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EXECUTIVE SUMMARY
 

This document describes research, development, testing and evalua­

tion, and system design work undertaken at ERIM in support of on-going
 

efforts of the Earth Observations Division of the NASA Johnson Space
 

Center to apply aerospace remote sensing technology to agricultural
 

inventory and crop condition assessment.
 

The research reported here was initiated during the planning
 

of the AgRISTARS Supporting Research Project and was a part of those
 

plans,- although this research will stand on its own merit. The bene­

fiting Supporting Research project element is Area Estimation Research.
 

The 	general problem addressed is extraction of agronomic informa­

tion 	at a large, if not global scale, of a type and quality that is
 

relevant to decision makers, and in an efficient and cost-effective
 

manner. A major undertaking was the development of concepts and goals
 

toward which the.technical effort related to information extraction could
 

be directed.
 

A three-stage approach was followed during the year:
 

1. 	 Generically establish the basic design concepts and require­

ments of an information extraction system to provide the
 

foundation for technology development.
 

2. 	 Concentrate on the specific problem of area estimation and
 

establish a baseline technology that provides an environment
 

for technical growth and self-evaluation.
 

3. 	 Pursue the research, development and testing of area estima­

tion along two lines: that technology which relates to
 

assigning crop labels to samples (called objective labeling),
 

and that technology related to the efficiency of crop pro­

portion estimation (called machine processing).
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General Considerations
 

A perception of general requirements imposed by a global production
 

and condition assessment system on supporting technology that employs
 

remotely sensed satellite image data and collateral data is useful for
 

focusing the technical efforts which are needed to support such a sys­

tem. A general statement is that any information system ought to
 

satisfy its users in the following general characteristics discussed
 

in detail in Section 2:
 

Directivity: The ability to respond to the user's needs in a
 

parametric sense.
 

Cost-Effectiveness: The ability to respond with sufficient infor­

mation, in a timely manner, at a cost within the value of
 

that information to the user.
 

Objectivity: The ability to provide the user with reliable
 

estimates of the accuracy of the information.
 

When focused on the problem of crop area estimation based on
 

remote sensing, these requirements for directivity, cost-effectiveness,
 

and objectivity lead us to a baseline technology that acts as a frame­

work for technology development. As discussed in Section 3, the tech­

nology is one based on stratified area estimation (SAE) and functional­

ly consists of seven components: system tasking, data preparation,
 

feature extraction, stratification, sample allocation, attribute assign­

ment, and aggregation. Stratified area estimation can be implemented
 

in a modular environment that permits directivity, can be analytically
 

modeled so as to provide objectivity, and is a framework for phased
 

development of crop acreage estimation technology that will lead to
 

cost-effective component techniques.
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Objective Techniques for Labeling
 

For the task of developing objective labeling techniques, an important
 

effort was establisment of a four-step approach -- feature definition,
 

feature extraction, signature characterization, and procedure development.
 

A major goal is to achieve the best balance between manual and machine
 

functions while developing objective techniques for labeling. The first
 

year of a two-year effort is described in Section 4.
 

Using this approach, a refined machine algorithm for discriminating
 

between spring wheat and barley using Landsat features was developed
 

(predicated on having previously labeled spring small grains data):
 

* 	 Segment-level features were established to indicate moisture
 

stress and soil brightness.
 

* 	 Feature extraction procedures were developed using temporal­

spectral profile models.
 

* 	 A discrimination rule was devised to adapt to differences
 

in these indicator features.
 

" Testing is planned for first quarter of the next contract
 

year.
 

Numerous other investigations were conducted to increase our
 

understanding and/or capabilities in each of the major steps of the
 

approach and to make progress toward the long-range goal. The ac­

complishments under each were as follow:
 

* 	 Feature Definition
 

- Relationships between the Landsat band ratios and the
 

XSTAR-stabilized Tasseled-Cap plane were quantified.
 

- A method for relating reflectance measurements to
 

Landsat and Tasseled-Cap variables was defined.
 

-	 Development of a meteorologically driven model of the 

spectral phenology of wheat was initiated. 
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" Feature Extraction 

- Products to facilitate analyst labeling of field-like 

blobs were developed. 

- Procedures and a mathematical theory for the production 

of color-stabilized image products were developed. 

- An improved spatial-spectral clustering algorithm was 

developed. 

- A study of crop development stage estimation was 

initiated. 

- Procedures for fitting profile model forms to multi­

date Greenness values were developed for feature extrac­

tion and recommendations made for their use at several 

levels of application. 

" Signature Characterization 

- Problems of extracting signatures and estimation with 

incomplete data were addressed; use of crop temporal­

spectral profiles was suggested. 

- An analyst-labeling experiment was conducted to deter­

mine the pattern of analyst-labeling performance and 

attempt to characterize analyst-perceived signatures 

as a function of performance. 

Implications of the reported investigations are discussed for the 

major sources of analyst-interpreter error that were identified in LACIE. 

-Machine Processing Technology for Area Estimation
 

The investigations of machine processing components for area esti­

mation are described in .Section 5 and performance evaluation studies
 

undertaken in the context of Procedure M are presented in Section 6.
 

These lead to statements we can make at three levels -- those related
 

generically to overall area estimation technology, those related to
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components of that technology, and those related to specific techniques
 

employed as components.
 

In addressing issues related to the overall area estimation tech­

nology we find:
 

* Procedure M is a stratified area estimation environment that
 

incorporates state-of-the-art technology in the areas of data preproc­

essing, feature extraction, stratification, sampling and aggregation;
 

Procedure M utilizes a robust statistical framework, incorporates physical
 

understanding of remote sensing of agronomic phenomena, and is implement­

ed in a modular construction that enables monitoring of error propagation,
 

enables analytic error modeling, and facilitates the comparative
 

evaluation of existing and proposed area estimation component technologies.
 

With respect to major components of stratified area estimation
 

technology we find:
 

* Data normalization including, at a minimum, sun angle correc­

tion, atmospheric correction, data screening and sensor calibration, is a
 

crucial preprocessing stage that enables interpretation of data in a
 

frame of reference in which agronomically related phenomena are rela­

tively stable with respect to effects which impact signal value and are
 

external to the crop phenomena.
 

* Stratification proves a useful tool in that it can lead to
 

greater overall efficiency in producing estimates; major consideration
 

should be given to the labeling interface in establishing optimum
 

stratification approaches: the stratification of pixels into field­

like shapes to provide optimum labeling targets, the stratification
 

of these targets into pure-crop and mixed-crop quasi-fields to elimi­

nate labeling errors associated with boundary, edge pixels and pixels
 

in small fields, the stratification of data spectrally to produce homo­

geneous strata to which samples are directed, and the use of physically
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based temporal-spectral strata that would permit, in time, estabishing
 

prior expectations in each stratum with respect to crop content, crop
 

condition, and labeling accuracy; though cost can be incurred in
 

stratification of specific samples , if strata are not adequately
 

homogeneous with respect to the crops being stratified, on the average
 

a net cost is not expected as long as the stratification variables are
 

positively correlated to crop type. Excessive labeling to supervise the
 

stratification process can also lead to a net cost.
 

* The technique utilized for estimation of proportions of crops
 

within a stratum should depend upon the nature of that stratum; greater
 

error can be introduced by utilizing the wrong strategy than by ignoring
 

more difficult strata.
 

o Evaluation of the performance of stratified area estimation
 

entails the use of measures that describe efficiency of individual com­

ponents in providing information to successive components and in propa­

gating errors through the estimation system; stratified area estimation
 

technology lends itself to error modeling that can provide insight into
 

expected performance of the overall system, especially in the interaction
 

of the error associated with labeled samples and its impact on system
 

performance.
 

Related specifically to components and performance evaluation
 

techniques utilized for area estimation in Procedure M, we find:
 

For Components
 

a Landsat 3 signals are attenuated in each band by 12 to 24%
 

from corresponding Landsat 2 signals; however, an affine transformation
 

has been defined that calibrates Landsat 3 to Landsat 2 which will per­

mit the use of technology like XSTAR that was developed for Landsat 2
 

calibration.
 

* There is a cost/benefit to the use of spectral stratification;
 

the benefit is derived in terms of sampling efficiency if homogeneous
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strata are produced; a cost is incurred if the homogeneity is not suf­

ficient to offset difficulty of allocating a fixed sample proportional
 

to the size of the strata.
 

* Statistically based stratification techniques, like tolerance
 

block or unsupervised clustering, are limited in their ability-to con­

sistently produce homogeneous strata of average purity greater than 85%.
 

This limitation may be due to the features being used, the inherent
 

limitations of separability of classes in MSS spectral space, or in the
 

failure of the assumption that statistical distributions are directly
 

correlated to crop classes.
 

* Stratification of pixels as field center and boundary before
 

spectral stratification results in more homogeneous strata than com­

bining the-two, due to the confusion of mixed pixels and edge pixels as
 

classes other than those contributing to their signal composition.
 

* Physically based stratification techniques, like the static
 

spectral/temporal stratifier (SSTS), provide a low cost means for
 

stratification that results in trajectory strata that are consistent
 

from segment to segment, and appear comparable to statistically based
 

strategies in terms of strata homogeneity.
 

* In order to minimize mean-square error:
 

Sampling strategies like Neyman or Bayesian sequential
 

based on expected variation in crop proportion from
 

stratum to stratum are made more feasible by the use
 

of static stratification.
 

Labeling error introduces a variance into the system
 

that should be considered when directing samples to
 

strata.
 

xi
 



1ZERIM
 

* Bias in Procedure M can be reduced by simply sampling the
 

stratum of little blobs; however, analyst labeling error in that stratum
 

may introduce additional mean square error greater than that currently
 

present.
 

a Non-parametric nearest neighbor classification approaches pro­

vide a possible mechanism for extending 'high confidence' analyst
 

labels to other samples; this mechanism can produce 'probability labels'
 

that depend on the spatial and spectral context of the sample.
 

For Performance Evaluation
 

* Through the use of analytical modeling, insight has been gained
 

with respect to the impact of various components of a stratified area
 

estimation procedure on the overall mean-square error of the system;
 

the labeling component, in particular, has been modeled and shown to
 

be significant in determining the system's capability of achieving a
 

specific level of performance in terms of proportion estimation.
 

* Performance measures to be utilized in evaluating stratified
 

area estimation procedures include sample purity, reduction of variance
 

factors (especially the fixed-sample RV) which relate performance to
 

classical statistical measures and, in addition, measures based on in­

formation theory; the latter are promising in that they naturally extend
 

to multiple class problems.
 

As a supporting element for the investigations, a substantial data
 

base of preprocessed Landsat data was prepared and is described in
 

Section 7. Finally, recommendations based on the conducted investiga­

tions are summarized and assembled in Section 8. Together with this
 

Executive Summary, they form a concise account of the 'year's effort
 

and its ramifications.
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PREFACE
 

This report describes part of a comprehensive and continuing pro­

gram of research concerned with advancing the state-of-the-art in
 

remote sensing of the environment from aircraft and satellites. The
 

research is being carried out for NASA's Lyndon B. Johnson Space
 

Center (JSC), Houston, Texas, by the Environmental Research Institute
 

of Michigan (ERIM). The basic objective of this multidisciplinary
 

program is to develop remote sensing as a practical tool to provide
 

the planner and decision-maker with extensive information quickly and
 

economically.
 

Timely information obtained by remote sensing can be important to
 

such people as the farmer, the city planner, the conservationist, and
 

others concerned with problems such as crop yield and disease, urban
 

land studies and development, water pollution, and forest management.
 

The scope of our program includes:
 

1. 	 Extending the understanding of basic processes.
 

2. 	 Discovering new applications, developing advanced remote­

sensing systems, and improving automatic data-processing
 

to extract information in a useful form.
 

3. 	 Assisting in data collection, processing, analysis, and
 

ground-truth verification.
 

The research described herein was performed under NASA Contract
 

NAS9-15476 and covers the period from November 15, 1978 through
 

November 14, 1979. I. Dale Browne/SF3 was the NASA Contract Technical
 

Monitor and Thomas Pendleton/SF3 was the primary NASA Technical Coordi­

nator of the activity. The program was directed at ERIM by Richard
 

R. Legault, Vice President and Head of the Infrared and Optics Division,
 

Quentin A. Holmes, Program Manager, and Robert Horvath, Head of the
 

Analysis Department.
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INTRODUCTION
 

Aerospace remote sensing technology has the potential to provide
 

important contributions to agricultural inventory and assessment acti­

vities of the U.S. Department of Agriculture (USDA), other state and
 

local agencies, and the private sector. Aerial photography has long
 

had a role in operational activities of the USDA. As a result of the
 

Large Area Crop Inventory Experiment (LACIE) [1], the USDA's Crop
 

Condition Assessment Division of the Foreign Agricultural Service has
 

developed a facility for routine use of tandsat data to monitor condi­

tions in major crop production areas [2]. There still remains a sub­

stantial amount of research, development, testing and evaluation, and
 

system design work in order to develop the technology to the point
 

where its full potential can be realized.
 

The research reported here was initiated during the planning of
 

the AgRISTARS Supporting Research Project and was a part of those plans,
 

although this research will stand on its own merit. The benefiting
 

Supporting Research project element is Area Estimation Research.
 

This report addresses several aspects of that development process
 

and reports progress made in increased overall understanding and in
 

advancing technology. Section 2 develops major system concepts for
 

crop inventory and assessment. Then Section 3 further discusses area
 

estimation technology which was the major focus of the contract work
 

and introduces and provides a context for the details which are pre­

sented in the remaining sections, including objective techniques for
 

labeling (Section 4), machine processing "components for area estima­

tion (Section 5), evaluation of area estimation performance (Section
 

6), description of a data base (Section 7), and recommendations
 
(Section 8).
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1.1 GENERAL CONTEXT
 

An agricultural inventory and assessment system belongs tp a broad
 

class of systems which could be used to affect, control, or monitor .the
 

environment. In very general terms, such environmental management sys­

tems consist of several parts--an information-gathering system, a fore­

casting system, a decision-making system, and an action-taking system-­

as discussed in Reference 3.
 

Briefly, an information-gathering system obtains data regarding
 

the current state of the environment, including the results of past
 

actions that affect the environment. A forecasting system requests
 

and obtains information from the information system and, in view of
 

a specific set of planned actions and a likely set of unplanned actions,
 

produces an objective prediction of the future environmental state.
 

The decision-making system hypothesizes a set of planned actions and
 

obtains predictions of the resultant environmental state from the
 

forecasting system. It decides among alternative sets of actions.
 

The action-taking system carries out the planned actions and reports
 

actions as they occur.
 

Because of the long lead times for technology development, it is
 

natural to first develop the information-gathering component of an
 

environmental management system, then the forecasting component, and
 

last of all to create the possibility for-coherent planned action by
 

introducing a decision-making system. In developing the information
 

and forecasting systems, it is wise to consider the characteristics
 

that will be needed when operating in conjunction with a decision­

making system. Notably, these are directivity, cost effectiveness,
 

and objectivity.
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By directivity, we mean an ability to respond to a user's changing
 

information needs.
 

By cost effectiveness, we mean that the usefuulness, accuracy,
 

and timeliness of the estimates are commensurate with the cost of
 

obtaining them. The distribution of system errors must be small
 

enough that the outputs are useful for decision makers, both for regu­

lar predictions of a set of forecasted quantities and for special re­

ports that may be required in a near-real-time mode. This emphasizes
 

a need for a large, quality assured, data base, only a sample of which
 

might be routinely accessed for regular scheduled forecasts.
 

Finally, by objectivity we mean, basically, believability. Some
 

of the procedures which insure objectivity are that the forecasting
 

process is visible to the decision makers in all essential elements,
 

that the forecasts arise from fixed procedures applied to a data base,
 

that the data base be subject to a rigorous quality assurance procedure,
 

that the actual quantities forecasted are quantities that will subse­

quently be known with accuracy significantly better than the forecast
 

accuracy, that the system publishes its estimated error distribution
 

along with its forecasts, and that the system publishes posterior
 

comparisons of its forecasts with the subsequently known forecasted
 

quantities.
 

A summary of types of agricultural information that are potentially
 

extractable from aerospace remote sensing data is presented in Table 1.
 

The first is crop identification which has received a majority of the
 

attention in agricultural studies to date, especially in conjunction
 

with crop area estimation. Next are indications of crop development
 

stage and crop condition which could provide important inputs to yield
 

models. Soils are a topic that have not received very much emphasis
 

to date, but they too have an important effect on yield and productivity.
 

Together, estimates of crop area and crop yield permit estimate of
 

overall crop production, the "bottom line" of agricultural crop
 

inventories.
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TABLE 1. 	POTENTIAL CONTRIBUTIONS OF AEROSPACE REMOTE SENSING
 

TO AGRICULTURAL INVENTORY AND ASSESSMENT
 

* 	 Crop Identification
 

* 	 Crop Development Stage
 

- Planting and Harvesting Progress 

- Key Growth/Development Stages 

* 	 Crop Condition
 

- Vigor, Stress
 

- Ground Cover, LAI
 

- Management Practices
 

- Homogeneity
 

- Episodal Events
 

* 	 -Inputs to Yield Models
 

- Spectral
 

- Meteorological
 

* 	 Soil Characteristics
 

* 	 Crop Area
 

- Total Area Planted, Harvested
 

- Area by Condition Class
 

e 	 Crop Production
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In LACIE, remote sensing provided identification of small grains
 

and subsequent estimates of their planted area. First-order spectral
 

indicators of crop stress were also developed. During LACIE transi­

tion years 1978 and 1979, some research was directed at first-order
 

spectral indicators of crop development and improved spectral indica­

tors of crop stress. Use of these spectral characteristics to improve
 

labeling and adaptation of the technology from wheat and small grains
 

to corn and soybeans was also initiated.
 

The full potential of remote sensing contributions to agricultural
 

inventory and assessment has not yet been realized. There will be im­

provements in sensors (e.g., thematic mapper and meteorological satel­

lites), information extraction techniques, inventory system technology,
 

and in joint use of meteorological and spectral data. In the program
 

planned for AgRISTARS (Agricultural and Resources Inventory Survey
 

Through Aerospace Remote Sensing), this technology will be developed
 

and evaluated in additional geographic regions and for additional crops.
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2 

CROP INVENTORY AND CONDITION ASSESSHENT CONCEPTS
 

This section provides an overall context for Section 3 and following
 

sections which describe the past year's work on the major area estimation
 

components of a crop production estimation system. It discusses general
 

requirements on large-scale, perhaps global production and condition
 

assessment systems based on remotely sensed satellite image data and
 

collateral data; it also indicates our perception of the technical efforts
 

which are needed to bring such systems into being. In describing these
 

concepts, we are not excluding the possibility that a particular user
 

may wish to focus on some specific system aspects or route of development.
 

Rather, we are attempting to draw out conclusions that will be valid in
 

a generic sense.
 

2.1 GENERAL SYSTEM CHARACTERISTICS
 

Any information system ought to satisfy its users in the three
 

general characteristics mentioned earlier: directivity, cost effective­

ness, and objectivity. Directivity means that the system has a range of
 

functions satisfactory to the user's needs and that he can ask for any of
 

those functions to be executed and receive information back in a timely
 

manner.
 

Cost effectiveness means that a user on the average receives infor­

mation more valuable than the cost of producing it and that the cost is
 

lower than the cost of the same information from a competing source. In
 

this context, more accurate information is generally more valuable, and
 

the user has to take accuracy into account in computing value.
 

Objectivity means that the system accurately states its error
 

bounds, i.e., provides reliable estimates of its own accuracy. Without
 

this characteristic, the user cannot determine the value of the infor­

mation he receives, and in fact cannot use the estimates in a rational
 

manner.
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These generic attributes, taken in context with the technological
 

possibilities we can see over the next ten years,imply to us some more
 

specific system characteristics and high priority development issues.
 

Table 2 summarizes the detailed discussion which follows.
 

2.1.1 DIRECTIVITY
 

Directivity implies a command structure to the system. The various
 

likely system functions will rest upon the use of common system compo-"
 

nents, used in a different way for each application. For example,
 

qualitative condition assessment may use imagery and collateral weather
 

data in a mode in which certain general characteristics (e.g., Greenness)
 

are extracted automatically while an analyst identifies other charac­

teristics (e.g., low reservoirs). The same imagery, collateral data,
 

and analyst comments might be used as priors in an area estimation
 

subsystem. As another example, the same subsystem that lays on samples
 

for producing area estimates may be used to lay on samples for extract­

ing spectral inputs to a yield estimate. Thus directivity implies a
 

command structure which can link together various subsystems in various
 

configurations to respond to a variety of user demands.
 

2.1.2 COST EFFECTIVENESS
 

Topics under this heading include sampling, measurement accuracy,
 

and timeliness.
 

The system requirement which most obviously arises from cost con­

sideration is the requirement for sampling. We do not expect that
 

systems arising from the current and next generation sensor and data
 

handling technology (i.e., systems operational in the 1985 to 1995 time
 

frame) can be cost effective without sampling being an integral part of
 

system design and operation. The subject of sampling may be organized
 

in various ways as indicated in Table 3. Each "cut" provides some
 

different insight into the application in remote sensing based systems.
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TABLE 2. INVENTORY AND CONDITION ASSESSMENT LONG RANGE
 
GOALS AND ESSENTIAL ELEMENTS
 

" 	The long-term goal is a high degree of:
 

- directivity
 

- cost effectiveness
 

- objectivity
 

consistent with the basic information sources available at a
 
particular point in time.
 

" 	Jointly, these goals imply a modular system whose essential
 
elements are:
 

- command structure
 

- sampling
 

- measurement
 

- aggregation
 

- accuracy assessment
 

operating upon
 

- data base derived from currently available sensors
 

within an environment provided by
 

- supporting systems
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TABLE 3. DEVELOPMENT OF SAMPLING VIEWED FROM VARIOUS ASPECTS
 

" Development and Evaluation of
 

- Stratified sampling
 

- Multistage sampling
 

- Sequential sampling
 

* Incorporation of Auxiliary Information
 

- Prior year estimates
 

- Current year weather and other collateral information
 

* Multiple Aspect Sampling and Aggregation
 

- Area, yield, production
 

- Multiple crops
 

- Multiyear
 

- Multisensor
 

* Flexible Sampling Strategies
 

- Full frame based
 

- Automatic resampling when samples are lost due to
 
clouds, etc.
 

- Automatic resampling when self assessment indicates
 
need for more samples to meet an accuracy goal
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Sampling may be appropriate at any level (local/global) in the system.
 

In general, wherever sampling is employed the pattern is the same:
 

Sampling (select units from a sample frame)
 

Measurement (for selected units)
 

Aggregation (estimate for sample frame)
 

The nesting of this pattern from the global to the local condition con­

stitutes hierarchical or multistage sampling schemes as illustrated in
 

Figure 1.
 

The age or timeliness of an estimate also affects the value of
 

information and hence cost effectiveness. The need for a timely esti­

mate suggests sequential sampling schemes in which each sequential stage
 

relies on information obtained in the previous stage to establish how
 

many additional samples are needed,to converge uponan estimate within
 

given error bounds. Such estimates would not only be achieved with
 

minimal sampling, they would also be produced in minimal time. At every
 

stage, hierarchical or multistage sampling schemes may be unbiased with
 

respect to the estimates from the next lowest stage. Estimation error
 

at the final stage drives the errors of the entire system. It is not
 

conceptually reasonable to attempt to design an unbiased sampling scheme
 

which in any way "corrects for" or is "robust against" measurement errors
 

whose statistical properties are unknown.
 

Hence the measurement errors at the final (most local) point -in the
 

system are a critical element in cost effectiveness. If there are systema­

tic errors in measurement, no amount of sampling will, by itself, make the
 

derived information unbiased and thus of more value. If there are large
 

random errors in measurement, the sampling cost must be increased to obtain
 

more valuable estimates,,but more importantly, the number of contol (ground
 

truth) samples must be large in order to place bounds on the unknown bias
 

of the measurements. (Without such bounds, the system is not objective in
 

the sense defined here.) Hence, measurement accuracy is identified as a
 

single highest priority issue in system development. This is reflected in
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Section 3 and following in which the problem of objective labeling is
 

given a dominant role. Table 4 summarizes issues of measurement accu­

racy for area estimation which will appear in discussion throughout
 

this report.
 

2.1.3 OBJECTIVITY
 

Objectivity is measured by the honesty with which a system identi­

fies its errors. Objectivity is only achieved through a thorough assess­

ment of the sources of error in a system, i.e., through a validated sys­

tem performance model which allows the statement of the estimated error
 

distribution associated with each primary estimate. If the primary esti­

mate is a vector (e.g., area or production estimates for several crops),
 

then the estimated joint error distribution should be stated (e.g., the
 

covariance of the crop estimates). The performance model should be
 

modular in the same sense that the system of making estimates is modu­

lar, so that separate performance estimates can be made for each com­

ponent and for the system as a whole. Component performance models can
 

then be validated on a component-by-component basis during system
 

development.
 

Component and system performance models have two important addi­

tional roles during system development, as will be discussed later.
 

2.2 DEVELOPMENT CONCEPTS
 

Given overall system criteria and a general system concept which
 

includes major system components, the problem of detailed definition
 

of components arises. While the major component structure may appear
 

reasonably straightforward, the detailed definition involves considera­

tion of a large number of possibilities for each major component, as is
 

suggested by Tables 2 and 3 which outline some of the possibilities for
 

area estimation and sampling, respectively.
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TABLE 4. SCOPE OF REQUIRED DEVELOPMENTS IN MEASUREMENT ACCURACY
 

" Preprocessing Data Normalization
 

" Feature Extraction
 

- Physically based through models and supporting field
 
research
 

- Statistically based through research in classification
 

* Estimation Techniques
 

- Development of classifier technology
 

- Development of better analyst/machine interfaces
 

- Development of direct proportion estimation techniques
 

- Development of signature characterization techniques
 

- Association of collateral information in any of the
 
above
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How will we choose among the multiple possibilities for system
 

development? This is the challenge of controlled development. It
 

seems to us that a useful approach is to seek stepwise improvement
 

for each component by developing and evaluating alternatives. Periodi­

cally the developed components ought to be brought together and evalu­

ated as a system. This could be accomplished through a series of over­

lapping Technology Phases as shown in Figure 2, each encompassing directed
 

research, component development, component evaluation, system integra­

tion and system evaluation. In this approach there will be opportunity
 

for the accumulation of experience in the technical disciplines associ­

ated with each component. System integration and pilot type demonstra­

tions periodically provide beneficial exposure to the harsher aspects
 

of reality. (Such an approach is implicit in the AgRISTARS plan for the
 

Foreign Commodity Production Forecasting Project which envisions an over­

lapping series of pilot tests which differ in the countries of application,
 

the crops of interest, and the technology and sensor level to be used.)
 

In order to keep track of what has actually been learned and accom­

plished, and in order to evaluate and choose between alternative components
 

during development, a system and component parformance model is essential.
 

Each developed component ought to have an'appropriate performance model
 

associated with it; and it ought to be the responsibility of the com­

ponent developer to provide the form of that model (since the developer
 

has, presumably, the best insight into the expected behavior and error
 

sources of the component). Test and evaluation ought to focus both on
 

evaluating a component and validating the performance model for that
 

componeht.
 

Each component may have several performance measures, appropriate
 

to the type and the level of that component in an overall system. The
 

evaluation of a component ultimately is with respect to its marginal
 

impact on system performance. Hence, early in the development cycle
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there needs to be a baseline system performance model, with all com­

ponents in place, in order to evaluate development alternatives for any
 

single component.
 

The actual conduct of a complex development strategy such as that
 

indicated above would place heavy demands on the underlying data manage­

ment and computational support system. We will not discuss this topic,
 

but we note that emphasis in computation should be on a modular, flexible,
 

processing system which yet has the capability of processing relatively
 

large amounts of data in order to conduct system-scale tests. ERII has
 

developed the QLINE processing system which combines these desirable
 

features.
 

The above discussion is summarized in the following statements:
 

- Considerations about learning and accumulation of experience 

suggest a series of system implementations (technology phases), 

each one building on aspects of the previous ones. 

- Within a technology phase, certain types of development may 

duplicate functions or conflict with each other -- hence they 

must be evaluated as alternatives. 

- With limited development resources, priorities must be set
 

to establish which of the multiple possible paths of growth
 

will actually be followed.
 

- Component technologies can grow and develop independently -­

but their state of development can only be evaluated in a
 

system context.
 

- Performance modeling and configuration control are essential
 

organizational elements to maintain understanding of what is
 

developed.
 

- All system elements must be present in embryo in first imple­

mentation.
 

- A flexible modular computational and data management system is
 

needed to support multiple and changing implementations.
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2.3 TECHNICAL ISSUES
 

For three of the technical topics noted in the above discussion
 

(Sections 2.1 and 2.2), we have identified technical issues. These topics
 

are: area estimation, sampling, and performance modeling.
 

2.3.1 AREA ESTIMATION
 

Key technical issues which arise from consideration of the area
 

estimation problem are:
 

* Multitemporal image registration
 

* Signiature characterization
 

a Mixed and boundary pixels
 

-oAnalyst/machine interfaces
 

* Error characterization for both analyst
 

and machine processes.
 

All of these.topics except multitemporal registration are discussed in
 

later sections of this report. Here we will say a few words about multi­

temporal registration.
 

Accurate multitemporal registration will be essential in a final
 

operational system, since multitemporal image data are required in order
 

to obtain reasonable crop classification accuracy with Landsat data.
 

However, the accuracy on multitemporal registration need not be as strin­

gent during development activities. For instance, data from field
 

centers should be adequate for the development of signature characterization
 

technology. Similarly, while the final solution of the mixed and boundary
 

pixel problem will require accurate multitemporal registration, initial
 

developments might proceed with unitemporal data or data registered with
 

current levels of accuracy. Hence multitemporal registration can develop
 

for some time as an independent topic.
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Considerations of the need for flexible sequential sampling stra­

tegies suggest a three-step approach for acquisition of multitemporal
 

registered images (sample segments). In Step 1, a full-frame fitting
 

procedure would be carried out and the coefficients of the fit would be
 

stored. In Step 2, the raw Landsat data (A-Tapes) would be accessed in
 

response to a data request. The selected multitemporal set of images
 

would be closely (though not precisely) matched by utilizing knowledge
 

of 	the fitting coefficients developed in Step 1. The images would then
 

be screened and a decision made as to their utility. If a sample segment
 

passed the screening tests, then Step 3 would take place. In Step 3,
 

the image data would be used to make local adjustments to the registration
 

coefficients, the data would be spatially resampled, and the desired set
 

of registered multitemporal images would be produced. The major advantage
 

of this approach is that segment selection could be carried out prior to
 

the highly accurate (and costly) final registration and resampling.
 

2.3.2 SAMPLING
 

Key technical issues which arise from consideration of the sampling
 

problem are
 

" 	Multiyear sampling
 

" 	Sequential sampling (both at the global and within
 

segment levels)
 

* 	Use of collateral and analyst inputs to the strati­

fication process
 

This report discusses the second and third items at the segment level.
 

On-going and planned efforts by NASA and its supporting research contractors
 

deal with the first two issues at broader levels.
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2.3.3 PERFORMANCE MODELING
 

Key technical issues which arise from considerations of performance
 

modeling are:
 

* System performance
 

* Sampling/aggregation component performance
 

* Measurement performance
 

Sampling/measurement/aggregation are discussed in this report at the
 

segment level only in Section 6.1.
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3 

AREA ESTIMATION TECHNOLOGY
 

Area estimation is the component of overall crop inventory technology
 

that is the focus of investigation in this report. In this section, we
 

present several prevalent approaches to crop area estimation based upon
 

remote sensing, emphasizing a generic description of stratified area esti­

mation technology. Then, the related key technical issues addressed in
 

this report are introduced.
 

Common to the approaches is a need for some type of representation
 

of the classes of interest. In the most general case, the area estimation
 

technology has knowledge of ground cover or crop vegetation canopy 'signature
 

Signatures are ultimately a functional description of observed features that
 

are unique to, or at least descriptive of, the canopies under varying condi­

tions. Often the term 'signature' has been used in a restrictive sense to
 

describe the means and covariance matrix computed from labeled spectral
 

observations of a canopy. Surely these are estimators of true signatures
 

under the assumption that spectral data from crop canopies are either
 

normally distributed statistically or can be effectively described as sums
 

of normal distributions; complete signatures must include collateral
 

variables as well. Crop area estimation approaches can also use attributes
 

or 'labels' assigned to samples drawn from the area of interest.
 

We shall discuss, in this section, a number of machine-oriented tech­

niques to utilize labeled samples or machine signatures to produce esti­

mates of the areas of specific canopies of interest.
 

3.1 MACHINE-ORIENTED APPROACHES TO CROP AREA ESTIMATION
 

A most accurate way to estimate the ground area from which a particu­

lar crop of interest will be harvested would require selecting a principle
 

sampling unit, say the farmer's field, and exhaustively labeling each
 

field from ground observations. Some registered remotely sensed data
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source, like aerial photography or a multispectral sensor, could be used
 

for purposes of efficiency to aggregate the area of each crop of interest.
 

Certainly, when one's concern is for estimates over large areas, even on
 

the global scale, the approach of total enumeration is not feasible. Hence,
 

a number of approaches are utilized, usually with sampling, to reduce the
 

costs of inventory systems to be within budgetary constraints and at the
 

same time maintain an accuracy that is acceptable. Three approaches to
 

making estimates are: (1) classifiers, (2) label-based stratified area
 

estimators, and (3) signature-based proportion estimators. A brief discussion
 

of each approach ensues.
 

3.1.1 CLASSIFIERS FOR AREA ESTIMATION WITH REMOTE SENSING
 

A traditional approach to area estimation with remote sensing is to
 

utilize classifiers prevalent in the literature of pattern recognition.
 

The basic process is as follows:
 

(1) Select a sample set that is designated 'training'. 

(2) Based on this sample, form a functional description, usually 

Gaussian, of each crop of interest. 

(3) Select a decision rule or discriminant that would best 

separate the classes of interest. 

(4) Use the sample to train the discriminant and classify all 

sensor signals with it. 

(5) Aggregate the result to produce estimates.
 

Early in the application of this approach, discriminants based on
 

quadratic or-simple linear rules were applied to spectral data. Often
 

promising results were achieved; especially when the training set or
 

procedures could be tuned to the need. An early experience of the large­

scale application of this approach was the Crop Inventory Technology
 

Assessment from Remote Sensing (CITARS) experiment [4]. It was learned
 

that, when subjected to the rigor of standardized requirements. classi­

fiaction approaches lacked consistency and did" not seem to live up to the
 

22
 



A2IRIM 

promise expected of them. Early in the Large Area Crop Inventory Experi­

ment (LACIE), the problem of defining adequate training for a classifier
 

became apparent. The need for estimates with bias and variance within
 

measurable tolerances of error led to emphasis on the statistical rigor
 

of the estimation proczdure. This resulted in the stratified area
 

estimation approach embodied in Procedure 1 [1].
 

This is not to say that estimation approaches based on classifiers
 

are without merit. Indeed, the efficiency associated with a relatively
 

small training requirement and the fact that classification of each
 

signal reduces sampling error to a negligible amount is desirable.
 

Research in the area of classifiers has begun to uncover new potential.
 

A recent study by S. Wheeler [5] has illustrated a means of estimating
 

the bias associated with a simple Fisher linear discriminant. Work by
 

H. Horwitz, reported in Appendix N, illustrates a similar result using
 

a nonparametric classifier. In addition, approaches-utilizing spatial
 

information are being developed, as well as strategies utilizing multi­

temporal meagurements in unique ways.
 

3.1.2 STRATIFIED AREA ESTIMATIONS BASED ON LABELED SAMPLES
 

An effort to lend statistical rigor to crop area estimation in
 

LACIE led to the development of Procedure 1 [1], a stratified area
 

estimation (SAE) approach used within sample segments. The SAE approach
 

was designed to provide estimates targeted to stated precisions in a
 

consistent manner. More will be said in Section 3.2 about SAE, since
 

it forms a focus of activities reported herein. 
 -

Stratified area estimation is based on-statistical theory utilizing
 

stratified random sampling as a framework for estimation of crop acreage.
 

Samples are allocated, labeled, and estimates therefrom aggregated. The
 

sample size and the accuracy with which they are labeled will drive the
 

precision and bias of the system.
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3.1.3 PROPORTION ESTIMATORS BASED ON SIGNATURES
 

A unique approach to the estimation of crop acreage is based on
 

utilizing crop signatures to produce estimates directly of crop propor­

tion as a function of the underlying distributions of spectral data.
 

Two 	approaches under development include UHMLE [6] and CLASSY [7].
 

The UHNLE proportion estimator is an iterative approach utilizing maximum
 

likelihood techniques and signatures based on training data. With each
 

iteration of the procedure, prior probabilities associated with Gaussian
 

representations of the crop signatures are updated. It is expected that
 

successive estimates of these priors converge to a stable result. Sensi­

tivity of the procedure to initial signatures is a major concern. Current
 

studies [8] are examining use of spatial features to establish more
 

accurate signature representations.
 

CLASSY extends the UHMLE concept by incorporating a statistical
 

representation of distributions that incorporates four moments. A sophis­

ticated split/combine algorithm covers the underlying distributions in
 

a manner unmatched by any other approach.
 

It remains to~be seen whether sophisticated statistical approaches
 

can uncover distributions that are truly correlated with classes of
 

interest, and whether the need for accurate signature representation
 

can be adequately met.
 

3.2 	 STRATIFIED AREA ESTIMATORS
 

The use of stratified area estimators for crop acreage inventory
 

was initiated in LACIE with the development of Procedure 1. Major
 

developments in the technology to date can be represented by three
 

phases:
 

(1) 	The introduction of a robust statistical framework to crop
 

acreage inventory.
 

24
 



ERIM
 

(2) 'The incorporation of physical understanding of phenomena
 

related to crops, crop practices, and remote sensor
 

conditions.
 

(3) 	Developments toward greater efficiency in terms of pre­

cision and cost.
 

With Procedure 1, one first finds a concern with sampling as a means
 

to provide estimates at a given precision and to identify sources of error.
 

The development at ERIM of Procedure B [9] in the same time frame
 

as Procedure 1, and later Procedure M [3], introduced, to a statistical
 

framework closely related to that of Procedure 1, a physical understand­

ing of (1) sensor response to atmospheric and solar conditions (the use
 

of haze and sun angle normalization), (2) sensor response to reflectance
 

phenomena (the use of the Tasseled Cap and other multitemporally-based
 

features), (3) agronomic cropping practices (the use of fields as basic
 

sampling units and determination of approximate planting dates), and
 

(4) crop phenomenology and growing conditions (the use of green develop­

ment trajectories and the effects of stress and soil color upon those
 

trajectories). These elements are described later in this report.
 

The third area of devel6pment is in greater efficiency in terms of
 

precision and cost. Advanced developments in alternative procedures
 

based on Procedure 1 have resulted in the use of advanced sampling strat­

egies that require fewer samples for a given level of efficiency. A
 

multisegment approach, wherein segments are grouped and samples are
 

selected from a subset of segments, is an optional capability incorporated
 

within Procedure M.
 

Stratified area estimation approaches to crop inventory provide an
 

excellent baseline from which area estimation technology as a whole can
 

grow. An approach well founded on statistical principles, such as'SAE,
 

permits a tracking of errors that was found difficult in more traditional
 

classifier approaches. One of the important results of this capability
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was a confirmation of the importance of accurate labels and the complexi­

ties associated with the labeling process. In the next two subsections,
 

we shall briefly describe the basic components of a stratified area esti­

mation strategy and issues related to its use.
 

3.2.1 COMPONENTS OF AN SAE TECHNOLOGY
 

In the view of this report, stratified estimates of crop acreage
 

within a sample segment are functionally structured in the following
 

manner:
 

e. System Tasking: A specific configuration is defined to respond
 

to a specific set of information needs, i.e., the SAE tech­

nology is parameterized.
 

" 	Data Preparation: A resource bank of data is formed and pre­

processed in a manner that facilitates information extraction.
 

* 	Feature Extraction: Information relevant to the need is ex­

tracted from the data.
 

* 	Stratification: Data are grouped into strata that are homo­

geneous with respect to the crop of interest.
 

* 	Sample Allocation and Selection: Acreage estimates of each
 

stratum will be made based on samples drawn in some efficient,
 

unbiased manner.
 

* 	Attribute Assignment: Sampled data entities are described in a
 

meaningful way, such as labels of crop type and/or condition.
 

* 	Aggregation: The assigned attributes are used to generate
 

stratum-level area estimates that in turn are aggregated to
 

provide segment-level estimates.
 

Procedures 1, 1A, and M can all be described in the context of this generic
 

definition of stratified area estimation approaches. This definition will
 

prove useful in organizing and addressing key issues of this report.
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3.2.2 ISSUES RELATED TO SAE
 

Four issues are the key to the continued successful development of
 

SAE technology. These are: (1) improved techniques for attribute assign­

ment, i.e., labeling, (2) greater efficiency, (3) an understanding of -the
 

interactions between label accuracy and overall system accuracy, and (4) a
 

model for understanding or predicting the expected performance of the
 

overall system. The remainder of this report addresses these key issues.
 

Section 4 presents research in the area of objective labeling to
 

evaluate automatic and analyst-based technology for attribute assignment.
 

Section 5 discusses issues related to stratification, sampling, and
 

estimation that considers overall system efficiency.
 

Section 6 presents both analytic and empirical considerations relevant
 

to developing a generic error model appropriate to SAE technology and
 

specific to Procedure M.
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4 

OBJECTIVE TECHNIQUES FOR LABELING
 

The association of ground cover class labels with selected samples
 

of remotely sensed data is an important step in crop inventory applica­

tions. Results of the Large Area Crop Inventory Experiment (LACIE)
 

showed that mislabeling of training data was the most important source
 

of error in estimates of wheat and small grain acreages [10]. This
 

should not be too surprising, given the fact that LACIE addressed the
 

problem of estimation in foreign areas and therefore constrained itself
 

to use'no direct ground observations of crop type (usually called ground
 

truth) in its labeling process.* This constraint, together with the
 

performance results obtained, points to a need for improved labeling
 

techniques and procedures to minimize errors at this critical step of
 

the area estimation process.
 

The overall objective of the work reported in this section is to
 

develop a technology to accurately and objectively label scene elements,
 

based on remotely sensed and collateral data. These initial efforts
 

have focussed on wheat and small grains but the general approach should
 

be extendable to other crops as well.
 

In many respects, the operations of the labeling and classifica­

tion are similar. Both result in a cover-class or crop label being
 

associated with each element considered, but one can draw a few dis­

tinctions. First, labeling is generally more labor intensive than
 

classification. Therefore, labeling is usually performed on a subset
 

of the scene elements whereas classification is more likely to be per­

formed on all or a large fraction of them. Most important, labeling
 

decisions are based primarily, if not completely, on pre-existing deci­

sion criteria, whereas classification decisions are based on statisti­

cal parameters and measures derived from labeled but localized training
 

samples.
 
*Ground data were, however, used to assess accuracy of performance and
 
for research and development activities.
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Several hypothetical examples can help illustrate these distinc­

tions between labeling and classification. An obvious but clear ex­

ample is the use of ground observations of crop type to label samples
 

in Landsat data which are then used to train a spectral classifier
 

and classify the remaining elements in the scene as to their crop
 

type. The ground observer's decision criteria are well established
 

before the field visits are made. The labels here happen to be based
 

on information distinctly different and separate from the Landsat
 

data characteristics used to assign the other scene elements to the
 

defined classes. A ground visit to each scene element would be more
 

costly than the classification operations performed on the Landsat
 

data.
 

As a second example, consider crop labels assigned to samples
 

by an analyst-interpreter using detailed knowledge of the site, multi­

date Landsat imagery, numerical information extracted from the data,
 

experience in interpreting Landsat imagery and data analysis, and a
 

wide variety of collateral data, such as historical information on
 

local agricultural practices, current-year weather, and knowledge of
 

prior-year crop acreages in the site. These samples can then define
 

a spectral classification rule or be otherwise used to extend the
 

label information to the remainder of the scene. Here, the label
 

assignment is largely based on the Landsat data. However, the analyst"
 

interpreter's interpretation experience and training should have had
 

in place some rather well established'decision criteria which could be
 

fine tuned to those conditions indicated by the collateral data and
 

deductions gleaned from the Landsat data. Presumably, the classifier
 

provides a cost-effective and efficient method of extending the label
 

information to the remainder of the scene.
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Thirdly, the labeling may be performed primarily by the machine
 

but still require inputs from, and interaction with, an analyst-interpreter
 

who integrates collateral information and makes specific judgements
 

about the overall site characteristics and conditions at computer­

specified training locations.
 

Finally, consider a purely machine labeling operation. The com­

puter accepts the Landsat data and digitized collateral data describing
 

current-year conditions, preferably at a segment or field level. Using
 

this to index a stored bank of data and relationships between historical
 

agronomic data, Landsat data for various crop types, and associated col­

lateral data from prior years and a variety of sites, a probabilistic
 

multiclass label is assigned to each observation. Since the relation­

ships are pre-defined in the data bank and its functional relationships,
 

a labeling decision can be made directly for each scene element, without
 

the need to resort to training and classification, unless dictated by
 

cost 	considerations.
 

The above examples illustrate the wide range of labeling situations
 

and requirements that may exist or evolve as technology develops.
 

4.1 	BACKGROUND
 

In LACIE, labeling within 5x6-mile segments was performed by
 

analyst-interpreters using false-color images from multiple acquisi­

tions of Landsat data throughout the growing.season as their primary
 

source of identification information. Collateral data in the form of
 

topographic maps, weather, and historical agridultural statistics (e.g.,
 

at a county or crop-reporting-district level), and historical crop
 

calendars were also available. Throughout the three phases of LACIE,
 

the amount and quality of collateral data improved. In Phase III,
 

displays of numerical information extracted from Landsat digital data
 

found limited use by analyst-interpreters and selected full-frame
 

Landsat images were available to provide a broad geographical per­

spective for interpreting the segment data.
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During Phases I and II, analyst-interpreters were required to
 

select, delineate, and then label a sample of fields that was supposed
 

to span the range of spectral variability in each segment. For Phase
 

III, Procedure 1 was developed and used. With Procedure 1, analysts
 

label "dots", that is, individual pixels located at intersections of
 

a ten-line-by-ten-column grid superimposed on the segment. Two samples
 

of these dots are labeled, Type 1 dots and Type 2 dots. All labeled
 

Type 1 dots lie away from field edges and boundaries, in the analyst­

interpreters judgement, while Type 2 dots can fall on edges or bounda­

ries as wellas in field centers. Type 1 dots are used to label clus­

ters while Type 2 dots are used for bias correction, i.e., to form a
 

stratified area estimate as described earlier in Section 3.
 

Accuracy assessment analysis of LACIE Phase III results [10] iden­

tified four sources of labeling error. The first was "abnormal signa­

tures" which refers to fields that did not follow the temporal sequence
 

expected for their crop type under conditions believed by the analyst
 

to be occurring in the segment. Boundary and edge pixels were another
 

major source of error for Type 2 dots; although more common in strip­

farming areas, they can be plentiful in other areas as well. A third
 

source of error was inadequate acquisition history; when one or more
 

key acquisitions were missing, large errors did result on occasion.
 

Other types of errors included clerical errors and inconsistent label­

ing of pixels having the same temporal sequence in the same segment.
 

One particularly difficult discrimination problem for analysts was
 

distinguishing spring wheat from barley and other spring small grains.
 

Image interpretation is a complex process that depends on several
 

factors: (1) the interpreter's training, background, and experience,
 

(2) the extent to which collateral and supporting image data place the
 

interpreter in the proper context, (3) the number of characteristics or
 

features that are deducible from the available data for each scene
 

element to be identified and/or described, and (4) the detection or
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definition of those labeling targets. These factors, as well as the
 

labeling difficulties found in LACIE, must be addressed in the develop­

ment of improved procedures and techniques.
 

Several research and development activities during LACIE and sub­

sequently during LACIE Transition have been addressing many of the above
 

labeling problems. At ERIM, as reported last year [3,,11], three
 

aspects were addressed. First, an overall-area-estimation system
 

framework was developed (see Section 5). Called Procedure M, it in­

cludes a sequence of modules to condition, stratify, and sample the
 

data and produce estimates. From the labeling standpoint, its major
 

differences from Procedure 1 are its preprocessing operations which
 

stabilize and transform the data and its computer definition of quasi­

field shapes for labeling. The second aspect addressed was that of im­

proved color products for use in labeling by analyst-interpreters. The
 

third aspect addressed at ERIM was a machine labeler for discriminating
 

between spring wheat and barley. It features a crop-calendar shift
 

calculation based on the temporal profile of a vegetation-indicating
 

variable derived from Landsat, i.e., the Greenness variable of the
 

Tasseled-Cap Transformation [12, 13]. This labeler was tested on ground­

truth-labeled (small grain vs. non-small grain) quasi-fields. While
 

performing well on conditions similar to those used in its development,
 

needs for refinement to handle other conditions and for testing with
 

analyst-interpreter grain vs. non-grain labels were identified.
 

At JSC, development of the LIST (Label Identification from Statis­

tical Tabulation) procedure was carried out [14]. In this procedure,
 

the machine makes the labeling decision utilizing analyst inputs to­

gether with machine-derived variables. The key AI questions and machine
 

variables were determined through stepwise regression analyses. The
 

questions answered by the analyst-interpreter about each selected dot
 

are: (a) Is the pixel clearly in a non-agricultural area? (b) Is
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the pixel registered in all Landsat acquisitions used? (c) Is the
 

pixel a mixed pixel? (d) Is this an anomalous pixel (with respect
 

to others in the field)? (e) What indication of vegetation canopy
 

density and condition is present on the imagery for each date (one
 

of six categories)? The machine computes a Green Number* and a
 

Brightness for each date as well as multitemporal greenness image
 

eigenvector components [14], compares them to expected patterns as
 

a function of Robertson biostage for wheat, and makes its decision
 

using both the analyst-interpreter and the machine inputs.
 

Two other related studies were pursued at JSC. First, as a
 

segment-level spectral indicator of drought stress, the Green Index
 

Number (GIN) was developed and successfully tested in the U.S. Great
 

Plains [16]. Second, the importance of crop calendar differences and
 

time profiles was identified and pursued in a machine classification
 

context [15]; performance comparable to analyst labeling was achieved
 

in initial tests.
 

At the University of California at Berkeley (UCB), a "delta
 

function" stratification procedure was developed to assist analysts
 

[17]. This procedure stratifies unsupervised Landsat spectral clus­

ters according to the temporal pattern observed in a quantized form
 

of the ratio of two Landsat bands, MSS7/MSS5, which is highly corre­

lated to vegetative development. The quantization is primarily at the
 

level of vegetation vs. no vegetation on each date. Estimates of vege­

tation cover density also are utilized by analysts.
 

*Note that "Green Number" [15] is similar to but not identical to
 
"Greenness" which results from application of the Tasseled-Cap trans­
formation [12].
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4.2 APPROACH
 

As illustrated by the examples at the beginning of Section 4,
 

labeling processes could run the gamut from a purely manual function
 

to a purely machine (i.e., computer) function. In LACIE, labeling was
 

primarily manual with some machine assistance. Purely machine techni­

ques appear to be at least several years away, so our intent is to con­

centrate on optimizing the balance between man and machine, with the
 

machine being asked to do as much as it can do acceptably well. Another
 

key focus is making maximum use of the multidate aspects of Landsat and
 

collateral data.
 

The approach being taken is an iterative process involving four
 

types of activities. The first is feature definition based on relation­

ships between observable spectral characteristics of crops and factors
 

that affect these observables. An integral part of feature definition,
 

then, is analysis of crop physiological, agronomic, and physical char­

acteristics and relevant collateral data to obtain a better understand­

ing of" those relationships. The second type of activity is feature
 

extraction. Features are derived and extracted manually or by machine
 

from spectral and collateral data and, ideally, enhance or simplify the
 

identification and discrimination of crops. The third activity is char­

acterizing, for each given crop, the statistical-properties and physical
 

relationships of features and interactions between them. This we call
 

signature characterization. Finally, there is procedure development,
 

that is, the utilization of crop signature characterizations to define
 

(preferably objective) rules for assigning crop labels based on ob­

served features. These rules must be incorporated into labeling proce­

dures that can be implemented, tested, and evaluated for use in area
 

estimation systems.
 

During this first year, efforts have been directed mainly at
 

greater understanding of features, analyst-interpreter functions, and
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machine-related functions and at developing tools for increasing this
 

understanding.
 

4.3 GENERAL DISCUSSION OF FEATURES
 

Features are data properties or characteristics that help to detect,
 

assess the condition of, and distinguish between the various crop types
 

and cover classes present in remotely sensed data. When two crops have
 

sufficiently different values for a given feature or set of features,
 

they can be distinguished from one another. However, statistical dis­

criminability is not sufficient. To be truly useful in a labeling con­

text, features must also be relateable in some predictable manner to
 

inherent physical, physiological, or agronomic characteristics of
 

classes of interest. "Features" as used in this report, imply such
 

a relationship.
 

Remotely sensed data provide three basic dimensions for feature
 

building--spatial, spectral, and temporal. Features may relate to
 

individual pixels, individual fields, collections of pixels or fields,
 

or entire segments. In addition, collateral data may provide addi­

tional information which allows for conditional interpretation of a
 

particular feature to assist in discrimination and identification.
 

Feature building from remote sensing data and collateral data is
 

discussed in Section 4.3.1. Section 4.3.2 then discusses some of the
 

relationships of features to agronomic and physiological characteris­

tics. Next, methods of extracting features from available data and
 

potential uses are discussed in Section 4.3.3.
 

4.3.1 TYPES OF FEATURES
 

The field pattern in agricultural areas is the most obvious spa­

tial feature which can be used to detect and determine field boundaries,
 

fields being very important entities for agricultural inventory and
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and condition assessment. The field pattern includes size, shape, and
 

texture information, as well as a spatial context for interpretation.
 

As noted earlier, LACIE analyst-interpreters delineated and labeled
 

fields on imagery during Phases 1 and 2, but only had to label indivi­

dual dots in Phase 2. Procedure M, on the other hand, incorporates a
 

machine operation to delineate quasi-fields for labeling.
 

Spectral features for individual pixels or fields are the most
 

important features for crop identification and begin with the spectral
 

channels of the sensor. In LACIE, the key information for analyst­

interpreter labeling was carried in the colors of film imagery, i.e.,
 

representing information in three of the four Landsat bands, and in
 

numerical and graphical displays. In computer classification, all
 

available spectral channels are commonly used to extend training
 

labels to other parts of the scene. The Tasseled-Cap Transformation,
 

on the other hand, defines new features which are linear combinations
 

of the Landsat channels and offer advantages in dimensionality reduction
 

and physical interpretability. Another type of spectral feature is a
 

segment-level indicator such as the previously referenced Green Index
 

Number indicator of drought stress.
 

We note that, whereas the basic crop'information in Landsat spec­

tral data derives from relatively stable scene reflectance properties,
 

the actual observed data are susceptible to changes caused by environ­

mental and observational effects and properties of the display medium.
 

For example, atmospheric conditions and observation angles may differ
 

from location to location and day to day, and image colors may depend
 

on scene content. Normalizing transformations or features that are
 

insensitive to such variations are therefore desirable.
 

The 18-day (nine-day with two satellites) coverage cycle of
 

Landsat opens up the temporal dimension for feature definition. Crop
 

phenology is a key characteristic which is and can be used to improve
 

identification and discrimination. With multiple acquisition dates,
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one can establish or fit temporal-spectral profiles or trajectories to
 

the data and extract new features. One useful feature is the time
 

shift of the profile relative to a standard profile--this gives a mea­

sure of local crop calendar shift due to variations in planting date
 

or other factors. A variety of other features derivable from temporal­

spectral profiles are discussed in detail in Section 4.4 and Appendix A.
 

In addition to features based purely on remote sensing inputs, col­

lateral data may provide feature-conditioning information useful in
 

identification and discrimination. General weather patterns can affect
 

all fields in a segment, as in a drought situation. Soil and terrain
 

characteristics can and do affect individual fields differently. While
 

not attainable now, meteorological information at the segment or even
 

approaching the field level may become available from meteorological
 

satellites in the future.
 

4.3.2 FEATURES AND AGRONOMIC CHARACTERISTICS
 

Basic characteristics of crops that vary throughout the growing
 

season are the type and amount of vegetation covering the soil and the
 

condition, vigor, and greenness of that vegetation. Landsat responds-to
 

the overall combination of soil, vegetation, and plant geometry, as
 

influenced by solar and viewing geometries.
 

A number of features have been developed and used by different
 

investigators to indicate the amount of green biomass, green leaf area,
 

or green ground cover present. Appendix B discusses several. We have
 

chosen to use the Tasseled-Cap Greenness variable as our primary indi­

cator of growing vegetation. It is largely insensitive to soil color
 

effects and is a linear combination of the original Landsat bands. For
 

small grain crops, it reaches a peak value just prior to heading.
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Since vegetation indicators or derivatives thereof also respond
 

to crop condition, they may be used to monitor crop condition and
 

provide early warning of anomalous conditions. At the segment level,
 

we have discussed the GIN drought stress indicator.. In Section 4.8
 

and Appendix G, a more specific form of segment-level stress indica­

tor is developed for small grains, as a refinement of our machine
 

labeler for spring wheat. This indicator is based on fitting a
 

temporal-spectral profile to small grain training data.
 

While most vegetation-indicating features are relatively insen­

sitive to soil brightness, one can define other features that respond
 

well to changes in soil brightness (given a low percentage of covering
 

vegetation). Tasseled-Cap Brightness is one such example. As dis­

cussed in Section 4.8, use of temporal-spectral profile fitting,pro­

vides one way, an automatic one, of determining which acquisitions of
 

small grains correspond to bare soil. A second refinement to the spring
 

wheat labeler alters the decision rule depending on the soil bright­

ness in the segment.
 

4.3.3 EXTRACTION AND USE OF FEATURES
 

Features may be extracted by either an analyst-interpreter or
 

a machine or by an interactive combination of the two. This extrac­

tion may be implicit as well as explicit. For example, an analyst­

interpreter may'implicitly use field features when labeling individual
 

pixels or dots. Many of the features extracted by analyst-interpreters
 

are amenable to machine extraction as well.
 

Features have several possible uses. The first is as a direct
 

basis for labeling. Second, they may be aids or collateral inputs
 

to analyst-interpreters in their labeling and interpretation.
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Third, they may be variables used in stratification and/or classifica­

tion. Fourth, they may be major sources of information for early warn­

ing and assessment of anomalous crop conditions. Finally, they may
 

serve as spectral inputs to crop yield estimation models.
 

4.4 FEATURES BASED ON TEMPORAL-SPECTRAL PROFILES
 

Because of their potential importance and the amount of attention
 

they received from us during the course of the year, this section ela­

borates on the role of temporal-spectral profiles or trajectories as
 

sources of features. By "profile" we mean a mathematical representa­

tion of the temporal pattern of a given variable or variables for a
 

given crop.
 

4.4.1 GENERAL DISCUSSION
 

The underlying assumptions of profile modeling and fitting are
 

that (1) crop development and accompanying spectral changes are con­

tinuous processes with gradual rather than abrupt changes, (2) both
 

processes can be characterized by a combination of Sigmoid-shaped
 

curves which are typical of most biological phenomena, and (3) char­

acteristic spectral development patterns exist for specific crops
 

or groups of crops. Illustrations of a Sigmoid curve and green vege­

tation development profile are presented in Figure 3.
 

Next, consider a specific green vegetation indicator, namely a
 

Greenness variable. Part (a) of Figure 4 illustrates a smoothed time
 

profile for wheat, as extracted from field-measured reflectance data
 

(see Appendix B). The corresponding profile for a Brightness variable
 

is shown in Part (b). Between Tasseled-Cap Brightness and Greenness,
 

the vast majority of Landsat data variability on any one date is cap­

tured. By combining the information in Parts (a) and (b), Part (c)
 

illustrates the spectral path or spectral track followed by the test
 

field of wheat during the growing season. Time is the third dimension
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along which one can imagine a temporal-spectral trajectory followed by
 

any given field or crop.
 

For this report, we limit consideration to spring small grain crops
 

and to spectral indicators of green vegetation. However, the approach
 

should be adaptable to other crops with a single green-up phase and to
 

other spectral variables. Detailed discussion of profile modeling and
 

fitting is presented in Appendix A. In Appendix B, a variety of green
 

vegetation measures are discussed. However, for the remainder of this
 

section, we use Tasseled-Cap Greenness as the profile variable.
 

One implication of profile modeling and fitting is that the actual
 

continuous crop development patterns can be more accurately characterized
 

from a set of intermittent observations made by Landsat or other remote
 

sensors. Another is that more detailed estimates may be possible of
 

crop development stages and of the influence of crop stresses and other
 

factors on development patterns.
 

4.4.2 LEVELS OF USE
 

Some of the many possible applications of temporal-spectral pro­

files have already been mentioned. These different applications do,
 

in general, put different demands on model forms used to characterize
 

the profiles. To help focus on these differences, four levels of use
 

have been defined. These levels and their requirements are summarized
 

in Table 5 and discussed in Appendix A. Basicaliy, they require
 

progressively more exact characterization of the profile shape. The
 

first level, which has received most use, computes a crop calendar
 

shift by sliding either the given set of multidate observations or the
 

reference profile past the other in time until they best match.
 

43
 



ZRIM
 

TABLE 5. LEVELS OF USE OF TEMPORAL-SPECTRAL PROFILES
 

Level 


1 - General Form 


2 - Estimation of a 
Particular Spec-
tral Feature 

3 - Characterization 
of Multiple Crop 
Features, Over-
all Spectral 
Development 

4 - Substitution of 
Missing Data 

Requirement 


Rough-approximation 

of temporal develop-

ment, e.g., linear 

interpolation or 

functional fit
 

Accurate representa-

tion of profile por-

tion related to the 

feature, not neces-

sarily whole profile 


Accurate fit to data 

throughout growing 

season 


Very accurate fit; 

mechanism for sens-

ible interpolation 

based on collateral
 
data and under­
standing
 

Example Uses
 

Crop Calendar Shift
 
Estimation
 

Stratification
 
Variable
 

Estimation of Peak
 
Greenness
 

Estimation of speci­
fic crop develop­
ment stage
 

Extraction of new
 
or added features
 
for labeling, crop
 
condition assess­
ment, etc.
 

Characterization of'
 
a general signa­
ture for wheat
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4.4.3 MODEL FORMS
 

Requirements on model forms and fitting procedures differ with the
 

level of application, as noted in Table 5. The least stringent require­

ment is placed on Level 1, exemplified by the crop calendar shift cal­

culations inherent in our machine labeling procedure described in
 

Section 4.8 and Appendix G. In a pioneering work on crop calendar
 

shift calculation [16], straight line segments were used to connect
 

means for the acquisition dates of selected training fields. We at
 

ERIM introduced the use of a model to provide a better representation
 

of profiles, to help compensate for missing acquisitions, and, with
 

a logarithmic transformation, permit a multiple linear regression cal­

culation of parameters [18, 3]. The model form was:
 

bct2
 
F(t) ate ()
 

where t = t'-t = shifted days from reference date,
 o 

t' = day of year after crop calendar shift,
 

to = reference day,
 

F(t) = G(t)-G = Greenness value above offset,
 o 


G(t) = Greenness value,
 

= Greenness offset,
 

a,b,c = model parameters.
 

Go 


This function has a peak value
 

b/2F(t 

which occurs at
 

p _2c 

45
 



BRIM
 

This model form has served well for Level 1 applications. Addi­

tional discussion of its use and fine points of its application are
 

presented in Section 4.6 and Appendix A; a key point is the importance
 

of using the offsets t0 and G0 

In moving to Level 2 and Level 3 applications, it was found desir­

able to develop a new, but related, model form that reduced the impor­

tance of offsetting and gave better and independent fitting of the data
 

values before and after the peak, while still ensuring continuity at
 

the peak. This new model form, applied after first computing the day
 

of peak Greenness, is:
 

bI(t-t )2
 
ae ; t >tp
 

F(t) = b2(tt )2 (2) 

ae 2 p ~ 

where F(t) = Greenness-Go,
 

t = day of acquisition,
 

t = 	estimated day of peak Greenness,p
 

a, b1 , b2 = parameters to be estimated.
 

This function has a peak value of "a". Advantages and applica­

tions of this model form are discussed in Section 4.6 and Appendix A,
 

4.5 	 STUDIES FOR INCREASED UNDERSTANDING OF TEMPORAL-SPECTRAL
 
CHARACTERISTICS
 

Both 	empirical and theoretical approaches are desirable for under­

standing the temporal-spectral characteristics of crops. Empirical
 

studies make use of data bases that assemble and correlate Landsat and
 

field measurement data with agronomic and other collateral variables.
 

Optimal utilization of such data bases depends on understanding the
 

structure of the data and features in spectral space; Tasseled-Cap
 

Transformation features are an integral part of most of our research.
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Initial results of a study of spectral space relationships are presented
 

in Section 4.5.1. In addition, Section 4.5.2 reports on an analytic
 

modeling effort that was initiated. The objective of that effort is to
 

develop, as an analysis tool, a capability to model the spectral pheno­

logy of wheat, incorporating meteorological inputs and predicting
 

Landsat variables.
 

4.5.1 LANDSAT SPACE, REFLECTANCE SPACE, AND THE TASSELED-CAP
 

The objectives of this study are two-fold. The first is to
 

better understand the relationships between data values and their
 

four-dimensional structure in Landsat spectral space and in corres­

ponding reflectance space. The second is to acquire insights about
 

the information content of Landsat data pertaining to crop development
 

and identification. In-the future, similar consideration of Thematic
 

Mapper relationships is desired. Progress and results achieved to date
 

are discussed separately for Landsat and reflectance data.
 

4.5.1.1 Landsat Data Relationships
 

For analysis and processing, we recommend and routinely do make
 

adjustments to Landsat data values to correct for difference in atmos­

pheric haze content, sun angle, and Landsat sensor calibration, using
 

procedures described in Section 5.2.. This type of normalization stabi­

lizes the spectral variables and permits a more meaningful and consis­

tent use and interpretation of multidate Landsat data. The relation­

ships given in this section should not be applied directly to data that
 

have not been similarly corrected, but they should still be useful in
 

general interpretation of such Landsat data.
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The plane formed by the Brightness and Greenness variables of the
 

Tasseled-Cap Transformation contains the vast majority of Landsat data
 

variability and facilitates physical interpretation of data values and
 

spectral trajectories. However, relationships between this plane and
 

the original Landsat variables and features, such as the ratios MSS5/
 

MSS7 and MSS4/MSS5, are not easily visualized from the transformation
 

equations.
 

To assist this visualization, three graphs have been prepared.
 

For reference, each contains an outline of the typical distribution
 

of data from agricultural scenes as well as some threshold lines used
 

to screen the data prior to correction.
 

Figure 5 shows a line for each Landsat band. Each line repre­

sents the locus of all points in the plane when that-band value is
 

zero. The correlations between Bands 4 and 5 and between Bands 6 and 7
 

are evident in the similarity of their slopes. Also shown by each line
 

is a parallel dashed line that represents the effect that a ten-count
 

increase in the band value would have on the line's position. Thus,
 

one could conceivably build up grids to overlay on the Tasseled-Cap
 

plane and read off Brightness and Greenness values for any point in
 

XSTAR-corrected Landsat space.
 

Note that the lines for the four bands do not intersect at a
 

single point. The reason is that the Tasseled-Cap plane does not
 

pass through the origin of Landsat space, It is displaced by -11.21
 

counts in Yellow and 1.356 counts in None-such, the third and fourth
 

components of the transformation.
 

Lines for fixed values of the Band 7 to Band 5 ratio are presented
 

in Figure 6. This ratio is commonly used as a vegetation-indicating
 

feature. The line -shown for R=0.55 corresponds to a particular threshold,
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2 x (Band 7/Band 5) = 1.1, that was empirically established and is used'
 

at the University of California at Berkeley to indicate presence or
 

absence of green vegetation [17]. The non-linearity of the ratio vari­

able is evident from the spacing of the lines'and their values.
 

Figure 7 presents lines for fixed values of the Band 4 to Band 5
 

ratio, a ratio that has received some attention as a possible indicator
 

of crop development stage. Lines for different values of this ratio do
 

progress across the Tasseled-Cap plane largely parallel to those of the
 

individual Bands 4 and 5. The distance-from-green-arm measure used in
 

our Spring Wheat vs. Barley labeler also performs a similar partitioning,
 

with the advantage of somewhat reduced noise effects due to band averag­

ing. This ratio, however, does not appear to be a good indicator of
 

green development above the predominantly horizontal line or band of
 

bare-soil signal values. The importance of atmospheric and other cor­

rections to stabilize the data is reemphasized because of the large
 

atmospheric contribution to Band 4 values, particularly, and to Band 5.
 

Experience has shown the Yellow component of the Tasseled-Cap
 

transformation to be primarily sensitive to changes in atmospheric haze.
 

Therefore, the sensitivity of Brightness and Greenness to changes in
 

Yellow for fixed values of the two ratios were determined analytically
 

(see Part D of Table 6). In the upper-left half of the Tasseled-Cap
 

distribution of agricultural data, the sensitivity to changes in Yellow
 

computed for the MSS4/MSS5 ratio is-three times greater than that for
 

the MSS7/MSS5 ratio and is roughly three counts per count of change
 

in Yellow. Thus, we see that the MSS4/MSS5 ratio is very sensitive to
 

external non,-agronomic effects.
 

Mathematical expressions for the lines displayed in Figures 5, 6,
 

and 7 are presented in Table 6; the Tasseled-Cap Transformation is
 

repeated in Table 7 for completeness [19]. Again, we caution that they
 

refer to XSTAR-corrected data.
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TABLE 6. MATHEMATICAL EXPRESSIONS FOR LINES IN THE XSTAR-

STABILIZED TASSELED-CAP PLANE
 

A. LINES FOR INDIVIDUAL LANDSAT BANDS"
 

G = 1.1735B + 35.5277 - 3.53145 * MSS4 

G = 0.91383 - 7.0044 - 1.5150 * MSS5 

G = -1.17053 + 3.1310 + 1.7321 * MSS6 

G = -0.6767B - 4.2581 + 2.5751 * MSS7 

B. LINES FOR RATIOS OF LANDSAT BANDS
 

1Mss7 G o.60316(x) - 0.262782 A.6233 Cx) + 1.6535 
GMSS LO.66006(x) + 0 J B - LO.66006(x) + 0.38833j
 

MSS4 _ F0.60316(y) - 0.332317 F4.6233 (y) + 10 06047 

Y MSS5 0.66006(y) - 0. 83 7] LO.66006 (y) - o.28317] 

C. LINES FOR RATIO PASSING THROUGH A SPECIFIED POINT IN PLANE
 

0 + 1.65352
0.38833
0.26278 B0+
/1457)
MSS5 2 .0316 B - 0.66006 G 3]
 
0.6 0 0 

MSS4 0.33231 B - 0.28317 G0 + 10.604
 

MSS55 jO60316 B - 0.66006 GO - 4.6
 
0 L0 0 

D. SENSITIVITY OF RATIO VALUES TO MOVEMENT IN YELLOW DIRECTION
 

MSS7 dG 0.43x - 0.04 dB 0.43x + 0.04
 
MSS5 dY 0.66x + 0.39 dY -0.60x + 0.26
 

MS84 d _= 0.4 3 y + 0.90 d dB 0.43y + 0.90 

= MSS5 :dY 0.66y - 0.28 an dY -0.60y + 0.33 

Note: G = Greenness and B = Brightness, as defined in Table 7. 
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TABLE 7. TASSELED-CAP TRANSFORMATION COEFFICIENTS
 
FOR LACIE-CALIBRATED LANTSAT 2 DATA [20]
 

[rgtns [0.33231 0.60316 0.67581 0.26278 [14 

Greenness 

Yellow 

-.28317 

-.89952 

-.66006 

.42830 

.57735 

.07592 

.38833 

-.04080 j 
MSS5 

MSS6 

[Non-Such-.01594 .13068 -.45187 .88232 [MSS7 

Note: To avoid negative values in data processing, it is common prac­
tice to add 32 counts to each of the Tasseled-Cap variables.
 
This was done to the Greenness variable used for profile match­
ing in this report (Sections 4.4 and 4.8 and Appendices A and G).
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4.5.1.2 Reflectance Data Relationships
 

Field measurements of reflectance either within or integrated over
 

Landsat bands are a valuable source of information and understanding.
 

Appendix B describes methods we have used to analyze this type of data
 

and to establish a Tasseled-Cap-like transformation for them. Both
 

principal component analysis and approximate Landsat band-to-band cali­

bration ratios were employed.
 

Analyses did show that a very high percentage (98 to 99%) of data
 

from a full-season measurement series on wheat plots was in a two­

dimensional plane. Senescing vegetation was not found to lie off that
 

plane by an appreciable amount.
 

4.5.2 MODELING OF CROP SPECTRAL PHENOLOGY (SEED-TO-SATELLITE MODEL)
 

Crop labeling procedures can be better developed and field measure­

ments and Landsat data acquired intermittently over a growing season can
 

be better analyzed with a good understanding of the biophysical processes
 

that underlie the crop spectral phenomena. Furthermore, there is a need
 

to be able to explore the effects of varied parameters on crop development
 

under a greater variety of meteorological and other conditions than those
 

for which detailed measurements exist. Therefore, a long-term effort was
 

initiated to develop a capability to analytically model the spectral
 

phenology of wheat.
 

The planned approach is to first formulate an overall structure for
 

the model and its components and then acquire state-of-the-art (SOA) or
 

near-SOA submodels for those components. The components will be imple­

mented and tested individually, followed by development of the required
 

interfaces. Input and test data sets will be acquired and the full model
 

will be synthesized and tested. Updates will occur as improved submodels
 

become available. The overall model has been nicknamed the "Seed-to-


Satellite" model.
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During this reporting period, the overall structure shown in
 

Figure 8 was established. It begins with a meteorologically driven
 

wheat growth model which interfaces with a crop reflectance model and
 

then the remote sensing submodels to represent atmospheric and solar
 

effects, the sensor, and preprocessing and feature extraction.
 

Contact was made with Dr. J. T. Richie of the USDA and versions
 

of his wheat growth model [20] were obtained and made operational on
 

our computer. We plan to develop interfaces between it and the bi­

directional crop canopy spectral reflectance model which was developed
 

by G. Suits at ERIM [21]. This in turn will be linked to the radiative
 

transfer model developed by R. Turner while at ERIM [22].
 

We also hope to acquire two to three decades of meteorological
 

data over agricultural regions and produce a principal component char­

acterization of that data. Such a characterization should provide
 

a baseline weather scenario and a limited number of deviant scenarios
 

that are representative of the major variability to be encountered.
 

4..6 IMPROVEMENTS IN FEATURE EXTRACTION
 

The extraction of features from Landsat and collateral data is
 

important to crop identification and inventory applications. Five
 

steps supporting improved feature extraction were made during the year,
 

the first two being primarily oriented toward aiding analyst-interpreters
 

in their labeling and the others having potential application in both.
 

manual and machine approaches to labeling. The first two topics dis­

cussed below are development of aids for the labeling of blobs (quasi­

fields) and the development of color-stabilized image products. The
 

other three topics are improved spatial-spectral clustering, estimation
 

of crop development stage using Landsat, and investigation of temporal­

spectral profile fitting procedures.
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4.6.1 DEVELOPMENT OF AIDS FOR LABELING BLOB TARGETS
 

The analyst-interpreter labeling experiment discussed in Section 4.9
 

represents the first experience that has been gained with manual labeling
 

of the field-like blobs or quasi-fields defined by our spatial-spectral
 

clustering algorithm, BLOB. Some rudimentary labeling aids had to be
 

produced in order for the experiment to be conducted. Time permitted
 

only a minimal development; therefore, substantial additions and improve­

ments would be highly desirable in the future. For instance, no spectral
 

aids were produced.
 

The BLOB algorithm assigns each pixel to a blob and a unique number
 

to each blob. The major problems addressed by the labeling aids were
 

those of transferring information about this blob pattern to the
 

analyst-interpreter for use in labeling and providing a means for
 

the labels to be recorded and digitized. Another operation performed
 

by the BLOB algorithm is a mathematical stripping of the edge pixels
 

from the periphery of each blob, permitting the designation of blob
 

centers. Only blobs large enough to have interior pixels were to be
 

designated to analyst-interpreters for labeling.
 

Two types of image products were developed. The first was a black
 

and white film mask to delineate blob interiors when placed over stan­

dard LACIE segment images and printed by the same system (the JSC Pro­

duction Film Converter) as the LACIE segment images. The second type
 

of image product was a corresponding digital line-printer map that
 

served both as a medium for recording label assignments and for provid­

ing additional detail about blob number assignments.
 

Four blob interior masks were produced for each segment for each
 

analyst, to permit simultaneous use on images acquired on different
 

dates or on different image products. All but blob interiors were made
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opaque. The line-printer map had blanks for blob interiors, an over­

printed symbol encoding the blob number for edge pixels around each
 

interior, and another symbol (the period) for pixels in blobs that
 

did not have interiors. A color-coding scheme was devised by the
 

analyst-interpreters for recording labels, as discussed in Section 4.9.
 

Later, for use in digitizing the color-coded labels, a computer
 

program was written to produce a listing of blob numbers, ordered by
 

line/pixel coordinates of the first interior pixel encountered. We
 

believe this would have been a more convenient medium for analyst­

interpreters to record their labels and its use would reduce the
 

chances of skipping or overlooking small blobs.
 

As noted earlier, time constraints precluded the development of
 

additional labeling aids such as the spectral plots produced for dots
 

in LACIE Procedure 1. Such plots and other more advanced aids could
 

be produced in a straightforward manner for blobs and are recommended
 

for future experiments. We also believe that development of a.cap­

ability to outline quasi--field boundaries on the image overlays would
 

be a marked improvement and prove less of an obscuration of scene detail
 

than did the masks used in this experiment.
 

4.6.2 COLOR-STABILIZED IMAGERY
 

Imagery produced by the Production Film Converter (PFC) has played
 

a crucial role throughout LACIE in the estimation of crop acreage.
 

Imagery is the basic product utilized by analyst interpreters in label­

ing samples. The techniques used in LACIE for producing color imagery
 

from Landsat data were designed to imitate imagery from color infrared
 

aerial photography, as do the conventional Landsat image products.
 

This filled the need for imagery understandable by conventional photo­

interpretation. In essence, each of three Landsat data channels was
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used to control the exposure of film in a different primary color. The
 

radiometric image of the scene as viewed by Landsat was written on the
 

image three times, each time using a different band and each time using
 

a different primary color. The results were imitations of what one
 

would obtain directly by photographing the scene using color infrared
 

film with appropriate filters and spectral sensitivities.
 

The majority of labeling in LACIE was performed using LACIE
 

Product 1 images [23], with supplemental use of Product 3 images [24].
 

Other'image production algorithms also have been considered [23, 25, 26].
 

These algorithms form a family of approaches that are characterized
 

principally by the following:­

(a) 	A subset of the four MSS channels are projected into PFC
 

gun counts.
 

(b) 	Each channel undergoes mean adjustment-and contrast stretch­

ing. Each algorithm considers the dynamic iranges of the
 

MSS channels and manipulates them by scaling and biasing
 

(affine transformations) according to some rule, generally
 

to fill out the range of color intensities the photographic
 

system can produce.
 

Image products based on the 'bias and scale' approach have served
 

and 	continue to serve needs for image interpretation. Yet it has been
 

recognized that they are not without shortcomings. The Product 1 was
 

found to produce color variations from segment to segment and from date
 

to date that were not consistent in meaning. Product 3 addressed this
 

in part by providing an improved level of consistency in hue and satura­

tion, but often at the cost of adequate color resolution.
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ERIM experimentally quantified [27] shortcomings of these bias-and­

scale approaches, illustrating that:
 

(1) 	Significant information is lost in omitting a spectral channel.
 

(2) 	Bias and scale approaches cannot provide consistent color
 

meaning for they cannot truly adapt to the natural varia­

tions in atmosphere and sun position that cause color incon­

sistencies, and they falsely adapt to variations in scene
 

composition.
 

(3) 	Perceptual considerations in the interpretation of colors
 

mapped by gun count projection can result in a distortion
 

of the actual relationships among data values.
 

4.6.2.1 General Approach
 

In this section, an approach to image product production is pre­

sented that is based on an entirely different principle than the pro­

ducts discussed above. The new principle is that Landsat data features
 

should be projected into color space directly, rather than into PFC
 

gun counts. This concept was utilized by M. Walker [28] in 1974 in
 

producing experimental imagery by a technique which mapped the princi­

ple components of Landsat data into an 'opponent poles' color space.
 

R. Juday [291 of JSC/EOD in 1977 began work that was based on a similar
 

approach which utilized for the first time a model of the photographic
 

system (PFC) and a perceptually uniform color space in the mapping.
 

Research at ERIM, motivated by the work of Juday, introduced
 

other considerations based on an understanding of the sensor system
 

and the structure of Landsat data. The underlying principle rests in
 

mapping surface reflectance values (as opposed to radiance values) in
 

a consistent manner to well defined colors.
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This ambitious objective is addressable by the following threefold
 

approach:
 

(1) Take advantage of our knowledge about Landsat data to use
 

imagery to exploit the information contained therein. Derived variables
 

representing features of interest in the data are used to drive color
 

variation. This is in contrast to the current technique of choosing
 

three out of the four Landsat bands for generating an image. In actual­

ity, two linear combinations of Landsat variables, Greenness and Bright­

ness, span nearly all the variation in Landsat data for an agricultural
 

scene. These features have an interpretation in terms of plant cover
 

and soil background [13]. The Brightness and Greenness features have
 

proven exceedingly useful'for simplifying computer classification bf
 

agricultural scenes. Adoption of these variables as the driver of
 

color variation promises to simplify image interpretation as well, and
 

yet retain as much or more of the information relevant to interpreta­

tion as current products. The third linear combination, Yellow, repre­

sents most of the remaining variability and is sensitive to changes in
 

atmospheric haze content and is used as a diagnostic feature.
 

(2) Utilize data normalization technology to provide a basis for
 

consistent color mapping. A standardized projection of Landsat data
 

that is independent of scene content and adapts for atmospheric con­

"ditions and solar geometry provides the framework for mapping to a
 

standard color domain.
 

(3) Take advantage of'Color Science findings to present the
 

imagery in a manner that does not visually distort true relationships
 

among data and at the same time provides adequate color resolution and
­

tone for interpretation. Two essential concepts are involved. First;
 

we know color perception recognizes three components of color or three
 

independent dimensions of color variation. They are hue, lightness,
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and saturation. We match our data features to these dimensions of
 

color variation. In this way, the independent data features remain
 

independent to the perception of the image analyst. Second, the judge­

ment of differences between color is amenable to mathematical modeling.
 

Color scientists conceive of a "Uniform Color Space" in which colors
 

are arranged so that Euclidean distance between them is a consistent
 

measure of the difference between them as perceived by the human eye.
 

In order to make imagery we can conceive of mapping our data space
 

linearly into Uniform Color Space. We then expect the quantitative
 

distance relationships of data points to be translated to appropriate
 

color differences, providing to the analyst an accurate facsimile of
 

what the data "looks like".
 

The next two sections present the specific approach taken and des­

cribe the experimental imagery produced. Appendix E describes details
 

as well as other -advanced considerations.
 

4.6.2.2 Specific Approach to Fixed Color Mapping
 

The following approach was used to produce color-stabilized imagery
 

on the PFC. It represents a recommended procedure for evaluation as a
 

method for producing supplemental or alternative image products.
 

Standardization of scenes against external effects, namely, solar
 

geometry and atmospheric haze level, was accomplished by application
 

of the spatially varying XSTAR algorithm [30, 361. XSTAR corrects for
 

differences in scene haze with good reliability. Without such correc­

tions, the concept of a fixed mapping from data to color would make little
 

sense.
 

The two primary components of the data, Brightness and Greenness,
 

were used to drive independent dimensions of color variation. In this
 

way the two data components can be independently assessed by the analyst.
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The visual mechanism reads the dimensions separately, in a manner which
 

is immediate and natural. Specifically, we used the data Brightness
 

dimension to control color brightness on the film product, and we used
 

the data Greenness dimension to control the degree of color saturation.
 

The third- dimension of color variation, namely hue, was effectively
 

fixed since Tasseled Cap Yellow, which exhibits little variation, is
 

projected in the direction of hue.
 

Control of film color was achieved through application of the
 

modeling work of Juday. The model allowed us to specify color in the
 

coordinates of a color space with certain desirable properties. In
 

effect, we converted the PFC photographic system from one which was
 

driven by projection of data onto color gun counts (which are nonlinear)
 

to one which was driven by projection onto desired color space coordi­

nates. The color space employed was L*,a*,b* color space which is the
 

standard uniform color space as designated by the CIE in 1977 (see
 

Appendix E for some.alternatives).
 

The color space coordinates give us control of color in two impor­

tant respects. First, the coordinates separate color variation along
 

its psychological dimensions. This allows us in principle to change
 

hue, saturation and lightness independently of one another. The L*
 

coordinate controls color brightness while the a* ,b* vector controls
 

chromaticity -- its direction determines hue and its magnitude deter­

mines saturation. Second, the rate of change of color within the space
 

is, in principle, uniform. That is to say Euclidean distance within
 
2
the space, measured as (L. + a + b*2) / , is a consistent measure
 

of the perceived difference between colors. When we map data into a
 

uniform color space, we expect distance relationships in the data to
 

be preserved in perceived color differences.
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Colorimetrically controlled imagery was produced by mapping data
 

variables linearly* into uniform color space coordinates. One can
 

envision embedding the Tasseled-Cap Greenness/Brightness plane onto
 

a plane in color space. We did this with the two constraints -- that
 

data Brightness line up with L*, thus controlling color brightness,
 

and that data Greenness be perpendicular to Brightness, determining
 

color saturation. The shape of the color space accessible to the PFC
 

photographic system had a role in determining which hue we chose to
 

fix upon. The shapes of two-dimensional slices of color space which
 

have constant hue vary significantly throughout the space and'we
 

sought the one which best matched our data envelope. It turned out
 

that the b* direction was a good choice for our needs. Figure 9
 

presents a stylized version of how we placed the data into the color
 

space for our experiment. Our image produce aligns Greenness with
 

c*, which fixes us on an orange or yellow-orange hue.
 

4.6.2.3 Observations and Conclusions
 

Experimental imagery and a color key were produced for the acqui­

sition history of Landsat Segment 1663 in North Dakota throughout the
 

1977 growing season.
 

For all these images only one mapping from data to color was
 

involved. We did not change the map from date to date by contrast
 

stretching designed to enhance color contrast in the images. Thus,
 

the analyst using such imagery can work with a single color key which
 

can be explicitly shown to him.
 

*Note that one important advantage of mapping data to color is that
 
the mapping need not be linear, yet the resultant projection into
 
color is totally predictable.
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The imagery indicated contrast stretching for color resolution
 

is in fact unnecessary. All color resolution was maintained regardless
 

of the scene mean signal values. From an analytic point of view we
 

have designed appropriate spectral resolution into our imagery. In
 

Uniform Color Space we know the size of a color difference which is just
 

noticeable to the human eye. We ensure that this mapping from data to
 

color takes the smallest data unit, one Landsat count, into a color
 

difference which is just noticeable. From an empirical point of view,
 

these images compared favorably against currently employed products in
 

the level of detail which can be discerned.
 

The extent to which advanced imagery can increase the ease and ac­

curacy of image interpretation cannot be ascertained before it is tested
 

by analyst interpreters. The major features of advanced imagery for
 

Landsat--data standardization, use of principal components, mapping
 

into Uniform Color Space coordinates, and a fixed color key--all aim
 

to provide a consistent image environment within which interpretation
 

can take place.
 

4.6.3 IMPROVED SPATIAL-SPECTRAL CLUSTERING ALGORITHM (SUPERB)
 

A desire to improve on performance capabilities of the BLOB spatial­

spectral clustering algorithm arose from at least two needs. First was
 

a need for a supervised mode to allow usd of data in ground truth chan­

nels to form quasi-fields in situations.where individual field bounda­

ries were not encoded, i.e., where just the crop type was encoded.
 

Field-to-field variability within a given crop type can be large. A
 

second need arose out of results of the experiment in analyst-interpre­

ter labeling of blob targets; as discussed in Section 4.9, the analysts
 

were concerned about the presence of blobs having two or more disjoint
 

parts. The fact of revision provided an opportunity to incorporate
 

other desirable features and capabilities as well.
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A development effort was conducted and the features listed in
 

Table.8 were incorporated into a revised algorithm called "SUPERB",
 

short for "SUPERvised Blob". Details of these developments are pre­

sented in Appendix D. SUPERB was used in preparing the data base des­

cribed in Section 7 and Appendix D.
 

4.6.4 ESTIMATION OF CROP DEVELOPMENT STAGE
 

Uncertainties about the stage of crop development can contribute
 

to analyst-interpreter labeling errors at two levels. The first level
 

is between segments, the second within. Unknown to the analyst­

interpreter, a given segment may be more or less advanced in develop­

ment than others observed by Landsat on the same date. Even within a
 

segment, individual fields of the same crop may be planted up to two
 

or three weeks apart, causing confusion, especially in view of the
 

18-day repeat cycle of Landsat. Missing acquisitions just compound
 

the problem. A need exists, therefore, for a capability to objectively
 

estimate the crop calendars for individual fields (or quasi-fields)
 

and individual pixels (or dots).
 

An investigation was initiated to work toward development of an
 

objective method for estimating the crop calendars of individual fields,
 

using multidate Landsat data, for use in labeling procedures. For this
 

initial work, an empirical approach was taken. To date, limited examina­

tions have been made of temporal-spectral Landsat data and field measure­

ment data as a function of wheat development stage observed on the ground.
 

Ultimately, we envision a crop calendar estimation methodology that will
 

combine meteorological and spectral inputs, although this work was
 

directed toward the spectral aspects.
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TABLE 8. DEVELOPMENT HIGHLIGHTS OF SPATIAL-SPECTRAL CLUSTERING PERFORMED
 
BY ALGORITHM SUPERB
 

Development 


Ground truth supervision is available as 

an option. 


A new distance measure allows separate 

consideration of spatial and spectral 

effects.
 

A pixel may be assigned only to a quasi-

field associated with a neighboring pixel 

(or form a new, quasi-field). 


When deciding whether to assign'a pixel 

to a blob versus form a new quasi-field, 

pixels having the easiest decisions are 

processed first (within each scan line),. 


Newly formed blobs are compared to their 

neighbor blobs, and combined if suf" 

ficiently similar.
 

Significance
 

Formation of quasi-fields can'be forced
 
consistent with ground-truth boundaries.
 

The resulting blobs can be used as ground
 
truth fields, in some applications.
 

It is easier to judge the significance of
 
of threshold parameter values.
 

Quasi-fields now can be made to consist of
 
a single group of adjacent pixels.
 
Fewer distance calculations need to be
 

performed.
 

More candidate neighbor quasi-fields often
 
become available to help improve later
 
decisions.
 
Biaing effects of sequential processing
 

order are minimized.
 

If two blobs happen to start in the same
 
homogeneous field, they may be combined.
 



The temporal profile of Tasseled-Cap Greenness and associated pro­

file shift features were selected as the Landsat features for compari­

son with information on wheat development stage. The wheat development
 

stages were measured on the Modified Feekes'Scale. This scale is not
 

linearly related to calendar date. Crop calendar shifts were calculated
 

using spectral mean values for each field. Details of the analysis are
 

presented in Appendix B, including example plots of development stage
 

and Greenness vs. both acquisition date and shifted-date.
 

This initial work in crop development stage estimation did not
 

reach a conclusive stage. However, some issues were identified that
 

could affect future work. It is recommended that ground observations
 

of crop development stage in selected fields in segments be made more
 

frequently than at 18-day intervals, even though spectral data may not
 

be acquired more frequently. The sparseness of Landsat data, especially
 

with missing acquisitions, will limit accuracy. The use of green pro­

file shift technology appears helpful but improvements involving more
 

complete characterization of profiles (e.g., Level 2 or Level 3 appli­

cations) and/or use of other spectral features, e.g., Brightness, may
 

be required.
 

4.6.5 CONSIDERATIONS IN PROFILE FITTING
 

A procedure for fitting a spectral profile model to a set of multi­

date data points should include three steps: (a) data and model selec­

tion, (b) data normalization, and (c) parameter estimation.
 

The choice of data for fitting and the model form to be used depend
 

on each other as well as on the level of use or application intended
 

(c.f. Section 4.4) and the parameter estimation procedure. Important
 

aspects of data are the type (e.g., pixel, blob or field mean, or segment
 

mean), the quantity (e.g., selected pixels, all or selected fields, or a
 

large fraction of pixels in segment), and the number of acquisitions
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represented. The interactions of these and other factors in making a
 

choice are addressed below and in Appendix A.
 

Data normalization is an important step that is often overlooked
 

in data preparation. We recommend the use of normalizing transforma­

tions to reduce variability in spectral observations that results from
 

factors other than crop type and condition. Normalization procedures
 

are discussed in several places in this report (e.g., Section 5.2 and
 

Appendix A).
 

Parameter estimation procedures are closely tied to the model form
 

and the data aspects mentioned above. As discussed in Appendix A, use
 

of time and/or Greenness offsets is important to obtaining good results
 

with the exponential model forms we have developed (c.f. Section 4.4.3).
 

Another important consideration discussed there is the choice of calcu­

lational procedure. Linear regression procedures have normally been
 

used with these model forms after a logarithm transformation. A non­

linear regression procedure is shown to give more accurate representa­

tion of peak Greenness values, at an increase in computational cost;
 

the non-linear procedure is recommended wherever data volume does not
 

make costs excessive.
 

Our experience and recommendations for parameter estimation are
 

summarized next for selected applications at the first three levels of
 

use (c.f. Section 4.4.2).
 

4.6.5.1 Level 1
 

Our recommended crop calendar shift calculation procedure for
 

spring small grains is as described in Reference 3. It uses the
 

model form of Equation 1 with a specified set of parameters as a
 

standard reference profile. These parameters give a representation
 

of spring small grains in the Northern U.S. Great Plains that appears
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adqeuate for most shift calculations, given a minimum of three acquisi­

tions, spaced no closer than 18 days, in the main part of the crop
 

development cycle.
 

As a refinement of the procedure, we have on occasion utilized a
 

two-step process. With it, a segment-specific profile is calculated
 

after shifting all labeled small grains quasi-fields by amounts des­

cribed by calculations using the standard profile. This new profile
 

is then substituted for the standard one and the crop calendar shift
 

calculation repeated. Differences in the two shifts calculated for
 

each pixel have been slight, but use of the two-step process could be
 

beneficial.
 

4.6.5.2 Level 2
 

A Level 2 application we have addressed is that of producing segment­

specific estimates of the average peak Greenness value of all labeled
 

spring small grains. These estimates serve as indicators of moisture
 

stress for the Spring Wheat vs. Barley labeler discussed in Section 4.8
 

and Appendix G. For these estimates, we have used linear regression
 

on spectral means for quasi-fields, after time shifts calculated using
 

the standard profile.
 

4.6.5.3 Level 3
 

We explored profile fitting for Level 3 applications, where one
 

desires good fits both before and after the day of peak Greenness for
 

individual fields or quasi-fields. The original model form (Equation 1)
 

showed deficiencies in fitting some situations, especially early in the
 

season near the start of greenup. Therefore, after exploring other
 

avenues, the model form of Equation 2 was developed. It still needs
 

- a Greenness offset (e.g., 25 counts) but does not use an initial time 

offset, since it falls exponentially from its value at the day of peak 

Greenness (which is determined in a separate Level 1 calculation). 
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Indications from a limited number of cases examined were that the over­

all performance of the second model form was better.
 

Another consideration-is whether to use field means or individual
 

pixels for fitting. No clear advantages were found for either. In
 

both instances, edge pixels which may cross field boundaries should be
 

eliminated from consideration. The procedure described herein works
 

with at least three independent acquisitions during the growing season.
 

However, more than three acquisition are desirable to permit a better
 

representation of crop phenology.
 

4.7 SIGNATURE CHARACTERIZATION
 

The structure of the overall problem of objective labeling includes
 

feature definition, signature characterization and labeling procedure
 

development. In a working research environment these three categories
 

flow into and merge with one another and it is not always clear where
 

one begins and another ends. We will attempt a definition of signature
 

characterization which allows these distinctions. We further wish to
 

distinguish between signature characterization directed to the needs of
 

analyst interpreters and signature characterization directed to the needs
 

of machine labeling or area estimation. The following discussion is
 

directed primarily to the problem of machine labeling.
 

4.7.1 	OBJECTIVES OF SIGNATURE CHARACTERIZATION FOR MACHINE
 
PROCESSING
 

It is the objective of signature characterization to provide a
 

probabilistic relationship between the features observed, the collateral
 

information provided, and the classes of objects which can give rise to
 

those features under the given set of collateral conditions. This proba­

bilistic relationship is expressed by the conditional likelihood function;
 

72
 



ERIM
 

i.e., the probability density of the features, given the class observed
 

and the conditions of observation.
 

L(ylc,v) - Pr(ylc,v) (3)
 

where
 

y = feature vector
 

c = class index
 

v = collateral condition vector
 

L(ylc,v) contains all the information that could be available to a
 

machine for classification or for area estimation. Given L, it would also
 

be possible to determine the ultimate limits of accuracy to which area can
 

be estimated, given a finite set of observations of the feature vector y.
 

Thus, full knowledge of L would allow one to determine unambiguously
 

whether a given set of features and collateral data was adequate to
 

the required estimation task or whether new features or collateral data
 

are required. If the feature set and collateral data set tested carries
 

the full information content of the measuring instrument and procedures,
 

then it could be determined whether-a new measuring instrument is required.
 

The accurate estimation of the likelihood function is, however, not
 

an easy task, for a variety of reasons. It requires both a large base
 

of empirical data and accurate characterization of collateral features
 

and conditions. We are not aware of an example in remote sensing appli­

cations where L has been accurately estimated and then exploited. It is
 

our aim to come closer to such a characterization than has been achieved
 

in the past.
 

In the context of area estimation for agricultural inventory using
 

Landsat and collateral data, signature characterization has to satisfy
 

applications criteria as shown in Table 9 and training criteria-as
 

shown in Table 10.
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TABLE 9. APPLICATION REQUIREMENTS
 

Signatures applied must
 

- utilize available multitemporal acquisition histories
 

- accept a wide range of observation conditions
 

- represent accurately the likelihood functions of crop
 

of interest and confusion crops for the available
 

acquisition histories and observation conditions
 

TABLE 10. TRAINING REQUIREMENTS
 

The process of estimating signatures must
 

- utilize available multitemporal observations and inter­

polate to obtain time continuous signatures
 

- utilize observations representing a wide range of
 

collateral conditions and interpolate to produce sig­

natures continuous with respect to these conditions
 

- utilize a large number of randomly-drawn observation
 

sets in order to insure inclusion of a robust variety
 

of patterns
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The first requirement in each of these tables emphasizes the problem
 

of missing observations, due to the fact that Landsat passes over any
 

given site only every 9 or 18 days and does not acquire data over every­

site on every pass primarily because of cloud cover. Further, in the
 

presence of scattered clouds, observations may be missing for certain
 

fields even when much of the segment is acquired. This is true separately
 

for both signature training and for area estimation.
 

The second requirement in each table emphasizes the need for signa­

ture extension. It is known from LACIE experience that estimated signa­

tures do vary significantly from segment to segment, partly due to physi­

cal processes dependent on collateral observables and partly due to
 

random variation. The collateral variable dependence may be accounted
 

for by training as a function of the collateral observations, if
 

sufficiently well known. This results in a narrowing of the estimated
 

likelihood functions for each condition of observation.
 

The third requirement emphasizes the need to include all of the
 

random variation in the estimation of the likelihood function. This
 

would enable use of the estimated likelihood function with confidence,
 

both for making area estimates in an objective manner and for stating
 

the error bounds on those estimates.
 

At this point an important question can be raised, "Given a pro­

cedure for training, with all attendant difficulties aside, how would
 

one know that he had trained sufficiently in light of this last require­

ment?" The empirical, and qualitative, answer must be, "When marginal
 

training no longer changes the estimation results, then one will know
 

he has trained enough." In order to avoid some of the difficulties of
 

a purely empirical approach, we can conceive of setting up a model which
 

incorporates the training, signature estimation, and area estimation pro­

cedures. From a preliminary estimation of the signature, the model could
 

then estimate the expected variance of area estimation both as a function
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of the number of training samples and the number of survey or test sam­

ples, thus predicting the total number of training samples needed. Upon
 

iteration with additional training samples, we would expect these pre­

dictions to converge to a satisfactory total number.
 

4.7.2 APPROACH
 

We have identified two approaches to satisfying the above require­

ments, distinguished primarily by the point at which feature extraction
 

ends and signature characterization begins. The first of these is tra­

jectory signature characterization, the second is generalized signature
 

characterization. The definition and development of these approaches is
 

discussed in Sections 4.7.3 and 4.7.4, respectively.
 

4.7.3 TRAJECTORY SIGNATURE CHARACTERIZATION
 

Trajectory signature characterization approaches the first two
 

difficult requirements (missing data and collateral data dependence)
 

by incorporating-them into the process of feature definition, which is
 

discussed earlier in Section 4.3. The general approach is to use physi­

cal modeling, field measurements, and Landsat data associated with
 

ground .truth data to establish definite mathematical forms defining
 

the time trajectories of Landsat observables (e.g., Tasseled-Cap Green­

ness and Brightness) as a function of collateral observables for each
 

class of interest and their confusion classes.' In addition, there may
 

be several free parameters, say c's, for each functional form. A good
 

deal of preliminary training as well as physical insight goes into the
 

establishment of these functional forms. Now, given a particular obser-


Vation through time, {y(ti)}, the values of the free parameters can be
 

estimated and a measure of goodness of fit of the observat'ions to the
 

estimated curve f(t) can be calculated.­
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At this point it would be possible to go directly to labeling;
 

i.e., if the goodness of fit were best to-a curve representing Class c,
 

one would label the observation Class c. This approach is useful for
 

obtaining insight into performance at a particular level of development
 

of the feature definition approach; and if the feature definition sup­

ports near perfect labeling accuracy, the labels so derived could pro­

vide direct support to an area estimation scheme such as a stratified
 

areal estimate. If however, labeling accuracy is not very high (i.e.,
 

is not >90%) it is likely to be necessary to employ a more sophisticated
 

use of the trajectories, involving signature characterization.
 

An approach to characterizing the trajectory signatures is to treat
 

the estimates of the free parameters, , and the goodness of fit measure,
 

say r, as a derived set of features. Initially one could proceed using
 

only trajectories for Greenness and Brightness for the crop of interest,
 

say wheat. The task then is to estimate
 

Pr (Cc,r) 

for each class, conditional on the goodness of fit, r. The estimation
 

of a conditional density function is discussed in the next section.
 

4.7.4 GENERALIZED SIGNATURE CHARACTERIZATION
 

Generalized signature characterization approaches the problems of
 

missing data and collateral data dependence at the stage of defining
 

the form of the likelihood function and training it, rather than at
 

the feature extraction stage. In defining a statistical model form
 

for the likelihood function, we have considered several possible ap­

proaches. These include a histogram approach, an expansion in terms
 

of higher moments, and a multimodal Gaussian representation. In all
 

cases, the way of dealing with collateral data dependence is the same
 

and so we will discuss that first.
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Figure 10 shows a hypothetical joint density function of spectral­

temporal features, y, on the ordinate and collateral variables, v, on
 

the abscissa, for a particular class, c. The density function,
 

Pr(y,vlc), is indicated by iso-density contours. In order to esti­

mate this joint density in an unbiased way, it would be necessary to
 

take an independent random sample of observations from Class c. It is,
 

however, difficult to obtain an independent random sample of sufficient
 

size from the domain of v. The distribution of v varies from year to
 

year and is highly correlated from place to place within years. Hence
 

an estimated probability density, Pr(y,vlc) has the peculiar property
 

of being undersampled in the v domain while being sufficiently sampled
 

in the y domain.
 

Consider the empirical density estimate Pr(vlc) for the same sample
 

set. It is at least true that
 

Pr(vlc) = fPr(y,vlc) dy (4) 

By Bayes formula
 

Fr(yjc,v) = £r(y,v c)/Pr(vfc) (5) 

This formula (Equation 5) holds for either the extreme case where
 

all density functions are perfectly estimated, or the other extreme
 

case where empirical density functions are represented by a discrete
 

scatter plot or histogram. We make the assumption that this formula
 

holds for the intermediate case in which density functions are repre­

sented by some functional form whose parameters are estimated from the
 

data. Hence, Equation 5 provides the basis for a kind of regression
 

to obtain a conditional density estimate of y given-v. We proceed by
 

estimating the joint density, computing the marginal density by inte­

gration and dividing to obtain the estimated conditional density.
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FIGURE 10. ILLUSTRATING THE CONCEPTS OF JOINT, MARGINAL,
 
AND CONDITIONAL LIKELIHOOD FUNCTIONS 
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Further, if we use a Gaussian representation of the joint density
 

then the indicated integration and division are analytical operations
 

with matrix algebra, and this is true even if we represent the joint
 

density as a convex mixture of several Gaussians, as shown in Appendix
 

F.
 

A particular approach to the efficient representation of a den­

sity function as a convex mixture of Gaussians is the CLASSY algorithm
 

[7]. We plan to adapt this algorithm for our use, to meet the re­

quirements of missing data and of large feature vectors, as described
 

in the following paragraphs.
 

The problem of missing data has been a central difficulty in all
 

multitemporal signature extension efforts. The two aspects that con­

cern us are: how to use incomplete data for estimation of crop area
 

and how to use incomplete data for training. The solution to the
 

first problem is conceptually straightforward. Suppose we have defined
 

a complete vector y which consists of spectral features (say just
 

Greenness) taken at interval closely spaced in time through the growing
 

season, say every nine days. For winter wheat, this might be a 30­

component vector,
 

Y = :l 

Suppose we actually have the likelihood function for this feature vector,
 

Pr(ylc). Let y be an observation which we wish to classify, where y con­

tains observations at only a subset of times,
 

fi} s fl,...,n} 

The the density of y is the marginal of Pr(ylc) integrated over the
 

missing observations,
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Pr(yjc) = f.. .fPr(yjc) dy. (6) 

js ii 

Again, if Pr(ylc) is represented as a convex mixture of Gaussian
 

densities, this integration is the sum of separate integrations for
 

each component density and is a matrix algebra operation for each.
 

The problem of estimation of Pr(ylc) with missing data is more dif­

ficult. Boullion [31] has approached this problem by using an iterative
 

procedure to make a maximum likelihood estimate of the density function
 

given incomplete data. He does not assume any particular value for the
 

missing components, but rather integrates over all likely values of
 

the missing components using an estimate of their conditional density
 

from previous iterations. However, this solution only considers single­

mode Gaussian density functions, whereas we believe that multimodal den­

sity functions correspond more closely to reality. We have defined an
 

approach in which the missing observations would be replaced by speci­

fic values, namely the conditional expectation based on previous itera­

tions. This approach is explained in Appendix F. Briefly, this ap­

proach would involve running the CLASSY algorithm in a loop. At the end
 

of each iteration CLASSY outputs a full-dimensional mean vector, a
 

covariance matrix and a prior for each component density. From these,
 

the conditional expectation of the missing data would be computed for
 

each observation and the reconstructed data entered into the CLASSY
 

algorithm for the next iteration.
 

There is another problem not mentioned above which has to do with
 

the rather limited number of data points available for training, com­

bined with the high dimensionality of the data vectors. This combina­

tion leads to near singularity in estimated covariance matrices-which,
 

in the'CLASSY program, are inverted a large number of times. CLASSY,
 

as it stands, makes no provision for inverting singular matrices (e.g.,
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generalized inverse) and will have to be modified before it can be used
 

with high-dimensional data. Since we expect a high degree of inter­

temporal correlation in the data, it may be feasible to carry out all
 

operations within CLASSY in a subspace of the full dimensional space.
 

As a last step in each iteration of CLASSY, a full-dimensional estimate
 

of the means and covariances would be calculated in order to compute con­

ditional expectations of the missing data points for the next iteration.
 

As yet, we have not tested this approach. Our plan calls for small scale
 

experimental runs to determine the feasibility of-the procedure described
 

in Section F.l of the appendix.
 

A word is in order as to why there are a limited number of data
 

points. There are 23000 pixels in a LACIE segment and we have 50-100
 

ground truth segments to choose from. However, we.are using quasi-field
 

means instead of pixels, (since the major source of variation is field­

to-field variation), and there may be only 400 of these per real class.
 

The idea that 23000 pixels gives 23000 degrees of freedom for estimation
 

is an illusion to begin with; the number of fields is a much better esti­

mate of the number of degrees of freedom, albeit still too large. To
 

substitute noisy pixel data in order to be able to invert matrices does
 

not attack the heart of the problem, it merely masks it.
 

Trajectory signature characterization as described in Sect3ion 4.7.3
 

does not suffer from the difficulty of too few data points, since the
 

number of features used is much smaller. Neither does it suffer from
 

the missing data problem since it has already smoothed over missing data
 

in the creation of features. Hence, CLASSY, or some other standard
 

training approach, can be used directly on the derived features.
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4.7.5 	ISSUES RELATED TO SIGNATURE CHARACTERIZATION BY AND .FOR 
ANALYST-INTERPRETERS 

Analyst-interpreters develop their own characterizations of crop
 

spectral signatures through years of training and experience. It is
 

not easy to determine or define this characterization, especially since
 

it also depends upon collateral information which may be available.
 

Two issues are relevant to the investigation of objective techniques
 

for labeling - analyst labeling performance patterns and analyst
 

extraction and quantification of collateral data.
 

In Section 4.9, we describe an experiment in analyst labeling of
 

field-like targets and substantial analyses of the results. These
 

analyses attempt to discover trends in the labeling performance that
 

can be of value in subsequent developments. One analysis examines
 

performance as a function of static spectral-temporal strata which in
 

a sense could be descriptive of the analyst's conception of spectral
 

signatures.
 

The second issue, analyst extraction and quantification of colla­

teral data, was not addressed during this year. It is, however, an
 

issue that will bear on optimization of the balance between man and
 

machine in new labeling techniques.
 

4.8 REFINED MACHINE LABELER FOR SPRING WHEAT VS BARLEY
 

The-problem of discriminating between spring wheat and other spring
 

small grains, of which barley is the'most important, emerged as one of
 

the key problems in LACIE [1]. In response to that need, ERIM has con­

ducted research to develop machine-based spring wheat/barley labeling
 

techniques. Last year, a first-generation machine labeler was developed
 

and tested. This work has been reported in detail [3] and is sum­

marized in Appendix G of this report. Its distinctive features are
 

its use of temporal-spectral profile fitting technology to estimate
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crop calendar shifts for.individual pixels and fields and its use of
 

a distance measure in the Greenness vs. Brightness plane during grain
 

ripening stages.
 

The test results indicated that the technique worked well in an
 

area encompassing the segments used for developing the decision logic,
 

but poorly in areas separated by some distance from those segments.
 

When results were poor, most of the spring wheat was labeled as barley.
 

It was also-noted that segments with poor results were in geographic
 

areas susceptible to drought conditions and likely to have brighter
 

soils than the others. An effort therefore was conducted to refine
 

the machine labeler, using the approach described in the next section,
 

4.8.1 APPROACH
 

Our approach to refining the labeler was keyed to developing and
 

using an understanding of the biological and physical phenomena involved
 

and their influences on the plant populations themselves. A sequence
 

of five steps was employed, as detailed in Appendix G. The first was
 

to formulate hypotheses to help establish a set of potentially useful
 

directions to pursue. Second, pertinent physiological relationships
 

and effects on spectral response were identified. Third, crop canopy
 

reflectance modeling was conducted to predict responses. Fourth, field
 

measurement data were analyzed. Finally, Landsat data were analyzed
 

to learn if they supported or refuted the hypotheses and to provide the
 

specific algorithm parameters.
 

4.8.2 RESULTS OF ANALYSIS
 

Hypotheses were established to the effect that moisture stress and
 

soil brightness were likely causes of altered spectral signatures. Lit­

erature survey showed that effects of prolonged moisture stress include
 

reduction in plant height, less tillering, thinner leaves, and an in­

creased rate of plant development.
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Reflectance modeling was performed and used to predict effects of
 

both moisture stress and soil brightness. Both were shown to exert
 

detectable influences on wheat canopy reflectances and, perhaps most
 

importantly, on the distance measure used for discrimination, during
 

the time period of greatest separability. The greatest effect of mois­

ture stress was to cause an apparent advance in the time period of maxi­

mum spring wheat/barley separability. The effects of soil brightness
 

were evident only when canopy closure was not full, i.e., as in early
 

or late season or when canopies are stressed. These soil brightness
 

effects were an offset or increase in the distance values and a changed
 

slope during the time period of maximum separability.
 

Another key result was the observation that the moisture stress
 

and soil brightness factors should be distinguishable and detectable
 

by separate processes. Noisture stress should be detectable in a re­

duced Greenness peak for small grains and soil brightness should be
 

measurable in early season acquisitions.
 

Landsat provided the major source of data for the ,specific labeler
 

refinement. Two iterations of data analysis were carried out. The
 

first iteration operated on pixels of small grains from six segments.
 

It employed a new two-step refinement of the original crop calendar
 

shift estimation technique. The added step employs a segment-specific
 

reference profile, based on the first-step shifts, to compute refined
 

crop calendar shift estimates. Also, the peak Greenness value of this
 

segment-specific reference profile was used as an indicator of segment
 

moisture stress. The apparent time period for separability of wheat
 

from barley was determined through a combination of quantitative (e.g,
 

discriminant analysis) and qualitative methods. These results supported
 

the hypothesized relationships and a preliminary revision of the labeling
 

logic was devised and tested, with encouraging results.
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The second iteration utilized pixel data from the same six segments
 

plus a seventh, together with the new profile model (Equation 2 of
 

Section 4.4 and Appendix A) in the second step of the segment-specific
 

shifting procedure. See Appendix G for details of the analysis per­

formed. Data processing and availability problems precluded use of
 

substantially more segments, as had been originally planned. Relation­

ships consistent with the hypotheses and our physical understanding of
 

the situation were developed although not as precisely as desired.
 

Nevertheless, a refined decision logic was specified in a procedural
 

form for test and evaluation.
 

4.8.3 REFINED DECISION LOGIC
 

The refined labeling logic allows for potential adjustments to
 

three parameters that describe the original decision line, based on
 

segment-specific spectral indicators. The available Landsat data were
 

sufficient to support specification of only two of the three; these
 

are the starting day of the period of separability and the initial
 

distance value. The third parameter, the slope of the decision line,
 

was fixed at the slope of the original decision line.
 

The key elements of the refined decision rule are illustrated in
 

Figure 11. Note that normal, non-stressed canopies have peak Greenness
 

values greater than G*, and that no adjustment in starting day is needed
 

for them. Also, they have a good canopy closure so soil brightness
 

adjustments are not required for them either. As moisture stress in­

creases, peak Greenness decreases and the starting day moves to an
 

earlier day. As soil Brightness increases under stressed canopies,
 

the decision line move up. Appendix G contains specific descriptions
 

of these decision rules, discusses their-physical interpretation to a
 

greater extent, and specifies a procedure for using them in labeling,
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4.9 A 	STUDY OF ANALYST-INTERPRETER LABELING OF FIELD-LIKE TARGETS
 

Ultimately the performance of a crop inventory system is dependent
 

upon the accuracy of its measurement sources. Critical to most strati­

fied area estimation procedures is the performance of analyst-interpre­

ters who provide labels for sampled targets.
 

Image interpretation was extensively used in the Large Area Crop
 

Inventory Experiment. In the earliest phase of LACIE, targets were
 

analyst-defined fields. Later, Procedure 1 utilized systematically
 

distributed 'dots' as targets. This section documents the first study
 

made of using machine-defined quasi-fields or blobs as labeling targets.
 

Appendix C describes the experiment design and provides details related
 

to the experiment. This section describes the objectives of the experi­

ment, the procedure utilized to label targets, and results of evalua­

tions of the analyst performance.
 

4.9.1 	OBJECTIVES OF THE ANALYST-INTERPRETER BLOB LABELING
 
EXPERIMENT
 

The overall objective of this experiment was to gain an under-­

standing of the analyst-interpreter labeling process in a field­

labeling environment. It was hoped that insight would be gained in
 

how individual analysts apply internalized decision-making processes
 

to discriminate small grains from other canopies.
 

Major considerations in this study included:
 

(1) Developing and examining procedures for the use of field­

like targets for labeling.
 

(2) Evaluating individual analyst perfbrmance in labeling these
 

targets.
 

(3) Evaluating between-analyst consistency and its implications
 

for improving labeling performance.
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(4) 	Evaluating the impact of analyst performance on consistency
 

and accuracy of crop proportion estimates.
 

(5) 	Establishing a data base for evaluating Procedure M (Section
 

6).
 

Specific objectives related to these major considerations are listed in
 

Table 11.
 

It should be emphasized that major consideration is given to under­

standing the performance of analysts working individually without con­

sultation. This approach was taken, rather than the Phase III LACIE
 

labeling situation wherein analyst-interpreters consulted. This was
 

done in order to gain an understanding of the decision-making process
 

of individuals and how that process can vary from analyst to analyst.
 

4.9.2 THE LABELING PROCEDURE
 

Blob targets from 18 LACIE TY78 (Transition Year 1978) blind sites
 

from the Northern Great Plains were labeled grain or non-grain inde­

pendently by each of three LACIE-experienced analysts. To insure uni­

formity of the labeling procedure, that procedure was defined jointly
 

by the analysts and their supervisor prior to the actual labeling.
 

In addition, each analyst labeled the segments in a different random
 

order, repeating the first three at the end of the sequence in order
 

for us to examine learning trends .(see Appendix C for details).
 

The procedural steps employed are summarized in Table 12. These
 

procedures are not operationally recommended, but were defined for use
 

in this experiment alone. For example, all blobs with interior pixels
 

were labeled whereas operationally only a subset (e.g., 40 or 100)
 

would be labeled. Any deviations from the standard procedure were
 

noted by each analyst on a segment comment form. No substantial
 

deviations were recorded. These notes are summarized in Appendix C.
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TABLE 11. SPECIFIC OBJECTIVES OF ANALYST BLOB
 

LABELING EXPERIMENT
 

Develop and examine procedures for the use of field-like targets
 
for labeling
 

- Develop labeling aids and procedures
 

- Analysts subjectively evaluate BLOB labeling approach
 

" 	Evaluate individual analyst performance in labeling targets
 
as a function of:
 

- Target level variables
 
* related to target structure
 

-- blob size
 
-- blob purity
 

* related to target state.
 
-- crop type
 
-- acquisition history
 

-- crop calendar (profile diagnostics) 

-- crop condition (peak green) 

- Spectral strata (examine as a function of static spectral
 
trajectory zones)
 

- Segment-level variables
 
* percent agriculture
 
* percent grain
 
" percent confusion crop
 

" 	Evaluate joint or between-analyst performance in labeling
 
targets
 

- Analyst consistency
 
* analyst learning trends
 
* absolute between-analyst consistency
 
* consistency vs. accuracy
 

- Average, vote and consensus labeling performance compared
 
to individual performance
 

- Evaluation of low confidence labels
 

" 	Evaluate analyst performance and consistency in estimating crop
 
proportions
 

• 	Establish a data base of AI labels for evaluating Procedure M.
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TABLE 12. LABELING PROCEDURE FOR PROCEDURE M TEST
 

The procedural steps for labeling BLOBS (clusters) for the
 
ERIM Procedure M test are outlined in this document.
 

1. 	Each analyst will label the BLOBS in the 18 TY segments (in a pre­
specified random order).
 

2. 	Labeling will be performed independently by each analyst.
 

3. 	Each analyst will relabel the first three segments after all 18
 
segments have been labeled.
 

4. 	After labeling each segment the analyst will fill'out the "segment
 

comment forms".
 

5. 	After labeling all 18 segments and prior to relabeling the first
 
three segments the analyst'will complete the "final comment form".
 

6. 	Detailed BLOB labeling instructions are given below:
 

a. 	For each segment, BLOB overlays keyed to the LACIE sample
 
segment products (Products 1, 2 and 3) have been generated
 
as well as line printer maps of the BLOBS for each segment.
 
The line printer maps will be used by the analyst to record
 
the label for each BLOB.
 

b. 	A BLOB is to be labeled spring small grains if it is at least
 

50% spring small grains, labeled non-spring small grains if
 
it is less than 50% spring small grains. When there is con­
siderable question about which label to assign a BLOB, the
 
BLOB will be labeled based upon the analyst's best guess and
 
so designated. If a BLOB is mixed (i.e., composed of approxi­
mately 50% spring small grains and non-spring small grains) it
 
will be flagged and labeled on the line printer map.
 

c. 	The label for each category will be coded on the line printer
 
map as follows:
 

- Spring Small Grains - Red
 

- Non-Spring Small Grains - Green 

- Questionable Spring Small Grains - Question Mark (?)
 
on Red BLOB
 

These procedures were developed by three LACIE analysts under the
 
supervision of Mr. Robert Payne of Lockheed Electronics Corporation.
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TABLE 12. LABELING PROCEDURE FOR PROCEDURE M TEST* (Cont'd)
 

- Questionable Non-Spring Small Grains - Question Mark (?) 
on Green BLOB 

- Mixed BLOB - The BLOB will be labeled using the >50%
 
criterion and then outlined in blue.
 

d. 	The analyst should examine the acquisition listing in the table
 
in order to become familiar with the acquisitions used for
 
generating the BLOBS.
 

e.. 	Grid overlays (10 pixels by 10 scan lines) will be keyed to
 
the line printer map in order to facilitate analysis.
 

f. 	Each of the 18 segments will have a packet consisting of the
 
same material (ancillary data, maps, normal crop calendars,
 
crop calendar adjustments, etc.) used during LACIE TY opera­
tions. The exception to this is that the spectral aids will
 
not be used for crop identification (because they do not
 
match the blob targets).
 

g. 	All analysis techniques (i.e., image interpretation techniques
 
will be the same as those used during the LACIE TY operations).
 

NOTE: 	 It is anticipated that the time required to label and com­
plete the evaluation forms will be approximately'10 hours**
 

(per segment).
 

These procedures were developed by three LACIE analysts under the
 
supervisionof Mr. Robert Payne of Lockheed Electronics Corporation.
 

Actual time averaged approximately eight hours.
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It should be noted that specific decision criteria for labeling
 

blobs were not included in this procedure. It was expected that the
 

decision criteria developed in labeling dots as grain/non-grain through
 

years of LACIE experience would form the base for the analysts' decision­

making processes. It was, in fact, variation in each analyst's per­

ception of what was a 'grain signature' that was expected to lead to
 

variation in labels. Due to the short time frame available for organiz­

ing and conducting this experiment, spectral aids in,the form of tra­

jectories in Greenness vs. Brightness space were not developed for the
 

blobs; however, all other standard LACIE ancillary data were available
 

and recommended for use as usual.
 

4.9.3 ANALYST RESPONSE
 

Three analysts labeled an average of 379 blob targets for each of
 

18 segments over a six-week period of time, averaging eight hours effort
 

for each segment. Their diligent effort is documented in the 'Report
 

on the Analyst Test Using the ERIM Blob Labeling Procedures' [32].
 

The analysts' reactions to the overall blob labeling process provide
 

an insightful critique of the blob labeling environment. Table 13 is
 

extracted from their report and summarizes significant findings and
 

recommendations. The analysts' reaction to the blob targets, in parti­

cular with regard to disjointed blobs, was a motivating influence in
 

the development of SUPERB, a field-tinding algorithm that insures spa­

tial contiguity (refer to Section 4.6.3 and Appendix D). In addition,
 

their reaction to small blobs helped motivate one estimation approach
 

(described in Section 5.5) which utilizes 'extended' labels. It is
 

expected that the definition of operational procedures will call heavily
 

upon analyst recommendations, in particular the selection 6f appropriate
 

acquisitions for blobbing.
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TABLE 13. THE SIGNIFICANT FINDINGS AND RECOMMENDATIONS
 
CONTAINED IN THE ANALYST BLOB LABELING REPORT
 

1. Strong Points
 

" 	BLOBS are easier to label than the dots used in Procedure 1
 
(P-i). A Blob represents a field center and does not con­
tain border or edge dots as may a P-I dot.
 

* 	Blobs represent field centers rather well.
 

* 	If ERIM reduces the number of Blobs to approximately 100, as
 
currently planned, labeling of Blobs should be as efficient
 
or perhaps more efficient than the labeling of dots in Pro­
cedure 1.
 

2. Problem Areas
 

* 	The Blobbing technique, as currently implemented, produces
 
too many blobs for labeling (400-600).
 

* 	Small or stripped fields do not blob or cluster very well.
 

" 	Acquisitions selected for Blobbing by ERIM for the labeling
 
test were not always optimum.
 

" 	Blobs were frequently disjointed which resulted in labeling
 
difficulties.
 

" 	Small Blobs containing only 1 to 3 pixels are difficult to
 
label.
 

3. Recommendations
 

Acquisition selection for Blobbing should be based on multi­
temporal spectral information as well as spatial information
 
(spatial data was used as the primary selection criteria for
 
the test).
 

" 	Research should be conducted into the small fields problem.
 

a 	Reduce the use of single-pixel blobs whenever possible.
 

* 	Modify the line printer blob map and Production Film Converter
 
(PFC) blob overlay. The current format of these two products
 
is not conductive to efficient analyst labeling.
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In addition to their report, analyst comment forms filled out upon
 

completion of labeling in each segment and an overall summary after
 

labeling all segments provided information with regard to critical as­

pects of their labeling effort. These forms are summarized in Appendix
 

C for the questions listed in Tables 14 and 15.
 

4.9.4 EVALUATION OF ANALYST-INTERPRETER PERFORMANCE
 

Labels from each of the three analysts (referred to as Green, Red,
 

and Blue) for over 6000 blob targets in 17 LACIE TY78* blind sites were
 

incorporated into an SPSS-formatted (Statistical Package for the Social
 

Sciences) data base. Evaluation of analyst performance was conducted
 

for each of the specific objectives listed in Table 11. Appendix C des­

cribes the experiment design, the data base, and analyses in detail.
 

This section will summarize major results of the experiment.
 

Evaluation of analyst-provided labels was carried out by examining
 

each analyst's performance individually. In addition, two types of
 

labels were fabricated from the three labels. These were a 'vote'
 

label and an 'average' label. A vote label is assigned by the majority
 

label of each blob (i.e., if at least two of the three analysts labeled
 

it grain, the blob is assigned a grain label). The average label simply
 

averages the three labels (e.g., if two analysts label grain, the blob
 

is two-thirds grain).
 

Table 16 presents the overall 17-segment accuracies in terms of
 

the percent of blobs correctly labeled. These results are similar to
 

those experienced in Procedure 1 dot labeling. The wide variation from
 

analyst to analyst, especially in labeling grains is noteworthy. Vote
 

and average labels were used as two techniques to evaluate the joint
 

use of analyst labels. Since patterns detected in individual analyst
 

labels were also detected in the vote label, it will be used to illustrate
 

analyses.
 

*Ground truth unavailable for one of the original 18 segments.
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TABLE 14. QUESTIONS DIRECTED TO ANALYSTS-UPON COMPLETION
 

OF 	LABELING FOR EACH SEGMENT
 

" Were Landsat acquisitions deficient?
 

" Was choice of acquisitions for BLOB optimal?
 

" Do blob interiors seem pure?
 

* Do blob patterns match field patterns?
 

" Did you have to change your procedure?
 

" Describe:
 

- percent agriculture
 

- percent small grains
 

- major grain crops
 

- average field size
 

- topography
 

- apparent moisture
 

TABLE 15. QUESTIONS DIRECTED TO ANALYSTS UPON
 
COMPLETION OF ALL LABELING
 

* 	Describe general impressions of labeling blobs
 

* 	List major problems and strong points
 

* 	Comment on suitability of analyst aids
 

* 	What procedures did you develop to organize and
 
use the product?
 

* 	Recommend improvements
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TABLE 16. PERCENT OF BLOBS- CORRECTLY LABELED
 
IN 17 LACIE TY78 BLIND SITES
 

Percent Correct
 

.Label Grain Not Grain
 

Green 68.6 93.9
 

Red 71.1 89.8
 

Blue 51.0 95.3
 

Vote 66.8 94.9
 

Average 63.6 93.0
 

*For this chart a blob is considered grain if at least 50% of it is
 

grain.
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Table 17 presents overall proportion estimates derived directly
 

from the 	analyst labels and compared to the true estimate* for the
 

labeled targets. Each estimates the proportion of grain. The vote,
 

average, 	and Red labelers produced the best estimates in an RMS sense,
 

and the Red labeler provided least overall bias.
 

Analyses led to a number of observations summarized in Table 18.
 

These will be discussed in the next section with reference to the
 

experiment objectives.
 

4.9.4.1 	Analyst Performance Related to Target, Spectral and
 
Segment Level Variables
 

Target-Level Variables: A number of parameters related to the
 

structural and agronomic makeup of blobs were related to analyst per­

formance. These included blob size, blob purity, crop type, crop calen­

dar, and crop condition. A significant relationship is expected be­

tween the availability of appropriate spectral time history and label­

ing accuracy; however, this experiment was not designed to address this
 

issue as segments were selected to minimize the impact of inadequate
 

acquisition history.
 

The target structure -- its size and purity** -- was found to be 

related to analyst performance. For the most part, blob targets were 

pure with respect to crop type. Though analysts were instructed to use
 

50% purity levels as a decision threshold, Figure 12 reveals a decision
 

behavior that is logistic in nature. A blob that was half grain would
 

be labeled as grain about 35% of the time, which corresponds to half
 

the grain labeling accuracy for pure grain blobs.
 

This excludes blobs not labeled by analysts.
 

Since blobs are machine-defined, they may not be strictly pure but
 
may overlap grain and non-grain fields. Blob purity is discussed
 
in Section 6.2.
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TABLE 17. GRAIN PROPORTION ESTIMATES DERIVED FROM ANALYST LABELS
 
FOR ALL BIG BLOBS IN 17 LACIE TY78 BLIND SITES
 

Label Proportion- Bias Std. Dev. RMS
 

Green .297 -.038 .110 .116
 

Red .326 -.010 .099 .100
 

Blue .231 -.104 .081 .137
 

Vote .285 -.050 .089 .102
 

Average .283 -.051 .084 .098
 

Truth** .335
 

*Blobs were weighted by their sizes.
 

**Includes only those blobs labeled by analysts.
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TABLE 18. FINDINGS OF THE ANALYST LABELING EXPERIMENT
 

* 	 Non-grain labeling accuracy is significantly greater than grain
 
labeling accuracy, indicating a tendency toward conservative
 
labeling of grains.
 

* 	 Spring wheat was labeled correctly as grain more consistently
 
and more often than barley and oats (oats were labeled as
 
grain at a 30% rate in North Dakota, but at a 90% rate in
 
Minnesota).
 

* 	 Summer crops and grasses were not a significant problem with re­
spect to errors of commission.
 

* 	 Significant between-segment variations in the labeling of spring
 
wheat, barley and oats were not found to be related to the pro­
portions of grains or agriculture present in the segment.
 

" 	 The probability of a given label appears functionally related to
 
the target purity.
 

* 	 Analyst accuracy increases as target size increases.
 

* 	 Grains are mislabeled if they do not conform to a 'standard'
 
spectral profile.
 

- Correctly labeled grains exhibit similar spectral profiles
 
across all segments
 

- Incorrectly labeled grain trajectories differ distinctly
 

- Linear discriminant analysis of crops at a segment level
 
revealed accuracy patterns similar to analysts
 

- A standard wheat signature concept may be key to analyst
 
labeling behavior
 

* 	 Distinctive relationships were observed between labeling accuracy
 
of 	grains and profile derivates, shift and peak Greenness.
 

- Error increases as shift deviates early or late from the
 

segment norm
 

- Error increases when peak green is low 

- Errors arising from late shift are not as prominant in the 

presence of high peak green values 
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TABLE 18. FINDINGS OF THE ANALYST LABELING EXPERIMENT (Cont.)
 

* 	 The use of a vote or average label based on three independent analyst
 
labels provides a more stable estimate than one based on the selec­
tion at random of any one analyst, and more accurate than the aver­
age label of two analysts.
 

* 	 Proportion estimates based on each analyst's labels underestimated
 
wheat and were statistically described in a linear regression as
 
primarily offsets.
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Labeling accuracy was found to be correlated to the size of the
 

labeling target. Figures 13 and 14 illustrate the relationship detect­

ed for each analyst anid the vote label. Note that accuracy improves
 

whether the blob is grain or non-grain. This tendency was found signi­

ficant in each analyst and in the vote label for both the Pearson test
 

and the Spearman rank test. It is conjectured that accuracy in label­

ing dots in Procedure 1 is similarly related to the size of the field
 

in which the dot appears.
 

As is elaborated upon in Appendix C, range land and non-crop land
 

were not confused as wheat. It is particularly interesting to note
 

that in North Dakota, oats where mislabeled at a 70% rate, yet oat
 

fields were generally large (contradicting the field size trend).
 

These oat fields were generally earlier, hence may be confused with
 

pasture. Yet, accuracy in Minnesota was over 90%.
 

Since analysts,were not instructed to label non-grains by crop,
 

errors of grain omission, which were prevalent, cannot be related to
 

the presence of specific confusion crops. No significant relationship
 

was found relating analyst accuracy (in terms of percent correct
 

classification, or proportion.estimate) to the proportion of wheat
 

or grains. However, Figure 15 illustrates an unexpected trend in
 

relating error to other canopies. All three analysts displayed a
 

slight tendency, represented here by the vote label, to greater
 

accuracy in labeling grain as grain when crop land other than grains
 

was present. Similarly, wheat was labeled as grain more often in the
 

presence of non-wheat canopies. Since the.prevalent non-crop canopy
 

is rafige land (including pasture and other grasses), it is hypothesized
 

that confustion of grains as range land may occur.
 

In order to assess the relationship between labeling accuracy and
 

agronomically related conditions, the profile diagnostics, crop
 

calendar shift and peak Greenness were computed for each blob, as
 

described in Section 4.4 and Appendix A. It was found that blobs
 

whose estimated crop calendar shift deviated greatly, either early
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or late, from the segment-specific norm were less accurately labeled.
 

Indeed, even segments whose average shift deviated from a norm among
 

segments achieved lower accuracy. When estimated peak Greenness was
 

very low, both early and late shifts correlated with poor performance.
 

However, errors for high peak Greenness levels were found only with
 

early shifts. These findings indicate that the agronomic state of a
 

target is'an important influencing factor in labeling performance.
 

Spectral Strata: The dependency of analyst performance as a func­

tion of the various crop signatures manifested is a key issue in under­

standing labeling behavior. It was previously suggested that substan­

tial variations of that signature from a 'normal' state due to varia­

tions in crop condition or in crop calendar resulted in reduced ac­

curacy. To evaluate performance as a function of the spectral crop
 

signature, an analyses was initiated that employed a-physically-based
 

temporal/spectral stratification technique that divides spectral pat­

terns in time in a manner that permits a standard physical interpreta­

tion. This technique is described in Section 6,2.
 

Analysis to this point has revealed analyst preferences toward
 

certain signature patterns over others that are equally likely. A
 

simple illustration is provided in this section. Figure 16 illustrates
 

a potential spectral path grain could follow through time. The path
 

illustrated conforms to 'normal' crop development pattern wherein a
 

potential grain target would exhibit a bare soil signature initially
 

that geeens up to a peak value and senesces, during which the grain
 

siggature would brighten and decrease in Greeness. Considering a
 

second pattern which is the complement of this, we are able to examine
 

analyst performance as a function of each spectral path. No correction
 

is made to account for segment-specific crop calendars."
 

As is seen in Table 19, although nearly 40% of the grain spectral
 

trajectories do not follow the stated 'normal' path, they are labeled
 

at an average rate of 57.2% correct, where the 60% in the first path
 

are accurately labeled at a rate of 82.2% correct.
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o FIGURE 16. TEMPORAL-SPECTRAL TRAJECTORY PATH FOR STRATIFICATION OF ANALYST 
PERFORMANCE (FOLLOWED BY 60% OF GRAIN)
 



TABLE 19. ANALYST ACCURACY RELATED TO TEMPORAL-SPECTRAL PATH OF BLOB MEANS,
 

PERCENT CORRECTLY LABELED
 
PERCENT OF BLOBS 

THAT FOLLOW PATH By VOTE RED GREEN BLUE- AVERAGE 

PATH NG G G NG G NG G NG G NG G NG G 

__ -- NG+G -- -

'NORMALGRAIN' 12.4 60.4 83,0 91.2 85.5 90.2 85.6 85.6' 88.6 93.3 72.3 89.7 82.2 

ALL OTHERS 87.6 39.6 31.1 98,2 59.8 97.6 61.3 93.3 66.7 97.7 43,6 96.2 57.2
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4.9.4.2 Between Analyst Labeling Performance
 

Analysis of analyst agreement on labels provides insight to factors
 

influencing analyst performance. Table 20(a) displays the percent of
 

analyst decisions in correct agreement in labeling various canopies as
 

grain or non-grain. Note that 19.9% of all grain blobs were incorrectly
 

labeled by all three analysts. If this were strictly a random event
 

dependent on individual analyst labeling performance, one would expect
 

only 2.8% of the targets to be missed by all analysts (Table 20(b)).
 

This is a very'clear indication that the pattern of labeling behavior
 

is being consistently influenced by external factors.
 

Table 21 illustrates the probability of a correct label as a func­

tion of analyst agreement. This provides an indication of the confidence
 

one can have in the analysts' labels when regarded jointly. For ex­

ample, this table illustrates that a non-grain label from all three
 

analysts was truly a non-grain canopy 98.0% of the time. Whereas, when
 

a dissenter appeared among the three analysts, the two in agreement were
 

correct only 69.9% of the time. The correctness of a grain label can­

not be viewed as confidently, even if all three analysts agree upon the
 

label. Information is carried in the dissenting label.
 

4.9.4.3 Analyst Performance in Estimating Crop Proportions
 

Two issues relate to analyst performance in estimating crop pro­

portions. First, do estimates based on aggregating all analyst labels
 

relate to the true proportions? Secondly, are analysts in agreement
 

with one another even if proportion accuracy is poor?
 

Earlier, Table 17 provided proportion estimation performance for
 

each type of label. Figure 17 illustrates the relationship between
 

estimates based on the vote label and ground truth. The tendency is
 

to underestimate grains, but in a consistent manner. The R = 0.83
 

and a regression line determined primarily by offset both indicate
 

a consistent trend toward underestimating the presence of grains.
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TABLE 20. ANALYST CONSISTENCY
 

(a) Percent of Decisions in Correct Agreement
 

No. Analysts >50% >80% Summer Pasture
 

Correct Non-Grain Grain Grain Wheat Oats Barley Crop & Grass
 

0 of 3 1.7 21.5 19.9 7.8 61.4 15.3 0.3 0.0 

1 of 3 4.6 13.9 11.2 9.6 10.0 21.2 3.3 0.6 

2 of 3 10.7 22.3 20.5 16.6 6.9 34.7 12.2 3.8 

3 of 3 83.1 42.4 48.4 66.1 13.6 28.8 84.1 95.6 

(b) Percent of Decisions in Correct Agreement as a Random Event
 
(Analyst Accuracies as Prior Probabilities)
 

No. Analysts >50% . >80% Summer Pasture 
Correct Non-Grain Grain Grain Wheat Oats Barley Crop & Grass 

0 of 3 0.2 4.9 2.8 0.5 41.1 3.9 .003 .001 

1 of 3 1.1 26.3 20.2 7.9 42.8 25.6 15.3 .05 

2 of 3 17.4 45.0 45.4 37.4 24.5 48.6 48.3 4.8 

3 of 3 81.4 23.8 31.5 54.2 4.1 21.9 84.2 95.2 



TABLE 21. PROBABILITY OF CORRECT LABELING AS A FUNCTION OF AGREEMENT
 

No. Analysts >50% >80% Summer Pasture
 
in Agreement Non-Grain Grain Grain Wheat Oats Barley Crop & Grass
 

2 69.9 61.6 64.7 63.4 40.8 62.1 78.7 86.4
 

3 98.0 66,4 70.9 89.4 18.1 65.3 99.6 100.0
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Analysis of the consistency of proportion estimates between analysts
 

revealed no specific tendencies. Figure 18 illustrates differences in
 

the regression lines of the estimates derived from each analysts labels.
 

On eight occasions the analyst-based estimates were within 0.01 of each
 

other, but these were not in any way related to the degree of accuracy.
 

Interestingly, however, the vote label tended to moderate the level of
 

inaccuracy when analysts' estimates varied substantially from one another.
 

In five segments in which analyst estimates differed by more than 0.13
 

absolute (an average of 0.165), their accuracy deviated by an average
 

of 0.124-absolute from true, whereas the vote label deviated only
 

0.070. A reduction in variance is expected in averaging. However, this
 

implies that a vote label results in reduction in the variance of an
 

estimate as well. Accuracy of the vote versus average labels is a
 

function of the confidence one has ii the separate labels when a dis­

senter is present. Table,21 illustrates that in labeling pasture,
 

grass or summer crops, a vote label would have a higher expected ac­

curacy than an average label if there is a dissenter (greater than
 

66.6%)._ But in labeling wheat, the dissenter carries more information
 

and an averaging process would be preferable.
 

4.10 IMPLICATIONS FOR LACIE-IDENTIFIED PROBLEMS
 

The approach and analysis results presented in the preceding sub­

sections of Section 4 have implications for the-possible solution of
 

major labeling problems identified in LACIE (c.f. Section 4.1).
 

The first and greatest error source identified was "abnormal sig­

natures", that is, temporal sequences of image colors and data that did
 

not match the analyst-in'terpreter's conception of the proper sequence
 

and pattern for wheat and other small grains. Machine-extracted fea­

tures and physically-based temporal/spectral stratification offer
 

potential help. Whil6 differences in planting date can cause confus­

ing spectral sequences, calculations of spectral crop calendar shift
 

for individual fields or pixels should provide an objective aid for
 

identifying the existence, magnitude, and range of such differences.
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Abnormal crop growing conditions, such as drought stress, can cause
 

abnormal sequences and patterns. On a segment-wide basis, spectral
 

indicators such as the Green Index Number and the peak Greenness of a
 

segment-specific profile should help flag those conditions. For indi­

vidual fields or pixels, profile fits could provide estimates of peak
 

Greenness and green-up and green-down (senescence) rates. In addition
 

to spectral indicators, meteorologically based estimates of crop calendar
 

and moisture stress should be useful for segment characterization and
 

perhaps eventually for field characterization.
 

Abnormal color patterns in many instances may be artifacts of the
 

color products utilized and the observation conditions. Section 4.6
 

described an improved approach to the generation of image products that
 

should stabilize the meanings of colors and improve interpretation, con­

sistency and accuracy. Finally, "abnormal signatures" may just be a
 

reflection of.a lack of inherent separability in Landsat data. If so,
 

machine approaches will not be of any avail.
 

The second identified source of labeling errors was associated
 

with boundary and edge pixels. The BLOB algorithm, followed by the
 

stripping operation, allows one to automatically detect and eliminate
 

or otherwise handle such pixels as labeling targets. The consequences
 

of various options for the area estimation process are discussed later
 

in Section 5.5.
 

The third error source identified was missing acquisitions. Cer­

tain combinations must be present to adequately represent the local
 

phenology of the crops of interest. Machine processing cannot create
 

those missing acquisitions, but the temporal-spectral profile fitting
 

technology should help identify the relationships between the crop
 

phenology and the available acquisitions and then provide objective
 

criteria for eliminating segments from further processing if adequate
 

acquisitions are not present.
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The final error source was a miscellaneous category that included
 

inconsistent labeling patterns and clerical errors. Machine functions
 

could be defined to do consistency checking and thereby minimize this
 

type of error.
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5 
MACHINE PROCESSING COMPONENTS FOR AREA ESTIMATION
 

The components of a stratified area estimation technology were
 

presented in Section 3. The objective of this section is to present
 

developments in the components that create an environment for effec­

tive labeling and for the efficient use of labels in overall area
 

estimation technology. Specifically, data normalization (Section 5.2),
 

stratification (Section 5.3), sampling (Section 5.4), and estimation
 

(Section 5.5) are discussed.
 

A baseline stratified area estimation system, called Procedure M
 

is utilized as a testbed within which to develop and evaluate advanced
 

component technology. Section 5.1 summarizes the salient features of
 

Procedure M to provide a context for the following sections.
 

5.1 PROCEDURE M
 

Procedure M [3] embodies a Stratified Area Estimation (SAE) concept.
 

The procedure was developed at ERIM for a multicrop application, based
 

on Procedure B [9] which was developed earlier for application to the
 

estimation of area for a single crop.
 

LACIE's Procedure 1 [1] is a two-stratum SAE procedure. The sta­

tistical framework utilized in Procedure M is in the same multistratum
 

vein as the Procedure IA approaches currently under development at JSC
 

[33], with the distinction that Procedure M performs a further strati­

fication into large fields and small fields by an automatic technique.
 

In current implementations, only the large fields are used in producing
 

estimates; for them Procedure M is unbiased with respect to the source 

of labels but, as is typical of existing SAE procedures; errors
 

introduced in labeling are propagated through to the final estimates.
 

A bias is also introduced if the large fields do not appropriately
 

represent the distribution of crops in the small fields and a slight
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bias was noted in a major test of the procedure [3]. Sampling strategy
 

is discussed in Section 5.4.
 

In addition to a field-size stratification, what uniquely sets 

Procedure M. apart is an emphasis on physical understanding related to 

making area estimates of agricultural classes using remotely sensed 

data from a space-borne platform. The utilization of field-like targets 

as the principle sampling unit is an example of this. Another is the 

emphasis placed on understanding in a formal way the sensor's response 

to agricultural scenes in order to achieve a standardized spectral 

domain that is independent of atmosphere, solar geometry and sensor 

characteristics that interfere with the interpretability of the data 

in agronomic terms. A spring wheat configuration of the procedure' 

utilizes automatic technology, described in Section 4, to estimate 

spring wheat in the presence of other spring small grains. This 

technology is derived from an agronomic understanding of the sensor's 

response to crop classes and phenologies in the presence of varying 

soil'and climatic conditions. 

Table 22 outlines some of the features of Procedure M, and Table
 

23 describes two specific configurations of Procedure M, as well as
 

indicating areas under development that are discussed in the following
 

sections and elsewhere in this report.
 

5.2 DATA NORMALIZATION
 

Landsat data values are measures of radiances in the field of view
 

of the sensor. Efforts conducted in modeling the response of the
 

multispectral scanner [34,35] have illustrated how radiance is affected
 

by atmospheric, geometric and sensor conditions, in addition to the
 

surface phenomenon being viewed. Ideally, a standardized signal response
 

to a given reflectance at the ground is desirable; other variability
 

is just noise, relative to the information need for crop identification,
 

Indeed, even some canopy-related variations can be viewed as noise.
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TABLE 22. FEATURES OF PROCEDURE M
 

Multiclass
 

Stratified areal estimates of any number of classes (e.g.,
 
crops) can be produced.
 

*
.Multitemporal
 

Any number of Landsat acquisitions can be utilized.
 

* Multisegment
 

Segment 	samples can be grouped in order to reduce the
 
requirement for labeling.
 

M
Nodular Implementation
 

Procedure components are interchangeable; as components
 
are improved, they are simply inserted in place of
 
existing ones.
 

* Statistically Stable
 

The bias and variance of the estimates are determinable
 
and consistent results are produced to the precision of
 
the mechanism by which the final sampling target is
 
identified (labeled).
 

* Physically based
 

Procedure components take advantage of physical under­
standing of the sensor and atmosphere, and application­
oriented understanding of the resource being inventoried.
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TABLE 23. PROCEDURE M COMPONENT TECHNOLOGIES 

Component 
Multicrop 

Configuration 

AAditions for 
Spring Wheat 
Configuration 

Data 
Preparation 

LACIE 5x6 Segments 
SCREEN 
XSTARSv 

Feature 
Extraction 

TASCAP 
BLOB 

Trajectory Shift 
Soil, Stress Indicators 

N) 

Stratification Field Sizez 
BCLUSTER 

Sampling Proportional to Size 

Attribute 
Assignment 

Blob Targets 
Analyst Interpretation 

AI for Grains 
Machine for Spring Wheat 

Aggregation 
and 
Estimation 

Weighted Sum 

l---


Advanced Technologies
 
Discussed in This Report
 

L3 L2 Conversion
 
(Section 5.2)
 

Crop Calendar Estimation
 
SUPERB (Section 4.6)
 

Tolerance Block
 
Physically-based Strati-.
 
fication (Section 5.3)
 
Neyman Sampling
 
Label Error Effects
 
(Section 5.3)
 

AI Labeling Expmt (Sec­
tion 4.9)

Refined Labeler (Sec 4.8)
 

Small Blob Bias
 
Reduction
 

Nearest Neighbor Label
 
Extensions (Sec. 5.5)
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The purpose of normalization, then, is to establish a representa­

tion of the data that can be interpreted in a consistent manner.
 

Normalization of data in four situations is particularly crucial.
 

* 	Sensor-to-Sensor: To utilize similar feature extraction
 

and interpretation technology, independent of the particular
 

measurement system version.
 

" 	Segment-to-Segment: To enable the extension of statistical
 

information related to a given crop from one site to another
 

without influence of effects external to the object class
 

of interest.
 

" 	Time-to-Time (within a segment): To consistently relate
 

temporal-spectral trajectories of a class (developed from
 

a number of acquisitions) to underlying agronomic phenomena.
 

Field-to-Field (within a crop); To investigate the vari­

ability of a crop class that is due solely to natural
 

responses to conditions and not due to external effects
 

like the atmosphere.
 

5.2.1 CURRENT NORMALIZATION PROCEDURES
 

The Procedure X testbed currently utilizes an integrated set of
 

normalization techniques to reduce variations due to effects external
 

to the canopy itself. The procedures include:
 

* 	Data Screening: To remove clouds, shadows, garbled data,
 

and to flag water [36].
 

* 	Sun Angle Correction: To standardize the Landsat viewing
 

condition to a fixed solar geometry [30].
 

* 	Haze Correction: To standardize the atmospheric conditions
 

at time of acquisition [37].
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Sensor Calibration: .To standardize the signal response
 

independent of space-borhe multispectral sensor (Landsat 1,
 

2, and 3) [38, and Section 5.2.2].
 

5.2.2 LANDSAT 3 TO LANDSAT 2 CALIBRATION
 

A multiplicative and additive transformation which alters Landsat
 

3 data to simulate Landsat 2 data was developed this year and is
 

presented in this section. Appendix H describes in detail the
 

procedure employed to develop the transformation. The objective in
 

deriving such a transformation is to be able to directly apply
 

techniques developed for the normalizatibn and interpretation of
 

Landsat 2 data to Landsat 3 data.
 

The transformation is of the form
 

(2) (3)

x =a. x. + b. (7) 

(2 ) and x.
with x. (3 ) representing the Landsat 2 and Landsat 3 signals

1 1
 

in channel i.
 

The vectors a and b are estimated to be:
 

1i.17251 0 MSS51.137(

a;1.2470) and b = where the 
 1MSS6and \i MSS4\ 

1 

order is MSS76
 

(1.16 0MS S7 

These coefficients, which indicate an attenuation in each band's
 

signal range, differ by only 2 to 6% from NASA Goddard Space Flight
 

Center prelaunch estimates except for Band 6 which differs by 18%.
 

In addition to the objective statistical procedures used to develop
 

these coefficients, their accuracy was also evaluated subjectively
 

by examining Tasseled-Cap transformed values and the results of applying
 

SCREEN and XSTAR algorithms. The Tasseled-Cap components compared
 

favorably in their orientation and magnitude to Landsat 2 components
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of the same segments measured within a nine-day interval. SCREEN and
 

XSTAR, which are based on Landsat'2 calibration, were found to'perform
 

reasonably on the corrected Landsat 3 data. Also, Greenness time
 

trajectories composed of both Landsat 2 and 3 acquisitions for particular
 

grain fields were found to be more closely Sigmoidal in shape than
 

thei uncalibrated counterparts.
 

5.3 STRATIFICATION
 

5.3.1 BENEFIT/COST OF STRATIFICATION
 

Stratification is a well-known statistical tool to enable
 

efficient sampling of a population. Among several reasons listed
 

for stratifying, Cochran writes [39]:
 

Stratification may produce a gain in precision in the estimates
 

of characteristics of the whole population. It may be possible
 

to divide a heterogeneous population into subpopulations, each
 

of which is internally homogeneous.. .If each stratum is homo­

geneous, in that measurements vary little from one unit to
 

another, a precise estimate of any stratum mean can be obtained
 

from a small sample in that stratum.
 

It is for this reason that stratification of Landsat spectral variables
 

is sought.
 

Efficiency in stratified areal estimates can be realized either
 

by a reduction in the number of labels (measurements) needed for a
 

given variance in the estimate, or by a reduction in variance for a
 

given number of labels.
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Richardson [40] suggests,a measure of cost/benefit of stratification
 

for a two-class situation (details discussed in Section 6.1.2)* called
 

the fixed-sample reduction of variance factor, RV.
 

- i

P i(l 
E n i) 


RV = i \n (liP bi- ) (8) 
p(l-p) jb-a) 

where n. is the number of pixels in stratum i,
 

pi is the proportion of wheat in stratum i,
 

a. is the number of samples allocated to i,

1
 

bi is the size of stratum,
 

and n, p, a, b are 'the-corresponding segment-level statistics. 

This measure assumes sampling proportional to size,-equal-sized
 

samples, and a hypergeometric model, and can be simply viewed as the
 

ratio of the variance of stratified random sampling to unstratified
 

random sampling. Therefore, a small RV indicates an effective strati­

fication with strata of high purity.
 

When the size of strata are very large compared to the sample
 

size, the finite correction terms approach unity and (as Cochran
 

indicates) the RV never increases, and will usually decrease, when any
 

stratum is broken up into smaller strata. However, when the sample 

size is not negligible compared to the strata size, as is the case in 

Procedure M, one can conceivably incur a cost in stratification. This 

is possible if the stratification selected does not provide internally 

homogeneous-strata where they could-exist, thereby eliminating certain
 

optimal sample combinations from the selection process. Nevertheless,
 

the average cost over a collection of stratifications will be less than
 

the cost of unstratified sampling [40] as long as the stratification
 

Alternative or supplemental information-theoretic measures are also
 
discussed in Section 6.1.2.
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is 	based on features that are actually correlated with the crop-types
 

of 	interest.
 

A cost can be incurred, as well, if samples are required to pro­

duce the stratification. A simple measure of relative cost for such
 

a procedure can be expressed as
 

Cm+C -n.
 

Relative Cost m n i1 (9)

Cn
 
n o
 
0
 

where ni is the number of samples allocated to stratum i,
 

m is the number of samples used to produce the stratification,
 

no is the number of samples required in a simple random sample,
 

C 	is the actual cost -of the respective sample, and
 

n 	is chosen to give the same variance in the simple random
 

sample as is achieved using m and n. in the supervised
 

stratified sample.
 

In supervised approaches like Procedure M, and potentially,
 

Procedure IA, m=O and, in general, n.<n for a given variance.
 

Procedure 1 on the other hand, requires 40 Type 1 dot samples (m=40)
 

to generate initial strata.
 

Though potentially beneficial, it is critical to select strati­

fication approaches that reduce cost of sampling both in terms of
 

the resultant variance for fixed sample size and in terms of the
 

number of samples required for fixed variance.
 

5.3.2 STRATIFICATIONS EMPLOYED IN PROCEDURE M
 

This section-will describe and motivate three stratification
 

strategies employed in Procedure M.
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1. Stratification of Landsat Pixels into Quasi-Fields: An
 

unsupervised spatial/spectral clustering algorithm called BLOB is
 

utilized to group spectrally homogeneous and spatially contiguous
 

(or nearly so) pixels into quasifields called blobs. This stratification
 

(a) is utilized as a data reduction mechanism--22,000 pixels can be
 

represented by 1000 or fewer blobs, (b) provides sampling units that
 

are more nearly independent than the pixel units, and (c) provides
 

more optimal labeling targets than dots. Section 4.6.3 and Appendix D
 

describes SUPERB, an algorithm to replace BLOB, that insures spatial
 

contiguity of members of a given spatial/spectral cluster. The use
 

of quasi-fields as sampling units is discussed further in Section 5.4.
 

2. Stratification Based on Quasi-Field Size: Quasi-fields (or
 

blobs) are divided into two categories: Those with at least one
 

interior pixel (large blobs) and those without (small blobs). An
 

interior pixel is one whose four strong neighbors (above, below, left
 

and right)' lie in the same quasi-field. The stratum of small blobs
 

is not sampled in current implementations. This eventually leads to
 

a slight potential bias in producing a proportion estimate for the
 

segment, as is discussed in Section 5.5. The small blobs are
 

segregated for two reasons: (1) it is expected that small blobs can
 

be less accurately labeled by analyst interpreters and, hence, any
 

associated label carries less information; and (2) this stratum would
 

capture mixture, misregistered or other unidentifiable blobs that would
 

lessen the homogeneity of spectral strata next described. Testing
 

(Section 4.9) verified that analysts label blobs having only a few
 

interior pixels with lesser accuracy than larger ones. While State­

ment 2, above, is true, it was found that a number of the small blobs
 

were truly small fields and should be represented in the sampled stratum;
 

this also is discussed in.Section 5.5.
 

3. Stratification of Large Blobs Into Spectral Strata: An un­

supervised clustering technique, called BCLUST, utilizes a simple
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spectral distance measure and iteratively clusters the means of the
 

large blobs into a fixed (specifiable) number of spectral strata.
 

It is to these strata that samples are directed. Resultant strata
 

have been shown to have fixed sample RV's averaging about 0.5 when
 

acquisitions have been available throughout the growing season.
 

Though encouraging compared to reported Procedure 1 variance reduction
 

estimates, it does not yet compare to the purity levels (RV=0.l)
 

measured for large blob samples that comprise that field-size stratum.
 

Two approaches have been examined to evaluate the potential of
 

alternative unsupervised clustering techniques to produce strata
 

approaching the RV=0.l level of purity. The two sections that follow
 

present a method based on statistical criteria and a promising
 

technique based on physical criteria.
 

5.3.3 STRATIFICATION BASED ON STATISTICAL MODELS
 

Most methods currently employed in spectral stratification are
 

based on statistical models that seek homogeneous distributions of
 

Landsat spectral multitemporal data. Lennington [41] documents a test
 

wherein three techniques CLASSY, AMOEBA, ISOCLAS, are evaluated.
 

Though the homogeneity of the resultant strata produced by each tech­

nique was not compared, it was found that CLASSY produced fewer
 

strata at levels of purity adequate enough to enable more efficient
 

sampling, especially when coupled with sophisticated sample allocation
 

techniques.
 

To complement the above study, two tolerance block techniques
 

(see Appendix I or [40] for details) and a clustering technique for
 

spectral stratification were evaluated with respect to the estimation
 

of winter wheat acreage in 12 LACIE segments in Kansas in the Procedure
 

M environment. The techniques are (1) to accept tolerance blocks as
 

clusters, (2) to use channel means of tolerance blocks as fixed seeds
 

for spectral clustering, and (3) to conduct unsupervised spectral
 

clustering (BCLUST).
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Of the two tolerance block techniques, the seeded clustering tested
 

significantly better as measured by the 100-sample reduction of variance
 

factor. Blocks as clusters produced more evenly sized clusters, which
 

enables efficient sampling, but this partial advantage was more than
 

offset by the lesser spectral homogeneity achieved.
 

When the tolerance-block-seeded clustering was compared with the
 

unsupervised clustering method BCLUST, there was no significant differ­

ence. So in our experiment, the better of the two tolerance block
 

stratification techniques did not show any'improvement over previous
 

methods.
 

A difference exceeding 0.3 remains between the 100-sample RV scores
 

achieved by our two best stratification methods (about 0.5) and what is
 

theoretically attainable, i.e., the score of 0.15 for quasi-field
 

interiors.
 

The optimal number of strata for a sample of size 100 was not found
 

to be 100 or anything close to it, but rather, 40 for BCLUST and the
 

block-seeded algorithm and 48 for the blocks-themselves algorithm.. The
 

reason the optimal numbers weren't higher is that variances produced by
 

the finite sampling create a cost of stratification that can only be made
 

up by purity of strata. In our experiment, 96 fine strata were riot
 

enough purer than 40 coarser strata to defray the finite sampling variance
 

cost of the additional strata.
 

In pursuit of these main conclusions, some subsidiary conclusions
 

were reached.
 

1. 	Tolerance block clutters were more uniformly sized than
 

BCLUST clusters, enabling sample allocation to be accomplished
 

more efficiently. However, this advantage did not result
 

'in better overall variance reduction.
 

2. 	 Channels in the first biowindow do help the clustering as 

applied to winter wheat estimation. The reduction of 
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variance score for BCLUST averaged 0.048 better when these
 

channels were included.
 

3. 	The best channel subsets for generating tolerance blocks
 

contain Brightness and Greenness from the second biowindow.
 

The tolerance block study could be carried a little further by
 

investigating the use of tolerance block means as seeds and allowing
 

the updating of means and/or cluster creation and/or iteration of
 

clustering. But the payoff from this effort is likely to be small
 

when we compare the distant goal of relatively pure clusters with the
 

modest scores of the clustering methods tested.
 

A more promising approach based on statistical models would be to
 

redefine features more closely correlated to crop type and test the
 

clustering of these new features using the criterion of the lO0-sample
 

reduction of variance factor-. The Tasseled C p features used in the
 

experiment have the virtue of universal applicability. Their use implies
 

only that different materials and crops are localized in separate
 

neighborhoods in spectral space. The relative poorness of the stratifi­

cation performance indicates the need of features better tailored to the
 

decision problem being considered. Such features could be so specialized
 

that they depend on the crops to be recognized, the confusion crops, the
 

climate, and the prevalent varieties and agricultural practices. If
 

better features are found, there could be a greater reward for dividing
 

the feature space into more homogeneous strata.
 

The search for features is made in the hope of closing the gap
 

between the RV of 0.5 found for the strata and the RV of 0.15 measuring
 

the purity of the quasi-fields. The possible existance of confusion
 

crops inherently inseparable from wheat could define a higher bound
 

than 0.15 for achievable separability. It may be possible to measure
 

this bound directly, possibly on the basis of a count of identical pairs
 

of data vectors arising from wheat and non-wheat fields, and to chart its
 

131
 



value as a function of the acquisitions available. Such a study would
 

give useful feedback in the search for features and provide a warning
 

when multispectral estimation alone is insufficient.
 

In addition to the assumption of adequate spectral separability
 

among crop classes, statistically based stratification techniques assume
 

that the underlying statistical distributions are positively correlated
 

to actual crop classes. Certainly, the presence of mixed pixels and
 

misregistered or edge pixels, compound the problem since such pixels may
 

appear statistically identical to crop classes not therein contained.
 

An alternate approach to statistically based stratification
 

procedures is discussed in the following section.
 

5.3.4 STRATIFICATION BASED ON PHYSICAL CHARACTERIZATION OF DATA
 

Rather than employing statistical techniques to determine homo­

geneous spectral strata, underlying physical characteristics and
 

structure of the data themselves may provide a mechanism for defining
 

temporal-spectral strata homogeneous relative to crop classes.
 

.One example is the Delta Function Stratifier (DFS) [17] developed
 

at the University of California, Berkeley. DFS defines two spectral zones
 

in any Landsat acquisition. These zones are separated by a 'soil'
 

threshold line drawn at the Band 7 over Band 5 ratio equal to 0.55. The
 

pattern of an observation from acquisition to acquisition is used to select
 

strata characteristic of particular crops. We have developed a more
 

detailed temporal-spectral stratification procedure which is described
 

in this section.
 

Physically based procedures may rely on an assumption that the
 

objective criteria for stratifying or !zoning' data are standard from
 

data set to data set. The ratio used in DFS in the vicinity of the
 

'soil' line is less sensitive to external effects than the individual
 

bands, since many of those effects are in the direction of the soil line.
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The Procedure M environment proves to be an ideal one in which to apply
 

and evaluate physically based temporal-spectral stratification approaches,
 

since extensive efforts are made to normalize data to a standard
 

reference as described in Section 5.2.
 

There is an intuitive appeal to stratification strategies which are
 

based on physical understanding. DFS represents an initial venture into
 

this domain. However, more sophisticated procedures based on more detailed
 

features are possible. A study of this potential has been initiated and
 

shows promise, not only in providing a low cost means to define reasonably
 

homogeneous strata, but also an environment to employ more sophisticated
 

sampling strategies to increase the overall efficiency of the system, as
 

will be presented in Section 5.4.
 

Figure 19 illustrates four zones established for purposes of
 

stratification of spectral data. The zones are separated by dashed lines
 

superimposed, in the Brightness-Greenness plane, on thresholds used for
 

screening each acquisition. These four zones were based on an under­

standing of crop spectral phenology and established empirically by observa­

tion of critical spectral stages in the development of small grain fields
 

in 13 North Dakota blind sites. Temporal sequences of these zones then
 

can define temporal-spectral strata for area estimation purposes.
 

The first zone is associated with early phenological stages of a
 

grain field, such as bare soil and limited vegetation cover, as well as
 

later stages of late senescence and harvest. The second zone is a tran­

sition zone through which the grain spectra pass as they 'green-up',
 

i.e., develop toward maximum ground cover and heading; they also transition
 

through this zone as they senesce and the grain ripens. The third zone
 

inciudes the green arm with high vegetation cover and vigorous growth. 

The fourth zone was defined to include any fields that transitioned at
 

high levels of Brightness.
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All zones are restricted to the envelop of screening thresholds
 

that encompass 'good data. Within this constraint, the zones are given
 

by the following relationships:
 

Let x.1 be a normalized Landsat field mean or signal value for 

Acquisition i. 

Let gx,bx be the Greenness and Brightness values of xi, each with 

,a +32 count offset from the values presented in Figure 19. Then within 

the triangle of good data: 

x. C Zone 1 if
 
1
 

gx < 32.40
 

or
 

gxS. 0.382 bx 7.00
 

x. C Zone 3 if
1 

gx - -0.326 b + 67.00 

and
 
(10)
 

gx > bx - 47.58
 

x. C Zone 2 if
 

x. r Zone i or Zone 31 

and
 

gx -0.872 b + 149.49
 

x. C Zone 4 if
 

x. Zone 1 or Zone 2 or Zone 3 
1
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zones
Multitemporal strata are defined by determining the sequence of 


through which a spectral trajectory passes. For example, if acquisitions
 

were collected at critical times, the sequence 1,2,3,2,1 would represent
 

the stratum associated with fields that together traverse a normal develop­

ment cycle from bare soil, to peak green, senescence and harvest.
 

Spectral stratifications based on these zones were examined in light
 

of their resultant homogeneity-with respect to spring small grains.
 

In three North Dakota segments examined, 1392, 1473, and 1653, the
 

stratification resulted in strata that were remarkably pure with respect
 

to grain and nongrain distributions. Tables 24, 25, and 26 illustrate
 

resultant strata using three acquisitions. The meaning of these tables
 

is discussed in the paragraphs that follow.
 

The stratum purity-levels achieved are noted in three stages, one
 

for each of three acquisitions used. Potentially four strata will be
 

formed in the first acquisition. Each of these is potentially divided
 

into four more, and so on. As many as 43 = 64 strata are possible here;
 

however, many of these multitemporal strata were not populated. -It will
 

be the concern of future investigations to establish primary strata and
 

to evaluate techniques to combine less populated strata. Ideally
 

acquisitions should be grouped into biowindows before stratification
 

so that strata are consistent from segment to segment. However, this
 

initial examination was segment specific.
 

Comparing the proportion of grain in each stratum to the overall
 

segment proportion, each subsequent stage achieves purer stratai The
 

purity levels achieved are shown in three stages, indicating how each
 

stage contributes additionally to purifying the final strata.
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TABLE 24. STRATIFICATION TREE FOR SEGMENT 1473
 

Grain Proportion: 0.58*; State: North Dakota 	 L I 
- Julian Date 

197 207 224 

Zone 1 Zone 1 0.0 
5.8% 

0.0 


5.8% 


Grain Zone 2 1.0 


Propor- 5..96 % 


tion 1.0 


0.50 


5i.9 

(%6of 

Pixels) Zone 3 0.96 

1.18% 


14.07%t 1 07% 
0.371.88% 

0.0 

3.01% 1.85% 


Zone 4 

197 207 224 


Zone 2 Zone 1 0.92 

5.52% 


.92 


5.52 


Zone 2 1.0 

1.82% 

U.65 0.57 0 1 4  

1.85% 

. Zone 3 	1.0 
.24% 

0.l 0.0 

2.12 

.
 

Zone 4 

197 207 


Zone 3 Zone 4 


0.0 


0.25% 


Zone 2 


60.% 2. 

Zone 3 


0.47 


21.98% 

Zone 


0.11 


16.23% 

224 


0.0 

0.25% 


1.0 


18.97% 


1.93 

3.05%
 

0..1
 
0.0 


0.94 

2.97%
 

0.81
9.44% 


008.47%
 

0.0
 
1.10%
 

1.0 

1.85% 


0.0 

0.18% 


4.217 


0.0 
9-997 


197 207 224 

Zone 4 Zone 1 1.0 
8.93% 

1.0 

8.93%
 

Zone 1.0
 

10.l5% 

0.74 1.0
 

13.99%
 

Zone
 

•
 

Zone 4. 1.0
 
181.27%
 

0.26 0.0 
4.1 0.60%
 

0.40 

0.0
 
2.63%
 

*Only 'large blob strata considered.
 

NOTES: (1) A perfect stratification has grain proportions of 1.0 or 0.0 in each cell.
 
(2) The numbers in each box represent, respectively, the grain proportion (fraction) and segment
 

area (%) contained in that stratum.
 

http:0.371.88


TABLE 25. STRATIFICATION TREE FOR SEGMENT 1392
 

Grain Proportion: 0.38*; State: North Dakota
 

Julian Date
 

154 190 208 154 190 208 154 190 208 

Zone IZone 1 Zone 1one2 Zone I Zone I Zone 3 Zone1 Zone 1 Zone4 one 1 
154 190 208 


0.0 	 DOI 0. 
1.68% 6.70% 3.69% 
Zone 2 Zone 2 Zone Z

0.21% 0.70 % 	 180%0.0 	 0.0 .04 370.0 10%
 

Zone3 Zone 3 0 n
 
2.48% 0.0 
 8.08% 0 5.50%
 

0.6% 0.68%
 
ne4 	 n
 

Zone n 	 Zone e 1. on 2 ngl Zone 

0. 75 
'one-
Zone 2 	 one7 


0 00
0.0 	 0.0 0.54 0.24 20.12 .005 

0.13% 2.83%
0.61 
 0.83% 

ZZoneT 3 Zone 3 
22.68% 	 1.43% 0.0 34.77% 3.20%Z. 3 42.55% 23.132 .13 

0.3% 0.19% 0.85% 

Zgnone 000.0 0.04.0 	 Zone on 

1.03% 0.19% 	 0.71%
 

Zone 3 Zn9 1 Zone Zone Zone 3 Zone 	 Zone 
11.0 0.57 

2:04% 1.87% 1.26% 
Zone 	 Zne2 Zone
 

73 .9 .75 	 0.37 .45 
4.77% 9.u4 %66 

Zone 3 Zone 3 Zone 3
7.:3 	 13.M6 10.19q
L8.77% .723.422 
0.32 	 4.34% 

Zone 	 4 Zone 4Zn 
.40 0.33 Zoe2 

1
3.79% 4.66% 	 0
 
Zone ne4 Zone 4 ne1Zone 	 Zone lone 4
 

1.0% 

Zone 2
 
1.00 1.0 	 1.0 

0.07% 
e3 n 

0.07 	 0.15 

Onyar el 	 nea
 

*Only large blob strata considered. 



Julian Date
 

155 191 


Zone I Zone 1 


0.00 


1.4% 


Grain Zone 2 

Propor-
tion
 

0.35 

0.60 


1.5% 


Size Zone 3 

(% of

iPixels)
 

0.90 


6.9% 


4.1% 


Zone 4 


208 


0.0 


1.2% 


0.0 

0.2% 


0.0 

0.3% 

0.63 


0.8% 


0.00
0.4% 


0.94 

2.1% 

0.86 


2.0% 


TABLE 26. STRATIFICATION TREE FOR SEGMENT 1653
 

Grain Proportion: 0.15*; State: 	 North Dakota
 

155 191 208 155 191 208 


Zone 2 Zone 1 0.0 Zone 3 Zone 1 

1.3%
 

0.0 0.0
 
0.31% 0.0 0.13%
 

1.5% 	 0.13
 

Zone 2 	 0.0 Zone 2 0.0 

2.7% 0.15%
 

0.15 0.04 0.03 0.06 0.04 0.04 

45.0% 	 20.9%
 

48.5% 0.65 21.87; 	0.1277 

0.79% 0.79 

61.43% 31.4% 

Zone 3 Zone 3 	0.0 

0.11%
 

0.65 	 0.71 
 0.11 0.07 

8.7% 7.05%
 

11.2% 0.46 8.9% 	 0.29 

2.6% 	 1.69
 

0.0 

0.11% 

Zone 4 	 Zone 4 


0.0 	 0.0 0.0
 
0.06%
 

0.09% 0.45% 	0.0
 
0.06%
 

155 191 208
 

Zone 4 Zone 1
 

Zone 21
 

0.0 	 0.0
 

0.06%
 

0.18% 0:0
 

Zone 3
 

0.0
 

0.11%
 

0.00
 
0.11%
 

one4
 

*Only large blob strata considered.
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This trend is summarized on Table 27 using a purity measure defined
 

as:
 

E.w max (pGi, PNGi ) 

ZW.
 

where 

P is the purity factor 

w. 
I 1 

is the stratum size 

pG ,PNCi is the proportion of grain or non grain in stratum i
 
1 

The first stage of stratification results in a purity level about equal
 

to that of the whole segment; each subsequent stratification results in
 

a marked improvement in overall purity, each new stratum being more
 

homogeneous with respect to grains.
 

It remains to evaluate the physically based approach to temporal­

spectral stratification in comparison to statistical methods. Indeed, a
 

combined method may prove useful. Certain strata can be refined as a
 

function of time of year. Combining of strata may be necessary to reduce
 

the overall number possible, with no loss in homogeneity. Strategies to
 

stratify multiple segments with different acquisition histories are
 

required. Finally, modification of physically based stratification
 

strategies using physical implications of collateral conditions can
 

eventually be expected to yield improved results over those achievable
 

using purely static definitions.
 

Initial signs for the potential of physically based stratification
 

are promising. The next section on sampling discusses an important
 

benefit of such stratification related to employing efficient sampling
 

strategies.
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TABLE 27. STRATIFICATION PURITY* LEVELS
 

Average Purity Level of Stratification
 

Proportion Stage 1 Stage 2 Stage 3
 

Segment of Grain** (1 acq) (2 acgs) (3 accs)
 

1392 .38 70.13% 84.13% 85.79%
 

1437 .58 57.48% 84.55% 99.13%
 

1653 .15 86.05% 91.15% 92.82%
 

w. max(P(i, PnGi
 
w
 

= 
Purity 

W.­

i
 

** Proportion of large blob stratum. 
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5.4 STRATEGIES FOR SAMPLING OF FIELDS
 

ERIM has long held the view that near-term improvements in esti­

mating the proportion crops of interest within a segment can be accom­

plished using stratification based on spectral variables and the sampling
 

of fields. Procedure M, in particular, employs stratification using
 

spectral variables of field-like forms. Section 5.3 introduced the con­

cept of strata which are comparable, or static, from segment to segment.
 

The main advantages of such a stratification strategy are:
 

1. 	The grain proportion within a spectral-temporal stratum
 

should show some stability from segment to segment. One
 

might view the proportion of grain within a stratum as
 

having a distribution depending on the stratum.
 

2. 	The labeling errors within a stratum could also be similar
 

from segment to segment. One would expect each stratum
 

would have its own confusion crops, for example.
 

Thus one would hope that information concerning the stratum distributions
 

of grain and labeling errors could be ascertained by experiment, and
 

that such information could be used in optimizing sample allocation and
 

possibly in bias correction of the sample proportion of grain labels.
 

Appendix N gives some approaches on how this information could be used.
 

This section will provide a summary.
 

5.4.1 CURRENT PROCEDURE M STRATEGY
 

The stratification used by Procedure M is a clustering procedure
 

using Brightness-Greenness variables subject to a constraint on the
 

number of clusters. The stratum sample size is proportional to the
 

number of pixels in the stratum. This is.a slight generalization on
 

the Cochran allocation in which the samples-are allocated proportional
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to the population of the stratum. The segment proportion estimate is
 

the weighted average of the strata proportion estimates where the weights
 

are the relative sizes of the strata.
 

The stratum proportion estimate is obtained by using the Midzuno
 

sampling procedure. This procedure chooses the samples in such a way
 

that the field sizes are taken into account. This is done in a fashion
 

which at first glance is unintuitive. The first field from a stratum
 

is chosen with probability proportional to its area. The remaining are
 

chosen wich equal probability. The net effect of this sampling procedure
 

is that the probability of obtaining any one particular sample is propor­

tional to the area of the fields'in that sample.
 

We now give an example to illustrate this point. Suppose that 

there are three fields: FI, F2, and F . Suppose further that two of 

these fields are to sampled and the sizes are 5, 3, and 2 pixels, 

respectively. Figure 20 gives a tree diagram in which the first field 

is chosen proportional to number of pixels and the second is chosen from 

the remaining two fields with equal probability. In this simple example, 

there are only three possible samples: (F 1,F2) (F1 ,F3), and (F2 ,F3).
, 


We now note from the figure that:
 

P(1 s t P(F 1 and F2 ) = P(1st F1 then F2 ) + F2 then F I 

5 +3 8 
20 20 20 

P(FI and F3 ) =P(I-
t F then F3 ) + P(I

s t F3 then F1)
 

5 2 7 
20 20 20 

sP(F 2 and F3) = P( s t F2 then F3) + P(I t F 3 then F 2 ) 

3 +2 5 
20 20 20 

The possible samples, their probabilities, and the number of pixels
 

contained in each sample follows:
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'aN- l ?1) o then Faifter? 9 F!(i =F1 

3.3 c o e ' aft ,t 2 S P(1 F2 theF ­

31 1 
 20
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s1 hosen aftis 2st .
 

FIGURE 20. MIDZUNO SAMPLING OF 2 FIELDS FROM A POPULATION OF 3 FIELDS OF SIZES 2, 3, and
 

5 PIXELS
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Area of Fields
 
Sample P(Sample) in Sample
 

FI' F2 8 Pixels
 

FI' F 7 7 Pixels 

2' 3 20 
F2-FO- _ 5 Pixels 

Note that the probability of obtaining any one sample is proportional
 

to the number of pixels contained in that sample.
 

5.4.2 ALLOCATION OF SAMPLES TO STRATA
 

In this section, we present some approaches to the problem of
 

allocation of a fixed sample size to the'strata in order to minimize
 

expected sample variance, as alternatives to the current allocation
 

scheme in Procedure M. This approach depends upon having a stratifi­

cation that remains sufficiently stable from segment to segment so
 

knowledge about each stratum can be accumulated. We assume that the
 

total sample size is a fixed constraint, say n. We have an estimator
 

P which is a linear combinatfon of the strata proportion estimators Pi,
 

* namely 

p = i -iN (12) 

wher6 N. is-the number of pixels in stratum i, and N =EN.. Tie variance
 

of P is
 

V() A v(p (13) 

If the sampling cost per unit is the same in all strata, then
 

theorem 5.7 of Cochran states:
 

In stratified random sampling V(P) is minimized for a fixed
 

total size of n if
 

n. = n(14) 
-
N. V.(Pi) 

31
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This allocation is sometimes called "Neyman Allocation" after
 

Neyman (1934) who gave one of the first proofs of its optimal properties
 

among the class of unbiased. Neyman allocation has the obvious drawback
 

that one usually does not know the true variances of'the strata. There'
 

are several ways to adjust for this lack of knowledge:
 

a) Allocate proportional to stratum size, Ni/N.- This sometimes
 

is called Cochran allocation. You will recall that this
 

allocation is currently used in Procedure M. Cochran gives in
 

his theorum 5.8:
 

If terms in 1I/N i are ignored relative to unity,
 

Voptimum <Vproportional random
 

where the optimum allocation for fixed n is n.-N. vr..
 

b) Allocate proportional to (N.IN) B. when V(Pi)<B i . This
 

allocation is a minimax allocation in the sense that the
 

allocation is made according to the worst possible stratum
 

variance. This'allocation is discussed in Appendix N.
 

c) Allocate proportional to expected variance with respect to
 

prior distribution, Ti, on each stratum, namely:
 

n E. (V) 
n Z E.(V) (15) 

1 
where-E,

1 
is the expected value under the probability 

measure T..1 

5.4.3 STRATEGIES WHICH USE KNOWLEDGE OF LABELING ERRORS 

If the distributions of the strata labeling errors are estimable
 

from segment to segment then information on labeling errors can be used
 

to allocate samples to strata. Since labeling error can introduce
 

variance to an estimate, it is the duty of the allocation procedure to
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be cognizant of this source of variance. We consider sample allocation
 

in the presence of labeling error in this section.
 

Suppose we have a stratum which as P proportion of grain targets of
 

equal size. Also suppose that there are labeling errors; that is, grain
 

targets are labeled as grain with probability 'a' while nongrain targets
 

are labeled as nongrain with probability '6' This cdncept is displayed
 

in Figure 21. When ground truth is not considered then the labels have
 

errors associated with them. The number of grain labels obtained from
 

a sample of size n is a binomial (n, Pa + (l-P) (1-6)) random variable
 

(Figure 22.) The labeling introduces bias and variance into the estimation
 

process. Some possible methods of obtaining, updating, and using joint
 

strata priors on (P,a,6) are-given in Appendix N.
 

The mean squared error of P is the sum of the variance and squared
 

bias of P, that is
 

MSE(P) = V(p) + b (P). (16)
 

Since the sample size has no effect on b(P) only the strata variances
 

are used to allocate samples to strata. However if there were good
 

priors for some of the strata in which labeling errors were high, then
 

it might be the case that the expected MSE is reduced when no samples
 

are allocated to those strata and the priors for P. are used in place
a 
of P.. This, of course, requires that the strata are stable with respect


1
 

to (c,6,P).
 

If within strata the distributions of a and 6 have small variances
 

then the bias of the stratum proportion estimate might be reduced by
 

using the estimate
 

P-- (1 -S)
 
.. 7p (17 )
 

- ~ s +6.-l1(7
 
s s
 

where P is the sample proportion of strata,
 
s
 

a is the mean of the prior distribution of strata for s, and
 

s is the mean of the prior distribution of strata for 6
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4-1 

P(label=grain) = Pa + (1-P)(1-6)
 

P(label,=nongrain) = P(l-a) + (I-P)h 

FIGURE 22. TWO POSSIBLE OUTCOMES IN SAMPLING WITH LABELING ERRORS WHEN
 
ONLY THE LABELS ARE KNOWN
 



5.5 ESTIMATION
 

Using Procedure M the estimate of the proportion of crops in each
 

spectral stratum is the weighted aggregation of the labeled samples in the
 

stratum:
 

(j) k 
ni P ikW 

(18) 

k ik 

where p.Q ) is the estimated proportion of crop-j in stratum i
 

Pik (j ) is the proportion of crop j in the kth sample
 

of stratum i
 

nik is the size of the kth sample-


The estimate-associated with the entire segment is:
 

'mkpk

i) = k Ymk(19) 

k 

where 	p(J) is the estimated proportion of crop j in the segment
 

mk 
 is the 	size of each stratum
 

The estimate p (j ) is-unbiased with respect to those strata sampled.
 

In current implementations of Procedure N, a: potential bias is introduced
 

due to not sampling theostratum of small blobs and can be'estimated as:
 

b(J)= 	N (P (i) - Pu (J)) (20) 
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b (j ) 
where is the bias in estimating crop j
 

IP (J) 	is the proportfon of j in the large blob stratum
 

from which samples are drawn
 

P Wis the proportion of j in the unsampled stratum
 u 

N is the total number of pixels
 

M is the total number of pixels in the sampled stratum
 

The sampling variance of the procedure has been empirically esti­

mated in Procedure M. An analytic expression for the variance (which
 

is the variance associated with Midzuno sampling) is discussed in
 

Section 6,
 

In this section we will examine approaches considered to reduce
 

the bias due to not sampling the stratum of small blobs, and an
 

alternate estimation strategy based on a non-parametric classification
 

strategy that potentially reduces sampling variance.
 

5.5.1 	CONTROL OF PROCEDURE M SAMPLING BIAS
 

Equation 20 indicates that a potential bias is introduced in
 

Procedure M that is due to not sampling the stratum of small blobs.
 

This bias is related to the relative size of this stratum and the dif­

ference in crop composition between the sampled and unsampled strata.
 

.Empirical tests in the Great Plains have shown that the'relative bias
 

is typically on the order of 5%, with the relative size of the small
 

blob strata at 20% of the segent. Several approaches for reducing
 

this bias are suggested.
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(1) Sampl& Little Blobs: Upon observation of tlob boundary maps
 

produced for the AI experiment (Section 3) many little blobs are bypassed
 

as potential labeling targets, even though they seem reasonable to label
 

and clearly viiible on imagery. That.is, small fields are represented
 

by little blobs that are not boundary blobs, misregistered blobs, or
 

miscellaneous blobs.
 

It is possible that our definition of labeling targets as the
 

set of big blobs is unduly restrictive. One feasible approach is as
 

follows:
 

(a) 	Stratify the scene into big and little blobs as usual.
 

(b) 	Stratify the little blobs further to produce a stratum of
 

little blobs with more than n pixels.
 

(c) 	Sample- the big blob strata-and the strata of (b), above pro­

portional to size. Direht the samples for the big
 

blob strata to spectral strata as usual. The little
 

blob strata should be treated separately, either
 

sampling randomly or after some. form of spectral
 

stratification.
 

(d) 	Let'n be the samples allocated to the little blob
 

strata. This strata may still include blobs that are
 

very difficult toidentify. Provide the analyst m x n
 

blobs (m = 2?) in some random order. The analyst should
 

label at least n of these blobs.
 

(e) 	Aggregate the results as usual.
 

This approach will reduce the size of'the unsampled strata thus reducing
 

the sampling bias. However, the interaction of field size and analyst
 

labeling error may result in a labeling bias. The trade off involved
 

has 	yet to be evaluated.
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(2) Contextual Stratification: Cochran writes: "Sampling prob­

lems may differ markedly in different parts of the population..With
 

human populations, people living in institutions are often placed in a
 

different stratum than people living in ordinary homes because a dif­

ferent approach to the sampling is appropriate for the two situations"
 

[39]. The following suggests an approach that stratifies the quasi­

fields according to contextual information, then treating-each stratum
 

according to techniques best suited for that stratum.
 

The strategy consists of several steps. -The context of each
 

small blob (the identity and spectral characteristics of neighboring
 

blobs) is determined. Based on whether the small blob arises due to
 

a multitemporal misregistered boundary, a spectral anomaly (e.g.,
 

pond, group of trees), a small field, or other cause, appropriate action
 

is taken, so that the area of the small blobs can correctly be assigned
 

to the crop categories. Appiopriate action might consist of a classifi­

cation technique that takes advantage of'knowing the nature of spectral
 

contamination or mixing (and possibly contamination due to spatial mis­

registration) that is present.
 

The specific approach follows:
 

(a) Examine the effect of adjusting BLOB parameters on the
 

prevalence of small blobs and on the resulting bias. The results of
 

running BLOB with a variety of parameter settings can be examined with
 

respect to purity, blob size, and number of blobs with only edge pixels.
 

If these results indicate the likelihood that the bias and overall sys­

tem performance will be held to acceptable levels, then tests of the
 

procedure will be carried out using the new settings. Alternatively,
 

other approaches must be sought.
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(b) Study the nature of the small blobs, and the'physical
 

situations that lead to their existence. Since it is anticipated that
 

different effects may give rise to small blobs -- a local unusual spec­

tral phenomenon, boundaries especially if spatial misregistration is
 

present, strip fields,,and valid small fields -- it is important to
 

understand the relative occurrence of these potential causes. It must
 

be determined whether these causes can be distinguished using only the
 

scene data. The question of whether BLOB boundaries are accurately
 

placed must also be addressed. The problems involved with spatial
 

registration of time periods must be considered in this-context.
 

(c) After certain insight is gained regarding the small blobs,
 

relationships can be sought between the observed bias and various fea­

tures. These features may include relative field size distributions of
 

respective crops (or of spectral strata), segment crop proportions, and
 

other ancillary information. It has been shown, for example, that bias
 

is a strong function of wheat proportion [3].
 

To attain confidence in relationships found, physical causes
 

should be sought. This confidence based on physical insight is required
 

if the relationships are to be trusted for any other data set than the
 

ones initially used for development. Testing should be done by apply­

ing the relationships to sets of segments not involved in deriving the
 

relationships.
 

(d) At this time, it is not known whether Step c will pro­

duce a solution that will-be considered reliable in general. There­

fore, a more involved approach may be required!
 

Since-the small blobs will not be sampled and analyst-labeled, 

they must be classified or otherwise dealt with. However, several diffi­

culties with classification must be overcome. Four general steps are ­

as follows. 
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First, training of the classifier must be carried out. In
 

the past, selection of representative training samples was a perennial
 

problem, but with the advent of Procedure M, samples selected and labeled
 

will provide representative training material.
 

Second, raw classification is usually a biased procedure. A
 

Monte-Carlo or other procedure to measure classifier bias should be
 

implemented, and the result used to correct the classification bias.
 

Third, the context of each small blob should be examined.
 

This context includes the spectral composition of the neighboring blobs,
 

perhaps their identity, but certainly the conditions which lead to the
 

formation of the small blob and the degree of presence of spatial mis­

registration. This context can be used to determine how to process the
 

small blob, and where appropriate, can provide information not pre­

viously available to a classifier (e.g., boundary location, adjacent
 

field signals).
 

The final step depends on the nature of the small blob. If
 

it is a misregistered boundary of two larger fields, the area would be
 

assigned to them. If it is some other anomalous situation, appropriate
 

action would-be taken. If on the other hand it represents a bonafide
 

small field, then the situation deserves paragraphs of its own.
 

A small field may be covered by a group of pixels none of
 

which are pure as illustrated in Figure 23. However, the signal sta­

tistics of the neighboring blob and the position of the actual boundary
 

are presumably known for each pixel, so that a maximum likelihood pro­

cedure can be used to produce the observed pixel.' The aggregate of
 

several of these estimates that comprise a small blob may be suffi­

ciently pure to allow classification to take place.
 

This is a complex problem that may require accurate knowledge
 

of misregistration, accurate boundary location, and other techniques.
 

Its effectiveness is probably reduced somewhat in areas where small
 

blobs adjoin small blobs. But it does address the small fields problem
 

in greater detail than has been usual.
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very small field
 

1pixel 

FIGURE 23. SMALL FIELD REPRESENTED BY ONLY MIXTURE PIXELS
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This contextual approach is highly sophisticated, suggesting a
 

merging of classification schemes into a stratified area estimation
 

system. It suffers in that little is known about modeling the bias and
 

variance characteristics of sophisticated classifiers and in the compli­

cations of developing appropriate criteria for contextual stratification.
 

5.5.2 A NONPARAMETRIC APPROACH TO LABEL EXTENSION
 

Work by S. Wheeler at IBM illustrates an approach to area estimation
 

using a simple linear discriminant and a cross validation technique [5]
 

to monitor its bias and variance performance. This section discusses
 

an approach utilizing a nonparametric classifier with implications to
 

the contextual stratification approach identified above (details pro­

vided in Appendix M).
 

Appendix M provides a framework for crop proportion estimation
 

based on a nonparametric nearest neighbor decision rule. With nearest
 

neighbor assignments, unlabeled units are 'classified' by assigning the
 

label of the nearest labeled sample. Advantages of nearest neighbor
 

assignment are that no assumptions are made regarding the distributions
 

of crop classes, and the performance of the classifier can be estimated
 

from the training samples.
 

This label extension approach has ramifications on contextual strati­

fication proposed in Section 5.5.1. Labels derived from samples in the
 

big blob stratum can be extended to the stratum of unsampled small fields.
 

The requirement imposed upon this approach is that the resultant 'labels'
 

associated with the small blobs are more accurate than those resulting
 

from direct labeling. Short of complete classification, nearest neighbor
 

extension of labels can be restricted by a specified distance to increase
 

the probability of a correct classification. The resultant set of sam­

ples, composed of the original training sample and the classified sample,
 

can then be used to estimate proportion of crops present. The nearest
 

neighbor label extension approach is under continued investigation.
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6 

PERFORMANCE EVALUATION
 

Section 5 discusses a baseline Procedure M technology for stratified
 

estimation of crop acreage with Landsat, as well as some advances pro­

posed for the technology. This section presents analytic and empirical
 

evaluations of the baseline procedure. Section 6.1 presents analytical
 

modeling considerations and Section 6.-2 summarizes the status of an
 

empirical test of the procedure conducted using 1978 segments from the
 

Northern Great Plains.
 

6.1 THEORETICAL CONSIDERATIONS
 

As noted in Section 2, performance models have three major roles in
 

crop inventory systems. Generically these are:
 

1. Self-assessment (of an operational system).
 

2. Acceptance test design.
 

3. Acceptance test evaluation.
 

All of these functions can take place at various levels of a crop in­

ventory system, from the overall system, to major components, to various
 

subcomponents. As a natural part of the process of developing an area
 

estimation component we have been constructing error models to go with
 

each component or sub-component. Specifically, we have constructed er­

ror models covering the area estimation component up to the segment
 

level.
 

It is desirable to characterize component performance as a func­

tion of a variety of collateral conditions; specifically the collateral
 

conditions ought to consist of the variables used as stratifiers at the
 

next higher level of aggregation in the system. So far, we have not
 

conducted sufficient testing to be able to establish reliable associa­

tions with collateral variables.
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The performance measures that ought to be used in error modeling
 

are not definitely established. To date we have used the bias and the
 

covariance of proportion estimates as the measure of performance, and
 

also "purity", and reduction of variance factors. An alternative
 

concept is the entropy of estimates, discussed under "Information
 

Theoretic Performance Measures", in Section 6.2 and Appendix K.
 

Varieties of information theoretic measures have been applied to
 

Procedure M in order to obtain some insight into these measures.
 

In Section 6.1.1 following we describe the overall structure of
 

performance models developed so far for Procedure M, up to the segment
 

level. Section 6.1.2 discusses performance measures including reduc­

tion of variance and information theoretic measures.
 

6.1.1 ERROR MODELING (SEGMENT LEVEL, PROCEDURE M)
 

Figure 24 is a flow diagram of Procedure M as applied at the
 

segment level. The input is multitemporal Landsat data. The initial
 

steps of processing include screening, instrument calibration, haze
 

correction, spectral feature extraction (Tasseled-Cap linear features)
 

and spatial feature extraction (the production of quasi-fields through
 

the use of the BLOB algorithm). This is all indicated by the box
 

called Feature Extraction. Following feature extraction, the blobs are
 

stratified on the basis of their spectral properties and size charac­

teristics. This is indicated by the box called stratification.
 

Sample blobs are drawn from each stratum according to a specific sampl­

ing scheme and the selected blobs are presented to a labeler, either
 

an analyst or a computer algorithm. The samples are labeled and
 

then aggregated to produce strata estimates and finally a segment­

level estimate.
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Feature 
Definition Landsat 

(Variance) Data 

Stratification
 
(Variance)
 

Sampling/ Labeling

Estimation
I(Bias and (Type I and
 

Variance) Type I Errors)
 

Segment-
Level 

Estimate 

The dashed lines surround the components for which error models have
 

been formulated.
 

FIGURE 24. STAGES IN PROCEDURE M WHICH ARE THE SUBJECT OF
 
AN ERROR MODEL
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The types of error which may arise and propagate through the system
 

are also shown in the figure. The sampling/estimation box shows bias
 

and variance. For every sampling scheme there exists some estimation
 

scheme which produces an unbiased estimate, but not every estimation
 

scheme is unbiased, and some estimation formulas produce higher
 

variance than others. The currently used technique (the Midzuno
 

sampling technique) produces unbiased estimates for the strata sampled,
 

assuming accurate labeling.
 

The process of sampling of course introduces variance. Various
 

sampling techniques (Cochran, Neyman) are discussed elsewhere in this
 

report. A principle assumption is that one can direct sampling pro­

portional to the size of a stratum or proportional to some other pro­

perty of the stratum. For finite strata, this'is of course not ex­

actly possible. The variance expression contains both a finite
 

correction term (hypergeometric distribution) and a correction for
 

integer round-off in the number of samples drawn.
 

The process of stratification does not produce any bias. A good
 

stratification is one which-reduces variance of the overall estimates
 

by increasing the purity of the strata created compared to the original
 

unstratified purity. Hence stratification affects variance and a
 

measure of goodness of stratification is the reduction of variance
 

factor, RV, calculated under the assumption of ideal sampling.
 

Feature extraction cannot introduce bias; however there is infor­

mation loss (which we believe to be minimal) in the feature extraction
 

process in Procedure M. This information loss can introduce variance
 

as noted in the figure.
 

The dotted lines in the figure surround the portions of the system
 

for which error models have been deveioped or are being studied.
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Considering the performance of stratification alone we have de­

fined the "fixed sample reduction of variance" which is developed
 

and presented in the next section and in Appendix J, under the assump­

tion of perfect labeling and ideal proportional sampling. The contri­

bution of labeling error to bias and variance is developed for two
 

basic sets of assumptions about labeling; first that the Type I and
 

Type II labeling error rates are fixed, and second that the error
 

rates themselves are drawn from a random distribution whose statistics
 

are fixed. These expressions are summarized -in the next section and
 

are developed in detail in Appendix J.
 

The Midzuno sampling scheme for sampling with unequal sized
 

samples does not have a simply expressed variance formula, and for most
 

evaluations-the simpler models in the following section have been
 

employed. However a variance expression does exist. It is presented
 

in the eKperimental evaluation of an 18-segment Procedure M test with
 

analysts described in Appendix C.
 

6.1.2 PERFORMANCE MEASURES
 

Several measures of performance have been utilized in evaluating
 

Procedure M technology. These measures are utilized in grading not
 

only the overall performance of the procedure, but the contribution of
 

each component. These measures are presented here due to their general
 

applicability to the evaluation of crop acreage inventory technology.
 

The principal measures include a simple purity measure, and variance
 

reduction factor [40] (Section 6.1.2.1) and measures based on infor­

mation theoretic considerations (Section 6.1.2.2). The next two
 

sections describeadvancements made in defining the performance
 

measures. Appendix K describes information theoretic measures in
 

detail.
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6.1.2.1 The Fixed Sample Reduction of Variance Factor
 

Reduction of Variance Factor (RV)
 

The measure of performance heretofore used [42] to evaluate
 

clustering parameters and methods is the reduction of variance factor
 

RV= all strata i nP( - P (21)
np(l - p)
 

where n. is the number of pixels in stratum i,
 
1 

pi'is the proportion of wheat in stratum i,
 

n is the number of pixels in the segment (n = En.),
 

p is the proportion of wheat in the segment (p = Enipi/n).
 

The RV is the ratio of two variances: the variance of the strati­

fied sample estimate divided by the variance of the unstratified sample
 

estimate. It is a number between 0 and 1. A small number is good,
 

indicating that the stratified estimate has a proportionally smaller
 

variance than the unstratified estimate and so the stratification is
 

doing some good. We can verify in Expression 21 that if the strata
 

are either pure wheat or pure other, then either pi or 1 - p, is 0
 

and the numerator is 0. If the stratification is worthless, then
 

the Pi's are all the same as p and the factor becomes 1.
 

RV With Integer Allocations
 

The RV as a performance measure is unrealistic in two ways. For
 

one thing, it assumes that we are allocating the sample exactly in
 

proportion to the size of the strata. Such an allocation is optimal
 

in the absence of information about the true percent wheat p, in each
 

stratum. But it is an approximation because the number of quasi-fields
 

sampled from a stratum must be an integer whereas with few exceptions,
 

the exact proportional allocation is not an integer.
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The approximation becomes absurd when the number of strata increases
 

beyond the size of the sample. Then strata must be sampled with a proba­

bility rather than with certainty and the variance should rise. But the
 

simple expression (21) does not take account of this effect and continues
 

to decrease (get better) as the number of strata increases.
 

The approximation is not burdensome when we compare results for
 

clustering algorithms producing approximately equal numbers of strata.
 

But when the numbers are rnequal, as when we are trying to find the
 

optimal number of clusters for a given algorithm, the comparison is
 

invalid.
 

So we can define a better performance measure by assuming a realis­

tic sample size, say 100 quasi-fields, and allocating them to strata as
 

best we can, that is, as nearly as possible proportional to size. If
 

some strata are left unallocated, we'll combine them into a wastebasket
 

stratum and sample it. Then,
 

strata i 2 

RV = (22) 
p(l - p) 

a 

where n.1-is the number of pixels in stratum i,
 

Pi is the proportion of wheat in stratum i,
 

a. is the number of sample quasi-fields allocated to stratum i,
 

and n, p, a are the corresponding numbers for the segment.
 

The allocations {a.} are made by a subroutine as follows:
 
2.
 

i. Determine the "theoretical allocation an./n for each stratum i.
 

2. Round this number to the nearest integer.
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3. Collect all the strata with allocation 0 into a wastebasket
 

stratum and allocate sample quasi-fields to it proportional
 

to size, but at least 1. Thus no strata are left out of the
 

sampling.
 

4. 	If the integer allocations don't add to a, multiply the frac­

tional allocations by 1 + s and repeat. e is chosen by an
 

algorithm that makes the procedure rapidly converge. There
 

are, however, some numerical combinations that prevent conver­

gence, and then we settle for an allocation that doesn't quite
 

add up to a.
 

The RV with integer allocation (22) is not likely to improve as
 

the number of strata exceeds the sample size because the number of terms
 

being summed in the numerator of (22) remains constant and the waste­

basket stratum, in all probability heterogeneous, increases in size.
 

The 	Fixed-Sample RV
 

A second unrealistic assumption in using expression (21) is sam­

pling with replacement. In fact, it is only reasonable to assume
 

sampling without replacement, implying a hypergeometric, rather than
 

a binomial model. The effect on the RV is to multiply numerator and
 

denominator by correction factors as follows:
 

2n) pi(l Pai) (bP - ai 

Fixed-Sample RV = 	 - (23)
p(l -p) b a 

a 1)LmP(b 


where n. is the number of pixels in stratum i,
 

Pi is the proportion of wheat ii stratum i,
 

a. is the number of sample quasi-fields allocated to stratum i,

1
 

bI. is the number of quasi-fields in stratum i,
 

and n, p, a, b are the corresponding numbers for the segment.
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This is the realistic performance measure that is used for com­

paring clustering methods. It is still an approximation because it
 

assumes that all sample quasi-fields are the same size.*
 

An implication of the finite correction factors is that stratifica­

tion incurs a cost. Let us illustrate by an example. Suppose that we
 

create 100 strata, so evenly divided that we allocate one sample quasi­

field to each stratum. The correction factor in the numerator is always
 

1 and drops out. In the denominator, b, the number of quasi-fields
 

might typically be 400, so the correction factor is 3/4. Now suppose
 

that the stratification completely fails to discriminate, so that pi is
 

constantly equal to p. Then everything cancels out but the 3/4 and we
 

are left with a reduction of variance factor of 1 1/3! This means the
 

variance of the stratified estimate is 1/3 more than that of the un­

stratified-estimate. Stratification hasn't helped in this case.
 

This example is extreme because if the stratification were made at
 

random, then just by chance we would expect most pi's to be different,
 

then p and perhaps some to be close to 0 or 1. So two opposing forces
 

influence stratification: the finite correction factors penalize strati­

fication and discrimination of wheat from non-wheat rewards it. If the
 

stratification is made at random, it has been shown that the two forces
 

would be expected to approximately cancel each other out [43]. This is
 

reasonable; one would expect that a random stratification followed by a
 

random sampling from the strata would be equivalent to a random sample
 

from the whole population.
 

If there are labeling errors these are propagated through the
 

Procedure M stratified sampling and estimation scheme. Both bias and
 

variance are created by labeling errors. Let a be the average rate of
 

correct classification of wheat as wheat and 8 be the average rate of
 

misclassification of non-wheat as wheat. Then the bias is
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E( - p) = 2n1 - +1i (24)7-n. -i 

and the variance is
 

2 

2ECp - E( )) '-) (25)n a. 

where:
 

Ai = (i - $i ) + (a. - - a)(l (26)a. - 0i)P. 

Bi = (ai - i)2pi(I - P b - (27) 

This formula is developed from the general expression for propagation
 

of variance; if
 

L = f(w) 

and
 

"Var(Llw) is defined 

then
 

Var L = E(Var(Llw))+ Var E(LIw) 

The first of these terms corresponds to the A1 , the second to the B.
 

in Equation 25.
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in general we do not expect that the error rates, 1 - a and 5, are 

accurately known, but it may be possible to establish statistics on those 

error rates, i.e., we may be able to estimate a mean and covariance for 

the a and . In this case the bias and variance of Procedure M will be
 

estimated using a further expansion of the general formula for variance.
 

The expression is'given in Appendix J, Equations J-18 and J-19. Full
 

development of these expressions is given in Appendix J.
 

Previously we stated that a system performance model ought to
 

output the covariance of the crop estimates in the multicrop case.
 

If the crop proportion p is regarded as a vector and p likewise, then 

Equation 23 can be interpreted as the (j,k)th term of the covariance 

of p by replacing pi(l - pi) by (-pi)Pi(k)) and replacing p(l - p 

by (-p(j)p (k)). 

Let w be the multicrop confusion matrix such that nkj is the
 

rate of misclassification of class j as class k. Then Equation 24 can
 

be written as
 

Zni6r. - i)pj 

- p) 1 (28) 
Xn. 

and each of the more general cases can be directly expanded to the
 

covariance expression.
 

6.1.2.2 Information Theoretic Performance Measures
 

Current performance measures for agricultural inventory applications,
 

of remote sensing systems are their accuracy and precision in crop area
 

estimation (i.e., bias and variance) and their probability of correct
 

classification. Intermediate stratification steps are measured by their
 

variance reduction factors.
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It was conjectured that the well-developed principles of information
 

theory should be applicable to evaluation and design aspects of remote
 

sensing systems that extract information and estimate crop area and pro­

duction.
 

The objective of the effort summarized here and detailed in
 

Appendix K was to determine the validity of this conjecture and, if
 

valid, to develop performance measures to supplement or parallel the cur­

rent measures. An investigation was conducted, an approach was estab­

lished, and several performance measures were defined. Only a very
 

limited amount of empirical evaluation was conducted, but the results
 

are encouraging.
 

The approach taken was to view information extraction systems as
 

being communications channels with scene characteristics at the input
 

and derived or estimated attributes or characteristics at the output.
 

Figure 25 illustrates the concept. Note that the processing system
 

in general is not perfect and introduces noise. This noise can cause
 

information to be lost in transit or can introduce errors in the output.
 

A more detailed consideration of input/output pairings is presented in
 

Appendix K.
 

Table 28 summarizes the basic information theory concepts upon
 

which the figures of merit are based. Entropy and mutual information
 

are the quantities of interest.
 

Several figures of merit for stratification procedures are developed
 

and discussed in Appendix K; all have values that range from zero to
 

unity and are normalized values of mutual information. They differ in
 

their normalizing factors. The one that appears most appropriate nor­

malizes by the total entropy, thereby being sensitive to both the number
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TABLE 28. BASIC INFORMATION THEORY CONCEPTS
 

(1) 	The self information associated with the occurrence of state x.
 

which occurs with probability P(x.) is defined to be:
 

T(x.) = log 1 log P(x.)
I- P(x.) o I 

(The more rare the event, the greater is the amount of information
 

associated with its occurrence.)
 

(2) 	Entropy is the average amount of information associated with
 

repeated observations of a state variable:
 

m 
H(X) =- [ P(xI) log P(x

i=l
 

(Hmax = log 	m and occurs when P 0
 

(3) Mutual information is the expected average information exchanged
 

from input X to output Y:
 

m n -P(X i 'yj 

T(X;Y) = P(x ,y) log 
g 	 P(xi) /

i=l 	j=l 
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of output strata and their purity. Performance curves for a two-class
 

input are shown in Figure 26 as a function of number of output strata
 

for three levels of output stratum purity. The penalty paid by impuri­

ties of as little as 5% is striking, but also in accord with results
 

using reduction of variance measures (See Section 6.1.2.1). Also, note
 

that a change from 2 to 4 output strata reduces My about the same as
 

a reduction of purity from 95 to 90%. Incorporation of a cost factor
 

could allow a different weighting function.
 

Information theoretic performance measures have several potential
 

advantages. A principal one is that they are directly extendable to
 

multiple crop situations. Also, information gain can be quantified in
 

additive units. More analysis is required to evaluate the usefulness
 

of the developed stratification figures of merit relative to, or as
 

supplements to, the variance reduction factor; incorporation of cost
 

functions may also prove desirable. The limited result presented in
 

Appendix K is promising. It is recommended that investigation of the
 

use of information-theoretic concepts be continued and extended to
 

other aspects of information extraction system performance and evalua­

tion, such as classification and sampling.
 

6.2 EVALUATION OF PROCEDURE M COMPONENTS
 

The configuration of Procedure M, described in Section 5.1, for
 

a spring small grains application is undergoing evaluation using
 

analyst labels for small grains, machine labels for spring wheat, and
 

ground truth labels as a baseline for comparison. The experiment
 

design is described in Appendix C. The purpose of the evaluation is
 

to demonstrate the performance of Procedure M in the presence of analyst
 

labels, and to establish the relative merit of each component of this
 

stratified area estimation procedure. This section will summarize the
 

status of the evaluation of two components of the Procedure -- BLOB,
 

which defines quasi-field principle sample units, and BCLUSTER, a
 

clustering algorithm used for spectral stratification.
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6.2.1 QUASI-FIELD DEFINITION WITH BLOB
 

The BLOB algorithm has undergone both .the subjective scrutiny of
 

three LACIE-experienced LEC analysts and quantitative evaluation.
 

BLOB [44] is-a multitemporal spatial/spectral clustering algorithm that
 

forms field-like patterns of-Landsat pixels that are used as the
 

primary sample unit and labeling target in Procedure M. These patterns
 

are referred to as 'quasi-fields' or 'blobs'. Acquisitions'used in
 

the algorithm were selected by analysts as to their merit with respect
 

to distinguishing field features. In this experiment, no specific
 

guidelines were developed for this selection, but were left to the
 

discretion of the LEC analysts. A summary of the results of the two
 

evaluations conducted follows.
 

Analysts were to:
 

" 	 Visually determine if blobs correspond to actual fields.
 

* 	 Evaluate if the choice .ofacquisitionsused in BLOB were
 
adequate.
 

* 	 Indicate particular undesirable artifacts or anomalies of
 
the algorithm that are observed.
 

Details of analysts' responses are presented in Appendix C. The
 

salient points of their response are:
 

a 	 Blobs visually correspond to actual fields in most segments.
 

e-	 -Abreakdown of this correspondence in certain segments could
 

be atributed to an inappropriate selection of acquisitions;
 

guidelines as to the appropriate selection were suggested
 

but not utilized.
 

* 	 Certain blobs were disjoint,* i.e., not all pixels contiguous.
 

This was found to be an undesirable feature, especially in
 

labeling.
 

SUPERB, described in Appendix M, addresses modification to the BLOB
 
algorithm that eliminates this problem.
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Quantitative evaluation of BLOB performance is expressed in terms
 

of a simple purity measure. We define purity with respect to a canopy
 

as the percentage of a blob that is comprised of the ctop or canopy
 

of interest.
 

In 17 LACIE TY 78 blind sites in the Northern Great Plains, over
 

6,000 blobs averaged 93% pure as grain or non-grain. Figure 27
 

histograms blob purity to illustrate that 80% of the blobs were at
 

least 80% pure with respect to this two-class categorization.
 

Blobs that were at least 80% pure as spring small grains numbered
 

1531. A large majority of these (1235, or 81%) were in addition at
 

least 80% pure with respect to a specific spring small grain. In all­

cases, including cultivated and non-agricultural canopies, a large
 

number of blobs were found to be at least 80% pure and an average of
 

greater than 90% pure with respect to a specific canopy. Table 29 lists
 

purities for a number of ground truth categories.
 

6.2.2 DEFINITION OF SPECTRAL STRATA WITH BCLUSTER
 

The BCLUSTER algorithm [9] is a simple uhsupervised clustering
 

algorithm that is currently utilized in Procedure M to form spectral
 

strata using means of blobs contained in the big blob strata. BCLUSTER
 

can be controlled to produce any predefined number of strata or
 

'BCLUSTERS'. This section presents an evaluation of spectral strata
 

produced for 13 North Dakota TY78 blind sites using three stratifica­

tion levels -- 20, 40 and 60 strata per segment.
 

The simple variance reduction and purity factors will-be the per­

formance measures discussed. The average simple variance reduction
 

factors resulting from forming 20; 40 and 60 strata were .637, .544, and
 

.483 respectively. Table 30 presents the segment-by-segment breakdown.
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TABLE 29. BLOB PURITY LEVELS 

Ground Truth Category Average 

Generic Specific Purity* No. Blobs 

Spring Crops 93.3 1531 

Spring Wheat 91.1 800 

Barley 92.6 154 

Oats 96.4 267 

Rye 93.0 14 

Summer Crops 94.4 730 

Alfalfa 91.1 42 

Corn 90.4 137 

Soybeans 94.8 178 

Sunflower 93.7 187 

Not Cultivated N/A N/A 

Pasture 93.9 393 

Fallow 91.8 537 

-*Average purity among those blobs at least 80% pure within
 

the generic category specified.
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TABLE 30. SIMPLE VARIANCE REDUCTION FACTORS OF 13 TY 78
 
BLIND SITES BASED ON SPECTRAL CLUSTERING
 

OF BIG BLOB MEANS WITH BCLUSTER
 

Number of Strata
 

20, 40 60 

1392 0.709 0.479 0.422 

1457 0.562 0.516 0.441 

1461 0.715 0.504 0.482 

1467 0.723 0.683 0.621 

1473 0.441 0.335 0.315 

1602 0.463 0.1434 0.371 

1612 0.701 0.654 0.627 

1619 0.490 0.342 0.292 

1636 0.705 0.616 0.469 

1650 0.728 0.634 0.616 

1653 0.657 0.613 0.500 

1656 0.731 0.652 0.541 

1920 0.654 0.608 0.577 

Average 0.637 0.544 0.483 
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This result indicates a substantial improvement in efficiency in strati-,
 

fication -relative to simple random sampling. Though the result indi­

cates that 60 BCLUSTERS are most efficient, the gain in purity is offset
 

by allocating a fixed sample.- For example, the distribution of 100 sam­

ples over 40 spectral strata could be accomplished more nearly propor­

tional to size than over 60 strata. The fixed sample RV (Section 6.1.2.1)
 

provides a means to compute- an RV relative to a given allocation, but was
 

not needed for the purposes or this analysis.
 

Figure-28 illustrates the trend toward efficiency as more strata
 

are formed. The purity of BCLUSTERS relative to their grain or non­

grain composition is histogrammed. The percentage of strata that
 

are relatively pure non-grain (greater than 80%) remains relatively
 

constant independent of the number of strata targeted. This implies a
 

significant level of separability between certain grains and non-grains.
 

However,, the percentage of relativelypure grains shows a dramatic
 

increase from 20 to 40 BCLUSTERS. The implication is that a large
 

percentage of grains and non-grains are spectrally close, and it is
 

-not until the finer threshold levels required to produce more strata
 

are utilized that the grain and non-grain separate.
 

Comparison of Figure 28 to comparable illustrations used in the
 

evaluation of Procedure 1 [10] and PlA [33,41] imply improved strati­

fication with BCLUSTER over ISOCLAS, AMOEBA and CLASSY. It is con­

jectured, however, that much of the apparent improvement is due to the
 

use of blobs instead of pixels and also to excluding the stratum of
 

little blobs in the stratification, rather than to an improved spectral
 

clustering procedure. It is recommended that comparisons of clustering
 

procedures be based on data that is not contaminated by mixed or mis­

registered pixels since these pixels can be confused as canopies that
 

do not contribute to the signal's spectral composition.
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PREPARATION OF A DATA BASE FOR SMALL GRAINS
 

A substantial data base was prepared in support of a number of
 

planned research activities, including both development and testing
 

of ideas and procedures. A general discussion of this data base fol­

lows, and specific details and tables are presented in Appendix L.
 

The data base consists of 65 5 x 6 nmi segments located
 

throughout the United States Great Plains during the 1976 and 1977
 

winter and spring wheat growing seasons. Each segment consists of data
 

from all available usable acquisitions (average 8 acquisitions) of
 

Landsat data (Landsats I and 2), merged together with wall-to-wall
 

ground truth inventory data supplied by USDA and prepared by JSC/LEC,
 

Important pixel-by-pixel information generated during processing, such
 

as cloud/water/shadow identifications or blob numbers, were retained
 

with each segment.
 

In order to support the variety of tasks depending on this data
 

base, segments were selected after- initial screening into two categories,
 

A and B. The principle differences between the two categories were in
 

the segment selection procedures and the state to which the segments-Vere
 

processed. For some applications it is appropriate to use Category A
 

segments for development and training, and Category B segments for test
 

and evaluation.
 

The segment selection procedures used were as follows. First the
 

171 segments available to us were screened to eliminate those whose ac­

quisition history, ground truth quality, and data quality are inadequate.
 

When carried out, 107 segments remained for possible selection. These
 

segments were stratified by APU* and year. Category B segments were then
 

selected by randomly sampling a qudta (1/3) of each stratum, subject
 

to the constraint that'at least one segment be selected from each stratum.
 

* *Agrophysical Units, as used within LACIE.
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By this procedure, 36 segments were selected to represent a nearly
 

random samples of the variability of the region. The remaining segments
 

were considered candidates for Category A. Stricter minimum limits on
 

acquisition history and data quality were observed, so that selected
 

segments were well suited for development work. However, the
 

selections were more qualitative, taking into account desire for more
 

acquisitions versus desire for a nice spread to cover variability.
 

Even though selecting Category A segments first would have resulted in
 

more and nicer segments for development work, it was necessary to select
 

them second in order to maintain the statistical integrity of the
 

Category B sample used to support test and evaluation.
 

In order to prepare the data for use and to minimize unwanted
 

variability due to external effects, preprocessing steps were applied
 

to all segments. Table 31 lists the algorithms used, and they are also
 

detailed in Appendix L.
 

TABLE 31. PROCESSING STEPS APPLIED TO THE SMALL
 

GRAINS DATA BASE 

Function Algorithm 

Ground Truth Manipulation (CONVRT, FLDSl5) 

Merge Acquisitions and Ground Truth (MERGE) 

Data Screening (clouds, water, etc) 

Satellite Calibrations ) 
(SCREEN) 

Cosine Sun Angle (XSTAR) 

Spatially Varying Haze Correction 

Feature Extraction (TASCAP) 

Field Pattern Identification* (SUPERB, STRIP) 

Extraction of Field M~ans* (COMPRS) 

*Category A segments only. ­
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The Category A segments received additional processing steps
 

designed to identify field patterns and obtain spectral mean values
 

for those field patterns, both including and excluding pixels.adjacent
 

to the field pattern boundaries. The results of this processing are
 

a data set reduced in size by a factor of roughly twenty, appropriate
 

for easy and efficient repeated used by many development tasks.
 

The need for processing to identify field patterns is due to the
 

lack of field information as part of the available ground truth. The
 

identification is carried out by the algorithm SUPERB, which is described
 

in Appendix D. In short, SUPERB is'a spatial-spectral clustering al­

gorithm similar to -BLOB[44] which forms field-like patches, but which,
 

unlike BLOB, can be supervised by the ground truth, so that only adjacent
 

pixels that contain like ground truth codes are assigned to the same­

field pattern.'
 

Since some tasks require the data in its nonrcompressed pixel form,
 

that is provided as well. Codes for each pixel giving the field pat­

tern number and field boundary indicator are included with the Category
 

A pixel data.
 

To summarize, the data base consists of 67 5x6-mile&-segments selected
 

from 171 LACIE Phase 2 and Phase 3 blind sites. The segments are divided
 

into two groups: one was chosen with fine acquisition history and quality
 

and was processed to produce field means; the other was chosen with a good
 

statistical spread. Each segment contains from 3 to 15 Landsat ac­

quisitions, preprocessed through a standard battery of algorithms
 

(Table 31).. A segment consists of 23,000 pixels, each with between
 

31 and 91 channels that include standardized Landsat, screening, ground
 

truth, field pattern, boundary and other data.
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RECOMMENDATIONS
 

This section summarizes the major recommendations resulting from
 

the reported investigations. Together with the Executive Summary, it
 

forms a concise account of the year's effort and its ramifications.
 

At the broadest level, we recommend that an overall information
 

system context be borne in mind to guide development of area estimation
 

technology and its component techniques. One realization of this con­

text should be through implementation of a baseline estimation system
 

having, at least in embryo, all of the anticipated components or func­

tions perceived for- the final system. This context will provide the
 

environment for a phased evolution of technology through definable and
 

evaluatable stages.
 

Regarding overall considerations of objective labeling techniques,
 

we recommend that:
 

" The second year of the planned effort to understand the phy­

sical foundations supporting objective labeling of wheat and 

other small grains be continued with the focus on near-term 

development of a labeling procedure based on such understanding. 

* The same general approach be initiated toward understanding 

the problem of labeling corn and soybeans. 

More specific recommendations are indicated below relative to
 

several aspects of the objective labeling investigations:
 

* Refined machine labeler for spring wheat and barley:
 

- that the accuracy of labeling be evaluated on training 

and test data sets; 

- that proportion estimation performance be evaluated 

within a Procedure M context, with both ground-truth 

and analyst labels, using the 18-segment TY 1978 data 

set.
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* 	 Understanding of current labeling technology,
 

that 	a follow-on large-scale analyst experiment be
 

designed and conducted to further investigate analyst
 

labeling performance;
 

that 	the following features be made a part of that
 

experiment:
 

* 	 Multi-analyst (to evaluate the overall distribution
 
of accuracy of a team of analysts).
 

* 	 Multicrop (to evaluate not only the precision of
 
analysts labels within a crop, but to identify
 
confusion crops).
 

* 	 Confidence labeling (to examine whether clear
 
accuracy trends appear as a function of an analyst's
 
confidence in a given label).
 

* 	 Independent and cooperative labeling (to evaluate
 
comparative accuracy among independent analysts as
 
compared to team approaches or labels fabricated
 
from multiple analyst inputs, e.g., vote and
 

average labels).
 

* 	 Multidate (to evaluate accuracy as a function of
 
time of year and missing acquisitions).
 

* 	 Multitarget (to compare pixels, quasi-fields, and
 
actual fields as labeling targets).
 

* 	 Multistratum (to evaluate analyst performance as
 
a function of temporal-spectral strata defined to
 
characterize crop spectral phenology).
 

* 	 Feature definition:
 

- that the Tasseled-Cap transformation be used and 

analysis of spectral data structures and their agronomic
 

basis be continued and extended to the spectral space of
 

the Thematic Mapper;
 

-	 that relationships between reflectance space and Landsat 

space be confirmed and/or refined through expanded joint
 

analysis of LACIE/LACIE-Transition field measurement
 

and Landsat data.
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that development and use of a meteorologically driven
 

model of the spectral phenology of wheat be continued,
 

and that the availability of needed technology for
 

extension to corn and soybeans be ascertained.
 

* Feature extraction;
 

- that data normalization precede profile fitting and other 

information extraction operations to reduce variability 

due to factors other than crop type and crop condition; 

- that our recommended steps for other parts of profile 

fitting be followed (e.g., where appropriate, use non­

linear fitting procedures and the second model form
 

after crop calendar shift operations; with first model
 

form, be sure to use day and Greenness offsets);
 

- that development of temporal-spectral profile technology 

be continued for other crops and for additional levels of 

complexity of application, such as crop development stage 

estimation; 

- that improved aids be developed to assist analysts in 

labeling field-like targets, e.g., field-delineation 

overlays and spectral aids, 

* Signature characterization:
 

- that a signature extraction procedure employing CLASSY
 

be tested on a small scale using blob means as elements;
 

- that temporal-spectral profile parameters be analyzed
 

as variables and characterized for crop and competing
 

crop signatures,
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* 	 Procedure development:
 

- that incorporation of temporal-spectral profile para­

meters in analyst-oriented labeling procedures be 

investigated; 

- that an analyst-assisted machine labeler for small 

grains be investigated; 

- that analyst-interpreters be investigated as extractors 

of collateral data for labeling and that other aspects 

of man-machine interactions be considered. 

Regarding overall machine processing considerations, we recommend
 

that:
 

* 	 The stratified area estimation technology identified in
 

Section 3 be utilized as a baseline crop acreage estimation
 

environment for further technique development in the near
 

future.
 

* 	 Procedure M, because of its modularity, versatility, statis­

tical framework and physical foundation, be considered as a
 

candidate to represent SAE technology.
 

More specifically directed at'machine processing component tech­

nology, we recommend that:
 

" 	 Normalization techniques, like the Landsat 3 to Landsat 2
 

transform and others incorporated in Procedure M, be
 

utilized to provide a standard frame of reference for the
 

analysis of agronomic remote sensing data.
 

* 	 Development of baseline normalization and feature extraction
 

techniques for the thematic mapper be initiated using field
 

measurement and/or simulated data.
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* 	 The inherent separability of Landsat data be evaluated using
 

a non-parametric technique, like the nearest neighbor algorithm.
 

* 	 The use of derived features like crop calendar shift, peak
 

Greenness, and other that are agronomically interpretable be
 

investigated as features for unsupervised stratification.
 

a 	 A field-finding algorithm, like BLOB, AMOEBA or SUPERB, be
 

utilized to distinguish pure and mixed pixels; and that
 

comparative tests of unsupervised clustering algorithms be
 

run on each group separately.
 

a 	 Static spectral-temporal stratification be further explored
 

to establish standard trajectory strata; and that physically
 

and statistically based stratification strategies be compared.
 

* 	 Study of optimal sample allocation techniques like Bayes
 

sequential and Neyman be continued and, additionally, that
 

work be initiated to:
 

-	 evaluate their potential with static strata;
 

- evaluate them in the presence of analyst error to avoid 

designing strategies that may be optimal with respect. 

to ground truth, but yet magnify analyst-induced mean 

square error; 

- develop strategies that sample to minimize overall vari­

ance which is composed of expected sampling and labeling 

variances, and also include cost factors. 

* 	 Contextual estimation approaches using strata based on pixel
 

composition (field center, mixed,'trash, or misregistered) be
 

developed.
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* 	 The nearest neighbor algorithm be evaluated as a classifier
 

and as a mechanism to extend "high confidence" labels.
 

* 	 Development be continued of a predictive model for stratified
 

area estimation procedures based on segment data, establishing
 

factors that affect estimates that are observable in imagery
 

to parametrize the model.
 

* 	 Development of information theoretic based performance mea­

sures be continued, including establishment of guidelines for
 

interpreting these measures, especially in a multicrop, multi­

sensor application.
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