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STRESS INTENSITY FACTORS IN TWO BONDED
ELASTIC LAYERS CONTAINING CRACKS PERPENDICULAR .
TO AND ON THE INTERFACE - PART II. SOLUTION AND RESULTS (*)

by

Ming-Che Lu and F. Erdogan
Lehigh University, Bethlehem, PA 18015

Abstract

, The analysis of the title problem was given in
Part I. ‘In this part the numerical method for solving
the problem is described and the stress intensity factors
obtained from the solution for various crack geometries
are presented. '

1. Introduction

_The formulation and analysis of the plane problem
for two bonded infinite dissimilar elastic strips which
contain cracks of various configurations fis presented in
Part I of this paper [11 The problem is intended to approx-
imate a composite beam or a plate having cracks perpendi-
cular to and on the interface of the two layers, The R
'crack geometries and some of their limiting cases which
have been considered in the analysis are shown in Figure 1.
This part of the paper is devoted to the solution of the
problem for various typical crack geometries and to the
presentation and discussion of the results. '

(*) This work was supported by NSF-under the Grant ENG
78-09737 and by NASA-Langley under the Grant NGR 39-
007-011. ' R »
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2. The Solution

In Part I the problem was shown to reduce to a system
of four singular integral equatitons for the unknown func-
tions ¢y,...9, Which are defined by

S0, = vp(2hp0,1)T = 43() (2)

21Uy (+0,5) - up(20p-0.3)1 = 4, (¥) (3)

where u; and‘vi,_(i=],2),are respectively the x and the y
component of the displacement vector in the strips 1 and

2, and the general notation is shown in Figure 2. The |
‘system of singular integral equations are given by (19)-
(21) of Part I. The integral equations are solved by using
a Gauss-Chebyshev or a Gauss-Jacobi integration formula
whenever possible, and a combination of a Gauss-Jacobi
integration formula and the method of Jacobi series if the
simple Gaussian integration methods are not applicable.

In order to apply these techniques it is necessary to |
normalize the supports of the integral equations (19)-(21),
These equations are of the following general form (see
Figure 2): | |

®

: i hyj (xj:8)05(s) ds = Mipi(x4)s 1=1.2, @1€x{€?i J
% | (4
[ Thislasdegls) ds +y aq5 0507 = Mypy(y)

_aj

YK

0o

j=1 ‘
| i=3_,>4 sva.i<,_y<b.i .v . (b)
where a, = aj, b, = by, the constant y is given by (22)
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of Part I, pi,..,p4 refer to the crack surface tractions
and My,..,M, are material constants (see equations 9-11
of Part I). In the case of imbedded cracks the kernels
h11"h22’ h34, h43'have a Cauchy-type»singu]arity'and the
remaining kernels are bounded.  For cracks intersecting
"the boundaries or each other all related kernels have
generalized Cauchy-type singularities. |

For the purpose of numerical solution the following
normalized quantities are introduced:

25 b-+a.
t=poa T bq—aJ ’ (aj<s<bj’ -l<t<l, §=1,..,4),
S3Td J7d
(6)
2xi bi+a% :
r= bi-2a; - oo (ag<xg<by, -l<r<d, i=1,2), (7)
1 k| .
: b.,+a
2y 3 73 _
po= 2 22 (ay<y<h,, -1<r<d), (8)
by-a;  b3-aj 3773 |
fi(t) = ¢50s) » (3=1,..,4), (9)

hij(‘xi’s) = H'ij(r’t)’_ (_a'f<x1.<b'i’ aj<5<bjs ‘1<(r’>t)<]3
i=1,25 §=1,..,4), (10)

h'ij(‘y’s) = Hij(r’t)’ (33<y<b3’ a4=a39 b4=b3,

aj<S<bj’ ~1<(r,t)<1, i=3,4; j=1,-.;4),

(1)
pi(xi) = Pi(r), i=1,2, ai<xi<b1, ~1<r<l, (12)
p;ly) = Pi(r), i=3,4, a;<y<by, -1<r<l, (13)

-3-



The systém of integral equations (4) and (5) may then be
expressed as

1 .
4 b.-a, o
2oL [ Hy (e le)ae = Mipy(r), $=1,2, <leret, |
j=1 < ) | v | |
=1 (]4)-
4 b.-a. 1 . P (,
-1

A\so? defining
f(r) = f4(r)+i f3(r), P(r) ='P4(r)éi P3(r), (16a,b)

and combining the two integral equations given By (15)
we obtain (see equations (20), (21), (26) and (27) of

Part I)
1 1 5
1 f1§§§% dt -y f(r) + fl D Ky t)fyCe)dt
1
[ IRy ) F(E) * Ky (r 0101 = WgPCr),

-1
o -1<r<], | (17)

where the kernels K;,..,K, are complex functions.
Referring now to equations (24) and (28) of Part I

and (9), (6) and (16a), the solution of the integral

equations (14) and (17) may be expresséd as follows:

fF.(t) = Fyto 0<R L)<, s .
J ) (]+t)aj(]_t)5j ’ e(ajsﬁj <1, j=1,2, ( 8) )
f(t) = _F(t) 0<Re(aqr83)<1 - (19)

(1+8)¥3(1-1)"3
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where for some typical crack geometﬁies the characteristic
equations to determine the constants o and Bj’ (j=1,2,3)
are given in Part I. For example, for the imbedded cracks
we have

+ jw,

Nt

- - - - -1 _
ay = B1 = 0y = 82 = 1/2, a3 = 3 iw, 83 =

o= 3 tog (121 . o (20)

Note that the integral equations (14) are of the first
kind and the constants o5 and B , (j=1,2) are always real.
Consequently, the related Chebyshev polynomials T, (t) (cor-
responding to ay = 0.5 = B ) or Jacobi po]ynom1als
'Pn('Bj"aj)(t) have n rea] roots t,, -1<t,<1. Therefore,
in this case a Gaussian integration formula can be developed
to evaluate the singular integrals and the integral equat1ons
may be replaced by a system of algebraic equat1ons for the "
unknowns F. (tk), ji=1.2, (t y=0, (or P (- B’ )(t )'= 0),
k=1,..,n (see, for examp]e [2]) On the other hand (17)
is a singular integral equation of the second kind having
a dominant part with complex coefficients. Therefore, the
constants ag and 83 will always be complex and the roots of
the related Jacobi polynomials P, (-85~ O‘3)(t) will have
complex roots. Since these roots}are not on.the line |
of integration -1<t<1, it is not possib1e to develop a
Gaussian integration formula to'evaiuate the dominant part
of the integral equations in terms of a discrete set of
unknowns F(t ), k=1,..,n. A convenient method to solve
this 1ntegra1 equation is the method of related orthogonal
polynomials described in [3] (see also [2] and [4] for
applications). Referring to (19) and observing that

w(t) =-(1-t)°‘(1'+t)8', (a = -83,»8 . -oc3),,_- (21)

is the weight function of the Jacobi polynomials Pﬁa’s)(t),
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in order to solve the integral equation the unknowrn .unc-
tion f(t) is expressed as

e.p. (@B () . o (22)

7le) = 2 cyP

omM=

where cg,..,Cy are unknown complex coefficients, Using
now the following property of the Jacobi polynomials

2 ‘
ey emn s - v (28 (rpur)
21 |
RN T Pg:?"ﬁ)(r)? Seret,  (23)

the integral equation (17) may be written as
172 ¢ P(*?"B)(r) + J % Kj(r,t)fj(t)dt

1 p1_02
0 27 (1-7") 3 -
-1

1 :
N -
o [ Lo Ky, 8P4+ 8) (0Dt} 48y (ra )PP E) (0 () Dat
S0 ), |

J

M2

= MyP(r) ,'F1<r<1. (24)

Using now the fo]]dwing Gaussian integration formula
which corresponds to the weight functions defined by (18)

(5]

™M 3

. Co
‘I g(t)dt -

1

after eva1uating the integrals (24)_may be expressed as

g 1 (1-42)1/2 P(fu’-s)( ) + é K (Lt WLF (t)
=—(1-v c.P. r - (r,t

N . . .
+j§0[cj03j(r):+ CjQ4j(r)] = M3P(r)s -T<r<l. (26)
-6-




Note that

1 iw /2

-1 _
4 Ty L (e

B3

By l-

w(t) = (1+t)
Hence the functions Q3j and\devmay be evaluated quite
simply by using the following Gaussian integration formu-
la [5]

1
-1/2 n
'J p(t)(1-t%)  dt = = T p(t,), t, = cos m(2k-1)
: " k k 2n
(28)

In order to reduce (26) to a system of algebraic
equations for the unknown constants C; and Fm(tk) one may
use a simple weighted residual method. In this case, it
is clear that the related orthogonal polynomials are the
Jacobi polynomials Pﬁ'“"ﬁ)(t), n=0,1,... . Thus, using
the orthogonality relation

I1 (a,B) (a,B) 0, n#m

Py (t)P, (t)w(t)dt = { (29)

21 6,(a,8), n=m ,

o (a.g) = 2o lr(ntgrn)r(neel)
| (2n¥a+B+1) (n+tat+B+l)n. °

multiplying both sides of (26) by

-8 ('as's)

P

-0
(1-v)  (1+r) )

(Y‘), £= 0’1,'0’N_1

and integrating in (-1,1) we find

1 , 172 2 n .
N ~ . _

+ 3 [b,icotd sl = A, (£=0,1,..,N-1). (30)
j=0 B 4 -k
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Agaih, the constants a, b, and d may be evaluated by

using the Gaussian integration formula (28). V
Similarly, the integral equations (14) may easily

be reduced to a system of algebraic equations 1n Fm(tk)

and ¢;. The first two terms in (14) may be expressed

in terms of‘Fm(tk) by using the integration formula (25).

and (18) [2] giving '

1 _
fnﬁ(,rs,t)fj(‘t)dt g
-1 :

~
s
—

H1j(rs’tk)Fj ('tk) s

i=1,2, j=1,2, s=1,..,n-1 , o (31)

where t, and r. are the roots of the corresponding
Chebyshev or Jacobi polynomials. The last two terms on
the left hand side of (14) which contains f3 and f,
4{nveive real and imaginary parts of the integrals

4

1 o |
f ”ij‘“s’t)?é“’s)(t)w(t)dt,
=1 | ‘

which may easily be evaluated by using the integration
formula (28). |

It should be observed that by using the procedure
outlined above the integral equations (14) and (17) have
been reduced to 2n-2+2N real algebraic equations in
2n+2N+2 real unknowns F (t Yo (m=1,25 k=1,..,n) and the
real and imaginary parts of €y (j= 0,.. ,N). The reémain-
ing four equations are provided by four additional condi-
tions corresponding to the single-valuedness of displace-
ments, the requirement of boundedness of the displace-
‘ment derivatives, and the relations between the displace-
ment derivatives for intersecting cracks (see Part I).
For example, for an imbedded crack 0<a1<b1<2h1 (see Fig-
ure 2) »

1 no.. .

[ oqtsdas=0, or z B Fy(5) <0 (32)

aj '
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and for an edge crack 0<a]<b1 = 2hy, F](1) =0, etc.(*)
The details of the numerical solution for each typical
crack geometry may be found in [6]. '
From the definitions given by (1), (2), (3), and (9)
it is seen that once the functions f],r.,f4 are determined,
~ one may obtain the desired crack surface displacements
by means of routine integrations.

3. Stress Intensfty Factors

The stress intensity factors were defined in Section
5 of Part I. In Part I it was also shown that the stress
intensity factors may be calculated directly from the
asymptotic eXpansion of the displacement derivatives
$ys-eady around the crack tips. Thus, aside from a multi=-
plying factor, the constants F (¥1), (j=1,..,4) give the
stress intensity factors, For example, from equation
(62a) of Part I and (6), (9) and (18) it follows that
for an imbedded crack O<a2<b2<'2h2 the stress intensity
factors may be expressed as

by,
Klap) = Tk Fple1) m

4u :
- 2
k(bz) = - ﬂ—z—z- F2(1) )’(52-&2”2 . (‘33a,b)

Similar expressions can be obtained for all other crack
geometries.

4. Results and Discussion

The particu1ar crack configurations for which the
problem is solved numerically are shown in Figure 1.
The results are given in Figures 3-36. With the exception.

(*) 1In this case f,(+1) has the ihdefinite‘form_O/O and,
if needed; may be evaluated as a limit,



of a few crack geometries for which crack surface displace-
ments are calculated, the results given in this paper refer
to the stress intensity factors. Generally the results
presented in the f1gures are self- exp]anatory. Hence a
detailed discussion of each figure does not seem to. be
necessary-.

The results given in this paper are obta1ned for self-
equilibrating crack surface tractions. If the external '
Toads are appiied to the layered material at Tocations suf-
ficiently far from the region of cracks, then the crack
surface tractions 1in the perturbation problem would be
un1form For example, if the medjum 1is loaded in tension
para11e] to the y-axis away from the crack region the
crack surface tract1ons are constant and are related by

(- v;)p1 (1-V§5Pé

I'2 [ p, =0, p,=0 (34)
for plape strain and
P P2 : |
%;%,p3=0.,p4;0 : _ (35)

for plane stress. In this paper anly plane strain case
is considered. | . |

Figure 3 shows the stress intensity factors far a
simple imbedded crack of length 2&2 % bz Note that as
the crack tip b2 approaches the interface (i.e., as ;+£2)
k(b ,) tends to zero for u2<p] and to infinjty for p2>u1
Th1s well-known behavior 1is due to the fact that for b2—2h2 3
the pawer of the stress s1ngu1ar1ty 52 js greater than
0.5 if uy>uy and less than 0.5 14f u2<u [see, for example
[7] ]. For this case the def1n1t1on of the stress inten-
sity factor and the behavior of the stress state around
the crack tip are given by the equqtlgns (68) and (67) of
part I. For the material combinations used in Figure 3

-10-.



82 = 0.624348 for u2>u1 and 82 = 0,385339 for P
Also note that as the crack tip a, approaches the free
boundary as expected, k(az) tends to infinity.:

Stress intensity factors for an edge crack are shown
in Figures 4 and 5. [In this case too note that as the -
crack tip b, approaches the interface k(b ) tends to
zero for Ho<Hy and to infinity for 112>1.1.l Also note that
as the crack length decreases the stress intensity factor
ratio approaches 1.586 which is the value obtained for
the semi-infinite plane having an edge crack of length 222
Figure 6 shows the effect of stiffness ratio for a fixed
crack geometry. Note that as u1/u2 +~ 0 the stress inten-
51ty factors approach the value for an edge-cracked strip
under uniform tension k(b ) = 3,99 pzlzz. The effect of
thickness ratio is shown in Figures 7 and 8, The results
for the crack terminating at the interface are shown in
Figures 9-11 as well as in Figures 7 and 8 (the curves
corresponding to 32/h2=1).

Figures 10 and 11 show the stress intensity factors
in a layered plate containing an edge crack and subjected
to uniform bending away from the crack region, In the
uncracked composite plate the relevant stress is given by
(see Figure 2 and insert in Figure 10}

UZyy(XZ’O) = "Pz(xz) = 'Pz“‘xzfcz) (36)

- 2 2- | S

where Xp=Co determ1nes the location of the neutral axis
and the constant p2 is the magnitude of the stress at the
surface which is related to the bend1ng moment M by

3c2M

c
)3+3c?-cg o

~11-



One may note that since the powers of stress singuiarity
are different, the direct comparisbn_qf the stress inten-
sity factors for the two cases shown in Figure 11 would
be meaningless. . L e ,

The stress intensity factors in bonded layers con-
taining two (collinear) edge cracks and subjected to ten-
sile loads away from the crack region are shown in Figures
12 and 13. Note that in this case the stress intensity
factor in the Tlayer with the smaller stiffness is generally
smaller than that in the layer with greater stiffness,
decreases with increasing crack 1engtﬁ, and eventually
becomes negative. This, of course, is due to the "bending"
of the notched composite 1ayér. In the figures the nega-

_tive stress intensity factor is shown by dashed Tines,
If there are no other external loads to offset this effect
through superposition, the results given in the figures
for k<O are not valid,

To give some idea about the effect of Poisson's ratios
on the stress intensity factor in the case of a broken
layer Figure 14 shows the results for varying vy and fixed
values of v2=0.3'and u1=2u2~ It is important to note that
in this case the power of stress singularity '62=cx is also
a function of Vi which is given in Table 1. Thus, even
though the figure shows the stress intensity factor slightly
increasing with Vi since a is a decreasing functidn of
Vi the intensity of the stress state at the crack tip
would actually decrease with v](see‘equations (65) and
(67) of Part I).

Table 1. Power pf stress singU]arity 82=a for a crack
terminating at the.interface, v2¢0.3, p1=2u2.

|\ o 0.5 0.0  0.15 0,20  0.25

a  0.'4'832*51 0{476747 0.469679 0.461967. 0.453516 0.444205

0.30  0.35  0.40  0.45 0.50 |

0.433891 0.422389 0.409466 0,394818 0.,378041

-12-



Stress intensity factors for a crack crossing the

interface are given in Figures 15-19. The results for

an imbedded crack are shown in Figures 15 and 16, Note
that as the crack tip 2y approaches the interface, due .
to again the change in the power of stress singularity,
the stress intensity factors become unbounded. Also as
2+0 k(a2)+w "The results for the edge crack (i.e., for

0) are given in Figures 17-19. As h1+0 2 h2’ the

crack t1p b] approaches the free boundary and consequently
k(b )+, Figures 18 and 19 show the stress intensity
factors k and k Xy at the interface. It should be noted
that even though the magnitudes of k and k increase
rap1d1y with decreasing net Tigament th1ckness 2(h -0.2h ),
h /h2 =0,2 is not an asymptote of k and k Xy " F1gure 20
shows some sample results for the crack surface d1sp1ace-
ment. : o
An important special case of the crack crossing the
interface is the stress-free end problem for two bonded
semi-infinite plates or beams. In this case the problem
may be solved by letting a1=0=a2, b]=2h1 and b2=2h2 (see
Figure 2) and properly treating the singular behavior of
the solution at the irregu1ar points x2=0, x2=2h2, x1=0

and x1=2h1 (see Part I). The problem may be one of ther-
mal stress, residual stress, or mechanical loading. The
technique for‘iso1ating the perturbation problem in which
self-equilibrating end tractions are the only external
loads is relatively straightforward. Invariably one
imagines an infinite plate. (~o<y<o, ~c<zo , 0<x]<2h1,
0<x2<2h ) under a given set of applied loads and calculates
the stresses at y=0 plane. The needed tractions in the
perturbation problem are the equal and opposite of these
stresses. For example if a clamped plate is pulled in
z-direction or heated uniform]y,;the perturbation;problem~
would have to be solved under a system of self-equilibrating
tractions on the boundary y=0 which consists of constant
normal stressés Pq and Po and the linearly distributed

=13~



‘stress coming from a behding moment M which are relnted
by N o
pihy * Pohy = 0, M = 2pyhy(hy*hy) (39)

The stresses resulting from M would be obtained from
equations such as (36)-(38)}. Figure 21 shows the results
of such an example. ' .

~ Ih the stress-free end problem, after solving the
integral equations and obtaining the density functions
91 and ¢, the relative displacements in y-direction on the
bounddry y=0 may easily be evaluated (see equation (1))
from | Xq o _

V-I(Xpo) =Yy + [ CP](.S)dS’
, o
| 2hy |
VZ(XQsO) = Vy - [ ¢‘2'(S)d5; (40a,b)
X5 |
2

Whefé'vo 2 v](O 0) = v2(0 ,0) represéeiits a rigid body
motion. Figure 22 shows some samplie results for the dis=
placements.
The results for a un1form1y préssur12ed T shaped
crack dare shown in Figures 23-25, Note that due to pres= -
sure py for small values of the crack length 222 the
stress intensity factor k(az) becoties negative (Figure 24).
Figures 26-29 show the resu]ts for bonded layers
containing a T-shaped crack and joaded in y-direction away
from the crack region for which p3 p4—0 and p2 is constant,
The results for a symmetric cross= shaped crack are
given in Fngres 30 and 31. The extérnal load in this
example is the tension in y-direction awdy from the crack
region. Corresponding results for as= =0, $.e,, for & broken
layer are shown in Figures 32=34. The crack surface
pressures used in the example given 1# Figures 32 and 33
correspond to uniform tension in x diréction as well as

“1be




tension in y direction away from the crack region, The
results for tension in y direction only are given in
Figure 34. . : . , '

The results for an edge crack in a bonded semi-
infinite plate are shown in Figures 35 and,36; The_ek-
termal load in these examples correspond to a uniform
tension in z-direction or uniform heating or cooling of
a clamped plate, Note that for this crack configuration
the dominant stress intensity factor {s the shear compo-
nent k,. From Figure 36 one may also observe that for
bonded plates with equal thicknesses the magnitudes of
the stress intensity factors are rather small,

Finally, it should be pointed out that the accuracy
of the numerical results given in this paper is not uni-
form. For Mode I stress intensity factors at an imbedded
crack tip it was possible to obtain a two-digit accuracy
without any difficulty. However, in the calculation of
the stress intensity factors at the interface crack tips
" and at the intersection of the crack and the interface
there were convergence difficulties,
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Figure 2.
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Figure 6.

The effect of the stiffriess ratio uy/u, on the
stress intensity factor in bonded layers with
a pressurized edge crack. ViEv,=0.3,
28,=b,=h,.



Figure 7.
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Same as Figure 7. u1=u2/3; vi=0.25, v2=0.3,
8,=0.624348 (for £,=h,). '



Figure 9.
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£5/hy

Stress intensity factors for an imbedded'crack
touching the interface. ny=3u,, v]#0.25, v,=0.3,
external load: uniform crack surface pressure.

B
k(a2)=1im /Zlaz-xzioz (x2,0), k(b2)=lim/§x12
_ x2+a2 v Yy , X'I‘*O

(x1,0).
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Figure 10,

05 O
Stress intensity factor in bondéd'1ayers con-
taining an edge crack and subjected to uniform
bending away from.the crack region. v1=v2=0;3,
solid lines: u]=3u2,5dashed Tines: u]=u2/3.
k(b2)=1im'/?sz—ﬁziozyy(xz,Q).
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Figure 11. Stress intensity factor in the compo;ite plate

with a broken 1ayer subjected to uniform bend-
ing. V1EV,T 0.3. Power of stress singularity
8o =0.400470 for u1-3u2 %nd 82—0 620492 for

M= u2/3 k(b )=1im V2 X1 (X},O);

o
Xr*o vy
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Figure 12. Stress intensity factors in bonded layérs with
' ‘double edge cracks. uy=3iis; vjﬂvZﬁU;S; exter-
nal loads: uniform crack surface pressures,
P1=3Py, hy=h,=h, 2£=2£,22¢. klay) =
Tim /Zla}-xj)d1yy(x],0);‘k(b2);1i@;21x2—525%yy(x2,0).
. ' : 2701

X172




Figure 13.
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Stress intensity factors for doub'le'edge cracks.
' Wy=Hy/ 35 \)]=\)2="-0;3, h1=h2, 2£y=hy, p1=p2/3.
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Figure 14. Effect of Poisson's ratio of the stress jften-
sity factors in bonded 1ayers with an edge crack '
touching the interface (Hote: a is also deépen-
dent on v, and is given in TabTe 1):




1.25

44.94

Figure 15.

0.5 , 10

Stress intensity factors for an imbedded crack
crossing the interface. External loads: uni-
form crack surface pressures p,, pz,”p]§3u2,
v1=v2=0.3, p]=3p2, h1=h2, b]=2£]=h], k(b])=

1imb/2{x]—5150Tyy(x1,0),k(a2)=1im /2‘32-x2502yy(X2?0)'
X170 X722
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Figure 16. Same as Figure 15. k =Tlim y o,
y>0
Tim y“o,,(0,y), 0=0.079898,
y>0 - |

Xy
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Figure 17. Stress intensity factor for an edge crack
| crossing the interface. k(b1)= ‘

1im /22_x1-5150T (x1,0). External loads:
uniform crack surface pressures, Pq. P
(1-v§)p1/E1=(1-v§)p2/E2, z/h2=1.2, solid
curve:vu1=3u2;-v]=0.3, v2=0.25, dashed curve:

u]=u2/3, \>}=.0.25, \)2=0.3.
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Figure 18.

Stress intensity factors at the intérface for

“an edge crack crossing the interface. k.=

. L0 oo b st 0O (0.v) . B ha=T.2
;lwg Y "xx(o’y)" kx‘y 113 y _bxy(_o,y), L/hy=1.2,
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| Figure 19. Same as Figure 18, u]=u2/3, v,=0.25, v,=0.3,
a=0.060177. ' :



Figure 20. Crack surface displacement for an edge crack
crossing the interface. Constant crack sur- .
face pressures p1, p2, (1=v? )p1/E1 (1- vz)pz/EZ,

to= ( 2/h )
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Figure 21. Stress intensity factors at the intersection
of the free end and the interface in two bonded
sem1-1nf1n1te Jayers. Ky =1im y oXX(O y), =

XY,
Tim y oy (0 ¥y, u1—3u2, v]_g 3, v2—0 .25, o=
y+0
0. 060177, p2=-p]h1/h2, L= h1+h2, M= 2p1h1£



Relative dispiacement in y-direction at the
free end of two bonded semi=infinite layers.
'1'(X2/h2)9 d(ti)iv.‘i(ti)"‘/bs"(1*152)5 VoiVi(0,0).

Figure 22.
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Figure 23.

\\\\_ k2 ﬁ—‘-\\\\‘\\\\§;
~ pa#s 0,78

Stress intensity factors and the strain,energy

release rate, W for a uniformly pressurized T-
shaped crack. P3=Po>s p4=0, h1=h2=h, 23=£3=h,a’
U =3lgs V17Vp=0.3, kq*iky=lim (by-y)"3(bg+y) 3

y=b

. ' : 3
[G1xx(0’y)+1g1xy<o’y)1’ W=(Kki+k})/p3e5.
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Figure 24. Stress intensity factor k(ag) for an internally
pressurized T-shaped crack (data same as in
Figure 23),



/43

Figure 25. Stress intensity factors and the strain energy
release rate W for a uniformly pressurized
T-shaped crack - the case of broken Tlayer.

p3=p2’ p4=0a U]=3132, V-l=\)2=0-3_, £3=h2
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Figure 26. Stress intensity factor k(a,) for an-internal .
T-shaped crack, p3=p4=0; V1=v,=0.3, Ly=hqy=h,.
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Figure 27. Stress intensity factors for the interface
' crack in bonded layers containing a T-shaped
crack. p3=p4=0, u1=92/3, v1=v2=0.3, £3=h]=h2
(see insert.in Figure 26).
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Figure 28. Same as Figure 27, uy=3up. vq7v,=0.3.
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Figure 29.

Stress intensity factors at the interface
crack tip in bonded layers containing a T-
shaped crack - the case of broken layer.
v1=v2=0.3, £3=h2,
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Figure 30. Stress intensity factors k(a,) and k(by) for
- a symmetric cross-shaped crack in bonded lay-
ers loaded in tension away from the crack
region.~u1=3u2; v1¥v2*0.3, p]?392, b3=P4=0,

h]=h2=2£1=2£2.



Figure 31. Stress intensity factors for the interface
crack in bonded layers containing a symmetric
cross-shaped crack (data same as in Figure 30) .



Figure 32.

Stress intensity factors for the interface
crack in bonded layers containing an internally
pressurized cross-shaped crack - the case of
broken Tayer. uqy=3u,, v]=v2=0.3;»£1=h]/2,



Figure 33. Same as in Figure 32, stress intensity factor

at b1.
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Figure 34. Stress inten‘sity factor k(by) in bonded layers
containing a cross-shaped crack with a broken
Tayer and loaded in tension in y direction
away from the crack region, h,=h,=28/3, v =
\)2=0'.3, p'3;P4“‘O':'5011d_ Hnet U-I'=3U.2a p1=3U2,
dashed line: u-|=u2/3, »p]=p'2/3.
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Figure 35.

Stress intensity factors in a bonded semi-
infinite plate with an edge crack on the inter-
face. u]=3u2, v]=v2§0,3, £3=h2, p2h2=-p]h1,
M=2p1h](h1+h2).
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~Figure 36. Stress intensity factors in a bonded semi-
infinite plate with an edge crack on the inter-
face. uy=3u,, vy=v,20.3, hy=h,=h, p,=p,, M=

A4'p-]h2.









