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ABSTRACT

The results of a test program to evaluate a compact, high performance,

fixed-ratio traction drive are presented. This transmission, the Nasvytis

Multiroller Traction Drive, is a fixed-ratio, single-stage planetary with

two rows of stepped planet-rollers. Two versions of the drive were para-

metrically tested back-to-back at speeds to 73 000 rpm and power levels to

180 kW (240 hp). Parametric tests were also conducted with the Nasvytis

drive retrofitted to an automotive gas turbine engine.

The drives exhibited good performance, with a nominal peak efficiency

of 94 to 96 percent and a maximum speed loss due to creep of approximately

3.5 percent.

INTRODUCTION

Although light duty variable ratio traction drives have been reasonably

successful from a commercial standpoint [l], very few, if any, fixed-ratio

types h9ve progressed past the prototype stage. This is somewhat surprising

in view of the outstanding ability of traction drives to provide smooth,

Member ASME.

tAssociate member ASME.



quiet power transfer at extremely high speeds with good efficiency. They

seem particularly well suited for high speed machine tools, pump drives,

and other turbomachinery. However, the fixed-ratio traction drives of the

past have generally not been weight or size competitive with their gear

drive counterparts. There are several reasons for this. First, the steels

used in earlier traction drives had significantly less fatigue life than

today's metallurgically cleaner bearing steels. Secondly, the earlier trac-

tion drives did not benefit from the use of modern traction fluids which can

produce up to 50 percent more traction than conventional mineral oils for

the same normal load [2]. In addition, recent advancements in the predic-

tion of traction drive performance [3-6] and fatigue life [7,8] have added

a greater degree of reliability to the design of these devices.

Perhaps the most significant reason why traction drives have histor-

ically not been competitive in size with gear systems is fundamental to the

way they transmit torque. Unlike a simple gear mesh, the normal load im-

posed on a traction contact must be at least an order of magnitude larger

than the transmitted traction force to prevent slip. Thus, to achieve high

power density, the traction drive must be constructed with multiple, load .

sharing roller elements which can reduce the contact unit loading. This

was recognized by Lubomyr, Hewko who performed some of the earliest traction

contact experiments [9,10]. This data provided design information for a

high performance, multicontact, simple planetary roller drive [ll]. The

planetary arrangement ensured that the relatively large normal contact

loads on the rollers were internally balanced and reacted by the ring-roller

rather than by bearings. Tests with a 3.5 to 1 ratio, 6 planet, 75 kW unit

[ll] showed it to have better efficiency and substantially lower noise than

a comparable planetary gear set. Recently, tests of a planetary type trac-
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tion drive of similar construction for use with a gas turbine APU system

were reported in [12].

For traction drives with a simple, single-row planet-roller format, the

number of load sharing planets is inversely related to the speed ratio. For

example, a 4-planet drive would have a maximum speed ratio of 6.8 before the

planets interfered. A 5-planet drive would be limited to a ratio of 4.8 and

so on.

A remedy to the speed ratio and planet number limitations of simple, ,

single-row planetary systems was devised by A. L. Nasvytis [13]. His drive,

system used the sun and ring-roller of the simple planetary traction drive,

but replaced the single row of equal diameter planet-rollers with two or

more rows of "stepped" or dual diameter planets. With this new "multi-

roller" arrangement, practical speed ratios of 150 to 1 could be obtained

in a single stage with 3 planet rows. Furthermore, the number of planets

carrying the load in parallel could be greatly increased for a given ratio.

This resulted in a significant reduction in individual roller contact load-

ing with a corresponding improvement in torque capacity and fatigue life.

Based on the inherent qualities of the Nasvytis configuration and the

results from earlier prototype tests [13], a test program was initiated to

evaluate the key operational and performance factors associated with the

Nasvytis multiroller traction drive concept. To accomplish this objective,

two sets of Nasvytis drives, each of slightly different geometry, were para-

metrically tested on a back-to-back test stand. Initial results from these

tests.are reported in [14]. One of these units was later retrofitted to the

power .turbine of an automotive gas turbine engine and dynamometer tested.



NASVYTIS TRACTION DRIVE CONCEPT

The basic geometry of the Nasvytis traction drive is shown in Fig. 1.

Two rows of five stepped planet-rollers are contained between the concentric,

high speed sun and low speed ring-rollers. The planet-rollers do not orbit

but are grounded to the case through reaction bearings contained only in the

second or outer row of planets. This is a favorable position for the reac-

tion bearings since the reaction forces and operating speeds are relatively

low.

The sun-roller and the first row of planets float freely, relying on

contact with adjacent rollers for location. Because of this self-supporting

roller approach, the number of total drive bearings are greatly reduced and

the need for the often troublesome, high speed shaft support bearings have

been eliminated. In addition, both rows of planets are in three-point con-

tact with adjacent rollers promoting a nearly ideal internal force balance.

In the event of an unbalance in roller loading, the first row and second row

of planets (supported by large clearance bearings) will shift under load un-

til the force balance was reestablished. Consequently, slight mismatches in

roller dimensions, housing distortions under load or thermal distortions

merely cause a slight change in roller orientation without affecting per-

formance. Because of this roller-cluster flexibility, the manufacturing

tolerances set for roller dimensions can be rather generous relative to stan-

dards set for mass-produced bearing rollers.

The number of planet-roller rows,.the number of planet-rollers in each

row, and the relative diameter ratios at each contact are variables to be

optimized according to the overall speed ratio and the uniformity of contact

forces. In general, drives with two planet-rows are suitable for speed
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ratios to about 35, and drives with three planet-rovjg sre suitable for ra-

tios to about 150.

GEOMETRY OF TEST DRIVES

Two sets of Nasvytis drives of nominally 14.7 to 1 and 14 to 1 ratios,

respectively, were tested. Both drive designs had two rows of five planet-

rollers each but were equipped with different roller-cluster loading mech-

anisms. Figure 2 shows a cross-section cut through.the roller contact

points of the drive with the loading mechanism contained in the ring assem-

bly. This "ring-loader" drive had speed ratios between the sun and the first

planet, first and second planet, and between, the second planet and ring-

roller of 1.28, 3.87, and 2.97, respectively, for a nominal drive ratio of

14.7 The second test drive had the loading mechanism incorporated into the

sun-roller. The "sun-loader" drive had speed ratios of 1.21, 3.94, and

2.93 across these respective contacts, for a nominal drive ratio of 14.0.

Both test drives were equipped with a loading mechanism that automa-

tically adjusted the normal contact load between the rollers in proportion

to the transmitted torque. These mechanisms operated above some preselec-

ted, minimum preload setting. The automatic loading mechanism insured that-

there was always sufficient normal load to prevent slip under the most ad-

verse operating conditions without needlessly overloading the contact under

light loads. Thus the load mechanism improved part load efficiency and ex-

tended drive service life.

In the case of the ring-loader drive, the loading mechanism consisted

of eight small rollers contained in wedge-shaped pockets, equally spaced

circumferentially between the ring-rollers and the backing rings as illus-

fcrnted in Figs. 1 and 2. The inside diameters of the ring-rollers and out-

side diameter of the second row planets had slightly tapered (5.7 degrees)



contact surfaces. When torque was applied, the ring-rollers would either

circumferentially advance or retreat relative to the backing rings. This

would cause the loading rollers to move up the ramped pocket, squeezing

the ring-rollers together axially and, in turn, radial loading the roller-

cluster through the tapered contact. The amount of normal force imposed on

the traction drive contacts for a given torque or, in other words, the ap-

plied traction coefficient could be varied by simply changing the slope of

the wedge-shaped pockets. In this investigation the loading mechanism was

designed to produce a constant applied traction coefficient of 0.05 for

torques in excess of the initial preload values of about 25 to 40 percent

of the maximum value.

The drive equipped with the sun-roller loading mechanism used the same

principle, but loaded the drive radially outward through a two-piece, sun-

roller. Packaging the loading mechanism into the sun-roller simplified the

drive design and reduced the cluster weight from 9.0 kg for the ring drive

down to 7.6 kg for the sun-loader design. Both test drive roller-clusters

were roughly of the same size being approximately 21 cm in overall diam-

eter and 6 cm in width.

The ring and planet-rollers of both drives and the two-piece, sun-roller

of the sun drive were fabricated from consumable vacuum-melted (CVM) SAE-

9310 (AMS-6265) steel, case carburized to a Rockwell-C hardness of 60 to 62.

The sun-roller on the ring drive was made of through-hardened CVM, AISI-52100

steel of similar hardness. All roller running surfaces were ground to 0.2

Urn rms or better.

TRACTION POWER TRANSFER

In a. traction drive, torque is mainly transmitted by shear forces act-
i

ing through a thin, elastohydrodynamic, EHD, lubricant film which separates



the driving and driven rollers. Under the high pressures and severe shear

rates present within a typical traction contact, the lubricant is thought to

be transformed into an amorphus solid or plastic-like material [15]. Be-

cause of this lubricant transformation within the EHD film, appreciable

torque transfer can occur without appreciable metal-to-metal contact or
• i •

wear.

The torque capacity of a given traction contact is strongly dependent

on the maximum available traction coefficient, that is the peak value of the

ratio of tangential-to-normal force before gross slip. Figure 3 shows a typ-

ical traction coefficient-versus-creep (p. vs £JJ/U) curve for Santotrac 50, one

of the two synthetic cycloaliphatic hydrocarbon traction fluids used in this

investigation. The other test fluid used was Santotrac 40. These traction
* ' •

lubricants offer about a 50-percent improvement in traction coefficient over

mineral oils and exhibit good fatigue life performance [2j. Santotrac 50

and Santotrac 40 have comparable traction coefficients, but the "50" grade

is slightly more viscous and has a complete additive package. Their physi-

cal properties are reported in [2].

The curve in Fig. 3 was generated under the operating conditions noted

with the twin-disc machine described in [16], Imposing a traction force
\

across a lubricated disc contact, rotating at an average surface velocity

U, gives rise to a differential surface velocity /aj. The ratio of AU to

U is generally referred to as creep in traction drive terminology. Trac-

tion drives with a torque sensitive roller loading mechanism generally

operate at nearly a fixed value of p.. This value is selected to be suf-

ficiently below the peak value of n to assure safe operation. In this

region, creep arises from the visco-elastic and plastic straining of the

plastic-like lubricant material together with the plastic, tangential' defor-
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mation or compliance of the disc material. In fact for a typical steel trac-

tion drive contact operating at high pressures (greater than 1.2 GPa) and

lubricated with a traction fluid most of the creep is observed to take place

in the discs and not in the fluid film [17].

Since the creep rate represents a loss in speed, each percentage point

loss due to creep represents a percentage point loss in efficiency. Design

operating conditions should be selected to maximize the available traction

coefficient and minimize the creep rate. As shown in Fig. 3, an increase in

surface speed tends to decrease, M. and increase creep. An increase in con-

tact temperature or spin as well as a decrease in contact pressure tends to

do the same.

PARAMETRIC PERFORMANCE TESTS

Apparatus

Both Nasvytis drive variants were parametrically tested on a specially

constructed back-to^-back test stand, described in detail in [14]. In this

stand, two identical drives were tested concurrently with their sun-roller

shafts coupled together via a flexible spline coupling. One drive functioned

as the speed increaser, the other unit as the speed reducer.

Efficiency was determined by comparing the total test-stand power losses

with the test drives in place to the test-stand tare power losses with the

test drives removed, at the same operating conditions. The test-stand tare

power losses were measured under load by replacing the test drives with a

dummy shaft. With this technique, peak efficiency can be determined accur-

ately to.within ±0.3 percent. By measuring the flow rate, the temperature

rise across the cooling oil and the temperature of each drive housing, a

heat balance method was developed, as reported in [14], to proportion the

total power loss between each test model according to its heat dissipation.



In this way, differences in efficiency between the speed iricreaser and speed

reducer test units could be estimated.

, Procedure

Typically the back-to-back increaser and reducer test drives were tested

et cons tent input speed while the output torque on the reducer unit was in-

creased in uniform increments until the maximum required torque level was

attained. At this point, the torque was dropped to the initial level, the

next level of speed was set and the process was repeated. To insure steady-

state readings, typically 45 to 60 minutes of running was required between

speed changes and 5 to 15 minutes between torque changes.

During these tests a nominal oil inlet temperature of 65° C was main-

tained at a total flow rate of 8.3 liters/min. Approximately 60 percent of

this oil was used to cool the sun-roller with the rest going to the drive

bearings and remaining drive rollers. Santotrac 40 was used as the test

lubricant.

RESULTS AND DISCUSSION

The effect of sun-roller speeds to 46 000 rpm and torques to 42 N-m

on the power loss of the sun-loader variant, Nasvytis traction drive is pre-

sented in Fig. 4. The results from five independent test runs show that the

test data is reasonably consistent. The heat balance technique mentioned

previously was used to proportion the total power loss between the speed

reducer and increaser. With this technique the reducer exhibited slightly

higher losses than the increaser, particularly at the lower torque levels.

The variation in power loss with torque is nearly linear above torque lev-

els of about 40 percent in the region where the roller cluster loading

mechanism is operating. This trend is generally in accordance with traction

performance prediction techniques of [l?]. This analysis indicates that the
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contact power loss is composed of two major components, a traction creep

loss term and a spin torque term, both of which are directly proportional

to transmitted torque at constant creep rate.

Also apparent in Fig. 4 are the zero torque or tare power loss value

for the test drives. The principal constituents of this tare loss are the

non-slip or rolling traction contact losses of the rollers under the initial

preload and miscellaneous bearing and drive element churning and windage

losses. As in the case of gears [18], these tare losses can represent a

significant portion of the total drive loss, particularly at the lower torque

levels and higher speeds. It is expected that lowering the initial preload

levels to 5 or 10 percent of the maximum rated torque could reduce these tare

power losses by up to a third, based on the data of Fig. 4.

The variation in increaser and reducer efficiency as a function of In-

put torque for the sun- and ring-loader test drives is presented in Fig. 5.

The ring-loader drives were tested to a maximum sun-roller speed and torque

of 73 000 rpm and 20 N-m. The cross-hatched region represents the rela-

tively small influence that operating speeds from 25 to 100 percent of maxi-

mum have an overall efficiency. As would be expected, the lowest speeds

which produce the lowest relative tare losses and lowest creep rate resulted

in the highest efficiency at a given torque level.

In general, the ring-loader drive had slightly higher peak efficiency

values than the sun-loader unit (96 versus 94 percent for the speed in-

creaser and 94 versus 93 percent for the speed reducer, respectively). Part

of this difference is attributed to the somewhat tighter conformity of the

planet and ring-roller contact surfaces in the sun-loader drive. Tighter

contact conformity causes some reduction in contact stress (see Fig. 6) but

at the expense of slightly higher spin losses and higher creep. Although the
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tapered sun-roller contact in the sun-loader .drive has less conformity than

the sun contact in the ring unit, its tapered geometry and high roller speed

contribute to higher spin losses and creep rate.

The effect of operating torque and speed on test drive creep rate is

shown in Fig. 7. The total loss in efficiency due to creep across the drives

three contacts is -generally less than about 3.5 percent for the sun-loader

drives and leas than 2 percent for the ring-loader units. At comparable

torque levels, their creep rates were similar. Creep curves generally rise

in a linear fashion with an increase in torque during the initial fixed-

preload region of operation and level out as the roller-loading mechanism
-\

begins to function as shown in Fig. 7. This behavior can be understood by

examining the traction-versus,-creep curves shown in Fig. 3. As the traction

force is increased on a roller with a given initial normal load, the traction

coefficient increases from zero causing a corresponding value of traction

coefficient, the loading mechanism is activated. At this point the creep

rate is held essentially constant except for small variations due to changes

in the slope of the traction curve. Some degradation in creep 'rate perform-

ance with torque was observed for the sun-loader, reducer test model.

To determine the effectiveness of the roller-loading mechanism, a prox-

imity probe was installed in the sun-loader drive. The probe monitored the

axial position of one side of the two-piece sun-roller assembly, in this

drive, as the tapered sun-roller halves moved together, the normal load on

the roller-cluster would be correspondingly increased. During the initial

preload region of operation, as shown in Fig. 8, the sun-roller position was

reasonably constant up to a torque level of approximately 40 percent. Above

this torque levelj the sun-roller halves move inward together in a nearly

linear fashion with increasing torque indicating satisfactory roller-loading
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action. Due to a centrifugal force effect on the loading balls, an increase

in speed cause a slight increase in initial preload. The loading mechan-

isms on both the speed increaser and reducer test units showed similar be-

havior.

Temperatures of the rollers in the test drives increased steadily with

an increase in operating speed. The sun-roller temperature, as measured by

a thermocouple near the surface was higher than any other component in the

drive. Sun-roller temperatures never exceeded approximately 110 and 150 C

for the sun- and-ring-loader drives, respectively.

GAS TURBINE ENGINE TESTS

Apparatus

Parametric dynamometer tests were conducted with a Nasvytis traction

drive that had been incorporated into 112 kW (150 hp) automotive gas turbine

engine. For this installation, the 14 to 1 ratio, roller-cluster from the

sun-loader test drive was retrofitted into the engine's power turbine assem-

bly in place of the original 9.7 to 1 helical gear mesh. A cross-section of

the Nasvytis drive installation within the power turbine housing is shown in

Fig,. 9. The sun-roller was coupled to the end of the power turbine rotor

through a semi-flex spline coupling. The ring-roller was spline coupled to

the output shaft which in turn would normally drive the vehicle's automatic

transmission. However, for this test, the output shaft of the drive was di-

rectly coupled to a power absorbing dynamometer via a prop shaft.

Modifications to the original power turbine assembly included the re-

placement of the rotor's rear fluid film journal bearing and hydrostatic

thrust bearing with a thrust carrying, split inner-race, angular-contact ball

bearing. Changes were made to the power turbine housing to incorporate the

concentric Nasvytis drive. The self-supported sun-roller eliminated the need
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for the high speed, fluid film bearings which normally straddle the pinion

and react gear tooth separating loads.

Two series of parametric tests we're conducted on the traction drive-

equipped turbine engine under nominally the same test conditions as described

earlier for the back-to-back stand tests. However, power turbine speeds were

limited to 45 000 rpm and power levels to 112 kW. Santotrac 50 was used as
v

the test oil. In the first series of tests, the sun-roller loading mech-

anism was locked out and a fixed preload was set at the value required to pre-

vent gross slip under full load. The second series of tests made use of the

variable, sun-roller loading mechanism.

Figure 10 shows the comparative efficiency results from these two test

series. The efficiency values shown in this figure were estimated from the

increase in heat content of the cooling oil as it passed through the drive

cavity. Using a similar heat balance estimate, an efficiency value was as-

signed to the rotor's front fluid film journal bearing and rear ball bearing

based on the heat power dissipated to the bearings' cooling oil.. Although

this heat balance method is rather imprecise due to the uncertainties in the

amount of heat either dissipated by the cooling oil to the power turbine

housing or vice versa, surprisingly good agreement is obtained between the

efficiencies from the back-to-back stand measurements and those estimated by

this method (Fig. 10). The reason for this agreement may be partially due to

the insulation that encapsulates the power turbine assembly and tends to

minimize the amount of heat transferred either into or out of the assembly.

The data in Fig. 10 show that .the equivalent efficiency of the power

turbine rotor bearings as well as the efficiency of the Nasvytis drive are

relatively speed insensitive. .
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It is also apparent from Fig. 10 that the fixed-preload operation

causes an appreciable decrease in part-load efficiency. At the higher torque
i

levels, the variable loading mechanism imposes a normal load approaching that

of the fixed-preload system and their respective efficiencies merge as would

be expected.

Creep rate data for the engine tests are presented in Fig. 11. Also in-

cluded for comparative purposes are the back-to-back stand data from Fig. 7

for the sun-loader, reducer drive at 35 000 rpm. The agreement between both

sets of creep data is within 0.2 percent points at all corresponding test

speeds (not shown in Fig. 7) except at 44 000 rpm. At this speed the stand

measurements indicate about 0.5 percent points greater creep rate than the

engine test data at the higher torque levels.

Although the creep rate associated with fixed-preload operation is

about 0.6 percentage points less than that with variable preloading (Fig. 11),

the overall efficiency is decidedly inferior (Fig. 10) due to contact over-

loading. The lower creep rate is due to the high initial normal load asso-

ciated with fixed-preload operation. This lowers the applied traction coef-

ficient so that the resulting, creep rate from the traction curve (see Fig. 3)

will also be relatively small. Also the upward trend^of the fixed-preload

creep data suggests that a slip condition is being approached.

In general, the Nasvytis drive demonstrated good operational compata-

bility and performance with the gas turbine engine throughout the engine's

torque and speed range. Orthogonal, radial proximity probes mounted at two

axial positions along the power turbine shaft, showed that the coupled rotor-

traction drive system was reasonably stable from engine idle to maximum

speed.. No synchronous whirl instabilities were encountered. Temperature
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distributions of rollers and bearings were quite satisfactory, similar to

those obtained in the back-to-back stand tests.

CAPACITY AND DURABILITY

Sizing Criteria

Traction drives, like rolling-element bearings, are generally sized on

the basis of rolling-element fatigue life. This is because for most applica-

tions, other than those that are particularly short, lived,, the stress levels

required for acceptable fatigue life are generally well below those for sta-

tic yield failure. For example, maximum bending stresses in the Nasvytis

test drives at a peak sun-roller torque of 42 N-m is less than 350 MPa and

maximum contact stresses are less than 2.2 GPa. For the case-hardened steel

rollers in the Nasvytis drive, the expected yield stress in bending would be

approximately 1400 MPa and the Brine11ing stress limit would be on the order

of 4 GPa.

Because of these relatively low maximum operating stress levels, occa-

sional momentary overloads, several times the maximum design value can gen-
!

»

erally be tolerated. Furthermore, if these transient overloads are of a

brief duration and do not occur too frequently, then only a relatively small

penalty to the drives' total fatigue life will result.

A traction drive's sensitivity to shock loads is also dependent on the

ability of the contact surface to avoid skidding or heating damage. If the

drive is equipped with a fast acting loading mechanism, such as the mechan-

cal type used in the Nasvytis test units, and if the overload is of suffi-

ciently short duration to avoid overheating the contact,, then no surface

damage should occur. ' .

The normally expected failure mode of a property-rdesigned traction drive

will be rolling-element fatigue. This failure criteria is exactly analogous
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to pitting failure in gears and spalling failure in rolling-element bear-

ings. The risk of wear or scuffing failures of traction drive contacts can be

eliminated or greatly minimized through the use of proper materials and also

proper lubricating and cooling design practices such as those that have been'

successfully applied in bearing .and gear design. In view of this similarity

in the failure mechanism, it is anticipated that the fatigue life theory.of

Lundberg and Palmgren [19], the accepted method of establishing load capacity

ratings for rolling-element bearings by bearing manufacturers, can be adapted

to predicting traction drive service life. In [?], the basic life equations

for traction drives were developed from Lundberg-Palmgren theory and applied

to a toroidal type traction drive. Life adjustment factors due to advances

in materials, lubricants and design technology were also considered. In [20],

this life analysis was applied to the Nasvytis traction drive geometry. Theo-

retical B,n (90-percent survival) life ratings for the Nasvytis test drives

based on the work of [20] appear in Fig. 12. This data was generated at a

constant sun-roller speed of 50 000 rpm. It includes a life adjustment fac-

tor for through-hardened CVM-52100 or case-hardened CVM-9310 steels of 6, a

life factor of approximately 2.5 for a favorable film thickness-to-surface

roughness ratio and an estimated life penalty of 0.5 for the potentially ad-

verse effects of traction on fiatigue life.

At a given required life level in Fig. 12, the sun-loader test unit

shows slightly higher power capacity than the ring-loader traction drive.

Continuous power capacity ranged from 42 kW for 10 000 hours of system life

to 185 kW for a minimum of 100 hours at sun-roller speeds of 50 000 rpm (or

about 3500 rpm on the low speed shaft). Increasing the size of the drive

has a significant increase in power capacity. Reference [?] reports that

drive fatigue life, L, is related to size factor and to torque T as follows:
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L oc (size factor)8'̂

and

L.« (T)"3

It therefore follows that the torque capacity of the drive for a given re-

quired fatigue life is related to size by.

2 8
T oc '(size factor)

Thus increasing the test drive size by 28 percent, that is, increasing the

roller-cluster's overall diameter to 27 cm and width to 8 cm, will double

torque capacity at a given life level. Similarly a 48-percent size in-

crease will more than triple the load capacity, as illustrated in Fig. 12.

This scaling assumes that the design or applied traction coefficient re-

mains constant with size. However, with an increase in size, the rolling

surface speed of the contact increases and the contact stress decreases,

causing some loss in the available peak traction coefficient. If additional

roller-loading is needed to compensate for this loss in traction coefficient,

then a small life derating will be needed.

The capacity ratings shown in Fig. 12 are for the test drive geometry

under the specified operating conditions. These ratings can change signif-

icantly with changes in drive geometry. The most durable traction drive

geometry (the number of planet-rows, the number of planet-rollers in each

row, and the relative diameter ratios at each contact) can be determined

for a given application from a computerized optimiation technique such as

that described in [2l].

SUMMARY AND CONCLUSIONS

Parametric back-to-back stand tests and gas turbine engine dynamometer

tests were conducted to two fixed-ratio Nasvytis multiroller traction drives.
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The effects of speed and torque on drive efficiency, creep rates, tempera-

ture distribution, roller stability, and loading mechanism action were in-

vestigated. Traction fluids were used. The 14.7 to 1 "ratio ring-loader

drive in which the loading mechanism was incorporated into the ring assem-

bly, was tested to sun speeds of 73 000 rpm and power levels to 130 kW.

The sun-loader drive of 14.0 to 1 ratio was tested to 46 000 rpm and 180 kW.

The cluster from this drive was retrofitted to the power turbine of an auto-

motive gas turbine in place of the original helical gear reducer. Tests

were conducted to full-engine speed (45 000 rpm) and power (110 kW). The

effects on drive performance of fixed-preload (constant normal load) opera-

tion were compared to those obtained with variable-roller-cluster loading

(proportional to the transmitted torque). Comparisons were also made be-

tween the data from engine dynamometer tests and that obtained from the

back-to-back stand tests. The sun- and right-loader roller-clusters mea-

sured approximately 21 cm in diameter and 6 cm in width and weighed 7.6 and

9.0 kg, respectively. Predictions of test drive system fatigue life as

function of size and transmitted power were made using Lundberg-Palmgren

fatigue theory. Based on the above, the following results were obtained:

1. The ring- and sun-loader test drives exhibited peak efficiency

levels of 96 to 94 percent, respectively, for the speed increaser units and

94 and 93 percent, respectively, for the speed reducer units.

2. The Nasvytis drive showed good operational compatability with the

gas turbine engine. Test data from these engine tests showed reasonable

agreement with the back-to-back stand tests.

3. Efficiency loss due to creep was generally less than 3.5 percent

for the three drive contacts under the worst test conditions.
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4. Theoretical fatigue lives of the sun- and ring-loader drives were

comparable. The 90-percent survival life rating ranged from 10 000 hours

at 42 kW to 100 hours at 185 kW for a sun-roller speed of 50 ooo rpm. A

28-percent increase in size would theoretically double these power ratings.
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