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AND EXPERIMENTS CARRIED OUT DURING FLIGHT
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by
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AVIONS ifARCEL DASSAULT BREGUET AVIATION, Saint Cloud FRA,"SCE

Horst 1ti'UNNENBERG, Engineer
DORNI'dR, Friedrichshafen, GERMANY

Summary

After presenting the methods used to determine the aerodynamic

coefficients by: calculations, windtunyael experiments and. later on

experiments carried out in flight on various prototypes of the Alpha-

Jet, a comparison of the obtained results is made which. shows good

ti

	

	 correlation in general between the c-xpectations an` the restiits in

flight and which is commented upon.

Introduction

Beyond getting to know the craft during the experiments, the

comparison of aerodynamic coefficients calculated, or derived from

windtunnel experiments, ovith the results obtained in flight presen^:s

various sources o£ interest for engineers engaged in defining the

aerodynamics of airplanes. The most important of them is certainly

to be able to answer the question:

^.	 "Within what limits and to what accuracy can results from calculations

1	 and from windtunnel experiments be conside • ^d as valuable?"
s^

The answer to that question is of primary importance in the case

where a prototype, built according to an entirely neiv aerodynamic

formula, is created.

*Numbers in the margin indicate pagination in the foreign text.
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The complrative study of expectations and results obtained in

flight is presa^nted here starting from the experience acquired in the

course of adj<. 3,sting the Alpha - Jet and enriched by what has already

been obtainer from the study of numerous prototypes built by the

Dassault - Breguet and Dornier Companies.

1.	 Expected Aerodynamic Coefficients

The forecast of aerodynami -^ coefficients was made several times

through:

1) Use of the manuals

USAF Stability and Control DATCOM and

Royal Aeronautical Society DATA Sheet (England)

2) In parallel with those simplified results, two-dimensional

and three -dimensional calculations relating particularly to

the wings and the interaction between wing and fuselage.

3) Windtunnel models,

a) Results gained from the manuals (references 1 to 5)

DATCOM and. DATA Sheet were used, together with various

documents and reports from the files of the DORNIER anil

DASSAULT-BREGUET companies.

b) Theoretical calculations in two and three dimensions

(references 6 to g),

These calculations were used to find a reasonable com-

promise between the different exigencies. For example:

Maximum velocity (Cxo)

Performance	
Scope of maneuverability (Cx=f (Cz,M)

Landing and takeoff velocities (Cz max)

Boundaries of maneuverability (max
usable Cz f (M)

Rolling velocities (C1 dL)
Flight qualities	 Correct demonstration spin

Developable surface
Restrictions to	 Wing thickened at the root
Geometric
Definition	 Wings without variable geometry of

^ the leading edge

^-	 2
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Various methods of calculation were used during the development

of t}ie Alpha-Jet. Fig. 3 shows the limits for the validity of these

calculations as a function of the Mach number.

1) Potential (^ener^,y^ flow
Calculations of air flow can be made with good accuracy up to

just a little beyond the critical A1a^h number as an aid in the

method of sin^.^.ilarities. The RAE method can provide good re-

sults with relatively s}sort time spent in calculation.

2) Separated flow (Fig. 2}

These met}iods are used to identify the points of flow separation

along the wingspan and to calculate the lift angles, including

all the incidents of separation.

/19-2c) tiVindtunnel experiments

The difficulties encountered in completing this program,while ob-

serving the requirements of simplicity made far this airplane,

(in particular the prohibition of variable geometry for the

leading edges) were responsible for a large number of windtunnel

experiments, which were at first carried out with different

models.

Definition	 Utilization	 }Vindtunnel

M^

1	 Low velocities High lift opera-	 Lateral coef- AVA
Scale:	 1/5 tion	 ficients at Gottingen

Motorization	 lo^v speed
Ground effect	 Loads on ele-

ments

2	 Low velocities Dynamic coefficients at low ONERA S2
Scale:	 1/5 speed Chalais

3	 High velocities Longitudinal and lateral coef- NRL Amsterdam
Scale:	 1/10 ficients OiVERA S2 Modane

Efficiency of the control sur-
faces
Influence of outside loads

4	 Half-model !-}igh lift operation S5 CEAT Toulouse
Lo^v velocities Definition of the leading edges ONERA S1 Modane
Scale:	 Z/5

5	 Scale:	 1/3 Model of air intake DFVLR Brunswick
Immenstaadt
ONERA S1 Modane

6	 Buffeting model ONERA S2 Modane

7	 Spin models IMF Lille

_.	 .,.^^.. ti. _ . _. . _
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d) corrections of windtunnel tes'..s (references 10 to 13).

1) Corrections due to restraints of the walls:

These corrections vary with the windtunnel:

--For the low speed windtunnel of Gottingen: the corrections for

interference with the free jet flow are negligible, only the

corrections for the lift effect applied to the drag, the lift

and the pitching moment, are used.

Corrections for ground effect are used in the same way.

--For the French low speed windtunnel a complete program of cor-

rections, including interference and lift effects, is used (as

suggested by the documents in the reference) in a general way

for the entire subsonic domain, rig. 4 prese^its irepo^tant

corrections applied to the results i obtained from windtunnel. S5

of the CEAT in Toulouse for a half-model at 2/5 scale.

--For a transsonic windtunnel with ventilated walls: the correc-

tions are only applied for the analysis of suspect or critical

data.

Some correction factors for lift are calculated by the Dassault-

Breguet Company for its own personal requirements.

2) Corrections due to the Reynolds number.

In agreement with the experiences acquired on other airplanes,

the corrections were applied to the drag.

3) Corrections due to aeroelasticity.

The aeroelastic effects are very important and should be consid-

ered for nearly all the derivatives. The effects are calculated

4
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by means of a method that substitutes an elastic model for the

airplane structure and by obtaining a balance of aerodynamic

forces with internal forces on the structure.

T}ie importance of these effects is shown in Fig. S by comparing

the wing lift distribution of an elastic and a rigid wing under

t}ie effect of aileron deflections. The torsions and flexures of

t}ie wings induce an additional lift distribution,^tvhich reduces
the efficiency of the ailerons mar}.edly.

Not only t }ie flexibility of the wing was taken into consideration

but also the elasticity of the Horizontal and vertical parts of

the tail assembly, as well as the flexure of the rear fuselage.

T}ie calculation of deformation was made by means of the finite

element method.

e) Similarity

For the models for spins and buffeting ^+^^ere aerodynamic phenomena

of weight, inertia , or rigidity, are represented simultaneously,

similarity between model and airplane must obvio^xsly be kept i.n

mind.

Other p}^enomena, such as simulations of the jet stream or the re-

lease of outside loads can be applied in this concept of simi-

larity.

,._

/19-32.	 Flight Tests for Identification

Identification of aerodynamic coefficients from the start of

flight is obtained after carrying out a program of special experi-

ments defined by the choice of:

(1) Reference points in the flight domain

(2) Reference configurations

(3) Related factors allowing the separation of coefficients

S



a)	 Reference points in the flight domain

Reference flight points are chosen from the "Mach number, alti-

tude, indicated speed" domain to provide an answer to the fol-

lowing absolute rec{u^.rements:

(1) determination of the Mach effect

Loads are applied for various Mac;'a :a.'^Tliti^i'^ ^.t a constant indicated

velocity and under balanced flight cond.:^tions.

(Z) determination of the effect of the angle of attack

Loads are applied for various load factors at a constant Mach number.

(3) determination of the dynamic pressure• effect

Loads are applied under conditions of balanced flight at a constant

Mach number and at the indicated variable velocity.

The choice of a flight test program^as easy to set up as it is to

implement it, which includes the above absolute rec{uirements leads

to the establishment of the following fixed reference points shown in

the diagram below and permits work at practically constant reference

altitudes.
^^1^TUOt
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b)	 Reference configurations

Reference configurations are defined by:

--The position of mobile elements:

--wing flaps

--air brakes

--landing gears

--definition of the impact of significant outside loading.

`-

To those reference co

flig}it p}lase in which
urination of:

--corrections fox t1?c

--corrections for the

with a full wing or

nfigurations we must add the choice° of the

the tests are to be carried. out for deter-

influence of weight

influence of fuel, for instance: flying

an empty wing.

Finally, though it i s sr^fficient for most ref the coefficients
to run the tests at an average trim there ar.e some coefficients

for cvhich it ►vill be rec}uired to investigate the influence of
the trim.

c)	 Typical operations and stresses

i^

1'he flight phases employed

coefficients can be divide

--very slow stabili^ations

--slow maneuvers (20 to 40

--fast maneuvers.

These categories can again

organigrams below:

foY• determination of the aerodynamic

i into three categories:

and maneuvers (three minutes)

seconds)

be subdivided into the following



a
^—

Stabilization
or very slow
maneuvers

drag	 /19-4

stabi]^ized level	
calibration of angle of attack sensor

flight	 elevator deflection in balance

aerodynamic characteristics of the
air intake stresses for nz=1

slow sweep of the calibration of the angle of attack
angle of attack	 drag

acceleration	
drag

deceleration	 elevator deflections and in partic-
ular the influence of the engines

at constant	 vn the steering mechanism
altitude	 torque due to the airbrakes

stall tests

lift due to angle of attack CZ (a)
low speeds	 elevator deflections

stresses on the flaps

1^.nding	 drag

takeoff	 ground effect

boundaries of op-
eration.	

(drag
excitation for	 `
buffeting	 CZ = f (a)

limits and boun-
determination of relations	 CZ = f (8m)

^^daxies of maneu-
Ivers
IBeviation limits
' of the load fac-
tor

Slow
Man-
euvers

8

CZ = f (Cm)

moments and forces	 wings

stabilizers

fuselage

pylon

outside loads

determination of influences Chi due to airbrakes
CZ due to airbrakes

airbrake opera- (moments and forces	 ( airbrakes ( saturation)
tions	 stabilizers

wing flap op-	 (moments and forces	 wings
^erations	 l	 high lift devices

stabilizers

stabilized	 relations SL, hand do ^	 direction ( saturation)

side slips	 vertical stabilizer
'^	 forces and moments	 asymmetry of stabilizers

pylon
outside loads

s

^^_ ^ .
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calibration of the sideslip

force in the direc- sensor
transverse aerodyr.^amic coeffi-tion cients

'^nt or	 t forces and moments on the ver-^
tical stabilizer and rudder

transverse aerodynamic coeffi-
banking force cients and, in particular, roll
^	 SL

t t
control efficiency around the

or ^ neutral axis

calibration of angle of attack
force on the ele- sensor
vator longitudinal aerodynamic

^mt or ^ t
coefficients

forces anal moments on the
stress relief after vertical stabilizer, the rudder
stabilized buffeting and the tail unit when in

asymmetry

separate
operations

fast
man-
euvers'

coupled
operations

overall coefficients

horizontal	 wingsspins
rorces and moments	 pylonsns

outside loads

, spins	 `comparison with windtunnel resul"cs

9
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3. Identification From the Mart of In-flight Recorder 	 /19-5

Following the recording of the airplane parameters in flight it

is possible to define:

(1) a process of application and comparison with expected re-

sults

(2) corrections of the raw parameter data

(3) processing methods

(a) The process of utilization

Before starting the comparisons it will be necessary to dispose

of:

(1) a data bank of estimated data, rearranging:

--test results

--theoretical calculations

- -bases related to weig'i^: and inertia

--estimated aerodistori:ion

(2) a bank of recorded data made during flights rearranging the

various operations from the preceding chapter. That bank

evidently augments its capital in the course of successi^te

flights. The recordings are stored in elaborate form, i.e.,

after having undergone:

(1) calibrations

(2) corrections or necessary elementary calculations, par-

ticularly for recognition of flight conditions:

--corrections of anemometry

--calculation of centering starting with flowmeters

--elaboration of Mach number, of the corrected velocity,

of the pressure altitude, starting with records of

the static and dynamic pressures

--etc.	 .

Two procedures are then employed for obtaining the aerodynamic c^- 	 !

cfficients, according to the physical problem studied:

10	 j
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(1) a method of searching for variations between estimated

data and flight data

(2) a method of direct investigation of aerodynamic coeffi-

cients:

B,^^NK OF ESTI -
	

BANK OF DATA RE-

(
CALCULATION OF THE(
AIRPLANE PERFORMANCE

iCOMPARISON

GOMPARISONI

Comparisons can be affected either:

--directly at the level of the estimated aerodynamic atata. bases,

which allows generation of a bank of data obtained during

flight.

-at the level of a reference model (for instance an airplane of

calculated weight under cr^nditions determined b} its structural

resistance). Only the estimated data bases valuable for the

model will then be modifiable, but the model concept itself justi-

fies the direction followed.

(b) Corrections and elaborations

In addition to the already mentioned corre^^tions of anemometry,, ^	
which allow determination of the exact flight conditions, various

elaborations are carried out for obtaining the capability of deter-

mining the coefficients.

11
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It is evidently not possible here to define all the procedures

carried out but some are highly characteristic and caYt'.e given as

ex«mple:

(1) elaboration of thrust

The engine ser^.:.^;.^ for reference is the "test engine" tested at

the altitude data bank of the engine test center for various condi^^

tions of riach numbers and altitude.

The run g using the "test engine" da'^,^^ bank are used to readjust

the performances shown by the manual and to define the g ^lations of:

thrust and internal parameters.

Each "flight" engine is then treated individually by comparison

with the "test" engine in a power check.

/19-6

Two procedures are then used:

*The consumption method:

Linking results dealing with:

--the "test engine"

--the engine as defined by the plans of the designer, with

its characteristics presented by the outi'Lit of a

single duct and by zero air samples aayd power

--the power plant coefficients given by the design manual

together with individual tests of engines mounted on the airplane the

following relations can be determinel:

Thrusts and fuel Consumption valid for the entire flight sequence

(but particularly for the "flight" engines considered).

Knowledge of the consumption of both jet engines provides the

overall net thrust.

^.

^=
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*The internal method:

Measurement of: dynamic pressure, temperature and total pressure

for each nozzle allows the establishment of the output of each of the

two flows, taking into account a coefficient of standard flow found in

the databank. By means of a nozzle coefficient, determined from the

databank, it is possible to calculate the gross thrust and then to get

back to the net thrust.

	

z;	 It should be mentioned that for dynamic pressure, which is diffi-

cult to measure, it i5 possible to substitute the Mach number calcu-

laced for the start of the rate of expansion.
.,

	

_:	 Finally, air^nitoxing of the results can be obtained by using dif-

	

+^	 ferent powers, ^y calculation of the total flow at the level of the

	

^-:'	 low pressure cornpressor or of the primary flow at the intake level

of the high pre^si.ire turbine .

(2) Elaboration of aerodynamic stresses applied to the wings

(ref. 14).

T}ie details about overall effects of aerodynamic Loads axe ob-

ta med by investigating the general loads in the different sections

(shear stress, bending; moment and moment of torsion}. Starting with

determination of those data it will then be possible to return to t}ie

distribution of lift over the wingspan.

For that purpose each section under consideration is equipped with

several straingauge bridges delivering signals (millivolts).

It is possible to go back to the F loads knowing the signals S,if

one knows the matrix relation.

F = BS



i

^^

^, ,

It is determined on t}ie ground by making a number of important

calibrations that provide a signal matrix );. The liaison matrix is

then generally determined by means of the least squares method:

B = FET (E ET)-1

To account for the distribution of aerodynamic stresses, at the wing-

span and at the chord, the calibration forces are arranged so as to

give the best representation of a theoretical shear force and expected

moments of flexure and torsion. That determines a matrix of equilib-

rium P and provides the solution:

B = F (EP) T ((Ep)(Ep)T)-1

'	 The stresses investigated for one section being the integral of
^'^ stresses between the tip and the section under consideration and with

the pickups being sensitive to the applies? stresses betereer^ the sec-

.

	

	 tion and the wing root, it is necessary to make corrections in accord

with the signal produced by theoretical loads situated between the

tip and the section under consideration, and the signal produced by

•	 the total wing load.

It still remains to correct the tve:iglit and inertial loads .

(3) Elaboration on the angle of attack and on the sideslip.

Calibration of the sensor for the angle of attack is carried out

according to several methods.

'h Comparison of individual points

The angle of attack is determined by establis}iment, or comparison

with, of parameters of acceleration and of anemometry, recorded during

stable flight or during boundary conditions of operations; a compari-

son can be made by derivation of the total anemometric pressure }lead,

or better yet, by integrating the accelerations.

14
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The calibration is fou,ld through application of several stabili-

zations at various angles of attack.

*Determina.^ion of the local pitch k a = Da sensor /Da for L-he air-

plane i.: '^:^e course ^f operation.

^ ^,

The integration of equation ^ _ (^)° + q - Sp

the angle of attack of the airplane which, when

up in flight, permits the determination of k.

The combination of the two methods leads t

about the relation between the "airplane angle"

for the entire range of flight..

- ^ (nz - cos ^) gives

compared to that picked

^ complete knowledge

and the "sensor angle"

The values determined are co^:rected, with errors due to the

sensor location or, in particular, to pitching and rolling speeds and

to the flexure of the Fuselage. The second method employed, starting

with the equation for lateral force, permits the calibration of the

slide slip sensor.

/19-7

(4) Corrections are:

--for accelerometer posi^.- . i^ns
--for the influence of thrust

--for the influence the dynamic of the motion has on the

parameters of steady flight

	

--etc.	 .

(c) Methods for determining parameters

The processing of parameters recorded in flight has been standard-

ized for computer handling and is carried out:

--in real time for a first approximation and a survey of important

parameters	 .

	

--in delayed	 time for complete processing.

^^`.
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The principal methods used are given here with their indicative

titles:

(1) The method of least squares for handling of n equations with

`	 p unknowns (p<n). The coefficients obtained from the solu-

tion are found valuable in cases where relations between

recordings in flight and coefficients are linear, as in:

'rracki.ng stress = k l g + k 2 dn + k3 p + k4 r (Fig. 6)

In the case where da.fferential equations are used this method is

highly disappointing.

(z) Method of dynamic optimization

Calcu^ ,ation is first made with estimated coefficients and

later coripared with flight data after investigation of influential

coefficients, modified in the sense of reducing the gap between flight

and simulation of it, with o^ Without investigation of the influence

of noise levels during measurement and processing. These comparisons

can lead to extremely diverse parameters: Total altitude, climbing

period, angular velocities, attitudes (Figs. 7, 8 and 9).

4.	 Results of the Comparison

The figures 10 to 40 present the results of various comparisons

made for:

--the longitudinal coefficients

--the lateral coefficients at high speed, then at low speed and

large angle of attack

--efficiency of the control surfaces

as well as their various factors obtained from windtunnel tests.

--hinge moments, wing stresses, types of side slipping, buffeting

boundaries, spins.

16
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Longitudinal coefficients

Although there is good correlation between the theoretical calcu-

n, windtunnel data and flight data, certain differences are

ent.

*In the static stability (Figs. 12, 1.5 and 16)

The calculation (DATCOM) is too optimistic while windtunnel re-

sults are close to those in flight. During these comparisons the

engine influence was kept in mind, with the interaction of ";Jet-

horizontal stabilizer" modifying the zero lift moment. The influence

of the jet could not be established in the windtunnel with any accu-

racy, due mainly to the difficulty of jet simulation.

*In the drag resistance (Fig. 13)

lindtunnel data and theoretical calculations give drag data

superior to those taken in flight.

*In damping of pitching motion (Fig. 14)

Theoretically calculated damping is quite different from what is

found in flight. Tliat is due to overestimation of the efficiency of

the control surfaces. On the other hand a rerun in the low speed wind-

tunnel leads to an excellent approximation.

',	 (b) Lateral coefficients

Certain lateral coefficients are not easily obtained during in-

flight experiments. That is the case for interconnected coefficients,

for instance: rolling due to yaw, or yaw due to rolling. In spite of

it the correlation generally found is a good one. Some remarks are

called for about certain coefficients.

17
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*Course stability (Figs. 22 and 28)

Tlie calculation leads to a course stability that is far removed

from that found during flight or in windtunnel tests, the difference

being due in particular to an underestimate of the vertical stabilizer

efficiency. The difficulty of obtaining Cns also appears in wind-

tunnel tests, when looking at the results for low and medium speed

(Fig. 28). Flig}it data are somewhere between the results of the

windtunnels of Amsterdam and those of Gottingen.

*Rolling due to slideslipping (Figs. 21 and 27)

The differences observed between the results of calculations and

of windtunnel tests, can be explained ^y a poor determination of the

dihedral influence. Those differences are attenuated as we compare

flight and windtunnel data. As in the case of the Cns, the difference

between the estimates and the ^:^indtunnel velocity should be noted (Fig.

27). Tlie influence of the flaps is less important in flight than in

the estimates.

(c) Efficiency of t}ie control surfaces

The correlation between the windtunnel results and those obtained

from flig}it tests is correct. It is worth mentioning the difficulties

encountered in investigating the aileron efficiency, which is slightly

nonlinear with steering. This nonlinearity becomes important for

large Mach numbers and outside the flight domain of the airplane. The

windtunnel tests for such high Mach numbers do not indicate such a

G=	 tendency.

The theoretical calculation generally shows efficiencies that are

too high.

18
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(d) Stresses (Reference 15)	 /19-8

While the hinge moments have generally been well determined in 	 j

the windtunnel, it must be mentioned that there were problems in ob- 	 ^I

taining wing stresses. Fig. 38 presents the results of theoretical

three-dimensional calculations with and without flow separation at the

stabilizer contours of the tips, it shows that a good representation

of the physical system accounts for excellent accuracy in the calcu-

lation of the pressure distribution.

(e) Buffeting (Fig. 16)

Tlie buffeting model offers similarity in weight and rigidity to

the airplane for the Mach number and altitude of a chosen data point.

An error of 15o in the buffeting velocity is included for the model

at that point. For other points in the flight domain the error varies

as a function of the pressure (regulated) and the temperature (induced)

of the windtun^-iel. Fig. 39 represents the development of a type of

pitching due to outside stress, as a function of the generating pres-

sure. The comparison (considering the variable errors and the simi-

larity factors) with results from flight tests is very good.

(f) Spins (qualitative comparisons)

The windtunnel, which does not permit the study of normal flight

transition and stalled flight, permitted the demonstration of three

types of spin (vertical, slightly inclined and horizontal) that can

degenerate into transverse diverging shaking, continuous rotations,or

`i

	

	classic outputs. That classification was also found during flight

tests, both as far as the basic aspect of these phenomena is concerned

,^,

	

	 and for the parameters of attitude and turn period. The same is true

in the case of the control surfaces (the important role of aileron de-

^^

	

	 flection being in agreement with the deflections of the elevator and

the rudder has been foreseen) where windtunnel tests lead to correct,

though simplified, output procedures when the spin is not horizontal.

^---
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The only parameter not studied in the windtunnel is the influence of

altitude in flight as important factor playing a role in the genera-

tion of spins.

(g) Air intake (Fig. 10^

The figure compares the maps showing the air intake at the wind-

tunnel and in flight, showing very good agreement between the results.

5.	 Conclusion

Following this comparison, which is quantitatively limited to the

nonstall domain, it appears that the estimated aerodynamic coefficients,

the result of judicious association of windtunnel tests with theroret-

ical calculations, have attained a high degree of probability for the

Alpha-Jet. This is due to:

'	 --the number of important tests carried out with models and in

windtunnels of great variety.

--to the accuracy of the results obtained with modern methods of

calculation and in particular with three-dimensional aerody-

namics and aeroelasticity calculations using the fin^fi.te element

method .

In addition, for this particular airplane, comparison with actual

flight conditions was facilitated through a great number of tests in

flight whose utilization was simplified by the good linearity of the

majority of coefficients and by the closeness of the estimated data

bases .

It is now possible, to any extent, to give an answer to the

question of how high the degree of credibility is that can be attached

to results estimated on the basis of theoretical calculations and wind-

.'	 tunnel tests?
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