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16. Abstract 

Studies  have been conducted t o  examine the  e f f e c t  of t he  gaseous corrodent N a C l  
on the high temperature oxidat ion and sodium sulfate-induced hot corrosion behavior of 
alumina formers, chromia f o ~ m e r s ,  and the superalloy B-1900. Isothermal experiments 
were conducted a t  900°C and 1050°~  i n  a i r  i n  the  presence and absence of NaCl vapors. 
Microstructural changes i n  oxide morphology and increased r a t e s  of oxidat ion were ob- 
served when NaCl(g) was present.  It is hypothesized t h a t  t he  accelerated r a t e s  of 
oxidation a r e  the  r e s u l t  of removal of aluminum from the  scale-substrate  i n t e r f ace  
and the  weakening of t he  scale-substrate  bonds. The aluminum removed was redeposited 
on sca l e  surfaces i n  the  form of alumina whiskers. For t he  superalloy B-1900, alumina 
whiskers a r e  a l so  formed, and the a l l o y  oxidizes  a t  catastrophic r a t e s .  In  the case 
of Ni-25Cr a l loy ,  NaCl vapors i n t e r a c t  with t h e  s c a l e  deplet ing it of chromium. 

With respect  t o  su l f  ida t ion  corrosion, t h e  in t e rac t ions  between NaCl vapors and 
Na2S04 a r e  qu i t e  complex. NaCl dissolved h the  fused salt a t t a c k s  alumina formers. 
For the  chromia formers sodium s u l f a t e  limits the  r a t e s  of reac t ions  between sodium 
chloride and chromia. 

The overlay coating CoCrAlY subjected t o  thermal t r ans i en t s ,  char,  and sodium 
s u l f a t e  depos i t s  produced corrosion microstructures  s imi la r  t o  those observed i n  
Naval gas turbine engines. I n  the absence of t h e  fused s a l t ,  thermal t r a n s i e n t s  
combined with NaCl(g) produce an a l loy  depleted zone with i n t e r n a l  p rec ip i t a t e s .  
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I. INTRODUCTION 

The accelerated corrosion of gas  turb ine  mater ia l s  due t o  t h e  presence of 
condensed s a l t s  i s  comaonly ca l led  hot corrosion. Sul f ida t ion  a t t a c k  is a form 
of hot corrosion i n  which the  p r inc ip l e  component of t h e  condensed salt is 
sodium su l fa te .  Sulf idat ion corrosion has been in tens ive ly  s tudied f o r  more 
than a decade and it i s  rea l ized  tha t  a so lu t ion  t o  t h e  su l f ida t ion  problem re- 
qu i res  a basic  understanding of the  corrosion mechanism(s) sc  that appropriate  
cor rec t ive  ac t ion  can be taken. It is  important t o  a l s o  r e a l i z e  t h a t ,  based 
upon current  knowledge, the  su l f ida t ion  problem curren t ly  encountered w i l l  be 
a major prohlem fo r  machines using coal-derived synthe t ic  f u e l  o i l s  and gases 
because corrodents a r e  formed from na tu ra l ly  occurring impuri t ies  i n  the  coal  
(Ref. 1) .  Fbrthcrmore, these impuri t ies  a r e  not  readi ly  removed by cur ren t  
processing techniques. Corrosive compounds t h a t  a r e  l i k e l y  t o  be found i n  the  
hot s ec t  ion of tu rb ines  operating i n  marine and i n d u s t r i a l  environments include 
Na2S04 a s  wel l  as NaCl (e.g. Ref. 2-4) . 

The c r i t i c a l  s t e p  i n  t he  corrosion phenomenon, su l f ida t ion  a t tack ,  i s  t h e  
des t ruc t  ion of t he  normally pro tec t ive  oxide layer  which separa tes  t h e  fused 
s a l t  from the  subs t ra te .  Thus an  understanding of t he  various mechanisms by 
which the  normally protect ive sca l e s  a r e  rendered ine f f ec tua l  is a p re requ i s i t e  
f o r  t he  a t tenuat ion  of and/or prevention of corrosion. I n  laboratory tests it 
has been shown tha t  one means by which t h e  normally pro tec t ive  layer  is  
rendered ine f f ec tua l  is  by d isso lu t ion  of t h e  oxide a s  a r e s u l t  of i n t e r ac t ion  
between the  sca l e  and oxiae ions present i n  t h e  melt. Other means by which 
the  normally pro tec t ive  sca l e  can be compromised include (a) l o c a l  reducing 
conditions,  (b) mechanical erosion, (c) mechanical f a u l t s  accompanying oxide 
growth, (d) thermal s t r e s se s ,  (e) superimposed operating s t r e s se s ,  and ( f )  
mechanical d i s rupt ion  r e su l t i ng  from chemical reac t ions  (Refs. 5-11). However, 
the  mechanism which r e l a t e s  t o  s c a l e  breakdown a s  a r e s u l t  of chemical reac t ions  
with various chemical species  present i n  t he  gas phase has received l i t t l e  
a t t en t ion  and is l i t t l e  understood even though it is po ten t i a l l y  as important 
a s  any other  mechanism. Hence the  main thrus t  of t h i s  work is d i rec ted  toward 
understanding t h e  mechanism(s) by which the protect ion normally afforded by 
alumina and chromia sca l e s  is compromised a s  a r e s u l t  of chemical reac t ions  
involving reac tan ts  present i n  the  gas phase. 

Accelerated corrosion has been reported t o  occur i n  some Navy gas turbines 
tha t  operate  a t  reduced power l e v e l s  (Ref. 12). An explanation offered t o  
account f o r  such corrosion involves the  ac id i c  f luxing of pro tec t ive  alumina 
sca l e s  by molten salts i n  the presence of SO3 (S02/02)-containing atmospheres 
a t  temperatures of about 1300°F ( 7 0 4 O C )  (Ref. 12).  However, i n  addi t ion  
to  lowered metal temperatures, low power engine operation a l s o  implies 
reduced a i r  flows and burner temperatures. Under such conditions,  t h e  deposi t ion 
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of s a l t s  and combustion products a r e  a l t e r ed  as compared with those experienced 
during engine operation a t  normal power l e v e l s  (Ref. 2). Hence experiments were 
conducted t o  determine the  e f f e c t s  of such exposure t o  pro tec t ive  CoCrAlY coatings 
without so3(so2 /02) addi t ions  t o  t e s t  atmospheres. 

This work was supported by the  NASA-Lewis Research Center under Contract 
No. NAS3-21376; M r .  Carl  A. Stearns,  NASA Projec t  Manager. 
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work conducted f o r  NASA-Lewis Research Center, Contract No. NAS3-21376, 
December, 1978. 
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I 

11. BACKGROUND 

! . .  
# 

A l l  s t r u c t u r a l  a l l o y s  a r e ,  with respec t  t o  the  high temperature oxidizing 
- ,  i 1 ;  

i r environments, thermodynamically uns tab le  and r eac t  t o  form sur face  l aye r s  o r  
. , scales .  The composition and t h e  adherence of such sca l e s  depends i n  p a r t  upon 

subs t r a t e  and environmental compositions a s  w e l l  a s  t h e  parameters time and 
i j :  

* .  temperature. 

Oxidation is  t h e  general  term used t o  descr ibe  the  formation and growth of 
the  surface oxide l aye r  (s) t h a t  develops on s t r u c t u r a l  mater ia l s .  Hot corrosion 
is t h e  phrase used t o  descr ibe  t h e  acce le ra ted  oxidat ion associated wi th  t h e  
presence of molten s a l t s .  The p r inc ip l e  cons t i t uen t s  of such s a l t s  found on hot 
gas path tu rb ine  component surfaces  are the  a l k a l i  s u l f a t e s .  Moreover, d i s c r e t e  
s u l f i d e  p a r t i c l e s  a r e  commonly observed near sur faces  of mater ia l s  which have 
undergone hot corrosion e f f e c t s  r e su l t i ng  from sodium s u l f a t e  deposi ts .  Thusly, 
t he  terms "hot corrosicu" and "sulf idat ion" a r e  f requent lyused interchangeably. 
Moreover, because sea s a l t  c r y s t a l s  a r e  ever present  i n  t h e  a i r  and inadvertent ly  
present  in l i qu id  f u e l s ,  hot corrosion (or su l f  ida t ion)  is a major concern t o  both i 

use r s  and produr.ers of gas tu rb ine  engines. 
4 

I n  inves t iga t ing  s u l f i d a t i o n  corrosion,  researchers  have studied both t h e  
chemical reac t ions  t h a t  occur between fused a l k a l i  s a l t s  and me ta l l i c  subs t r a t e s  
and the mechanisms by which salts deposi t  onto turbomachinery. It is general ly  
agreed tha t  t he  source of the  corrosive a l k a l i  is  sea  s a l t  c r y s t a l s  and t h a t  
the condensed s a l t  always associated with su l f  i d a t  ion corrosion is pr imari ly  
sodium s u l f a t e ,  Many mechanisms have been proposed t o  account f o r  t he  deposi t ion 
of s a l t s  onto turbomachinery. However, in  addi t ion  to  condensed s a l t  depos i t s ,  
gas tu rb ine  components w i l l  a l s o  be exposed t o  atmospheres containing low 
p a r t i a l  pressures  of ch1,ride-bearing species .  S t e a m s  e t  a l .  (Ref. 3) and 
Kohl e t  a l .  (Ref. 4) have reported t h a t  gaseous NaCl is expected t o  be the  
major sodium-bearing spec ies  i n  the  hot sec t ion  of t h e  gas turbine.  

I n  previously reported s tud i e s  aimed a t  def ining t h e  r o l e  of gaseous 
corrodents ,  t he  United Technologies Research Center, undertook t o  examine the  
e f f e c t s  of gaseous environments on the  su l f i da t ion  a t t a c k  of superal loys 
(Ref. 13) .  The r e s u l t s  of that study a r e  succ inc t ly  summarized thusly:  

Gaseous NaCl and HC1 i n t e r a c t  with and modify t h e  oxide s c a l e  t h a t  
forms on the  i n t e rme ta l l i c  compound N i A 1 .  Spec i f i ca l l y ,  i t  was 
shown t h a t ,  during isothermal oxidat ion in tne presence of such 
gaseous ha l ides ,  the  oxide s c a l e  was covered with numerous alumina 
whiskers. The s i z e  and dens i ty  of such whiskers a r e  NaCl(g) con- 
cen t ra t ion  dependent. It was a l s o  shown t h a t  increasing the  con- 
cen t ra t ion  of NaCl(g) increases  t he  number of whiskers while the  
individual  whisker s i z e  i s  decreased. 
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. Experiments were conducted t o  determine i f  t h e  A1203 whiskers were 
formed by rearrangement of  t h e  sur face  A1203 or  i f  they or ig ina ted  from 
aluminum a t  t h e  metal-oxide in te r face .  Neither impure nor high pu r i t y  
dense alumina developed A1203 whiskers on exposure t o  NaCl(g)-bearing 
atmospheres. Thus, i t  was concluded that the  aluminum source f o r  the  
A1203 whisker formation is  not  at t h e  surface,  i.e., t he  gas-scale 
in te r face .  It was proposed tha t  a halogen-containing spec ies  r e a c t s  
with t h e  a l l oy  subs t r a t e s  t o  form an "Al-NaC1" vapor moiety which 
d i f f u s e s  through the  alumina sca l e  and r e a c t s  with oxygen a t  t h e  f r e e  
surface t o  form alumina whiskers. The p rec i se  na ture  of t h i s  "Al-NaC1" 
spec ies  is  as ye t  unknown. Such a t ranspor t  mechanism is cons is ten t  
with t h e  observation of isothermal rupture ,  spa l l a t i on ,  and ceformation 
of p ro tec t ive  alumina scales .  

3. A t  t he  10 ppm l eve l ,  t h e  concentration of NaCl is s u f f i c i e n t  t o  rupture  
pro tec t ive  alumina sca les .  I n  t h i s  study i t  was folutd t h a t  t h e  NaCl 
concentration i n  a laboratory box furnace atmosphere w a s  about 20 ppm. 

4. In t h e  presence of sodium s u l f a t e  depos i t s  and with NaCl vapors in test 
atmospheres, alumina whiskers a r e  produced. A t  1 0 5 0 ~ ~  in tKe presence oc 
NaCl (a )  vapors, incubat ion periods associated with su l f  i da t  ion a r e  
prolonged. To accoknt f o r  t h i s  observation, it was proposed t h a t  t h e  
"Xl-NaC1" species  removes oxygen from Na2S04 t o  form alumina whiskers. 
Furthermore, t h e  newly formed alumina r e a c t s  with sodium oxide present  
in the  condensed s a l t  t o  f u r t h e r  delay t h e  sulf  i da t  ion-ini t  i a t  ion process. 

5. NaCl vapors were a l s o  shown t o  i n t e r a c t  with chromia-rich sca les .  
A t  9 0 0 ~ ~  NaCl(g) w a s  shown t o  r eac t  with chromia-rich s c a l e s  t o  
produce "S" shaped curves. An "S" shaped curve is ind ica t ive  of 
"breakaway" oxidation where the  r a t e  of oxygen pickup is not iceably 
increased a s  a r e s u l t  of s c a l e  rupture.  Based upon metallographic 
and x-ray d i f f r a c t i o n  s tud ies ,  t he  oxide s ca l e  formed in the  presence 
of NaCl(g) is  composed of both t h e  sp ine l ,  NiCr204, and Cr203. 
Moreover, a reas  a r e  observed where chromia deplet ion is markedly 
evident.  The formation of t he  sp ine l  and the  l o s s  of chromium is  
cons i s t en t  wi th  t h e  formation of v o l a t i l e  chromium-containing species .  
S tearns  et a l . ,  and Fryburg et a l . ,  have shown tha t  the vapor spec ies  
responsible  f o r  t h e  l o s s  of chromium from the  a l l oys  pr imari ly  a r e  
(NaC1),Cr03(g), x = 1, 2, 3, and (%s0H)~Cr0~(g) ,  x = 1, 2 (Refs. 14, 
15).  When Ni-25Cr and chromium specimens a r e  coated with Na2S04 and 
subsequently exposed t o  a i r  and gaseous NaC1, "S" shaped oxidat ion 
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curves a r e  no t  observed. It appeared as i f  Na2S04 mi t iga tes  t h e  
de l e t e r ious  e f f e c t  of  NaCl(g) although the  mechanism by which t h i s  
occurs  was not known. 

6. Last ly ,  the  r o l e  of reducing agents  was examined and it was found 
tha t  f i n e l y  divided carbon co-deposited with Na2S04 onto NiAl decreased 
the  r a t e  of corrosion a t  900°c, but exhibi ted no e f f e c t  a t  1 0 5 0 ~ ~ .  For 
the  chromia-forming Ni-25Cr a l l oy ,  t h e  da ta  suggested t ha t  carbon 
influenced isothermal s c a l e  breakage, but the  cause was not known. 

Accelerated corrosion has been observed t o  occur in  some Navy gas  
turbine engines t h a t  operate  predominantly a t  reduced power (Ref. 12). Because 
low power operation implies reduced a i r  flows, burner temperatures, and metal  
temperatures, the 'concentration of N a C l  (g) i n  t he  environment and r a t e  of 
deposi t ion of s a l t s  and combustion products a r e  changed. Amplifying b r i e f l y  on 
t h i s ,  t he  an t ic ipa ted  e f f e c t s  of low power engine operat ion include carbon 
formation during i n i t i a l  engine i g n i t i o n  and shutdown. Furthermore un l ike  
operat ion a t  normal power l eve l s ,  carbon-enriched atmospheres and the  production 
of f u e l  chars  have been reported f o r  Naval gas  tu rb ines  during operat ion a t  
reduced power l eve l s  (Ref. 2 ) .  Thus, f o r  a gas  tu rb ine  operated in a c y c l i c  
mode, f requent  oppor tun i t ies  e x i s t  f o r  e i t h e r  unburnt f u e l  o r  f u e l  chars  t o  
impact tu rb ine  hardware and l o c a l l y  burn. Moreover such carbon, un l ike  t h e  quickly 
burning powders used i n  t h e  p r io r  study (Ref. 13) ,  can e x i s t  f o r  prolonged dura- 
t i o n s  a t  e levated temperatures. Burn-off r a t e s  f o r  carbon have been previously 
reported t o  s t rongly  depend on the  form i n  which it is present (Ref. 16) .  A l -  

-though t h e  e f f e c t  of s t r i c t l y  reducing atmospheres on corrosion processes has been 
reported (Ref. 17) ,  t h e  e f f e c t  of a l t e rna t ing  oxidizing/reducing condi t ions on 
Na2 SO4 /NaCl (g)-induced hot corrosion has been la rge ly  overlooked. 

The objec t ives  of t he  ptudv reported herein a r e  t o  confirm t h a t  t he  con- 
c lusions based upon t h e  i n i t i a l  shor t  term experimental da ta  (Ref. 13) a r e  
a l s o  v a l i d  f o r  long term tests; t o  i nves t i ga t e  t he  r o l e  of r eac t ive  addi t ions;  and to  
determine e f f e c t s  of a l t e rna t ing  oxidiz ing/reduc ing condit ions on Na2 SO4-NaC1 (g) 
hot corrosion. 
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111. EXPERIMENTAL APPROACH 

A. Mater ia ls  

The composition of t he  a l l oys  employed i n  t h i s  study a r e  l i s t e d  i n  Table I. 
The Y I A l  and CoCrAl specimens were prepared by arc-meltin but tons under an 8 argon atmosphere which were then annealed a t  1 3 0 0 ~ ~  (2370 F) f o r  24 hours i n  
flowing hydrogen. The Ni-25Cr and Ni-40Cr specimens were prepared by induction 
melting t h e  metals  in an alumina c ruc ib le  f o r  20 minutes under an argon 
atmosphere a f t e r  which time the  specimens were annealed f o r  24 hours a t  1 1 0 0 ~ ~  
(2013'~) i n  hydrogen. 

The nominal composition f o r  t h e  B-1900 a l l oy  used here  is  64.0 w/o N i ;  
8.0 w/o C r ,  10.0 w/o Co, 6.0 w/o Mo, 4.0 w/o Ta, 2.0 w/o Nb, 4.5 w/o A l ,  
2.0 w/o Ti ,  0.13 w/o C, 0.018 w/o B,  and 0.06 w/o Z r  (Ref. 18). The CoCrAlY 
(1M6250) coating used is  nominally 18-24 w/o C r ,  12-14 w/o A l ,  0.5-0.75 w/o y ,  
balance Co, applied over a Mar-M509 subs t r a t e  (10.0 w/o N i ,  23.5 w/o C r ,  55.0 
w/o Co, 7.0 w/o W ,  3.5 w/o Ta, 0.2 w/o Ti,  0.60 w/o C,  and 0.50 w/o Zr) 
(Ref. 18) . The coating was applied by physical  vapor deposition (PVD) techniques 
and subsequently given a standard heat treatment (4 hours a t  1 0 7 9 ~ ~  [ 1 9 7 5 ~ ~ 1  i n  
argon). 

The pure chromium used i n  l imi ted  t e s t s  was supplied by M r .  C.  A. Stcarns ,  
NASA-Lewin Research Center. The 4N+ pu r i t y  mater ia l  d id  contain t r a c e  l e v e l s  
of calcium a s  at!ermined by energy d ispers ive  analyses. 

A l l  specimen& were machined t o  approximately 2.5 cm x 1.0 cm x 0.2 cm 
(6.4 cm sq. sur face  area) and ground with 600 g r i t  SIC. A platinum support 
wire  was used t o  suspend a l l  specimens, and p r io r  t o  Inser t ion  i n t o  t he  
experimental apparatus they were washed and degreased; t h e  f i n a l  r i n s e  was 
abso lu te  ethanol.  

The air used i n  a l l  experiments w a s  passed over anhydrous calcium s u l f a t e  
(Dr ie r i te )  t o  reduce water vapor leve ls .  The average a i r  flow was 300 scc/min. 
which corresponds t o  a flow ve loc i ty  of 0.19 cm/sec. The sodium chlor ide,  
sodium s u l f a t e ,  sodium chromate and ammonium chromate used i n  the  study were 
u l t rapure  o r  a n a l y t i c a l  reagent  grade, o r  t he  highest pu r i t y  obtainable ,  and 
were obtained from t h e  Alfa-Ventron Products. Last ly ,  the  H C 1  gas used i n  
t h i s  program was purchased commercially a s  primary standard HC1-N2 mixtures. 

B. Procedures 

A l l  oxidat ion experiments were conducted using an Ainswort h type RV-AU-1 
balance which is  readable t o  0.01 mill igrams and reproducible t o  - + 0.03 
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milligrams. The specimens were introduced i n t o  a quartz  tube (2.5" 0.D.) 
which was heated by a t h r ee  zone Harshall  furnace maintained a t  + ~ O C  of t he  
s e t  temperature by a Leeds and Northrup proport ional  con t ro l l e r  s e r i e s  60. 

The sodium chlor ide  vapors were generated from t h e  fused s a l t  held in a 
platinum c ruc ib l e  on a movable pedas ta l  within t h e  quartz  tube. The temperature 
of t h e  c ruc ib l e  was measured by thcrmocouples ly ing  immediately adjacent  t o  
the pedastal .  The concentration of sodium chlor ide  gas was determined from 
t h e  d i f fe rences  i n  weights of t h e  platinum c ruc ib l e  before  and a f t e r  each 
experiment and the  mass flow of a i r .  The weight change da ta  f o r  t h e  samples 
exposed t o  t h e  sodium chlor ide  vapors were corrected f o r  condensation of t he  
s a l t  onto t h e  platinum suspension wires.  A t  the  10 and 100 ppm sodium chlor ide  
l eve l s ,  t he  cor rec t ion  f a c t o r s  a r e  1 x and 3.98 x mill igrams per hour 
respect ively.  

Sodium s u l f a t e  was appl ied onto preheated specimens from an a i r  ae roso l  
spray of t h e  aqueous so lu t ions .  Tho quant i ty  of s a l t  appl ied was determined 
by weighing t h e  test specimen before  and a f t e r  t h e  coat ing appl ica t ion .  Chromia 
coat ings were formed by t h e  thermal conversion of ammonium chromate t o  chromia 
which occurs during exposure a t  e levated temperatures, The sodium s u l f a t e  
depos i t s  examined here  corresponded t o  1.0 ( 5 0 % )  mg/anZ of t he  calculated 
specimen's sur face  area.  For mixed sodium sulfate-chromia depos i t s ,  an 
aqueous so lu t ion  of 1 p a r t  by weight Na2S04 t o  2.2 p a r t s  by weight (NH4)2Cr04 
was used t o  e f f e c t  depos i t s  of 3.2 ( 9 0 % )  mg/cm2. The sodium s u l f a t e  component 
of such a deposi t  mixture would correspond t o  1.0 ( 5 0 % )  mg/cm2. 

I n  experiments designed t o  s imulate  low power gas  t u rb ine  operat ion,  
thermal spikes  were used t o  s imulate  the  e f f e c t  of char depos i t s  forming and 
burning of f  in  s i t u  on turb ine  hardware surfaces.  The laboratory test 
involved in se r t i ng  CoCrAlY-coated test specimens i n t o  a box furnacc preheated 
t o  1 3 0 0 ~ ~  (2370°F) f o r  dura t ions  up t o  30 seconds. Char partic?-es were formed 
when salt-coated specimens were exposed with 5 t o  3 c c  of Diesel No. 2 fue l .  
Unlike the commerically ava i l ab l e  carbon, t h e  cha r s  formed a s  described above 
burn slowly and survive f o r  s eve ra l  hours a t  700°C (1290°F). Last ly ,  the  quant i ty  
of char i n  some tests was increased by the  addi t ion  of 5 c c  of Stycast-1260A*, 
an epoxy r e s i n  which contains  approximately 0.1 w/o chlor ide.  Subsequent t o  
t h e  br ie f  exposure i n  t h e  high temperature furnace, specimens were aged i n  
air f o r  severa l  hours a t  700 '~ (1290°~) t o  s imulate  tu rb ine  operat ion under 
steady state coc, i i t ions.  

* An epoxy used f o r  mounting specimens f o r  metallographic examination and 
produced by Emerson & Cuming , Incorporated, Canton, Mas sachuset ts, 
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I V .  EXPERIMENTAL RESULTS AND DISCUSSION 

A. Oxidation-Air Alone 

In  order t o  e s t a b l i s h  a base-line from which meaningful comparisons were 
made, t he  a l l oys  described in Table 1 were isothermally oxidized in a i r  a t  700°, 
900' and 1050°C. Moreover, experiments involving NiAL, Ni-25Cr and B-1900 a t  900' 
and 1 0 5 0 ~ ~  were conducted f o r  100 hour test periods while a l l  o ther  experiments 
were performed a t  700 '~  and f o r  dura t ions  of approximately twenty-four hou:~. 

The NU1 and NiAl-base a l l o y s  a s  w e l l  a s  t h e  CoCrAlY compositions formed, 
upon exposure a t  e levated temperatures, t h i n  dense alumina sca les ,  e.g., Fig. 1. 
The oxidation k ine t i c s  f o r  t h e  var ious N i A l  and CoCrAl compositions modified 
by yt t r ium and hafnium addi t ion  were s imi la r  t o  t ha t  of N i A l  alone, cf . Fig. 2 .  

The oxidation behavior of t h e  var ious Ni -Cr  a l l oys  l i s t e d  in Table I were 
a l s o  well behaved in t h a t  t h e  sca les  formed were a s  described by numerous inves t i -  
ga to r s  (e.g. , Ref s. 19,20,21). The oxidat ion k ine t i c s  f o r  these  a l l oys  were analo- 
gous t o  t h a t  f o r  t h e  Ni-25Cr composition, Fig. 3. In  general ,  a chromia s c a l e  was 
observed on t h e  surfaces  of t he  a l l o y s  with a wide va r i a t i on  in oxide gra in  s i z e s  
and shapes. A t  1050°C the  surfaces  exhibi ted a rumpled appearance with numerous 
mounds protruding from t h e  surf ace,  Fig. 4. Metallographic t haminat ion revealed t h e  
t y p i c a l  s c a l e  morphologies associated with these  chromia formtrs  a s  shown in Fig. 5. 

Lastly,  t he  oxidat ion behavior of t h e  n icke l  base superalloy B-1900 was 
q u i t e  complex, Fig. 6. A t  low temperature, 7 0 0 ' ~ ~  the  oxide formed a f t e r  100 
hours is r i c h  in chrmium. A t  900 and 1 0 5 0 ~ ~ ,  a more heterogeneous oxide s t r u c t u r e  
i s  observed a s  described by Fryburg et a l .  (Ref. 22). The surface oxide cons i s t s  
of a l t e r n a t e  a r ea s  r i c h  in chromium and n i cke l  with a r ea s  r i c h  in aluminum. 
Metallographic examination of t h e  0-1900 a l l o y  specimens shows t h a t  t h e  oxide s ca l e  
i s  separated from the  unaffected matrix by a narrow zone devoid of gamma prime, 
Fig. 7. 

B. Oxidation-Gaseous NaCl 

It has been previously reported t h a t  gaseous NaCl i n t e r a c t s  with growing oxide 
s c a l e s  on model alumina and chromia formers (Ref. 13).  Based upan the  l imited shor t  
term da ta ,  simple models were proposed. The r e s u l t s  of t h e  present study confirm 
t h e  previous f ind ings  and fu r the r  increase t he  knowledge of hot corrosion. 
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1, Alumina Formers 

It was previously  repor ted  (Ref 13) t h a t ,  i n  t h e  presence of low conccirltrat.ions 
of gaseous N a C l  and HC1, alumina whtskers a r e  formed on t h e  s u r f a c e  of t h e  oxide  
s c a l e .  

The source  of aluminum f o r  whisker growth was exper imenta l ly  determined t o  
l i e  below t h e  s c a l e ,  It was previously  proposed t h a t  some a s  y e t  u n i d e n t i f i e d  
halogen-bearing s p e c i e s  d i f f u s e s  through th.- dense alumina s c a l e s ,  and a t  t h e  
meta l - subs t ra te  i n t e r f a c e ,  where t h e  oxygen p o t e n t i a l  i s  reduced, r e a c t s  wi th  t h e  
s u b s t r a t e  t o  form an "Al-NaC1" spec ies .  This  moiety then d i f f u s e s  back through 
t h e  dense alumina s c a l e  and o x i d i z e s  a t  t h e  f r e e  s u r f a c e  t o  fonn t h e  alumina 
whiskers (Ref. 13) .  

Based on t h i s  model, it was hypochesized t h a t  t h e  con t inua l  t r a n s p o r t  of 
aluminum from t h e  a l loy-oxide  i n t e r f a c e  would u l t i m a t e l y  r e s u l t  i n  s c a l e  rup tu re .  
I n  agreemerit wi th  previous  s t u d i e s  (Ref. 13) ,  t h e  alumina formers upon exposure 

0 
t o  gaseous NaCl a t  900 and 1050 C formed numerous alumina whiskers  on oxide  su r -  
f aces .  Again i n  agreement wi th  p r i o r  r e s u l t s  (Ref. 1 3 ) ,  EDAX examinat ion confirmed 
only  t h e  presence of aluminum with  no t r a c e s  of sodium o r  c h l o r i n e  on e x t e r n a l  
specimen surf  aces .  

For specimens oxidized i n  ai.1 w i t h  NaCl(g) t h e  weight ga in  d a t a  was i n  agree- 
ment wi th  t h e  previously  repor ted  behavior (Ref. 1 3 ) ,  F igs .  8 and 9. During t h e  

f i r s t  24  hours,  t h e r e  was no evi?tznce of i sothermal  s c a l e  s p a l l a t i o n  a t  e i t h e r  test 
temperature,  Figs .  8 and 9. However, a s  shown i n  Figs .  8 and 9 ,  i t  is apparen t ,  
a s  noted by t h e  d i s c o n t i n u i t i e s  i n  t h e  weight ga in  curves ,  t h a t  dur ing prolonged 
exposures a p e r i o d i c  i sothermal  s c a l e  r u p t u r e  occurred.  Moreover, t h e  magnitude of 
such weight change d i s c o n t i n u i t i e s  appears  t o  inc rease  w-ith inc reas ing  s a l t  con- 
c e n t r a t  ion  

Examination of t h e  s p a l l e d  and r e t a i n e d  s c a l e s  by scanning e l e c t r o n  microscopy 
and EDAX techniques  r e v e a l s  t h e  presence of m u l t i l a y e r s  of e s s e n t i a l l y  pure  
alumina, Fig. 10. It a l s o  is  apparent  t h a t  t h e  e x t e r n a l  alumina l a y e r  i d  , ,oorly 
a t t ached  t o  t h e  underlying p r o t e c t i o n  alumina s c a l e ,  Fig.  10, and both  s c a l e s  a r e  
h ighly  faceted.  Moreover, such exaggerated f a c e t l n g  of alumina c r y s t a l s  even 
e x i s t s  a t  t h e  s c a l e - s u b s t r a t e  i n t e r f a c e ,  Fig.  10. On t h e  o t h e r  hand, s c a l e s  pro- 
duced by exposure t o  a i r  a lone  do not  exhibit .  such highly  face ted  c r y s t a l s  a t  
t h i s  i n t e r f a c e ,  c f .  Fig. 1. 

Addi t iona l ly ,  t h e  normal alumina s c a l e  is  bonde! t o  t h e  N i A l  s u b s t r a t e  i n  
numerous areas, a s  shown in Fig. 112. The d e n s i t y  of  a t t a c h n  t s i t e s  ( o r  
m e t a l l i c  pegs) i s  very  high. However, when NaCl(g) is p resen t ,  t h e  d e n s i t y  of 
such p o i n t s  of at tachment is sharp ly  raduced, a s  shown i n  Fig. l l b .  
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Thus, it is concluded t h a t  t h e  NaCl(g) r e a c t s  with t h e  sbbs t r a t e  a t  t he  
metal-oxide in te r face ,  removing aluminum and thereby forming ~ o i d s  and reducing t h e  
number of attachment sites o r  pegs, which eventual ly  r e s u l t s  i n  s c a l e  cracking 
o r  spa l l a t i on  and t h e  at tendant  increased r a t e s  of oxidat  ion. 

The oxides of su l fur  a r e  commonly present  in most gas  t u rb ine  environments. 
Because NaCl(g) can react with oxides of s u l f u r  t o  form a l k a l i  s u l f a t e s ,  a 
series of experiments was conducted t o  determine i f  t h e  presence of SO2 would 
a l t e r  any of t h e  f indings previously discussed. Spec i f ica l ly ,  concern was expressed 
t h a t  the  presence of SO2 would e f f ec t i ve ly  block t h e  t ranspor t  meclranism responsible  
f o r  t hc  production of alumina whiskers. It is rea l ized ,  however, t h a t  HC1 had pro- . ~. 
duced s imi la r  morphological changes on N U 1  subs t r a t e s  in p r io r  s t u d i e s  (Ref. 13). 
Furthermore, i f  any reac t ion  would occur between NaCl(g), SO2, and H20, a l i k e l y  
product would be HCl(g). A s  shown i n  Fig. 12, when SO2 was admitted i n t o  t he  
system, alumina whiskers continued t o  form on the  sca les .  Thus, s u l f u r  oxides 
do not i n h i b i t  <he t ransport  processes responsible  f o r  alumina whisker 
format ion. 

Lastly,  although t h i s  discussion has  d e a l t  with :!iAl, alumina whiskers were 
s imi la r ly  produced, a s  expected, when CoCrAlY was exposed t o  oxidat ion i n  t he  
presence of NaC1 vapors, Fig. 13. 

2. Chromia Formers 

The chromia formers l i s t e d  in Table I a r e  general ly  w e l l  behaved and oxidized 
a t  slow and cont ro l led  r a t e s .  Nevertheless, i n  t h e  presence of gaseous NaC1, t he  
weight gain curves were described a s  "S" shaped, which a r e  associated with break- 
away oxidat ion k ine t i c s  (Ref. 13). Because isothermal s c a l e  rupture  e f f e c t s  
occurred only once during t h e  ea r ly  s tages  of oxidation, it  was hypothesized t h a t ,  
a f t e r  t h e  gaseous NaCl r eac t s  with t h e  pro tec t ive  oxide, t h e  s c a l e  t h a t  reforms is 
not a continuous pro tec t ive  chromia s ca l e  (Ref. 13).  

In  t he  experiments described in the  present study, t h e  introduct ion of gaseous 
NaCl(g) once again promoted the  formation of "S" shaped weight gain curves o r  
breakaway oxidation during t h e  e a r l y  s tages  of oxidat ion a t  both 9 0 0 ~ ~  and 1 0 5 0 ~ ~ ~  
Fig. 14. A t  9 0 0 ~ ~  the  r a t e  of oxidat ion of t h e  chromio former Ni-25Cr is 
markedly a f fec ted  by NaC1, t h e  magnitude of the  weight gain increasing with in- 

0 
creasing NaCl(g) concentration, Fig. 15. However, a t  1050 C, an inverse re la t ion-  
sh ip  is noted, Fig. 16. The e f f e c t  of NaCl(g) is grea te r  a t  t h e  12 pprn l e v e l  than 
a t  t he  113 pprn leve l .  In order t o  fu r the r  examine t h i s  apparent anomaly, a s e r i e s  
of experiments was conducted i n  which t h e  concentration of NaCl(g) was increased 
from 113 t o  400 ppm. A s  shown i n  Fig. 16, t h e  increase i n  concentration from 113 
t o  400 pprn caused an increase in the  r a t e  of oxidat ion of t he  a l loy .  Therefore, 
t h e  experiments conducted a t  t h e  10 and 100 pprn l e v e l s  were repeatnd and t h e  
r e s u l t s  were t h e  same: t ha t  is, a t  100 ppm l eve l  the  magnitude of t h e  f i n a l  weight 
gain is less than tha t  f o r  both t h e  10  pprn and 400 pprn l eve l s .  
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1 3: Metallographic and scanning e l ec t ron  microscopy s tud i e s  of t h e  sur faces  of 
i 4 :  

* I  Ni-25Cr cons is ten t ly  revealed oxide  blister^ r i c h  i n  n i cke l  and almost t o t a l l y  
void of chromium, Fig. 17. Surpris ingly,  loose non-adherent chromia c r y s t a l s  

: 1 .  
i were frequent ly  observed on t h e  sur faces  of such chromium-poor oxide s ca l e s  which 
5 ,  . .. appeared as sur face  b l i s t e r s .  Chromium deple t ion  and nickel-enrichment was 

normally observed on t h e  sur face  oxides of specimens exposed f o r  twenty-four hours 
, . t o  air  with NaCl vapors (Ref. 13). However t h e  ex ten t  of such chromium deple t ion  
! . , 
. . observed here  i n  these  loca l ized  b l i s t e r e d  oxide regions has  been markedly increased 

by prolonged exposure t o  such conditions.  

Last ly ,  based on extensive scanning e l ec t ron  microscopy and EDAX s tud ies ,  
although l a rge  a r ea s  of t h e  sur face  oxide are v i r t u a l l y  void of chromium, t h e  
oxide a t  t h e  i n t e r f ace  is chromium-rich. Such exaggerated duplex s t r u c t u r e s  were 
only observed i n  t h e  case of specimens oxidized i n  NaCl(g)-containing atmospheres. 
Thus, during oxidat ion of t h e  chromia-forming a l l oys ,  t h e  composition of t h e  oxide 
s ca l e  exposed t o  t h e  NaCl vapors cont inual ly  changed. Based upon the  experimental 
r e s u l t s ,  it is postulated t h a t  t h e  NaCl gas  r e a c t s  with and removes chromium from 
t h e  sca le ,  a l t e r i n g  t h e  composition from t h t  o r i g i n a l  p ro tec t ive  chromia t o  
t h a t  ~f t h e  sp ine l  and l a s t l y  t o  v i r t u a l l y  pure n i cke l  oxide with t r a c e  l eve l s  of 
chromium. Thus, un l ike  systems where t h e  NaCl(g) causes repeated isothermal s c a l e  
breakage, t h e  i n i t i a l  p ro tec t ive  chromia s ca l e ,  once cracked, does not reform. 

3. The Superalloy B-1900 

B-1900 is a n i cke l  base superalloy and is c h a r a c t e r i s t i c  of t h e  family of 
superal loys developed t o  exh ib i t  except ional ly  high temperature s t rength  and good 
oxidation proper t ies ,  but unfortunately it has poor hot corrosion res i s tance .  I n  
simple oxidat ion t h e  a l l o y  forms a v a r i e t y  of oxide sca les ,  t h e  composition of 
t he  predominant s ca l e  depending upon temperature and durat ion of exposure. 

The e f f e c t  of gaseous NaCl on t h e  oxidat ion behavior of t h e  superal loy B-1900 
was most unexpected and dramatic. A t  t he  low NaCl(g) l e v e l s  employed i n  t h i s  study, 
t h e  superailoy oxidized a t  ca tas t rophic  r a t e s .  A t  9 0 0 ~ ~  a t  both 10 and 130 ppm 
NaCl(g) l eve l s ,  t h e  amount of oxidation of t h e  a l l oy  was comparable t o  or  g r ea t e r  
than tha t  observed when t h e  a l l o y  is coated with sodium s u l f a t e  and oxidized in 
a i r  alone, Fig. 18. Although t h e  magnitude of t h e  weight change var ied  from exper- 
iment t o  experiment, t h e  ne t  r e s u l t  was qu i t e  reproducible. I n  almost a l l  tests, 
t he  oxidat ion of t h e  a l l o y  a f t e r  prolonged exposure t o  e i t h e r  10 o r  100 ppm of 
NaCl(g) was ca tas t rophic .  Furthermore, a t  t h e  end of 100 hour t e s t  periods,  t he  

0 
r a t e s  of oxidat ion f o r  specimens exposed a t  900 C t o  NaCl(g)-bearing atmospheres 

2 were g rea t e r  than t h a t  f o r  specimens coated with Na2S04 ( I  mg/cm ). In  f a c t ,  t h e  
c 

amount of weight gain f o r  specimens exposed t o  100 ppm NaCl'g) l e v e l s  was g rea t e r  
than t h a t  f o r  specimens coated with Na2S04 a t  t h e  end of 100 hour t e s t  periods.  
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Both t h e  r a t e  and the  amount of oxidat ion of t h e  8-1900 a l l o y  exposed a t  1 0 5 0 ~ ~  
t o  10 ppm N a C l  was comparable t o  t h a t  observed f o r  simple oxidation. However, when 
t h e  concentration of NaCl(g) was increased t o  100 ppm, t h e  a l l oy  oxidized a t  rapid 
r a t e s ,  Fig. 19, but  not  a t  t h e  ca tas t rophic  rate noted a t  900'~.  

The oxide s ca l e s  formed on the sur faces  of t h e  n i cke l  base superal loy were 
examined by scanning e l ec t ron  microscopy and EDAX. Alumina whiskers were noted 
on t h e  sur faces  of t h e  NaCl exposed sca le ,  a sur face  oxide c h a r a c t e r i s t i c  s imi l a r  
t o  t h a t  seen on s imi l a r ly  t e s t ed  N U 1  specimens. EDAX analyses of metal lographical ly  

0 
prepared c ross  sec t ions  of specimens exposed a t  900 C revealed t he  presence of a 
laminated oxide s t r u c t u r e  and enrichments of molybdenum near t he  metal-scale 
i n t e r f ace ,  Fig. 20. The sur face  of se lec ted  specimens were immersed in d i s t i l l e d  
water, and t h e  only ca t i on  noted w a s  moiybdenum. Molybdenum t r i o x i d e  is s l i g h t l y  
so luble  i n  water (Ref. 23). 

0 
On the  o ther  hand, B-1900 specimens exposed f o r  100 hours a t  1050 C t o  NaCl(g) 

a t  100 ppm l e v e l s  indicated only a few small  oxide p i t s ,  Fig. 21. EDAX examination 
of these oxide p i t s ,  Fig. 22, revealed enrichments of chromium and aluminum but not  
molybdenum a s  was found i n  specimens t e s t e d  a t  9 0 0 ~ ~ .  Metallographic cross-sect ions 
of B-1900 specimens t e s t ed  at 1050"~  i n  a i r  with 1 0  ppm l e v e l s  of NaCl(g) were 
s imi l a r  t o  those t e s t e d  a t  1 0 5 0 ~ ~  i n  a i r  alone. 

0 B-1900 was a l s o  exposed a t  700 C t o  a i r  with 10 ppm NaCl vapors. Oxidation 
k ine t i c s  were not  accelerated and were s imi l a r  t o  t h a t  found fo r  exposure t o  air 
alone. However, examination of t he  NaCl exposed sur faces  indicated s t r u c t u r e s  
dramatical ly  d i f f e r e n t  from those formed on exposure t o  a i r  alone, Fig. 22. The 
specimen exposed t o  a i r  a lone shows a chromium-enriched oxide layer  covering t h e  
a l l o y  matrix with loca l ized  blooms of tantalum-rich oxides which derived from the  
MC carbide network i n  t h e  a l loy .  I n  t h e  presence of NaCl vapors, i n  addi t ion  t o  
alumina whiskers, well-formed c r y s t a l s  of nickel-r ich oxide, t i tanium-rich oxides, 
chromium oxides and probably molybdenum oxides a l s o  occur. On the  o ther  hand, on 
sur faces  of specimens of B-1900 exposed t o  temperatures of 900 and 1 0 5 0 ~ ~  in 
NaCl(g)-bearing atmospheres, t h e  only well-formed highly geometric c r y s t a l s  were 
t h e  alumina whiskers. 

The mechanism proposed e a r l i e r  t o  ac-ount f o r  t h e  formation of alumina 
whiskers by NaCl vapors can a l s o  be  used t o  explain t he  dramatic increase in oxida- 
t i o n  a t  9 0 0 ~ ~  of t h e  n icke l  base superal loy B-1900 in the  presence of NaCl vapors. 
A s  previously noted during shor t  term exposures, alumina whiskers form on t h e  
sur faces  of t h e  sca le .  The formation of these  whiskers deple tes  t h e  a l l oy  of 
aluminum, weakens t he  subs t ra te ,  and cracks form within t he  scale .  The isothermal 
spa l l a t i on  of t h e  s ca l e  would not  i n  i t s e l f  account f o r  t he  extremely rapid r a t e s  
of oxidation. However, a s  shown by t h e  scanning e l ec t ron  microscopy and EDAX 
ana lys i s ,  loca l ized  enrichments of molybdenum areobserved a t  the  scale-substrate  
in te r face .  Therefore, it is hypothesized t h a t  a s  a r e s u l t  of aluminum deplet ion,  
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I t h e  s c a l e  cracks,  l o c a l l y  oxidizing t h e  subs t r a t e  a l l o y  which has become enriched 
C 

i + in  molybdenum and o ther  a l loy ing  elements. A t  e levated temperatures, t h e  l i q u i d  
Moo3 r ead i ly  r e a c t s  with and d isso lves  oxide scales. The accelerated oxidat ion 
of a l l o y s  due t o  t he  accumulation of molybdenum oxides is not new and has been 

5 
4 • previously reported by Les l i e  and Fontana (Ref. 24). A t  1 0 5 0 ~ ~  t h e  r a t e s  of 

evaporation of Moo3 and t h e  pressures  needed t o  contain t h e  l i qu id  are excessive,  
7 -. 
y hence t h e  reduct ion in t h e  rates of accelerated oxidation. On t h e  o the r  hand, 

0 i. a t  700 C accelerated a t t a c k  was not  encountered even though subs t an t i a l  i n t e r ac t i on  
between t h e  NaCl(g) and t h e  oxide s c a l e  did occur. The l i k e l y  cause of t h i s  

. $ -  absence of acce le ra ted  oxidat ion k ine t i c s  r e l a t e s  t o  t h e  melting poin t  of M O O ~ ,  
I 
1 . . ~ i l i ~ i l  is 795 '~  (Ref. 20) o r  9 5 ' ~  above t h e  700 '~  test temperature. 

C. Hot Corrosion 

1. Alumina Formers 

The su l f i da t ion  behavior of t h e  i n t e rme ta l l i c  compound N i A l  has been s tud ied  
by numerous inves t iga tors ,  and t h e  experimental r e s u l t s  reported herein a r e  in  
agreement with t he  l i t e r a t u r e .  A t  both 9 0 0 ~ ~  and 1 0 5 0 ~ ~ ,  t h e  i n t e rme te l l i c  com- 
pound r e a c t s  with t h e  fused s a l t  t o  form a nonprotective oxide scale. Metallo- 
graphic examination revealed t h e  presence of a nonadherent oxide s c a l e  and s u l f i d e s  
p rec ip i t a t ed  in  t h e  a l l o y  deplet ion zone which separa tes  t h e  unaffected mat~,x 
from t h e  corrosion product. 

0 
It was previously shown (Ref. 13) t h a t  a t  900 C the  presence of NaCl(g) had 

no e f f e c t  on the  thermogravimetric da ta  of sodium sulfate-coated N i A 1 .  

However, a t  1 0 5 0 ~ ~  a s  NaCl(g) was admitted i n t o  t h e  environment, t h e  rate of 
oxidat ion of t h e  Na2S04-coated N i A l  decreased (Ref. 13).  A t  t he  200 ppm l e v e l ,  no 
s u l f i d a t i o n  corrosion was noted f o r  a twenty-four hour test period. A model w a s  
proposed i n  which it was suggested t h a t  t h e  reduction i n  t h e  r a t e s  of corrosion 
of t h e  sodium sulfate-coated N i A l  is r e l a t e d  t o  t h e  formation of a v o l a t i l e  "A1-NaC1ll 
spec ies  whose s t a b i l i t y  is oxygen dependent, and a t  t h e  sodium su l f a t e - a i r  i n t e r -  
faces  r e a c t s  with botn oxygen and oxide ions t o  form alumina (Ref. 13).  

A s  shown in Fig. 24, t he  addi t ion  of NaCl(g) t o  t he  environment prolongs t h e  
durat ion of t h e  incubation period and does markedly reduce t he  magnitude of t h e  
weight gain of sodium sulfate-coated N i A l  specimens t e s t ed  a t  1 0 5 0 ~ ~ .  However, 
a t  t h e  end of t h e  100 hour test period, t h e  r a t e  of weight change is s imi l a r  f o r  
specimens t e s t ed  i n  a i r  a lone  o r  in a i r  with up t o  100 ppm NaCl(g). Thus, t h e  
NaCl vapors in  t h e  concentration range s tudied here  have increased t h e  time u n t i l  
accelerated oxidat ion k ine t i c s  occur but do not prevent t h e i r  eventual 
occurrence. Metallographic examination of t he  specimens removed a f t e r  100 hours 
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exposure show t h a t  t h e  N i A l  d id  r e a c t  wi th  t he  fused s a l t ;  t h e  a t t a c k  was 
sporadic,  nonuniform, and d id  produce c h a r a c t e r i s t i c  a l l o y  depleted zones with 
sul 'iide prec ip i ta tes .  I n  o ther  areas the  aluminum content of t he  a l l oy  was reduced 
wrd:iiciently t o  promote t he  t yp i ca l  Widmanstatten s t r u c t u r e  associated with nickel-  
r9r.h NiA1, and a r ea s  of gamma prime, Ni3A1, were a l s o  observed, Fig. 25. 

Thus, gaseous NaCl(g) can postpone t h e  acce le ra ted  oxidation k ine t i c s  
associated with su l f i da t ion  corrosion, but t he  ne t  r e s u l t  is a l l o y  a t tack .  It was 
previously shown tha t  a t  1 0 5 0 ~ ~ .  t h e  introduct ion of NaCl(g) decreased t h e  magni- 
tude of t h e  weight ga in  f o r  Na2S04-coated Nikl. In  f a c t ,  a t  t h e  200 ppm l e v e l  
th ,  r a t e  of weight gain was s imi la r  t o  t h a t  observed f o r  simple oxidation. It has 
bc. n proposed t h a t  t h e  r a t e  of evaporation of t h e  fused s a l t  is increased a s  NaCl 
cli s o l v e s  in the  Na2S04. Increased r a t e s  of vaporizat ion of Na2S04 due t o  NaCl 
had been reported by Fel ten and Pe t t  it (Ref. 25) and Radzavich and Pet t it (Ref. 26) . 
However, Stearns  et al. (Ref. 27) has shown tha t  t h i s  e f f e c t  is a t  bes t  minimal. 
I n  t he  current  study it is observed t h a t  l i t t l e ,  i f  any, of t h e  o r i g i n a l  s a l t  deposit  
i s  present  a f t e r  100 hours, and alumina c r y s t a l s  a r e  noted on t h e  sur face  s ca l e .  
Because t h e  source of t h e  aluminum f o r  whisker formation or ig ina ted  a t  t h e  scale-metal 
i n t e r f ace ,  it is postulated t h a t  t h e  increased r a t e  of s a l t  l o s s  is  due t o  reac- 
t i o n s  between the  t r ans i en t  "NaCl-A1" spec ies  and Na2S04; a product of t h e  reac t ion  
is alumina and s u l f u r  oxides. 

Last ly ,  i t  should be noted t h a t  although addi t ion  of r eac t ive  elements d id  not  
influence isothermal oxidat ion rates, y t t r ium addi t ions  a t  t h e  0.2 w/o l e v e l  s igni-  
' icant ly  increased corrosion rates of t he  N i A 1 ,  Fig. 26. Hafnium addi t ions  a t  the  
l e v e l s  t e s t ed  'idre s imi l a r ly  worsened t h e  ho t  corrosion behavior of N i A 1 .  For the  
var  tous CoCrAl compositions, r e a c t i v e  metal add i t  ions did not a l t e r  t he  thcrmo- 
gravimetr ic  behavior exhibi ted by t h e  CoCrAl composition i t s e l f ,  Fig. 27. 

2. ',hromia Formers 

The a l l o y s  which form c h r m i a  s c a l e s  a r e  most r e s i s t a n t  t o  su l f i da t i on  corro- 
s ion.  A l l  t h e  N j - C r  a l l oys  t e s t e d  here  with sodium s u l f a t e  depos i t s  yielded 
s imi l a r  r e s u l t s  Spec i f ica l ly ,  specimens t e s t ed  a t  1 0 5 0 ~ ~  show sharp weight gain - 
weight l o s s  '.:inetics f o r  b r ie f  periods then slow oxidat ion k ine t i c s ,  Fig. 28. On 
t h e  other hand, s imi la r  e f f e c t s  a l s o  occur a t  9 0 0 ~ ~  but a t  much slower r a t e s ,  
Fig. 2". In  f a c t ,  24 hour experiments do not  adequately show the  f u l l  ex ten t  of 
weig: . l o s s  behavior. Weight l o s s  behavior is thought t o  r e s u l t  from v o l a t i l i z a -  
ti2.1 e f f e c t s  involving p r inc ipa l ly  s u l f u r  oxides and sodium chromate. These 
e s u l t s  a r e  in  agreement with thermogravimetric da t a  presented by Wright et a l .  

(Ref. 28), BornsLein and DeCrescente (Ref. 9), and our previous s tud i e s  (Ref. 13). 

Morecver, a s  shown by Stearns  et  a l .  (Ref. 14) ,  and Fryburg et a l .  (Ref. 15) ,  
gaseo;.~ .iaCl r e a c t s  with and t r anspo r t s  chromium a s  the  vapor spec ies  (NaC1)l 2,3,  
CrP3 (g) , and (NaOH) C r O j  (g) . NaOd here der ives  from the  hydrolysis  of ~ a c i .  
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Both p r io r  s t u d i e s  (ilef. 13) and our cur ren t  r e s u l t s  have shown tha t  cont inual  
exposure of chromia formers t o  oxidizing atmospheres with NaCl vapor present  
r e s u l t s  i n  t he  deplet ion of chromium from t h e  oxide s c a l e  and breakaway k ine t ics .  

It was previously shown (Ref. 13) t ha t  t h e  detr imental  e f f e c t s  of the  gaseous 
corrodents appears, in t h e  l imi ted  24 hour tests, t o  be mit igated by sodium sul-  
f a t e .  It is known tha t  chromia a c t s  with and lowers the  oxide ion ,content of 
sodium s u l f a t e  thereby imparting su l f  i d a t  ion i n h i b i t  ion. In t h e  process, chromate 
s a l t s  a r e  formed which lead t o  t h e  growth of chromia c r y s t a l s  in t h e  form of 
well-formed p l a t e l e t s  on t h e  sur face  of t h e  oxide s ca l e  (itefs. 13, 28).  The 
mechanism by which such c r y s t a l s  a r e  formed is independent of t h e  presence of 
sodium chlor ide  vapors and s o  w i l l  not be discussed f u r t h e r  here,  cf . Appendix I. 

The production, however, of such c r y s t a l s  is high1 temperature dependent, 
0 g 

occurring rap id ly  a t  1050 C and much more slowly a t  900 C. Moreover, c l u s t e r s  of 
such Cr203 p l a t e l e t s  have a much higher sur face  a r ea  than the  nominal sur face  

a rea  of t h e  t e s t  specimen i t s e l f .  Consequently, these c r y s t a l s  o f f e r  an add i t i ona l  
o r  a l t e r n a t i v e  source of chromia with which t h e  sodium chlor ide  vapors can i n t e r a c t .  
Thus i n  the  presence of ch lor ide  vapors a pro tec t ive  s c a l e  can be formed and maintained. 

Thusly, t he  two reac t ions  - one involving gaseous ch lor ide  i n t e r ac t i ons  with 
chromia, t he  other  involving t h e  production of Cr203 c r y s t a l  p l a t e l e t s  by t h e  
ac t i on  of t h e  molten s a l t  - occur simultaneously and independently of each o ther .  
The thermogravimetric da t a  then r e f l e c t s  t he  ne t  e f f e c t s  of these  two p a r a l l e l  
reac t ions  a s  wel l  a s  v o l a t i l i z a t i o n  e f f ec t s .  

Amplifying on th i s ,  i n  t he  100 hour experiments conducted i n  t h i s  study a t  
900°c, t he  r a t e  of weight change f o r  t h e  100 ppm NaCl(g) is shown in Fig. 29. In 
both t h e  presence and absence of NaCl (g) , t he  salt-coated specimens i n i t i a l l y  gain 
weight, and within a s h o r t  time, l o se  weight, the l o s s  being associated with vaporiza- 
t i o n  of reac t ion  products. Of s ign i f icance ,  however, is t h e  observat ion t h a t  t h e  r a t e s  
of weight l o s s  a r e  slower in  t h e  presence of the  NaCl(g) , in fe r r ing  t h a t  t he  sub- 
s t r a t e  is oxidizing a t  r a t e s  f a s t e r  than tha t  i n  a i r  alone. Thus, t he  production 
r a t e  of Cr203 c r y s t a l s  is in su f f i c i en t  a t  9 0 0 ~ ~  i n  t h e  presence of 91 ppm NaCl(g) 
t o  minimize t he  amount of NaCl(g) ava i l ab l e  a t  the  oxide sur face  t o  r eac t  with 
pro tec t ive  scales ,and c l ea r ly  enhanced oxidat ion r a t e s  occur. However, a t  1050°c, 
the  r a t e  of formation of such c r y s t a l s  is  s u f f i c i e n t l y  high t o  a f fo rd  s a c r i f i c i a l  
p ro tec t ion  yielding oxidat ion behavior s imi l a r  t o  t h a t  found f o r  exposure t o  a i r  
alone, Fig. 28 and Ref. 13. However, it must be noted t h a t  any such apparent pro- 
t ec t i on  w i l l  only be temporary. The durat ion of t h i s  p ro tec t ion  w i l l  depend on 
how long such chromia c r y s t a l s  survive v o l a t i l i z a t i o n  e f f e c t s .  The v o l a t i l i z a t i o n  

of t he se  chromia c r y s t a l s  w i l l  r e s u l t  both from t h e  vaporizat ion of Cr203(c) a s  
CrOj(g) and from the formation of v o l a t i l e  species  such a s  ( ~ a ~ l ) ~  cr03(g),  x = 1, 
2, 3 (Xei. 14). 
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Moreover, i t  is  observed, based upon scanning e l ec t ron  microscopy s t u d i e s ,  
t h a t  f o r  sur faces  of t h e  specimens exposed a t  1050°C t h e  oxide s c a l e  has been 
s i g n i f i c a n t l y  enriched i n  n icke l ,  Fig. 30. Similar  observations were observed 
when t h e  chromia formers are exposed t o  only gaseous NaC1,  a s  i f  the  fused s a l t  
was absent. The chromium-deficient oxide s c a l e  shown i n  Fig. 30 is not t h e  v i r t u a l l y  
chromium-free oxide b l i s t e r  discussed e a r l i e r ,  c f .  Fig. 17. 

I n  summary, i n  the  presence of Na2S04, t he  Ni -Cr  a l l oys  developed w e l l -  
formed chromia p l a t e l e t s ,  whose growth is  s t rongly  temperature dependent. It is 
postulated t h a t  t h e  mechanism responsible  f o r  t h e  development and growth of t he  
c r y s t a l s  is  r e l a t e d  t o  oxygen t ranspor t  (cf .  Appendix I ) :  

Oxygen r e a c t s  with chromia in regions of high oxygen a c t i v i t y  and is t ransported 
through t h e  molten s a l t  t o  regions of lower a c t i v i t y .  These c r y s t a l s  with t h e i r  
higher sur face  a r ea s  a r e  more r eac t ive  with respect  t o  NaC1. Thus, i t  appears 

' t h a t  Na2S04 mi t iga tes  t h e  de l e t e r ious  e f f e c t  of NaCl (g) . 
3. The Superalloy B-1900 

The hot corrosion behavior of NapS04-coated B-1900 has been described by many 
invest igators .  In  general ,  during oxidat ion of t h e  salt-coated spec ime~s ,  an 
induction period is observed; t h e  durat ion is dependent upon temperature among 
other  things.  Of notable  i n t e r e s t  is t h e  observation t h a t ,  during prolonged ex- 
posures a t  900°c, t h e  r a t e s  of oxidat ion of t he  salt-coated specimens ( 1  
mg/cm2 Na2S04) did not continuously increase,  but, a s  ahoun i n  Fig. 31, a f t e r  
approximately 40 hours from t h e  i n i t i a t i o n  of corrosion,  slowed down and cont inua l ly  
decreased with increasing time. Based upon metallographic examination, approxi- 
mately 40 percent of t h e  c ross  s ec t i ona l  area had been consumed. Based upon w e t  
chemical ana lys i s ,  sodium s u l f a t e  was cons is ten t ly  present  a t  l e v e l s  of 0.04 mg/cm 2 

0 
on samples a f t e r  exposure f o r  100 hours a t  900 C t o  a i r  e i t h e r  alone o r  with 10 ppm 
l e v e l s  of NaCl (g) . 

The presence of NaCl(g) markedly a f fec ted  t h e  s u l f i d a t i o n  corrosion of B-1900 
a t  9 0 0 ~ ~ .  I n  t he  presence of 95 ppm NaCl(g) t h e  durat ion of t h e  incubation period 
was decreased, Fig. 31. Linear oxidation k ine t i c s  ensued with t o t a l  consumption 
of t he  specimen a f t e r  60 hours exposure. 

I n  f a c t ,  a t  t h e  100 ppm NaCl(g) l e v e l  a t  both 9 0 0 ~ ~  and 1 0 5 0 ~ ~ ,  Na2S04-coated 
B-1900 specimens were completely consumed, Figs. 31 and 32. A t  1050°c, t he  sodium 
sulfate-coated B-1900 specimens exhibi ted s imi la r  oxidat ion k ine t i c s  with and . 
without 10  ppm l e v e l s  of NaCl(g) present ,  namely very rapid i n i t i a l  oxidat ion 
k ine t i c s  foll.owed by ne t  weight l o s s  e f f e c t s ,  Fig. 32. On t h e  o ther  hand, on 
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exposure a t  9 0 0 ~ ~  a t  t h e  11 ppm NaCl(g) l e v e l ,  t h e  specimens were n o t  completely 
consumed, but  a s  shown i n  Fig. 31, t h e  rate of weight g a i n  is cons tan t  o r  i n c r e a s i n g ,  
and t o t a l  consumption of t h e  a l l o y  is a n t i c i p a t e d .  Thus, a major d i f f e r e n c e  between 
t h e  9 0 0 ~ ~  s u l f  i d a t  ion  cor ros ion  of B-1900 i n  t h e  presence of N a C i  (g)  i s  t h e  obser-  
v a t i o n  t h a t  NaCl(g) (1) reduces o r  removes t h e  incubat ion pe r iod ,  and (2)  c o n t i n u a l l y  
promotes t h e  a c c e l e r a t e d  cor ros ion  of t h e  a l l o y .  I n  t h e  absence of t h e  NaCl(g), t h e  
r a t e  of o x i d a t i o n  of t h e  sa l t - coa ted  specimen even tua l ly  decreased.  But t h i s  de- 
c r e a s e  w a s  n o t  due t o  e i t h e r  t h e  complete consumption of t h e  s p e c h e n  o r  t h e  com- 
p l s t  l o s s  of sodium s u l f a t e  from specimen s u r f a c e s  be fo re  t h e  end of t h e  exper i -  
ment. 

It was p rev ious ly  shown t h a t  NaCl(g) markedly a c c e l e r a t e s  t h e  r a t e  of oxida- 
t i o n  of B-1900 in t h e  absence of s a l t  depos i t s .  Therefore ,  because both  c u r r e n t  
and p r i o r  s t u d i e s  (Ref. 13) have ind ica ted  t h a t  N a C l  vapors cause  s c a l e  r u p t u r e  
e f f e c t s  i r r e s p e c t i v e  of t h e  presence of Na2S04 d e p o s i t s ,  i t  would be a n t i c i p a t e d  
t h a t  t h e  presence of NaCl vapors  would r e s u l t  i n  decreas ing incuba t ion  pe r iods  f o r  
B-1900 specimens coated wi th  Na2S04, a s  was exper imenta l ly  observehi. 

I n  previous  s t u d i e s  of t h e  a c c e l e r a t e d  o x i d a t i o n  of n i c k e l  base  s u p e r a l l o y s ,  
it was shown t h a t  t h e  even tua l  dec rease  in r a t e s  of o x i d a t i o n  of sa l t - coa ted  
a l l o y s  could be r e l a t e d  t o  t h e  consumption of ox ide  ions  i n  t h e  melt  and t h e  
g radua l  reformat ion of a p r o t e c t i v e  ox ide  s c a l e  forming beneath t h e  loose ,  non- 
p r o t e c t i v e  c o r r o s i o n  product (Refs. 9, 10 ,  11) .  I n  t h e  c u r r e n t  s tudy  i t  w a s  shown t h a t  
t h e  r a t e s  of o x i d a t i o n  a t  9 0 0 ~ ~  of sodium su l fa te -coa ted  B-1900 exposed t o  gaseous 
NaCl do no t  e v e n t u a l l y  dec rease  but  c o n t i n u a l l y  a c c e l e r a t e .  

It has  been e s t a b l i s h e d  t h a t  e x t e r n a l l y  a p p l i e d  chromia d e p o s i t s  a t t e n u a t e  
s u l f  i d a t i o n  cor ros ion  (e.g. ,  Ref. 29) .  The o b j e c t i v e  of t h e  next  s e r i e s  of exper i -  
ments was t o  determine t h e  r o l e  of NaCl(g) i n  t h e  presence of chrcmia a d d i t i o n s  on 
t h e  s u r f a c e  w i t h  r e s p e c t  t o  hot  c o r r o s i o n  processes .  I n  t h e  absence of e x t e r n a l l y  
a p p l i e d  chromia d e p o s i t s ,  sodium su l fa te -coa ted  B-1900 specimens undergo a c c e l e r a t e d  
cor ros ion  a f t e r  approximately f o u r  hours  a t  900°c, Fig. 31. I n  t h e  presence of 
Cr203, t h e  incubat  ion per iod h a s  been extended t o  about 40 hours ,  Fig.  33. The 
cause  f o r  t h e  even tua l  a c c e l e r a t e d  o x i d a t i o n  k i n e t i c s  is unclear .  It can be sug- 
g e s t e d  t h a t  t o t a l  i n h i b i t i o n  is n o t  observed due t o  t h e  presence of d i s c o n t i n u i t i e s  
i n  t h e  ox ide  s c a l e  which e v e n t u a l l y  a l l o w  t h e  s a l t  t o  con tac t  t h e  s u b s t r a t e .  The 
subsequent formation of s u l f i d e s  and excess  ox ide  ions  overpowers t h e  chromia, and 
a c c e l e r a t e d  o x i d a t i o n  occurs.  However, t h i s  explanat  ion may not  be  complete because 
NiAl specimens s i m i l a r l y  t e s t e d  f a i l e d  t o  show any e f f e c t s  of  hot  co r ros ion  f o r  
100 hour test pe r iods .  Moreover, because chemical r e a c t i o n s  a r e  temperature  de- 
pendent, rates a r e  very r a p i d  a t  1050°c. Thus, a t  1050°c no i n h i b i t i o n  was observed 
f o r  e i t h e r  B-1900 o r  NiAl s u b s t r a t e s .  

The a d d i t  ion of 3.0 ppm NaCl i n t o  t h e  gaseous environment d i d  no t  s i g n i f i c a n t l y  
a l t e r  t h e  even tua l  occurrence  of a c c e l e r a t e d  o x i d a t i o n  k i n e t i c s ,  Fig.  33; however, 
at t h e  100 ppm l e v e l ,  s i g n i f i c a n t  d i f f e r e n c e s  occurred.  
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A s  indicated i n  Fig. 33, a t  t h e  100 ppm NaCl(g) l eve l ,  t h e  s a l t  coated 
(Na2S04 + CrZO ) specimens did not  undergo c l a s s i c a l  hot corrosion i n  t h a t  (a) no 

2 incubation per od was observed, and (b) t he  apparent r a t e  of oxidat ion was a l i n e a r  
funct ion of time. Based upon v i s u a l  observation, t h e  p r inc ip l e  s a l t  appeared 
t o  be t h e  chromate, with its c h a r a c t e r i s t i c  yellow color.  Close examination 
revealed t h e  presence of small nodules and sur face  d i sco lora t ions  which a r e  indica- 
t i o n s  of a r ea s  of loca l ized  corrosion. 

. . 
I n  view of t h e  f a c t  t h a t  with 100 ppm addi t ions  of NaCl(g) t o  test atmospheres 

B-1900 specimens have been aggressively at tacked,  t h e  behavior reported here  is  not  
r ead i ly  understood. 

, , 

D. Low Power Corrosion 

Field experience and laboratory experiments have shown t h a t ,  when molten 
depos i t s  composed pr imari ly  of sodium s u l f a t e ,  Na2S04, a r e  present  on hot gas path 
tu rb ine  components, acceleratgd corrosion can occur. Because t h e  melting poin t  of 

'sodium s u l f a t e  is 8 8 4 ' ~  (1623 F),  engine operat ion r e su l t i ng  in turb ine  metal 
sur face  temperatures below 7 5 0 - 8 0 0 ~ ~  (1380-1470'~) has been general ly  considered 
"safe" (Refs. 30, 31). 

It has been reported t h a t  a s  a r e s u l t  of extended low power operat ion,  
acce le ra ted  corrosion of gas  t u rb ine  components had occurred (Refs. 12,  32). Low 
power is assoc ia ted  with low f i r s t  s t a g e  tu rb ine  blade metal temperatures, and t h e  
overlay CoCrAlY coating exhibi ted s i g n i f i c a n t  a t t a c k  in engines operating in the  
12,000 horsepower range, which is associated with metal temperatures in t h e  range 
of 593-732'~ (1100-1350~~) a s  compared t o  normal power l eve l s  (20,000 hp) , which 
reportedly are associated with metal temperatures i n  the  range of 816-899'~ 
(1500-1650~~)  (Refs. 2, 12, 32, 33). The f u e l  i n  a l l  cases  was a marine d i s t i l l a t e  
with 0.7 percent s u l f u r  (Ref. 12, 32). 

The morphology associated with t he  accelerated corrosion r e su l t i ng  from low 
power engine operat  ion is describdd t o  be pr  b c i p a l l y  character ized by a p i t t i n g  
a t t a c k  of t h e  CoCrAlY coating with l i t t l e  evidence of B-CoA1 deple t ion  (Refs. 12, 
32, 33). This microstructure  is in cont ras t  t o  t he  6-depletion zone and a t tendant  
i n t e r n a l  s u l f i d e s  commonly seen i n  CoCrAlY overlay coat ings which have undergone 
c l a s s i c a l  hot corrosion a t t a c k  (Refs. 12, 32), e.g., Fig. 2 i n  Ref. 33. Moreover, 
t h i s  corrosion morphology occurs p r inc ipa l ly  on t h e  pressure (or concave) sur faces  
of tu rb ine  a i r f o i l s  (Ref. 33). 

The oxides associated with t h e  low temperature corrosion p i t s  a r e  enriched in 
both chromium and aluminum and a r e  depleted i n  cobal t  although the  ou te r  oxide 
layer  is most o f t en  enriched i n  cobal t  (Refs. 12, 32, 33). Reduced chromium l e v e l s  
a r e  f requent ly  detected i n  the  CoCrAlY adjacent t o  t he se  oxide p i t s ,  and regions a t  
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t h e  i n t e r f a c e  between t h e  CoCrAlY and t h e  ox ide  p i t  a r e  o f t e n  s u l f u r - r i c h  although 
d i s t i n c t  chromium-, aluminum-, o r  coba l t - r i ch  s u l f i d e s  have not  been i d e n t i f i e d  
(Refs. 12, 32) Las t ly ,  water-soluble c o b a l t  is a s s o c i a t e d  wi th  t h e  cor ros ion  
product (Ref. 33). This cor ros ion  morphology has  been l abe led  "B2" , and i n v e s t i -  
g a t o r s  c u r r e n t l y  working i n  t h i s  area f requen t ly  use  t h i s  n o t a t i o n  a lone  t o  des- 
c r i b e  t h i s  cor ros ion  micros t ruc tu re .  

The a c c e l e r a t e d  a t t a c k  a s s o c i a t e d  wi th  low power opera t ion  had been thought 
t o  be a s s o c i a t e d  wi th  enhanced s a l t  depos i t ion  which was bel ieved t o  be a conse- 
quence of t h e  "lower f low r a t e  through t h e  d & i s t e r s  a t  low power s e t t i n g s "  
(Refs. 32, 33). A concurrent Navy r e p o r t  a l s o  c i t e s  t l l rb ine  d e p o s i t s  and f i l t e r  
e f f i c i e n c y  wi th  cor ros ion  (Ref. 34). I n  a subsequent r e p o r t ,  Worcman, Fryxe l l ,  and 
Bessen r e l a t e d  both low power o p e r a t i o n  and t h e  observat ion t h a t  t h i s  p i t t i n g  
cor ros ion ,  which occurs  p r imar i ly  on t h e  p r e s s u r e  o r  concave s u r f a c e s  of t h e  blades ,  
wi th  t h e  comparative e f f i c i e n c y  of t h e  "shower head-film cooling" scheme used t o  
c o n t r o l  b lade temperature (Ref. 33). According t o  t h e s e  au thors ,  t h e  convex 
blade s u r f a c e s  a r e  thought t o  be " e f f e c t i v e l y  wiped" wi th  cool ing a i r  from t h e  
l ead ing  edge t o  t r a i l i n g  edge, whi le  t h e  concave s u r f a c e s  are sub jec ted  t o  much 
more g a s  tu rbu lence  which minimizes t h e  es tabl ishment  of p r o t e c t i v e  (cool ing a i r )  
gas  f i l m s  t h a t  would hinder  t h e  d e l i v e r y  of i n j u r i o u s  s p e c i e s  (Ref. 33). There- 
f o r e ,  i t  is i n f e r r e d  that t h e  c o r r o s i v e  sal t  does n o t  r e a d i l y  d e p o s i t  on t h e  con- 
vex sur faces .  According t o  t h e s e  i n v e s t i g a t o r s ,  t h e  p i t t i n g  cor ros ion  morphology 
is assoc ia ted  wi th  t h e  presence of low mel t ing Na2S04- CoS04 mixtures  (Ref. 33). 
A t  e l eva ted  temperatures t h e  s u l f a t e s  of t h e  t r a n s i t i o n  meta l s  are less s t a b l e  
and decompose . 

This p i c t u r e  is incomplete and d e a l s  only wi th  t h e  propagation and says  
nothing about t h e  i n i t i a t i o n  of f a i l u r e  of t h e  p r o t e c t i v e  alumina s c a l e s  on t h e  
over lay coat ing.  

Jones and Gadomski (Ref. 31) repor ted  t h a t  t h e  p i t t i n g  cor ros ion  morphology 
seen on overlay-coated hardware removed from marine s e r v i c e  can be simulated i n  t h e  
l abora to ry  by depos i t ing  mixtures  of Na2S04 and t h e  s u l f a t e s  of n i c k e l ,  i r o n ,  z i n c ,  
c o b a l t ,  and l ead  onto  CoCrAlY c o a t i n g s  and exposing them wi th in  t h e  temperature 
range of 649-760'~ ( 1 2 0 0 - 1 4 0 0 ~ ~ ) .  According t o  Jones and Gadomski, t h e  p i t t i n g  
a t t a c k  r e s u l t s  from t h e  a c i d i c  d i s s o l u t i o n  of t h e  p r o t e c t i v e  s c a l e s  as f i r s t  des- 
c r ibed  by Goebel, P e t t  i t ,  and Goward (Ref. 35).  

It is w e l l  e s t a b l i s h e d  that l i q u i d  sodium p y r o s u l f a t e  and S03-rich sodium 
s u l f a t e  melts w i l l  r e a d i l y  f l u x  alumina s c a l e s  (Refs. 12, 32, 36) - However, an 
inconsis tency a s s o c i a t e d  w i t h  t h e  d e s c r i p t i o n  of t h e  formation of t h e  "B2" micro- 
s t r u c t u r e  is t h e  obeervat ion t h a t ,  a l though cor ros ion  assoc ia ted  wi th  t h i s  micro- 
s t r u c t u r e  occurs  p r imar i ly  on concave (o r  p ressure )  a i r f o i l  su r faces ,  s a l t  d e p o s i t s  
a r e  noted on s u r f a c e s  (Ref. 33). Moreover, i t  is repor ted t h a t  wi th in  t h e  
d e s t r o y e r  duty cyc le  t h e  engine b r i e f l y  drops  t o  i d l e  (Ref. 2 ) ,  and a s  repor ted  
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by Bessen and Fryxel l ,  t he  concentration of unburnt hydrocarbons and carbon 
monoxide can be a s  high a s  0.1 percent.  Also p a r t i c u l a t e  char formation occurs 
(Ref. 2). Moreover, t h e  corrosion is associated pr imari ly  with t he  sur face  exposed 
t o  l i n e  of s i gh t  e f f e c t 6  and because carbonaceous deposi ts  a r e  reported t o  be present  
on t he  t u rb ine  surfaces  (Refs. 33, 34, 37), t he  simultaneous presence of these  
depos i t s  and t h e  format ion of SOg-rich compounds is thermodynamically not favored. 
Last ly ,  it has been reported t h a t  CoCrAlY overlay coat ings have performed excep- 
t i o n a l l y  well in  the  temperature range of 704 '~  (1300°F) v i t h  f u e l s  containing 
almost 3 percent s u l f u r  (3 percent H2S), even though based upon,.chemical ana lys i s ,  
sodium s u l f a t e  was found on t h e  a i r f o i l  sur faces  (Ref. 38) .  

The observations t h a t  t he  corrosion can be r e l a t ed  t o  (a) salt deposi t ion and 
f i l t e r  e f f ic iency ,  (b) impaction phenomena s ince  t h e  p i t t i n g  a t t a c k  occurs only on 
t h e  concave o r  pressure surface,  and (c) t h e  presence of carbonaceous depos i t s  
l ed  us  t o  conduct t h e  study described herein t o  determine i f  an a l t e r n a t i v e  
mechanism e x i s t s  whereby such oxide microstructures  ("B2") can b e  formed. 

In  previous s t u d i e s  (Ref. 13) ,  t h e  r o l e  of carbon had been s tudied by applying 
mixtures of Na2S04 and lampblack onto specimens and exposing them a t  elevated 
temperatures. In  general,  t h e  carbon quickly oxidized. Because carbon formation 
is favored during i n i t i a l  engine operat ion and can e x i s t  f o r  prolonged dura t ions  
a t  e levated temperatures (Ref. 16),  t h e  e f f e c t  of carbon, temperature, and gaseous 
environment on corrosion was reinvest igated.  

In order  t o  determine t h e  r o l e  of gaseous ch lor ide  a s  it a f f e c t s  t he  corrosion 
morphology, a series of experiments were conducted i n  which uncoated and Na2S04- 
coated CoCrAlY specimens were exposed a s  described in the  test schedule below. The 
CoCrAlY t e s t ed  here was in t h e  form of CoCrAlY (IM 6250) coat ings on MAR-M509 
subs t ra tes .  

TEST SCHEDULE 

Na2 SO4 

No 

No 

Yes 

Yes 

Yes 

Thermal Spike Test Conditions 

No 

Yes 

Yes 

Yes 

Age a t  700 '~  

Spike, then age a t  700 '~  

Daily coated with Na2S04, then 700' Age 

Daily washed, then coat with Na2S04, then 
spike,  then 700 '~  age 

Yes Daily washed, then spike,  then coat with 
Na2S04, then 700 '~  age 
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The thermal spike here involved placing t h e  spec1 ?n i n t o  a furnace preheated t o  
1 3 0 0 ~ ~  f o r  30 seconds. In  one s e r i e s  of experimeate involving t h e  e n t i r e  test 
schedule shown above, specimens aged i n  the 7 0 0 ~ 6  fu::nace were exposed t o  a i r  
alone. I n  a second s e r i e s  of experiments again involving t h e  e n t i r e  test schedule 

0 
shown above, test specimens aged a t  700 C were exposed t o  NaCl vapors. These 
vapors were provided by NaCl contained i n  a platinum c ruc ib l e  placed i n t o  a 700 '~  
aging furnace. Based on reported vapor pressure data ,  t h e  an t ic ipa ted  NaCl(g) 
concentration i n  t h i s  furnace was 100 ppm (Ref. 39). No attempt was made t o  
a r t i f i c i a l l y  increase t h e  NaCl(g) composition i n  the  1 3 0 0 ~ ~  furnace above normal 
background values.  These experknents were conducted over a per ioJ  of 3000 hours. 

CoCrAlY coat ings aged a t  700 '~  alone with o r  without NaCl vapors present 
formed t h i n  oxide s ca l e s  which protected t he  specimens from fu r the r  oxidat ion,  
Fig. 34. 

When the CoCrAlY coat ings were thermally spiked, unique microstructurds  can 
be produced. The microstructure  of a s  processed CoCrAlY is  shown i n  Fig. 35. The 
coat ings cons i s t s  of two phases, t h e  i n t e rme ta l l i c  beta  phase (CoA1) and t h e  so l id  
so lu t ion  matr ix  phase (Co-Cr-Al). A s  a r e s u l t  of t he  thermal excursion-aging 
cycle ,  a phenomenon ca l l ed  discontinuous p rec ip i t a t i on  occurs,  Fig. 36. The 
magnitude of t h e  e f f e c t  i s  dependent upon time and temperature. The morphological 
changes can be explained a s  follows. In  the  binary Co-A1 system the  s o l u b i l i t y  
of cobal t  i n  the  6-CoA1 phase increases  with temperature, Fig. 37 (Ref. 40). 
On cooling down a f t e r  such a heat treatment,  t he  excess a-cobalt i n  so lu t ion  i n  t he  
0-CoA1 thermodynamically wants t o  p r e c i p i t a t e  out.  If  t h e  low temperature aging 
temperature is too low, k i n e t i c a l l y  t h i s  p r ec ip i t a t i on  e i t h e r  does not occur or  
occurs on a s c a l e  too f i n e  t o  be seen by ordinary o p t i c a l  metallographic tech- 
niques,  Fig. 38. However, i f  an  appropriate  temperature is  chosen, t h e  discon- 
t inuous p rec ip i t a t i on  phenomenon can e f f e c t  a lamellar- l ike microstructure  a s  seen 
i n  Fig. 36. Of course,  t h e  excess aluminum i n  t h e  a-cobalt r e su l t i ng  from such 
increased temperature exposure s imi l a r ly  would l i k e  t o  p r e c i p i t a t e  a s  0-CoA1. 
However, because l e s s  aluminum disso lves  i n  a-cobalt than does a-cobalt i n  B-CoA1 
with increases  in  temperature, t he  B-CoA1 p rec ip i t a t i on  phenonemon, though present  
i n  t he  a-cobalt g r a i n s , i s  less pronounced. Thus, t h e  presence of discontinuaus 
p rec ip i t a t i on  i n  coat ings normally f r e e  of t h i s  lamellar-type morphology is indi-  
c a t i v e  of thermal spiking. However, t h e  absence of t h i s  morphology does not  mean 
thermal spiking d id  not  occur. I f  t h e  durat ion of t h e  spike is too long o r  t h e  
aging temperature is  too high, severe coarsening and in t e rd i f fu s ion  occurs i n  the  
lamellar  microstructures  which can r e e s t a b l i s h  t h e  o r i g i n a l  microstructure ,  
Fig. 38. 

Moreover, such heat t reatments  can a l t e r  t he  t i l s t r ibu t ion  of chromium i n  the  
coat ing because t h e  s o l u b i l i t y  of chromium in  P-CoAl is  l e s s  than t h a t  i n  a-cobalt  
(Ref. 41). Theref ore ,  during the  excursion t o  high temperatures, t he  a-cobalt 
u n i t e s  with t he  0-CoA1 to  form 6-CoA1 (Co-rich) and p rec ip i t a t ed  chromium. On 
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cool ing, the B-CoA1 (Co-rich) dieproport ionates  t o  form B-CoA1 and a-cobalt 
(Cr de f i c i en t )  . The previously p rec ip i t a t ed  chromium could e q u i l i b r a t e  with t he  
a-cobalt o r  reac t  t o  form 0-CoCr o r  chromium carbide phases. 

Experiments invol*?ing thermal sp ikes  i n  t h e  absence of sodium s u l f a t e  depos i t s  
and sodium chlor ide  vapors produced l i t t l e  a t t a c k  looking s imi la r  t c ~  t ha t  seen in 
Fig. 34. In  experiments designed t o  i nves t i ga t e  t h e  r o l e  of Na2S04, in  t he  absence 
of NaCl vapors with o r  without thermal spikes ,  based upon m e t a l l o g r a p ~ i c  examination, 
t h e  amount of a t t a c k  is minimal with depths of a t t a c k  no more than a few microns. 
However, when thermally spiked specimens were aged i n  t he  furnace with NaC1- 
containing c ruc ib le ,  t h e  r e s u l t s  were completely d i f  f e ren t  . 

A s  shown in Fig. 39, in the  presence of NaCl(g), a severe brad ,. ~t: attack. 
is noted. Based upon metallographic examination the  a l loy  a f f ec t ed  L - I A C  ,as been 
depleted of aluminum, and i n t e r n a l  ox id iza t ion  e f f e c t s  within t h i s  zone a r e  
apparent. Of pa r t i cu l a r  s ign i f icance  is t h e  depth of a t tack .  In  a s  l i t t l e  a s  
f i f t y  thermal cycles ,  almost half  of t h e  coating has been penetrated. The addi- 
t i o n  of sodium s u l f a t e  depos i t s  t o  experiments involving exposure t o  thermal 
t r a n s i e n t s  and NaCl vapors d id  not  s i g n i f i c a n t l y  increase o r  a l t e r  t he  s eve r i t y  
of t h e  a t tack .  That is, the formation of the  depleted zone with the  in te rna l ly-  
oxidized "banded" appearance predominated. When specimens were coated with sodium 
s u l f a t e  and su t j ec t ed  both t o  thermal spikes  and t o  N a C l  vapors in the  aging 
furnace, t h i s  corrosion microstructure  was not  s i g n i f i c a n t l y  a l te red .  The major 
contr ibut ion of t h e  sodium s u l f a t e  was t h e  formation of a few small su l fur - r ich  
p r e c i p i t a t e s  t h a t  were observed within t h e  depleted zone. 

Thus, when CoCrAlY-coated test specimens were subjected in the  laboratory t o  
br ie f  thermal excursions ( z  30 sec) ,  and aged a t  low temperatures in the  absence 
of NaCl(g) , no s ignif  i can t  oxidat ion was observed. Furthermore, no s i g n i f i c a n t  
micros t ruc tura l  changes were evident i n  t h e  CcCrAlY coating i t s e l f .  However, with 
NaCl (g) present,  severe  a l l oy  deplet ion was noted even though no s ign i f i can t  
micros t ruc tura l  changes were observed i n  t he  coating. Moreover, within r e l a t i v e l y  
shor t  durat ions,  approximately half of t h e  coating thSckness is depleted of t h e  
a c t i v e  elements t h a t  impart oxidat ion and su l f i da t ion  res i s tance .  Thus, i n  t he  
presence of both thermal excursions and NaCl(g), s i g n i f i c a n t  reac t ions  occur,  axd 
the e f f e c t  is most de le te r ious  t o  t he  coating. This type of microstructure  
has been observed i n  components removed from gas turbines  used i n  marine 
environments, c f .  Fig. 8 in Ref. 2. 

In  order  t o  i nves t i ga t e  t he  r o l e  of carbon, Na2S04-coated specimens were placed 
within a platinum c ruc ib l e  along with 5-8 cc of Diesel No. 2 f u e l  and inser ted  f o r  
no more than 30 seconds i n t o  a preheated furnace a t  1 3 0 0 ~ ~ .  During t h i s  time 
period, t he  f u e l  would burn and form char. 

After removal from t h e  high temperature furnace, t h e  samples a r e  placed i n t o  
another furnace operat ing in a i r  a t  700 '~  f o r  extended t h e  periods.  I n  general ,  
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t h e  specimens a r e  exposed t o  two high temperature exposures p e r  day wi th  about 
seven h w r s  between exposures. Thus, each c y c l e  c o n s i s t s  of a b r i e f  h igh tempera- 

0 
t u r e  exposure followed by a n  extended pe r iod  a t  7 0 0 ' ~  (1290 F) .  No c r u c i b l e  con- 
t a i n i n g  NaCl was used h e r e  i n  t h e  7 0 0 ' ~  aging furnace .  No SO2 a d d i t i o n s  a r e  made 

2 t o  t e s t  environments, and sodium s u l f a t e  d e p o s i t s  (IL 1 mglcm ) a r e  a p p l i e d  once 
every 15  cyc les .  The specimens a r e  n o t  water washed p r i o r  t o  t h e  r e a ~ 2 l i c a t i o n  
of t h e  sodium s u l f a t e .  Af t e r  58 c y c l e s  t h e  specimen was prepared f o r  both  
meta l lographic  and e l e c t r o n  microbeam pxobe examination. Another s e r i e s  of exper i -  
ments was conducted d i f f e r i n g  only i n  t h a t  t h e  q u a n t i t y  of char  employed was in-  
creased by t h e  a d d i t i o n  of 5 cc  of epoxy r e s i n .  

A s  shown i n  Fig. 40, t h e  CoCrAlY c o a t i n g  e x h i b i t s  a nodular  ( o r  a p i t t i n g )  
type  of a t t a c k ,  ~ i t h  t h e  v i s u a l  and m i c r o s t r u c t u r a l  c h a r a c t e r i s t i c s  descr ibed 
f o r  t h e  c t t i n g  "B2" c o r r o s i o n  morphology a s s o c i ~ t e d  wi th  t h e  acce le r ;  t e d  
cor ros ion  which had occurred i n  some Navy g a s  t u r b i n e  engines  (Refs. 12,  32, 33).  
Af ter  131 t e s t  c y c l e s  t h e  specimen is s e v e r e l y  p i t t e d ,  and t h e  c h a r a r t e r i s t i c  
f e a t u ~ e s  of t h e  a t t a c k  a r e  more r e a d i l y  seen (Fig.  41) .  

The m i c r o s t r u c t u r e s  produced by t h i s  t e s t i n g  procedure have t h e  fo l lowing 
c h a r a c t e r i s t i c s :  

1. an o u t e r  cobal t -enr iched oxi.de s c a l e  (Fig .  41a),  

2. an inner  oxide  zone enr iched i n  chromium and aluminum and simultaneously 
dep le ted  i n  c o b a l t  (Figs .  41b and 41c) ,  

3. l i t t l e  o r  no 8-CoA1 d e p l e t i o n  zone between t h e  inner  oxide  zone and 
t h e  unaf fec ted  CoCrAlY coa t ing  (Fig.  41). 

Furthermore, amplifying on t h e  c h a r a c t e r i s t i c s  of t h e  oxide p i t s  produced by 
l a b o r a t o r y  t e s t i n g ,  at1 enrichment of s u l f u r  C s  found a t  t h e  i n t e r f a c e  between t h e  
inner  oxide  l a y e r  and t h e  unaf f  r c t e d  CoCrAlY coa t ing ,  Figs .  41, 41d, 42, 42d. 
However, no d i s c r e t e  s u l f i d e s  a r e  found i n  t h e  oxide  o r  i n  t he  CoCrAlY coa t ing  
below t h e  p i t ,  Figs.  40, 41  and 42. Note t h a t  a d e p l e t i o n  zone of chromium i n  t h e  

. . c o a t i n g  ad jacen t  t o  t h e  oxide  p i t  is a l s o  observed,  and smal l  i s l a n d s  of a-cobalt  
a r e  found i n  t h e  oxide  p i t  near  t h e  unaf fec ted  c o a t i n g ,  Figs .  40, 41  and 42. 
L a s t l y ,  t h e  m i c r o s t r u c t u r e  found i n  t h e  inner  oxide  zone resembles t h e  o r i g i n a l  
CoCrAlY m i c r o s t r u c t u r e ,  Figs.  40 and 41. Based upon t h e  e l e c t r o n  microbeam probe 
d a t a ,  one  phase i n  t h e  inner  oxide  zone is aluminum r i c h  whi le  t h e  o t h e r  is 
chromim r i c h ,  Fig. 43. Super iLl~7sed on t h i s  two phase m i c r o s ~ r u c t u r e ,  ox ide  
s t r i a t i o n s  a r e  observed running p a r a l l e l  t o  t h e  s u r f a c e ,  Figs .  40 ark! 41. Fur ther-  
more, a s  shown i n  t h e  above f i g u r e s ,  a  t h i n  zone s l i g h t l y  enr iched i n  aluminum 
is observed between t h e  o u t e r  coba:t-r ich ox ide  and t h e  inner  two phase oxide,  
Fig. 41c. L a s t l y ,  when t h e  cor ros ion  products  a r e  placed i n t o  water ,  s o l u b l e  
c o b a l t  is found. 
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In  order t o  separa te  t h e  r o l e  of t h e  char  and t h e  thermal spike,  a series of 
experiments was conducted h which t h e  sodium sulfate-coated CoCrAlY-coated 
specimens together  with f u e l  with and without epoxy r e s i n  were heated a t  7 0 0 ~ ~  
(1295'0 f o r  seven (7) hours. After 170 cycles,  it was observed t h a t  no corrosion 
had occurred. It was a l s o  determined t h a t  t h e  char formed at 7 0 0 ~ ~  is highly 
combustible, un l ike  t he  char formed at 1 3 0 0 ~ ~  which would p e r s i s t  f o r  extended 
per iods (two t o  four  hours). 

Lastly,  a series of experiments was performed i n  which the  sodium su l f a t e -  
coated CoCrAlY specimens and f u e l  were placed i n t o  indivigual  platinum crucibles .  
Both c ruc ib les  were simultaneously inser ted  i n t o  t h e  1300 C preheated furnace 
f o r  durat ions less than 30 seconds. This experiment was then repeated without t h e  
fue l .  In  t he  3bsence of t h e  f u e l  t h e  CoCrAlY specimen is e s s e n t i a l l y  covered with 
a clear-whitish deposi t .  When. touched with w e t  l i tmus paper, the  l i tmus paper renains  
unchanged i n  o l o r .  When fue l  w a s  present ,  the  s a l t  deposi t  on t he  CoCrAlY specimen 
is reddish in appearance; and when touched with w e t  l i tmus paper, a d i s t i n c t l y  
basic  response was indicated. When heated a t  700 '~ i n  a i r ,  t h e  reddish deposi t  
slowly t u r n s  white. 

Because anhydrous sodium s u l f i d e  is reported t o  be red while sodium s u l f a t e  
is white and because aqueous so lu t ions  of sodium s u l f i d e  are a lka l ine  while those 
of sodium s u l f a t e  a r e  not ,  these  observat ions a r e  cons is ten t  with t h e  p a r t i a l  
conversion of Na2S04 t o  Na2S which can occur under t h e  t r ans i en t  reducing condi- 
t i ons ,  i.e., 

Na2S04(c) + 4C(c) + Na2S(c) + 4CO(g). (Ref. 42, 43) 

A t  7 0 0 ~ ~  i n  t he  oxidizing environment, t h e  Na2S phase is converted back t o  Na2S04, 
i.e., 

Na2S(c) + 202 (g) -t Na2S04 ( c )  . (Ref, 43, 44) 

Thus, t h e  an t ic ipa ted  reac t ion  products between Na2S04 and carbon, under t h e  condi- 
t i o n s  described herein,  a r e  sodium su l f i de ,  Na2S, and t h e  oxides of carbon while the  
release of SO3 is not  thermodynamically favored (Ref. 43). 

The presence of carbon s t rongly inf luences both t h e  r a t e  of corrosion and t h e  
corrosion morphology. In t h e  presence of carbon, s a l t ,  thermal excursions,  and 
subsequent aging, t h e  CoCrAlY coating oxid izes  a t  accelerated ra tes .  It forms an 
oute r  cobalt-enriched oxide sca le ,  an inner oxide zone enriched i n  chromium and 
P luminum, and simultaneously depleted i n  coba l t  with t h e  corrosion product almost 
in  int imate  contact with t h e  unaffected subs t ra te ,  a s  i f  l i t t l e  d i f fu s ion  had 
occurred. This microstructure  is i d e c t i c a l  t o  t ha t  described f o r  t h e  acce le ra ted  
corrosion of CoCrAlY-coated componentr -emoved from some Navy gas tu rb ine  engines 
(Refs. 12, 32, 33). Thus, although t h e  "B2" microstructure  has been reproduced i n  



NASA CR-159767 
R79-914387-4 

the laboratory by t h e  ac t ion  of condensed sodium s u l f a t e  deposi ts  with SO3 (S02/02) 
addi t ions  t o  t e s t  atmospheres a t  r e l a t i v e l y  low temperatures, 700°C (Refs. 12,  36),  
r e s u l t s  of experiments described here  demonstrate t h i s  microstructure  can a l t e r n a t e l y  
be  produced a s  a r e s u l t  of high temperature Na2S04-induced hot  corrosion processes 
without add i t  ions of  SO3 (S02/02) t o  test environments. Furthermore, t h i s  a l t e r n a t i v e  
mechanism involves f a c t o r s  which have been reported t o  be present within t he  operat ing 
p r o f i l e  of gas tu rb ine  engines where such corrosion p i t s  have been observed. 

Thusly, t he  corrosion associated with hardware i n  such engines occurred pr imari ly  
on the concave sur faces ,  t h e  sur faces  which a r e  " l i ne  of s i gh t "  with respect  t o  
combustion burners. Carbonaceous depos i t s  w e r e  reported t o  be present  on t u rb ine  
sur faces  (Refs. 2, 33, 37), and s a l t  depos i t s  were noted on a l l  sur face  (Ref. 2). 
Thus, assuming thermal excursions and subsequent low power operat ion,  the  condi t ions 
inves t iga ted  i n  t h i s  study had occurred i n  t h e  f i e l d .  That is, sal t -coated p a r t s  
were b r i e f l y  exposed a t  ~ l e v a t e d  temperatures i n  t h e  presence of carbon and sub- 
sequently aged a t  lower temperatures. In  t he  laboratory i n  the  absence of carbon, 
no accelerated corrosion with t he  " ~ 2 "  morphology was observed. I n  t h e  f i e l d ,  
carbon deposi t ion most l i k e l y  occurs during engine s tar t -up and shut-down. Thus, 
a s  had been reported by Sch i l l i ng  e t  a l .  (Ref. 38) , t he  CoCrAlY coat ings had 
performed wel l  i n  engines operat ing f o r  extended dura t ions  on gaseous f u e l s  con- 
ta in ing  up t o  3 w/o s u l f u r  ( a s  H ~ s ) ,  even though (based upon chemical ana lys i s )  
sodium s u l f a t e  had been present  on high pressure turbine a i r f o i l  surfaces .  Because 
the gas  tu rb ine  engine was reportedly i n  continuous use,  carbon formation would be 
minimized; and, based upon the  model described herein,  carbon is an e s s e n t i a l  
ingredient  fo r  t h i s  type of corrosion. 

Sodium chlor ide  was present  a t  low l e v e l s  i n  t he  epoxy used i n  experiments 
deal ing with carbon which r e su l t ed  i n  t he  production of p i t s  with the  "B2" micro- 
s t ruc tu re .  However, these  experiments do not permit an e x p l i c i t  d e f i c i t i o n  of 
t h e  r o l e  of such sodium chlor ide  i n  t he  corrosion process leading t o  t he  formation 
of oxide p i t s  with t h e  "B2" morphology. However, on t he  bas i s  of o the r  experi-  
ments reported here  deal ing with low l e v e l s  of NaC1, such amounts of sodium 
chlor ide  a r e  probably not imocuous. Accordingly, f u r t h e r  work i n  t h i s  s r e a  is  
needed t o  def ine  t h i s  ro l e .  
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V. SWNARY AND CONCLUDING REMRKS 

Sodium chlor ide  gas r e a c t s  with the normally pro tec t ive  oxide sca l e s  t h a t  
form on N i A l ,  N i - C r  a l l oys  and the a i cke l  base superalloy, B-1900. 

! 

With respect  t o  the simple alumina formers, the  gas r eac t s  a t  the metal- 
oxide in te r face ,  t ransport ing aluminum t o  the f r e e  .?urface where i t  oxidizes  
t o  form A1203 whiskers. The deplet ion of aluminum a t  the oxide-metal i n t e r -  
face r e s u l t s  i n  the formation of voids, which a f t e r  prolonged exposure grow 
and eventually cont r ibu te  t o  isothermal s c a l e  cracking of s u f f i c i e n t  magnitude 
t o  be readi ly  detected by thermogravimetric techniques. 

In  air environments alone, B-1900 exhibi ted exce l len t  oxidation res i s tance .  
However, i n  t h e  presence of low l e v e l s  of NaCl  vapors, oxidazion rates were 
increased by orders  of magnitude. In  f a c t ,  at  the  end of 100 hour t e s t s ,  
thermogravimetric curves f o r  specimens exposed t o  NaCl(g) a t  900°C indiczted 
highly pos i t ive  slopes.  On t he  o ther  hand, sodium sulfate-coated specimens 
exposed at 900°C t o  air without NaCl(g) indicated f l a t  o r  even decreasing oxida- 
t i on  r a t e s ,  suggesting pro tec t ive  s c a l e s  had eventually formed there. Moreover, 
f o r  B-1900 specimens oxidized i n  a i r  with NaCl  vapors, alumina whiskers s imi l a r  
t o  those found f o r  the  s i n p l e  alumina formers, were evidenced on oxide scales .  
The at tendant  isothermal cracking of the  pro tec t ive  sca l e  and t h e  enrichment of 
molybdenum at  t h e  scale-alloy in t e r f ace  a r e  cont r ibu t ing  f ac to r s  t o  t he  accelerated 
oxidation of t h i s  a l loy.  Because molybdenum and t h e  o ther  re f rac tory  metals a r e  
most important a l loy ing  elements f o r  the next generation of the  aluminum r i ch  
(gamma prime strengthened) superal loys,  i t  is most important t o  understand the  
mechanism by which gaseous species  (such as N a C l  vapors) increase t h e  oxidat ion 
r a t e s  orders  of magnitude, s o  t h a t  the proper a l loy ing  o r  metal lurgical  hea t  
treatments can be performed t o  improve oxidat ion res i s tance  t o  such corrodents. 
As shown i n  t h i s  study, the de le te r ious  e f f e c t  of NaCl(g) is a l s o  observed when 
t h e  a l loy  is coated with molten sodium s u l f a t e .  

I n  t h i s  study it was confirmed t h a t  NaCl(g) r eac t s  with chromia, and the 
chromium content of oxide sca l e s  can be s ign i f i can t ly  reduced by gaseous sodium 
chloride such t h a t  oxidation r a t e s  a r e  s ign i f i can t ly  increased. Furthermore, the 
presence of NaCl vapors i n  oxidizing atmospheres leads t o  "S" shaped thermogravi- 
metric curves c h a r a c t e r i s t i c  of breakaway oxidation k ine t ics .  

During thermal t rans ien ts ,  metal lurgical  transformation can occur i n  CoCrAlY 
coatings. In  the presence of gaseous NaC1, severe a l l oy  deplet ion e f f e c t s  ana 
in t e rna l  p rec ip i t a t i on  of aluminum and chromium a r e  observed. Such a micro- 
s t ruc tu re  has been reported f o r  a gas turbine operating under cyc l i c  conditions 
i n  a marine environment. When carbon and Na2S04 a r e  present and :he a l loy  is 
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aged a t  lower temperatures, accelerated corrosion is observed pl.7ducing a 
cha rac te r i s t i c  microstructure whose features agree with that  reported t o  
r e s u l t  from low p w e r  operation of some Navy gas turbines, i.e., "B2." 

Because NaCl is present i n  the sodium s u l f a t e  a t  contaminant levels ,  and 
was present i n  the epoxy used t o  promote char formation, the r o l e  of gaseous NaCl 
i n  t h i s  form of accelerated hot corrosion needs t o  be further  explored. 
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V I .  APPENDIX I 

A PROPOSED MECHANISM FOR THE GROWTH OF CHROMIA 
CRYSTALS BY MOLTEN SALTS 

Both i n  t he  cur ren t  and i n  previously reported s t u d i e s  (Ref. 13) pure 
chromium and Ni-Cr  a l l oys  exposed t o  condensed sodium s u l f a t e  depos i t s  develop 
l a rge  platelet-shaped Cr203 c r y s t a i s  (Ref. 131, e.g., Fig. 30. Similar  observations 
have been reported by Wright et al.  (Ref. 28). Such p l a t e l e t s  develop i r r e spec t ive  
of t he  presence o r  absence of halogen-bearing vapors. 

Ths growth r a t e  of such c r y s t a l s  is slow a t  9 0 0 ~ ~  and r ap i a  a t  temperatures 
of 1 0 0 0 ~ ~  (Ref. 28) and 1 0 5 0 ~ ~  (Ref. 13).  An explanation previously proposed t o  
account f o r  the  growth of such c r y s t a l s  involved oxide ion e f f e c t s ,  a r j a ing  from 
the  r e v e r s i b i l i t y  of t h e  react ion:  

Cr2O3(c) + 2 o (g) + 20=(c): 2cro4=(c) 
2 2 

(Ref. 28).  

Based on t h i s  i n t e rp re t a t i on ,  t he  d i s so lu t ion  process occurs where t h e  oxide 
ion  l e v e l  is high, i.e., the  oxide-molten s a l t  i n t e r f ace .  The p rec ip i t a t i on  
reac t ion  then occurs  when the oxide ion  l e v e l  is reduced, i . e . ,  near the molFen- 
salt ambient atmosphere i n t e r f a c e  (Ref. 28). Such an i n t e rp re t a t i on ,  though 
i n t e r n a l l y  cons is ten t ,  does n o t  r ead i ly  expla in  the d i s t r i b u t i o n  of chromia 
c r y s t a l s  a s  shown i n  Fig. 44, c f .  Fig. 100 i n  Ref. 13. Here a number of c i r c u l a r  
f ea tu re s  occur. These s t r u c t u r e s  suggest t h a t  a molten s a l t  was t r ans i en t ly  
present  a s  a d rop le t  on t he  specimen sur face  before completely vaporizing because 
no ind i ca t i on  of  a molten deposi t  remains. C r  0 c r y s t a l s  a r e  found both ins ide  2 3 
and outs ide  such c i r c u l a r  s t ruc tu re s .  However within the del ineated perimeters 
of such fea tures ,  chromia c r y s t a l s  a r e  e i t h e r  absent o r  g r e a t l y  diminished i n  
quant i ty .  

Thus, i f  such loca l  molten s a l t  d rop le t s  ex is ted ,  the  oxide ion l e v e l  should 
be lowest a t  t he  periphery of such a drople t ,  i.e., a t  the gas-salt-oxide i n t e r -  
face.  Concurrently t he  oxide ion level  should be g r e a t e s t  i n  the  middle of such 
a drople t  i n  contact  with the  oxide surface.  Hence,according to  the  above 
explana t ion ,c rys ta l s  should appear a t  the periphery of such s t r u c t u r e s  and be 
absent  !q t h e i r  cen te rs ,  Fig. 44. On the  o ther  hand,observation d i s c lo se s  exac t ly  
a n t i t h e t i c a l  microstructures ,  Figs. 44 a ~ d  45. 

An a l t e r n a t i v e  explanat ion t o  account f o r  the d i s t r i b u t i o n  of chromia found 
i n  Fig. 44 involves the  p o s s i b i l i t y  of an oxygen t ranspor t  cycle.  Thusly,chromia 
c r y s t a l s  could a r i s e  from the  r e v e r s i b i l i t y  of a reac t ion  such a s ,  
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Such a  c y c l e  would involve  t h e  t r a n s p o r t  of oxygen from a reg ion  of h igh a c t i v i t y  
t o  one of low a c t i v i t y .  Thus,chromia s c a l e s  should d i s s o l v e  i n  r eg ions  of h igh 
oxygen a c t i v i t y  i n  o r d e r  t o  t r a n s p o r t  oxygen a c r o s s  a n  oxygen g r a d i e n t .  Although 
sodium dichromate a t  u n i t  a c t i v i t y  is repor ted  t o  decompose a t  4 0 0 ' ~  (Ref. 23),  
t h i s  does not  preclude its e x i s t e n c e  i n  a  molten s a l t  a t  some reduced a c t i v i t y .  

To e v a l u a t e  t h e  f e a s i b i l i t y  of  bo th  of  t h e s e  mechanisms, a s h o r t  series of 
experiments was conducted. Elemental chromium was used t o  avoid  problems w i t h  
va ry ing  a c t i v i t i e s  such as would occur f o r  a n  a l l o y  undergoing ox ida t ion .  The 
molten salt involved was sodium chromate. Chromia powder of 99.999% p u r i t y  
ob ta ined  from Apache Chemicals Inc . ,  Seward, I l l i n o i s  was pressed  i n t o  
p e l l e t s .  

The temperature f o r  the  group of t e s t s  was ~ O O O ~ C ,  a va lue  which was found 
by Wright e t  a l .  t o  e f f e c t  t h e  growth of such c r y s t a l s  (Ref. 28). Specimens 
were maintained i n  a  box furnace  f o r  one week and then examined f o r  i n d i c a t i o n s  of 
the  a t t a c k  of chromia s c a l e s  and/or t h e  formation of l a r g e  Cr203 c r y s t a l s .  

The f i r s t  group of experiments involved t h e  absence of e i t h e r  an  oxygen o r  
oxide  ion  s i n k .  Thus pure Na2Cr04 he ld  f o r  a  week i n  a  plat inum c r u c i b l e  f a i l e d  
t o  produce any Cr203 c r y s t a l s .  With t h e  a d d i t i o n  of dense alumiaa p ieces  t o  t h e  
molten s a l t ,  aga in  no chromia c r y s t a l s  were formed. Pressed Cr203 pawder p e l l e t s  
he ld  i so the rmal ly  i n  a i r  a t  1 0 0 0 ~ ~  f a i l e d  t o  s i n t e r  s u f f i c i e n t l y  t o  y i e l d  l a r g e  
chromia c r y s t a l s .  Furthermore pressed chromia p e l l e t s  e i t h e r  sprayed wi th  Na2CrOq 
o r  p a r t i a l l y  o r  f u l l y  innnersed a lone  i n  Na2Cr04 a l s o  f a i l e d  t o  produce t h e  d e s i r e d  
c r y s t a l s .  A smal l  amount of Ostwald r ipen ing ,  a s  a n t i c i p a t e d ,  took p l a c e  f o r  
Cr203 p e l l e t s  specimens p a r t i a l l y  o r  f u l l y  immersed i n  Na2Cr0 however t h i s  
was no t  t h e  d e s i r e d  e f f e c t .  

4  ; 

The second group of s t u d i e s  involved t h e  p o s s i b l e  a c t i o n  of an oxide  ion  s i n k .  
I n  t h e  p rev ious ly  repor ted  exp lana t ion  t o  account f o r  the  growth of t h e s e  c r y s t a l s  
(Ref. 28), the  l i k e l y  and s t r o n g e s t  oxide  i o n  accep to r  involving N i - C r  a l l o y s  would 
have been N i O .  Thus N i O  powders mixed wi th  Na2Cr04 and he ld  f o r  one week a t  1000°C 
i n  a  plat inum c r u c i b l e  f 2 i l e d  t o  produce any chromia c r y s t a l s .  However a s t r o n g e r  
oxide  i o n  accep to r  than N i O  should produce Cr20, c r y s t a l s .  Thus, i n  an  experiment 
us ing a  g lazed p o r c e l a i n  (Coor's) c r u c i b l e ,  a f t &  a  week a t  ~ O O O ~ C ,  both  the  
c r u c i b l e  was a t t a c k e d  and smal l  Cr203 c r y s t a l s  were observed,  Fig .  46. The 
s i l i c a  used t o  g laze  t h e  c r u c i b l e  l i k e l y  r e a c t e d  wi th  the  Na2Cr04 t o  form var ious  
sodium s i l i c a t e s  and t o  produce Cr,O c r y s t a l s  via oxide  ion  e f f e c t s .  

L 3 

I n  the  t h i r d  group of experiments involving an oxygen s i n k ,  a  specimen of 
chromium was p a r t i a l l y  immersed i n  a  pool of sodium chromate conta ined i n  a  
plat inum c r u c i b l e .  This  exper imenta l  des ign a s  shown i n  Fig .  47 emulates t h e  
morphology of a  molten s a l t  d r o p l e t  on the  s u r f a c e  of a  specimen, c f .  F ig .  45. 
A f t e r  one week, the  specimen shows p r e f e r e n t i a l  a t t a c k  a t  the  meniscus where t h e  
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molten s a l t  wetted the  chromium specimen, Fig. 47. Concomitant with such a t t a c k  
l a rge  Cr20j c r y s t a l s  were produced. These c r y s t a l s  a r e  morphologically s imi l a r  
t o  those reported i n  the  l i t e r a t u r e  (Ref. 28) and observed i n  p r i o r  (Ref. 13) 
and cur ren t  s tud ies .  The at tacked regions of the  chromium specimen a r e  where 
the oxygen a c t i v i t y  is highest .  Regions of the  chromium test piece t h a t  were 
below the  sur face  of t he  molten salt were not  p r e f e r e n t i a l l y  oxidized. To insure  
t h a t  the e f f e c t s  observed d id  not r e s u l t  from galvanic  i n t e r ac t i ons  with the platinum 
cruc ib le ,  the  elemental chromium was i so l a t ed  from t h e  c ruc ib l e  with small  alumina 
blocks with t h e  same r e s u l t s  as before,  Fig. 47. Similar  r e s u l t s  were obtained sub- 
s t i t u t i n g  sodium s u l f a t e  f o r  t he  sodium chromate here  with the  add i t i ona l  presence 
of a layer  of s u l f i d e s  below t h e  chromia scale. 

Continuing alocg these l i n e s ,  a chromia p e l i e t  w a s  p a r t i a l l y  immersed on an 
alumina pedestal  and a piece of elemental chromium was f u l l y  immersed i n  the 
Na2CrO4, Fig. 48. After  t e s t i n g  fo r  one week the  region of the  p e l l e t  covered 
by the  meniscus had l a rge ly  dissolved,  Fig. 48. Thusly i t  had been p a r t i a l l y  
consumed i n  t ransport ing oxygen t o  the submerged chromium specimen. I n  experiments 
involving such Cr203 p e l l e t s  alone and not using the  oxygen s ink,  namely elemental 
C r ,  no comparable e f f e c t  occurred. 

To determine i f  the t ranspor t  of oxygen v i a  the  d i s so lu t ion  of Cr203 occurred 
independently of an oxide ion s ink,  a specimen of elemental chromium was p a r t i a l l y  
immersed i n  Na2Cr04 held i n  a glazed porcelain c ruc ib le .  After  a week a t  1000°C, 
the  c ruc ib l e  showed a t t a c k  exact ly  a s  seen e a r l i e r  with no elemental chromium 
present,  c f .  Fig. 46. However the  chromium piece a l s o  evidenced a t t a c k  exac t ly  
a s  seen e a r l i e r  i n  experiments with platinum cruc ib les ,  c f .  Fig. 47. 

Thusly the e f f e c t s  reported here  are not explained by d i f fe rences  i n  the 
s o l u b i l i t y  of chromia s ca l e s  i n  the absence of an oxygen s ink  (Ref. 28). However 
they a r e  commensurate with an oxygen t ranspor t  mechanism involving the d i s so lu t ion  
of Cr203 sca l e s  t h a t  is independent of oxide ion a c t i v i t y .  Moreover the  r a t e  of 
a t t a c k  of chromia s ca l e s  by t h i s  mechanism a r e  s i g n i f i c a n t  a t  temperatures of 
1 0 5 0 ~ ~  and 1 0 0 0 ~ ~  (Refs. 13, 28). A t  the  end of weight gain experiments conducted 
a t  1 0 5 0 ~ ~  f o r  24 hours with Ni-25Cr, Ni-40Cr o r  elemental chromium coated with 
molten sodium s u l f a t e  (o r  sodium chromate) depos i t s ,  no molten s a l t  is detected 
on specimen sur faces  while p r o l i f i c  amounts of l a rge  Cr203 c r y s t a l s  abounded. 
Tine morphology of the chromia c r y s t a l s  produced by such t h i n  s a l t  deposi t  exper- 
iments i nd i ca t e s  a much l a r g e r  sur face  a rea  compared t o  the usual a r ea  calculated 
from pre-oxidized specimen geometries. Vaporization e f f e c t s  would be enh~nced  
by the g rea t ly  enhanced sur face  a reas  ac tua l ly  e f fec ted  by the profuse number 
of the  r e l a t i v e l y  l a r g e  c r y s t a l s  produced, c f .  Fig. 44. Therefore, i f  Na2Cr04 
is a s  reac t ive  a s  r e s u l t s  of experiments conducted here  suggest,  i t  should not 
be surpr i s ing  t o b e u n a b l e t o  subsequent lyf ind solublechromiuminthe caseof  such 
experiments. 
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t .  
3 : 

, , . . , A recogni t ion of t he  presence of such a t ranspor t  process could be important 
! 
, a i n  i n t e rp re t i ng  r e s u l t s  of electrochemical s t ud i e s  of hot corrosion mechanisms. 

. . The equations responsible  f o r  such t ranspor t  a r e  independent of oxide ion a c t i v i t y .  
Moreover,such reac t ions  could a f f e c t  d i f f e r e n t  a r ea s  of the same electrode - the  

I 
. , .  

r ..- e f f e c t  appearing a s  a shor t  c i r c u i t  wi th in  a s i n g l e  e lec t rode .  

Rapp and coworkers have presented r e s u l t s  of equilibrium s o l u b i l i t y  s t u d i e s  
of Cr20j i n  molten sodium s u l f a t e  mel ts  a t  1000'~ f o r  a wide range of S02102 
mixtures (Refs. 45 and 46). These r e s u l t s  i nd i ca t e  t h a t  f o r  the bas ic  d i s so lu t ion  
of Cr203, i - e - ,  

a t  f ixed oxide ion a c t i v i t y ,  the s o l u b i l i t y  of C r  0 decreases with increased 
2 3 

oxygen p a r t i a l  pressure.  These r e s u l t s  derived from equilibrium s tud i e s  a r e  
contrary t o  the r e s u l t s  presented here  f o r  processes involving dynamic t ranspor t  
e f f e c t s .  
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Table I 

Analyzed Composition (in wt.2) for Experimental Alloys 

,- - 
Nominal Composition Analyzed Composition 

, 
- Ni Co A1 C; r Y Hf 

(. . NiAl (70Ni, 30A1) 68.6 ---- 30.6 ---- ---- ---- 
NiAl + 0.5Y 68.1 ---- 31.2 ---- 0.12 ---- . . 
~ i ~ l  + 1.5~ 69.6 ---- 29.9 ---- 0.24 ---- 

.. NiAl + 1.OHf 68.9 ---- 30.9 ---- ---- 1.16 
NiAl + 3.OHf 66.5 ---- 23.2 ---- ---- - - 3.62 
NiAl + 1.OCr 67.7 ---- 31.4 1.27 ---- ---- 

CoCr A1 
CoCrAl + 0.5Y 
CoCrAl + 1.5Y 
CoCrAl + 1 .OHf 
CoCrAl + 3 .OHf 



PIG.  1 U i A l  oxidized in  air alone at  f0SOQC for 100 hours. 
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FIG. 2 Therrnogravinetric da ta  f o r  N i A l  ox id i zed  i n  air alone.  
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FIG. 3 Thermogravimetric data for Ni-25Cr oxidized in air alone. 



FIG. 4 Oxidation of NI-2SCr at  1 0 5 0 ' ~  in air alone (100 hours) 
oxide mounds (A) and convoluted oxide on Ni-25Cr surface (B) . 
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FIG. 6 Thermogravimetric data for B-1900 oxidized in air alone. 



FIG. 7 Oxidation of 8-1900 a l loy  a t  1 0 5 0 ~ ~  in air  alone (100 hours) 

A. Thin g m a  prime deple t ion  zone (A) 

3. Unaffected B-1900 substrate 







A. Outer oxide scale 
R. Inner oxide  scale 
C. NiAl substrate 

Note cracks (A) between external CBE and internal scales (C) 

FIG. 10 Elicroseopv studies--liAl exposed a t  1050°C t o  sir wf t h  IOppm 
NaC1 IR) i n r  100 I i n ~ ~ s s .  
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A. Mt alone 

1 OP 

B, A i r  with  12ppm NaCl(g1 

11 Microscopy Studies--MA1 exposed at  1050QC far 100 
Arrowa indicate attachment sites between substrate 
scale. 

hnuts. 
and 
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FIG, 12  >flcroscopy studiea--NiAl exposed a t  1050°~  t o  a i r  w i t h  lOOppm 
HCL and 0.02vlo SO2 for 24 hours. 

Note the format ion of alumina whiekers (arrows). 



FIG. 13 A1203  whiskers en CoCrAlY ox id i zed  at  1 0 5 0 O ~  for 24 hours i n  a i r  
with  lOOppm NaC1. 









FIG. 17 Blister formation (arrows1 on Nf-25Cr exposed for 100 
hours at  1050°C in air with  8ppm N a C l ( ~ 1 .  
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FIG. 18 Oxidation of B-1900 at  900'~ 
A. Na2S04 coated (1 rng/crn2) 
B. lOppm NaCl (no Na2S04) 
C. lOOpprn NaCl (no Na2S04) 
D. Air alone (no Na2S04- no NaC1) 
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FIG. 21 Pittsng attach (arrows) of B-1900 exposed t o  a i r  with 92ppm 
NaCl(g) for 100 hours at: 3050°C. 





FIG. 23 B-1900 oxidized a t  700oC. 

A for 100 hours in a i r  alone 
5 for 60 hours in air w i t h  1 0 p p  NaC1 (g) 
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FIG. 24 Oxidation of sodium sulfate-coated (1.0 mg/cm2) N i A l  at 1 0 5 0 ~ ~ .  



Free Surf ace 

FIG. 25 Sodium sulfate-coated (1.0 mp/cm2) N i A l  oxidized in a i r  with 90ppm 
NaCl(g) at 1050DC fo r  100 hours. {A)  Widmanatatten precipitation 
and (B) y '  (N13A1) formation in aluminum d e p l e t e d  N l A l  regions con- 
taining (C) oxide inclusions. 
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FIG, 28 Thermogravimetric da ta  f o r  sodium su l fa te -coa ted  Ni-25Cr oxidized 
a t  1050°C f o r  100 hours (1.0 mg/cm2). 





a. A. Chrmia crystals produced by molten s a l t  e f fects  
B. Hatrix scale 

b. EDNI of matrix sca1,c 

6 

FIG. 30 Chtomia crysta l s  (A) growing on a nickel-enrlched 
oxide substrate (R) . Na2SOh coated (I .  9 rnlt/ern2! Wi-25Cr nxidired 
in a ir  at ~ O W ' C  f o r  iflo t l o ~ ~ r a .  so- 1 -41 -42 

b 
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FIG. 32 Thermogravimetric data for sodium sul fate-coated (1.0 mg/cm2) 8-1900 
oxidized at 1050°c. 
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FIG. 33 Oxidation of sodium sulfate/ammonium chromate-coated 6-1900 at 9 0 0 ~ ~  
in a i r  with and without NaCl vapor present. 

Deposit: 3.2 mg/cm2 (1 part by weight Na2S04:: 2.2 parts by weight 
(NH4)2 Cr207). 
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FIT.. 34 CoCrAIY-coating oxidized in a i r  a t  700°C for 3000 hor~rs. 
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FIG. 35 CoCrAlY-coathg (IM 62501, as processed. 

A. a-Co (Cr,Al) solid solution 
B. %-CoAl 



FIG. 36 Disccnt inuous precipltat ion effects producing cellular recrystalllzat ion 
(?.rrows) in CoCrAIY-coating exposed a t  1300°C for one minute followed 
by 60 hours in a i r  at 700'~. 



ATOMIC '10 COBALT - 
FIG. 37 Partial phase diagram for the aluminum-cobalt system (Ref. 40). 

A. Approximate overall composition of CoCrAlY (neglecting chromium) 

B. Approximate composition of a-cobalt and B-CoA1 after 4 hours 
1975'~ (1080°C) heat treatment 

C. Effect of thermal spike on the composition of a-cobalt and 
@-CoA1. 



FIG. 38 Effect of thermal history on coating microstructure 

Thermal History 

A; As-processed CoCrAlY coating microsrructure 

B: A-innnediately after a thermal transient 

C: B-aged at too low a temperature to effect precipitation 

D: B-aged at an appropriate temperature to produce a lamellar 
structure via discontinuous precipitation effects 

E: D (or B)-aged at higher temperature results in lamellar 
structure coarsening 

A: E (or B, C, and D) exposed to too high a temperature will 
rzvert to original microstructure, A. 



CoCrAXY 
ceatlng 

substrate 

Banded in ternally 
oxidized region 

Banded internally 
oxidlzed structure 

FIG. 39 Bandfn~ produced in CoCrAlY coatings by thermal transients 
and NaC1 (g) . 
CoCrAlY thennally spiked f i f t y  times and a ~ e d  at 30'~ in a i r  w i t h  
lOOppm NaCl (g) . 



PIG. 40 Sit t ing  attack of CoCrAlY after 58 cycles showing the presence of 
a retained substrate morphology in the oxide p i t  coincident with  
the prior a-Co grains in 'he CaCrAlY coating (A), prior earsosion 
front b a g e ~  ( 0 )  and 6-cobalt islands in the oxide p i t  (C) .  
(Scanning electron micrograph) 



FIG. 41 Pitting Attack of CoCrAlY 

Laboratory Test (131 cycles*) 

A. a 4 o l C r )  so l id  solution 
B. $-CoA1 
C. Ielands of a-csbalt in inner oxide zone 
D. Al-enriched grain, cf. Fipure 4 3  
E. Cr-enriched grain, c f .  Figure 4 3  
F. AL-enriehcd oxide striations in the inner oxide zone 

"(1 cycle: Exposure a t  130g"C in a preheated furnace for 30 eec- 
onds s i t h  intervening t ime spent in furnace a t  700°C, sodium sul fate  
(-1 mElcm2) deposits reapplied every 15 cycles ,  fuel applied each 
cycle. 1 



A ,  Cobal t X-ray Map 

R. Chromium X-rav Map 

Laboratory t e s t  (131 c y ~ l e s )  

FIG. 41 P i t r i n g  attack of CoCrAlY cost ing.  



C. Aluminum X-ray Yap 

Labors t o r y  test f 1 31 cycles) u 
Blr 

FIG. 41 P i t t i n g  attack of CnCsAlV coat ire .  



- 

Scanning electron rnicroara~h 

u 
Laboratory t e s t  (131 cycles) 2.5p 

PIG. f*? Heeellographic studies  of the base of the oxide p i t ,  c f .  FIG. 41. 



1 A, cobalt  X-ray ~ i a p  

Laboratory test (131 cycles) 

B. Chromium X-ray Map 
u 

2.5U 

Z I G .  4 2  Base of oxide p i t ,  c f .  FIG. 41. 

80-t-41-30 



C. Aluminum X-Ray Map 

D. Sulfur X-ray Map 

Laboratory t e s t  ( 13; cycles) 

FIG. 42 Base rf oxide p i t ,  cf. FIG. 41.  



------ 

FIG, 43 Energy dispersive X-ray (EDAX) analys i s  of bi-phasic 
layer showing: A. Numfnurn-rich ~tain, c.-. FTG. /rl 

R. Chromlum-rich grakn, cf. FTG. 41 

7Q-1-11-36 



FTC . 44 Yorphology of growth colonies of Cr203 crystal platelets. 
NazSOg-coated (0.56 mg/cm2) Ni-25Cr oxidized a t  1050'~ 
f o r  25 hours, c f .  100 in Ref. 1 3 .  



CROSSSECTION VlEW 

EXPECTATION 0 

PROJECTION VlEW 

FIG. 45 Expected Cr203 crystal growth from a droplet, cf . F K .  44 



A.) Crf13 CRYSTALS 

8.) CRUCIOLE ATTACKED 

FIG. 46 Productfon of (A) Cr203 crystals by means of (B) an oxide 
s ink  (a glazed crucible). 

ion 

00- : 



i00o0C, 1 WEEK Pt CRUCIBLE 

SUBMERGED MENISCUS 

SECTION 1 

FIG. 47 Chromitrm part ia l ly  immersed in  Na2Cr04 show in^ a:tack a t  
meniscus. 



A$03 PEDESTAL 

CHROMlUM SPECIMEN 

CHROMFA PELLET 

Nafir04 

ORIGINALLY SPHERICAL PELLET SHOWING PARTIAL DISSOLUTION EFFECTS AFTER 1 WEEK AT 1000.C 

FIG. 48 Ghromia p e l l e t  serving as oxygen tranaport medium 
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