or iso-Mach (P2) shows the r ..ad oper
operation of the nozzle, the passage at Mal at the neck on fi, I^uures 73
74, 75 (downstream from the slot) and the satisfactory Joukowski con-
dition on the nozzle (1) at the subsonic limit t (MBF = .95).

The determination of the circulations during the iterations de-
pending on the approximation selected is shown on figure 76 9 whereas
the evolution of the cost function and of the gradient of the criter-
ion depending on the approximation selected are compared on figures
77 and 76,

It may be pointed out on figure 78 the "periodic" discontinuity
of the gradient corresponding to the calculation of a now circulation
(Joukowski condition) and requires a restoration of the conjugate
gradient algorithm in the sense of POWELL (41).

12.2.6. The BI-N`ACA Multibody AIRFOIL SECTION + AIRFOIL SECTION

The interest of a transonic calculation around a (BT-NAC) con-
figuration lies in the mixed nature of the sirri0 tanecusly internal-
external i'low. In fact, the internal domain ( I ,) made up by the ex-
trados of the lower airfoil section (ti) and intrados of the upper
airfoil section (1) is tliu converaine-diverging pipe type, whereas
the one (Q 2 ) formed by the intrados of (2') and l), the ertrado, ( 1)
( Figure 79. 1) represents an external i'low around a body.
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The possiblity of several shocks appearing simultaneously and having 1160
different intensities is therefore  a fundamental numerical test for
industrial applications 2-D 3-D composed of several shocks.

The triangulation around the BINAC is made by the MODULEF tech-
nique and consists of 3298 elements corresponding to 1739 nodes. The
number of non zero coefficients of the Dirichlet matrix is 11.8001
the one factorized by Choleski has 147.117 coefficient^. Details of
the triangulation near the 2 airfoil sections showing the internal
domain is given on figure 79.2. The Joukowski condition is applied
to the trailing edges BF1 and BF2 of the 2 airfoil sections 1-2.

Two cases of computation taking up 2500K of d( ble precision
memory 1) 

(Mw .6, INC - 0°) (non -lifting)

2) (M, - .6, -INC - 6°) (lifting)

in finite elements P1 with PENALTY are presented and have required 80
iterations corresponding to a process time of 20 mn.

Figures 80-81 show the surface distribution of the pressures on
airfoil section 1 and airfoil section 2 9 It may be observed that
there is a perfect symmetry of results o) the pressure intradoa.of (1
(1) is mixed with the pressure extrados of (2) and vice versa. Case
1 has only one shock inside the domain n,, pipe typep whereas in
case 2) a second shock is placed extrados of (2), in the external

domain Q,.

Details near the two airfoil sections of the local Machs on
figures 82-83 in the fluids in the iso-Mach form show a good opera-
tion of the internal domain S2 and the satisfaction of the Joukow-
ski condition. The penalty prevents simultaneously the formation of
two decompression shocks.

12.2,7. The Converging-Diverging 3-D Pine	
/167

This is an ajustment test case of code 3-D. The appearance of
compression shocks is verified in the diverging part of the pipe,
as the formation of decompression shock was prohibited by the penalty
of the condition of entropy.

As in caie 2-D. a difference of potential is applied at the in-
1,at and outlet of the pipe which is sufficiently high to obtain a
case of transonic operation. On the sidesg the tangency conditionag
- 0) of homogenous Neumann standard type are implicity applied.

The domain of the flow is quantified into 1920 tetrahedrons on fig-
ure 84.and is composed of 24 sections. 40 iterations lead to con-
vergence of the algorithm in 3 mn of process time.

On figures 85 through 90 may be seen the evolution of the Mach
numbers, constant on each tetrahedron, on several fronts ad.jcent to
the sections located in the converging zones (without shock) and di-
verging zones (with shock) of the pipe. One may note the satisfact-
tion of the entropy condition in a region near the pipe axis.

1
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12.2.$. The 3-D  Air Inlet
This is an industrial application. Figure 84 shows a detailing

o" the TL'TRAHEDRONIZATION (see J.G. NAVES (52)) near the air inlet
in a vertical planep whereas on figure 91 there is shown the geometry
of the air inlet together with one part of the tetrahedronitation
(fronts of the tetrahedrons attached to the air inlet) used for a
piecerwise linear approximation of the potential.

The external and internal domains of the air inlet are made up
of 25664 tetrahedrons correspondinp to 5732 Nodes. To give an idea
of the complexity of the problem 9 one may observe that the Cholevski
matrix L(A-LL t) ( of the discrete Dirichlet operator) is made up of
about 2 million coefficients and that its factorization requires 15
mn of procesatime.

REGULATION'has I-son used to treat the condition of entropy.

The computation test case (K m - - S ; Mmoc or - • SS ; INc - 60
DERAP a 0 0 ) has required 40 iterations corresponding to 60 mn of
process time.

Figure 92 gives the Machs internal and external surface distri-
bution on the tetrahedrons •DJACENT (in the direction of one front)
At the air inlet an,1 shows the narrow supersonic band  on the upper
external part of the eir inlet.

The long computer usage timer due to inputs-outputs of the
factorized matrix L, is the reason for the incomplete numerical fac-
torization tests L presented_ in paragraph 12.4.

12.3.0. Charanteristics of an Incompressible Viscous C,= lculation	 /178

The-IUPUIS

In the velocity-pressure formulations a Navier -Stokes calcula-
tion required of boundary conditions on u and sometimes on p. Three
situ tions are encountered in the applications.

1. Dirichlet conditions on the entire boundary r.,, u,
r 

• i
2. Neumann conditions on • one part r s of	 r , an^ r 0	+ Dirichllt condition on the pressure	 sPIr	 q
3. Mixed conditions on the components 	 s

of velocity :	 au.
u l ^	 zi	

an 
I 
r 	

0 j

f
but such that 	 u•n d" 0 , constraint required by the condition of

7•u -0 in2.  r	 compressibility.

As the equations are without dimensions 1 11 ,_! ` ] , an external cal-
culation around an obstacle (airfoil section - air inlet) requires
the assumption of an incidence and of the Reynolds number r,̀,_ I
with . fluid viscosity,	 v
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(339) LM

1

3
13

The Reynolds is reduced to a characteristic lenCht L 9 which in
the example	 shall always be the unit (cavity 1 x 1, diameter circle
d=1 ; chord profile R.I,, air inlet deviation h=1).

As the velocity and pressure approximations may vary (figure 93)
pressure P1 - velocityPI"

2
J

I J

pressure P1 - velocity P1 SIO P2
3 pressure P1 - velocity P2

one computation requires the simultaneous presence of two card indr
ices in the computer corresponding to two triangulations n,^^)
for example. The discrete Dirichlet operator A is therefore
constructed twice, depending on whether it is applied to the pressure
t n) or to the velocity (C h / 2) . F lurthermore, it may be observed, in
the unsteady case, that it nepends on the time steps and on the
Reynolds number Re, since in this case the metric of the generalized
Stokes algorithm is expressed

The two triangulations h end h/2 are therefore numbered twice
by the Cuthill -MacKee algorithm in ord-or -to obtain band widths ml
and m2 at minimum

Tba-QUIDUIS

The ( velocity-pressure) formulation permits direci; acces to the
fields of ve loc ities (1) and Pressures (2) and to the vorti cit̂ v In-
tensity ( 37 7AU constant on each element if is Pl, piece-wise lin-
ear when u is P2. The streamlines (4) are obtained by solving a Dir-
ichlet prohlem (340) at a i^; ven field of velocity

64 _ V A u	 (n)

O r -g	 (r)
	

(34o)

The visualizations of magnitudr.• s ( 1) ( 2 )  ( 3) (4)  is the form of' plot-
tings at various time cycles _, t make it possible to follow the evo-
lution oi' the flow in timo (ori

0
;ine of eddies, appearance of speara-

ted zone, alternating emission of eddies in the fluid, corresponding
pressure fluctuation on the bodies).

The plotting of the iso-streamlines, the iso-pressures and the
iso-vort:icities is ensured by the ':''t_1Ci) mvciiilus; (refer to -L.IZIZOCCG -
l: TERLID k42)).

;70



As the values x)M T\ and ' &AX are determined after solving ( 340)
N desired values of D; i=I,N, 	 with possible cubical concentra-
tions on parLicuiar (';^0* = 0 )	 values ... (change of sign mark-
ing the eddies in the i'luid) are marked geometrically (x ,y) on the
bars of triangulations C with a linear connection from one
bar to mother on each 1i	 h/2• element.

The convergence of the schemes of approximation is verified
during N control iterations by plotting

-the evolution of criterion (Co ,Cl^...,CN)
-the evolution of gradient (G°,G1,^..^GN) 	 GN	 (gN9gN)112
-the values of constraint .0 = 0.

The controlw is initializd following the applications either
by the solution of the Stokes algorithm, or by the idealized fluid	 180
solution. In external flows, the Stokes solution proves to be a
poor predictor.

In the unsteady case, the sequence of optimal control problems
is initialized at the solution of the- preceding--t-ime- cycle, ---each
problem requiring a few control iter:3cions if' the time steps are not
too large.

Finally, industrial applications require numerically high lam-
inar Reynolds (Re= 1000), a climb in Reynolds by a parabolic law of

	

'
+ 1Ik-10 	 k=1,10) type shown on figure 9^4 makes it possible to

	

u^^ = 100	 simulate in a wind tunnel the transitory
phase of determining the solution by Rey-

nolds calculations.
v.i

For each value v iof the viscosity, the matrix AK is not re-
constructed Oc1lich would be a penalty in computer time), but is sub-
stituted by an equivalent modification of the velocity boundary con-
ditions expressed in figure 94.

Most of the following results are shown in R. GLOWINSKI-B. MAN-
TEL - J. PERIAUX-O. PIRONNEAU (43), in IRIA/LABORIA-DRET (19), AMD/
BA-DRET (44).

12.3.1. The 2-D Test Cavity

The Stokes `_'low in a cavity (1 x 1) was tested to verify the
error estimates of schemes 0(W`) of BERCOVIER-PIRONNEAU (451 for
three approximations (P1/P1) (P1/P1 ISO P2) (P1/P2) of the (pressure-
veloci.y formulation.

^p
The characteristics of the 3 triangulations studied h ' h' h

ccrro*pon.ding respectively to the values hG = .1259 h m = all F1 2 • 5
are defined in (341)



G
h ^ {145 nodes, 256 Elements}

(341)

It a { 221 nodes. 400 elements}

t^ = {841 nodes, 1600 elements}

The calculation of'i defining the convergence of the scheme
is obtained to satisfy the constraint G•u = 0 evaluated numerically
in (342) and (343)•

DIVGLO a	 I	 ` I^.4l 2dx	(342) 181
T E Ch J n

DIV :IAX W

T EuT 
	

"IT)	
(343)

h

For each approximationp a is defined for the possible couples
(G S M) ! ( r.,P), (M.P) by the formulas (344) (345) (346)

Log

DIVGLO (G)

a(G,M) =	 DIVGLO (M)	
(344)

Log 1.25

Log DIVGLO (G)

a(G,P) =	 DIVGLO (P)	 (345)
Log 2.5

Log 
DIVGLO (M)

a(M ' P) -	 DIVGLC (P)	
(346)

Log 2.

For data C 1 on the edge of the cavity (u = 1G x 2 (1-x) 2 , v=0),
we have plotted on figures 95 and 96 a Log-Log scale, the slops of
a of the straight line Log Divglo = a Log h. characterizing the
scheme 0(ho) depending on the approximation chosen for the GLOWINSKI-
PIRONNEAU Stokes algorithm and the optimal control Na- r-Stokes
method at Re = 100, after 30 control Iterations. Schc 	 O(h) is
verified approximately for the case P1/P1 ISO P2 and 0(11') for the
case Pl/P'. Tor more details, (46) may be consL"_ted.
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Divglo	 .279

Cavity G
^.^ h -	 .125

Divglo	 .268

Divglo-.224 Cavity M
h	 _	 .1

PI/PI	 iso P2 Divglo - .216

a(G,M)=.984
a(G,P)=1.006
a(M,P)=1.013 P1/P1

—•^ a(G,M)=.967
a(G,P)=.982
a(,.1,P)=.987

r.7
Divg//

ity

glo=.109

 P

-.05

1.1

_1.Z

M

Figure

Cavity
h - .2
vglo=.0`

t

.098

Log Divglo	 STOKES
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Re = 100	 Iterations : 30

—.3 1 — 1 .3	 _1.2	 _fA	 J-0	 —•9	 _.8	 —.7	 _.6 Log

Div Max 2.2	 Cavity G
PI/ISO i^	

h = .125
-,(	 a(G,^t) =.^33 	 Div Max = 2.42

a ( G ,a) = .953 	 Div Max
a (a.Pl=.9h.	 2.30	 Div Max	 2.42

Cavity G
Cavity M 

	

..	 _. S
h	 .25

h a .l

+---- PI /P1	 Div Max =

	

a (G,:i) a .830	
2.11

_.6	
a (G,P) - .875

Div flax =	 a 0l,P) - .889	 Cavity M

1.75

- •7	 -	 Div Max	 1 .69
Cavity P
h = .05

-.8

_.9

0
Div Max = 1.19

Cavity p
h = .1

_ 1.1

Ficure 96

h = .2
Div Max - 2,28

PI /P2 --+

a (G,M) = 1.326
a (G,P) - 1.411
C (M,P) = 1/439

A . 4
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12.3.2. The 2-D Conduit With Sudden Enlarament

The characteristics of triangulations -Ch '6" Ch /2 	 brought
	

186
about by b1UDULF-F (35), are given on figure 91.

It may be observed
the recirculation zone.
boundary conditions (u
proposed by A.G. HUTTON
tained by making the un
ations corresponding to
process time.

that there is a concentration of elements in
The calculation domain (6x >> 6y),	 the

=zl(y) ; v=0) and the Reynolds number are(
4 . Two cases Re = 100 9 Re = 191 are ob-

steady code steady P1/P1 ISO P2 in 180 iter-
one time step At	 and requiring 311. of

Superposing the streamlines with
ure 98) shows a good agreement along

x enlarge-

- x point 	 on
	 6£ = 6xh

those of ;;heHUTTON code (fig-
the length of the blister (if

and h designates the height
of the enlargement

a:Le - ICO, R-8 x h	 Re=191).

The appearance and the developement of the separated zone throug
through various time cycles At at Reynolds 100 are shown on figure

On figures 99 through 102, the field of pressures and stream-
lines of the flow at the two Reynolds numbers under consideration
may be compared.

12.3.3. The Alternating Eddies Behind the Circle

The The triangulation	 (Le,pXh/2) is composed of 144 elements and
84 nodes (resp. 576 triangles and 312 nodes), the solution (`h,ph)
looked for is composed f 708 degrees of freedom.

At Reynolds 50, the Navier-Stokes solution is steady, as the
streamlines show on figure 103, after 40 time cycles. Nevertheless,
with this Reynolds, the Stokes solution is already a poor predictor
on figure 104 at time cycle 1.

At Reynolds numbers above 80, the steady solutions of Navier-
Stokes equations being unstable, we consider the unsteady case, as
the flow is initialized at t=0 by the incompressible idealized flow.
Siuce the approximation keeps the symmetry and the triangulations
17h , IT h/2 are also symetr- .al, the solution (uh l C ,ph0m	 )as shown on fig-
ure 105 (a) corresponding to K=10 (t= 10 At) 	 1s symmetrical and must
therefore be perturbed at a point of fluid not found on the axis. Ac-
cordingly, we may observe behind the circle the formation of a Karman
path. The results presented on figure 105 (a)-(f) correspond to

Reynolds Re = 200 and are obtained by ,n implicit Crank-Nicholson
type scheme with a time step At = .I. 	 The process computation time
is about 1 hour. We have verified the food agreement of the results
obtained by F0RTI\-T1J^L1SSFT (48) by using a different unconform mix-
ed finite elements method.

a
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Fig%!rea 106-107-108-•109-110 show a flow Re • 200 9 with Nemann 1^
condition behind the circiep which is inadoauately perturbed to pro-
voke alternating eddies in 50 time cycles.

1293.4. S_ aarated Flow At Extrados of Airfoil Section In Incidence	 202

We are taking into consideration an unsteady flow around an
airfoil with Reynolds 200 9 placed at 300 incidence.

The calculation domain is substituted by a triangulated bound
domain by MODULEF( 4C :412 triangles, 221 nodes ; h/2 	 t 1648 tri-angles p 854 nodes) . h The solution looked for( gy p) is composed of
1929 degrees of freedom. The quantification iti time is accomplished
by a completely implicit Gear scheme with two steps, with one time
step at - .I.	 The predictor -+o is the solution of the incompress-
ble idealized fluid.	 U 

80 time cycles (corresponding to a period of 8 seconds) have
required 90 mn of process time and a core space of 1500 k octets.
The number of control iterations per cycle of time is 4.

The velocity distribution and streamlines on figures 111 (a)-(f)
and 112 (a)-(f) show the formation of eddi6 )xtrados of the airfoil
which alternately expand and escape in the iluid to be finally absor-
bed by the downstream boundary conditions.

12.3.5.1. The Air Inlet In Incidence	 20

The mixed flow around inside as idealized air inlet with high
incidence is a typical example of a separated viscous flow. Iii a
first phase, the air inlet is placed at an incidence of 300 as is
shown on figure 113.,

r.,

QA

Figure III

11^4
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FLOW AROUND A. CYLINDER
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a) Time cycle	 t0

200.
b) Time Cycle	 20

REYNOLDS 200.

c) Time cycle 30
FEYh.'LOS 200.

d) Time cycle 40
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e) Time cycle 50
REYNC,05 200,

f) Time cycle 60
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There are two types of boundary conditions verified by the LL02
velocity s

-Dirichlet on	 rEA t u {0)
-mixed Dirichlet -Neumann on 	 u*i

' a ^ 3v
T^ 0

Thus we define the velocity satisfying the constraint
y	 where n designates the external per-

0	 pendicular to r.

The domain;; is triangulated by the MODULEF techniques ( 35).	 Th
The triangulationsr^ and a 	 the characteristics of which are given

en	 ai
on figures 114-115 9 are relatively roughp but on the other hand,
they cannot sustain a large Reynolds number (Rest00, Re reduced to

h 9 distance of the 2 airfoil sections 1 - 2).

12.3.5 . 2. Solution of the Stokes Algorithm
	

/` 208

In a first phaseq we have cimpared from the point of view of
informatics ( calculation time) and of theory ( accuracy of the scheme)
the solution of the Stokes algorithm either by mixed formulation (s,)
FLOWINSKI- T'IRONNEAU # or by the TAYLOR-HOOD formulation (n,p) . The
first approach relates the the numerical solution of (E

h ) expanded
in 10 . 6.5.3. by a conjugate gradient iterative method o hn the pressure
try ice A on r 9 whereas in the second one, the conjugate gradient al-
gorithm is used on kres3u_ p in it , described in R. GLOWITSKI-0. PI-
RONNEAU (49)0

The two algorithms converge for a same approximation Pl/P2
toward a pressure distribution in n which is vary similar t on
figures 1166•- 121 after satisfaction fot the stop test one s
gn : (S n g n

) 
1/2 < e,	 in 30 iterations. ( E	 ;ID.-6 )

The conditioning S  occurring in the solution (342) (343) is
taken in L2 , optimal choice in the TAYLOR -HOOD approa .chg since

Sha	 'I^X - p Ah z	 with at,a^ s do (342)

ShI'n;1	
Shp - p Ahzn with Ahq ` V-Uhq

(343)

but not in the GLOWINSKT- I I I RONNEAU oner since ' C 1/2, ') • Ke can

therefore expect to improve Che convergence speed of (342).
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ITER OF N STOKES - 5

P1/P2 STOKES ALGORITHM - GLOWINSKI-PIRONNEAU
ELEMENT
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12.3.5.3. Comparisons of Codes Pl/P1 ISO P2 and_P1!i2 	
21

Comparisons of the two codes are based on the following; case s

-unsteady Navier-Stokes flows with Dirichlet or Neumann condi-
tion downstream.

Two cases have been calculated if i = 30 0 9 Re = 100. The time
step selected is At u .?., t the number of time cycles selected is 1009
the number of control iterations at each At is 6. The process compu-
tation time is about 100 1 in the P1/P2 cases 551 in the Pl/P1 ISO P2
case.

It may be stated that on the whole the numerical simulation of
the flow obtained by one or the other code is very similar.

Figures (122) (123) ( 124) show through the means of streamlines
at Re = 100 9 the appearances the development and the discharge of
large structures on the upper external part of the air inlet and in
the internal party the formation of a quasi-steady eddy, which re-
mains attached to the lower side.

Since the domain of calculation is voluntarily selected to be
smallq the boundary conditions downstream interfere considerably
with the entire flow as soon as the ejected eddies reach the down-
stream boundaryg which is shown by the gobal flow at time cycle 100
(velocities, streamlines and pressure of figures 125-127 ( reap. 128-
130) for Dirichlet type conditions (:reap. of Neumann type).

Interpretation of the results confirms the choice of Neumann
type downstream boundary conditions for larger Reynolds.

It is interesting to observe the .numerical operation of the two
codes by following the evolution of va^.ues of criteria and gradients
through time cycles and within one of them. It may be observed , that
when the Reynolds number increases, it takes longer for the coner-
gence of the optimal control problem to be obtained (3 to 4 itera-
tions for Re = 50 9 whereas 6 to 8 iterations on-the average for Re a
100).

Figures 131 through 133 show the evolution of the criterion and 218
of the gradient within a time cycle without much alteration in the
flow. The following 134 through 136 figures relate to a time cycle
(75) close the the emission of a new eddy.

It may be observed that code Pl/P2 absorbs "better" the altera-
tion in configurations whereas code Pl/Pl ISO PP shows more resis-
ta;ice (jump of criteria and of gradients) and requires more itera-
tions to control the new fluid state.
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Finally # it may be observed on figure 137 that # in code	 ::E3
PiP1 ISO P2 9 the Neumann type condition downstream facilitates
the measurement of the alteration in configuration (smaller jumps
of criteria and of gradients).

The comparison of the process computation times between the
two codes, brings to light a ratio of 2 in favor of P1/PI ISO P2t
this figure is directl y related to the amount of calculation for
the creation of various second members according to the approxima-
tion P , kal or 2 through time cycles and especially to the amount
of quaktified Laplacian Choleski coefficients (as the band width m2
of P2 is about 2 times higher than for band width m2 of Pl/Pl ISO P2.
In the case under consideration m2 a 129 9 ml a 68, the corresponding
core space is 987 K for the case P2 and 540 for the case Pl.

We shall see that, given the Reynolds range considered in in-
dustrial applications, the compromise P1/Pl ISO P2 is a sensible
choice.

12.3.5.4. The Industrial Configuration i:40e . Re  25;

The operation of the air inlet, proposed by ONERA (refer to H.
WERLE (503) around /in which is simulated the separated flow,, has
been studied experimentally in the form of visualizations with Rey-
nolda104	 The case computed (Re a 250)4 i=40°) is composed of
6893 degrees of freedom. TriangulationsC',^ , created automatically
by MODULEF ( 35) are shown on figures 138-1'j9:' ' 2 Tho density of the
nodes near the air inlet is shown on enlargmeats 140- 141. The large
amounts of factorized discrete Dirichlet matrices requires the use of
auxiliary disks with a Choleaki " skyline" FLIP-FLOP wethod escribed
in MODULEF (35)•

Due to the high incidence, a parabolical flow e . .6 inside the
air inlet ( percentage of Jiij)•applied in order to prevent a poss-
ible blocking and to suck cne eddies formed at the air auction irilet.

100 time cycles calculated with a time step At a .05 have required
several hours of process time.

Figures 142 (a)-(f) (velocities), 143 (a)- ( f) (iso-pressures)
show the formation, the development and the ejection of several ed-
dies inside and outside the air inlet. It may be seen on figure 144
(f), which represents the streamlines, the existance of 5 eddies with
rc.-= ,r►ating signs, cf which 2 are inside the air inlet spreading a-
long the entire height and sliding slowly toward the aspirator ! It
may also be observed that the streamlines in front of the air inlet
are drawing closer together, which will effect the quality of the
approximation, (density of nodes) the more the Reynolds is higher.

One may have a botLer idea of the complexity of the flow by
looking on figure 146 at the superposing of the time cylce 100 of
142-f, 143-f, 144-f.
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12.3.6. The 3-D Sphere
--•	 24

The incompressible viscous fluid flow around a sphere with dia-
meter 1 proves to be an interesting informatics test to check the
satisfactory operation of a 3-D Navier -Stokes code from the symmetry
properties of the flow, the obstacle and the tetrahedron formation.

The conditions applied to the boundaries are the Dirichlet type

Z

U^
—y	 X r

Y • rs
m

_	 .,	 0ui	
0 ; "jr	 00	 5	 0

Informatics problems due to the 3-D and to the analysis of re-
sults on this example are immediatly sufficient. The domain of com-
putation c is formed into a tetrahedron containing ,624 elements and
154 nodes in P1 ( 1ah), , decomposing in Pl /ISO P2 (V*h/21 into 4992
elements as on figure 147 and into 970 nodes ( reaching thus 2000 de-
grees of freedom the solution 

(*U ht
ph) obtained by the optimal control.

Minimization of the band width proves to be an essential pre-
liminary step if we want to work with factorized Dirichlet matrices
having a size acceptable in the main core, requiring 60 1 process and
1900 K of core space.

Since the time step is At - . 1 1 40 time cycles at Re = 100 is
sufficient to induce behind the sphere a separated zone shown on fig-
ure 148.

Visualization of the return velocities is shown from the side
and globally by hachuring the tetrahedrons, of which the component
of the velocity is negative.

12.3.7. Swept-back Wing at Large Incidence 	 248

In this industrial example, we have taken into consideration the
3-D flow of an incompressible viscous fluid at Re = 200, around a
complete left-right idealized wing, placed at 30° incidence.

The triangulation; consists of 2060 tetrahedrons and 560 nodes.
Due to the importance of the factorized Dirichlet A matrix (A = LLt^
A constructed from an approxin 	 -n P l ), 74562 coefficients, we aro
focusing in a first phase on a i _near approximation of the velocity u
on"6h,(Akv tonstructed like A). We are assuming that there are enough
nodo z in 1 

for us to solve (Eh).

The calculation (70 1 process) consists of 40 time^cvcles, with
the time stop being At z . 1 , the number of control iterations at

^7^-
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each cycle being 4. The use of auxiliary disks for solutions AX a b
brings us to consider two different computer times t one time t of
process for the computation volume itself and one time t 2 machine
space due to external transers to the main core t 2 a nt l with
I ^-ns10, highly dependent on the informatics environment at the
moment of computations.

Y
The solutions ( IJ ,P) at various time cycles are registered on disk

to be analyzed after the computation. Visuali,-.<A ons make it poss-
ible to identity the separated zones which are obtained in the fol-
lowing manner.

1. Several angles are plotted (views from the front, side, rear
from above, below, in perspective) at various time cycles, the set of
tetrahedrons 'i't `c h in which the component u of velocity V a (u,v,w)
is negative * The support of the entire wing 	 is represented by a
plotting with a different color, making it possible to locate the se-
parated zones and to evaluate the intensity of them (figure 149 (a)
(b) (c)).

2. From a separated zone, we can plot the lines upon which the
vorticity is applied (vorticity tube lines) to visu.lize the eddy
intensity (A. MARROCCO (51)).

248	 _

Depending on the starting point ( end of the wing, for example), z4n
we may represent, in the separated zone, the complex path of the
fluid particles.

Various views of the three dimensional eddies are shown on fig-
ures 150 (a)- ( d), 151 ( a) (c) corresponding to two integrations with
different initial conditions.

On figure 150 (a)-(d), we are focusing on eddies which escape
at the end rf the wing ( left or right), whereas c.n figure 151 (a)-
(c), we are placed initially in a lose turbulent separated zone.
It may be stated that the two separated zones interact, since the
integration of the vorticities from the wing -right provides traject-
ories leading to the separated zone of the wing-left via the socket.

The numerical integration of the lines is obtained by the fol-
lowing process s given a point 7. of the separated zone`o t1 of
we calculate the vorticity w _ .t. t, constant in T o , the velocit^'

it

being; P. Since we, l,are I ' Ine i ^^^ the geometrical intersection Z1
of ^` with fronts(i, 

) i 1,4	
of T and a point Z a at Z i e The front

F found gives a new tetrahedron T t Wh	 (close to T o in the dir-
ection of Fk ). We calculate the new vorticity -of element T1 and so
forth...	 "1
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12.4 Data Processing Efficiency for Functional Least Squares Algo-
rithms Using Auxiliary Operators or Metrics	 ^i- Lail

12.4.0. Characteristics of a_Proconditioned Computation

The examples of 3-D transonic and incompressible viscous flows
have demonstrated the need for auxiliary disks which serve to memor-
ize the factorized. Dirichlet matrices L (= 5.10 6 coefficients). These
matrices are read numerous times during the aescent-climbs of a so-
lution LLtX = B and result in excessive memory use time (5 times more
than process time).

It may be recalled that one optimal control iteration requires
5 Dirichlet solutions in the transonic case and 35 Dirichlet solu-
tions in the Navier-Stokes case.

The objective of these examples is to show that preconditioning
operators Ld/1009 constructed in chapter 11 9 make it possible to
solve entirely in main core a problem which initially exceeds the
computer capacity. We present two ways to use conditioning operators
in an optimal control problem.

1) The matrix Hl is kept in the penalty (344) or B plays the
role of the discrete Laplacien

min {E L BE I BE - R((P)}	 (344)
(DtRn 	(^)

^t
but 	 Bd/100 - Ld/100 Ld/100 is used as auxiliary o erator of Laplacien
in the sense of 0. Axelson to solve (*	 In this case, the conver-
gence speed of the algorithm is not slowed down.

2) The metric H1 is approached in formulation (345) by B , Bplays, then, the role of the auxiliary metric.

min_ {E LBEI BE = R(4)}
1)e R"	 (**)

(345)

but in this case, it shall `je fair to choose percentages of Bd/100

such that d/100' :--(10 /100& so the algorithm does not slow down excess-
ively. It may be pointed out, on the other hand, that (**) has an
extremely fast solution : a descent-climb of one operator LdJ100Ltd/100
representing, for example, 20 of the Laplacien if 1=20. The choice
of d in case 2 is the better compromise between (345) and the pos-
sible size of the computer. Examples of 	 are shown on figure
152. Attention shall be brought to the	 1'L1 / 1u0	 proximity of
non zero coefficients of i d-100 kept to those of A.

240



min, { 2 O tAA- F41)
OCR'

(346)

12.4.1. Auxiliary Operators and Metrics in Transonic
1254

12.4.1.1. 2-D Laplaciens Preconditioned by i:`Lt

In a first phase, it is worthwhile to test a conjugate gradient
algorithm to solve the problem (346) by the finite elements method.

in which ,i - H t is introduced as an auxiliary operator of the Le-
placien operator A in the sense of 0 AXELSSON (32).

is constructed from the factorization L (11267 coefficients
of A and Ld/1OO represents various percentages of L constructed in
accordance with the procedure described in 11.

We havelotted on figure 153 the number of iterations renuired
to solve (346 with a specified accuracy E =.10-6 , by using Ld/100
and L' d + / 100 constructed in (324)  (325) for different d's. We may
note the interest of the interval ( 7^, 251/o) for memory decrease, and
compare the convergence velocit y with other auxiliary operators such
as the Van der Vorst operator Lx,0`, , which does not require factori-
zation L or still'.,,,,, constructed by keeping only the coefficients
very close to L and representing a small percentage (20 1j,') in 2-D. At
both ;;,ids-of the curve, we find the solution of (346) in one itera-
tion for L100/100 and the standard conjugate gradient, without pre-
conditioning.

On figure 154, we have superposed two curves 1 'd/100 L d/100
as a function of the number of iterations with I and LIconstructed
in (324), but from two different renumberings of the Cuthill-McKee
algorithm : L contains 11267 non zero coefficients and L l 13569. The
agreement of the two curves may be orified when working with iso-
percentages on the two auxiliary operators.

12.4.1.2. J-D Laplacien Preconditioned by

The solution of (345) has been also found on an industrial con-
figuration with 5328 degrees of freedom, of which the Choleski ma-

trix L contains 1.5 D 6 coefficients-and could not be held in the main
store.

Figure 155-describes the number of reasonable iterations
,hen operators Ld/100' with d/100 < 20/100 are used in the main story
of the computer. We may note the number, of excessive iteratioi
o46,-2) of the standard conjuage gradient when (3 1 6) must be sol
seve,al hundreds of times.

h4f 1



BE=R0)

12.4.1.3. Transonic Optimal Control 2-D With Metric H 1 and Auxiliary
Operator ^Lt.

(344) 
The approach 12.4.1.1 is used to solve the state equation (*) of

by preconditioning the conjugate gradient algorithm by Bd/100' We
shall point out the safety of the algorithm 1 344) which converges in
N iterations regardles& of the conditioning Ld/100 selected to solve
(*). We have shown on figure 156 the process computation time to
perform.. a transonic computation on a NACA 0012 at M. _ •8 : i=O°) by
using Ld/leofor several values of d. We shall bring our attention
to the interest of the pointss of the curve in the interval 5`. 25%
producing about the same process times as those using high parcen-
tages. The optimal control formulation using the standard conju-
gate gradient as L&.-placien algorithm is very costly. The curve sta-
bility is kept by working on another numbering of the triangulation
Z;h .

12.4.1.4. Transonic Optimal Control 2-D With Auxiliary Metric LLt,

When the metric attached to the solution of the transonic oper-
ator is perturbed in the sense of (345),	 N iterations required
for a transonic computation may increase if the metricB - L L tis too
weak (percentages too low of d/100 comparing the initial metric H1
with the metric L2).

Figure 1 53 shows for various choices of d/100 the evolution of	 2 6
the error E,taken in the good standard £ tB E, committed to solve the
equation R(^) = 0 in the functional space H- 1• , as a function of the
control iterations.

When the metric 1'd/100 is acceptable in the sense of the con-
vergence, the solutions of (34:j) prove to be faster and more econ-
ical in store than the standard solution.

It may be observed that the Van der Vorst
operator used as auxiliary metric to solve an optimal control_vro-
blem via(345) is inadequate. On the other hand, the metric
composed of very close coefficients and representing in 2-D about
201v of the coefficients of L. appears to he an acceptable auxiliary
metric on figure 157.
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a
i

The quality of the transonic soitition as a function of the
various auxiliary metrics (various percentages d/100, Van der Vorst
after 80 control iterations is represented by shock restoration on
the airfoil sections on figure 158. It may be concluded that 15%
is the minimum allowable percentage for an auxiliary metric. It
still represents a considerable gain in memory 	 for industrial
applications.

12.4.1.5. 3-D Transonic Optimal Control With Metric Hland Auxiliary, 	 /256
Operator  at.

The solution of (344) using the preconditioning Ld/100 of (*)
has been tested on an industrial type air inlet configuration com-
posed of 1.5 106 Choleski coefficients and 5328 degrees of freedoms
at Ow - .8.

The curve of figure 15q represents the_process time of N=10
control iterations for percentages d/100 ofL d / j 00	 entirely in the
main store. We may note the vertical slope of the curve as soon as
d/100>5%,	 , expressed by,the constant number of iterations required
to solve (*)-AS LONG AS1'd/100. is in THE MAIN CORE. The point ob-
tained with L 100 / 1 00 and ail 	 disk depend on the working con-
figuration of the computer at the moment the computation is performed.
Fluctuating usa-e times may be obtained for the same calculation at
various phases.

12.4.1.6. 3-D Transonic Optimal Control With Aiixil.iary Metric LLt .	 /257

The sane industrial configuration has been tested by solving
(344) via (345). The error evolution for various auxiliary metrics
B d/100 is shown on fta!re 160 during the control iterations. It
may be seen that 

B15/100 
is the minimum metric leading to an allow-

able error curve compared to reference B100/100'

Since the Van der Vorst metric im is too far from the fact-
orized L of the Laplacien,	 it is poorly suited for the solution :)f
(345) and leads to an insufficient convergence velocity.

It may be conciuded t after examining .figure 160, that d/100 =
205; is an auxiliary metric making it possible to treat (345) entirely
in the main core and to ensure the convergence of the preconditioned
algorithm with a sufficient safety margin.
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12.4.2. Navier-Stokes C.se Around/In an Air 1 et (2-L) a:-,d Around
A -D Wine

12.4.2 9 1. ThP Stokes Alrorithms (T-H) And (G-P)

12.4.2.1.1. Preconditionin g 	of the Lap l acian in the Iterative
Sto cs Algorithm T-H

We h+tvo introduced in the iterative algorithm of Flow Chart 4
(see Chapter 11), a preconditioning 11t in the solutions in 2-D and
3-D of the Dlreichlet problems. Figures 161 and 162 show the evolu-
tion of calcllation time for solving the Stokes algorithm (T-H) witli
accuracy E a .10-6given on the pressure, for various precondition-
ing percentages Ld/100'Zt may be pointed out that the optimal work-
ing zone, hachurated on the figures, the economy 9/100< d/100 < 20/100
of memory (- 9(1") does riot penalize at all the computer process time
The 2-D example (reap. 3-D on the shpere) was initially composed of
9342 ( resp .149734) Choleski coefficients on the air inlet for the
factorized matrix L. Algorithm 4 does not call for preconditioning
on the pressure, since the conditioning L 2 in the Taylor-Hood ap
proach is optimal,

12.4.2.1.2. Preconditioning 	 of _the-Lap-lacion_and yst

We have introduced in the iterative algorithm of Flow Chart 5
(see Chapter 11), first, a preconditioning x; LL t _ in the solution
of Dirich l at problems, second, a preconditioning A Sit on the pres-
sure try ace, since the conditioning L2 in the Glowin3ki-Pironneau ap-
proach is not optimal.

Figures 163, 164 show in 2-D and 3-D the eveolution of calcula-
tion time for solving the Stokes algorithm (G-P) with accuracy a `.10-6
given on the pressure trace, for various preconditioning percentages

Ld/100	 and Sd/100 .	 Since matrix A is coMplete a d/t00	 is ob-

tained by a test, absolute in 2-D, and relative in 3-D, on the amount
of coefficients of factorized A.

Figure 163 shows the optimal. working zone, hachurated, corros-
ponding to L 24/1 00< J < 6!Ii^O and Sj/100'	

It may be observed that the

preconditioning .1,2 (S).is inadequate. Figure 164 shows thr fast
decline in computatiorl time in 3-D, as soon as percentage of 5
which is too small, is used.

If a comparison is made of the calculation time of the two ap-
proaches (T-11) and (G-P), it comes to light that it is better to
work on the pressure trace (factor 3 to 4).

In any case, the numerical tests shown on figures 160 throuCh 	 2Gt+
163 clearly show that the prcconditioriin^j problem of a Dirichlet op-
erator iiii 4	 is perroctly solves'., where is the problem of :i trice
operator on	 remains open.
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2-D TAYLOR-HOOD STOKES ALGORITHM-PRECONDIT`ONED CONJUGATE
GRADIENT + AUXILIARY OPERATOR

n d . OF C(F^ICI4^f3 ^.	 `t

MO • OF :v€Fficlenh L



'47 $ 	 %5	 176 500:

CPU 370/168

0.25

0.50

1.00

0.75

0
0

f

1 _

I

1 C

76ne	 optimal

3-D TAYLOR-HOOD STOKES ALGORITHM PRECONDITIONED CONJUGATE

GRADIENT + AUXILIARY OPERATOR L Lt

No. of coeffic• L

No, of 'coefficients L

Pir^:re 162

257



I

1
I

2-D GLOWINSKI-PIRONNEAti (Eh) STOKES ALGORITHM

CONJUGATE GRADIENT + AUXILIARY	 N

OPPRATORS * fit_ S st	 O VICINITIES"

^^_VICINITIBS OF VIC-1NITIES
^^ 'h ER .OPFititl " T^}S r^	 x S N ( i oj J Jr " j Hj dr
M mi-OF COd itionfs L+ S

v	 SK

L 100/!00

N
L 601100

0*
Lit/loo

svv

L 65 /100

L 140/100

L 34 /loo

1 j^/1^ 	 L 4•c /1Qo

/^/^,^/,^ n e oPhMalZ  

Ap

14/100

i {;0	 ^ /100	 / `'

1.

.5

258



a a
r^ H

O wa a
H Oa
H a
^ W
z H
H r;

c9 Q

H z
O H

to
U

F

A z
Nl U

P%	 i

 Lor
C%

o

d	 ^_

o t.l o
.. w

Qg ^ a

Z''0^
N

t

I

wo

I

y^

t tr>

c^at

x
ttq N

C
toe)

M
I ^

+I

I '

- ca

4

1 N

f ^

w^_

^ t^7

i IfI

t^

0

CL
V

0
cnw
H
H
H
z
H
U `

w
O •^

e	 7C

W W ti

HH u

z z
U U v

> > ter=

0 4 x

2V5 are

^• J

1 h
.v ^v

u a
u u

259
I

4w W
O O

O O	 (



12.4.2 . 2. Optimal Control (2-D)(3 D) Navier stokes metric Hl -
Auxiliary Operators LLt SSt.

In industrial applications ( 2-D) (air-inlet) and 3 -D (wing), the
informatics momory problms are due to the storage of the Dirichlet
operator (otld-VA) , on the one hand and of the trace operator, AA  24^x

on the other hand, l r

An alternative `̂  ỳ in order to gain is memory space is proposed
for solving the Navier-Stokes equations via Flow Chart 1.

Apply the direct algorithm of the Stokes algorithm (G-P)(Flow
Chart 3) with preconditioning LLt to solve the sequence of Dirichlet
problems. In this case, we must construct upstream of the optimal
control loop the trace operator X-+A,1, symmetrical but complete, with
the use of auxiliary operator LL', , 'then factorize it (A = SS and
store S ( flow chart 2). The importance of S may require auxiliary
memories for direct solutions of Eh :A), -b with the auxiliary c,er-
ator	 being completely stored in the main memory.

Ld/100

Apply the iterative algorithm of the Sotkes algorithm (G-P)
(Flow Chart 5) with preconditioning ELL to solve the sequence of Dir-
ichlet problems. In this case, a preconditioning Set of the trace A
operator is necessary in order for the time required for solving,
compared with the direct method, is still competitive. Nevertheless,
making the choice remains delicatet Two auxiliary trace operators S
are suggested.

2.1. We use S 0.)	 I	 a N. • dr,	 conditioning L2 , restricted to the

boundary node supports of figure 24. With this choice, operator A
is never constructed_. It may be observed that _	 is sparse, its
memorization presents no problem.	 S:1

?.2. We use a percentage Sd/100 of the complete matrix A = SS t after
constructing the latter upstream. For various percentages d/100 re-
lating to the relative value of coefficients (Sij)(j > 0 , we obtain
conditioning operators S d/100 of which the efficiency is measured
a posteriori by the convergence velocity.

The use of auxiliary operators LL  and SS  in a Navier-Stokes /274
algorithm is presented on figures 165 (2-D) and 166 (3-D). We have
set in a' ssa the process time for treating the Navior -Stokes com-
pletely .. the main memory in 10 iteratious with a small Reynolds
number ( Re - 50) 1; ,i function of percentages d/100 and d 1 /100 of
operators	 and S. Attention may be brought to the fast increase
in calculation time for percentages d 1 /100 of S which are insuffi-
cient (d' <_ 	 .	 On tfie other hand, for a given S, the interest of
operators La /100 (5< d:5 20)	 may be pointed out, as the y have very
little offect on Vii process time, wiiile representinf, a gain in mem-
ory space of about 90%!
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Ŵ O

O Z __

fd?
U

1-
W r
^- w
^ p

oc
c^

C^
. U

CJ

a
V

OII

...
(rI

N
J

C

.ILJ

%*Zw
.1
vu

O

a
w

S

s

'^ 3
ci

251

H
m

x °X:

FI 4i bb

EMI '0	 lb
0

43 A
i-)

m m ^

0	 ..r
40

3

U A h
-- a	 o x	 -1

^	 1	 1

	

\	 1
I	 I

%o

	

^A n	 NJ	 I I

	

tt^	 1	 4 ^	 f
^ i	 I

^	 1	 1	 t

	

t	 !	 I	 I	 I

	

1	 I
1	 1	 I

ca
O

M

a

Q

1J

	 i
ii
1
1

1

I

i
O
G7

r
t]0
eft

M
Q

N

1	 ^	 ^	 sl tw?
r^

C^

L `^



p	 - Alu -

NAVIEA•STOKES 3D ( GLOWINSKI-PIAGNMEAU
GRAGIENT coNjuGATF. ♦ AUXILIARY OPERATORS

Number of coefficients

262



CONCLUSION

The quality of the numerical. results of this study confirm that 27
the functional least squares methods coupled with preconditioned
con.iuf*ate gradient algorithms proves to be a tool which is particu-
larly suited for multiple industrial configurations. The possibility
of treating correctly the boundary conditions of any complex geometry
by a finite elements method, gives to the codes obtained from the me-
thod presented, a flexibility which is indispensable to the three di-
mensional aerodynamics of today and of the future ' (optimum design).

In the case of transonic flows,it appears that Lagrange P ap-
proximation by conforiq finite elements (rasp. mixed) of the relAted
optimal control problem, including the condition of entropy treated
by penalty (resp. artificial viscosity), is of sufficient accuracy,
after comparison with results derived from the A, JAMESON finite dif-
ferences codes.

With respect of the incompressible viscous fluid flows, the com-
plexity of the Navier-Stokes equations suggests the use of quantifi-
cation schemes of lower order, P 1 for velocity and P 1 for pressure.
The convergence, however, is ensured only if the tr4angulation of the
domain used for the velocity is twice as fine as the one required for
the pressure.

In the two flow families considered, the approximation by mixed
finite elements (artificial viscosity in idealized fluid, Stokes al-

7
orithm in viscous fluid), as presented in P.G. CIARLET-P.A. RAVIART
54), R. GLOWINSKI (55) 9 GLOWINSKI-LIONS-TREMOLIERES (56) and J.M.

THOMAS (57) for the biharmonic problem and more recently in FORTIN-
THOMASSET (48) by the Navier-Stokes equations, remains a very impor-
tant point.

Sophisticated codes, obtained from the optimal control-Stokes
algorithm combination, and the convergence of which is ensured by the
absolutely stable CRANK-NICHOLSON :implicit schemes, while being per-
haps more costly in machine time and memory usa e, are easier to use
in industry (no convergence parameters to set ! than the tradition-
al codes requiring domains of reduced stability.

The numerical simulation of three dimensional separated large
structures, the dimension and location of which play a fundamental
role in aerodynamics with large incidence (interaction of eddies em-
itted by several bodies, life-time of eddies in the air inlets) is a
demonstration of feasibility of the optimal control tool, which is
indispensable in the subsequent phase of combining Navier Stokes with
turbulence models. In any case, calculations with a 1ar&'e Reynolds
number is still prohibitive, if not impossible, with the size of com-
puters currently available (sequential organization of computations),
the memory capacity of which Droves quickl y to be inadequate for as-
soc i ated quantification (10 6 calculation points for 3—ll applications
is riot an excessive number ! ).
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The incomplete factorization methods presented in the nonlinear /278
context (solution of the Dirichlet problem several hundreds of timest
brings a grin in memory space of the order of a factor 10. Introdu-
ced in the conjugate gradient algorithms coupled with optimal control
in tha form of aixxiliary operators (preconditioning - LL t of the Dir-
ich.let ;problem LL t0 = F) oraa:_iliary metrics (minimization in H"r of
F (r) -0), they make it possible to solve entirely in the main memory

3-D configurations taken from the two flow familiesp and this is ac-
complished in acceptable machine times.

They representp howeverg only an intermediary stagep if compared
with the possibilities of parallel calculators of tomorrow-
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