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Abstract

In this paper the basic crack problem which is essen-
tia] for the study of subcritical crack propagation and
fracture of layered structural materials is considered.
Because of the apparent analytical difficulties, the pro-
blem is idealized as one of plane strain or p]ane stress.
An additional simplifying assumption is made by restric-
ting the formulation of the problem to crack geometries
and loding conditions which have a plane of symmetry per-
pendicular to the interface. The general problem is for-
mulated in terms of a coupled system of four integral
equations. For each relevant crack configuration of prac-
tical interest the Sjngular behavior of the solution near
and at the ends and points of intersection of the cracks
is investigated and the related characteristic equations
are obtained. The edge crack terminating at and crossing
the interface, the T-shaped crack consisting of a broken
layer and a delamination crack, the cross-shaped crack
which consists of a delamination crack intersecting a
crack which is perpendicular to the interface, and a
delamination crack initiating from a stress-free boundary
of the bonded 1ayers are some of the practical crack geo—
metries cons1dered as examples. The formulation of the
problem is g1ven in Part 1 of the paper. Part II deals

(*) This work was supported by NSF‘under the Grant ENG
78-09737 and by NASA-Langley under the Grant NGR
39-007-011 :
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with the solution of the integral equations and presen-
tation of the results. ’

1. Introduction

" If one examines the evolution of a typical fracture
faiTure in layered composites, one may invariably trace
the initial cause to a localized imperfection which, from
the viewpoint of loading, geometry and material strength
corresponds to the "weakest 1ink" in the medium. By far
the most common forms of such imperfections which may
have the potential of growing into a macroscopic crack
-and of causing eventual failure are the surface flaws ,
flaws in interlaminar bond1ng, and the lines of inter-
section of the interfaces and free boundaries such as
‘holes and other stress-free edges. ~ Under cyclic loading
~and/or-adverse»environmentalveffectSLa«surface flaw, for
example, may grow into a part- ~through surface crack.
‘Upon ~further application of the loads the surface crack
may - .propagate subcritically: through ‘the entire. thickness
of the first layer. Following the path of least resis-
tance, the crack may either propagate into the adjacent
layer or grow along ‘the Ai"n_t:erface. In analyzing the sub-
critical growth of these delamination cracks as well as
the cracks imbedded into homogeneous layers it is by now
generally accepted that the stress intensity factor or
some other parameter. based‘oh the stress intensity fac--
tor (such as the strain energy re]ease rate in the case

of delamination cracks) can ‘be:- used qu1te effectively as .
the primary correlation parameter ~In-studying the frac-
ture of layered materials ‘the basic mechanics problem is
then the calculation of the stress 1ntens1ty factors
along the crack front for all phys1ca11y re1evant exter-"
nal loads and crack geometries.

The actua] problem is -a very: comp11cated three-
dimensional prob]em and at present seems to be analytically
intractable. A1l the ex1st1ng‘so1utions are therefore
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based on the two-dimensional or axisymmetric approxima-
tions. Also to keep the analysis within manageable bounds‘
in most of'these’so1utions the medium is generally assumed
to be infinite ‘consisting of either semi-infinite spaces ‘
with or without a layer in between, or periodically stacked
laminates. For example, the plane and axisymmetric pro-
blems for a medium which consists of two or three differ-
ent materials and which contains a crack parallel to or
located at a bimaterial interface were considered in [1-4].
The problem of a crack perpendicular to the interfaces
may be found in [5-9]. The problem of a T-shaped crack
located on and perpendicular to the interface of two bonded
half planes was discussed in [10]. The Tayered composite
which consists of periodically arranged two dissimilar
bonded layers with cracks perpendicular to the interfaces
was considered in [11,12]1. The effect of the elastic pro-
perties and the thickness of the adhesive in bonded lay-
ered matér1a1s was studied in [13]. The problem of an
infinite medium which consists of periodic dissimilar
orthotropic layers having cracks was studied in [14].

In this paper we consider a problem which is also

jdealized but at the same time is somewhat closer to the

actual problem It is a plane problem of two bonded iso-
tropic 1nf1n1te layers containing cracks of various orien-
tations and sizes. The particular crack configurations
which may be of considerable practical interest and which
have been studied in this paper are shown in Figure 1.
Unless one ijs dealing with a composite beam or a plate
with through cracks, the idealization made in this paper
for solving the problem is also rather severe not on1y
because of the plane stress or plane strain assumption

but also because of limiting the number of Tayers to two

" and -assuming that the materials are isotropic. The com-

posite laminates are, of course, multilayered and ortho-
tropic. However, by a judicious choice of thickness
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ratio and material constants, the solution given in this
paper may provide vaTuable'quantitative'énd qualitative
information which may be useful in studying the real pro-
blem. | '

2. Solution of Differential Equations
The fundamental problem which forms the basis of a11

the crack geometr1es shown in Figure 1 is described in
Figure 2. Except for the interface cracks, the two iso-
“tropic infinite elastic strips are bonded along the y axis,

he strips contain arb1trar11y or1ented cracks a1ong the
S X ax1s, ‘and the problem is assumed to be symmetr1c with
?espect to the y=0 plane in geometry as well as applied
‘Yoads. Furthermore, it is assumed that by a proper super-
 pdsit1on the problem is reduced to a perturbation problem

in which the crack surface tractions are the only external

loads. Let the coord1nate systems be selected as in F1g-
ure 2 and let u;, Vi , (i=1,2) be the x and y coordlnates
of the displacement vector in. the strips. The follaowing
differential equat1ons must be solved for each strip under

appropriate boundary and continuity: cond1t1ons

) | |
(k-1)7 u+2(3xz + 325 0 . | (1a)
(x-1)9 v+2(axay + 5y7) = p, (1b)

where «=3-4v for plane stra1n and «=(3- v)/(1+v) for gener-
'a11zed p]ane stress, v be1ng the Po1sson s ratio. Becéuse
of symmetry, the problem will be considered for O<y<e-only.

Let the solution of (1) be expressed in terms of the
following Four1er 1ntegra1s L o

u(x,y)=; J [f(x t)cos y. t+h(y t)s1nxt]dt, : ' (Za) ;
0 _

v(x,y):%‘Jm[g(x,t)sinytfk(y;t)ces,Xﬂdt; o  (2b)
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Substituting from (2) into (1)_one‘wou1d,obtain a system
of ordinary differential equations for the unknown func-
tions f, h, g, and k. Solving these equations and obser-
ving that u, v remain bounded as y+~ we find

f(x,t)=f% {[F—E%l_H + X t GJcosh xt
¢ [E-851 6+ x t HIsinh xt}, (3a)

g(x,t) % {[F+5%l H+ x t Glsinh xt

ct+1

+ [E+55— 6 + x t H] cosh xt } , - (3b)
h(y,t) = (c+ytn>e*yt : (3¢)
- (C+KD+ytD) -yt » (3d)

k(y,t)

whereIC, D, E, F, G, and H are functions of the transform
variable t and are unknown. Using the condition that °xy
must vanish for y=0 in both strips, which follows from
the assumed symmetry, and defining A=tD, equat1ons (3c)
and (3d) may be replaced by

n(y,t)=-A0EL (51 yt) e7VF, (4)
k(y,t5=ﬂi£1 (L yrye Yt o (4b)

From the stress- dlsplacement re1at1ons and from (2),
(3) and (4) the stress components in each semi-infinite
strip may be expressed as follows:

1 ne 2 [ , ’
= °xx(x’y)"v I {[(fotG)s1nh>¢*(E+xtH)cosh xtlcos yt
[o]

+(1—yt)Ae'thOs xt }dt, - (5a)




1 =2
o yy(x,y == J {[(F+2H+xtG)s1nh xt + (E+26G
(o]
'+xtH)605h>¢]cosyt-(1+yt)Ae'ytcos.xt}dt, (5b)
7%7 (x,y —g J {[(E+G+xtH)s1nh xt + (F+H
(0]
+xtG)cosh xt]sin’ytayt Ae Y¥sin xt}dt. (5¢)

Referr1ng to Figure 2 we note that equations (2- 5) are
valid with u=uy, «=xky, 0<y<m, O<x= x1<2h1 for strip 1 and
with u=p,, k=kg, 0<y<e, 0<x=x,<2h, for strip 2. Thus,
there are all together ten unknown functions,'Ai, Ei’ Fi’
G., and H » (i=1,2) which may be determined from the fol-

i
10w1ng boundary and cont1nu1ty cond1t1ons

°1xx(2hi3Y)=0’ °1xy(2h1’y) =0, 0<y<w o (6a,b)
cz"xx(o;y)=o, 5y (059120, 0<y<w . . (7a,b)
1Xx(O,y) °, x(2hz,y), v, (O,y) =0, '(2h2,y),,
0<y<m |  » "‘ L ~ (8a,b)
uy(0,y)=uz(2hs,y),. 0<y<a3, by<y<w, 4' -~ (9a)
v°1xx(0,Y) Pa(y)s a3<y<b3 , ;U v2: L |  ;: (9b)
| _Vi(o;Y)fvz(th:Y);:ny<§3;fb3fy%5:s_; . ::  (10a)
g (ONBuly)s agyds (08
vi(xi,o.-).:o,v0<x1.<a1., by <xy<2h, LoGe2). . (11a)
iyy(Xi 0)=-p;(x;), a1.<x'1.<b1., (i-1,2). (11b)

Substituting from'(S)iinfofiﬁé six homogeneous con-
ditions (6) (8), six of the ten unknown functions may be
eliminated. The mixed boundarv cond1t1ons (9)- (11‘ would
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then give a system of four dual integral equations to deter-
mine the remaining four unknowns. The problem may also be
reduced directly to a system of four singular integral
equations by defining the following foUr new unknown func-

tions:
| " v (xg20) = oy(x;) 5 (i=1,2) o (12)
20 (+0,) v (2h2-0,) =43 (), (13)
—i—[ul(+0,y)-u§(2h2-0,y)1=¢q(y)- | | - (14).

If we now replace the m1xed cond1t1ons (9)- (11) by (12)- l
(14) and observe that ' '

¢i(xi)=0’ 0<Xi<ai’ bi<xi<2hi’ (i=1,2), (15)
¢3(9)50, ¢ (y)=0, 0<9<63, b3<y<w», - (16a,b)
from (2), (3), (4), (5)-(8). and (12)-(14) we obtain
A{(t)%- :%IT j Tos(s)sin ts ds, (i=1,2), A7)
T a. v .

j
and -

(F1+2h1te;)sinh2h1t+(51+2h1tul)cosh2h1t=R1(t);"'
'(E1+Gl+2h1tH1)sinh2h1t+(F1+H1+2h1tGl)cosh2h1t=R2(t),
E,=Ra(t), Fathp=0, |

u1El-uz[(F2+2h2t62)sinh2h2t+(E2+2h2tH2)cosh2h2t]=Ru(t),

wy(Fy+Hy)-ua[(Ep#Go+2h tHy ) sinh2hot
+(F2+H2+2h2t62)cosh2h t]=Rg(t),

Fi- —7—— Hy-[(E2- 5%1162+2h2tH2)51nh2h2t

' +(F2-_%_J 2fzh2tG2)cosh2h2t]-Rs(t)i |



E1+El%l Gl ~L(Fat 2+] H2+2h2t62)s1nh2h2

+(E2+5%il 6,+2h,t Hy)cosh2h,t]= R7(t),  (18a-h)
where Ry,.., R7 are given in Appendix A in terms of ¢1.,.
¢y, and the subscripts 1 and 2 in the unknown functions
refer to the strips 1 and 2, respectively.

3. ‘The Integral Equations

By solving the system of a]gebra1c equat1ons (18)
and by using (17) it is seen that the stresses and dis-
placements in the strips may be expressed in terms of the
.new unknown functions ¢1,..,¢4'on1y._fThe functions ¢1,..5
¢, may now be determinéd by using the boundary conditions
(9b), (10b), and (11b) which have not yet been satisfied.
Thus, by substituting from (5b),_(]7) and (18) into (11b),
after somewhat lengthy manipulations we obtain |

Pl )¢ (s)ds+ % ik (%0 25)0: (5)ds
. S=Xs s+x & - ijroice ¢j
g i j=1 a; - T

=- li%ﬁfl)pi(xi),.i=1?23 a€<xi§bi,1a4=a3,:b%fb3,(19)
where if a. fO and b, f2h the kernels k, ije (i=1,2; j=1,..,4)
are bounded funct1ons 1n their respect1ve closed domains
of definition. The expre551ons for k1j are, of course,
dependent on the solution of :the systém“(is) which is quite
cumbérsome and hence, will not be given in this paper The
compléte details may be found in 153, ¢ Pt
Similarly, by substituting from (54); (5¢); (17) and

(18) into (9b) and (10b), after separat1ng the dom1nant
parts of the ‘kernels we obta1n TR

. b . _

. 3 e TR B R
| Ha (2t sn S,,ym(s)dsw o5ls)
3 jid
: b. . L e Co : :
-2 J : x -l:‘_K_L
ﬂa21.§= J k3j(y’s)§j(S)ds"a21u1p3(y)a'a3<y<b3é
=175 , . :
J '
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ay=ag, by=by, | o (20)

bj
(- gylests)ds-van ()

dg Y
+ 2 ; »jb §(v58)85(5)d W(¥).
S =
TR ¥»S)é; 5= 1111p y
a3<y<b3, ay=dg, bq=b3, | (21)

where ( Vo ( )
- ~(14meo)-(mtK1)
R T G

- +K 1+ L +K1 )4 (]+mK
3207 (k1" 1)($+K;§(%+NT ?1 ’ 321'(K1+1)%$+K1;(§+;22§)

(22)

and the kernels kaj and k4> (3=1, .,4) are given in [15].
~ From the definition of the funct1ons b1s..s9y given
by (12)-(14) and the conditions (15) and (16) it is clear
that for the imbedded cracks shown in Figure 2 the solu-
tion of the integral equations (19)-(21) must satisfy the
following singlevaluedness conditions: o

Ibi¢i(5)d5=0, (i=],..,4), ag=ds, bu=b3. (23)
ai} ‘

4, S1ngu1ar Behav10r of the Solution

~ For each crack configuration shown in F1gure 1 the
singular behavior of the solution of the integral equa-
tions (19)-(21) and that of the stress state around the
crack tips or the irregu?ar points LI bi’ (i=1,2,3) may
be examined by using the function theoretic method described
in [16] (see also [17] and [18] for applications to crack
problems). For a;>0, by<2h,, and a3>0 the dominant parts
of the. 1ntegra1 equat1ons are uncoupled - Following [161],
if we express the solution of (19) by:
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"(s)- 1 ‘
yle)e —
(Sfaj) J(bj-s)

gz s ag<s<by, (3=1,2)

0<Re(oj,85)<1, - (24)
. substituting from (24) into (19), for the imbedded cracks
it may easily be shown that [17,18]
d1=81=a2=62=0.5. - _ : (25)
In (24) 9; is a Holder-continuous function-and is nonzero
at the ends a; and bj’ (j=1,2). Also, defining
p(s)=0y(s)+i o3(s)s | (26)

the integral equations (20) and (21) may be combined as

J mi—l ds- Yw(Y)
as

+ bounded terms, ag<y<bs . (27)

[py(y)-i pa(y)]

1\'1 a 11.1

If‘we now let
93(3)
(s-243)%3(bs-s)"3

w(s): , a3<S<b3,‘0<R(a3383)<]a (28)

from (27) following the precedure outlined, for example,
in [18] we obtain |

+
0.3-%'-10.), 83""12"'10), N"'f%,'— 109(1"‘1)’

= (29)

where g4 is again a Holder continuous function and is non-
zero at the ends a3 and bs.

For the 1imiting cases of cracks intersecting each
other, free boundaries, or the interface the kernels k13
which appear. in (19)-(21) are no longer bounded for all
~values of their arguments. In such cases to determine the
correct singular behavior of the funct1ons ¢1,..,¢q,
‘through a proper asymptotic analysis these unbounded parts
of the kernels must be separated'and must be taken into
consideration in the app11cat1on of the funct1on theoretic
methods to the integral equat1ons The typ1ca1 crack tip
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behaviors which do not conform to the standard singu]ariF
ties expressed by (24), (25) and (28), (29) are discussed
below. :

| (a) Edge crack, b;=2h,.

Consider, for example, the problem described by
Figure 2 in which by=2h;, a;>0, bp<2h,, 3,>0, a3>0, by<e.
In this case of all the Fredholm kernels appearing in (19)-
(21) only ky1{x,,s) exhibits singular behavior. Analyzing
the integrand which defines k;; we find that |

[+ ]

k11(x195)=j [Kll(xlss’t)'Kll(xlss’t)]dt
Ow o b s '

+ {-Kll(xl’s’t)dt=k11+k11’ (30)
. )

' K?l(x1;S,t)=%{41+(%*x1t-2h1t)[-2+4t(2h1-s)]}e't(4ﬁ1~x;f§)

k?l(xl,5)=JoKT1(xl’S’t)dt=;§TI%TIHT
6(2hy-x1) 4(2hy-x3)2 (31)

- (X1+S-4h1)z - (X1+S-4h1)3 ?

where KI; is the asymptotic value of Ky; for t-e, x3>2hy,
and s+2h;. Now substituting from (30), (31) and (24)
into (19) and using the technique described in [18] we
.obtain the fo1lowing characteristic equations giving the
powers of singularity a; and 8;:

cotray=0, . ‘ (32a)

g, (2hy)

—E?E?ET—[2(1-BI)2—]-C05ﬂ81]=0' : ‘ (32b)

\

The acceptabie roots of (32) are

01205, 81=0, (3

which are the known results [19]. Powers of singularity
identical to (33) are obtained for a,=0, by<2h;. '

-11-

} 2N



(b) Crack tip terminating at the interface, a;=0.

In Figure 2 let a;=0. In this case too kij is the
only Fredholm kernel which exhibits singular behavior.
Let k11 again be expressed by (30) The asymptotic part
of the 1ntegrand may be separated as fo]1ows

0 - + 1 - ‘ Ly
K71 (x1,s,t)=e” (X1 S)?{tst?éﬁzz‘(3'2X1t)m+31]

v pets-Toe) Ipmgt -2 gl (34)

where m=u1/u2. Noting thaf for a;=0 in (19) the term
1/(s+x,) also becomes unbounded for s+0, x>0, the addi-
“tional singular part of the kernel may now be expressed as

kll(xl’s)*’s.‘,]xl:f Kll(xl 35S, t)d‘t +11
° 2
ot Ci12X1 N C13X] | o
T ostx,y (s+x1)2 (S+XT73 . . (35a)
=l. - 1+K1 3(m-]) - o
€117 = 7(T+mx,) ~ 2(m¥x,) ° m=uy/uz >
_6(m-1 S 4(m-1) -
C12-—'£n+—'<—1'l' s C13f - HT(*'T<_1_—)_ . , (35b)

The‘kernel 1/(s-x) combined with (35) constitutes a gener-
alized Cauchy kernel. Following the procedure of 18],
from (19), (24), (30), and (35) the characteristic equations
which determine a; and g; for a;=0 may be obtained as
cotng =0, | |  (36a)
coswma; t* Ci +kC1261 + C13>gli%lill = 0. (35b)

which are the known results [5]
Similarly, for bjs= 2h2,'a2>0, a1>0 by<2h;, and az>0
we obtain ' o ' '
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Czl-. . C22(2h2"x2) C23(2h2"X2)2

Kaz(xz,8)= ZH;TZZTZ (4h2-x2-s77' (@557
21777 * FTReT * 2T ¢ Me/ve
6 (m-1 _ 4(1-m

- (37)

From (37), (24), (30) and (19) the characteristic equations
are found to be - ’

cotma,=0 , ' _ (38a)
coswfy = Cpr1 - 82C22 - %32(1+32)C23 = 0, : (385)

which are again the known results [5,6].

(¢) Crack intersecting the interface, a;=0, by=2h,.
Referring to Figure 2, if a;=0, by=2h,, a3>0, |
by<2h;, and a,>0, in (19) not only k;; and kp, but also
the coupling kernels kjp and kp; exhibit singular behavior.
The singular parts of kj; and ky, are given by (35) and
(37). Using a notation similar to (30), for the singular
parts of the coup]ing kernels we obtain
1+ 1( X1t 3)_1+ 1 (1

KT2(xy,8,t)=[ s+st-2h,t) Je

T+mey "2
k?z(xl,s)? xi;giéﬁzx * (xlgéi;;z)z ,
d1- z](TimKZ) - et Getme - T (89
K?l(xz,s,t>=[3f;122 (1-2st)
+ Eili_il +x2t -2h t)]e -t(2hy-xp+s)

THmeg, (2 -,
s - dg; , d22(2h2-x5)
(e b+ AR

213-
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3m(1+K2) m(1#82) ., _m(T#K2) m(1#52) (20
dzy® 7&4‘-".——3 f{m‘ﬁ— doo*me— “Time, - (40)
Substituting now from (24) into (19), noting that at the
irregular point x;=0, x=2h,, a;=8,, and using (35), (37),
(39), and (40) we find the following characteristic equa-
tions to determine a3=82, 81, and aj:

cotng;=0, cotray=0,

[COSHG1+C11+01C12+}-31(1'*'(11)(:1 3][C0$‘ﬂ’0¢1 Ca1- (!1C22
'%01(1f01)C23]+(d11+q1d12)(d21+u1d22) (41a-c)

which are the known results [6]. To obtain (41) it is
assumed that 9,(b;)#0, 95( 2)#0. Equation (47c) is the
express1on of van1sh1ng determ1nant of the linear homo-
geneous algebraic system in 91(0) and 9,(2h3). This indi-
cates that the constants 9,(0) and 92(2h ) are not inde-
pendent and are related by

[C03"a1+911+01¢12+%ﬁ1(1+a1)013]91(Q) 
+ (dy1+a1d12)92(2h2)=0. ' (42)

Condition (42) replaces one of the singie-va]uedness con-
ditions (23) in solving the system'of-gingq1ar.in;egra1
equat1ons ‘

For az>0 the resu]ts given by (29), (32), (386), (38),
and (41) cover all crack configurations sheWn in Figures
(Ta) to (1h). | 8

(d) T- shaped or cross-shaped cracks.,

The problem becomes somewhat ‘more comp11cated if
the 1nterface cracks intersect the cra;ksvwh1ch are per-
pendicular to the boundaries. Consider, for example, the
cross-shaped crack shown in Figure 1(j) for which a,=0,
by<2hy, a>0, bp=2hy, 23=0, and byse (see Figure 2). In
this case the point of intersection (x;30, y=0) is an

"]4-
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jrregular point common to all four integral equations given
by (19)-(21). Examining the asymptotic behavior of the
kerne1s it is found that k1j’ kzj’ (j=1,2,3,4), and k31,
Ky (i=1,2) become unbounded as the variables X;, X2,
~and y, approach the common irregular point together with
s in pairs. Singular part of each one of these kernels
may agaih be separated in a straightforward manner by
analyzing the aSymptotic behavior of the related intégrands.
After separating the singular parts k?j of the kernels,
the integral equations (19)-(21) may bghexpressed as

2

5 .
J 1[—]——""—‘—]—‘*"(?1(“ ,s)]¢1(s)ds+j»k§2(x1,S)cbz(S)dS

'S=X1 S+X1
) as
bs :
4 a K .
[ K gtansdey(sddsepa = 155, (x1),
o o
0<X1<b1,
. 2h
b, 2
S 1 S
J k21(X3,5)¢1(S)d$+j [s-xz + kzz(xz,s)]¢2(s)ds
o ao
bs
+z J kij(Xz’5)¢j(5)dS+P2(Xz)?-.“.1:22 2(x2) 5
J=3 5 i .
as<x,<2h,y
| | 2h,
b
2 s /., 2 s
Ty J k;1(¥,5)¢1(5)d5'“g;; J k32(y>s)ea(s)ds
o} ) as :
by | |
1
e L[ (g en(s)dstres(y)+Pa(y)
Q
_ 1+K1
= a,1m1 pS(Y)s 0<y<b332h
b _ - 2h, v
. 2 l.s : 2 s .
Tag1 J k#l(YaS)¢1(S)de“a21-J,:qu(y,5)¢2(5)ds

0 a9
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1 1 cvn (olep:
+ = J =y s)ds vy (y)+Py(y)
o]
= 1461 Py (¥), 0<y<b3; | (45a-d)
aziu . | '

where the functions Pk, (k=1,..,4) represent all the remain- -
ing terms in the 1ntegra1 equat1ons correspond1ng to the
bounded kerne]s, k11, klz, k21, and k22 are given by equa-
tions (35), (39), (40), and (37), respectively, and

s Aixy . Agxy(xI + 5s2)
k13(xy,s) = >+ ,
, s2+x]  (s2+x2%)2
, As Ays(3s2-x2)
K3y (xq,8)=- + L
S (ns) As(2hy-%g)  Ay(2hy-xp)[(2ha-x5)24552]
. 23 Xz,s F- s - y - ] s
s2+(2h,-%5)2 - [s2+(2h5-%5)2]2
. Ags | Ays[3s2-(2hy-x5)2]
kzu(x2,8)=- o+

s2+(2h;-x5)2  [s2+(2hy-x,)2]2

S lys) 2Aqs . 2A,s(3y2-52)
i (y,s)=- . » e

S (ya5)- 2A,(2h,-s)  2A;(2h,-s)[3y2-(2hy-s)2]
YsS ~ ' -
Ty (Enyes)2 [(2hgns)2y2D2 ,

2Aqy 2A2Y(y2 3s2 )
+

Kiy(y.s)=
s2+y? (s2+y2)2 |
S 2A2y . 2A1Y[y2"3(2h2'3)2]
kpo(y,s)= — + o . s (46a-h)
y2+(2hy-s)? [(2hp-5)2+y2]2
1+€1 1+, L m(1+K2)

A= alTrmeg) A2 Zteeyy 0 A9T 2(mey)
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Note that the T<shaped crack shown in Figure 1(i) i
a special case of the cross- ~-shaped crack for which b;=0.

In order to simplify the manipulations in the asymp-
totic analysis we first define

* ' .
x2=2h2—x2,.s*=2h2-s, b:=2h2-a2, 42 (s")=42(s), (48)

in the interval ap<(xy,s)<2h, and then, for convenience,
drop the superscript (*). Thus the origin of the coordinate
systems becomes the common irregular point of the integral
equations (45). Noting that at s=0 the unknown functions
$15..50y must all have the same singular behavior, we let

_ o (s) ;gj(s)mu” 0<Re(a.8.)<]
s \S)}) = s <Re(a,B.)<1,
J s“(bj-s)ejv -
9;(0)#0, 95(b3)#0, by=bs, (3=1,..,4). (49)

Using (49) and the procedure outlined iin [16,17,18] one

can establish the following aéymptotic relations for the
relevant singular integrals in the close neighborhood of
the end point x=0, y=0:

| b
ﬂJ $(s) 45.9(0)cotma ?I ¢(s) 45,9(0)

S=X B, o st+Xx B o
° bPx _ o b®”x sinma
b ' b
lj %ijé%gds . _09(0) l{ x2¢(s) alat1)g(0)
- ] 3
m o S*X bBXa'S-'inTra 0(S+X) Zbe“sinm
b
I 35 Ed . L] yo(s)ys.9(0)
"B O T 2402 g, a
2b" x 51n 2 0S +y 2b y cosjr ‘
- b b
1{ sx20(5) 4. ag(o) 1J ys28(s) 4o.L1- a)g(Ol_.
i

o(sl+x2)2 4b®Bx sin%% T (s2+y2)2 abBy cos2

(50a-h)

0
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Substitdting now from (50) into (45) and using (46)
and (48), the leading. terms of the 1ntegra1 equations around
the end point x=0, y=0 may be expressed as

g;(0)
z Lc051ra+c11+ac12+c13a(1+a)/2]
b, 1x sinma

+; g2(0) | g3(0)

—(dytadya )+
11todys
b Baxo s1nwa » 2b B3x1cos%’-‘-

L611+812(1 -0 /2]

. gu( ) . |
+ z (f11+f12a/2) =F1(x1)s
2b3 4 xYsinS 5

91(0) » 92(0)
(d21+0d22)+

[-cosmatcyytacys

_ blelxgsinwa b,®2x%sinma

+Cpza(l+a)/2]+ 23(0) —[ep1tez2(1-a)/2]
2bg"3 zcos7r
9,(0) o o
+ z ﬂasz1+fzza/2]=Fz(Xz)s
2b3°4x3sints > _ ' :

291 (0) o 295(0)
EA1+(]'2G) 2]‘

 no LA?+(] ZQ)A ]

a21b181y“s1n—§ U

a21b282y s1n2

vg3(0) - g,(0)

- + .
bsP3y*  byB4y%sinma

(1+cosma)=F3(y),

29 (0) '  29,(0)
B - T EAl“(]'ZG)A2]+ § B FQLAZ (1 ZQ)AIJ
az1by ly*cosm ‘a21b2 2y cos2
~g5(0) v, (0) I
+ - ‘B — (cosma-1 ):-—'-B—"*"-"Fu()'), - {51a~d)
b3®3y*sinra “ b3 “y_‘ '

where the constants Cij and dy; are given by (35b), (37),
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_(39), and (40),
e11=(A1*tAz), e12”4Az, e217~(AgtAy), €z27~4Au,

f11=3A2'"A1, f12=“4A1’ f21="(A3+‘A'+)’ f22=4A‘” : (52)

and the functions Fi,..,Fy contain all remaining terms which
are bounded at the end point x=0, y=0. If we now multiply
both sides of equations (57a)-(51d) by x5, xy, y*, and y%,
respectively, and Tet x,-+0, X2+0, and y+0 we obtain a system
of algebraic equations for g1(0),..,94(0) of the fo]lowing'
form:

Bkjgj(o) = 0, k¥1,..,4 A (53)

[ e K

j=1
where the coefficients BkJ are given by (51). Since g;(0),
g,(0) are assumed to be generally nonzero, from (53) the
characteristic equation which accounts for o is obtained

to be
det|By ;| = 0, (k,j)=(1,2,3,4). (54)
After some simp1e manipulations frdm (54) it is found that

ET%——[COSwa+1 _2(a-1)21=0, o (55)

which is identical to the result found for the edge crack
(see equation 32b). _ '

. For the T-shaped crack shown in F1gure 1(i) 41=0,
the problem is formulated by the integral equations (45b) -
(45d), and the characteristic equation for o may be obtained
from (51b)-(51d) -as follows: ‘

det|BTJl- (i,§)=(2,3,4). | (56)

It can be shown that (56) too reduces to (55)
"The foregoing asymptotic analysis is restricted to
the singular behavior of the solution at the common.
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irregular point x=Q, y=0, The»analysisigiven in the pre-
yious sections indicate that g3=g, and the'characteristic
equations for 81,82,83, and o are uncoupled. Hence 81482,
and g3 are given by (25) and (29). ,

One should note that theoretically the solution of
the system of singular integral equations (19)-(21) con-
tains four arbitrary real constants [16]. 1In the case of
nonintersecting cracks these constants are determined from
four singlevaluedness conditions of displacements given'by
(24). However, in the case of intersecting cracks, such
as T or cross-shaped cracks considered in this section,
kinematically it is clear that there is only one single-
valuedness condition, namely (see'the definitions (12) and

(13))

2hs b3,-.', by . ,
~J '¢2(X2)dxz'j ¢s(y)dy+f» ¢1(x1)dx;=0. | (57)
‘a, e °. L S
The additional three conditions which are necessary for a
unique solution of the system of integral equations are
provided by (53). Note that with (54) satisfied, (53)
gives three equations re1at1ng'the end values g;(0),..,
g, (0). In the case of T-shaped crack ¢;=0, (53) consists
of three homogeneous equations and gives two independent
conditions relating g,, g3 and g,. '

5. Stress Intensity Factors

A careful examination of the integral equations (19)-
(21) would indicate that at a giveﬁ'ifﬁegu1ar boiht'if the
displacement derivativeé have a sinQQ]arity of power‘a,
then the stress state 1s also Singu]ér haVing the same
power o. In applications it isﬁimportant to know not only
the power of stress singularity but also the coefficient
of the singular term in the plane of projected (or conjec-
tured) crack extension. This coefficient is known as the
strength of the stress singularity or the stress intensity
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factor. These coefficients can be evaluated in terms of
the displacement deriyatives ¢1,..,94 bY simply observ1ng
that in’the'intégra1 eqUationS'(19) ~(21) the expressions
on the left hand side rep?e§Ent the related stress compo-.
nent outside as well asftnside-the cuts (ai, bi)? (i=1,,.,4).
(a) Imbedded Crack. ' '
Consider the crack in material 2 and let 0<a2<b2<2h2
(Figure 2). Def1n1ngvthe sect1ona11y holomorphic function

F(z) = f —Eiél-ds, | (58)
a2
and using (24) and (25) it can be shown that
F(z) = - 92(az et 2 1 4; - gz(bz); 1- I
(by-ap)? o (z-ap)®  (b2-a2)”® (z-bp)*
+ 0((2-c)®), (c=ay or by, Re(u)>-%). - (59)

In (58) since F(z) is holomorphic outside the cut, from
(58) and (59) it follows that

i

1r S-Xg “(bp-az)= (ap-%p)72

b ; '
1{ 2? (s)ds _ F(xz) 92(32) ]
a

9,(boy .
2 2)1 ] -+ 0(|xp-c|®), (c=ay or bs).

(by-ap)? (xg-bp)* |
(60)

Referring to (19) and observing that the equation gives the
expression for 92y (xz, 0) for 0<x2<2h2 and that the terms
containing the kerne1s which are bounded at x;=ap and Xx,=bj
would have no contribution to the singular behavior of the B
stress state at a, and b,, the asymptotic behavior of o,
may now be obtained from (60). Thus, defining the stress
intensity factors;by' : e '

k(az)— Tim [Z(az-xz)]

(XZ 90) ’
Xo*d o .

T2yy

- -21-



k(hz)— ]im fzﬁxz“hzlj ‘yQXZQQ)ﬁ | | (Gla;b)

Xo+hy
we find
: -~4ﬁ2 gz(az)
k(az)= - = 1im 2(x -2 )] 6o (x ),
2T I(bz“dz)/ZJ 2"‘321—“—”—I = 2
k(bg)= - i
T T L(bgman) 2T
=~ lim 14 [2(b2-x2)] o2(x2). (62a,b)
Xp+by ' _

(b) Crack Terminating at the Interface.

If the crack tip touches the interface the stress com-
ponent of primary interest is the "cleavage" stress in the
adjacent medium. For example, let a;=0, by=2hy, a;>0, and
as>0 (Figure 2). In this case the first equation of (19)
may be written as.

2h2‘
oy ST Ulyy(X1;0)=; J klz(xl,s)¢2($)ds+H1(X1),
O<X1<2h1, » (63)

where o, is given by (24) with g, defined by (38b), ki, is
the singular part of ki and is given by (39), and Hj(xy)
essentially represents. all the rema1ning bounded terms. |
Def1n1ng again the sectionally holomorphic function F(z)

by (58) and substituting from (39) and (24) “for the lead-
ing terms around x;=0 we flnd : ‘ : o o

2h, :
I ¢2(S)ds ~,92(2h2) SR
m Xy~ S+2h2 B s

0 (Zh )251nﬂ82 X1 2
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,1f'xlgggszzds o 82820%h2) g

e . =g B e '
Tlo '(.XJ“S.-*ZVM'L (2hy ) %sinme, 'Xl,s'z

(64a,b)

If we define the stress intensity factor by

K(2hy) = Tim 77 %182 o L (%1,0), (65)
X310 ! Y ' ’

from (63) (39) and (64) we obtain

by d11+82d12. 92(2h2) (565
+ :
Tty sinmBy  gp=

k(2hp) =

It should be noted that the stress components in the small
neighborhood of the point x;=0, y=0 may be expressed as

. k(2hy) -
ag -‘j(r’e)"' 7:—_" j(e)a (k 1,2, 0<9<'“'a i,d= Y‘ 9)

2 " (67)

where the functions fkij are given in [5].

(¢) Crack Crossing the Interface.

In the point of intersection of the crack and the
interface even though one may again define a single stfess'
intensity factor, from the viewpoint of applications it is
more convenient to express the asymptotic forms of the
normal and shear stressesbalong the interface separately.
For example, let b,=2h,, a;=0, a,=0, b;<2h;, and az>0
(Figure 2). In this cése the interface stresses are given
by (20) and (21), which, for small values of y, may be
expressed as '

by
0xx(o’y) ’TT?E‘jIJ k31(¥ s)¢ 1(s)ds
2h,
* J k32(ys S)¢2(S)ds] + Ho(y)s
0
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AR I »
: BT 5 : . S B
ey (0] = TR | alsdesGs)ds
2R, 4 . -

+ J.akfz(y,s)¢2(s)d31 + Ha(y), (68a,b)

0 .
where the singular kernels are given by (46) and the func-
tions H, and H3 represent the remaining bounded terms. Sub-
stituting from (24) and (46) into (58) and a similar Cauchy
integral with the density ¢; and using the results given
by (50), from (68) one may easily obtain the asymptotic

expressions for Ty x and cxy' The stress intensity factors
for Ty x and Oy may then be defined and evaluated as follows:
k..(0) = Tim y* o, (0,y)
XX y+0 X ,, .
2ur [A;+(1-2a)A,1g1(0)  [A2#(7-24)A;192(0)
2 - 1- + -
T+eq yb; sin(ma/2) /fﬁz sin(wa/2)
k.. (0) = 1im y%o, (0,y)
Xy y~0 Xy

2uy I[A1-(1-ZG)A2]91(0) . [Ag-(1-2a)A1192(0)
Ty ! Vb, cos(wa/2) Y2h, Cos(wa/é) o

(69a,b)

where a=aj=8, is obtained from the characteristic equation
(41¢c) and the constants A; and A, are given by (47).

(d) Interface Crack.

In the case of;anvinterface crack substituting from
{28) into (27) it can be shown that the asymptotic behavior
of the contact stresses in the small neighborhood of the
crack tips is of the following form [2]: '

: oo M(y) o
Glxy(oa}')‘Tlex(O,)') _Wé%) »
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B3 - o3 ; ' . '
wo(y) = (y~bs) “(as-y) ., y<as,; basy, (70)

where M is a bounded functien., Since dg andrsg are complex,
one may define the stress intensity factors as follows:

k1(b;)+1kz(bsl=;ig3 wo(y)Iclxx(0;y)+1élxy(0;y)1;

ky(as)+ikg(as)=lim w_(y)[o. . (0,y)*ic.  (0,y)].
) ,)"’33 0 1 XX 1Xy
' (71a,b)

In terms of the density function p(y) defined by (26) and

(28) these complex stress intensity factors may be expressed
as [2] ' ' :

| wagy -
k1(b3)+ika(bs)=-g5(bs)yg— /T-v*,

. M1dp1 , . , .
, k1(a3)+1k2(33)=93(33)7¢;7— YT-y2, (72a,b)

where g5(y) is obtained from the solution of the system
of integral equations (19)-(21). Note that because of the
definition (71) the dimension of the stress intensity fac-
tors is o rather than the conventional o/% .

| After calculating the stress intensity factors the
strain energy re}eaée rate for the crack propagating along
the interface may be obtained from [2] |

(14K » 2 . v
u- %ﬁ%azf%s(*i + Kp), 23=(bs-az)/2. (1)
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Aﬁpendix A
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K2 - |
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Figure 1. - Crack configurations considered in the paper,
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