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Abstract

The air flow through a propeller-type wind tur-
bine retor is characterized by three-dimensional
rotating cascade effects about the inner portions
of the rotor blades and compressibility effects
about rhe tip regions of the blades. In the case
of large totor diameter apnd/or increased rotor angu-
lar speed, the existence of small supersonic zones
terminated by wezk shoeks is possible. An exact
nonlinear mathematical madel (called a steady Full
Potential Equation - FPE) that accounts for the
above phenomens has been rederived. An artificially
time dependent version of FPE was iteratively
solved by a finite volume technique involving an
artificial viscosity and a three-level consecutive
mesh refinement. The exact boundary conditiods
were gpplied by generating a boundary conforming
periodic computation mesh.

Nomenclature
a speed of sound
C correction to the absolute velocity
4 potential at point i
D Jacobian = det {J]
o} specific static eathalpy
i rothalpy = h 4 (Fr-i"r - 921—2)/2
1J} geometric trapsformation matrix
M. relative Mach number = IV {/a
(-. = 2 2 =
Q = (V.7 - )2 )
e the relative air speed = ]Vr!
R. residue of the full potential equation
K at point jJ
T position vector in the rotor plane (y,z)
5 specific entropy
5,0n,m orthogonal relative streamline aligned
coordinate system
absolute temperature of the air
|4 artificial rtime
i ’Vr’wr modified contravariant relative velocity
components in X,Y,Z space
i
Vr the relative velocity vector
v the absglute velocity vectoxr =
v+ Qxrx
v,z global boundary conforming coordinate
system in computational space
E,?,E local cocrdinates in each computational

cell in the computational space
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absolute velocity vector potential

@
0 angular rotor speed = const,
w over-relaxation factor

Intyeduction

The overall efficiency of the propeller-type
wind turbines (Fig. 1) presently used for the pro-
duction of electric enérgy can be significantly
improved through variouws aerodynamic modificatiocns.
One of the basic¢ disadvantages of all the theories
used for the design and analysis of blade shapes
is that they include linear and offen semi-
empirical approximations and corrections when azc¢-
counting for the nomlinear effects of compressible
three~dimensional rotating cascade flow.

The purpose of this paper is to present z
numerical method for solving an exsct three dimen-
gionzl full potential equation that models the in-
viscid, irrotational, homencropic flow of z com-
pressible fluid through an arbitrarily shaped iso-
lated rotor. This work is based on the principles
used in external transonic aerodynamics’»<>~ and
Tepresents an extension of the authors research®, 5,6
in the field of potential transonic axial turbo-
machinery flows.

. The Mathematical Model

The derivation of the governing eguations is
based on the following assumptions. Assuming that
the rain drops, snow flurries, atmospheric ice
particles, industrial pollutants, sand and dust are
uniformly distributed throughout the z21r volume and
that their total volume and mass are negligible,
the atmospheric air can be treated as a homocomposi-
tional fluid., In addition, it is npecessary to as-
sume that the air is ipviscid and that the atmo-
spheric turbulence and disturbances due te the pres-
ence of a2 tower and a ground are negligible,

Then the full potentizl equation can be ob-
tained frem the following snalysis. If the oncom-
ing airstream is axisymmetric with respect to the
axis of rotation and the rotecr angular speed (; 1s
constant, the problem becomes & steady one when ex-
pressed in terms of coordinates (x,y,z) fixed for
the blade (Fig. 1).

-

If Vr is the relative velocity vector of the
air with respect to the blade, r is the position
vector in the plazme of rotastiom and (& 1is the
angular velocity vector of the oncoming flow, then

ir':'if'r-i-ﬁx? (3]

is the sbsolute velocity vector. Then the sum of
inertia, centripetal, Coriclis and pressure forces
is



er(:J"xV)=‘v'I-T% (2)
where T 1is the absclute temperature, 5 is the
encropy and rothalpy I is defined’ as

1=h+2 (V9 - ) 3

where h is the static enthalpy. Tn order to be
able to use a single variable, the so-cdlled abso-
lute velocity potential function @(x,y,z) where,

¥ = (&)
the condition of irrotationality
Ix V=0 (5)

must be satisfied throughout the flowfield.

For Eq. (5) to be satisfied, the rothalpy must
be constant

—_

I =20 (6)
and the flow homentropic
B =0 @)

simultaneously everywhere in the flowfield.

Besides already mentioned assumptions and re-
strictions, Egs. (6) and (7) imply that there should
be no hest transfier between the blades and the air,
boundary layer should not separate and all possible
shock waves should be weak.

The flow at upstream infinity was assumed to
be uniform, although, according to the analys:s
which was done 1n the earlier papers, it is pos-
sible to introduce a two-dimensional potential vor-
tex at x =

-,

The continuity equat10n,7=4

o257 - @, (8)

where a 15 the local speed of sound and,
1l v o2 2) a
2 (vr'vr Sz ()

can consequently be written®+8 fn its full potential
form

L0 - @ 1 Go) + 2@ (E x DT

- - = - - -

- (@x @ x )W) = (10)
This second order quasilinear partial differ-

ential equation of the mixed type was numerically
solved using an iterative successive line gver-
relaxation technique. 1In order to zccount for the
proper domain of influence in the cage of locally
supersonic flow, the FPE should be wraitten in its
canonical form

(- o, -

Here, (s,m,n) is an orthogonal coordinate system
locally aligned with the relative velocity vector

(Fo-v)=0 v
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Vr = qres =y (12)
and My = gpy/a is the local relative Mach number.
Type depéendent rotated finite differencingl: was
used for the discretization of Eq. (11).

The solution of this steady state equation

(Eq. (11)) can be obtained as an asymptotie solution
to an unsteady equation for the large time.1:% 1In
order to accelerate the iterative solution process,
but to aveid small time steps dictated by the numer-
ical stability econdition in the case of a truly un-
steady FPE, a more general artifically tiwe depen-
dent form of Egq. (11} was wused

(- Do . -

+ 2u2@,mt + 2a

P m " @ oan t 2340

.00 ,st

P e T O, " 0 (13)
The consecutive iteration sweeps were considered as
steps 1n an artificial ctime direction. The artif:-
cizl time dependent derivatives in Egq. (13) were ob-
tained by a careful arrangemeant of the abseolute
velocity potentizls obtained from the two consecu-
tive iteration sweeps. For example,1:4 the central
difference approximation of the second derivative
in the s-direction, evaluated at the point (1,j,k),

E W] - -+ 2
(q’,ss)i e (‘Pm,j,k Bt A @i-l,j,k)/(—\s)
LS *

{14}

where 90 is the old value of the porential
evaluated éurlng the last iteration sweep, @i,j,k

is the new value of potential function evaluated
during the present sweep and @, 3 15 a temporary
value on the line along which the telaxation is ap-
plied. The last term is defined™ as

=l(¢+

0
®i,5,k "o \%1, 5,k

(1]
- q’i,j,k)+ %5, 3,

where o 1is the over-relaxation factor.
Eg. (14) becomes

0 ] 0
L, - 2@ + G
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Then

15,k

i- 1:]: )

,J k)

(16)

or

+ @ )

:j,k ! i'lsJak

2 2
-2 e ) (8s)
® ot 1,j,k]/

By adding and subtracting (At) (P n)
Eq. (17), we finally* get

(17)

& from
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Q3’SS)i,j,k - (¢’ss)i,J,k as Q?’St)i-1/2,j:k
- (t% B 1) d(-j:_)'f ((p’t)i,J,k (8

All the second derivatives in the full potential
equation were evaluated using the type dependent
finite difference approximstions. This means that
in & locslly subsonic region (My < 1) central dif-
ferencing (designated by the superscript E) was
used, while in the case of a locally supersonic
relative flew (M > 1) the rotated upstream differ-
encing was used (designated by the superscript H).

Computational MHesh

In order to apply the exact boundary conditions
(wvith no approximatipn on the surface of the blade
and a rotor hud) it is necessary to generate a com-
putational mesh that will conform with these irregu-
lar solid boundary chapes., At the same time this
mesh should be (preferably) periodic in the @~
direction, thus providing for an easy application
of the periodicity conditions along the arbitrarily
shaped periodic boundaries (lower and upper bound-
aries on Fig. 2).

Figure 2 represents such an irregularly shaped,
non-orthogonal boundary fitted mesh on one of the
x, §; ¥ = const. cylindrical computational planes
that intersect the blade (see Fig, 3).

The mesh of Fig. 2 was generated using conform-
al mapping, elliptic polar coordinates and coordi-
nate stretchings and shearings‘*ssa6 as shown on
Fig. 4.

For the purpose of finite differencing, each
distorted mesh cell 1s separately mapped intoe a unit
cube (Fig. 5) using local isoparametric trilinear
mapping functions of the general fomm

8
=z b (L + 1+ I + Z2 1
b =3 P( XXP)( -rYYP)( 1:,) (19)
p=l
where subscript p tefers to the value at the
cube's corner, that is
X =21 Y =1 Z_ =zl (20)
4 24 P

-

and b stands for any of the fellewing: x,y,z,9.

Computational Space

Besides transforming the geometric parameters
from the physical (x,y,z) into the computational
(X,¥,Z) space, the same was done numerically with
the governing full potential equation.

o,

if
" x, X,Y X,z
(31 Yoy Yoy Yoy (21)
Z,X Z,Y z,z

and

D = det {J] (22)

then the medified contravariant componentsa of the
relative velocity vector are (see Egs. (1) and (4})

br » u a 0 . w,x
vy = ofJ) v = DlJ} $iz L + DiA: @5y
. w, -0y Q,Z
(23)

where

fa} = (1 1oTy7t 24)

The full potential equation, which can be written as

(% - 60) (s - 5) + (57 - ol ) - o

(25}
after division with (-a®) becomes
2

Mr .
—_— J - rla{o
5 (¥ 117009 Y- (19 01T 00)  26)
where

A TIEE "

s T qu lbrvrwr"é:l;kY i= (273

The full potential equation can also be written in
its scalar formd (see Egs. (8) and (23)) as
2

N - 1 =
2 (Lr +V W ) (qu’X + VrQ’Y + WrQ’Z) 0
9x ’Y !Z

(28}
The evaluation of all the finite difference

approximations was done by the use of the following
expressions:

o 1 -
(b’X)l-'—'llz 3 k T2 (blilsj:k bii.]:k)
1 .
(b,x)i 14172,k T8 (b1+1,j,k - b:.-l,_],k-rbi-fl,j:l,k
F Tt H
%51, 571, k)

ol

b b, s, - bu ., Fh. ~
(’X)i,j,killz ®ip, 5,5 7 Pivd, 3,k T Piel, gkt

®1-1,5,k=1)
(29)

because the neighboring mesh points are spaced in
each new direction (¥,Y,Z) one unit apart. Herz b
stands for any of the following: x,¥,2z, Ur, Vi,
Wr: Q: qJ'

The analogous formulas are valid for the dif-
ferences in the Y and 2Z directions.

On each column j = MAXY, discretization of
the FPE leads to the set of nonhomogeneous, naon-
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linear, algebraic equations of the genmeral matrix
form

(BI{c;} + R3=0 (30)
Equation (30) was directly solved forx the vector of
corrections {CJJ to the potential @, vhere

) +
CJ %1,1,k P11,k Sl
Equation (23) was used for evaluation of tri-
diagonal coafficient matrix [B., while Eq. (28) was
used for the evaluztion of the residuzl vector [R;}
* which alsc incorporatas an explicitlg added artifi-
cial viscosity in conservative form. 23,4

Programming Considerations

A computer program called WIND was developed
on the basis of the previous analysis. The mesh
generaring portion of the code uses about 50% of
the toral high speed memory required by WIND and at
the same time consumes less than 5% of the total
CPU time required by WIND. Therefors, in order to
save on computer storage and at the same time to
provide the means of separately analysing the geome-
try, WIND was devided into two separate programs.
The first portion of this code (WIND-0Ol) penerates
the three-dimensional body fitted computational
mesh. Actually, the first program generates three
consecutively refined meshes and stores them on
separate disks. The second portion of ths program
(WIND-02) reads these (x,y,2z) coordinates into the
high speed memory in such s way that only the data
from three neighboring cylindrical computational
planes (see Fig. 3) have to be stored in these
arrays at one time.

The hub is defined as a doubly infinite circu-
lar cylinder., An arbitrary number of blades is
allowed to be actached to rhe hub. The blades cen
have arbitrary taper, sweep, dihedral and twist
angle and can be formed from an arbitrary number of
different section shapes. The vortex sheet (in the
case of a circulation that varies along the blade
span}) is assumed to leave the blade from the trail-
ing edge and continues dewnstream without allowing
for the roll-up process. The shape of the vortex
sheet is arbitrarily prescribed and kept constant
during, the calculation. Therefore, the vortex
sheet is allowed to be transparent, that is, it was
not treated as a stream surface. The iteration
sveeps start from the line of mesh pointe comnect-
ing the upstream infinity with the leading edge
stagnation point (see Fig. 2) and proceed along the
upper blade surface and then along the lower blade
surface towards the trailing edge, relaxing @ on
one line of the mesh points at a time. In this way
the sweeping direction coincides with the main
stream direction. Consequently, the artificial
viscosity introduced by the vpstreasm differencing
(designated with the superscript B in Eg. (25))
will alweys have positive sign, thus mzking che
scheme stable in the regions of locally supersonic
fiow.

After the iteration converges on the first
(very coarse) mesh, the values of ¢ are inter-
polated onto the next finer mesh (having approxi-
mately eight times as many points as the first one),
thus providing an improved initial guess for the
iteretive process on that mesh. The same procedure

is repeated with the finesr mesh after the process
converges on the second mesh thus resulting an an
accelerated iterative scheme,

Preliminary Resultrs

In order to .test the WIND program fer z highly
compressed relative flow, a two-bladed wind turbine
Totating at 55 m.p.h. with on oncoming wind speed
of 18 m.p.h. was studied. The geometric character-
istics of this rotor are shown in Fig. 6.

The computztion was performed on 2 single very
coarse mesh, which consisted of 24x6 mesh cells for
egch two-dimensional plane (Fig. 2). The spanwise
distribution had 6 mesh cells on the blade surface
and ? additional off the blade tip. After 60 1ters-
tions the relstive Mach number distyibution on tne
suction side of the blade surface was plotted
(Fig. 7). This figure indicates that the compress-
bility effect increases signirficantly from hub to
tip with the tip actually operating in transenic
speed regime., Since such small number of itera-
tions were performed and the computationazl mesh was
so toarse, the results shown 1n Fig. 7 are prelimi-
nary ones.

Summazy

A computer program was developed that numeri-
cally solves an exact mathematical model for three
dimensional rotating steady flow through a2 propel-
ler-type wind turbine rotor of arbitrary geometry.
The air is assumed to be 1nviscid and compressible,
This work uses the principles of modern computatzon-
al aerodynamics and provides designers with a prac-
tical tool for determining more effacrsnt aero-
dynamic shapes of wind turbine blades.
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Figure 1, ~Tha rotor in the Physical space,
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Figure 3. - Cylindrical computational planes and Figure 4. - Geometric transformation sequence.

boundary conditions.



Figure 5. - Local isoparametric trilinear mapping.
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geometric parameters. Airfoil section:
NACA 2300 series; rotor diameter: 250 ft.
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