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SUMMARY

A method for analyzing viscous nonadiabatic flow inside
turbomachine passages has been presented earlier in vol. I of
this study. The reported analysis dealt with incompressible
laminar flow inside straight radial bladed impellers. In the
present volume the developed field analysis is expanded to study
turbulent flow within turbomachines having arbitrary blade
geometries. Effects of turbulence are modeled using two equatioas,
one exprassing tha developmant of the turbulence kinetic
eanergy and the other i:s dissipation rate. To account for
complicated blade geometries, the flow equations are formulated
in terms of a nonorthogoral boundary fitted coordinate system.

The analysis is applied to a radial inflow turbine. The
solution cobtained indicates the severity of the complex inter-
action mechanism that occurs between the different flow regimes
(i.e., boundary lavyers, recirculating eddies, separation zones,
etc.). Comparison with nonviscous flow solutions tend to justify
strongly the inadequacy of usina the latter with standard boundary
layer techniques to obtain viscous flow details within turbo-
machine rotors. Capabilities and limitations of the present
method of analysis are discussed.

The computer used in this work is an AMDAHL 470. The flow
domain has been divided into 30 x 40 step sizes. Typical CPU

time for the case studied is 520 seconds.

INTRODUCTION

During the last decade extensive progress has been made
towards the development of suitable solution methods to the flow
in turbomachines. Most of these methods dealt mainly with the
flow field inside turbomachines as being inviscid [1l, 2]. Tew
studies, on the cther hand, considered viscous effects using
some kind cf flow approximation [3, 4, 5]. The general flow
solutions within turbomachine passages, however, remains mostly
beyond the scope of the prevailing modes.

These limitations, especiallv of the numerical methods,
have long been known to be acute due to the complicated nature
of the flow problem. The blade rows impose vorticity and

velccity fields on the flow. The inviscid effects are dominant,
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yet the visccus effects are not small enough to be neglected.
Because such flows can only be described using the fully
viscous equations of motion, the limitations of the prevailing
methods is a direct consequency of at least three major
obstacles. The first is the excessive computer time required
for the solution of the equation of motion. The seconc is the
difficulties and uncertainties associated with the treatment
of certain boundary conditions. The third is the lack cf
accurate and general methods for describing the turbulent
transport phenomena that takes place inside th2 hlade rows.

In an earlier report (7], the authors of th:s article
reported a method suitable for analyzing the viscous incom-
pressible flow in turbomachines that partially overcome the
first two obstacles mentioned above. In principle, the approach
emphasized the feesibility of obtaining viscous flow details
within turbomachine passages by appropriately combining several
blade-to-blade viscous flow solutions. Each of these solutions
were obtained through the numerical integration of the full
Navier-Stokes equations over a predetermined computational
surface that extends between the blades. The set of computa-
tional surfaces required for the analysis (see Fig. 1)
were themselves generated from the solution of the

Euler ecuations in the manner suggested bv Wu [1].
The results that had been obtained by applying this method of

analysis to flows within straight radial bladed impellers were
prcuising. This was evidenced by the fair agreement achieved
between the predicted and experimental data ([7].

Recently, the above analysic was extended to deal with
nonadiabatic incompressible viscous flows inside turbomachines
having arbitrary blade geometries. In particular, the approach
which has been established is modified and utilized in con-
junction with:

1. A two equation turbulence model.

2. A coordinate transformatior package [6] that employs

a nonorthogonal boundary-fitted coordinate system to

suit the most complicated hlade geometries.



The differential equations that describe the viscous flow
in turbomachine passages are briefly reviewed in this article
with pertinent references made to the questions of their solution
efficiency and accuracy of describing the different boundary
conditions. The numerical procedures developed on this basis
are discussed and illustrated by results obtained for the flow

in a cooled radial inflow turbine.

1. MATHEMATICAL FORMULATION

Governing Differential FE.riaticns

The development of the mathematical model for the present
problem starts with the Reynolds equations for the mean turbu-
lent motion of flow. These equations are written in a generalized

form for a turbomachine rotor as follows [7]:

Conservation of Mass:

V- (pW) = 0 (1)

Conservation of Momentum:

o(W-TW + 20 x W - 0°R)
= - Up -~ Vx[ue(ﬁicﬁ)]4-% T(LeV'W) (2)
Conservation of Energy:
o(W+Vh) = 2R + (f-T)p + D + V- (KVT) (3)

it

where p, 0, T, h and D denote the static pressure,

density, temperature, enthalpy and dissipation function
respectively. While, W represents the relative velocity vector
at any point whose location is def ned by the relative position
vector R in a rotating frame of reference (Fig. 1). The speed
of rotation of this frame is equal to the angular velocity of

the machine (7). The effective turbulent viscosity Ve in the



above equations is assumed to describe the effects of Reynolds
stresses and is determined, in the present study, from a two
equation turbulence model.

As pointed out in the introduction and elsewhere [7], the
£low equations (1) to (3) are solved on several blade-to-blade
computational surfaces. The geometry of such surfaces can be
conveniently described in terms of the coordinate (m,¢,n) as
shown in Fig. 1. To reduce the complexity of handling the
computations along these surfaces, it is found more convenient [7]
to introduce a stream function and the mean vorticity of the
turbulent flow as new dependent variables. The flow governing
equations (1) through (3), when recasted in terms of these
variables and transformed to the (m,¢,n) coordinate system result
in the following system of equations [7].

Stream Function Equatioa:

oLl Mroaw, L3 M oM
W= r [8m (bo m T 30 ‘bpr 3®)] (4)

In this equation w denotes the mean vorticity and Uy is the
stream function defined according to the following relations:

M1 o S M1y
Wm . = and w¢ = E 5 (4a)

6 are the components of the mean relative velocity

vector W in the meridional, tangential directions, and M is

where Wm, W

the mass flow passing through the volume bounded by the surface
S1 and the filament thickness, b, shown in Fig. 1. The defi-
nition of y as given by equation (4a) identically satisfies

the continuity equation (l1). In the process of eliminating

the pressure by taking the curl of the momentum equation (2),
while using equation (4) and (4a), the following equation is

obtained.



Vorticity Transport Equation:

3. My 3 MEv 3
m 556 Y T3 boIm @ Tam (Mew)!
s 13 _
-3 (z ¥ (mgw)] + Gy =0 (5)

The source term Gy in the above equation represents the generation

or decay of vorticity due to the effects of rotation, it is

given by:
_ orR M3y 3 M . 3y
Gl = ZQ[EH (b sina 3% =3 {5 glna 55)]
2 2
3p dW™/2 _ 3p W™ /2 2 : 3p
+ m 30 3% T + Q°r sina s (5a)

Energy Equation:

It is found appropriate for a turbomachine rotor to express
tha energy equation in terms of the total enthalpy (H) of the
flow. The tntal enthalpy for a turbulent flow is expressed

as follows:

2 ~2 .2
H=h+ o+ OW.r + %—+ g (6)
2 & 2

where E is the kinetic energy of turbulence. Thus, the energy
equation (3) when transformed to the (m,¢,n) coordinate system,

results in [71:

~ ~ ~ U % ~
M (5 (g dby o2 (g3yy;_3 e, 38 13  “edl
b [am(H am) ao(ﬂ am)] am(Pr T am) r o¢ (57 3@)
5 1 w2 1 1. 5E
P a
* 3n eI 57 TIm 5= -5
CE
u i .
P e M2 L L) By
e °r Pr 3% SCE Px’ 4d¢
3 "o 3
- WCD i (uew) + T 3o (Ueu.)) - Dr + G2 = ( (7



where the source term 62 is given by

M

Gz‘QB

3 2., 3%, _ 3 2
{EE [(¥V¢r+r ) =] 3¢[(W¢r+r Q)

2 ¢

(Wr + —=—)]} (7a)

+ {-«—-—-+%;-——--r—-sina} (7b)

In the above equations Pr denotes the turbulent Prandtl number
and sCE is the turbulent Schmidt number for the kinetic energy
of turbulence E.

Turbulence Model

The mean flow equations introduced earlier as equations (4),
(5) and (7) involve more unknowns than appropriate to the
equations. This well known problem of closure is a character-
istic of all nonlinear stochastic systems. The majority of
investigators in the area of turbulent flow have been concerned
with this closure problem. The most prominent and practical
attempts have been the develomment of various second orde>
two equation turbulent models. 1In this, two scalar gquantities
are used to characterize the turbulence, with esch quantity
satisfying a nonlinear partial differential eguation. Commonly,
the two equation models employ the kinetic energy of turbulence
as one of the gquantities. The second quantity used by different
researchers [0] 1s a dissipatioa function, a length scale, or

a dissipation rate.



The two equation model proposed by Spalding [9] for the
kinetic energy of turbulence, E, and its volumetric rate
of dissipation € is used in the present work. Previous
experience [10] indicates that this model provides accurate
prediction of various flow regimes within turbomachine passages,
in addition to being less complex and more gen=ral. The
complete details of the model and its implications are given
in reference [9]; in brief, its main features are outlined
in what follows.

The Reynolds stresses are related to the velocity gradients
through an effective viscosity, Mot This viscosity is assumed
to be isotropic at any point, but can vary throughout the flow
field. The distribution of the effective viscosity Me is
determined from the local values of density, o, the turbulent
kinetic energy, E, and its volumetric dissipation rate, €.

The expression used is:
2

1

b = Y, + CD Q (7¢c)

e

ml[

where the laminar viscosity, By is considered to be uniform
and known.

The equations governing the transport of E and ¢ have
a general form which includes convection, preduction, diffusion
and dissipation terms. These can be wcitten in terms of the

(m,$,n) system of coordinates as follows [1l1l].

Turbulent Kinetic Energy Equation:

M 3 39, 9 3y 3 Ye 3E
b [Bm (E 3«) 50 (E Em)] om (S r Em)
CE
3 Ve 3E )
- 3% (s—— I.‘S'D) - rD + per = ) (8)



Di==_.pation Rate Equation:

Mo 3 30, 3 30 3 Ve
B om 3% "3 Cwm! w5 W
Ce
M . 2
-3 e 1 s¢e = kK = E_ i a
T (scE s ~C g+ & or=0 (9)

The terms containing the coefficients SCE and SCe in equations
(8) and (9) represent the diffusion rates of E and ¢
respectively. These coefficients therefore have the signifi-
cance of turbulert Schmidt numbers for the transport process
in question. The model contains five empirical constants

which are assigned the values given in the following table.

Values of the Empirical Constants
for the k-¢ Model of Turbulence

‘o 1 <2 Sce Sce
0.09 1.44 1.92 1.0 1.3

The basis for choosing the above cited constants are discussed
in details in reference [9]. It may suffice therefore to remark
that El is chosen so that Von Karman constant equals 0.42 and
C2 is determined by reference to the decay of grid turbulence.

CD is fixed from the following requirements in a constant stress

layer:

172 (9a)

tw/:E =Ch

where 1 is the wall shear stress. The diffusion coefficients
v

SCE and SC' were fixed in (9] by computer optimization.



It should be emphasized at this point that the additional
production cf turbulence energy by the rotational effects as
well as the effects of surface curvature has been neglected
in the present form of the turbulence model. Mndifications
to include these additional effects continues to be a subject
of rerent research by different schools.

Equations (4), (5), (7), (8) and (9) are the eguaticns to
be solved for w, ¥, H, E and € to study the turbomachine flow
problem. One can observe that these equations constitute a
system of coupled elliptic partial differential eguations,
involving second ordar derivatives. From the nature of the
problem, ncne of the terms are negligible in the governing
equations. In order to solve these elliptic equations, it is
necessary to define a selected region in the physical domain
with boundary conditions specified for all the flow variables
along the boundaries. The computatioc i1l domain used is shown

in Fig. 2.

Boundary Conditions -

Inlet Bsandary AN:
Irrotational and prescribed uniform flow conditions are

imposed along this boundary. Therefore,

21 = - L a—‘.JL ) ﬂ = —
am r 39 tanbinlet ! FL) 27/z !
w= - [20Q sina]inlet ’ H = Hinlet . (10)

The value of the inelt kinatic energy of turbulence, Einlet’
is specified to be 0.05% of the square of inlet velocity.

The dissipai 'on rate is deduced from the turbulence length
scale [9]:
3/2 C3/4

- Einlet D

/2 (10a)

where % is taken to be 0.006 m for the case studied in the present

work.



The Pericdic Boundaries AB, NM and FG, IH:

The periodicity condition is enforced along these boundaries.

This implies that the value of all fluid proverties as well as
their ¢ derivatives, except for the stream function V¥, have

equal values at every two corresponding points along AB, NM.
Regarding the stream functicn, the value of J's are made to
differ on the two boundaries AB, NM by a constant value that is
proportional to the mass flow rate, M. Similarly, the same
conditions are imposed along FG, IH.

The Blade Surfaces MI and BF:

A special approach is needed to compute the flow variables
near the blade surfaces for the following reasons. 1In the central
region of the flow, the gradients of the flow properties are
usually not very steep, and a moderately fine finite difference
grid vields accurate solutions. However, close to the blade
surfaces, the variations of flow properties are much steeper,
thus reguiring an extremely fine grid for accurate computation.
This implies that the total storage reguirement in the computer
3 111 be rather large. Moreover, the present form of the
turbulence model as given by eguations (8) and (9) is valid only
for fully turbulent flows. Mcdifications are reaquired to make
it applicable near laminar sublayer regions where the turbulence
Reynolds number (= pEZ/uza) is low. 7. overcome these diffi-
culties, an approach based on the use of wall functions [9] will
be employed in the present study. In this approach, all the
finite-difference gird nodes (except for those representing the
blade surface) are located in the fully turbulent region. It is
then assumed that a logarithmic velocity profile exists in the
region between the blade surface and the point (w+1l) located in
the turbulent region. This can be expressed as follows:

Moa

|
W = ’:_'i
w+1 bp 5N

1/4 E1/2 i inle AN;}C1/4

1/2
D w+l K E

t
{ =C D w1

w1l

/Ug] (11)

where the subscript (w+l) is used for the values at the internal

grid node (w+l), C. 1is the constant in the turbulence model,

D
10



K and e are the log-wall constants (K = 0.42 and e = 9.0),
and AN is th=2 distance of (w+l) from the blade surface. The

velocity W is assumed to be parallel to the wall-shear

w+l
stress which is given by:

T. =0 Cl/2 E

W D w+l Lh 1)

The value of the energy-dissipaticn rate at the internal
grid node €t l is determined from the requirement that the
length scale varies linearly with the distance from the
blade surfaces

3/4 _.3/2
ay cD Ew+1 (11b)
w+l KIN -

-
-

The value of the energy of turbulence Ew+l is calculated from
the governing eguation (8), with the following modifications.
The diffusion of energy to the blade surface is set equal to
zero, and the generation term D in equation (8) is modified
to account for the value of the wall shear sti.ess as given by
equation (lla). The dissipation term is also modified
accnrding to equation (llb), and is assigned an average value
for the near-wall ncde as follows:

N
+1 w+l
3/4 g3/2 7 L an (11c)

dN = p CD s ! T

™

— ‘w
oe =p |
o

For the vorticity boundary condition, equation (1ll) is
used in ccnjunction with the stream function eqguation (4) to

determine w at the grid node (w+l).

Downstream Boundary GH:

The conditions of zero gradients in the meridicnal direction

are imposed along this boundary for H, E and =, i.e.

Il
o
—
N

and

11l



For the vorticity w, the absolute value is taken to be zero,
thus

w = - [2Q sina] (12b)

exit

For the stream function v, the downstream flow velccities,
which may be used to determine U derivatives along GH, and that
guarantee a unique solution to the problem are unknow apricri.
Therefore, a supplementary condition based on the conservation
of angular momentum principle is employed in the present wecrk
to yield the required unique solution. The details of the
procedure can be found in reference [7].

Coordinate Transformation

The solution of equations (4)-(9) subjected to the appro-
priate bcundary conditions discussed earlier are carried out
numerically. In order to reduce the complexityvy of handling the
numerics near the curved boundaries of the blade surface, a
coordinate transformaticn of the (m,¢,n) syvstem to a contracted
boundary fitted coordinate is required. The overall effect of
this transformaticn is to produce a square field in which the
blade surfaces become straight and parallel. As pointed out
earlier in reference (7], two transformations are used to
implement the generation of the boundary fitted coordinates for
the blade 4o-blade domain in Fig. 3a. The first one is obtained

by defining a stretched meridicnal coordinate, x, given by:

dx = dm (13a)
Y

The second transformation [6] generates the boundary fitted

coordinates { and n through the numerical sclution cf the
following equations for x(&,n) and ¢(Z,n).
<3 2 2
o X a=x 17X -
8 w = 28 we=— b = m OLE 0]}
S . an*
. 22 2
§ = 23— 4 = P(3,n) 13b)

>
ro
Q
'

o
o
b
o



where

2o _ix dx , 36 30
§ =GR + &) v BTt T
2 2
_bx 3 (13c)

The functions Q and P in the abo7e equations are appropriately
chosen to provide control over the spacing of the coordinate
lines in the field.

Mapping the region of interest in Fig. 3a in terms of the
new boundary-fitted system of coordinates (£,n) yields a fixed
square field in the final transformed domain as shown fn
Fig. 3b. Thus, it is possible to carry out all flow calculations
on the fixed square field, using uniform grid with no inter-
polation required regardless of the blades shape in the physical
space.

Before transforming the flow equations (4)-(9) from the
physical domain to the fixed square field, it is found con-
venient to express the flow variables in these egquations in

the following dimensionless form:

* wr * * r « b
= W )t ’ H = - ;i ’ A T b = b !
m o (Wm)o t t
. - & er, pry oPri
g = 2 ¢ & ¥ 3 ¢ e (wm)o . e ® "
(wm)o (Wm)o e E
(14)

where the subscripts o, t denotes the conditions at the upstream
boundaries (A-N) and (M-B) respectively.

By applying the chain rule for partial differentiatior
and using the expressions given by the relation (14), the
governing flow equations in the transformed domain can be written

in terms of the new variables (£,n) as [7]:

d.d



Stream Function Edquation:

r b
o 2n 3 1 5u 3 1 3 .9 1 3
CE T Ry G i R
Tt ot b ¢ b > b
2
5 15 *  x< 3
-3 %ﬁ (% =2 }=-w r J (14)
b "
Vorticity Transpcrt Equicion:
3w 3, 3w Ro 3 sinx
w N w g o 3 sinx 31
J [x¢ (v =) ~ 3z (& =) +27 = == (=5 5—-)
Jz b an an b £ Re "J% b on
2 *
J3gsim uy _TePez o o2f T
I T * dx r b Z7 ‘7 .2 Re
b O G ar
.2 * ;2 *
a W - 21 i = 5
+y 2 (%) 22 3 (Re)] 0 (15)
Energy Equaticn:
b *
r
o (9 Lty 3 * 30, , t 2 : 1 1 3H
Tl o s W\ e m Uy mg e o)
* *
3 1 1 3H - 1 1 GH
-8 a7 (G5 =) -8 == (53 57 )
35 "Re Pr on on 'Re Pr o
3 1 1 5H * *
+ Y FE) (ﬁgﬁ; T(T) - + G4 = 0 {16)



Turbulent Kinetic Energy Equation:

b *
o ,9 * 3. 3 * 3y Ty 2 5 1 1  3E
J —+ 1 (E ==) =~ (E =2)]-=— 5= [§ =% (5= 747/ =)
b 3g an n a& r, 2m 3¢ 'Re SCE ok

5 1 1 3E 1 1 e
E 3 3
=B 3r (55— =) -8 == (32 5— 5
d& ‘Re CE an an ‘Re bCE 9%
o}
3 1 1 3 R
+ Y 5= (52 5— ) =D + 5=J" ¢ =0 (17)
an ‘Re bCE on 27 ro

Dissipation Rate Equation:

b r *
o 0 i
J;g[%gm - e ggn_%t-%[agé_@g;—cggp
311 et 5 1 1 3e

- -b-a—g(ﬁgs—c—e—*é-ﬁ—)“s'a—ﬁ(ﬁgsc—saé)
. a . L . ) x2 32
+yﬁ(—eé—cz£—)-élm ?+%62J ;—;—io
= 0 (18)

where 2z is the number of blades, D* and GZ are the nondimensional
2quivalent of the source terms D ana G, in equations (7b) and (7a).
The transformation parameters, Jld, £, v in the &kove egqua=iore
are defined, in the present work, using Thomupson's numerical
package [6].

As pointed out in reference [7], the sclution of eguations
(14)-(18) in the (&,n) domain provides the required distribution
of the flow variables ¥, w, H, E and £ in the physical space.

In order to solve these equations numerically, a suitable
finite difference method is required. The computational method

used 1s outlined in the following section.



2. SOLUTION PROCEDURES

The derivation of the general finite difference equations
corresponding to equations (14)-(18) is described first. This
is followed by the procedures employed for the simultaneous
solution of the resulting difference equations.

Referring to Fig. 3b, the finite difference representation
of equations (14)-(18) is obtained using standard five point

difference operator. Thus,

= ! ) !
Yi,9 T PMVie1,5 T RVio,5 Ay 5e1 AV 5
+Ag (19)
* ) * * - * . *
“i,5 T Bi¥iel,3 F Ba¥io1,5 T Ba¥i e T Bt 5o
+ B5 ‘ (20)
* - I* * * *
= C,H. . . . H, . T v
+ CS ’ (21)
* * * * *
E = . . S - t 5. E. .
Bi,g T P1Biaa,s P P2Biog,5 FP3Ey gh1 v DyEy g
+ Dg o (22)
and
* - (‘* 1 ,,* 1, *
“i,3 © KiCie1,9 7 Kpfio1,5 7 K3ti,j+i T RgELL -1
+ K (23)

where the value of the different coefficients in the above
equationg are given in Table 1. A combination c¢f central and
upwind differences are used for evaluating these coefficients.
The detaills of the differencing technicues is reported in

reference [7].

16



Solution of equations (19)-(23) will be obtained using a
successive relaxation iterative method. In using this method
there are alternate methods for handling the coupling between
the governing equations. For example, if these equations are
solved in sequence, the coupling has to be restored through
repeated iterations. Not all iterative schemes, however
converge to a solution and experience proves that the solution
of a system of coupled nonlinear equations converges for
laminar ﬁlows, but diverges for turbulent flows. The problem
of instability usually arises from the coupling between the
mean velocity profile and effective viscosity profile.
Reference [12] suggests the use of a successive convergence
technique to retard and dampen this coupling to ensure con-
vergence under any set of boundary conditions.

The successive convergence technique is implemented in
the present work by decoupling the turbulent kinetic energy
and dissipation rate eguations (22) and (23) from the remaining
equations. The former are solved sequentially rather than
simultaneously with the vorticity and the stream function
equations (19) and (20). The details of the procedure is as
follows. The stream function and vorticity eqguations are
first sclved with a frozen viscosity field using the same
numerical scheme outlined previously in reference [7]. Once
a convergence solution has 27 obtained, tie kinetic energy of
turbulence and the dissipaticn rate equations are then solved
using a Gauss-Siedel method %o cbtain a new round of frozen
viscosityv field which will be used in the next cycie of
convergent solution for ¥, w. The step described immediately
above is executed several timmes until a convergance criteria
is satisfied. When thr. calculations have reached this stage,
the energy equation (21) 1is then solved using again the Gauss-
Siedel method.

The computer program used to carry out the actual flow

calculations is an expanded version of the one used in Part I



of this study. In order to keep the computer time within
reasonable limits (usually less than nine minutes for turbulent
cases on an AMDAHL 470), the unit sgquare region has been
divided into 30 step sizes in n direction and 40 in the £
direction. These grids have not been optimized, however

they will suffice for the present purpose, which is to
demonstrate the capability of carrying out calculations of this

typre of flow.

3. COMMENTS ON THE COMPUTATIONAL METHOD

Before proceeding to a detailed discussion of the numerical
solution of the‘flow case studied, a few comments are given
first.

Special consideration had to be taken into account during
the numerical generation of the boundary fitted coocrdinate
system for the blade-to-blade dcmain of Fig. 3. This pertained
to the enforcement of the periodic boundary conditions in an
effective manner. In order not to resort to additional
iterations solely for the purpose of enforcing the periodicity
conditions, it was reqguired that the £ coordinate line emanating
from one point on the lower boundary AB of Fig. 3 must meet
the upper boundary NM at the point having the same meridional
location., Generally, this constraint was easily satisfied,
since as explained in reference {7}, the assicgnment of the
£-values to the boundary points via the functions fl’ f2, 9y

and g. is arbitrary. Although the distribution in the I lines,

2
in these cases, did not necessarilv produce orthogonal coor-

dinates, as exemplified in Fig. 3, the lack or orthogonality

created no rrobrem at all.

Scme problems arose with the convergence characteristics

of the kinetic energv of turbulence equation during the numerical

solutions. Guided by an analysis, for a simple test case with

13



Zew grid points, and v subseguent experience on the comnputer,
the cause of tha problem was traced and defined to be the source
term (D) 1n equation (3). Since this term is a function of

the square cf the kinetic energy itself [see equations (7b)

and (7c)], it might therefore be anticipated that this term

vary so widely, during the iteration procedure, so as to

provoke divergence. To reduce these variations, a rearrangement
of the finite difference eqguation (22) is sought. For this

the source term, D, was written as

D=uFy; =uwF +E {CD o = Fyl (24a)
where
W2 y W, W 5
Fl = 2[(§a~) + (; 50 + T sina) ]
W, %W W, )
* g trag T po sino (240)

Thus, by substituting eguation (24a) in eguation (22), and

rearranging, one obtains:

* * * -
< + E. + D.E. . + . + D
* D1E1+l,3 DZLL 1,3 J3rl,j+l DJEl,j—l 3 9
(5= — (24c¢)
’ i< T ) F - 5 o . .
{ ., on Cy Fy B/ /Do)l’]
where
e 21 g% 11
5 V2 an [=u T A r oo (b 2P
Dg = nhon [-u,Fy + o= J7¢ r, AT S0 9N !
*
.5 11 i e
- 4 o= i 4d
Moo (Re Sop 76 )]/Do (24d)

With this new substitution formula, the varliations in the
modified source term was found to be much less than thesa ot
the original ¢ne end convergence was restored tor all cases
studied 1in the prescent work.
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A problem similar to that immediately discuscsed above was
developed with the scurce term in the dissipation rate equation
(18). Again, the finite difference equation (23) was rearranged
in a similar manner so as to dampen the variation of the source
during the numerical soiuticn.

It is appropriazte to mention at this stage a special
practice was emploved near the blade exit region along the
poundary I (see ¥ig. 2). Under certain clrcumstances, a
smooth variation for the kinetic energy of turbulence and its
dissipation rate, was not achievable near the blade exit.

This in turn caused some difficulties in the calculations,

and eventually induced divergence especially in cases involving
small convergence criteria. In order to alleviate this kind of
restriction, the condition given by equation (12a) was applied
along the boundary FI in Fig. 2 instead of the boundary IG.
Although this mcdification ensured convergence, under anv set

of conditions, it is felt that further study is recommended

to remove the inadequacy resulting from the neglect of the decay
cf E and ¢ downstream the blade row.

The calculation procedures used to establish convergence
for each cycle of solution for the stream function and vorticity
were covered in some detail in Volume I of this study [7].

Tvpically, intermediate convergent solutions at given effective

viscosity distributions were obtained after 50-80 iterations on
the average. A succession of 15-25 rounds of intermediate con-
ficlds were

vergent solutions with frozen effective viscosity

fvr a complets numerical soluticn of a tvpical problem.

e studled here, the determining convergance criteria,
each cycle of w and ¥ calculations, turned out to be the

vorticlity tolerance. That 1s, wnen the vorticliv tolerance was

inally satirficd, the stream function error was considerahly
ed values. Likewise, the determining convaorgence
criterie during the subcyele of ¥ and o calculations Lurned

out tu be the RKinetic encrgy of turbuloence tolerance.



4, RESULTS AND DISCUSSION

The procedure described in the previous sections is emploved
to obtain the flow details in a cooled radial inflow turbine
rotor. Ths rotor geometry is shown in Fig. 4 together with the
shape and thickness distribution of the camputational surface Sl'
The blade-to-blade shape in the physical domain as well as the
boundary fitted coordinates employed in the solution are those
shown in Fig. 3. Additional summary data related to the blades
geometry and the configuration of the computational surxface S1
can be found in Table 2. The following operating conditions for
the turbine are used in the analysis:

Turbine inlet total temperature, Ty §083°K

Turbine inlet density, p, 1.0060 Kg/m

Rotational speed, Q, 38,500 r.p.m.

Rotor inlet flow angle, 8, , 62.5°

in

] o
Rotor exit flow angle, Bexit' 63

Meridional component of the relative velocity at rotor
inlet, Wm, 66.2 m/s oW T

g}g: ie{gglds number at rotor inlet, Re (= us )inlet'

Prandtl number, 0.8
The flow through the turbine is considered to be incompressible
and the blade surfaces are coocled and kept at a uniform tem-~
perature of 550°K.

Results of the analysis are presented in Figs. 5-through 9
as contour plots for the distribution of the stream function,
the velocitv, the kinetic erergy of turbulence as wzlil as the
temperature within the blade passages.

The stream function contour plots are given in Fig. 5.

The flow contours depicted reflect the appearance of a recir-
culating eddy near the pressure surface o: the blades. The flow
rate within the eddy amounts to about 2.5% of the flow rate
through the turbine (as indicated by the designaticn of the
streamlines). This low flow rate implies low relative velccities

within the eddy as will be discussed shortly. The manner in
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which the streamline (y=1) leaves the blade surface indicates

that a separation bubble is formed over the aft portion of the
blade suction surface. This behavior seemed to be caused by

the inability of the flow to accommodate the large blade deflection
angle in this region.

The distribution of relative velocity, W, across the
blade-to-blade passage, nondimensionalized with respect to the
blade tip speed, Qrtip' is shown in Fig. 6. The contours show
a core of high relative velocity centered at a point located
at approximately 15 percent of the passage width from the blade
suction surface. A region of distinct velocity deficiency is
also observed in the upper half of the passage extending to
about 70 pércent the blade chord and is most pronounced near
the blade pressure surface. This region coincides with the
location of the recirculatory eddy shown in Fig. 5. The data
in Fig. 6 also indicates that the flow experiences a high
acceleration rate near the blade pressure surface as it approaches
the passage exit. This behavior is uimilar to that of flow
approaching a turning duct and is expected.

In order to gain some insight into the development of
the boundary layer over the blade surfaces, the velocity profiles,
across the rotor passage, at different meridional locationms
are introduced in Fig. 7. The locatious are selected to
correspond to the meridional distances 1.0, 4.0 and 6.0 cms
respectively. The profiles of Fig. 7a and 7b show reversed flow
regions existing near the blade pressure surface and steep
gradients in the velocity near the suction surface. There .- a
noticeable change in the velocity profiles at subsequent do.ristream
stations. A jet type of profile exists near the turbine exit as
illustrated in Fig. 7¢. The complex flow pattern observed
generally in Figs. 6 and 7 indicates the significant extent
of the complex interaction mechanism that occurs between the
different flcw regimes (i.e. boundary lavers, recirculiating
eddies and separation regions, etc.) within the rotor channel.

As a consequency of such interaction, ru clear distinction can be
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made between the boundary layer regions and the inviscid core.
This result emphasizer the inaccuracies involved in using a
nonviscous flow soluation, such as the one shown in Fig. 7 (with
dotted lines), tc generate boundary layer characteristic
parameters for flows in turbomachine rotors.

Figure 8 shcws the distribution i the kinetic energy

of turbulence between the blades. The turbulence intensities
2

tip’
Near tae passage inl2at and up to 60 percent of the blade chord

]
are plottad using the nondimensional quantity E = E/ﬂzr

peak turbulence intensities are observed to occur in the mixing
resicn of the recirculating eddy noted in Fig. 5. The flow
energy dissipated in this process of recirculation is responsible
for the velocity defficiency enccuntered near the blade pressure
surface as shown in Fig. 5. On the whole, it could be recognized
that the turbulence intensities are generally hicher than those
encountered in a stationary passage. The maximum intensities
are seen to occur near the blade surfaces and especially at the
passage exit. The relatively high values of kinetic energy
of turbulence shown in the figure away from the blade surfaces
reflect the extent of turbulent mixing even near the mid passage.
The classical assumption that the viscous and turbulence effects
are confined to very thin regions near the blade surfaces 1is
evidently inaccurate when dealing with flow in turbomaciiinerv.
It is with the present type of analysis that involves the sclution
of the full field equations in addition to a suitable closure
model for turbulence that a realistic flow prediction can be made.
It should be emphasized, however, that the kinetic energy of
turbulence results presented here must be viewed as qualitative.
This is attributable to the fact that the additional production
of turbulence energy by the rotational erfects as well as the
effects of blades curvature has been negiected in the present
form of turbulence model.

Finally, the static temperature distribution within the
blade-to-blade passage, nondimensionalized with respect to
the inlet total temperature is given in Fig. 9. Inspection of
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the contours plot indicates that the steepest gradients in
temperature profiles occur near the blade suction surface at
the channel inlet and near the pressure surface at the channel
exit. This behavior is plausible, since the velocities in these
regions are high (see Fig. 6). Conversely, it is observed that
the thermal layers tend to thicken on the suction surface at
trailing edge and alsc near the pressure surface where the
recirculating zone exists. Since the rate of heat transfer

to the blades is proportional to the temperature gradients near
the surface, therefore, one can conclude that maximum rate of
heat transfer occurs at the blade leading edge and also near
the blade suction surface. This result has important impact

on the process of designing the cooling passages for new
impellers, particularly when the design procedure is based on
specifying the blade temperature distribution. The present
results suggest that in order to keep the blades cooled at
constant temperature, it is necessary to place large number of
cooling passages near the blade leading edge and also along

the suction surface in the neighborhood of the impeller inlet.

5. CONCLUSIONS

A method has been developed which is suitable fcr analyzing
the viscous flow within turbomachine passages. The field
analvsis was based upon the numerical integration of the full
incompressible Navier-Stokes equations over a predetermined
set of blade~to-blade stream surfaces. The method employs a
nonorthogonal body-fitted coordinate systvem to account for the
most complicated blade geometries. Effects of turbulence were
modelled using a two-equation turkulence model.

Significant viscous flow results were obtained by applying
the method of analysis to a radial inflow turbine. The
predicted flow patterns indicated the severity of the complex
interaction mechanism that occurs between the different flow
regimes (i.e. boundary layers, recirculating eddies, separation

zones, etc.). This result emphasized clearly the inaccuracies
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involved in using a nonviscous flow solution with classical
boundary layer techniques to obtain viscous flow details
within turbomachine rotors. Heat transfer results pointed
out that in order to keep the rotor blades cooled at uniform
temperatures, it was necessary to place a large number of
cooling passages near the blades leading edge and also along
the suction surface in the vicinity of rotor inlet.

On the whole, it is recognized frcm the results presented
here and in Volume I, that the present flow analysis provides
a good prediction of the actual flow behavior within the passage
of turbomachine rotors. This accomplishment cannot be
attributed to anvy single element of the analysis, but results
from the combinations of many factors. The major one is believed
to be the preservation of the ellipticity of the problem by
working with the full Navier-Stokes equations. Other important
factors include the transformation, discretization and the
numerical proccedures used that provided stable calculations
of good accuracy.

As with all research efforts of this magnitude, several
areas for future work are recognized during the course of the
present study. These include the use of variable grid in the
numerical scheme, the inclusion of the effects of rotation and
surface curvature in the turbulence model and the inclusion of
the flow compressibility in the solution procedure. Similarly,
the inaccuracies involved in using the present method to
analyze flows including three dimensional separated zones are
identified and documented (see Vol. I).
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NOMENCLATURE

Coefficients of the finite difference eguations.
Coefficients of the finite difference equations.
Normal stream annulus thickness, m.

Coefficients of the finite difference equations.
Constants in the turbulence model.

Specific heat at constant pressure, J/(Kg) (°K).
Dissipation function.

Coefficients of the finite difference equations.

‘Kinetic energy of turbulence, J/Kg.

Denocting source terms in the flow governing equations.
Static enthalpy, J/Kg.

Total enthalpy, J/Kg.

Jacobian matrix.

Coefficients of the finite difference equations.
Mixing lencth, m.

Mass flow per blade flowing through the stream
annulus, Kg/seé.

Outward unit ncrmal to the stream surface, Sl'
Distance cf the near-wall grid point (w+l) from the
blade surface.

Static pressure, N/m2 or blade pitch.

Effective turbulent Prandtl number.

Radius from axis of rotation, m.

Universal gas constant, U/(Xg) (°K).

Reynolds number.

Schmidt number for kinetic energy of turbulence.
Schmidt number for dissipation of kinetic energy of
turbulence.

Temperature, °K.

Relative velocity vector, m/sec.

Magnitude of W, m/sec.

Meridicnal component of the relative velocity vector,
m/sec.

Tangential component of the relative velocity vector,

m/sec.
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X Stretched meridional coordinate.

z Axial coordinate, m.

2 Number of blades.

o Angle between m and z, rad., see Fig. 1.

< Coordinate transformation parameter, or angle between
relative velocity vectcr and meridional plane, rad.,
see Fig., 2.

Y Coordinate transformation parameter.

3 Coordinate transformation parameter.

o) Fluid density, Kg/m3.

Ha Effective viscosity,zmz/sec.

Mo Laminar viscosity, m"/sec.

Q Rotational speed, rad/sec.

o) Relative angular coordinate, rad.

U] Stream function.

W Vorticity, 1l/sec.

€ Dissipation of kinetic energv of turbulence, J/Kg.

g Boundary fitted coordirate.

n Boundary fitted coordinate. "

Superscripts

*

§3bscrigts

e
'3
m
w
wtl

i,3
inlet
exit
total
t, tip

Mean value.
Denotes nondimensional quantity.

Effective

Laminar.

Meridional component

Wall value.

Pertaining to points in the flow field at a distance
An away from w.

Tangential component.

Denotes field position in (£,n) domain, see Fig. 3b.
Inlet or upstream.

Exit or downstream.

Total conditions.

Rotor tip.
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TABLE 1 - COEFFICIENTS OF THE FINITE DIFFERENCE EQUATIONS
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+ All unsubscript quantities in this table are evaluated at the grid

node (i,j). Note that the stream channel thickness b; is constant
for all j.
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* The Prandtl Number is assumed to be constant in this table.
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TABLE 2: BLADE GEOMETRY DATA RADIUS

Blade Lower Surface Data

38

D?:zigigngl(m) nggéila‘:te Derivat.ve Deri\r;gtive
0.62539D-03 0.56273 -0.45678 -7.2554
0.86000D-G2 0.55900 -0.4€035 6.3594
0.16000D-01 0.55560 -0.43120 -11.995
0.23500D-01 0.55220 -0.35261 45.288
0.29030D-01 0.55050 -0.34501 471,542
0.34280D0-01 0.54900 -0.52816D-01 154.86
0.39540D0-01 0.54640 -1.7845 -813.31
0.46230D-01 0.51540 -7.6118 -928.77
0.5394CD-01 0.42500 -15.982 -1242.5
0.61970D-01 0.23650 -33.844 -3206.4
0.67011D-01 0.23898D-01 -50.743 -3497.8

Blade Upper Surface Data

Dl\id:iigcizgnrﬁm) ng%i‘a’gte Derivative Derisgtive
0.62539D~-03 0.84710D-02 0.45678 5.7000
0.86000D-02 0.12200D-01 0.46655 -3.2487
0.16000C-01 0.15600D-01 0.45729 0.74568
0.23500c-01 0.18900D-01 0.40262 -15.325
0.29030D-01 0.20900D~-01 0.32213 -13.787
0.34280D-01 0.21500D-01 -0.26520 -209.96
0.39540D-01 0.16000D-01 -2,0543 -470.30
0.46230D-01 -0.11600D-01 -8.6949 -917.03
0.53940D-01 -0.96200D-01 -15.993 -1495.0
0.61970D-01 -0.27910 -20.342 -0278.9
0.68363D-01 -0.53070 -50.743 -4303.7



TABLE 2: BLADE GEOMETRY DATA

Radius from

39

Meridional . Stream Annulus
. Center of sina X
Distance m(m) Rotation Thickness, b{(m)
-0.007079 0.083527 -1.004280 0.000967
-0.003684 0.080123 -1.000120 0.000956
0.0 0.076450 -0.993984 0.000960
0.003498 0.072986 -0.985732 0.000982
0.00€853 0.069697 -0.974760 0.001013
0.01004s8 0.066603 -0.960602 0.001043
0.013104 0.063701 -0.937357 0.001068
0.016034 0.060999 -0.904973 0.001090
0.018845 0.058511 -0.862745 0.001110
0.021535 0.056258 -0.810406 0.001128
0.024127 0.054236 -0.749061 0.001144
0.026630 0.052443 -0.681938 0.001156
0.029055 0.050874 -0.610477 0.001160
0.031413 0.049519 -0.540900 0.001155
0.033711 0.048348 -0.478504 0.001157
0.035959 0.047338 -0.420336 0.001179
0.038162 0.046477 -0.360370 0.001216
0.040329 0.045762 -0.29957§ 0.001253
0.042466 0.045177 -0.250202 0.0012834
0.044574 0.044690 -0.214878 0.001310
0.046662 0.044266 -0.192922 0.001335
0.048730 0.043881 -0.180691 0.001362
0.050782 0.043516 -0.176406 0.001389
0.052817 0.043155 -0.179872 0.00141¢
0.054835 0.042782 -0.190020 0.001441
0.056835 0.042392 -0.200095 0.001465
0.058816 0.041987 -0.208736 0.001490
0.060776 0.041570 -0.215980 0.001514
0.062717 0.041145 -0.220585 0.001540
0.064639 0.040729 -0.209999 0.001568
0.066544 0.040353 -0.131434 0.001595
0.068434 0.040051 -0.135325 0.001620
0.070308 0.039843 -0.088592 0.001642
0.072176 0.039709 -0.057745 0.001660
0.074039 0.039618 -0.042105 0.001673
0.075898 0.039550 -0.331892 0.001681
0.077754 0.039499 -0.023363 0.001686
0.079607 0.039462 -0.016506 0.001688
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