“Made available under NASA sponsorship
in the nterest of early aad wite dis-
seminiefion of Farth Resoweas Survey

Fi
Pivgeem «siormat-on and without hagility 8. 0 _,31.' @. 0 J §
for agy use made thereof,” NASA CR. -~
w SR-EQ0040dy ) T,
AgRISTARS s |
{E80-10055) DEVLEOPHENT OF LANDSAT-BASED N80-18507
TECHNOLOGY FOR CROP INVENTORIES: APPENDICES : jram for
Final Report, 15 Nov., 1978 - 14 ¥ov. 1979 ind
. {Environmental RBesearch Inst. of Hichigan) Unclas
_ 303 p HC Al4/MF 201 CSCL 02C &3/43 00055 aventory
Surveys Through

Aerospace
Remote Sensing

Supporting Research
December 1979

FINAL REPORT

DEVELOPMENT OF LANDSAT-BASED

TECHNOLOGY FOR CROP INVENTORIES:
APPENDICES

Q.A. Holmes, R. Horvath, R.C. Cicone, R.J. Kauth, W.A. Malila

ENVIRONMENTAL RESEARCH INSTITUTE OF MICHIGAN P.0. BOX 8618« ANN ARBOR, MICHIGAN 48107



NOTICES

Sponsorship. The work reported herein was conducted by the
Environmental Research Institute of Michigan under Contract NASS- -
15476 for the National Aeronautics & Space Administration, Johnson
Space Center, Houston, Texas 77058. 1. Dale Browne was Technical
Monitor for NASA. Contracts and grants to the Institute for the
support of sponsored research are administered through the Office
of Contracts Administration.

Disclaimers. This memorandum was prepared as an account of.
Government sponsored work. MNeither the United States, nor the’
National Aeronautics & Space Administration (NASA), nor any person
actlng on behalf of NASA:

(A) Makes any warranty expressed or implied, with respect to
the accuracy, completeness, or usefulness of the informa-
tion, apparatus, method, or process disclosed in this
memoranduim may not infringe privately owned rights; or

(B) Assumes any liabilities with respect to the use of, or for
damages resulting from the use of any information, appara-
tus, method, or process disclosed in this memorandum.

As used above, ''person acting on behalf of NASA" includes any employee
or contractor of NASA, or employee of such contractor, to the extent
that such employee or contractor of NASA or employee of such contractor
prepares, disseminates, or provides access to any information pursuant
to his employment or contract with NASA, or his employment with such
contractor.

Availability Notice. Request for copies of this memorandum should
be referred to: ’

National Aeronautics & Space Administration
Scientific & Technical Information Facility
P. 0. Box 33 )

College Park, Maryland 20740

Final Disposition. After this document has served its purpose,‘it
may be destroyed. Please do not return it to Ehé Environmental Research
Institute of Michigan.




SR-E9-00404
NAS9-15476

2

FINAL REPORT

DEVELOPMENT OF LANDSAT-BASED TECHNOLOCY ¥OR CROP INVENTORIES:

APPENDICES

BY
Q.A. Holmes, R. Horvath, R.C. Cicone, R.J. Kauth, W.A, Malila

The research reported here was initiated during the planmning
of the AgRISTARS Supporting Research Project and was a part
of those plans, although this research will stand on its own
merit. The benefiting Supporting Research project element
is Area Estimation Research.

Environmental Research Institute of Michigan
P.0. Box 8618
Ann Arbor, Michigan 48107

December 1979

iii

PRECEDING Fads whudil NOT FILMED



D ERM

PREFACE

This report describes part of a comprehensive and continuing pro-
gram of research concerned with advancing the state-of-the—art in
remote sensing of the enviromment from aircraft and satellites. The
research is being carried out for NASA's Lyndon B. Johnson Space
Center (JSC), Houstgn, Texas, by the Environmental Research Institute
of Michigan (ERIM). The basic objective of this multidisciplinary
program is to develop remote sensing as a practical tool to provide
the planner and decision-maker with extensive information quickly and

economically.

Timely information obtained by remote sensing can be important to
such people .as the farmer, the city planmner, the conservationist, and
others concerned with problems such as crop yield and disease, urban
land studies and development, water pollution, and forest management.

1

The scope of our program includes:

i.- Extending the understanding of basic processes.

2. Discovering new applications, developing advanced remote-
sensing systems, and improving automatic data processing

to extract information in a useful form.

3. Asgisting in data collection, processing, analysis, and

ground—truth verification,

The research described herein was performed under NASA Contract
NAS9-15476 and covers the period from November 15, 1978 through
Novembér 14, 1979. I. Dale Browne/SF3 was the NASA Contract Technical
Monitor and Thomas Pendleton/SF3 was the primaiy MASA Technical Coordi-
nator of the activity. The program was directed at ERIM by Richard
R. Legault, Vice President and Head of the Infrared and Optics Divisionm,
Quentin A, Holmes, Program Manager, and Robert Horvath, Head of the

Analysis Department.
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APPENDIX A
EXTRACTION OF TEMPORAL-SPECTRAL FEATURES

A.]l UTILITY OF TEMPOBAL-SPECTRAL FEATURES
A.1.1 BACKGROUND

Assignmeﬁt of crop type or crop group labels to a set of labeling
targets (pixels, fields, étc) often invoives'recogpition of a temporal-
spectral pattern that is characteristic of a crop or crop éroup. Since
the labeling targets consist of populations of plants rather than a
single plant, there is likely to be some variation in stage of develop-
ment within the target érea at any given point im time. As a result,
crop development and the accompanying spectral development at the target
level will, in most cases, appear to be a continuous rather than a dis-—
crete process. As in most other biological pdpulation phenomena, these
development patterns could be expected to conform to a Sigmoid curve

(see Figure A-1).

Based on these assumptions, one can conclude that the discrete
observations obtained from Landsat are samples from a continuous pattern
of spectral development. Characterization of that pattern, based on the
given set of samples, should allow more complete description of the tar-
get and, as a result, more accurate labeling. The term 'profile' is used

to describe the mathematical representation of this development pattern.

A.1.2 LEVELS OF USE

Representations of the temporal-spectral development of crops,
fields, etc may be used in a variety of ways. 8Since the degree of
precision demanded of the profiles varies with intended use, it is
of value to define a set of levels or categories of application. Models

may then be developed and evaluated at the level of use for which they
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FIGURE A-1. SIGMOID CURVE SHAPE
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are intended, and extended to other levels (particularly higher or more
demanding levels) only after careful re-testing and, pérhaps, modifi~

cation.

Level 1: At the first level, a profile need only provide a
stylized representation of the crop development pattern. Small devia—
tions from the norm that might be observed on a target level needn't
be accounted for; a relatively simple model, even one that only con-—

nects observations with a series of line segments, may suffice.

Level 2: Estimation of a particular feature of crop spectral
development réquires a more accurate profile fit, at least in that
portion of the profile from which the feature of dinterest is derived.
Thus, a Level 2 model must, on the whole, be more accurate and flexible

than one which could be used at Level 1.

Level 3: The ﬁext level of application involves characterization
of overall crop development and multiple fesdtures. Models at this
level must be able to accurately portray spectral development
throughout the growing season, and as_such must be even more flexi-
ble and accurate than at the previous levels. This level, which is
the focus of the study reported here, will be more fully discussed
in Section A.l.4.

Level 4: The final level in the sequence involves a still greater
accuracy requirement. If a profile can be fit to a set of obsefvations
accurately enough, and the interpolation and/or extrapclation of pro-
file values can be carried out wisely enough, then it may be possible
to use the profile values themselves as data, replacing or augmenting
the Landsat observations. While precise mathematical fitting is
important here, the major need is understanding of the physical and
biological processes taking place and their impact on spectral char-
acteristics, and incorporation of that uﬁderstanding inteo the fitting

process.
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A.1.3 PAST APPLICATION OF PROFILE TECHNOLOGY

Multitemporal characterizations of spectral development have been’
used previously at both Levels 1 and 2. Most of the work has involved
spring small grains and Tasseled-Cap Greenness, and utilized a model

developed at ERIM. This model is of the form

b ct2

F(t) = at e (A-1)

where F(t) = Greenness — 25,
t = shifted day of year - 125,
a,b,c = model parameters.

This form is a smooth curve that can fit a series of observations of
spring small grains targets. This model was originally applied at
ERIM to crop calendar shift estimation [18 ] in a refinement of a
technique developed by G. D. Badhwar [16 ] in which a simpler pro-

file form was used.

More recently, the same model has been used to describe particular
features of spectral development. Appendix G describes a machine
labeling technique for distinguishing Spring Wheat and Barley that
enploys the maximum value of the profile as an indicator of moisture
stress conditions on a sample-segment level. A similar application
has been carried out by UCB in the context of detection of episodal

events [ 457.

Profile technology, and the described model form, have also been
used as a basis for a classifier both of spring small grains and

corn f[46].
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A.1.4 LEVEL 3 PROFILE APPLICATION

Figure A-2 illustrates some of the potentially useful profile-
based features which could be extracted at Level 3. The set of fea-
tures in toto provides a comprehensive description of the target
spectral development pattern. The maximum value of the profile can
serve as an indicator of crop vigor and percent cover (assuming a
vegetation indicator such as Tasseled-Cap Greenness is used). The
rates of Greenness increase and decrease, and changes. in those rates,
can serve as useful features for distingusihing crops whose profileg
have similar overall shapes- but which develop differently at some
points in the season. These same rates can also offer information
on crop condition. Similarly, the total development time (the inter-
val between departure from and subsequent return to some nominal base
value) or half-amplitude interval could ﬁfovide information relevant

to both crop identification and condition assessment.

The set of features, perhaps with additional profile-derived
features, should provide a more ccohesive description of the target,
allowing broader inferences to be made relativé\go both labeling

and, where the two are separate, assessment of crop vigor.

A.l.5 PURPOSE OF CURRENT INVESTIGATION

The work reported herein was undertaken for two major reasons.
First, the promising aspects‘of Level 3 application (overall develop-
ment characéterization) prompted an interest in determining whether
the model currently in use and developed for Level 1 or 2 use, could
be extended into the arena -of Level 3 application. Second, it was
deemed important to study the various steps in the profile-fitting
process itself and to define a procedure that could serve to standérd—

ize application of the technology in the community.
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A.2 STUDY OF PROFILE-FITTING FOR GVERALY. CROP DEVELOPMENT CHARACTERIZATION
A.2,1 GENERAL STEPS OF A FITTING PROCEDURE

Any procedure by which a profile model is fit to a set of data
points would likely include the following steps:

a. Data Selection: The target to which a profile is to be fit

must be specified. This target may be individual pixels,
all pixels of a field or quasi-field, or the mean of the

field or quasi~field.

b. Data Preparation: The Landsat data may require several steps

of preprocessing to arrive at a standardized, normalized set

of observations that can be converted into a smooth profile.

c. Parameter Estimation: Once the data is prepared, the values

of the profile parameters must be estimated.

These steps will be treated separately in the following description
of study approach and ‘results, with the data selection step being dis-

cussed after the other two steps.

A.2.2 DATA PREPARATION

In order to utilize the information obtained by fitting a profile
to a set of observations, to obtain meaningful information about overall
crop development, it is necessary that the influence of external
phenomena on target spectral appearance be reduced to the greatest
possible degree. Variations in profile shape must be tied to crop

type or condition and not to sun angle, haze condition, ete.
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The series of normalization steps includes:

a. Sensor Calibration (e.g., Landsat 2 to Landsat 3).
b. Sun Angle Correction {cosine).

Screening to flag clouds, shadows, etc.

0

d. Haze Correction (spatially varying XSTAR) [37].

A second stage of data preparation is estimation of crop calendar
shift. This procedure standardizes data to an arbitrary but common
time scale, thus reducing signal variation on any given day which is
the result not of crop appearance differences per se but rather of
differences in stage of development at the time of observation. This
process not only reduces signal variation on any given day, but pro-
vides, in the case of fitting to all pixels of a field, added informa-

tion that can be utilized in fitting the profile.

The final stage of data preparation involves tr&ﬁslation of the
data axes such that the origin approximately corresponds to the start
of Greenness development of the small-grain target. The need for this
translation or offsefting stems from the model form itself. Regard—
less of the actual starting Greenness value or starting time of Green-
ness development, the model will consider all times from t=0 through
some maximum time, and F(t}=0 through some maximum Greenness. The
desired Sigmoid shape of each side of the.profile similarly occurs in
the range from F(t)=0 through the maximum value. Figure A-3 illus-
trates the effect of omitting this step. Despite the fact that the
first Greenness observations occur well away from the untranslated
origin, the model form begins there, and requires parameters that
allow for a long, relatively flat tail followed by a relatively rapid
increase and decrease in the data vange. TFigure A-4 illustrates the
same data fit with offset applied. Comparison of the two figures
clearly points out the model's inability to accommodate both the long

tail and the comparatively short span of actual crop development.
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The xesulting profile is significantly less accurate in overall

development characterization than that computed using offset data.
Variations in the method of parameter estimation, to be discussed

next, can reduce this negative impact, but do not eliminate it.

Base on data from several segments, offsets of 125 days and 25
counts of Greenness (after adding 32 to all Tasseled-Cap channels)

have been used.

A.2.3 PARAMETER ESTIMATION

Linear vs. Non-Linear Techniques: The method used to arrive at

model pdrameter estimates has, in the past, exploited the ability to
linearize the profile model. A logarithmic transformation produces

the following linear model from:
2 .
In F(t) = Ina+ b 1n t + ct (A-2)

Multiple linear .regression can then be applied to produce least squares

estimates of the model parameters.

While this method is simple and inexpensive, it has at least two
disadvantages. TFirst, the non-linear nature of the logarithmic trans-
formation results in a distortion of the original data, and most
importantly a compression of the peak of the set of observations. The
least squares fit to these compressed data will, as a result, under-

estimate the peak of the untransformed data.

The problem is compounded by another aspect of the lipear esti-
mation technique. The least squares estimate in log 5pace minimizes

the quantity

¥ (In F(t) - ln.Gi(t))z : (4-3)

i1
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where F(t) = profile value,
Gi(t)

data value.

Since the difference of two logarithms is the logarithm of the

ratio of the two quantities, the quantity being minimized is, in fact,

F 2
2 (eiﬁi)) (a=4)

Since a given number of counts difference results in a larger ratio
when the profile and data values are small than when they are larger,
the linear least squares estimation procedure is giving greater weight
to the tails of the profile in determining the best fit. Fit at thé
peak will be sacrificed, to some degree, in order to improve fit at
the lower values. Not only does this accentuate the low peak estimate
problem, it gives leasq Importance to those parts of the profile (at
and around the peak) that in many applications will be the most

important.

An alternative method of parameter estimation involves a non-
linear least squares technique. A routine from the IMSL package [47]
was chosen which applies a modified Levenberg-Marquardt steepest
descent algorithm to seek out the minimum value of a residual sum
of squares surface through iterative estimation and evaluation of
parameters. This technique avoids the need for a log transformation

and thus the technical problem associated with that ;ransformation.

Comparison of the two methods required definition of a common
measure of goodness-of-fit since the R2 from the linear regression
is a measure of fit in log space rather than actual data space. As

such, the following was used for comparison:

n (F(t) - Gi(t))2

Goodness of Fit = 1 - (A-3)

£ (G, () - E)z

12
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where F(t) = profile value,
Gi(t) = ith data value,

G = mean of all data values,

and the range of the equation is [0,1].

Figure A-5 and Table A-1 illustrate the results of the comparison.
In all cases the non-linear technique provides an improved estimate

of profile parameters, as evidenced both visually and empirically.

Offsetting Problems Encountered: In the course of the parameter

estimation study, an apparent ﬁroblem related to data offsetting (see
Section A.2.2) was encountered. Figure A-6 illustrates the problem,
which appears to be the result of incorrect offset values. In both
fields shown, Greenness values at shifted day 125 (offset day 0) are
well above 25 (offset value 0). While the fésult varies with the
parameter estimation technique, the impact in both is a clear reduc-
tion in profile accuracy. Ig is apparent, then, that the offset

values used as standards are not appropriate in all cases.

Several approaches to field-specific offset determination were
considered. First was an approach that assumes a constant Greenness
value before crop development begins. A straight line is drawn
through a pair of pre-peak observations and the intersection of the
line with the constant value is assumed to be the start-up time for
crop spectral development. The major drawback of this approach is
it's inability to address the non-linear character of Greenness
development. TFigure A-7 illustrates this problem using simulated
data. The lines drawn represent the results of using different
18-day pairs of data points along the profile. While many do seem
to point teo the same starting date, those that include an observa-

tion near the peak significantly mis-estimate the start-up time,

13
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TABLE A-1. COMPARISON OF GOODNESS-OF-FIT OF
LINEAR V5. NCN-LINEAR ESTIMATES

Goodness—of-Fit

Segment Field .  Linear Non-Linear
1663 5 . 946 : .959
7 .919 .932
11 . .933 . 960
12 .920 .929
13 .914 ©.941
14 .953 .963
1669 28 .819 .834
30 774 .860
1929 16 . 883 .890
17 .574 .709
23 . 725 . 842
24 . .886 .923

i5
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This result is further illustrated in Figures A-8 and A-9, using shifted

and unshifted actual data.

A second approach considered was inclusion of the offsets in
model parameters to be estimated. The least squares fit would then
be driven by five parameters instead of three. Attempts to apply the
method, however, were unsuccessful, apparently due to parameter inter-—

actions.

Finally, an attempt was made to determine field-specific offsets
by iteratively calculating profiles while changing offset, and selec-
ting offsets based on the goodness—of-fit measure. However, as
illustrated in Figure A-10, successive parameter estimates with a wide

range of day offsets produced no clear optimum fit.

An alternative to target—specific offset determination is develop-

ment of a model that is less constrained by offset requirements.

Development of a New Model: In response to the need for less

dependence on offsetting, a new model was developed of the form:

bl(t—t )2
ae L s £ o< tp
= 2 (A-6
F(t) b2(t-tp) )
ae 3 B> tp
where F(t) = Greenness—25

t = shifted day of year,
tP = reference day of peak Greenness,

a,bl,b = model parameters,

2

and furthermore,

a + 25 = estimated peak Greenness.

The model is fit to observations before and after the peak inde-

pendently, while maintaining continuity (to the first derivative) at

18
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the peak. The "zero-point" for time is now the time of peak Greenness,
which is a relatively stable quantity after crop calendar shift esti-

mation.

Since the time value enters into the equation only as (t—tP),
the offset is taken care of automatically, and only crop calendar shift
must be estimated beforehand. Further, while an offset in Greenness
is still desirable, the elimination of a need for a {(0,0) starting
point also reduces the requirement for precision of the Greenness

offset.

The two models were compared, using the non-linear estimation pro-
cedure, using a number of fields from several segments. In most cases,
the new model provided a move accurate fit than the original model.

In one segment, Segment 1663, many of the fields exhibited a near-—
linear increase in Greemness early in the season. The new model,
which tends to produce a more distinct Sigmoid shape both before and
after the peak, proved unable to £fit the early acquisitions in many
of the fields tested in Segment 1663 (Figure A-11). However, the fit

over the remainder of the growing season was accurate.

The -improvement with the new model is most distinct on those
fields for which offsets were clearly a problem. Figures A-12 and

A-13 demonstrate the improvement in fit with the new model.

An additional advantage of the new model form is its flexibility.
Since the model is fit in a piece-wise fashion, i.e., before peak and
after peak, it is able to adapt to a wider range of profile shapes.
Figure A-14 illustrates some of the possible forms achievable with the

model.

22



ERIM

65 +

GREENNESS

25

Day oF YEAR

FIGURE A~11. COMPARISON OF MODEL FORMS
(Segment 1663 Field 7)

23



ERIM

60

" GREENNESS

25

215
125 DAy oF YEAR

FIGURE A-12. COMPARISON OF MODEL FORMS
(Segment 1669 TField 30)

24



ERIM

50

(REENNESS

25

-

DAy oF YEAR

FIGURE A-13. ' COMPARISCN OF MODEL FORMS
(Segment 1929 Field 23)

25



9t

N\

FIGURE A-14%.

N

AN

EXAMPLES OF PROFILE SHAPES POSSIBLE WITH NEW MODEL

i3 {




DERM

A.2./4 DATA SELECTION

The final aspect of profile fitting to be addressed, and the first
step in the procedure, is data selection. Two alternatives were con-
sidered: f£field interior pixels and field means. Host of the tests,
however, are applicable to other possible targets; individual pixels
should be much like field means, and gquasi-fields should correspond to
fields, either means or pixels. It should first be noted that in
research efforts where field boundaries are determined by ground truth,
mis—-registration will likely require that a one-pixel inset be applied

at the field edges in order to get a good field signature.

Application of the non-linear fitting technique with either model
to field means resulted, in most cases, in a profile that appeared
qualitatively the same as one produced using all interior pixels.

Two problems, however, are apparent at least on a theoretical level.

First, estimation of crop calendar shift, followed by estimation
of three model parameters, computationally requires at least three
independent acquisitions in the range of the profile (more than three
are desirable)}. Assuming a growing season of approximately 90 days,
and data from only one satellite (i.e., every 18 days), five is the
maximum number of observations possible. While two satellites increase
the number potentially available to temn, the loss of a few acquisitions

due to cloud cover could reduce the total available to a critical level.

In addition, in large fields and to a lesser degree in nearly all
fields, there can be expected to be some variation in stage of develop-
ment within the field. Where this is the case, shifting individual
pixels will provide additional information which can be used to better
characterize the overall shape of the profile. Thus, one could expect
some degree of information loss when using field means. However, since

the amoiunt ‘of information lost is unlikely to be critical, by far ‘the

27
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more serious concern is the number of observations available for esti-
mation purposes. If indeed sufficient acquisitions are avallable,
using field interior means in placé of field interior pixels should

be acceptable.

A.3 PROCEDURE FOR FITTING PROFILES TO TARGET DATA FOR LEVEL 3
APPLICATIONS .
A.3.1 DATA SELECTION

Utilize targets defined by field or quasi-field boundaries, with
one-pixel insets at borders to account for misregistration. If suf-
ficlent acquisiticns are available (at least five), means may be used

in place of interior pixels.

A.3.2 DATA PREPARATION

The following steps are prescribed for normalizing and standardizing

data:
] Satellite calibration.correction (see Appendix H).
° Cosine sun-angle correction.
° Cloud, shadow, etc-detection [31].
. Spatially—varying XSTAR haze correction [3].
® Estimation of &rop calendar shift [3].
N Offsetting of Greenness values by 25 counts.

A.3.3 PARAMETER ESTIMATION

Estimation of parameters for the new model (Equation A~6) should

be carried out using a non-linear least squares techmnique.

28
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APPENDIX B
ANALYSES OF SPECTRAL-TEMPORAL CHARACTERISTICS OF WHEAT

B.l INTRODUCTION

The overall objectives of the analyses described in this appendix
were twofold. The first was to develop discriminative features from
spectral data acquired for wheat throughout the growing season. The
second was to develop an improved un&erstanding of the spectral charac-
teristics of wheat as functions of the spectral space employed and stage

of development.

This appendix has four major topics. Section B.2 addresses methods for
analyzing and interpreting patterns in reflectance data in terms of
corresponding features in Landsat data. Section B.3 is characteristics
of gpectral méasures of wheat green development,lcomparing the selected
Greenness feature with other measures such as spectral band ratios.

“The Section B.4 topic is effects of moisture stress and Section B.5 is the
estimation of crop development stage from temporal-spectral profiles

of Greemnness and crop calendar shift calculations.

The data sets analyzed include a sequence of field measurements
of wheat réflectance made by USDA personnel in Phoenix, Arizona, [48]
and several North Dakota segments from the LACIE Transition Year 1978

Landsat data base. Table B-1 further describes thése data sets.

B.2 TINTERPRETATION OF REFLECTANCE DATA

It is well established that the majority of variability in Landsat
data is confined to two dimensions conveniently described by the

Brightness—-Greenness plane of the Tasseled-Cap Transformation. F was

desired to analyze inband reflectance measurements_in a way that corre-

spends to that transformation. In previous work [49], regression

29
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TABLE B-1. DESCRIPTION OF DATA SETS

A. FIELD-MEASURED REFLECTANCES (Dr. R. Jackson, et al, USDA)

Site: U.S. Water Conservation Laboratory, Phoenix, Arizona
Date: 1977-1978 growing seascn

Experiment Objective:
Determine water stress effects on wheat yield and
spectral characteristics

Experiment Factors:
Moisture treatment - six levels of irrigation

Crop - Two spring wheat varieties and one barley
(Planting densities greater than normal
for Northern U.S. Great Plains)

Spectral Measurements: Hand-held Landsat-bBand radiometer
Frequency: Every other day, weather permitting

Agronomic Measurements:
Crop development stage (modified Feekes scale)
Leaf area
Stem length
Wet and dry weights

B. LANDSAT DATA

Sites: MNorth Dakota Segments 1392, 1457, 1461, and 1636

Date: 1978 growing season (See Table B-2 for listing of
individual acquisition dates)

Processing Applied:
Calibration adjustments for Landsat 3 to Landsat 2
Sun angle correction
Haze correction using spatially varying XSTAR algorithm
Tasseled-Cap transformation
Selection of field interior pixels
Computation of spectral means for each field
- Calculation of day shifts using spectral means

Agronomic Measurements:
Crop development stage (modified Feekes scale)

30
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relationships were established between Landsat values and field-measured

(by helicopter-borne spectroradiometer) reflectances for individual
fields on several dates. Also, a principal component analysis was con-
ducted of inband reflectances. Ninety-nine or more percent of the varia-
bility was found to lie in a plane and a Tasseled-Cap-like transformation
was defined by determining two directions, one visually aligned with
bare secil data in the principal plane and the other orthogeonal to it in

the direction of green vegetation reflectance values.

A modified approach was followed this year. The principal component
analysis step was repeated, but a different procedure was used to estab-
lish the soil line. All bare soil data were isolated and subjected to
second principal component analysis; the major component of this analysis
was then defined to be the brightness direction, with an orthogonal
greenness dimension. In addition, the inband reflectance values were
first'multiplied by band-to~band calibratioq ratios based on the cali-
braticn values of Landsat. The objeétive was to provide a weighting of
values in the various reflectance bands that was more comparable to the
weighting applied by Landsat (for instance the range of MSS7 data is
half that of the other bands).

It would be desirable in the future to re-do the regression-type
analysis of Reference [49] using data from other sites. One reason is
that the prior study did not use the spatially varying XSTAR algorithm.
Another is that uncertainties exist about the calibration of those early

helicopter—borne reflectance measurements.

As with the earlier principal compcnent analyses, 99% or so of the
variability in the data was found to lie in the principal plane. Thus,
indications are that senescing vegetation does not lie out of this plane

by any significant amount.
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B.3 MEASURES OF GREEN VEGETATION DEVELOPMENT

A number of Landsat-derived green measures have been proposed and
used by various investigators. Along with Tasseled-Cap Greenness, the
list includes MSS7/MSS5, vMSS7/MSS5 [50], Green Angle [51], Vegetation
Index (VI) [52], and Transformed VI (TVI) [59]1, among others. We ex-
plored the characteristics of these measures using the set of field-

measured reflectance data.

Several criteria are appropriate for selecting a green measure for
a particular application. These include the shape of its time profile,
its stability, its correlation with agronomic variables, and its useful-
ness for discrimination. The shape is an important factor for use in
crop calendar shift operations. For instance, ease of fitting a mathe-
matical form to the profile shape and representation of the overall
development process are important. For crop development stage estima-

tion, emphasis of particular development stages can be important. As

far as stability is concerned, it is desirable to have both a low vari-

ance and a low sensitivity to selected other factors, such as soil color.

Figures B-1 through B-3 present spectral-temporal profiles for the
different variables. These profiles were obtained from smoothed reflec-
tance measurements from one plot of data. With cautions that the shapes
might be different in‘Landsat data due to path radiance effects and that
only one test plot is represented, a few observations can be made. While
there are similarities in the shapes, there also are differences. The
peaks of some, especially TVI, are broad and relatively flat. A broad
flat peak and steep edges is not the ideal shape for shift calculations;
a triangular profile would be better. The peaks of most occur later than

that for Greenness.
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The difference in day of peak for Greemness and Band 7/Band 5 is
interesting. Insight into the reasons for this can be gained from a
plot of the time track of wheat in the plane of Band 7 vs. Band 5 (See
Figure Bué); The peak in Greenness corresponds to the peak in Band 7
which occurred at growth stage 9 or 10 which is just prior to heading
(See definition of modified Feekes scale in Figure B-5). The Band 7/
Band 5 ratio, on the other hand, reaches its peak when a radial line
through the origin is tangent to the left hand side of the loop; this

occurred near the end of heading.

It appears that no single green measure will be optimum for all
purposes. Landsat data will be needed for final characterization and
selection for specific applications. We chose the Greenness variable
as the measure of green vegetation for the investigations conducted

during the year.

B.4 EFFECTS OF MOISTURE STRESS

The time track in Figure B-4 is for a wheat field that had a dry
moisture treatment. Figure B-6 is for a field that had a wet treatment.
While both exhibit the looping pattern, the peak value of Band 7 is

higher for the wet treatment which had more dense vegetation. The

differences were even more pronounced for fields that received more
extreme moisture treatments. 'The wettest field suffered from lodging

which caused a marked change in its spectral track.

The Tasseled—-Cap-like transformation performs primarily a rotation
of the time—track pattern, preserving its distinctive features. Figure
B-7 shows the reflectance-space Greenness vs. Brightness plot for the

field shown in Figure B-4.
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not yet visible J
1o.1 First cars just viuble {awns just showing m barley, car)
escaping through split of sheath in wheat or oats)
102 Quarter of heading process completed .
103 Thilof heading process completed Heaping
10.4 Three-quatters of headmg process completed -
10.§  All cars ot of sheath
1o 5.1 Beginning of loweiing (wheat)
10.5.2  Flowering eomphae ta top of ear FrowinNg
105.3 Flowering aver at basc of evr (WhEes)
t0.5 4 Flowering over, hernel watery-ripe
1.1 Muky-ripe ) 1
1t.2 Mealy-ripe, contents of Lercl soft but dry RIPLAING
11 3 Keenel hard {diilicult to divide by thumb-nail) f Bk
114 Ripe for cutting.. Stran dead

FIGURE B-5. MODTIFIED FEEKES SCALE
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B.5 ESTIMATION OF CROP DEVELOPMENT STAGE

The spectral time track patterns in the preceding figures show a
strong correlation with the stage of crop development. We see that
peék Greenness occurred just prior to heading, during developmeﬂt of
the flag leaf. Reflectances generally decreased proportionally toward
the origin during heading to the milky-ripe stage (11.1) of ripening,
perhaps due to the opaqueness of heads -resulting in increased shadowing.
As ripening progressed, the Brightness began to increase again and

Greenness continued to decline (See Figure B-8).

Rates of wheat development can vary substéntially from location
to location. Figure B-9 presents a comparison of selected ground-
measured development profiles for spring wheat grown in Arizona and
North Dakota. It is such profiles that one wishes to estimate using
spectral data. Some of the problems that must be overcome are evident
on this graph. First, the Modified Feekes Scale is not linearly related
to calendar date; it is compressed at the high end which corresponds to
heading and ripening stages. Geographic factors can have an effect,
although the planting of spring wheat in mid-December in Arizona is an
extreme departure from the more common spring planting in the Northern
U.S. Great Plains. The characterization of Noxth Dakota profiles by
‘the 18-day observations is less complete than desirable, but that is

the usual interval that Landsat will provide under cloud-free conditions.

Underlying both types of curves are uncertainties and variability in
ground obsexrvations for the fields of interest; some Feekes-scale desig-
nations are not readily discernible without detailed examination and

within-field variations do exist.

Plots of development stage vs. day of year are presented for 13
fields of North Dakota Segment 1461 ip Figure B-10 for which periodic

ground observations of development stage were made. The scatter of
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points before shifting (Part a) appears’ greater than afterwards (Part
b), especially in the portion corresponding to unshifted day 173. <Cal-
culated crop calendar shifts for these fields were used to place the
estimated peak Greemmess value at shifted day 160 in Part b. In field
measurements data, this peak usually occurs just prior to heading, e.g.,
at or just before Stage 10 (boot). Days shifts calculated for other

segments are summarized in Table B-2.

An appreciation for the effectiveness of the crop calendar shift
calculation can be gained from Figure B-11l. Here, the reduced scatter
of the spectral data after shift is striking. Less pronounced improve-—

ments were achieved for two other segments.

This initial work im crop development stage estimation did not
reach a conclusive stage. However, some issues were identified that
could affect future work. It is recommended that ground observations
of crop development stage in selected fields in segments be made more
frequently than at 18-day intervals, even though spectral data may not
be acquired more frequently. 'The sparseness of Landsat data, especially
with missing acquisitions will limit accuracy. The use of green profile
shift technology appears helpful but improvements involving more complete
characterization of profiles (e.g., level 2 6f level 3 applications)

and/or use of other spectral features, e.g., Brightness, may be required.
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Segment

1392
1457
1461

1636

TABLE B-2. ANALYZED SUBSET OF TY 1978 SPRING WHEAT BLIND SITES:
LANDSAT DATA (BOTH LANDSAT 2 AND 3)

Acquisition Davs

136, 154, 190, 208, 217
156, 174, 228, 246, 264, 273
136, 155, 190, 199, 209, 217, 236

135, 154, 190, 208, 216, 226, 243

No. Fields

i2

13

13

12

Range of

Shi%t (Days)

to —18’
to =35
to -19

to -10

i3
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APPENDIX C
ANALYST LABELING/PROCEDURE M EXPERIMENT

The analyst labeling/Procedure M experiment represents a natural
continuation of the Procedure M experiment reported in Reference 3.
The techniques of testing and evaluating both Procedure M and its com-—
ponents have been refined. The use of analyst labels in this experi-
ment represents an increase in scope over last vear's Procedure M
experiment. Section 4.9 of Volume T summarizes the results of the
analyst labeling study and Section 6.2 describes tests of components
of Procedure M. This Appendix provides details of the experiment for

completeness.

C.1 DPURPOSE AND SCOPE OF EXPERIMENT

1. Gain understanding of analyst labeling of field-like targets.
a. Examine the use of £ield-like targets for labeling.
b. Evaluate individual analyst performance in labeling

targets as functions of:

] target level variables,
] spectral trajectory strata, and
® segment-level variables.
c. Evaluate joint analyst performance in labeling
targets.
] Examination of analyst consistency.
. Comparison of individual analyst performance to
average, vote, and consensus labeling performance.
] Evaluation of low confidence and mixed target labels.
d. fvaluate analyst performance and consistency in
estimating crop proportiomns.
e. Establish a data base of AI lahels for evaluation of

Procedure M.

o BEAT mmmony, BLAAK
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2. Test and evaluate Procedure M.
a, Estimation of performance parameters.
b. Evaluation of the compomnents of Procedure M.
c. Study of error propagation by the components of

Procedure M.

C.2 DESCRIPTION OF THE EXPERIMENT

C.2.1 PRELABELING PROCESSING OF 18 TY 1978 NORTHERN GREAT PLAINS
LACIE SEGMENTS

1, Sun angle correction.

2. Machine screening.

3. Satellite calibration.

4. Haze correction by spatially varying XSTAR.

5. Tasseled-Cap data transformation.

6. Clustering pixels which are close to one another spectrally
(Brightness~Greenness) and spatially (line-point) into field-
like forms called blobs.

7. Construction of 117 x 196 line printer maps such that:

Py Pixels from little blobs (those with no interior pixels)
are printed as ".'". This choice of symbol was a mistake:
the analysts had much to say about it.

] Pixels on the boundary of big blobs (those blobs with at
least one interior pixels) were printed with a unique
character.

® Pixels in the interior of big blobs were printed with a
blank. .

® Production by JSC of PFC image overlays in which all
pixels not in the interior of some big blob were blacked
out.

C.2.2 LABELING OF TARGETS

1. Sampling of tig blobs: @lobs which have at least one interior

pixel are called big blobs. These big blobs are currently candidate
labeling targets subject to being sampled. In an operational mode,

Procedure M would sample on the order of 100 big blobs from each segment.
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In order to investigate various sampling strategies and to investigate
various analyst labeling attributes, all big blobs were labeled by

three LACIE-experienced analysts.

2. Prelabeling training/labeling procedure adjustment: In order

to study various parameters associated with error models and analyst
consistency, the analysts were asked to work independently. No spec-
tral aids were available in the time frame in which we were conducting
this experiment. 1In order to adjust for the difference in labeling
targets, lacks of spectral aids, and the independent labeling, the
analysts initially were given about one day to discuss labeling problems
and procedures to be used in blob labeling. Segment 1392 was studied
during this session, but no labeling was performed at that time. Seg-
ment 1392 was the last segment labeled by the analysts. The analysts
later were asked to list any segments in which they had to depart from
this procedure which they developed. All analysis techniques fi.e.,
image interpretation), aside from those differences mentioned above

were to be the same as those used during LACIE TY operatioms.

3. Labeling procedure for Procedure M test: The procedural

steps for labeling blobs for the Procedure M. experiment follow.

a. Each analyst will label the blobs in the 18 TY segments
in the order given in Table C-1.

b. Labeling will be performed independently by each analyst.

c. Each analyst will relabel the first three segments after
all 18 segments have been labeled (see Table C-1).

d. After labeling each segment, the analyst will £ill out
the "segment comment forms' shown in Figure C-1.

e, After labeling all 18 segments and prior to relabeling
the first three segments, the analyst will complete

the "final comment form" shown in Figure C-2.

51



) ERiM

TABLE C-1. THREE RANDOM PERMUTATIONS OF 18 éEGMENTS

Analyst A Analzsi_: B Analyst C
1656 1636 1653
1825 1619 1612
1457 : 1518 : 1650
1461 1602 1602
1619 1650 1457
1602 1653 . 1656
1650 1825 1380
1566 1612 1920
1473 1461 . 1835
1653 1380 1636
1835 1566 1518
1636 . 1457 1473
1612 1656 1467
1380 1467 1619 "
1467 1920 1825
1920 T 1473 1566
1518° © 1835 1461
1392 1392 1392
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1. Segment Number:

2. Analyst's Code:

Start:

3. Date
Completed:

4. Number of Hours Required for Labeling:

5. Acquisitions:
A,

Acquisition Primary or Comments: (Suitability, Usefulness,
Date Secondary or Reasons for Not Using)

(Use other side if needed)

B. What are the deficiencies, if any, in the available acquisition
history?

6. Comments About the Blob Patterns:

A. Do the blob interiors seem tec he pure?

B. Do the blob patterns match the field pattermns?

C. Was the choice of blob acquisition optimal? If not, why?
Which acquisitions should be used?

D. Other comments about blob patterns:

7. General Description of Segment. For example, moisture, field size,
topography, percent agriculture, etc.

8. Did you have to change your procedure in order to handle this segment?
If so, describe how.

9. Other Comments:

FIGURE C-1. SEGMENT COMMENT FORM FOR PROCEDURE M TEST
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1. Analyst's Code:

2. Analyst's Background and Years of Experience in LACIE;

3. Analyst's Overall Impression of Blob Interiors as Labeling Targets
{(Ease of Labeling, Purity, Ease of Finding, Comparison with Dot
Labeling):

4. List the Major Problems and Strong Points of Blob Labeling:

5. Comments on Suitability of Image and Map Products:

6. What Procedures Did You Develop to Organize and Use the Product?

7. Recommendations for Improvements in Products, Procedures, etc:

FIGURE C-2. TFINAL COMMENT FORM FOR PROCEDURE M TEST
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£. Detailed blob labeling instructions are given below.

For each segment, blob overlays keyed to the

LACIE sample segment products (Products 1, 2,

and 3) have been generated as well as line printer
maps of the blobs for each segment. The line
printer maps will be used by the analyst to record
the label for each blob.

A blob is to be labeled spring small grains if it
is at least 50% spring small grains, and labeled
non—spriﬁg small grains if it is less than 50%
spring small grains. When there is considerable
question about which label to assign a blob, the
blob will be labeled based upon the analyst's best
guess. If a blob is mixed (i.e., composed of

approximately 50% spring small grains and non-

spring small grains) it will be flagged and

labeled on the line printer map.

The label for each category will be coded on the
line printer map as follows:

— Spring Small Grains - Red.

- Non-Spring Small Grains - Green.

— Questionable Spring Small Grains -~ Question
Mark (?) on Red hlobh.

— Questionable Non-Spring Small Grains — Question
Mark (?) on Green blob.

— Mixed blob ~ The blob will be labeled using the
50% criterion and then outlined in blue.

The analyst should examine the acquisition listing
in Table C-2 in order to become familiar with the

acquisitions used for generating the blobs.

Grid overlays (10 pixels by 10 scan lines) will be
keyed to the line printer map in order to faeili-

tate analysis.
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TABLE C-2.

SEGMENT NUMBER

1380
1392
1457
1461
1467
1473
1518
1566
1602
1612
1619
1636
1650
1653
1656
1825
1835
1920

TRANSTTION YEAR DATAl USED FOR SPRING WHEAT SEPARABILITY EXPERIMENT

A/D #1 A/D #2 A/D #3 A/D #4 A/D #5 A/D #6 A/D #7
78/169 78/196 78/205% 78/222% 78/232 78/241% 78/249
78/136 78/154 78/190% 78/208 78/217%

78/156 78/174 78/228% 78/246% 78/264% 78/273

78/136 78/155% 78/190% 78/199 78/209% 78/217 78/236
78/136 78/154 78/190 78/199% 78/208 78/218%

78/116 78/197% 78/207% 78/224% 78/269

78/116 78/135- 78/153% 78/188 78/206 78/224% 78/243%
78/115 "78/133 78/169% 78/196 78/232% ‘
78/174% 78/211% 78/228% 78/264

78/118 78/137 78/155% 78/199 78/218 78/236%

78/135 78/198% 78/207% 78/216% 78/243 78/252 78/270
78/135 78/154 78/190 78/208% 78/216% 78/226 78/243%
78/156% 78/191 78/209% 78/218 78/228 78/236% 78/246
78/119 78/136 78/155% 78/191* 78/199 78/208%* 78/217
78/137 78/155% 78/191 78/209% 78/218 78/263

78/133 78/169% 78/196 78/206% 78/224% 78/232 78/250
78/134 78/170% 78/187 78/196% 78/224% 78/232 78/241
78/136%* ’ 78/199 78/209% 78/218% 78/236 78/271

Note acquisition dates shown are the subset of available acquisitions which were selected
for digital processing.

The acquisition dates marked with an * were used t¢ produce the accompanying blob maps.
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. Each of the 18 segments will have a packet con-
sisting of the same material (ancillary data, maps,
normal crop calendars, crop calendar adjustment,
etc) used during LACIE TY cperations. The excep-
tion to this is that the spectral aids will not be
used for crop identification (because they do not

match the blobs).

° A1l analysis techniques (i.e., image interpretation
techniques) will be the same as those used during
the LACIE TY operations.

Note: It is anticipated that the time required

to label and complete the evaluation forms will
be approximately 10 hours/segment.

G.2.3 DESCRIPTION OF THE DATA BASE

ERIM has constructed data files containing spectral variables,
ground truth, and analyst labels on the pixel, blob, and big blob levels.
The big blob variables are also contained In an SPSS-formatted system

file.

1. Spectral wvariables: The four Landsat bands were transformed

into the Tasseled-Cap variables Greenness and Brightness. All 18 seg—
ments in this study have Greenness and Brightness vaxiables for each

acquisition on the pixel, blob, and big blob levels.

2. Ground truth: Ground truth for 17 segments (all except seg-

ment 1835) is alsoc contained in the same files as the spectral wvariables
on the pixel level, blob level, and big blob level. The ground truth

is given in subpixels and aggregated up to the pixel and blob levals.

3. Analyst labels: The analyst labels of big blobs are contained

only in the SPSS system file. For each analyst, we have:
a. grain/other lapel,
b. low—-confidence label, and

c. mixed target label.
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4, Special variables in the SPSS file: Several variables were

created in- the SPSS file in order to address the objectives of this
experiment.

a. Purity of target.

b. Size of target.

c. Crop category (e.g., summer crop, spring crop, etc).

d. Acquisition history.

e. Crop calendar (profile shift diagnostics).

f. Crop condition (peak green).

g. Spectral trajectory stratum of target.

C.2.4 DESCRIPTION OF THE ANALYSIS OF THIS EXPERIMENT

Analyst labeling: Analyst labeling was investigated both as a

component in a segment crop proportion estimation procedure and as

a process to be studied for understanding. The analysis of analyst

labeling of blobs can be found in Section C.3 of this Appendix. The
effect of analyst labeling on grain proportion estimates can also be
found in Section C.3. Section C.4 describes how the evaluation of

analyst labels as a component within Procedure M will be carried out.

The analysis of analyst labeling of field-like targets was
performed for the most part using descriptive statistics. These des~
criptive statistics included:

a. contingency tables,

b. frequency tables,

c. two—dimensional scattergrams; and

d. plots.

Also; some inferential statistical procedures were used to gain insight
into the analyst labeling process. These included:

a. ANOVA

b. Regression

c. Discriminant Analysis
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Porformancé of Procedure M and its components: The reduction of

variance of the BLOB and BCLUSTER components are given for each segment
in Section C.4 of this Appendix. Histgorams are also given to examine
the grain/other separation obtained by the BLOB and BCLUSTER components.’
The effect of the labeling component and sampling strategies on bias

and variance are also studied in Sections C.3 and C.4.

The evaluation of Procedure M's performance is not completed at
this time, however, the measurements and methods of evaluation to be

used are given in Section C.4.

C.3 INVESTLIGATION OF ANALYST LABELING OF FIELD-LIKE TARGETS
C.3.1 EVALUATION OF THE EFFECTS OF TARGET LEVEL VARTABLES

Table €-3 gives the labeling accuracy for various sizes of the
blob interior. The labeling accuracy of both grain and non-grain
increases as the blob size increases in the range of 1-14 pixels after

which the increase in accuracy tends to slow down or to level off.

Table C-4 gives the labeling performance by purity of target.

One sees immediately the non-symmetry of the labeling errors. Those
"blobs with 0-9% grain are (incorrectly) classified grain 2.2% of the
time, while those blobs with 90-1b0% grain are (incorrectly) classi-
fied non-grain 100;70.4 = 29.6% of the time. We alsc see that

46.9 + 19.5 = 66.4% of the big blobs are in these two purity classes.
The labeling accuracy of grain within the class 90-100% grain is less
than that within the class 80-89% grain. This phenomenon is due to
the much lower accuracy of labeling pure oat blobs; 420 of the 1182
grain blobs within the 90-100%Z grain class are oats. If these ;20

blobs are excluded, then the accuracy is about 80%.
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TABLE C-3. ANALYST LABELING ACCURACY (PCC) AS A FUNCTION
OF QUASI-FIELD SIZE
‘Analyst
Size Vote Green Red Blue
Strata* I NG G NG G N G
91.5 47.5 88.6 48.6 86.8 57.3 93.0 34.6
94.5 49,2 90.4 51.6 89.8 57.1 93.9 44.8
94.5 66.9 92.4 69.0 89.5 71.5 93.2  46.5
4-6 93.6 63.9 93.8 66.4 87.0 68.2 94.2  47.5
7-9 93.4 67.1 92.6 69.6 87.3 72.5 96.2 47.3
10-14 95.2 72.7 93.5 72.8 88.4 75.5 96.0 51.2
15-19 54.0 71.2 95.7 71.7 88.2 76.3 94.3 57.3
20-28 96.1 76.6 96.7 72,9 91.2 79.1 97.0 61.1
29-46 97.6 76.8 97.9 76.8 93.6 79.3 97.3 58.8
47-120 98.8 70.4 98.8 78.1 95.9 72.8 98.8 55.6
*Number of interior pixels in blob.
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TABLE C-~4. ANALYST LABELING PERFORMANCE AS A FUNCTION OF QUASI-FIELD PURITY

Blob Composition (% small grain)

A3 {

T9

0-9 10-19 20-29 30-39 40-49 50~59 60-69 70-79 80-89 90-100
Percent Labeled , , 5.8 9.6  18.5  27.6  44.1°  63.9  62.9  72.6 70.4
Grain .
Strata Size 2691 569 250 211 174 185 204 310 453 1182
Weighted Per-
cent Labeled 1.6 4.1 7.0 18.8 28.3 47.5 58.4 66.3 75.5 72.2
Grain '
Strata Size
(Percent of

46,9 7.1 3.3 3.0 2.6 2.8 3.0 4.4 7.4 19.5

Total Pixels
in Big Blob)
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Table C-5 gives the analyst performance on majer crop types. We
note that, as in the case of Table C-4, non-grains are labeled more
accurately than grains. It should be noted that the classification of

the strip and unknown category is not known.

Table C-6 gives the percentage of grain labels for each of the
grain crops. Spring wheat was labeled as a grain much more often than
the others. Barley was more confusing to the analyst than wheat, and
oats were more confusing than barley. There were only 14 fields of rye

and the majority labeled 12 of them as a non-grain.

Table C-7 gives a breakdown of Table C-6 by segment. Oats in the
Minnesota segments (1518 and 1825) were labeled much better than oats
in the North Dakota segments. We also note that the very poor labeling
of grain in segments 1656 and 1920 is due to the mislabeling of oats.
There are wide variations from segment to segment which suggest that
the problems encountered by the analysts also vary widely from segment

to segment.

Table C-8 gives the percent of non-grain blobs labeled as grain
for several crops. Flax turned out to be the only confusing non-grain
to Analysts Green and Red, while Analyst Blue labeled all flax blobs

as non-grain.

The effect of profile characteristics on analyst labeling accuracy
was examined by comparing the Greemness path of each grain blob to an ex-.
pected Greemness curve. A relationship would imply that analyst label-
ing accuracy is impacted by crop condition, as reflected through its
Greenness trajectory. The standard Greenness curve is given by the
expression:

1.2957

F(t) = .65163¢ exp(—1.00052415t2)

it

where F Greenness — 25

rt
]

day of year - 125.
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TABLE C-5. PERCENTAGE OF MAJOR CROP QUASI-FIELDS LABELED AS GRAIN

Percent
Analysts Percent of Pixels ‘No.
Vote Green Red Blue Purity Considered Segments
Spring Crops 71.6 73.1 75.3 55.5 93.3 48,2 17
Summer Crops 3.2 3.3 9.0 1.8 94.6 41,6 16
Pasture and
Crass : 0.8 1.0 3.2 1.5 93.9 74.3 15
Fallow 3.2 4.1 9.3 1.7 91.8 39.8 16
Miscellaneous 1.2 4,7 1.6 1.6 94.3 55.7 15
Unknown and
Strip 23.1 11.5 46,2 46.2 90.9 55.9 9
#*
TABLE C-6. PERCENTAGE OF GRAIN CROP QUASI-FIELDS LABELED AS GRAIN
No.
Percent Quasi-Fields No.
Vote Green Red Blue Purity Labeled Segments

Spring Wheat 82.9 84.6 84.9 70.2 91.1 800 17
Barley 64.3  68.2 75.3  38.3 92.6 154 12
Dats ‘ 38.5 39.4 40.0 28,0 96.4 267 17
Rye 15.4 21.4 23,1 7.1 93.0 14 5

E
Quasi-fields at least 80% pure.
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1,2
TABLE C-7. AX LABELING ACCURACY (PCC) OF MAJOR GRAINS BY VOTE

Segment Grain Wheat Qats Baxrley
1380 96.0 94.4 -— —
1392 90.5 90.7 — —
1457 64.9 81.8 .31.7 -
1461 81.9 86.2 —-— —
1467 35.3 50.0 30.8 91.7
1473 89.9 97.7 - 78.0
1518 76.9 72.7 92.9 80.0
1566 90.4 100.0 -— _—
1602 88.3 - 91.8 -— _
1612 47.4 84.6 l6.1 -
1619 71.2 92.6 - 18.3
1636 59.4 61.4 — -
1650 76.9 66.7 — —_—
1653 71.1 68.0 - —
1656 9.8 - 8.3 _
1825 . 82,1 90.9 86.4 64.7

1920 36.7 71.4 20.0 -

1Quasi—fields at least 80% pure.
2At least 10 quasi-field required.
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Alfalfa
Corn
Sunflower
Sunflower

Soybeans

Sugar
Beets

Flax
Potatoes

Pasture

T

TABLE C-8. ©PERCENT OF NON-GRAIN FIELDS LABELED AS GRAINl

Percent Percent No.
Vote Green Red Blue Purity Quasi-Fields Segment
2.4 2.4 4.9 4.8 91.8 42 11
2.9 2.2 4.4 1.5 90.4 137 8
0.0 0.0 16.7 0.0 93.5 6 4
2.7 3.2 14.7 0.5 93.7 187 10
1.7 1.7 1.7 2.3 94.8 178 4
0.0 0.0 0.0 0.0 93.4 16 3
21.4 21.4 44.8 0.0 91.3 29 9
0.0 0.0 0.0 0.0 92.4 21 1
0.8 0.8 1.0 1.0 93.4 393 14

1Quasi—fie1ds are at least 80% pure within the assigned class.
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The model for the Greenness of blob i on day tj+125 is
Gi(tj) = AiF(tj—ri) + 25

The parameters A and T were estimated for each blob.

The estimate of peak greeness for blob i is
li||F[|w + 25 % A, F(35) + 25 = 1.(34.32) + 25

Figure C-3 gives a histogram of labeling accuracy vs. blob ghift.
The intervals were chosen in such a way that the numbers of blobs per
interval were approximately equal. The grain blobs whose shift was be-
tween -35 and -12 have an 80% chance of being correctly classified as
grain. If the pure grain blobs with low peak Greemmess values are ex-
cluded, then the labeling accuracy within the interval [-12,100] is
about 80%.  Those grain blobs whose profi;e differs by more than 35 days
from normal have a much lower probability of being classified as grain.
Much of the variation in the values of the Elob shifts was explained by
variations in the segment mean of tﬁese shifts. Figure C-4 gives a
histogram of labeling accuracy vs. deviation of blob shift from the
segment mean. The intervals were again chosen so that each had approxi-
mately an equal number of blobs. Those grain. blobs which differed from
the segment mean shift by less thanllO days were classified as grain’
more than 80% of the time. These two figures indicate a tendancy to label
according to an expected spectral pattern, with accuracy diminishing as

the pattern shifts, due to variations in planting, either early or late.

Figure C-5 gives the histogram of grain labeling accuracy vs.
various levels of peak Greemness. Labeling accuracy is under 50% for
those pure grain blobs with peaﬁ Greenness values under 46. This
implies that grain fields that are either stressed or of Tow canopy
cover, tend to be jdentified as non-grain. It was noted that a high
peak Greenness offset the tendancy to mislabel in the presence of

late shifts.
66


http:X.(34.32

ERIM

Blob Purity >80%
Oats Excluded

North Dakota, Segment 1619 Excluded

100

80 [
> 607
©
=
[ &)
(& ]
[=n
3 07
o
3

20'F

O ) - - - -

-200 -42 -35 -26 -18 100
© =52 -38 -31. -23 -12

Blob Shift (Days)

FIGURE C-3. " SPRING SMALL GRAINS T.ABELING ACCURACY VS. SHIFT



ERIM

Relative Blob Shift = Blob Shift - Average Shift in Each Segment

BLéb Purity >80%
Oats Excluded
North Dakota, Segment 1619 Excluded

1007
80
=
Sy
U | —y
2 60
pan ]
[&]
[
{.
[<h]
43
LS 40F
200"
0™ g8 ~10 3 3 8 14

-15 -6 0 5 12
Relative Blob Shift (Days)

FIGURE C-4. SPRING SMALL GRAINS LABELING ACCURACY VS. RELATIVE SHIFT
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C.3.2 EVALUATION OF JOINT ANALYST PERFORMANCE

Analyst consistency: Table C~9 gives the percent of decisions on

which the pairs of analysts and all analysts agreed for each segment
The highest consistency shown by all three analysts occurred in segment
1380 where the analyst agreed on 92.7Z of their labels, while the

lowest consistency occurred in segment 1467 wich only 55.7% agreement.

. Table C-10 gives the percentage that pairs of analysts correctly
agreed with each other for several crop types. For example, Analysts
Green and Red both correctly labeled grain targets as grain 61.27 of
the time and Analysts Red and Blue correctly labeled summer crops as
non—-grain 92.1% of the time, As noted earlier, the analysts do much

better with non~grain than grains.

Table GC-11 gives, for several crops, the percentage in which none
were correct (0 of 3), one was correct (1 of 3), two were correct (2
of 3), and all were correct (3 of 3). For example wheat was mislabeled
as mon—-grain by all analysts (0 of 3 were correct)}) 7.7% of the time,
wheat was labeled as grain by only one\analyst (1 of 3 correct) 8.9%
of the time, wheat was labeled as grain by two of the analysts (2 of
3 correct) 18.3% of the time, and all three analysts (3 of 3 correct)
65.1% of the time. It is interesting that cats are missed by all three

analysts more than half of the time.
The columns of Table C-12 were constructed from the columns of

Table C-11 using the following relations:

P(2 of 3 correct)
P(1 of 3 correct)}+P(2 of 3 correct)

P(correct label 2 analyst agreed) =

and

P(3 of 3 correct)
P(correct label 3 analyst agreed) = B0 of 3 correct)¥(3 of 3 correct)
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TABLE C-9. ANALYST CONSISTENCY — PERCENT OF DECISIONS IN AGREEMENT

.- Red

Green Green Red Green

Segment ’ Red Blue Blue Blue
1380 94.9 - 96.4 94.2 92.7

1392 82.6 73.9 66.7 61.6
1457  90.6 .  83.4 '83.5° 79.1
1461 88.0 83.6 80.6  76.3
1467 79.4 60.5 71.5 55.7
1473 91.2 84.3 83.3 79.5
1518 91.7 82.2 80.5 77.0
1566 91.4 84.8 86.2 81.0
1602 - 93,0 91.8 91.1 88.0
1612 92.0 90.2 90.5 86.4
1619 88.5 85.9 "87.6 ~ 80.0
1636 . 86.7 " 85.8 84.4 78.5
1650 80.8 79.9 81.3 71.2
1653 73.9 -83.2 . 76.5 68.0
1656 91:0 92.8 91.9 87.9
1825 90.3 89.0 84.4 81.9
1835 92.2 92.9 92.0 88.8
1920 91.9 89.0 89.8 85.2
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TABLE C-10. ANALYST CONSISTENCY - PERCENT OF DECISIONS IN CORRECT AGREEMENT

Non~- > 50% > 80% Summex ‘Pasture
Analyst Pair Grain Grain Grain Wheat Oats Barley Crop & Grass
Green 87.0  6L.2  77.4  79.6  33.6  60.0 99.7 99.1
Green ' '
Blue 91.1 44,2 49.8 66.1 23.0 33.1 97.8 99.1
Red
87.9 46.8 48.2 67.4 24.3 37.3 92.1 97.6
Blue
Vote 94.7 66.3 71.0 82.9 38.5 64.3 .96.8 99.2
TABLE C-11. ANALYST CONSISTENCY - PERCENT OF DECISIONS WITH INDICATED AGREEMENT
No. Analysts Non- > 50% > 80% Summer Pasture
Correct Grain Grain Grain Wheat QOats Barley Crop & Grass
0 of 3 1.7 - 19.8 17.1 . 7.7 52.7 14.9 1.2 0.1
1 of 3 3.5 13.6 11.6 8.9 9.2 19.6 1.9 0.6
2 of 3 9.1 23.5 22.5 18.3 16.9 32.4 6.8 3.9
3 0f 3 21.2 33.1 90.2 95.3

85.7 43.1 48.8 65.1

T
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TABLE C-12. PROBABILITY OF CORRECT LABELING AS A FUNCTION OF AGREEMENT

‘ No. Analysts Non- > 50% > 80%

A3 {

Summer Pasture
In Agreement Grain Grain Grain Wheat Oats Barley Crop & Grass
2 72.2 63.3 66.0 67.3 64.8 62.3 78.2 86.7

3 98.1 68.5 74.1 . -89.4 28.7 69.0 98.7 99.6
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In every case except oats, the probability that a correct label is
obtained when all three analyst agreed is higher--than when only two
agreed. The accuracy of the labeling of ocats was very poor in the

North Dakota segments and very good in the Minnesota.

Each analyst labeled his first three segments twice. The second
labeling occurred after all segments were labeled. Table C-13 gives
the analyst comsistency for the segments each analyst repeated. Analyse
Green made‘by far the fewest changes while Red made the most changes,

and also had the only significant increase in accuracy.

Comparison of average and majority vote labeling to individual

analysts: The three grain/non-grain labels were combined to form a
majority vote label. The majority vote label was defined to be the

label given by the majority of the analysts.

Table C-14 gives labeling accuracies for each analyst and vote
for each segment for grain and non-grain. Analyst Red had the highest
labeling accuracy for grains (71.1%). Analyst Green's grain accuracy
(68.6%) was significantly higher than Analyst Blue's grain accuracy
(51.0%). Analyst Blue's non-grain accuracy (95.3%) was the highest
followed closely by Analyst Green's (93.9%7) and Analyst Red's (89.8%).

Table C-15 gives the ground truth statistics for each segment,

normalized for bad ground truth.

Table C-16 gives the segment grain proportion estimates for each
analyst, vote, average, and binary ground truth (blobs are given grain/

other label depending on ground truth).

Table C-~17 gives the bias of the segment proportion estimate,
standard deviation and root mean square (RMS) of the errors for each

analyst, vote and average. We note the following orderings:
|bias (red)|<|bias (green) | <|bias (vote)|<|bias (ave.) |<|bias (blue}],

SD (blue)<SD (ave.)<SD (vote)<SD (red)<SD (green), and
RMSE (ave)<BMS (red)<RMS (vore)<RMS (green)<RMS (blue).
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TABLE C-13. ANALYST CONSISTENCY IN LABELING THE SAME SEGMENTS
AT THE BEGINNING AND END OF THE EXPERIMENTS

A3 {

Analyst/ Initial Accuracy Rework Accuracy Total Changes
No. Segments G NG G NG Total Correct
Green (3) 62.9 96.4 60.0 95.7 T4 29
Red (3) 66.7 92.1 78.9 92.0 175 116

Blue (3) 51.2 91.7 52.8 91.6 141 . 67
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Segment

A1l
1392
1457
1461
1467
1473
1602
1612
1619
1636
1650
1653
1656
1920
1380%
1518"
1566%

1825~

TABLE G-14. LABELING ACCURACIES FOR GRAIN AND NON-GRAIN
Vote Green Red Blue

NG G NG G NG G NG G
94.9  66. 93.9  68. 89.8  71. 95.3  51.
90.1  82. 87.2  85. 75.6 91. 95.4 42,
97.3  62. 94.5  67. 96.7  67. 97.3 43,
90.9  79. 90.9  79. 88.0  86. 97.9  57.
80.4  54. 75.8  67. 74.5  57. 90.8  25.
98.7  88. 93.5  86. 98.7 96. 98.0  69.
95.1  74. 96.6  73. 93.4 79, 93.1  83.
94.5 50. 95.8 . 48. 92.8 51. 91.6 38.
98.2  65. 97.0  70. 94.4  68. 97.5  54.
92.7  57. 91.6  62.1 86.8  58. 94.8 58,
92.4  59. 93.4  55. 87.2 6L, 91.3  68.
' 95.é 63. 98.4 33, 78.9 80, 91.5 61.
97.5  10. 98.3  17. 94.7 2, 95.5  17.
98.4  41. 97.8  37. 95.1  45. 96.7  30.
94.1  100. 92.3 88. 95.0  92. 93.8  96.
99.1  68. 97.3 69. 95.9 74. 99.6  34.
97.4  88. 93.9  90. 93.3  .91. 99.0 69,
97.5  79. 95.9  8l. 91.0  83. 98.3  64.

*

Minnesota Segments
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TABLE C-15. SEGMENT GROUND TRUTH STATISTICS

(Grain Proportions, Big Blobs Only)

Percent Percent Percent Percent Percent Percent

-Segment Grain Wheat Barley Oats Rye Unknown
1380" 6.19 4,91 .005 1.28 0.0 2.9
1392 33.0 26.4 5.4 1.1 0.0 1.5
1457 50.5 37.0 1.2 12.3 0.0 1.0
1461 40.2 31.0 4.6 3.4 1.3 6.0
1467 57.1 35.8 10.7 10.6 0.0 3.0
1473 49.7 31.8 17.0 . 0.6 0.3 5.3
1518% 34.86  24.44 2.80 7.47 0.16 1.74
1566 35.28 22.78 6.35 5.84 0.32 4.36
1602 30.4 26.6 1.1 1.9 0.9 0.6
1612 26.6 11.1 0.3 15.0 0.2 0.5
1619 47.7 35.8 11.5 0.4~ 0.0 1.3
1636 42.5 35.7 2.1 3.7 0.9 5.8
1650 29.5 23.3 1.3 4.6 0.2 5.7
1653 19.0 14.8 0.4 ' 3.7 0.1 3.3
1656 15.8 2.7 0.4 12.7 0.1 0.9
1825% 33.12 17.48 5.44 9.73 0.5 6.5
1920 29.8 14.9 0.5 14.3 0.1 0.4

Average- 35.6 24.6 4,1 . 6.5 .25 2.5

%
Minnesota Segments
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*
TABLE C-16. SEGMENT PROPORTION ESTIMATES

Binary

Ground

Truth Proportion Estimates of Grain (Aggrepgated Blob Labels)
Segment (% _Grain) Green Red Blue Vote Average
1392 .37 .395 483 209 374 .362
1457 .53 .375 364 242 .343 .327
1461 .45 475 528 .338 .459 447
"1467 .25 .576 LAT74 .211 443 421
1473 .56 .533 564 444 .530 .51%
1602 .29 . 254 .290 . 267 .263 .270
1612 : .21 .110 .132 117 112 .120
1619 .57 461 .462 498 436 474
1636 48 .347 ..358 335 .324 .347
1650 .22 .182 214 211 .196 .202
1653 .16 .073 .265  .146 141 .161
1656 .15 .032 036 .044 .024 .037
1920 .29 144 .195  .115 .155 .151
13807 .05 .098 .108  .083  .102 .096
1518%% .36 274 312 114 .267 .233
1566** .36 .363 ‘.369 .267 .334 .333
1825%% .40 .357 .383 .288 .345 .343

%*
Blobs which have at most 10% bad ground truth.

&
Minnesota Segments
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TABLE C-17. BIAS, STANDARD DEVIATION AND ROOT MEAN SQUARE OF ERRORS

) Standar& ’ RMSE

Source of Bias Deviation =g Performance

Labels {P-P) of P-P (P-P) Ordering
Analyst -.038 .110 .116 _—
Green )
Analyst ~.010 .099 .100 2
Red .
Analyst _ )
Blue .104 .081 .132 5
Vote ~.050 .089 .102 3
Average -.051 .084 .098 1
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The lower variance term of analyst average offsets the lower bias

term of Red to give better overall results (RMSE). 1In terms of perform-
ance, analyst average was best, closely followed by Analysf Red, vote

and Green.

Simple linear regression was used to predict ground truth grain
given the labels f;om each analyst, vote and average. The results are
plotted in Figures C-6 through C-10. The regression lines are all
plotted omn Figure C-11. A multiple regression was used to predict
ground truth grain given the proportion estimates from each analyst.

The results are given in Table C-18. Analyst Blue's proportion estimate
was best in the sense that the correlation coefficient was higher than
those of Analysts Red and Green, and the correlation coefficient of
Analyst Blue was almost as high as the multiple regression coefficient
using all three analysts. The regression coefficient for Analyst Blue
was the only one to be significantly different from zero (5% level).

The simple correlation coefficient for Analyst Blue is higher than those
for average and wvote. This is very interesting since the RMSE perform-
ance of Blue is the lowest. RMSE(?) is a measure of the distance between
the points (ﬁi, Pi) and the 45° line through the origin. The proportion
estimates of the other sources of labels fit this line better than the
- proportion estimate of Blue. Simple linear regressions will fit the best
line through the data. Thus, we conclude that Blue's proportion estimate
has the best linear trend, but the y-intercept and the difference of the
slope from 1 causes Blue's RMSE to be higher than the RMSE of the other

sources of labels.

C.3.3 INVESTIGATION OF RELATIONSHIP BETWEEN ANALYST PERFORMANCE
AND LABELS OF "LOW CONFIDENCE" AND '"MIXED TARGET"

The snalyst, in addition to labeling a blob grain/mon-grain,
could flag a blob as "low confidence in label" and/or "mixed targets."

The analysts used these labels very rarely. There were very few blobs
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FIGURE C-6. ANALYST GREEN'S PROFPORTION ESTTMATE
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FIGURE C-7. ANALYST RED'S PROPORTION ESTIMATE
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FIGURE C-8. ANALYST BLUE'S PROPORTION ESTIMATE
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Ground Truth Proportion of Grain
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FIGURE C~9. PROPORTION ESTIMATE USING VOTE
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Ground Truth Proportion Grain

Slope = 0.86
R Intercept = 0.09
; 4 : 1 } } +
0.5 1.0

Proportion Estimate for Big Blobs
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TABLE C-18.

REGRESSION COEFFICIENTS FOR ANATYST-BASED

PROPORTTION ESTIMATES FOR BIG BLOBS

Correlation
Estimate Y-Intercept Slope Coefficient
Green 0.132 0.68 0.76
Red 0.084 0.77 0.78
' Blue 0.083 1.12 0.84
Average 0.099 0.86 0.79
Vote 0.091 0.86 0.81

Multiple Regression of Ground Truth Grain on Analyst Labels

ANOVA Table
Sum of
Source Squares daf Mean Square ¥ Significance

Regression .26873 3 .089576  11.384 .0006
Error .10229 13 .0078688
Total .37102 16

Variable Coefficients STD Error Significance

Constant 067471 - .05115 -2426

Green .12652 .38938 . 7504

Red .14943 46177 . 7514

Blue .80616 . 34471 .036
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that received these labels by more than one analyst. However, the

analysts were very consistent in their proportion of flags within

the grain purity classes: 0-20%, 20-40%, 40-60%, 60~80%, and

80-100%. When one or more analysts gave a "low confidence" label

to a blob, a new label "doubtful" was given to that blob. Table C-19
gives the doubtful labels broken down by grain purity levels and label-
by vote.: The proportion of doubtful labels increased as the grain
increased. This result is consistent with the results given earlier
that non-grains were labeled more accurately than grain. The ratio

of doubtful labels to not doubtful labels of the grain labels de-
creased as percent grain increased. Thus, the analysts were much

less confident of their grain labels given the non-grain targets.

Blobs which received ohe or more mixed labels were tabulated
and are given in Table C-20. The percent of mixed labels increased
as percent grain increased from 0-50% and then generally tended to
decrease from 60-100%. This is what should be expected; that is,
as the labeling targets become less pure, the percentage of mixed

labels should increase.

The trend is much less clear in those blobs with grain purity
50-80%. Also, the percentage of mixed labels were much higher for
pure grain blobs than for pure non-grain blobs. This seems to indicate
that pure grain fields behave in a more confusing fashion than pure

non-grain fields. Distributions of grain purity are given in Section

C.4 of this Appendix.
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Percent of

TABLE C-19., ANALYST DOUBTFUL LABEL PERFORMANCE

Analyvst Decision

. Doubtful Not Doubtful Fraction Labeled Grain

Purity as Doubtful —_—

a Grain Labels Grain Non-Grain Grain Non-Grain Doubtful Not Doubtful Ratio
0-20% 1.60% 13 36 24 3037 .27 .02 13.5
21~40% 3.60% 6 10 57 388 .37 .13 2.8
41-60% 9.017% 17 14 117 227 .54 .34 1.6
61-80% 10.007% . 34 13 274 196 .72 .58 1.2
81-100% 16.54% 185 47. 976 427 .79 .70 1.1

TERY
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TABLE C-20. RELATIONSHIP BEIWEEN PERCENT
GRAIN AND "MIXED" LABELS

Percent With One or More

_ Percent Grain "Mixed Target" Flag

0-10% 1.1
10-20% 3.8
20-30% 6.8
30-40% 11.3
40-50% 20.6
50-60% 16.2
60-70% 17.6
70-80% 13.0
80-90% - , 13.2
' 90-100% 7.4

20
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C.4 TEST AND EVALUATION OF PROCEDURE M
C.4.1 ANALYST COMMENTS ON BLOB LABELING

Cach analyst was asked to complete a segment comment form after
labeling each segment and a final comment form after labeling all
segments. The comment forms are given ip Section C.2 of this
Appendix. In addition, thé analysts generated a report [32] on

analyst labeling of blobs.

General comments on blob labeling: From [32] we obtain a list

of strong points, problem areas, and recommendatioms.

Strong Points

' Blobs are easier to label than the dots used in Procedure 1
(P-1). A blob represents a field center and does not con-

tain border or edge dots as does a P-1 dot.
] BLOBS represent field centers rather well.

o If ERIM reduces the number of blobs to approximately 100,
as currently planned, labeling of blobs should be as effi-
cient or perhaps more efficient than the‘labeling of dots

in- Procedure 1.

Problem Areas

] Thehblobbing technique; as’ currently Implemented, produces

too many blobs for labeling (400-600).
e Small or stripped fields do not blob'or cluster very well.

e Acquisitions selected foxr blobbing by ERIM for the labeling

test were not always optimum.
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Blobs were frequently disjointed which resulted in labeling

difficulties.

. Small blobs containing only one to three pixels are difficult
to label.

Recommendations

(] Acquisition selection for blebbing should be based on multi-
temporal/spectral information as well as spatial information
(spatial data was used as the primary selection criteria for

" the test). - 7

®  Research should be conducted into the small fields problem.

. Reduce the use of single-pixel blobs whenever possible.

* Modify the line printer blob map and Production Film Converter

(PFC) blob overlay. The current format of these two products

is not conductive to efficient analyst labeling.

The 15% comment under Strong Points and the 15t under Problem Areas

are comments about the exhaustive labeling of all big blobs used in this

experiment compared to the labeling of a sample (of size 100) of big

blobs in an operational mode of Procedure M. The exhaustive labeling

allows us to compute the variances of many different sampling schemes.

The 29 comment under Problem Areas, should be viewed as a comment

about big blobs not formed from small or stripped fields. We have:

found many blobs representing small and stripped fields which would

have been good labeling targets but were not included becéuse they did

not contain any interior pixels. We are currently conducting research

on defining the attributes of those little blobs which would make good .

labeling targets. The last comment under Problem Areas is almost the

opposite of the 2nd| j.e., blobs with only one to three interior pixels

are difficult to label.
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The 41 comment under Problem Areas has motivated the development

of a new blobbing procedure called SUPERB which should eliminate most

of the disconnected blobs.

The 3¥d comment under Problem Areas would be at least partially

addressed by having an analyst involved in the selection of acquisitions
for blobbing.

The 15t comment under Recommendations would improve the relation-
ship between fields and blobs. Some of the acquisitions used in blobbing
were misregistered by up to three pixels which possibly caused some blobs

to be disconnected and caused some to be smaller than what otherwise

would be the case.

The 284 and 3¥d comments under Recommendations are very closely
related. The more small fields that are sample targets the more blobs
with only one interior pixel will be sampled and labeled. On the other
hand,_bias %g introduced by any restriction on sampling. Much more

research must be done. in this area.

Summarized analyst comments for each segment: Table C-21 summarizes

the analysts responses to parts 5b and 6c of the segment comment form
Table C-22 summarizes the analysts' responses to parts 6a and 6b.
Analysts A and C both flagged Segments 1650 and 1920 as having blobs
with impure interiors and as. having blobs whose patterns do not match
the field patterns.* Table C-23 summarizes the analysts' responses

to part 6d. Segment 1650 had many small strip fields while Segment
1920 had poor acquisition history. Table C-24 summarizes the analysts'
responses to part 7. Table C-25 summarizes the analysts' respouses to
part 8: "Did. you have to change your procedure?" We note that few
changes were made and these were minor. Table C-25 also gives analyst

remarks on moisture and elevation.

%
The arbitrary association of letter symbols with color symbols for
analysts in these tables was established by coin flips.
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TABLE C-21. SUMMARY OF ANALYST COMMENTS ON PARTS 5b AND 6c
OF THE SEGMENT COMMENT FORM

(Part 5b)
Were Landsat acquisi~

tions deficient?

Segment Analyst A

1380 N

1392 Y need late August,
late June

1457 Y missing acq.

. during July

1461 Y need late June,
early Sept.

1467 X need late Aug.
late June

1473 Y lack acgs. in
May/June

1518 N+  some clouds

1566 Fair more July, Aug, Sept.

1602 Y need pre-plant,
early Sept. acq.

1612 Y need late June

1619 Y lacks June, early July

1636 Y missing late June

15650 Y lacks late June acqg.

1653 W+ late Aug. would have
helped

1656 Y poor data in late June,
early July; poor acq.
history .

1825 N )

1835 N

1920 Y no June, early July acgq.

94

(Part 6c)
Was choice of blob acqui-

sitions optimal?

Analyst A

N 8205 has poor
field definition

N(?) dinclusion of 8136
: might help remove
mixed blobs

Fair

N 8218 misregistered
May, June dates would
have helped stream areas

Y few other choices

OK
Y

0K might have used 8218

Y few other choices

(Page 1 of 3)
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TABLE C-21. SUMMARY OF ANALYST COMMENTS ON PARTS 5b AND 6c
OF THE SEGMENT COMMENT FORM (Cont.)
(Part 5b) (Part 6¢)

Segment

1380

1392

1457

1461

1467

1473
1518
1566

1602

1612

1619

1636

1650
1653
1656
1825

1835
1920

Were Landsat acquisi-
tions. deficient?

= = " =

=

Analyst B
N
Y lack of harv, post-

harv acq. caused SG/
summer crop confusion

need July acq.

need late Aug.,
early Sept.

needed -May, late Aug.

needed late Aug.
early Sept.
needed May acq.

need Sept. acqg.

need June acq.

1977 Fall date would've
helped )

lack ripe, harvest acqg.

need 1 acq. after
Sept. 7

early Sept. acq. needed

95

Was choice of blob acqui-
gitions optimal?

Anajyst B

N

Ade—
quate

Ade-
quate

=

2 <Ko

+d

should use
8169 (vice)
8222 (harv/ripe)

should've also used
8136, 8154

should've used
8;37, 8190, 8217, 8236

misregistration; should
have used 8155,8199,8217

needed May 15 acq.

all 4 acq. should've
been used

2 acg. not enough;
should’ve used 8137,
8155, 8199, 8236

need all four acq.

acgs. all too far into
growing season

adequate

8133, 8169, 8223, 8250
would've been better

adequate

(Page 2 of 3)
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TABLE C-21. SUMMARY OF ANALYST COMMENTS ON PARTS 5b AND 6c
OF THE SEGMENT COMMENT FORM (Cont.)

{(Part 5b) (Part 6¢)
Were Landsat acquisi- Was choice of blob acqui-
tions deficient? sitions optimal?
Segment Analyst € Analyst C
1380 - Y
1392 N ' N needed 8154
1457 - N only 3 dates; 8174
may have helped
1461 - . N 8236 might have
better defined blobs
1467 - ) N needed early date
1473 ¥ haze, clouds, -
cloud shadow )
1518 Y haze, clouds, N needed 8206
cloud shadow
1566 - N needed 4 or more
1602 N N should've used 4
1612 N haze, clouds, Basically needed 8199
need later dates Yes
1619 Y clouds, haze on 8198 N could've used better
days
1636 N N needed early date
1650 ¥ need good pre- N should've used later
planting acq. harvest acq.
1653 Y no satisfactory pre- Y

plant or harvest

1656 -

N use 1,2 more acq.
1825 - Y
1835 N N need more spread
1920 - -

(Page 3 of
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TABLE C-22., SUMMARY OF ANWALYST COMMENTS ON PARTS 6a AND 6b
OF THE SEGMENT COMMENT FORM

Segment
1380

1392

1457
1461
1467

1473
1518
1566
1602
1612

1619
1636
1650
1653
1656

1825-
1835
1920

(Part 6a)
Do blob interiors seem
pure?
Analyst A
Y 1 exception
Fair 6 mixed
Y ‘mostly
3 exceptions
N many areas contain
more than one field
Y
Y but one
Y
Y except 3
Y except 3 in
strip area
Y 6 exceptions
Mostly
N many mixed
Mostly 3,4 exceptions
Y

3 exceptions
mostly

many in strip areas

97

(Part 6b)

Do blob patterns match
field pattern?

Analyst A

Y
Fair

Y
Y

Fair/Poor

o o o

Fair

Some

but much smaller
than fields

patterns on imagery
poorly defined

mostly
mostly

fairly well

fairly well except
strxip area

patterns poorly
defined on imagery

mostly
difficult to tell

field definition
poor on imagery

(Page 1 of 3)
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TABLE C-22.

Segment

1380
1392
1457
1461
1467

1473
1518
1566
1602
1612
1619
1636
1650
1653
1656
1825
1835
1920

(Part 6a)
Do blob interiors seem
pure?

I I R R R A e T

Anaizst B

generally
generally -

=

generally

(o

generally

1<

generally;
many exceptions

generally

generally

some exceptions

generally

generaily

in most cases'
-generallf

some exceptions

generally

generally

generally

98

SUMMARY OF ANALYST COMMENTS ON PARTS 6a AND 6b
OF THE SEGMENT COMMENT FORM (Cont.)

{(Part 6b)

Do blob patterns match

field pattern?

Analyst B

generally
generally
generally

Ko o

generally

generally
generally
generally .
generally
generally
mostly

generally
generally
generally
generally

e I I e T - - B - B R = S R

generally

(Page 2 of 3)
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TABLE C-22. SUMMARY OF ANALYST COMMENTS ON PARTS 6a AND 6b
OF THE SEGMENT COMMENT FORM (Cont.)

(Part 6a) (Part 6b)
Do blob interiors seem Do blob patterns match
pure? field pattern?
Segment Analyst C Analyst C
1380 Y overall Y
1392 Y overall Y overall
1457 Y overall . Y overall
1461 Y Y overall
- 1467 ¥ overall Y overall
1473 Y Y except a few
fields
1518 Y Y
15606 Y overall Y as far as could
. be told
1602 Y Y generally
1612 Y some problem in Y/N strip area caused
strip area problems
1619 Y Y overall
1636 Y Y © mostly
1650 N N
1653 ¥ Y
1656 N - for spring grains Y/ more for non-5SG
than SG
1825 Y generally Y where patterns were
distinguishable
1835
1920 N ) N somewhat, overall poor

(Page 3 of 3
99 g8 3 of 3)
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_Sepgment _Analvst

TABLE C-23, SUMMARY OF ANALYST COMMENTS ON PART 6d OF THE SEGMENT COMMENT FORM

Other Comments Re Blob Patterns

Other Comment:

A - -
SG is planted relatively early ix
1380 B None . harvested by third week in Aug
c Whether a blob is developed appears to depend Dots still misleading.
on field width.
Because of wide differences in p:
A _ pretation of late S5G from summe
Appear to have some SG starting
1392 Inadequate acquisition te conf:
: B None None
- Repeat of symbols; analyst can't
" greater than 3 pixels as some !
- A - Multiple planting date for SG im
of interpretation.
1457 None - .
' Dots still confuse; color separal
feel comfortable with this one.
A - . - .
1461 B Certain areas screened out; wet spots 8155; The SG labels incluge some flax
(see analyst form). crop in area.
- - Problem with disjoint blobs and 1
Little confidence is place on sor
A - tations; confusion with possib
1467 of lates.
B Several areas were screenad out (many SG fields). None.
More mixed blobs than previously encountered; Border arcund blobs not constant
c many small. misleading.
Nice blob sizes; easy to work with. -
' Worked like a charm! Blobs pure and umambiguous,
1473 ‘B helped in fine discrimination. None.
c Blob match to field depends on size; smaller Lack of acquisition increases er
more mixed, tween 26 April and 16 July).

-
ad.
z.

ot

ce

[~1ad

11

EY

1 {
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TABLE C-23.

SUMMARY OF ANALYST COMMENTS ON PART 6d OF THE SEGMENT COMMENT FORM {(GCont.)

A1

Segment  Analyst Other Comments Re Blob Patterns Other Comments
A _ Clouds and haze make interpretation of some signa-
tures shaky.
. Some SG did not show usual signature trends (see
1518 B Couple examples of disjoint blob pixels. anaiyst form for discussion).
Some impure and confusing signatures; signature pro-
¢ Some mixed blobs, but less than some other gression hard to follow; some blob ID as 5G may be
segments.
flax.
A - -
B _ Posgibly 2 planting dates .some SG might -have been
1566 called summer crops. ’
C _ Field patterns hard to discern; need more blob
acquisitions.
_ 8ize of most strips in segment is as small as will
A produce a blob center.
1602 - SG in segment shows classical temporal signatures
B which facilitated interpretation.
c Bigger strip field width fewer mixed blobs. Winter crops not separable; easy segment to inter~
. pret; good signatures; piece of cake,
- Since wheat was in strip area, fewer blobs labeled
. A SG than expected.
1612 B - . - >
_ Some difficulty determining strip field limits; blob
. colors a problem.
Mostly larger blobs; easier to work with. - -
1619 - Symbols look too much alike; hard to follow blob
boundary.
- Good segment; high confidence level.
_ Two different SG planting dates makes interpretation
1636 A questionable.
B Should eliminate single pixel + small blobs. Need more PFC scale blob maps.
C More mixed blobs than previously. Small blobs cause some confusion,

(Page 2 of 3)




20T

TABLE C-23, SUMMARY OF ANALYST COMMENTS ON PART 6d OF THE SEGMENT COMMENT FORM (Cont,)

Segment  Analyst Qther Comments Re Blob Patterns Other Comments
X Small strip fields ( satellite resolution) makes
A Only areas that did well were large pastures. interpretation difficult.
- t
1650 B Blobs are small, some not pure. Nag;:ztitrlp fields messed things up (see analyst's
¢ _ Color of blob map and use ¢f "." on computer map
confusing.
- t
A Blobbing was less in wheat areas due to strips. Blg?Zigg didn't work as well because of narrow strip
B Large areas of stripped fields rejected by Segment genmerally displays inhomogenous signatures;
1653 algorithm. muttled appearance.
Use "/" instead of "."; blob overaly colors bad;
C - eliminate small bilobs; use grid to check for over-
looked blob.
A _ Small ‘fields without blobs probably results in Low
SG estimate.
1656 - -
e _ Segment difficult due to small gize, lack of dis-
tinct field patterns of strips.
A Many areas of little blobs, Some "8G" signatures follow a faster progression.
1825 B = Two apparent SG planting dates caused confusion.
- Confidence Level: Ave. Small fields, no clear
field pattern.
A _ Difficult to interpret because of irregular shapes/
1835 poor field definition.
B - -
[ - Grain and non-grain signatures similar during summer.
A - Small strip fields; pooxr blcbs; segment is terrible
. " to interpret.
1920 B - -
¢ Considering the segment, it is doubtful any Poor segment; very low confildence rating; key acqul-

change would have helped.

sltions missing; high confusion factor.

(Page 3 of 3)
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" TABLE C-24,

SUMMARY OF ANALYST GOMMENTS ON PART 7 OF THE SEGMENT COMMENT FORM

Percent Percent .
Sepment  Amalyst  Agriculture Small Grains Major Crops Field Size Topography

A 80-90 Small Corn and Soybeans 120 acres Flat to gently rolling hills, some

gtream drainage.
1380 B 98 Relatively Corn and Soybeans Central Nebrasks Loess hills, CNL
' little. . plains, & L, Till, & Sand, Prairie.

c 100 10-350 pixels Relatively flat with kettles, ex-
cept steep banks along river.

A 50-60 80-160 (varied) 3 small lakes, large strip of range-
land.

1392 B 80 Other 20% range- Small to medium Dark wet soils.
land. )

c 60-70 40=-140 Ave. 60 Ag areas divided by NW-S5E morraine;
no definite drainage pattern;
slope is scuth.

A 60-70 100 acres . Flat, many pot~holé lakes, several
streams and drainage system.

B 85 - Gently rolling, glaciated plain;

1457 some irregular top; numerous wet
depressions and ponds.

c 80-85 20-25% 2000 ac. winter, 5-10 to 250-30Q0 Slopes down toward NE; morraine belt

rest spring/ acres with numerou kettles.
summar crops

A 75-80 3G Flat; several fair-gized lakes;
intermediate streams.

1461 B 90 High 5G Drift prairie; mostly glacial
. deposits.
c 90-95 100-150 acres range; Flat, but glaciated; unestablished
60-80 acres average drainage.,

A 90-95 80-160 acres Flat, gently rolling hills, several
streams.

1467 B 90 Large Wet with relatively mild slopes.

[ 100 10-15 teo 80-100 Flat with glaciation indicators:

ave. 60 acres drainage SE.

A 90-95 Wide Variety 80-160 acres Flat.

1475 B 98 High % ' Large to medium Smooth, part of old lake bed.

C 100 20 to 200-250 Flat, part of old lake bed.

100 average

(Page 1 of 3)
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TABLE C-24.' SIMMARY OF ANALYST COMMENTS ON PART 7 OF THE SEGMENT

COMMENT FORM (Cont.)

A

Percent Parcent
Segment  Analyst  Apriculture Small Grains Major Crops Tield Size Topography
A ' 50-60 Large Forest Areas  80-160 acres
1518 ° B - Smooth lake basin, poor drainage,
small water basin.
c 60 30% pasture or 5~250; 60-80 ave. Level, no distinct drainage.
scrub . .
A 70-80 Flat to gently rolling hills; some
lakes, marshy areas; minor
1566 , drainage.
B 90 High Drift prairie; almost entiraely
glacial deposits. N
C 75~85 Range: 10-140 ac. Glaciated; gently rolling; numerous
ave., = 60 ac, lakes. . .
. A 40~50 1/8-1/16 section Flat terrain; several large lakes.
B 75~80 ) Trregular: gently rolling glaciated
1602 plains, , morraine,
C 75~80 5-250 ac. strip Glaciated; moderately rolling, mor-
1-8 pixels. raines, numerous kettles.
, A 20~-30 40 acres Fairly flat; several large lakes,
1612 B 40 Drift prairie:- glacial deposits,
’ ’ ¥nolls, depressions, some streams.
c 45-55 10 70-80 acres. Flat; low hills; numerous lakes.
A 90 1/4 section Flat.
1619 B Mostly smooth, 'neaxly level lake
I X basin.
c 100 Range: 10-200 ac. Gentle to flat.
ave, =, 100-160
A 75-80 1/8-1/4 section Fairly flat; few low areas that
. hold water.
1636 B 80 Medium Drift prairie: glacial deposits,
. undulating plain. .
C 100 .20 300 ac. TFlat with scattex glacial deposits,
ave., = L00-150 ac.
A 30-40 Gently rolling hills, few small
lakes.
1650 B 70 Glacial deposits: rolling plain,
: : some badlands top.
c 75-80 5-125 acres

Rolling terrain; some glaciation.

(Page 2 of 3)
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TABLE C-24. SUMMARY OF ANALYST COMMENTS ON PART 7 OF THE SEGMENT GOMMENT FORM (Cont.)
Percent Percent
Segment Analvst Agriculture Small Grains Major Crops Field Size Topography
A 20-30 20-30 acres Fairly flat. .
1653 B 40 Gently rolling; glaciated landscape.
C 15-20 5=-200 acres Undulating terrain; intermittent
creek, lake,
A 20-30 Small Amount 5G 30-40 acres Flat arga with agriculture; rest is
) fairly hilly.
1656 B 20 Small Extremely rugged; mostly natural
vegetation and rangeland.
c 85 3-60 acres Medium to heavy direction near
Heart River; gentler in east.
A 60-70 100 acres Flat with trees, natural vegetation
along a raver,
1825 B 80 Generally smooth, nearly level lake
. basin.
c 55 10-120 acres Level with gentle slope west}
glaciated.
A 5¢ Small Swampy area; hills; several lakes.
1835 - B 80 Small .Wet area; several bodies of water.
c 10-70 acres . Heavily glaciated; numerous marshes
and lakes.
A 20-30 30-40 acres Agricultural area fairly flat;
rest is rather hilly.
1920 -B 50 Medium Gently rolling glaciated plain with
some kames and morraine.
c 30-40 Low Spring Grain Segment 10-20 acres Dissected in west; gently rolling

te flat in east.

-(Page 3 of 3)
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TABLE C-25. SUMMARY OF ANALYST COMMENTS ON PART 8 OF THE SEGMENT COMMENT FORM

Did You Have to Change Your Procedure?

Segment Analyst Moisture?
1380 A Yes. Identified small grains blobs Adequate
first, then non-small grains
B Yes. Because of significant dis-
tortions, Product 3 used
extensively
C -—
1392 No
No
No
1457° A Yes. Slightly because of many dis- Adequate
continuous blobs
B No
C . No
1461 A No More than
adequate
B No Moist to wet
throughout
C No
1467 A No
No
C No

Elevation

2000-2300"

Avg, v1600’

(Page 1 of 4)
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TABLE C-25.

SUMMARY OF ANALYST COMMENTS ON PART 8 OF THE SEGMENT COMMENT F(

Segment Analyst Did You Have to Change Your Procedure? Moisture?
1473 No Adequate
No
1518 A -
B No
C No. Just a little more cautious
1566 A No
‘ No Area is
generally wet
C - Drainage is
deranged
1602 ; No Adequate
B No
c = Climate semi-a:
1612 No
B No

Yes. Llabeled non-spring grains,
then spring grains

Deranged
drainage

A=5"'

00’

of 4)
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TABLE C-25.

SUMMARY OF ANALYST COMMENTS ON PART 8 OF THE SEGMENT COMMENT FORM {Cont.)

Segment Analyst Did You Have to Change Your Procedure? Moisture? Elevation
1619 A Yes. Colored obvious non-grain, then No apparent
obvious grain water problem
B No Poor drainage
‘No_ "Drainage den-— 900"
dritic, but
intermittent
1636 A Yo
B No
C No Deranged drainage 1465’
1650 A No Adezquate
B No Relatively dry
C‘ No Dendritie 2835"
drainage
1653 A Ne Adequate
No,
Yes. Product 3's removed (confusing); No rain noticed 1950"
blob map used only w/ Product 1 N
1656 A -
No .
No 1750-2350"

(Page 3 of 4)
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Elevation

800-1000"
1000-1310"'

13257

TABLE C-25. SUMMARY OF AWALYST COMMENTS ON PART 8 OF THE SEGMENT COMMENT FORM (Cont.)
Segment ‘Analyst Did You Have to Change Your Procedure? Moisture?
1825 A No No apparent
problem
B No Wet in Spring
c - Adequate
1835 No Adequate
B No Wet area
C -
1920 No
B No

2100-2450"

(Page 4 of 4)
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C.4.2 PARAMETERIZED PERFORMANCE OF PROCEDURE M

The variance and bias of Procedure M are viewed as functions of
the parameters which control sample size, type of stratification, number
of strata, and source of labels. Methods of estimating the bias and
variance of Procedure M's segment spring small grain (wheat/barley)

propertion estimate follow.,

The bias from sampling only big blobs is the difference in the
ground truth proportions of grain within the big blobs and of grain in

the complete segment.

Given a fixed segment, source of labels and stratification denote
the label given the jth blob of stratum s as-st. The bias due to the

source of labels is

N BCLUST N-s ?? js
b(P) = — = C, -P
o1 N.' j=1 N g js s
where
C; =1 if label is grain, C, = 0 otherwise,
is js
st = number of pixels in blob j of Stratum s,
N s = number of big blob pixels in Stratum s,
N = pumber of big blob pixels in segment,
PS = ground truth proportion of grain in big blobs,
and given a sample S = 51052US3U USBCLUST chosen using the Midzuno

~

sampling technique, P is the sample pfgportion, namely

110
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2

,  BCLUST N o [ jes_

P——-ZN W .

s=1 .. .
; js
JESS

N, C,
je is

If o, is the s stratum sample size, and MS is the number of blobs

M
S) possible samples from Stratum s

in the s stratum, then there are,(n
s

of size n_ which could be obtained. We denote these by

M

s ., i=1,2,3,...,( S)
si g

The mean square error of

_ ECLUST N . ,
P= 3 — P
s=1 N.. s
is
M
(ns) Y N G g -1
. BCLUST (N 2 \g/f jeg 4% M -1 N,
(x) MSE(®) = Y (—) > =5 -2 ) .5, soodE
s=1 i=1 8 s jes .8
J€ is 'js
where
Z: st st
5 jESis
P E
=]
,Z: Nis
JsSis

A

The: variance of P is
~ ~ 9 A
V(P) = MSE(P) - b (P).
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A proof of (*) can be found in [ ].

Examination of the bias and variance of Procedure M as a function
of type of strata, number of strata, sample size, and source of labels

follows.

Denote the bias, mean square error and variance of Procedure M

proportion estimate for Segment j as

bj (¢,N,n,B), MSEj {¢,N,n,B), and Vj (o,N,n,B)

where
a = static trajectory strata, BCLUSTER, or tolerance blocks,
N = 40, 50, or 60,
n = 80, 100, or 120,
B = analyst green, red, blue, vote, average, or ground truth.

The sampling reduction of variance factor is

V. (e,N,n,B8)

N SR
v.(,1,n,
3( n,B)

The effect of sampling strategy will be studied by examining

1 17

V (a,N,n,ground truth) =317 Z Vj(a,N,n,ground truth)
. : j=1

for different combinations of o, N, and n given above.
The effect of the source of labels will be studied by examining

V (BCLUSTERs,40,100,8) - V (BCLUSTERs,40,100,ground truth)
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for

£ = analyst green,
= analyst red,
= analyst blue,
= vote, and

= average label.

C.4.3 EVALUATION OF THE BCLUSTER, BLOB, AND MACHINE LABELER
COMPONENTS . -

Evaluation of the BCLUSTER: Because of a delay in obtaining ground

truth for the Minnesota segments, the evaluation of the BCLUSTER com-
ponent is performed only on the 13 North Dakota-segments. A measure of
the value of a stratification is the ratio of the stratified variance

to the unstratified variance. This measure is called the reduction of
variance (RV) factor. Table C-26 gives the RVs for sampling with replace-
ment, The average RVs for 20, 40, and 60 BCLUSTERs are .637, .5%44, and
.483, which are close to what was obtained in last year's experiment.

In the case where the sampling is with replacement we -have

0 <RV < 1.

This is not always the case if the sampling is without replacement. The
stratum finite correction factors have less effect on the stratum variance
than on the unstratified variance. - The metheds in which true RVs will be
computed are outlined in the last section for the case where sampling

is without replacement (used by Procedure M).

Table C-27 gives the number of BCLUSTERs broken down by their grain
purity for 20, 40, and 60 BCLUSTERs. The number of blobs, number of
pixels, percentage of BCLUSTERs, percentage of blobs, and pexrcentage

of pixels are also given in Table c~27.
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TABLE C-26. REDUCTION OF VARIANCE (NORTH DAKOTA SEGMENTS)

Number of BCLUSTERs

Segment 20 40 60
1392 0.709 0.479 0.422
1457 0.562 0.516 0.441
1461 0.715 0.504 0.482
1467 0.723 0.683 0.621
1473 0.441 0.335 0.315
1602 0.463 0.434 0.371
1612 0.701 0.654 0.627
1619 0.490 0.342 0.292
1636 0.705 0.616 0.469
1650 0.728 0.634 0.616
1653 0.657 0.613 0.500
1656 0.731 0.652 0.541
1920 0.654  0.608  0.577

R 0.637 0.544 = 0.483
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TABLE C-27. NUMBER OF BCLUSTERs BY GRAIN PURITY

20 BCLUSTERs

Number Number Number Percent Percent Percent

Percent of of of of of of
Grain BCLUSTERs Blobs Pixels BCLUSTERs Blobs Pixels
0-10% 127 1758 93203 41.64 36.18 38.23

10-20% 16 544 30484 5.25 11.20 12.50

20-30% 16 301 11241 5.25 6.19 4,61

30-407% 9 289 15771 2.95 5.95 6.47

40-50% 7 68 2328 2.30 1.40 0.95

50-60% 6 39 1653 1.97 0.80 0.68

60-70% 12 639 32262 3.93 13.15 13.23

70-80% 14 412 18157 4.59 8.48 7.45

80-90% 12 431 22640 3.93 8.87 9.29

90-100% 86 378 16043 28.20 7.78 6.58

40 BCLUSTERs

0-10% 261 1817 91250 49.81 .37.04 37.43
10-20% 23 518 31202 4.39 10.56 12.80
20-30% 24 503 25105 4,58 10.25 10.30
30-40% 14 208 9092 2.67 4,24 3.73
40-507% i6 . 122 4627 3.05 2.49 1.90
50-60% 13 117 7266 2.48 2.38 2,98
60-70% 13 173 7353 2.48 3.53 3.02
70-80% 19 263 12403 3.63 5.36 5.09
80-90% 7 288 13792 3.24 5.87 5.66
90-100% 124 897 41692 23.66 . 18.28 17.10

60 BCLUSTERs

0-10% 386 1987 101122 49,61 40.35 41.49
10-20% 33 545 29748 4.24 11.07 12.20
20-30% 26 324 15611 3.34 6.58 6.40
30-40% 11 84 2968 1.41 i.71 1.22
40-507% 23 - 186 9496 2.96 3.78 3.90
50-60% 16 188 7491 2.06 3.82 3.07
60-70% 18 111 4992 2.31 2.25 2.05
70-80% 21 202 10242 2.70 4.10 4,20
8§0-90% 25 381 18054 3.21 7.74 7.41
90-1007% 219 917 44031 28.15 18.62 18.06
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Figure C-12 gives the-graph of the percentages of BCLUSTERs within

each grain percentage class for 20 and 40 BCLUSTERs. The graph of 60
BCLUSTERs is very close to that of 40 BCLUSTERs. -The differences be-
tween the number of BCLUSTERs in grain percentage classes is not sig-

nificant.

However, when the number of big blobs and number of pixels within
rhose BCLUSTFRs are graphed (Figures C-13 and C-14) we see that the
stratification obtained with 40 and 60 BCLUSTERs is much better than
that obtained with 20 BCLUSTERs. The difference between the 40 BCLUSTER
and 60 BCLUSTER stratification is small and perhaps the stratum finite

correction factor would reverse this ordering.

Evaluation of the blob component: The purpose of the blob com-

ponent is to cluster pixels into field-like forms which are relatively
pure grain or non-grain. These blobs with interior pixels are sampled
and labelea by analyst. The labeling results are given in Section _
of this appendix. The analyst subﬁective evaluation of the blob com—
ponent can be found in this section of the appendix. It was shown tha£
those blobs with grain percentage between 25% and 75% were labeled wrong
more often than those outside of this intexrval. Figure C-15 gives the
percentage of blobs at each of the grain percentage levels 0-10%,
10-20%, 20-30%Z, 30-40%, 40-50%, 50-60%, 60-70%, 70-80%, 80-90%, and
90-100%. - We note the vast majority of the blobs are less than 25%
grain or greater than 75% grain. If the blob grain percentage is com-

puted using only the interior of the blobs the results are even more

striking. TFigure (-16 gives the percentage of pixels within the blobs
in the same grain levels given above. The two graphs are extremely
similar because the grain percentage and the- blob sizes are nearly

independent in these 17 segments.
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Table C-28 gives for each segment, the number of blobs, the number
of big blobs, the percent of segment covered by big Bblobs, the blob
purity, the reduction of variance factors, and the information theoretic

factor discussed in Appendix K and Section 6.

Evalvation of the machine labeler: The machine labeling component

uses Brightness/Greenness values to give wheat or barley labels to all
of the targets which are labeled grain and have at least three acqui-
sitions falling in the time interval between plant emergence and har-

vesting.

The performance of the labeler will be evaluated both as a classifier
and as a barley proportion estimate. The percentage of ground truth
grain targets correctly classified will be computed for each segment.
The bias, variance, and root mean squared error (RMSE) of the barley-

proportion estimate will be computed for each segment.

The relationship between analyst errors and the machine labeler
errors will be studied by evdluating the machine labeler's performance
on grain targets missed by the analysts and non-grain targets labeled

grain by the analyst.
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TABLE €-28. SEGMENT QUASI-FIELD STATISTICS

Percent of

No. Big Segment Blob " Blob Blob
Segment Blobs Blobs Covered Purity RV ITF
1380 1633 403 65. 64 93.07 .40 .85
1392 688 380 87.6 92.5 .20 .76
1457 900 401 84.1 85.5 .15 .81
1461 1506 - 465 71.2 96.9 .08 .92
1467 554 400 91.4 89.2 .32 .67
1473 1353 387 72.6 97.6 .06 .95
1518 819 420 87.38 88.22 .27 .93
1566 1264 481 68.39 86.97 11 .83
1602 1298 399 78.5 '97.0 .69 .90
1612 577 329 90.8 94.0 .22 .78
1619 916 379 79.5 96.6 .09 .89
1636 1660 427 80.1 93.1 .20 .75
1650 862 307 81.3 85.7 b .58
1653 613 339 89.0 96.6 .19 .85
1656 631 322 87.5 95.6 19 .83
1825 1114 455 80.79 89.17 .34 .82
1920 436 299 99.2 93.8 .20 .80
6663
Ave. 392 79.47 93.03 244 .8182
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APPENDIX D

SUPERB -— AN IMPROVED SPECTRAL-SPATIAL
CLUSTERING ALGORITHM

D.1 INTRODUCTION

SUPERB represents a next generation of spectral-spatial clustering
beyond ERIM's algorithm BLOB. The new algorithm takes its name from
"supervised BLOB". As with BLOB, the putpose is to divide a scene into
patches (which we call quasi-fields or blobs) of adjacent or nearly
adjacent pixels that are relatively homogeneous spectrally, and to a

reasonable extent, represent the fields present within the scene.

Spatial-spectral clustering has been successfully used to specify
labeling targets for analysts, to provide a head start for spectral
clustering, tc flag mixture or edge pixels, and to form a basis to
"compress" a scene (forming quasi-field spectral mean values and
substantially reducing the data volume). The extent to which the
purpose of spatial-spectral clustering has been achieved was discussed
in previous reports [ 3], although more work needs to be done to
examine SUPERB.

What follows is a description of the basic algorithm of SUPERB,
and a discussion of its special features. As a summary, the principle
new features of SUPERB are given in Table ﬁ—l, along with the expected
desirable effects of using those features. These features represent

the main differences from algorithm BLOB.

D.2 ALGORITHM DESCRIPTION
D.2.1 GENERAL

To help understand the system environment, we mention that SUPERB

is written in an extended FORTRAN ("Overdrive") as a module within ERIM's
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TABLE D-1. DEVELOPMENT HIGHLIGHTS OF SPATIAL-SPECTRAL CLUSTERING PERFORMED

BY ALGORITHM SUPEREB

Development

Significance

Ground truth supervision is available as
an optiom.

Formation of quasi-fields can be forced
consistent with ground truth boundaries.

The resulting blobs can be used as ground
truth fields, in some applications.

4 new distance measure allows separate
consideration of spatial and spectral
effects.

It is easier to judge the physical signi-
ficance of threshold parameters values.

A pixel may be assigned only to a quasi-
field associated with a neighboring pixel
(or form a new quasi-field).

Quasi-fields now can be made to consist of
a single group of adjacent pixels.

Fewer distance calculations need to be
performed,

When deciding whether to assign a pixel
to a blob versus form a new quasi-field,
pixels having the easiest decisions are
processed first (withim each scan line}.

More candidate neighbor quasi-fields often
become available to help improve later
decisions.

Biasing effects of sequential processing
order are minimized.

Newly formed blobs are compared to their
neighbor blobs, and combined if suf-
ficlently similar,

If two blobg happen teo start in the same
homogeneous field, they may be combined.
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QLINE system, QLINE is a modular multispectral software architecture
in which a module is called (usually) once for each scan line in a
scene (the module is called for various kinds of initialization and
post-processing as well). A scan line of data is made available to
the module in the form of a two-dimensional array (channels by pizels
in the scan line}. The module may use or modify the data, for example,

by adding one or more channels representing processed data.

Having discussed‘the environment in which SUPERB exists, we now
describe the processing carried out for each scan line. First, the
pixels are processed sequentially right to left. A distance measure,
cne of those selected from Table D-2, is computed between the pixel
and each candidate blob. The candidate blobs are all blobs that were
assigned to pixels neighboring the pixel being processed. (This neigh-
borhood can be modified by a user to any subset of pixels up to two
units away, but normally consists of five neighbors——upper left, upper,
upper right, right, and left. On this first pass, the left neighbor,
and sometimes the right, would not yet have an assigned blob.} For this
pixel, the spatial-spectral distance D to the nearest candidate blob is

compared to a pair of thresholds dg and dh. If b < d,, the pixel is

R:’
assigned to the blob and is used to update the stored blob mean vector.
IfD ‘Z_dh, the pixel forms a new blob. However, if D is between dz

and dh’ the decision is delayed, and the pixel is placed on a deferred

list along with its value of D.

Once all pixels are processed im this manner, the list of deferred
pixels is sorted in order by descending values of lD—df], where df is
the final decision threshold (dz f_df f_dh). Each of these pixels are
processed in sorted order by computing distances from the pixel to a
new set of candidate blebs. (There may be more candidate blobs during
the second try for a given pixel, since its neighbors may have been-
assigned to blobs.) The new smallest distance D is compared to thres-
held d.. If D > df, the pixel forms a new blob. Otherwise, it is

f
assigned to the nearby blob with distance D.
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Of the three distance measures described in Table D-2, the first, a
composite of spectral and spatial measures, is one of the options in BLOB.
The‘second is a pure spectral measure, while the third is the new dis-
tance vector consisting of two elements (Dl and DZ) representing spectral
and spatial components, respectively. In the last case, the three deci-
sions given in the a?ove paragraphs must be specified in terms of D1 and
D2, as shown in Table D-2. In this case, deferred pixels are sorted in

descending order of Dl + D2.

The foregoing discussion covers the basic mechanism, when no special
conditions or options are present. What follows is the discussion of
several features and conditioms that can modify the basic picture some-~

what.

D.2.2 GROUND TRUTH SUPERVISION

If available, ground truth can be used to constrain the algorithm

so that each blob must consist of pixels of a single ground class.

In one of two supervision options, the ground truth is supplied
in the form of an integer code for each channel., When distance mea-—
gures are computed between a pixel and its neighbor blobs, only blobs
with matching ground truth code are considered. Furthermore, codes of
zero are used to mark pixels as mixture or unknown, and such pixels are

assigned to a single garbage blob.

In the second supervision option, the ground truth is supplied
in the form of several subpixel codes for each pixel, combined with
one code that summarizes the several. The summary code is zero if
the subpixel codes do not all agree, and is the same as the -subpixel
codes if they agree. In this option, the candidate blobs for a given
pixel are neighbor blobs whose ground truth code matches at least

one of the subpixel codes for the pixel. When a pixel forms a new
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TABLE D-2.

DISTANCE 'MEASURLES THAT MAY BE SELECTED 1IN SUPERB

Decision Rules

Initial Pass Deferred Pass
Asgign Plxel Agsign Pixel
to Neavest Form New to Nearest
. Blob, Blob, Bleb,
Distance Measure 1% 1f* if*ke
G - ;i)z_ G-D2 -2
1 D= -1 1 1. AL 2l Dzd pxd D<ad
. v v v 2 h £
i 2 P
1 .
(xi - xi)z
2. D= E v D <d, D> d b2 dg
L
(x x.LJ2
D, =
3. 1 2 v, D, 24, Dy 24y by =4
i ] and or and
— D, <8 D, >=s D, <4
b = (£_£)2+(p_5)2 2= 2<% 2=t
2 vy v
P
* ok
Otherwise defer the decision, Otherwise form
’ new blob.
Table Notes:
D = overall pixel~to—nearest-blob distance vi = allowed variance in channel 1
Dl = spectral pixel-to-nearest-blob distance v, allowed variance in line cooxdinate
b, = spatial pixel-to-nearest-blob distance v, = allowed variance in point coordinazte
dz = low threshold %, = pixel value in channel 1
s, = low threshold for spatial Ei = blob mean value in channel 1
dh = high threshold L = line coordinate of pixel
s, = high threshold for epatial T = mean line coordinate in blob
df = final threshold p = point cocrdinate of pixel
sp = P = mean point coordinate in blob

final threshold For spatial
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blob, the ground truth code for the blob is the most frequent subpixel
code in the pixel, If there is a tie for most frequent subpixel code,
the one-pixel blob is considered "unlabelable", and is combined with
the garbage blob. If the most frequent subpixel code is zero, the

one-pixel blob is combined with the garbage blob.

Whichever supervision option is selected, the function is to 1limit
the set of neighbor blobs that are considered in computing distance
measures to {and thereforxe possibly being combined with) each pixel.

An additional effect of supervision is that ground truth mixture pixels
will not form new blobs except during deferred pixel processing. This
may reduce the chance of a mixture pixel that results in an unlabelable
one-pixel blob, since a neighboring pure or less ambiguous pixel may

" initiate a blob that would absorb the mixture pixel. A second additional
effect is that, for each pixel, a result ground truth code is produced
that reflects the ground truth code of the blob containing that pixel.
This code may be a stronger indication of the pixel's primary class than
the ground truth codes themselves, since slight misregistrations of the
ground truth can be overridden for mixture pixels by spectral similarity

to neighbor classes.

D.2.3 USE OF SCREEN INFORMATION

Algorithm SCREEN [ 36] is designed to examine Landsat data and
identify those pixels which probably aren't good agricultural data,
such as clouds, water, etc, and this can be carried out for each
acquisition in multitemporal data. When SUPERB is run, it can
examine information from SCREEN and tell, on a pixel-by-pixel basis,
which channels contain valid data, . Usually, all channels are valid,

in which case SUPERB works normally.

The behavior is modified, when some channels are not usable, as

follows. The spectral part of the distance measure is computed as:
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2 %)
(Xiuxi) « (number of channels specified)
i={good channels} v, (number of good channels) )

where the good channels are those specified that are not flagged by
SCREEN for the pixel, and algo are not flagged in SCREEN information

maintained for the blob.

When a pixel is used to form or update a bleb, care is taken so
that channels flagged (as clouds, etc) for the pixel do not change
the blob mean in those channels, and channels flagged for the bleb
cannot be updated but only reﬁlaced by unflagged pixel channels.
There must be at least a specified minimum number of non-flagged
channels in a pixel, or the pixel will be assigned to the garbage
blob. It is occasionally possible for a finished blob to occur with-
out any valid data in some channels, in which caseithose channels
would contain bad information (namely the values for the first pixel
assigned to the blob). These are indicated with a warning message,

but currently are not discarded or otherwise marked.

D.2.4 BLOB NEIGHBOR TABLE

Algorithm SUPERB as an option can prepﬁre a2 table that lists for
each blob, a list of blobs that neighbor it. The definition of neigh-
borhood used to form this table is the same as the neighbérhood des—
cribed previously for establishing candidate blobs for a pixel when
determining the pixel's assignment. A blob is adjacent to another if
any pixel of one blob is in the neighborhood of any pixel of the other
blob. The resulting table can be written and stored for use by blob

mapping algorithms and other analysis routimes that work with blobs.
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D.2.5 BLOB COMBINATION OPERATIONS

Occasionally, it can happen that a group of adjacent spectrally
similar pixels which normally would comprise a single blob, may be
started from two sides, resulting in two blobs rather than one. One
way this can happen is that the upper corner of a field on one scan
line contains a pixel that starts a blob, then on the next scan line,

a pixel on the opposite side of the same field starts a bloeb also.

‘A first attempt to reduce this possibility was based on the fact
that rectangular fields (im the U.S.) tend to be rotated a few degrees
counter-clockwise to the scan line direction, so that the upper corner
of a field normally belongs to the right-hand side of a field. When
the order of processing was changed from left-to-right to right—to-left,
the problem of multiple starts was reduced, but still occurred for some

field .geometries.

In order to more fully solve the problem of multiple starts, an
option was implemented fo consider combining adjacent blobs. After
all pixels on a scan line are assigned, any newly formed blob is com-
pared to its neighboring blobs, taken from the blob neighbor table.
Using the mean of a newly formed blob as if the blob were a pixel,
the distance function is computed to each neighbor blob (assuming that
if supervision is in effect that the blob ground truth codeg match).
If the nearest blob is suffieciently close (using thresholds df and sf’,
which may but need riot be the same as d and s, as discussed above),

the blobs are combined, taking the same care with SCREEN information

that is used when assigning a2 pixel to a blob.
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APPENDIX E
LOGIC FOR PLACTCMENT OF LANDSAT DATA INTO COLOR IMAGERY

E.1 TINTRODUCTION

A first principle in design of imagery is that independent, impor-
tant features of the data should translate to independent dimensions of
color variation as perceived by the human eye. In this way, one allows
the visual "information processor'" to correctly come into play in ana-
lyzing the image. Imagery acts as the interface between the data and
the human being, tying us into a psychological processor which is quite
impressive for its pattern recognition capabilities. To best use this
processor it is important to understand and respect its inherent manner
of classifying a scene, literally its way of looking at things. This
appendix describes where these considerations have led us in designing
imagery for Landsat data, and what logical options appear to be available

to us, given our current understanding of the data structure.

E.2 MAPPING DATA FEATURES TQ COLOR VARTATION

It is possible to place more than one component of information
about a scene into a color image, and still have those components inde-
pendently apparent to and assegsible by an observer. This is possible
because perception of color is multidimensional. Colors are perceived
to vary in three independent characteristics or along three independent
dimensions. If we control each independent way of changing a color
with a different information component then the information components

remain independently apparent and assessible.

The importance of making our information components control inde-
pendent dimensions of color is not hard to see. Under this arrangement

we are properly linking up with the visual information processoxr. The
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observer (image analyst) perceives the information components in the
scene as though the human eye had eveolved so as to pick them out. The
effort involved in interpretation of color is minimized because much
of the work of classification occurs immediately in the visual system.
The information is presented in the form required for pattern recogni-

tion by the observer.

The predominant dimensions of color variation are three in number.
They bear the names hue, saturation and lightness and are defined as

follows [53]:

Hue is the attribute of a color perception which gives

rise to the names red; purple, yellow, etc.

Saturation is the attribute of a color perception determining
the degree of its difference from the achromatic
(grey) color perception closest to it, i.e., of

the same lightness.

Lightness is the attribute of a color perception permitting
it to be classed as equivalent to some member of
the series. of achromatic color perceptions ranging

from black to white (grey levels).

The attributes of hue, saturation and lightness are subjectively defined

and are not predefined in any analytic or quantitative sense.

A second important concept in mapping data variation into color is
the peréeptual scaling of color differences. It is possible to find
a sequence of colors between two given colors such that the perceived
size of the color change from step to step is uniform, i.e., the same

at each step. WNaturally, we wish the distance relationship between data

<
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points to be presexrved for the observer of the image. The way to do

this is by mapping the data interval onto a uniform color scale of the
sort described. In this manner, a given distance in the data interval
is consistently transformed to color differences of the same size. This
is important since large deviations from uniform transformation will

certainly give us a distorted view of data variation in our image.

In oxrder to portray more than one wvariable in color while main-
taining uniform distancé translation we need an extension of the con-
cept of color uniformity to more than one dimension. The single dimen-
sional uniform color scale gives rise to the concept of placing colors
in two— or three—dimensional configurations for which distance between
any colors still correlates to the psychologically perceived difference
between those colors. The Munsell color specification system is an
attempt to set up such a configuration for all object colors. The con-
figuration was arrived at empirically and is defined by cards of color
chips. Many attempts have been made to describe the desired spacing of
colors mathematically. The usual starting point is the X,Y,Z color
space. Transformations are made on these variables to arrive at a
color space which is more uniform to the eye's judgement of color dif-
ferences. Currently the L*,a*,b* color space is the standard Uniform
Color Space designated by CILE. Its relatively simple equations obtain

a color spacing in good agreement with the Munsell system.

E.3 DIFFERENT COLOR SPACES, THEIR UNIFORMITY AND THE LOCI OF HUE,
SATURATION AND LIGHTNESS
E.3.1 X,Y,Z COLOR SPACE [53]

We do not perceive a unique color for every different light stimu-
lus presented to the eye. TFor example, Figure E~1 shows 12 reflectance

curves which are markedly different but which nonetheless give rise to
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the same color perception. The reason for this is that the eye has a

finite number of "sensor channels", in fact it has only three. Three
pigments, located in the cones of the retina, are involved in coler
vision. Each pigment has a different spectral sensitivity to light so
each acts like a sensor chammel with a different bandpass.- Many diffex-
ent spectra can produce the same color sensation as long as the trio of

channel values, referred to as the "tristimulus values', end up the same.

A set of spectral sensitivity curves for the eye's three receptors
have been defined for a standard or ideal observer, based on results of
color matching experiments. These three weighting curves appear in
Figure E-2. They are labeled E-, Ei and T, and are referred to as color

A A
matching functions. In 1931, the Commission Internationale d'Eclairago

or CIE set down a linear combination of the color matching functions with
certain specially desirable properties, to be the basis of a standard
color space. The color matching functions used by the CIE are shown

in Figure E-3 and are labeled EA, }i, z, -

When these weighting curves are applied to spectra, the three re-
sulting numbers are called tristimulus values and labeled X,Y,Z. 1In
constructing the weighting functions EA, }i, Ei the constraint was made
that ;i would have the same shape as the photopic {(cone vision) luminous
efficiency function. Thus the Y tristimulus value does double duty --
it also is a predictor of color lightness. Empirical tests have shown
that Y is a good, approximate predictor of perceived lightness (in the
sense of lightness matching between colors, not in the sense of uniform
spacing of color lightnesses), but has a small systematic problem, namely
underestimating the lightnesses of saturated colors. The additional con-
straint was made that the Ei, }A, E} weighting or color-matching func-
tions would be everywhere non-negative. Since spectra are non-—negative,
this implies the X,Y,Z tristimulus coordinates will always have non-

negative values.
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In X,Y,Z space, colors of fixed chromaticity (hue and saturation)
fall on lines which emanate radially from the origin. Hue and satura~-
tion are determined by the ratio of the X,Y,Z tristimulus coordinates
and a constant ratio among the coordinates is found on any line out
from the origin. To see why- this is so, imagine the following experi-
ment. Light is projected onto a screen from a white light source after
passing through a given, fixed color filter. The white light source has
a dimmer switch so we can vary its output. As we vary the source from
dim to bright the perceived lightness of the projected, filtered light
will change correspondingly; however, its perceived chromaticity, i.e.,
hue and saturation, will remain the same. Now if we calculate the X,Y,Z
tristimulus values for the color at several different lightnesses we will
find the magnitude of the vector varies, but not its direction. This is
a consequence of the fact that the X,Y,Z measurements respond linearly
to changes in energy. If you double the energy of a spectra, or if you
half it, each of the X, ¥, and Z values changes correspondingly and
their ratio remains unchanged. Thus the locus of points in X,Y,Z space
which could be produced im this experiment fall on a line out from the

origin with direction determined by the filter used.

Finding the locus of constant hue with variable saturation is not
so simple. Neither is finding the locus of constant saturation with
variable hue. Isolating hue or saturation is a psychological judgment
without a simple mathematical correlate in X,Y,Z space. Lines of con-
stant hue and lines of constant saturation have been empirically mapped.
A typical result of this mapping is shown in Figure E—4, plotted in the
x;y chromaticity diagram for a fixed lightness. WNotice that hue tends
to be radially distributed while saturation tends to be cylindrically

distributed.
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E.3.2 L*,a”,b" COLOR SPACE

If the eye gauged differences between colors linearly with respect
to differences in energy of the light stimuli, then the X,¥,Z color
space would be an exactly uniform color space. However, the eye does
not judge color differences linearly with respect to energy differences.
Empirical findings show that the psychological magnigpde of color dif-
ferences are a function of energy differences under tramnsformation by a
logarithm or fractional power less than 1/2. One formula does not work
under all conditions because the background of the colors being compared,
i.e., the adaptive state of the observer's eye, is an important factor.
A logarithmiec transformation works best when the background is a color
in between the colors being judged. A cﬁbe root transformation works
best given a constant middle grey background (reflectance of 20Z). A
square root transformation works best given a white background for all
observations. As a standard transformation, the cube root formula has
found favor. It has found a place in the Munsell color specification

system and the equations of L*,a*,b* Uniform Color Space.

The L*,a*,b* standard Uniform Color Space is built from the X,Y,X
color space in a few straightforward steps. First, coordinates are nor-
malized to the nominal white of your particular color production hard-
ware. Denote the tristimulus values of "white" by Xo’Yo’zo and normalize
all other coordinates by forming the ratios X/Xo, Y/Yo and Z/Zo' Second,
take the cube root of each coordinate axis. This step incorporates the
understanding of psychological equispacing discussed above. Third, a
linear transformation is applied to the axes to line them up with what
are believed to be the directions of chromatic balance which the eye
uses in differentiating color. These poles of chromatic balance are
blue vs. yellow and red vs. green. The a®* coordinate labe;s the red/green
balance while b* labels the blue/yellow balance. ‘The transformation,

thus far described, has the following form:
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1.¥ 0 1 0 (X7X0)1/3
2 | =11 -1 o (Y/Yo)l/3
b* 0 1 -1 (x/xo)1/3

The fourth and final steps of the transformation weights the coordi-
nates to obtain a color spacing more correlated with psychological judg-
ment of color differences. The complete transformation in its accepted

form appears as follows:

/3.

=
]

25 (lOO-Y/Yo)l 16

I

a’ = 500 [(X/Xo)l/3 - (Y/Ys)l/sl

.
I

200 [2/¥ )3 - @/z )13

What should L*,a*,b* space look like in prineiple? Where are
colors located and in what manner are they organized, as far as the
psychological dimensions of color perception are concerned? The pre-
dominant psychological dimensions of color are lightness, hue and satu-
ration. We will review the structure of L*,a*,b* color space with respect

to each of these dimensions.

L* depends solely on the Y tristimulus wvalue. The Y value predicts
coleor lightness to a fair approximation. The L* function only acts to
spread out the lightness measure so that 1) it is more nearly uniform
to psychological distance estimation and 2) its scale is approximately

commensurate with the scales of the chromaticity axes, a* and b*.
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Hue in L*,a*,b* space is not well defined and can be held constant
only to an approximation. Chromaticity in L*,a*,b* space is specified
by the two dimensional, rectangular coordinates a®* and b*. As mentioned
above, this pair of céordinates divide up chromaticities by finding the
balance of the color on two scales —— a blue to yellow scale and a red
to green scale. 1In principle, hue should be preserved in moving radi-
ally out from the L* axis as illustrated in Figure E-5(a). As long as
the ratio of the chromaticity scales is maintained, hue should approxi-
mately be maintained. Tf L*,a*,b* space was truly a Uniform Color Space
this would have to be true -- in order for the straight line between
two points of the same hue and on the same radial line to be the geo-
desic or minimal distance path between them, no hue variation could

’L

I . . " .
occur along the path. However, L",a",b"” space is not, even in principle,

- ES . . .
,a" ,b" space is only an approximation

a truly Uniform Color Space. L
to uniform scaling. It was selected as a standard because it worked
about as well as other spaces (in matching empirical findings for small
color differences) and, at the same time, was mathematically very simple.
What this means is that hue need not be precisely radially distributed

out from the L* axis. If the exponent of the L*,a*,b* transformation
were changed, say to 1/4 or 1/2 or 0.4, then the colors which are associ-
ated by virtue of being in the same radial direction would change. As
discussed above, these values of the exponent would not be unreasonable —-
there is nothing magic about the exponent 1/3. Therefore, the loci of

constant hue are not well defined, i.e., ahalytically defined in L*,a*,b*

space. We can only say hue will be approximately radially distributed.

Saturation in L"",a*,b"= space is distributed radially from the ori-
gin of the space. Figure E~5(b) shows a plane of L*,a*,b* space (con—
taining the L¥ axis) with lines of constant saturation drawn in. In
this plane we are approximately fixing hue. The loci of constant satu-
ration for varying hue are not simple. Clearly saturation will tend

to vary in cones of increasing opening angle. (Imagine the surfaces
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generated by rotating the lines of Figure E-5(b) about the L¥ axis.)
To be more exact than this we would have to translate the empirical
findings about judgment of saturation, as displayed in Figure E-4,
into.L*,a*,b* coordinates. Figure E-5(a) illustrates contours of

constant saturation.

In X,¥,Z space the locus points for which chromaticity (hue and
saturation simultaneously) is constant is a line radiating from the
origin of the space. This was explained in the above section on X,Y,Z
space. The transformations involved in passing to L*,a*,b* space pre-
serve this property. We have discussed where the loci of constant hue
or constant saturation fall above. The locus of a constant chromaticity,
hue and saturétion considered simultaneously, is still a straight line

T The cube root transformation moves these

radiating from the origin.
lines around -- basically it draws more saturated colors in towards the
diagonal of the space. However, the lines of constant chromaticity

remain straight lines radiating from the origin.

E.3.3 THE COLOR GUN CUBE AS A COLOR SPACE

The exposure control system of the Production Film Converter is a
means of coleor specification and, hence, the inputs to the system may
be tﬁought of as coordinates in a color space. The coordinates are the
three gun numbers we input to the PFC and the resulting ceolor space
volune we refer to as the color gum cube. In the past, many assumptions
were implicitly made about properties of this coloxr space which were
simply false. They were very appéaling assumptions to make —— it was
assumed that the space was uniform, that lines of constant chromaticity
radiated from the origin and that color lightness was determined by the
sum of gun counts. A sizeable amount of work, related to designing

film products [23,24,25] and to analyzing those products [54,55,56] was

TThe origin of L*,a*,b* space is (-16,0,0) to correspond with X = 0

Y=0, 2=0.

>
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based on those implicit assumptions. In this section we review what a

color science analysis predicts about the PFC color gun color space.

The PFC color gun color space is a logarithm color space. Whereas
L*,a*,b* space used a cube root transformation on transmission, the PFC
uses a hase 10 logarithm. This is the way the PFC was set up to work.
A set of three look-up tables were built into the PFC, one for each
primary color gun, which establishes a lineaxr relationship between gun
counts and the image densities (i.e., the densities of the film to
transmission of light at the three wavelengths which represent the pri-
maries of the film, density is the loglo of transmission which is the
percentage of light energy the film lets through). Note that the loga-
rithmic transformation is not applied to the axes of X,Y,Z space but to
the primaries of the PFC, each of which is expressable as a vector in

XY, Z space.

In applying a logarithmic transformation to a transmission color
space one does not preserve the property that lines of constant chroma-
ticity radiate from the origin. Any exponential transformation preserves
this property but the logarithm does not. The logarithm changes fixed
ratios to fixed distances. Consider two lines which meet im the origin
of the original space. Each of these lines represents a fixed ratio
among the coordinates of the space. 1If we are talking about a color
space in which the coordinates measure transmissions, then these are
two lines of constant chromaticity. If we now apply a logarithmic
transformation to the coordinates of the space the two lines with dif-
ferent fixed ratios become two lines with a fixed distance between them,
in other words, parallel lines. Mathematically, it looks like this.

Consider two lines in the original space linked with the parameter t:

T) =t (X],¥52)
-

I.'2 =t (X2:y2522)

0xt<e
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Now apply a logarithmic vector transformatiomn, L, to the space in the

following menner:

log x

o
It

log ¥y
log z

The two lines are transformed as followgf

— -
g, = L(rl) = (ul,vl,wl) + (log t, log t, log t)
- _\‘
22 = L(r2 = (uz,vz,wz) + (log t, log t, log t)
where u; = log X5 etc. MNow look at the point-for-point difference

between the transformed vectors:

1 = 2y = (Ugmuy, vy, Wi,

We see that it is a constant vector. The vectors 21 and 22 are paral-
lel. By the same token, all lines in the original space which meet in

the origin end up parallel to one another.

The currently used alternative image product, the Kraus Product
or Product 3, is claimed to maintain consistency in color definition.
A basic design principle of the product was that data points with the
same ratios among the three chanmels should be mapped to colors of the
same chromaticity (hue and saturation), with different lightnesses. To
do this is to preserve "angularity" (a word coined by Richard Juday/JSC).
The Kraus Product attempts to do this by preserving data channel ratios
in the color gun coordinate ratios. This would work, provided that the
lines of constant ratio among the color gun coordinates were indeed
lines of constant chromaticity. As we have seen, such is not the case.
Lines of constant chromaticify are parallel. Along a vector out from

the origin, color saturation does mot remain constant. It increases,

changing from zero (achromatic) to fully saturated.
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Lightness of colors cannot be predicted by summing the color gun

counts. For example, using 255 counts on the green gun produces a mﬁch
lighter color than using 255 counts on the blue gun. This is because
the eye is more sensitive to the wavelengths of light permitted by the
green primary. A weighted average of the gun counts would do better
but would probably not be adequate either. From a color theory stand-
point, the iso-lightness countours in the color gun cube will not be

planes.

The perceptual uniformity of the color gun cube to visual color
difference estimation is problematic. One would expect the logarithmic
transformation to improve uniformity over a space which measures trans-

mission. Beyond that, the degree of uniformity is open to questiom.

Some slices of the PFC color gun cube have been placed on film.
The remarks made above about chromaticity and lightness in the color
gun cube, and its uniformity, are all consistent with observations
which can be made from the £ilm slices of this color space which we

have generated.

E.4 MAPPING TASSELED-CAP VARTABLES TO COLOR

The way we would choose to place the Tasseled Cap into color
depends upon what we think are really the independent features we
want to portray. This comes down to asking whether the features are
actually rectangular Brightness and Greenness or polar Green Angle

and Brightness Radius.

E.4.1 RECTANGULAR COORDINATES

If we believe that our data space is fundamentally rectangular
then the most appropriate color space for us to map it into is similar
to the PFC-color gun cube. The PFC's logarithmic color space separates

changes in saturation and lightness in a rectangular, rather than radial,
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manner. If we want lines of constant Greenness to fall onto lines of
constant saturation (we assume a fixed hue), then we need a rectangu—

lar color space.

Investigations of a modification of the PFC color gun cube to
determine if such a space could be a realistic option in our work have
been pursued. The modified space, termed L,C,D space, is a linear

transformation of the cube defined as follows:

A1 .57 .32 B
c = 0 /2 -1/2

/2 -1/4 -1/4 R

The ¢ coordinate measures a red/green balance while D measures a blue/
yellow balance. The L coordinate is an attempt to come as close as
possible to isolating lightness levels within the cube. Classical color
theory predicts that iso-lightness levels in the logarithmic space will
not be planes. Analysis of imagery filmed on the PFC should be per-
formed to determine how much they deviate from being planar. There is
reason to believe the distortion will actually be less than that apparent
in the images of L*,a*,b* space we have analyzed. Of course, our version
of L*,a*,b* space is based on a model of the PFC with acknowledged inaccu-

racies, Eurrently being addressed by Juday.

The essential characteristic of the color gun cube, that saturation
varies as a rectangular coordinate, is retained under this transforma-
tion. It would be interesting to map data into this space as an experi-
ment. The uniformity of the space would have to be assessed empirically,

as would the success of isolating lightness levels.
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E.4.2 POLAR COORDINATES

It appears that the Landsat data space may be characteristically
radial. Intuitively it seems reasonable that spectral data vectors
with the same direction but different magnitude represent objects which
are somehow similar. Within the resolution of the sensor they repre-
sent identical spectral responses with different overall brightnesses.
That actually may mean nothing. We have no a priori reason to believe
that the two objects in question are really similar in some sense. The
modeling work of Reference [57] suggests that, in thé case of plant
canopies, breaking vectors into direction and magnitude is a meaningful
way of looking at them. It appears that vectors of the same direction
rvepresent a common stage of plant canopy development while vector magni-
tude varies with the underlying soil brightness. Figure E-6 shows model
results forlvarious degrees of plant cover and three soil brightnesses.
The radial pattern apparent in this figure is the reason for saying that

Landsat agricultural data may be characteristically radial.

We can make vector magnitude and direction the wvisually independent
features in our imagery in either of two ways. We could transform to
polar coordinates, Greenness Angle and Brightness Radius, and proceed
to map -these variables into a fundamentally rectangular color space,
such as L,C,D space. We could also map the data space linearly into a
color space which is fundamentally radial. The latter approach has been
pursued because we would like to use the L*,a*,b* Uniform Color Space
and it is a radial color space. Our scheme is to map the apparent data
origin {(not the zero vector) to the origin of color space (L* = -16,
a¥ = o, b* = 0) and align Brightness with L*. This preserves the radial
distinétion in the data, as indicated in Figlire E-7. The Greenness
direction can be rotated to any hue we find convenient. TIn the imagery
currently being processed we have tried placing Greenness along the

b* axis as well as in the direction of the green primary.
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APPENDTX F
SIGNATURE CHARACTERIZATION STUDIES

This appendix contains a broad description of a methoed for extract-
ing multitemporal, multisegment signatures from training data. As of
now, the method has not been evaluated. Section F.l outlines the method.
Section F.2 gives some theory on estimation with missing data which
might lend this methed some plausibility. Section F.3 gives the for-
mula, required by the method, for computing conditional expectations

when the underlying joint density is a wmixture density.

F.1 MULTITEMPORAL, MULTISEGMENT SIGNATURES

A method is ocutlined for extracting signatures from multitemporal,
multisegment training data. We suppose that for a fixed object class,
say wheat, there is data from T passes with T z2 20. For each of the
S segments, S =40, we have data for about four of the passes. If we
think of feature space as. being L, L &= 2, spectral features over zll
T passes, then the data is incomplete in that we observe about 4 x L
components out of a total of approximately p =1L - 2~ 40. We think
of each data vector as being of length L - T with real values for cer-
tain components and blanks for the others. The number of incomplete

data vectors from each ségment is approximately 50 (e.g., 50 wheat blobs).

Thus the data set may be characterized as follows: We have about
2000, incomplete data vectors of length 20L. The missing components are
approximately the same within each gegment, but may vary from segment
to segment. The number of missing components is about 80Z of the data

vector length.

We would llke to obtain a p-variate density function which charac-

terizes the set of the training data vectors. A reasonable form for the
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density is a comnvex mixture of p-variate Gaussian densities, i.e., a

density £ of the form

Hh
1
It~
[
H

r
where Ai = 0, Z Ai = 1, and fi are p-variate Gaussian densities; with
i=1

r, the li, and the parameters of the £, unknown. Rassbach et al [7]
have developed a procedure for doing this when the data vectors are com-—

plete. The computer program implementation is called CLASSY.

We describe an iterative procedure for extending CLASSY to the case
of incompletetdata vectors. A flow chart of the procedure is given in
Figure F-1. The first step is to fill in the missing data values. To
do this we use the method of profiles (see Section 4.4 and Appendix A).
Loosely speaking, this method fits a curve based on empirical data to
the observed data values and permits extrapolation and interpoclation.

The next step is to employ CLASSY on the completed data vectors to obtain
a siénature density function

.

£f=) aEs

Next is a decision as to whether to stop the iteration. The cri-
terion for stopping might be a fixed number of iterations or might be

based on the change in £ after successive iterations.

1f the iteration continues, the next step is to fill in the intom-
plete data vectors using the method of conditional expectation relative
to f. By that we mean the following. Let Z be a random variable having
density £. Let V be the random variable determined by a particular
(observed) combination of components of Z, and Y the random variable
determined by the remaining (not observed) components of Z. Then we

have the conditional expectation EY (v) of Y given V = v. Now for a

|v
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specific incomplete data vector z s let v, denote the vector of observed

components. Let the random variable V be associated with this set of
components and let the random variable Y be associated with the remain-
ing components. Then the missing components are filled in with the

values

EYIV(VO)'

It would be interesting to try this procedure on a small scale
using one spectral feature, say Greenness, and a Llimited number of

passes, say 10. The following remarks may be helpful:

1. Our concept is that the data vectors are actually blob means.

2. The signatures will be both wheat and non-wheat data sepa-

rately clustered.

3. There does not appear to be any conceptual difficulty in
incorporating collateral features into this signature extrac-

tion procedure.

4. The problem of estimation with incomplete data has been con-—
sidered by Boullion [3I] et al. They consider the case of a

sample from a multivariate Gaussian.

5. There is concern that the covariance matrix obtained after
the first step might be ill-conditioned. It may be necessary

to add a diagonal matrix to it to overcome this difficulty.

6. An excellent presentation of conditional expectation for
Gaussian distributions is in Anderson [58]; note especially

Theorem 2.5.1, p. 29.
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F.2 ESTIMATION WITH INCOMPLETE DATA

We supply here some background to lend plausibility to the procedure
described above. TLet X denote a data matrix of dimensions p x N with
the columns representing the data vectors. We suppose that some of the
entries of X are missing. For each missing entry we substitute a real
variable. TIf ¥ of the entries of X are missing, then we denote the vector

of variables representing them by

Thus X is a matrix valued function of the wvector x,

X = X(x).

Suppose that the columns of X are observations from a p-variate
Gaussian distribution with unknown mean vector M and unknown covariance

matrix M. We want to find the maximum likelihood estimate of the

triplet x,u,.M.

Let n(x) denote average column vector of X and let A = A(x) denote

the matrixz obtained from X by subtracting U(x) from each column of X. Set

MG = AGATG)
and let
[M(x) |

denote the determinant of the matrix M(x). Then the following theorem

may be proved by modifying the proof of Theorem 3.2.1 in Anderson [ ].
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Theorem 1: (x*,u*,M*) is a maximum likelihood estimate iff

i % is optimal for

min |M(x) | (F-1)
X

it p¥ = TE)

iii M = M&ED)

In order to describe an iterative procedure for optimizing (F-1),
we require some notation. Each column of X contains observed components
and missing (not observed) components. If the mean p and covariance
matrix M were known, we could fill in the missing components with their

conditional expectations given the values of the observed components.

If we do this for each column of X, we will have filled in all the
components of x. We call the values of x obtained via this process

the conditional expectation of x given the observed entries Xo of X

relative to 1 and M and denote it by

E[x|X_su,M]

For convenience we define g(x) by
g(x) = E[x|X_;uG),M()]

(9)

Consider the following iterative procedure. Choose x arbitrarily.

RGN ON

=2 = g

<3,

{n)

x° = g(x(n_l))
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It can be shown that

D™y 2 )|

with equality iff

SOOI G Y

If x(n) converges to x*, then
% %
x" = gx")

In fact, the limit of any convergent subsequence of the x(n) will be a

solution of the equation x = g(x}. If (X*,u*,M*) is a maximum Iikelihood

estimate, then
k _ — %
= gx®), wF=TEY, M =MEH

From these conclusions, we obtain the following theorem.

Theorem 2: If there is unique x* for which
x. = gx")
E o) % %y . - . . . (n)
then x",W(x"),M(x") is the unique maximum likelihood estimate and the x
in the iterative procedure will converge to x*.

The following question has not been answered: What condition does

X(x) have to satisfy to insure a unique solution to the equation x = g(x)?

F.3 COMPUTATION OF CONDITIONAL EXPECTATION

At each step in the iteration of the procedure of Section F.1, the
CLASSY stage provides an estimate of the signature demsity f which is a

convex mixture of Gaussian densities, i.e.,

161



"ZER!M‘ _

where Ai z 0, z Ai = 1, and the fi are Gaussian densities. We give here
i
the formula required for computing the conditional expectation of the

missing variables given the observed variables relative to f. Let

Z = g) be a random variable with density f (Y represents the nissing

components of a particular column of the data matrix and V represents

"the observed components), and let

. N
Zi “\v ) lgdign
i

be a random variable with density fi' We want to relate the conditional

“expectation’
E(Y|V = v) = h(v)
to the conditional expectations
E(Yi]Vi =v) = h ()
To this end, let

fva) = J f(y,v?dy

denote the marginal distribution of V and let

i

£, (v) 1
vi

A
A

n

denote the marginal distribution of Vi. Then

hev) = J y £G.¥) 40
fV(V)

But

£,(v) = ) "ifv‘i (v)

162



) ERIM

and
ny(y,V)dy = Zli [y £, (y,v)dy
vE, (y,v)dy
= z;\ £ (v) I_}_—
i vy fvi(V)
= Zj\ifvi(v)hi(v)
Let
A:LfV.(V)
N o=t
O )
) i Vi
Then

h(v) = Znihi(V)

Thus h(v) can be obtained from the hi(v) and the marginals fV v).
i
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APPENDIX G
SPRING WHEAT/BARLEY LABELER

G.1 BACKGROUND

The problem of separating spring wheat £rom other spring small
graing, of which barley if by far the most prevalent, has emerged as
one of the key problems in obtaining accurate estimates of spring

wheat production [ 3 ]. In response to that need, research was begun

at ERIM to devise a spring wheat/barley labeling technique. This work
resulted in a first generation machine labeler described in Section G.2
below and in Referemce 3. Evaluation of the deficiéncigs found in the
first generation led to an approach and methodology for a refined
labeler based upon a more sophisticated utilization of agronomic under-
standing and Landsat information content. Progress achieved in this

refinement is presented in subsequent sections of this Appendix.

G.2 TFIRST-GENERATION LABELER
G.2.1 DESCRIPTION

The machine technique assumes prior analyst-interpreter involve-
ment of two types: labeling of spring small grains targets and determi-
nation of suitability of the segment for the machine technique. A seg-
ment's suitability is determined by the number and timing of acquisi-
tions in the growing season for spring small grains, as will be des-—

cribed later.

Data passed to the machine are assumed to be normalized by a
series of preprocessing steps comprised of satellite calibration cor-
rection, cosine sun angle correction, flagging of bad data, clouds,

etc. [36], and haze correction [37].
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Once targets have been identified as spring small grains and ac-
quisition histories have been checked, the machine carries out the
the spring wheat/barley separation in two steps: estimation of crop

calendar shift and assignment of labels.

1. Estimation of Crop Calendar Shift: The first step in the

machine process involves a technique by which signal variability due
to differences in stage of development (as expressed in spectral appear-
ance) is minimized. This technique, described in Reference 3, also

allows more accurate selection of critical acquisitions for the label

aggignment step.

Crop calendar shift estimation utilizes a mathematical repre-
‘sentation (profile) of Tasseled-Cap Greenness development with a fixed
time axis. Data for a particular target are shifted along the time
axis until the best fit of data to the reference profile is obtained.
The fixed time axis is then used as the new time axis for the target
observations, and the difference between the original acquisition day
axis and this fixed axis is the estimated crop calendar shift. The
process requires that at least three acquisitions, 18 or more days
apart, be available in the course of the spring small grains develop-—

ment cycle (approximately 90 days in length).

]

‘2._ Label Agsignment: Those targets for which a ecrop calendar

shift were successfully estimated are passed on to the second phase of
the process——label assignment.: The labeling logic is designed to ex~
ploit observed differences in the temporal-spectral development of
spring wheat and barley in Tasseled-Cap Brightness—Greennesé space.
Figures G-1 and G-2 illustrate examples of spectral trajectories for

the two crops. As the crops green up, they move along a ''green arm"
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to some maximum Greenness. Then they typically loop back toward the
Greenness axis and show a reduction in Greenness accompanied by in-~
creasing Brightness. This movement away from the green arm corresponds
to the ripening of the crops. It is during the course of ripening, and
particularly around the dough stage of wheat development (around 11.2
on the modified Feekes scale), that barley tends to be found farther

from the green arm than spring wheat.

A reference line was defined which is perpendicular to the
observed path of the two crops away from the green arm, and the dis-
tance from this reference line is used to discriminate between the
two crops. Reference 3 gives further details. In érder to be
labeled, targets must have an acquisition in an 18-day range between

shifted days 186 and 203.

G.2.2 TEST RESULTS

The first generation machine labeler was tested on 28 LACIE blind
sites from the Northern Great Plains spanning two crop years (Phases 2
and 3). The results, described in detail previously [_3j, indicated
that the technique worked well in the area encompassing the -segments
used for develepment of the logic, but poorly in areas separated by
éome distance from those segments. This stratification is illustrated

in Figure G-3.

Two phenomena were consistently observed in the segments for which
poor results were obtained. First, the errors were always errors of
omission for spring wheat, i.e., most of the spring wheat targets were
mislabeled as baxley. In fact, both crops had distance measures sig-
nificantly greater than expected on any given day in the time period
of expected separability. Second, the segments all fell in areas

likely to experience drought conditions.
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As a result ‘of these tests, an effort was undertaken to revise the

labeler so as to increase its geographic range of effectiveness,

G.3 APPROACH TO REFINEMENT
G.3.1 PHILOSOPHY

Although the en?ities to which labels are assigned are picture
elements or groups of picture elements, the actual entities of interest
are the populations of plants whose spectral properties are represented
in the pixels. If any labeling technique is to be successful, it must
be the case that the primary influences on pixel spectral values are the
populations of plants themselves. When external effects such as sun
angle and haze are eliminated or minimized, we must assume that . bio-
logical factors are the main spectral drivers. Given this assumption,
it is clear that labeling techniques must be firmly grounded in bio-'
logical and physical phenomena, in the behavior of and influences on

the plant populations themselves,

G.3.2 STEPS

In order to insure that the results of the labeling technique
revision were biologically sound, a sequence of steps was followed,
starting with the plants themselves and working out towards the

SEnsor.

1. Develop Hypotheses: In order to provide an initial focus

for the research, a set of hypotheses must be formulated
to answer the question of interest. These represent not
a set of absclute constraints, but rather a set of ﬁoten—

tially useful directions to pursue.
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Identify Pertinent Physiological Relationships, Effects:

Using results of previous agronomic research, crop charac~

teristics or responses‘to given conditions which are likely
to affect spectral response can be identified. These char-—
acteristics and responses on the level of individual plants
or small groups of plants are the driving factors in deter-
mining the spectral characteristics of the plant population

as represented in the picture elements.

Model Canopy Reflectance: Utilization of canopy reflec-

tance models allows the spectral effects of relevant physio-
logical or envirommental changes to be predicted and studied.
Models allow a stricter control, and at the same time a
broader range of conditions than might be available in

field data.

Analyze Field Measurements: Physiological relationships and

their spectral effects can be verified through the use of
field reflectance data. These data provide the crucial link
between simulation and the real world, and also between the
ground and the satellite. Field data alsc aid in under-
standing the range of natural variability of spectral appear-

ance and influential biological and physical factors.

Analyze Landsat Data: Only after the previous steps have been

completed does satellite data enter into the process. At this
point, hypotheses have been supported or refuted at several
levels, and the results expected in the Landsat data are
already well understood. Thus, this step is a means of
confirming expectations rather than one of finding a way

to do the task at hand. The way has already been defined.

The Landsat data will only confirm its reliability or indi-
cate a need to return to an earlier stage in the process for

additional work.
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G.4 RESULTS OF REFINEMENT

G.4.1 HYPOTHESES

Based on the distinct geographic separation of "good" and "bad"
results (Figure G-3), and the correlation of "bad" results with high
drought-susceptibility areas, it was likely that moisture stress was
altering crop signatures and thereby causing spring wheat to look
like barley. The geographical separation could also suggest dif-
ferences in soil brightness. One of these factors, or a combination
of them, were thought likely to be responsible for the labeling prob-

lems encountered,

G.4.2 PHYSIOLOGICAT, RELATTONSHIPS AND EFFECTS

Since soil brightness per se has no physiological effect on the
plants, and associated soil properties would primarily be reflected
in moisture availability, only moisture stress effects were studied

in this stage of the labeler revision effort.

The clear indication from a fairly wide range of research related
to the impact of inadequate moisture on small graing is that effects
vary considerably as a function of the stage of crop development at
the time of stress initiation and the duration of the stress. In
areas such as those where poor labeler results were obtained, prolonged
moisture stress is likely. The effects of prolonged stress on small
grains plants may include reduction in plant height and number of
tillers per plant, thinner and smaller leaves which may roll or wilt,.
particularly in the middle portion of the day,.reduction in the number
of plants per acre, and increased rate of plant de&elopment. These
effects stem from two major factors: a need to reduce surface area
from which moisture may be lost through evapotranspiration and re-

duced survival rates for the plant populations.
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G.4.3 REFLECTANCE MODELING

Approach: Reflectance modeling results were obtained using a
three-layer version of the Suits' canopy reflectance model [21,59].
A set of "normal" parameters based in field measurements of wheat
plants were modified to simulate the physiological effects of moisture
stress. These modifications included changes in leaf orientation,
leaf coloxr, plant height and density, and relative depths and densi-
ties of canopy layers. Parameters were determined for seven stages
of development for both the normal and stressed conditions, as indi-
cated in Table G-1. Both canopies at all stages of development were
combined with three different soil spectra corresponding to dark,
medium, and bright soils [60]. Landsat band reflectances were computed
utilizing sensor spectral response funcrtions, and these reflectance

data were then transformed into a Tasseled-Cap-1like projection.

Results: The trends apparent in the model data indicate signifi-
cant and distinguishable effects -of moisture stress and soil Brightness
on canopy reflectance. As illustrated for normal canopies in Figures
G-4 and G-5, so0il Brightness exerts little if any significant influ-
ence on Greenness, but considerable influence, as expected, on Tasseled-
Cap Brightness. The effect on Brightness is most pronounced at the
tails of the profile, where canopy closure is at a minimum, resulting
in maximum soil exposure. Indeed, soil effects are all but eliminated

when canopy closure is at a maximum.

Figure G-6 illustrates for the normal canopy the distance measure
used in labeling, plotted over time. The descending portion coxrre—
sponds to a change from bare soil to vegetated soil, while the flat
middle portion corresponds to the greening-up of the crop (movement
along the green arm). The later ascending portion represents the
ripening of the crop, and includes the time peried in which spring

wheat and barley are most distinguishable (Section G.2.1).
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Stage #
1

2

TABLE G-1. STAGES OF DEVELOPMENT MODELED IN CANOPY
: REFLECTANCE ANALYSIS

Name
Emergent

Jointing

Boot

Post-head

Senescing

Ripe

Haxrvested

Approx.

Day of Yeaxr

131

158

167

185

194

203

221

175

Characteristics

Detectable Greenness

Stem elongation occurring,
considerable green vege-
tation

Just prior to heading,
increasing component of
mature green parts

Heads present, mature green
component dominant, lower
leaves dead, entire plant
not yet turning

Entire plant turning
yellow/brown

No green matter remaining,
plants dead

Stubble only
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Since the distance measure is a linear combination of Greenness
and Brightness, changes in those two components as a result of soil
brightness variation or any other factor will be reflected in changes
in the distance profile. Thus, soll brightness effects on the distance
measure are similar to those‘on Brightness, occurring primarily at the
times when canopy closure is low. The primary effects of bright soil
seem to be an increased slope in the non-level portions of the distance

profile and a positive offset of all distance values.

While Greemness is little affected by soil brightness, it is sig-
nificantly impacted by moisture stress, as illustrated in Figure G-7.
A considerable effect was also seen in Brightness, as demonstrated by
comparison of Figure G-8 to Figure G-5; but here the effect is primarily
an enhancement of soil influences resulting from reduced canopy closure.
As a result, the impact of moisture stress on Brightness camnot be pre-

dicted without knowledge of the soil brightness.

Again, the effect of moisture stress on the distance profile is

a combination of Greenness and Brightness effects, as illustrated by

comparison of Figure G-9 to Figure G-6. As in the Brightness profile,
soil brightness effects are enhanced with the more open stressed canopy.
The overall reduction in Greenness values is translated into a general
increase in the distance measure, and a reduction or near elimination
of the level middle portion of the profile. Of greétest probable sig-—
nificance to labeling is the fact that the ascending portion of the ‘
distance profile, the portion containing the time period of maximum
spring wheat/barley separability, comes sooner than it does for the

normal canopy.
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Summary: The model data thus suggest that both moisture stress

and sodil brightness exert detectable influences on canopy reflectance
and, perhaps most importantly, on the distance profile in the time
period of separability. Neither hypothesis can be rejected as a

possible cause for the experimental results obtained previously.

Finally, the two factors should be distinguishable and detectable
by separate processes. Moisture stregs should be expressed in a re-
duced Greemness peak, while soil brightness should be expressed in

early season Brightness wvalues.

G.4.4 FIELD MEASUREMENTS

In this study, field measurements were used primarily im a support
role. Field data were used to provide normal canopy inputs for the
reflectance model. In addition, on-site observations of field experi-
ments being conducted under.the direction of Dr. Ray Jackson at the
U.8., Water Conservation ﬁ;boratory, Phoenix, Arizona, served to substan—
tiate the physiological é%fects of moisture stress reported by agronomic
researchers. These on-site obserxrvations thus aided in the'understanding

of the physiological phenomena involved, and their spectral impacts.

G.4.5 LANDSAT DATA ANALYSIS

Data: The data used in verifying the expected impact of moisture

stress and soll brightness varliations and revising the labeler to
accommodate those impacts consisted of observations of small grains
targets from seven LACIE blind sites, a subset of the original test
set (see Section 1.2). Table G-2 provides additional Information on

the segments, and Figure G-10 shows their locations.
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TABLE G-2. SEGMENTS USED IN LANDSAT DATA ANALYSIS

Segment # Location
1498 Codington County, South Dakota
1515 Norman County, Minnesota
1640 Barnes County, North Dakota
1663 Richland County, North Dakota
1669 Perkins County, South Dakota
1800 McCook County, South Dakota
1929 Blaine County, Montana

184



¢81

'Y 1929

® 1609

FIGURE G-10.

SEGMENTS USED IN LANDSAT DATA ANALYSIS

i




D ERIM

Expected Results: Based on the previous steps in the fese%rch

process, the following relationships were expected to be observed in

the Landsat data.

Moisture stress of a prolonged nature should be detectable in a
reduced peak in the Greenness profile for small grains in a segment.
As a result of the impact of moisture stress on the distance profile,
the time period during which spring wheat and barley are distinguishable

should occur earlier than normal.

Soil brightness variations should be manifested in early season
Tasseled-Cap brightness values (i.e., before significant growth of
green vegetation has occurred). An increase in the slope of the dis-
tance profile during the time period of separability should also be

observed and as a result a more steeply-sloped decision line would be

expected. In addition, moisture stress and bright soils should interact
by enhancing the soil effects, resulting in higher distance values

during the time period of separability.

- Test Results: Two iterations of data analysis were carried out,

intended to provide a rough—cut revision of the original labeling logic,

foliowed by a more precise revision.

The first iteration utilized data from six segments. Crop calendar
shift was estiméted using a two-step refinement of the original tech-
nique. After‘a shift estimate was obtained using a standard profile,

a new profile was computed using all small grains pixzels (shifted) in
the segment. This segment~specific prof¥le was then used to refine
the first shift. While the difference between data shifted with the
segment—specific profile and data shifted with the standard profile

is far less dramatic than that between shifted and unshifted data, the
segment-specific profile shift did tend to produce smoother distribu-
tions over time. In addition, fitting a profile to segment data pro-

vided a means of obtaining a segment—level peak Greenmness estimate.
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The apparent time period for separability of wheat from barley

(using the Greennesé—Brightness distance) was determined through a
combination of quantitative and qualitative methods. Optimum linear
diseriminants were computed for each 3-day interval from peak Green-—
ness through a time at or near harvest. These results were then -com-—
bined with visual evaluation of the distance measure.plotted against
shifted day of year, and used to produce estimates of the day range of
separability. Optimum linear discriminants were again computed, this
time for the defined day range as well as for an 18-day interval com-

prising a subset or expansion of the defined range.

Figﬁres G-11 through G-14 illustrate the results of this first
iteration, and indicate support for the hypothesized relafionships.
Segments with low green peaks (1669 and 1929) have earlier day ranges
of seParability. These same segments also ﬁad very bright soil, and
this was reflected both in the starting distance value for the lineax

discriminant and the slope of the decision line.

Based on the sparse data available, a preliminary labeling logic
revision was devised, and tested on the six training segments. Table
G-3 illustrates the'labeling steps used, while Table G-4 and Figure G-15
show the results. Noteable in the results is the~fact that labeling
performance on problem segments was distinctly .improved, while labeling

performance on good segments was not degraded.

fhe second iteration of Landsat data analysis was intended to
bring in a significantly larger data base from which relationships
could be more precisely'defined. Data processing and availability
proﬁlems precluded this approach, however, and only one additional

segment was added.

Nevertheless, the data from the seven segments were reprocessed,
this time using the new profile model (Appendix A) .in the segment-

specific shifting procedure. In addition, linear estimates of the
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TABLE G-3. STEPS USED IN APPLICATION OF PRELIMINARY
LABELING LOGIC

Data Set: Small grains pixels (identified from
ground truth tapes). Data correction and
normalization, and Tasseled-Cap transfor-
mation applied.

Step Description
1 Divide segments into two bins based on estimated

peak Greemnness

2 Utilize linear regression estimate of soil
brightness/decision line slope relationship
to estimate decision line slope. Default
slope is .53 (if no soil brightness data
available)

3 Compute decision lines:

low peak bin -
starting day

172

- y=intercept 37.25 - slope % 170.1
(indicates standard ''pivot point"
from which slope can be calculated)

Il

high peak bin -
starting day

)

186
37.25 - slope % 191.1

y—-intercept

4 Assign labels

192
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TABLE G-4. . DETAILED LABELING RESULTS OF LANDSAT DATA ANALYSIS - 15% ITERATION

Original Labéling Optimum Linear Revised Labeling
" Procedure Discriminant Procedure (Prelim.)

Segment Ground Truth SPW/0SMG % Correct SPW/0SMG % Correct SPW/0SMG X Correct

1498 Spring Wheat 806/239  77.1 846/220  79.4 802/264  75.2
Barley 114/310  73.1 134/283  67.9 116/301  72.2

1515 Spring Wheat  2597/449  85.3 2805/551  83.6 2795/561  83.3
Barley 421/2033  82.8 737/2022  73.3 801/1958  71.0

1640 Spring Wheat  4593/971  82.5 4493/1077  80.7 4601/969  82.6
Barley 909/1363  60.0 770/1497  66.0 822/1445  63.7

1669 Spring Wheat 11/384 2.8 231/51 81.9 242/40 85.8
Barley 10/261  96.3 75/102  57.6 81/96 54.2

1800 Spring Wheat 41/34 54.7 55/20 73.3 44731 58.7
' Barley 133/871  86.8 315/679  68.3 278/716  72.0

1929 Spring Wheat 471346 0.3 . 678/312 68.5 662/328 66.9
Barley 1/545  99.8 147/232  61.2 139/240  63.3
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‘new model parameters were obtained for each of the small grains pixels

in the segments. (about 33000 total). These pixel-specific profiles
provided a means of eliminating pixels with distinctly non-small-grain-
like trajectories (ground truth diserepancies, etc;) and so resulted

in a purer data base of small grains observations. About 4000 pixels
were eliminated by fhis process. In addition, the pixel-specific para-
meter estimates made possible an analysis, not yet completed, of pixel

spectral behavior as a function of estimated Greenness peak.

As in the first iteration, day ranges of separability were defined
for good small grains pixels, using -quantitative and qualitative analysis
techniques, and optimum linear discriminants were computed in those

ranges and in corresponding 18-day intervals.

These decision lines are illustrated in Figure'G-l6, and show
much the same trends as did the first set. The particular trends of

interest are illustrated in Figures G-17 through G-19.

The one discrepancy between the two iterations involves the soiim
brightness/decision line slope relationship. While clear in the first
iteration, this relationship is not apparent in the second. Small
changes in slope had 1ittle impact on labeling accuracies in either
case, suégesting that this particular element of the labeling logic
is less iﬁportant than, for example, the time period in which sepa-
rability occufs. Nonetheless model results and our understanding of
the physical processes involved suggest that‘the,relationship should
be‘a factor, and further work aimed at more’ conclusively supporting

or rejecting the hypothesis is desirable.

G.4.6 PROCEDURAL SPECIFICATION OF REFINED LABELER

Although precise tuning of the labeling logic was mot possible
due to data problems, the procedural steps in the refined small grains

labeler have been defined, at least in a preliminary context. The
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functions resulting from analysis of a more extensive data set would
almost certainly vary from those here defined, but the forms of the
preliminary functions do have strong support in physical understanding.
Thus while the labeling logic as spécified may fail to do justice to
the concepts on which it is based, it does proyide a benchmark, and a

means by which the underlying concepts may be both understood and in-

corporated into test and evaluation exercises.

The refined labeling logic allows for three modifications to the
orientation of the decision line to accommodate moisture stress and
soll brightness effects. Of these three, two have been specified.

The third, modification of the decision line slope in respomnse to soil
brightness variations, could nat be supported with the available data.
Thus in this procedural specification, a standard slope of 0.61 is used.
This is the slope of the decision 1ine in the original labeler, aid
represents something of a median value for slopes computed in the

second iteration of Landsat data analysis.

The relationship between estimated peak Greenness and the start

of separability is defined as illustrated in Figure G-20.

The data points support but do not prove the validity of the des-
cribed function. There is, however,‘physical basis for the relation-
ship depicted. Above a Greenness peak representing the low end of
"normal™ moisture conditions one would expect to find crops of increasing
leaf area or, qualitatively, "lushness'", perhaps as a result of increasing
abundance of mdéisture. (up to the point at which the over—abundance of
moisture itéelf became stressful). It would not be expected, however,
that these crops would exhibit a pronounced lengthening of the growing
cycle, since climatic constraints quickly come into play. WNormal and
above-normal crops sﬁould devélop at the same rate, and so have the

same time period for separability.
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The impact of moisture conditions on start of separability is felt

at below-normal moisture levels where stress triggers an increase in
rate of development. This is reflected in the sloping portion of the
function. There must also, however, be some limit on how much develop-—
ment can be speeded up, or how much stress can be tolerated. This is
reflected in the vertical portion of the function at extremely low peak

values.

The relationship between soil brightness and the initial distance
value of the decision line is defined as shown in Figure G--21. Modeling
results indicated that this relationship only comes into play in stressed
(more open) canopies. A peak value of 52.5 is defined as being the
minimum peak of a normal canopy. For segments with a lower peak esti-

mate than 52.5, the function is utilized.

Again, support can be found both in the data and in physical under-
standing, but precise definition with the sparse data was not possible.
The-vertical portion of the function reflects the fact that some limit
is imposed on how small the distance value can become. Since 1a£el
assignment takes place after the crops have begun to move off the green
arm, they must be at a distance from the reference line greater than
that of the green arm itself. Even a very dark soil would not be
expected to shift the data past the green arm. The actual value of
the vertical portion (Distance = 33.0) is simply based on the apparent

clustering of the darker-soil segments around this value.

Given these functional relationships, the procedure for labeling

spring small grains is as follows:

1. Distinguish spring small grains from non—small grains by some

unspecified technique.
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2. If not already done, apply data normalization techniques
comprised of:
a. satellite calibration
b. cosine sun angle correction
-c. bad data, cloud, etc.‘detection (ERIM's -SCREEN)
d. haze correction (ERIM's spatially-varying XSTAR)

3. Carry out manual screening of segments:
a. Acquisition history requirements:
1) At least three acquisitions {(at least 18 days
apart) in the spring small grains growing

season {(typically May through July)

2) One acquisition around the time of turning

(typically mid-July)

b. Presence of unusual phenomena -~ clearly anomalous
conditions such as wide-spread abandonment, pre-

maturity harvesting, etc.

c. If acquisition history is inadequate or unusual
phenomena are observed, spring wheat/barley labeling

is not attempted.

4., Estimate crop calendar shift using the two-stage segment—

- specific technique:

a. Choose that shift which maximizes the cross-

correlation term:

2
2 2
g % 18

JF. . e)”

itr i

R:

T+

where Fi = reference profile function value

i

Gi data value

[

T shift wvalue
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b. Make a first estimate using a reference profile

of the form:

b ct2
F(t) = at e
where F(t) = Greenness - 25.%
. t = shifted day of year - 125.
a = 0.65163 '
b = 1.2957

¢ = ~-0.52415 x 107>

The profile is calculated for offset days 1
through 120. 1In addition, a 30-day tail is added
to the early side of the profile, with a constant

value equal to the value at offset day 1.

c. Make a second estimate using a profile of the form:

b (t-t )2
1 P
ae ;£ <t
F(t) = P
b, (t-t )2
2 D
ae s x>t
P
where TF(t) = Greenness - 25.*
t = ghifted day of year
tp = shifted day of peak = 160.
a,bl,b2 = parameters

The parameters a, bl’ and b2 are estimated for
each segment using linear regression on small-grain
blob means after the first shift has been applied;

note that

a + 25. = estimated peak Greenness

%

This parameter reflects the use of data that have been Tasseled-Cap
transformed and to which an offset of 32 counts has been added to
eliminate negative numbers.
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5. Compute segment-level mean Brightness in shifted days 110-120
for all available small grains pixels (this is soil Brightness

diagnostic).

6. Modify the decision line, based on estimated segment-level
peak Greenness and soil Brightness, in the manner specified
in Figures G-20 and G-21.
Default values are: -
a. Slope = (.61
b. Starting Day = 186

c. Starting Distance = 33.

7. Assign labels: barley if above line, wheat if below.
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APPENDIX H

DESCRIPTION OF DEVELOPMENT OF THE LANDSAT 3 TO LANDSAT 2
CAL.TBRATTON CORRECTION

In order to carry out analysis procedures on-Landsat data in such
2 way that the proceduresg act in a consistent manner regardiess of which
Landsat collects the data, a normalizing transformation must be carried
out so that the calibration of counts to received signal level is con-
sistent. At ERIM, work was previously completed and reported [38] for
adjusting the calibration of Landsat 1 and 2 data to a standard. The
standard was that calibration used for Landsat 2 segment data used with-
in LACTE during its first three years. This section discusses the work
recently completed to determime and test a similar normalizing transfor-

mation for Landsat 3 data.

The criterion used as a goal in developing the transformation was
that' the behavior of algorithms SCREEN and XSTAR [36, 37] on the resulting
transformed data must be equivalent to their behavior on Landsat 2 data.
For this to happen, the prdcessed_Landsat 3 data would need to exhibit
a stable location in spectral space for the overall pattern of scene
pixels (e.g., a stable Tasseled qap [12]), and the location of the pat-

tern would be the same as for Landsat 2 data,

H.1 DEVELOPMENT

"The figst step in developing the transform was to prepare a data
‘set consisting of acquisition pairs in which one of each pair is Landsat
2 data, and the other is Landsat 3 data over the same site, exactly nine
days earlier or later (since the satellite orbits are nine days apart,

and consistent position within a full frame was desired).
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The available data consisted of Landsat acquisitions, obtained from

Landsats 2 and 3Athroughout the 1978 spring wheat growing season, over

13 5x6-miles sites in the Northern U.S. Great Plains. From this base,

31 acquisition pairs were prepared. Care was taken to avoid acquisitions
with a significant amount of clouds or water, and to avoid pairs for

which the haze levels or scene content were extreme.

All acquisitions in the 31 pairs were processed using algorithms
SCREEN and PFEAT. SCREEN, which recognizes and flags cloud, shadow,
water, and unusual pixels, was applied to the Landsat 3 data even though
it was believed that the calibration was not optimum for SCREEN. This
was done since a visual screening eliminated acquisitions that had many
such pixels, and since SCREEN still succeeded in flagging some unwanted

points and false flagging presented no major difficulty.

Algorithm PFEAT processed the remaining unflagged pixels and ex-
tracted features used in subsequent analysis. The features consisted
of a "green arm mean' and a "scil arm mean", each of which contain four
components. These features, defined below, previously have been found
to be relatively stable within the ''Tasseled Cap" (the pattern of agri-
cultural pixels plotted in Landsat signal space), as long as the scene
contains crops at a variety of growth stages (even if the portion of
the scene at a given growth stage changes). To calculate these fea-
tures, one applies first the cosine sun angle correction, and next
the Tasseled Cap transformation. The features then are computed as
shown in Table H-1. Once the two feature vectors were extracted by
PFEAT, they were averaged td form a single scene diagnostic for each
acquisition. Independently with each Landsat band, a regression was
carried out of the scene diagnostic for Landsat 3 acquisition with the

diagnostic for the paired Landsat 2 acquisitions.
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Component
1

TABLE H-1l. FFATURES COMPUTED BY PFEAT

"3pil Arm Mean"

Mean Brightness for pixels
in soil window {(Greenness
between +10 and -10).

Fifth percentile of Green-
ness for all pixels.

Fifth percentile of Yellow
for all pixels.

Mean of Nonsuch for pixels
in soil window.

"Green Arm Mean"

Brightness value associated
with a point at fifth pex-
centile of D (= .68% Bright-
ness - .73% Greenness) and
mean of E (=.73% Brightness
+ .68% Greenness) for pixels
below fifth percentile of D.

Greenness value associated
with the above point.

Mean of Yellow for pixels

‘below fifth percentile of D.

Mean of Nonsuch for pixels
below fifth percentile of D.
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In examining the results of this initial regression, it was found
that the residuals of ten of the pairs were unusually large. These
pairs were excluded from the data set in preparing the final transfor-
mation. But reasons for the excessive residuals were sought. A scat-
ter plot of the average Tasseled-Cap Yellow component (which has been
shown [12] to be related to the haze level im the scene) indicated that
for at least half of the high-residual pairs, the haze level was not the
same, and therefore those pairs were measures as much of haze difference
as of calibration difference. Those pairs not explained by haze condi-
tion are suspected to have some other but still undetermined scene ef-
fects that caused confounding signal differences between acquisitions

in a pair.

The remaining 21 pairs were used to determine a final transformation.
Two models for the transformation were considered: the first was the
simple multiplicative and additive transformation in each band that had
be%n successfully used for other satellite calibration correction trans-—
formations; the second was pure multiplicative in each band. In examin-
ing the regression results, it was found that the additive constants were .
relatively small in the first model, and furthermore that there was no
important difference in the goodness of fit in any band, and so the

pure multiplicative model was accepted,

The transformation determined by this effort is given below:

[1.1371 0 0 0 0
0 1.1725 0 0 0
X! = x +
X =
0 0 1.2470 0 0
0 -0 0 1.1260 | 0|

+ - *
where x is the untransformed Landsat 3 signal vector

-
x” 1s the transformed signal vector.
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'The following three steps were taken to determine how well this

transform works.

First, corrected Landsat 3 acquisitions were processed using the
SCREEN algorithm. The resulting data was mapped and examined for incor-—
rect screening. .Bodies of water flagged by SCREEN were found to have
the same general size and shape as the same bodies of water flagged by
SCREEN in Landsat 2 acquisitions over the same site. Iﬁdications of
incorrect operation of SCREEN were sought, Including whether especially
light or dark fields had an increased tendency to be-flaéged on Landsat 3
data. It appeard, at least in the Northern U.S. Great Plains, that
SCREEN operated normally on Landsat 3 data transformed by the above

equation.

Second; Landsat 2 and corrected Landsat 3 acquisitions were processed
using SCREEN, and scatter plots ‘were made of pairs of Tasseled Cap com—
ponents. A subjective visual examination of this data indicated that
with the correction, the position of features within the Tasseled Cap
pattern (such as the "soil line") was relatively stable between the two

-satelldites.

And third, an objective examination of the.performance of XSTAR on
calibration corrected Landsat 3 data was carried out. Sevefal consecu-
tive'day Landsat 3 acquisition pairs were identified and processed
through calibration correction, SCREEN, X$$AR, aﬁd Tasseled Cap. As
indicated above, the data patterns looked right qualitatively. The aver-
age difference (RMS error) between data on consecutive days was computed-
on a pixel-by-pixel basis. Since these same measures were previously
used in the oripinal XSTAR evaluation [3], the expected fange was known.
The values computed fall within the previously established normal range,

indicating that XSTAR was working as well as it mormally does.

Given the abbve three indications, we feel that the transformation
has proven in its self reasonably well, at least in the region for which

Landsat 3 data was available in this study.
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APPENDTX I
DESCRIPTION OF TOLERANCE BLOCK STRATIFICATTON

This Appendix motivates and describes a study whose purpose was
to find improved statistical methods of spectral stratification in the
context of Procedure M, a system for estimating the acreage of an ag-—
ricultural crop, such as wheat, from digitized Landsat data [3].

The development of this procedure was stimulated and supported by
the Large Area Crop Inventory Experiment (LACIE). BResults are pre-—

sented in Section 5.2.

Procedure M as applied to wheat recognition stratifies spectral

data by:

1. Clustering the pixels into field-like groups called "quasi-

fields" that are homogeneous gspectrally and spatially.
2. Clustering the quasi~fields spectrally into strata.

Step 2, the clustering of quasi-fields into strata, is designed
to separate wheat from non-wheat strata and thereby achieve a sampling

efficiency.

The grouping of pixels into quasi-fields has been largely suc-
cessful. Figure I-1 is a histogram of the percent wheat in quasi-
field interiors. (The interiors comsist of pixels faced on all four
gides by pixels from the same quasi~field5. This histogram was com-
piled over all quasi~fields that have interiors from 12 Kansas seg-
ments, three acquisitions each. Most of the quasi-fields have less
than 10% or more than 90%Z wheat. Between 10%Z and 907 wheat, there is

only a small scattering of quasi-fields.
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FIGURE I-1. HISTOGRAM OF PERCENT WHEAT TN QUASI-FIELD
INTERIORS FOR 12 KANSAS SEGMENTS
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The picture would not be as pretty if we included edge pixels

(i.e., those that are not interior) in the quasi-fields but we would
not expect it to be. FEdge pixels are often crossed by field bounda-

ries and are the ones that suffer most from misregistration.

The corresponding histogram for strata (Figure I-2) shows some
mixing of wheat and non-wheat quasi-fields. To make this histogram
comparable to the other, the stratum count is weighted by the number
of quasi-fields in each stratum. Also for comparability, the histogram
is based on quasi-field interior ground truth. $So whatever fuzziness

is in this histogram is not caused by edge pixels.

A big group of non—wheat quasi-fields are put together into rela-
tively pure strata. The group is not as big as in the quasi-field
histogram, for when we compare the two figures, we see that some of
the 0 to 10 percent quasi-fields in the quasi-field histogram have
spilled over into the 10 to 20 and 20 to 30 percent bins in the stratum
histogram. Similariy, the stack of wheat quasi-fields is spread out

into the 80 to 90 and the 70 to 80 bins.

The stratification was carried out by our unsupervised clustering
algorithm BCLUST [ 9]. The question we are considering is whether

stratification can be improved by a better clustering algorithm.

One probiem with BCLUST is its tendency to produce a few large
clusters and many small ones. Figure I-3 shows a typical distribution
of pixels in a 40-cluster stratification. We try to sample in propor-
tion to the size of the strata because this is the best rule when the
stratum wheat proportions are unkmown. But in the BCLUST stratification,
the big strata are multiple sampled and many small strata are unsampled.
Leaving the small strata out would create a bias, so we combine the zero-
allocation strata into one wastebasket stratum and sample from it pro-
portional to size. (But we require at least one quasi-field in the
sample.) We camnnot expect that this wastebasket stratum will be pure,

so the sampling from it is inefficient.
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FIGURE I-2. HISTOGRAM OF PERCENT WHEAT TN SPECTRAL
STRATA FOR 12 KANSAS SEGMENTS
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FIGURE I-3. PIXEL DISTRiBUTION FOR BCLUST STRATA
SEGMENT 1165
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The large strata do not have sampling problems if they truly

separate wheat from non~wheat. But if they are so large that they
mix up the wheat and non-wheat quasi-fields then it would be better
to divide them further into small strata, more localized spectrally

and more homogeneous with respect to crop type.

A good clustering algorithm that produced more uniformly-sized

strata might improve on the stratification performance of BCLUST.

An apprbach to defining a clustering algorithm producing equal- .
sized clusters is the use of tolerance blocks. 'Tolerance blocks”
are equally-populated regions of spectral space congtructed as follows.
We decide on a small number of channels, tl""tk’ to generate the
blocks. We consider the first channel £ and order all the quasiT
fields according to this channel. We separate this ordered group of
quasi-fields into = equal-sized subgroups-—equal in the sense of
having approximately the same number of pixels (Figure I-4). Then
we consider each subgroup in turn, order it according to our next
channel t2’ and divide it dinto n2 smaller subgroups (Figure I-5).

We can now consider each one of the smaller subgroups, order it
according to our third channel tss and divide it into n, still- smaller
subgroups. We keep this up for all the generating channels specified.

The final subgroups are the tolerance blocks, By TpyeseDy in all.,

Not all channels need be included in this process. If the same
set of channelé is used in a different ordér, the tolerance blocks pro-
duced are not necessarily the same. (The results, however, were very
similar in our tests.) When channel t2 is used to divide the first set
of subgroups, the points of division will, in general, be different from
subgroup to subgroup (column to column in Figure I-5). Because we don't
cut any quasi—fieldé in half, but rather assign them to one subgroup or

another, the equality of the pixel size of the subgroups can only be

approximate.
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(The columns are equal-sized groups of quasi-fields sepa-
rated by cuts in Channel ty. The rectangles are equal-
sized groups of quasi-fields separated by cuts in Channel t5.)

FIGURE I-5. FIRST AND SECOND CUTS TO CREATE TOLERANCE BLOCKS
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The blocks are spectrally homogeneous with respect to the generating

channels. How homogeneous they are depends on the number of divisions
in each channel. But because the number of blocks is the product of
the number of divisions, the number of divisions in each channel must
be small if we are to end up with a reasconably small number of blocks.
So spectral homogeneity of tolerance blocks is limited in two ways.
Some channels are left out of the block construction and those that

are represented may have coarse divisions.

In order to achieve a greater spectral homogeneity, we defined a
second tolgrance block algorithm that uses all the spectral channels
in the clustering process. The toierance block means are used as seeds
distributed like a network throughout spectral space. Around the seeds,
cluéters are formed by ordinary spectral clustering using a distance
function. .Although a subset of channels may have been used to create
the blocks,, all channels are used to compute the block means and carry
out the clustering. We hoped to combine in one algorithm the virtues

of uniformly-sized clusters and'spectral homogeneity.

Howtweil the tolerance block algorithms have succeeded in equalizing
the clusters can be seen in Figure I-6, a comparison of distributions of
strata sizes produced by the three algorithms. BCLUST has a very uneven
distribution as we have seen. Many clusters have only a very small num-
ber of Rixeis. When the tolerance blocks-themselves are used as clis-—
ters, the distribution is very even. When the tolerance blocks are
used as 'seeds, the distribution is less even than for the blocks but

considerably more even than for BCLUST.

219



0z -

Number of Pixels

1600 -
1400 -
1200 -

1930 -
800 -

600 -
500 ~
20 ~

10 - 20 30 40 10 20 340 10

s
=]
A
(o]

FIGURE I-6. PIXEL DISTRIBUTIONS FOR THREE CLUSTERING ALGORITHMS
' SEGMENT 1165

ko

1 {




) ERiM

APPENDIX J
ERROR MODEL STUDIES

This appendix contains investigations of the effect of iabeling -error
on the error in the proportion estimate. Section J.l is an analysis of
the effect of labeling error on the bias of the estimate in a simplified
situatidn.' Séction J.2 presents a model for predicting bias and variance
of Procedure M stratified sampling estimates when there are labeling errors.
Classification errors are assumed constant in this model. 1In Section J.3,
the results are extended to the case of distributed labeling errors. In
both J.2 and J.3 the simplifying assumption is made that blobs are sampled
and estimates made without regard to the number of pixels in the blob.
This assumption permits a manageable'expression’for variance. Finally,
Section J.4 relates labeling error to achieving some level of performance,

as is exemplified by the 90/90 criterion.

J.1 TLABELING ERROR AND ESTIMATION BIAS: SIMPLE MODEL

A simple model is described and a corresponding estimation problem
analyzed which dramatizes the effect of labeling error on proportion esti-

mation.

We assume 'a’ random sample from an infinite population that contains
two classes of.objects, wheat and other. The proportion p of wheat is
-unknown. We don't observe the class to which the points in the sgmple
belong, but the points aré labeled (by analyst-interpreters or any other
method) and we observe the labels only. Tt is assumed that the labeling
process introduces error as follows. If a sample point is in class W
(wheat), o is fhe'probability that it is correctly labeled. TIf a point
is in class O (other), B is the probability it is imcorrectly labeled.
The only knowledge we have.about o is that it lies in some subinterval
of the unit interval, o

B, £ BB

15¢@ g’az; similarly B lies in some interval,

2° The problem is to estimate p.
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In formal terms, let
Xl, ceas XN

be N independent observations of a random variable X with

pa + (1-p)B

Pr(X=l)

Pr(X=O) 1 - Pr(X=l).

The parameters o, B, and p lie in the intexvals, a, £ a = Uy, Bl £ B s 82’

0 <pgzl. The problem is to estimate p.

Let
p = pa + (1-p)B
N
Then z Xi has a binomial distribution with parameters (N,p). If we knew p
1

exactly we could not determine p exactly. All we could say was that p
was in a certain range, this range depending upon the ranges of o and 8.
Thus we'have an identifiability problem and p is not estimable in that

an unbiased estimate of p does not exist.

Figure J-1 illustrates the range of p as a function of p for

0.65 £ o £ 0.90, 0.05 £ B £ 0.25. The range of p is 0.05 < p < 0.90.

Now let p be an estimate of p and let E(ﬁfp,a,B) denote the expected
value of p given p, o, and B. Then for fixed Py and all triplets p,o,B
for which Py = (a—R)ptB

E(p|p,e,R)

is constant. Thus for this set

max
0,B,p

Py = (a-B)p + B

E(D|p,a,B) - p
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p = (a-R)ptB
0.65 <
0.75

0.90
0.95

=]
A

A IIA
™
A

1.00

0.501

1.00

FIGURE J-1. RANGE OF p AS A FUNCTION OF p
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is at least half the range of p in this set. For Po = 0.50, the range

of p (indicated by the vertical segment in Figure J-1) is from approxi-

mately 0.38 to 0.75. This means that for any sample size and any esti-

mator the absolute value of the bias will be at least 0.18 for some p
on the wange 0.38 to 0.75. Nor will any sampling scheme improve the

situation; only additional prior information about o, B, and p will help.

J.2 A MODEL FOR PREDICTING THE BIAS AND VARIANCE OF PROCEDURE M
STRATIFIED SAMPLE ESTIMATES WHEN THERE ARE LABELING ERRORS
Procedure M clusters blobs into spectral strata in order to gain

the efficiency of stratified sampling in forming crop estimates. We

have measured the succesé of this clustering by comparing two variances:
the variance of the stratified sample estimate and that of the unstrati-
fied sample estimate. The biases are not considered in this evaluation
because they can be shown to be zero. The ratio of the two wariances is

a convenlent way [0 express the comparison; it provides a single number

to represent the performance of a particular cluétering algorithm ox

parameter setting.

Qur first expression for this "reduction of variance factor' [42]

was . (1-.)
n. p,(1-p,
i T4 i (I-1)

np (1-p)

where’

o, is the number of pixels in stratum 1,
n is the total number of Zni of pixels in the segment,
p. is the true proportion of wheat in stratum,’
i
p is the true proportion Enipi/n of wheat in the segment.
This expression is based on the assumptions that sampling from the strata

is binomial with replacement and that sample blobs are allocated to

strata in proportion to the number of pixels in each stratum.
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In the tolerance block study [40], the second assumption was aban—

doned as unrealistic, and an "m—sample reduction of variance factor"
was used. This ratio of variance is computed by allocating a sample
of size m as nearly as possible proportional to the size of the strata,
but subject to the necessity that the allocation be an integer. The

ratio turns out to. be

> n\2 p.(1-p.)
all strata i (—1-) = _x
= (3-2)
p{l-p)

pei
where a; is the number of sample blobs allocated to stratum i,

m 1is the size Zai of the sample.

This measure, too, suffers from the unrealistic assumption that
the blobs are sampled with replacement. The actual sampling technique
is unbiased [ 3] but with a-variance that is exceedingly difficult to
calculate. A model is necessary and it can be made more realistic by
sampling without replacement -— a model we should have used in the
tolerance block study. The simplifyigg assumption of the model is that
we are sampling blobs and making estimates without vegard to the number

of pixels in the blob.

The number of wheat blobs in the sample from stratum i then has the

hypergeometric distribution with variance

a;p, (i-p)) (—l—il) - _ (3-3)

where bi is the number of blobs in stratum i. The reduction of wvariance

() =52 6=
all strata i 7 :

p(l—p) (b-m)

factor becomes

3-4) -

where b is the total number Ebi of blobs in the segment.
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When we extend the model to include labeling error, we introduce
the possibility of bias. We therefore have two performance measures to
consider, bias and variance, and a ratio of variances is no longer

especially convenient.

A simple labeling error model, widely used at JSC and ERIM, is of

the following pattern:

The Probability When We Truly Have
of Choosing Wheat Other
Wheat o B :
Other - 1-o 1-g (3=3)

The probability that a blob £from stratum i will be labeled wheat is
q; = ap; + 8(l-p,) = (a-B)p, + B

This fact allows us to obtain the bias of the wheat estimate whether
the model or the Procedure M sampling technique is used. For complete-

ness, we present the derivation here.

The wheat estimate for stratum i is

where xj is the labeled percent wheat of blob j in the sample,

A. is the number of pixels in blob j if we use the Procedure M
sampling scheme,

A. is 1 if we use the model.

The exbected value of W is

IA, Ex,
N .

- - J-6)
IA Ex; = 4 - (
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The wheat eétimate for the segment is

In.w,
1

in,
i

It's expectation is

In g, gn [(a-Blp; + 8]

In. In,
.1 1
in.p,
_ i
= (o-B) o T 3
1
= (a-B)p + B

The bias is this expression minus p

= (a-B)p + B-p = (a-B-1)p +-B (-7)

If we suppose a model where o and R are different for different

strata, the bias is

Zni

The variance of the wheat estimate is obtained from the variances
of the stratum estimates. We approximate each stratum estimate by using
the hypergeometric model {sampling without replacement). We let W be
the number of true wheat blobs in the stratum sample and L, the number
of blobs labeled wheat. We are assuming that W is hypergecmetric and

therefore has mean a.p; and variance

bi—ai
2P (7P | § 7
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We obtain the variance of L from the general theorem
Var L = EVar(L|W) + Var E(L|W) (J-9)

To begin with, we will evaluate the first term EV&r(LlW). When W is given,

L is the sum of two independent random variables: the number of wheat
blobs labeled wheat and the number of non-wheat blobs labeled wheat.
The first is binomial (W,0), and the second binomial (ai—W,B). The

variance of the sum L. is the sum of the two variances

o (1-0)W + 8(1~B) (a W)
The expectation of this term with respect to W is

a(l»a)aipi + B(l—B)(ai—a;Pi)
= ai[a(l—a)pi + B(l—B)(l—Pi)]
After algebra, this expression can also be written

a,[8-6" + (0-8) (1-0-8)p, ]

The second term Var E(L|W), obtained as before by considering L as the sum

of two binomials,

Var[oW + B(ai—W)]

Var[ (c-8)W + Bai]
The constant term does not affect the variance and can be omitted. Hence,

Var E(LIW) Var(o-p)W = (m-S)ZVar W

9 bi-ai
2;(@=8)" p; (1-p,) b,-L

The variance.of L is the sum of the two terms. What we really want is the

variance of L/ai, the wheat estimate for stratum i based on the labeled blobs.
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b,-1
a Z = t

1 a.
1

2 : 2 b;-a, }
Vay 1, BBt (a—B)(l-a—B)pi + (a-B) pi(l—pi)

(J-10)

. b.-a.
(a-a)p, + (8-87) (1-p,) + (a-8)’p, (1-p,) (;_f)

_ A
) a

i .

The wvariance of the segment estimate is the sum of these stratum variances
. 2 R b .

weighted by (ni/n) . The variance of the unstratified segment estimate

is a single term analogous to {(J-10) with p, b and m replacing P4 bi’

~and a,.. If ¢ and B vary from stratum to stratum, then o and Bi replace

o and B in (J-10).

Incidentally, theorem (J-9) may be used to verify that the variance

of the with-replacement estimate is
[(a—B)p, — 2B(c-B)p, + (m—B)2 P 4 8—82]/a | (J-11)
> i i i i

The result 'can be checked directly because the number L of blobs- labeled
wheat now hés a binomial (ai,qi) distribution with variance aiqi(l—qi)

which agrees with (J-11) when 9 is expanded.

J.3 BIAS AND VARTANCE WHEN LABELING ERRORS ARE DISTRIBUTED

In Section J.2, above, a model was developed for the bias and
variance of the Procedure M estimate under labeling error. The result

was that the expected value of the wheat estimate is

(a=B)p + B, . (I-12)

the bias is

(a=B-1)p + B, S (-13)

229



YERIM

and the wvariance is

(a-az)p + (8—82) (1-p) + (a—S)zp(l-P) (%:—i

3 (I-14)
where
o = probability of labeling a blob wheat given that it is wheat
8 = probability of iabeling a blob wheat given that it is not wheat
p = proporition of wheat in a stratum or segment
b = number of blobs in the stratum or segment
a = number of blobs in the sample from stratum or segment

The model was based on the assumption of a fixed o and B. Here we

apply the model when o and B have a known distribution.

Let Ex, EB, var o and var B denote the expected value of a and
of B and the variance of & and of B, respectively. Let cov{a,B) be the
covariance of a and B. Ea2 can either be thought of as the expectation
of az or as var o + (Eu)z, and similarly for EBZ. EaB isithe expectation

of aB or equivalently, cov{(a,B) + (Ea){(EB).

To get the bias of the wheat estimate ﬁ we use the conditional

expectation formula

bias = E(p~p) = Eop E[(p-p)|e,B] (J-15)

Now E[(ﬁ—p)[a,ﬁ} is given by (J-13). Hence

I

E(p-p) = E[(o-6-1)p + B]

(Ea—-ER-1)p + EB (J-16)

To get the variance of p we use the conditional variance formula

var ﬁ = varaBEKﬁIa,B) + Eof var (ﬁlaﬁ) (J-17)
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We will evaluate (J-17) one term at a time. The first term is, using

(J—12) )

varan(a—B)pv+ Rl

= var [po + (1-p)B]

p2 var o + (l—p)2 var B-+ 2p(l-p) cov (d,B) (J-18)

The second term is, using (J-14),

-2y + (8-82) 1-p) + (-8 2p(1-p) (222

a

" EaB

(Ea—'Eaz)p + (EB-EBZ)(l—P) + (Euz—ZEaB+E82)p(l—p) (%__:% .
= (J-19)

a

The variance of ﬁ is_ the sum of (J-18) and (J-19).

Independence of o and B were not assumed because there is generally
a relationship between Type I and Type II errors in detection problems.
If the system is adjusted to make o as large as possible, then B is also

increased, and if we try to reduce B, we may end up reducing oa.

The detection componént in the wheat estimate is a human being who
may be sensitive to pressures to estimate a reasonable propértion of
wheat for the segment. It may be, therefore, that if his « is low, he
may tilt his judgment to increase B to make the overail'proportion accept-
able. Thus, an inverse, rather than a direct relationship between o and B

could apply in this case.

The distribution of o aﬁd B will be difficult to estimate with con-

- fidence. -If we guess the distribution, then the expected blas becomes

a simple sum (J-16) of our guesses. ‘ The distribution depends on the preju-
_dices and pressures affecting the Al's which are difficult to quantify.

It would vary comsiderably from AT to AL and from situation to situation.
Our experiment on three AI's would be a very small sample from which to

estimate this distribution.
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J.4 LABELING ERROR IMPACT ON THE 90/90 CRITERION

It was shown in Sections J.2 and J.3 that the bias of the Procedure M
target crop proportion estimate in the presence of labeling error is given

by the expression

b =ap + B(1l-p) - p (J-20)

where b is the bias,
p is the true proportion of the target crop,
¢ is the accuracy of labeling that target,

and B is the inaccuracy in labeling other (errors of commission).
Equation (J-20) can be written
b= (ac—B-L)p + B (7-21)

expressing the bias b as a linear function of p in the parameters o and

B, with slope a-$-1 and y intercept B.

Figure J~2 illustrates the parametric equations over the dynamic

range of o, B, and p:

0.0 < ¢ < 1.0
0.0 < B £ IL.0
0.0 < p £ 1.0

Note that an unbiased estimate of p can be achievgd by compensating
errors of omission and commission relative to the prbportion P- In the
extreme, errors of total commission (B=1.0) result in an unbiased esti-
mate only if p=1.0, that is, no other exists in the population; and
errors of total omission (¢=0.0) result in unbiased estimates only if ,
p=0.0, that is, no target crop exists in the population. Similérly, a
commission error of .5 and omission error-of .5 is unbiased only if the

target crop is 50% of the population.

It was shown in Section J.1 that without knowledge of the range

of ¢ and B and their distribution .over that range, that an unbiased
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-1.0 ~ aso

FIGURE J-2. BIAS AS A LINEAR FUNCTION-OF TARGET CROP
PROPORTION IN PARAMETERS o AND B
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estimate of p does not exist. Here we will examine what limited know-
ledge of these parameters gained by experience implies with respect to

the 90/90 criterion.

Evaluations of analyst labeling error in LACIE suggest that the

following are reasonable ranges of o and B in labeling wheat:

.6 < o< .8

.0< g <.l

Though little is known about the distribution of error over this range,
for purpose of illustration we will assume the error can be described by

a normal distribution or other definable function.

Figure J-3 illustrates the range of hias for a uniformly distributed
and bounded error. The maximum positive bias in this range. is .1 when
a=.8 and B=.1l, occurring when p=.0. The maximum negative bias occurs
when p=1.0, o=.6, and B=.0. If p excéeds .33, an unbiaéed estimate is
not achieved in this range of o and 8. 1In addition, the target crop .is
always underestimated. Note that if{a sys?em is biased, one way’to im—

prove overall accuracy is by introducing compensating ervor in labeling.
Further, restricting p to the typical range

2 <p < .5

we find the bias limited to the range illustrated in Figure J-4. Note

that an overestimate will occur only-if p < .33 and errors of commission
approach maximum, while errors of omission appreoach minimum. Associated
with the points (A,B,C,D) are the relative error rates (.2, —-.4, -.1, -.4).
If the stated range of performance were the absolute range, the 90/90

criteria would never be achieved for p=.S5.

Over the stated range, 90% accuracy is achieved wherever

bl
=~ < .1 J-22
lP ( )
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FIGURE J-3. RANGE OF BIAS FOR
6 << .8

6<p=.1
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FIGURE J-4. RANGE OF BIAS
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Using Equation (J-21), 90% is achieved where:

(@=B=.9)p + B > 0 and (a-p-1.1)p + B < O (J-23)

From (J-22), this is necessarily contained in the range
-.lp<b < .lp .. (J-24)

Figure J-5 illustrates Equation J-24 (the dashed lines) and Equa-
tion J-23 (the shaded area). If one associates a distribution of labeling
error the efficiency of the system can be computed. Tor example, if the
specified range totally bounded a uniform distribution of error, then
the efficiency of achieving 907 accﬁracy over the range .2 < p < .5 is
the ratio of the area shaded in Figure J-5 to the area shaded in Figure
J-4. At a given p, the efficiency is the ratio of the respective ranges
of b at that p in the two figures. For example, the efficiency of
achieving 90% accuracy at p=.5 is 0%Z. On the other hand, if the dis—
tribution of labeling error were normally distributed, the efficiency
of this system at a 90% accuracy level is the area under the normal curve
at a p within the rangé specified by Equation J~24. This is illustrated

in Figure J-6.
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FIGURE J-5. RANGE OF 90% ACCURACY FOR

6 <a<.8
.0<B=<.1
.2<pzx.5
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—_—_-a——-
— } .9 accuracy

FIGURE J-6. MEETING 90/90 WHEN
b <a< .8
0 < g< .1
.2 < p<. .6
o{u,B) = (.1,.05)
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APPENDIX K

INFCRMATION THEORETIC MEASURES OF AGRICULTURAL
INVENTORY SYSTEM PERFORMANCE

Multispectral remote sensing systems are being used for agricultural
inventory applications. Their overall performance usually is measured
by their accuracy in estimating crop acreages (or crop proportions in
sample areas) or by their marginal probability of correct classification
of known scene elements. Intermediate stages of some area estimation
‘procedures involve stratification and sampling of subareas (notably,

LACIE's Procedure 1 and ERIM's Procedure M).

The variance reduction factor is currently used to measure the per-
formance of such stratification procedures. This appendix introduces and
develops alternative performance measures or figures of merit that should
be of value, particularly when several classes or crops are involved.®
These new measures are based on information theory concepts. Application
of information theory concepts to other and more general aspects of area

estimation problems may also prove productive and is briefly discussed.

K.l INFORMATION THEORY CONCEPTS

Consider the simple communication channel portrayed in Figure K-1.
The input has m possible states and the output n possible states; in
general, m # n. A transfer of information occurs when the output state
is influenced by the input state. The transfer is perfect when the out-
put always has a 1:1 correspondence with the input or, in other words,
when there is no uncertainty about the input given a particular wvalue
of the oﬁtput. Noise in the communication channel can introduce errors

or uncertainty about the input state for any given output state.

L

These concepts were first reported at the June 1979 Quarterly Review
under this contract, as documented in ERIM 132400-24-P, Analysis of
Scanner Data for Crop Inventories, Environmental Research Tnstitute
of Michigan, Ann Arbor, MI, August 1979.
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- Tnput, X
i=1,...,m
m = number of
possible

input states

FIGURE K-1.

Communication
Channel

Qutput, yj

I

Noise
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K.1.1 SELF -INFORMATION

To quantify information transfer processes, information theorists,
beginning with Claude Shannon, have defined an information measure. The
self information or information associated with the known occurrence of

a state x, which occurs with probability P(xi), is defined to be:

I(x,) = log, (ﬁiﬂ = -log, P(x,) o ®D

where the base "a" usually equals two, in which case the units of infor-

mation are in "bits".* This quantity also may be interpreted as the
uncertainty in x, or the {(a priori) information needed to make_xi cer—
tain. The more rare the state, the greater is the information associated
with its occurrence. A useful characteristic of this measure is that

it is additive, e.g., the total information represented by twe inde-

. pendent events is the sum of their self-information values.

K.1.2 ENTROPY

Next, let us consider the average amount of information associated
with repeated observations of the event. This quantity is called the
entropy or average uncertainty of x; it is the average (a priori) infor-
mation needed to make x certain. The entropy over the ensemble X = {xi}
is

i=1l i=1

T - m 1
H{X) = - z P(Xi) log P(Xi) = Z P(Xi) log (‘P—(X—)') (K-2)
5 .

If the probabilities'P(xi) are equal, then P(xi) = ﬁjand H is a maximum:

H = log m (K-3)
max i

" .
If the base a = 10, the units of information are in "hartleys' and,
if a = e, the units are in "nats".
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The minimum value for H is zero and results when a single state occurs

with probability one, i.e., there-is no uncertainty about the input state.

Since the value of entropy depends on the probability distribution
of the input states, a relative measure is sometimes defined. The rela-
tive entropy is noxmalized by the maximum entropy possible for the given

number of input states, i.e.,

H, = (R=4)

K.1.3 JOINT INFORMATION

The information content of the joint occurrence of two events depends

on their joint probability of occurrence, P(xi,yj):
I&fyf==49gP&ﬂyﬁ

But, since

P(x;,y,) = Pxp) Blyglxp) (k-5a)
= Py Blxgly) (K=5b)

we have

10x;,y,) = -loglP(x,) P(yjlxi)]

I(xi,yj) = -log P(Xi) -log P(yjlxi)
Thus,

I(xi,yj) = I(x,) + I(yjlxi). (K~6a)
Similarly,

LGri,yg) = T4,) + 16y ly ). (~6b)
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K.1.4 INFORMATION EXCHANGE .

If X and yj are independent, then

P(yjlxi)' B(y;)

and

Il

I )" XK, I' .;'..
giUiﬂg B

ITXi,Yj) = I(Xi) + I(yj)

This is the maximum value of I(Xi,yj). Howevef, from the standpoint of
a communication channel it represents no information transfer from input

to output.

Maximal information transfer occurs when the input X, and output yj

are perfectly correlated, i.e., when

P(yjlxi) =1
P(xilyj) =1
and
giving

Let us then define I , the next exchange or transfer of information

through the channel, to be:

_In(xi’yj) Max{I(xi,yj)} - I(xi,yj)

or

I Gpayy) J]Ej(xi) +10,) - 16,y (K=7)
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Other expressions can be obtained by substituting Equations K-6b and K-6a

into Equation K~7:

L Gesyy) = Th) - TGyl (k-8a)

Iyy) - 10, |x,) (K-8b)

From Equation K-8a we see that the joint occurrence provides all the
information asscciated with X5 less that lost due to confusion or the
a posteriori uncertainty about which x was sent given that a particular y
‘was received. Again, if X, and yj are perfectly correlated, then
In(xi,yj) = I(Xi) and the net information exchanged then is the entire
input information. At the other extreme, 1f yj is independent of Xgs
then In(xi,yj) = 0, the output bears no relationship to the input, and

the net exchange is zero.

By utilizing Equation K-8a and the definition of self information,

we obtain the following:

In(xi,yj) = log P(xilyj) - log P(xi) (K-9)
and
PGy |y,)
In (Kisyj) = 108 P(Xi) (K—lO)

K.1.5 MUTUAL INFORMATION

The definition for entropy H(X) in Equation K-2 is the expected value

of the self information I(xi). Similarly, we can define the mutual infor-

mation to be the expected net information or average information exchanged:

I(X;Y) = E{I (xi,yj)} (K-11)
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Thus,
m n P(Xil?.)
IV = ) ) Px;,y,) log ) (R-12)
i=]1 j:l J i
. Other forms are, patterned after Equation X-10,
I(X;Y) = H(X) + H(Y) - H(X,Y) (XK-13)
énd, patterned after Equation K-8,
I(X;Y) = H(X) - HE|Y) _
((X;¥) = H{Y) - H(Y[X) (K-14)

The interrelationships between the quantities in Equations K-13 and K-14
are diagrammed in Figure K-2. If we consider x; to be the input and yj

the output of the. communications channel in Figufe K~1, then:

I(X;Y) dis the average information exchanged or the mutual

informstion,

H(X) is the)entropy or average self information of the

input, also referred to as the a priocri entropy,

H(XlY) is the equivocation or average loss of information
about the input given the output of the noisy
communications channel, also referred to as the
a posteriorl entropy or average uncertainty about

the input given the output,

H(Y|X) is the average error in the output information

given the input, and

H(X,Y) 4i& the total entropy or average information -

" associated with the channel.

-

The maximum possible value of I(X;Y) is called the channel capacity, C.
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Average
{Self) Information
Content of Input
BE(X)

Equivocation
or Average
Information Loss
HX|Y)

Average

(Self) Information
Content of Output

Average
Transmitted
Information

or

Mutual
Information
I(X:Y)

Average Error
in Output
HY|X)

e R

FIGURE K-2.

H(X,Y)

DTAGRAMMATIC REPRESENTATION.OF AVERAGE INFORMATION

RELATIONSHIPS FOR TWO VARIABLES
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The relationships discussed herein assume that selection of any
given input state is not influenced by any previous .state selection,
i.e., that the source does not possess memory. If this is not true,

more involved relationships apply.

K.2 LINKING INFORMATION THEORY CONCEPTS TO AREA ESTIMATION SYSTEMS

EMPLOYING REMOTELY SENSED DATA

Let us begin by adapting the communications channel concept of
Figure K-1 to elements of systems that employ and extract information
from remotely sensed data for use in area estimation. To do so, inter-
pret the communications channel itself as consisting of the information
extraction and processing operations which are conducted to derive or
estimate various characteristics of the observed scenes. For any desired
output quantity, there are appropriate input characteristics and process-
ing operations, as shown in Figure K—3.. The desired output may vary,
from a single crop proportion estimate over a worldwide production area
or subunit, on one hand,'to a detailed pixel-by-pixel or hectare-hy-.
hectare_map of crop production in selected agricultural areas on the

other hand.

The underlying idea proposed here is to use information theory
approaches to measure system performance by finding the appropriate
pair of input-output. quantities and considering the intermediate proc-
essing to be a communications channel. The less closely the derived

_output matches the input characteristic being estimated, the "noisier™
is the processing channel. Information theory provides quantitative
measures of this degradation or fallure of the estimation system to

duplicate the true input information.

Sections X.3 and K.4 discuss the problem of measuring the perform-
ance of a stratification procedure, whether it be the spatial-spectral
stratification performed by the BLOB algorithm, the spectral stratifica-

tion performed by BCLUST, or the classifier stratification and adjustment
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FIGURE K-3, COMMUNICATIONS-CHANNEL VIEW OF INFORMATION EXTRACTION
AND AREA ESTIMATION SYSTEMS USING REMOTELY SENSED DATA
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performed in Procedure 1. 1In order to compute information theoretic
quantities, it is necessary to substitute stratum proportions for state

probabilities in the formulas.

As a digression to indicate relative magnitudes of information
quantities, let us consider a 5x6-mile LACIE segment which contains
22,932 Landsat pixels. In principle, each pixei could have a unique
spectral vector and represent a unique scene class. 1In that case, the

maximum entropy would be:

H = log, (22,932) = 14.485 bits/pixel

At the other extreme, if the segment's pixels were either wheat or non-

wheat, the maximum entropy would be:

Hmax = 10g2 (2) = 1 bit/pixel

Between these extremes, we have roughly 1000 quasi-fields per segment,

giving

Hmax = log2 (1024) = 10 bits/pixel

and 32 to 128 spectral strata, yielding

Hmax = log2 (128) = 7 bits/pixel
and -
H o« = 108, (32) = 5 bits/pixel

K.3 .DERIVATION QF A FIGURE OF MERIT FOR STRATIFICATION

Consider the problem of evaluating the performance of the BLOB
algorithm in delineating quasi-fields in the image data. The output
characteristic here is the resultant grouping or stratification of

pixels into quasi-fields. The input characteristic is the true labeling
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of the pixels in "ground-truth" data associated with each pixel. Ideal-

1y, one would want pure or single-class quasi-fields to be defined. The
extent to which the stratification algorithm achieves this purity is
reflected in the mutual information of the above-described input and

cutput.

As was shown in the preceding section, the mutual information
I(X;Y) depends on the average self information or entropy H(X) of the
input. This entropy will véry from scene to scene and segment to segment.
Mutual information may be the appropriate measure for multi-segment or
multi-area analyses. For other purposes, such as within segment compari-
son of processing techniques, however, normalization may be desirable.
Therefore, the following figure of merit is defined:*

COIEY) H(x|v) '
Mx*?@‘;)—-l'—H(JXT (k-15)

H(XlY) measures the average. loss of information about X in passing through

the system,

If the stratification gives no information about the classes being
observed, i.e., there is a total information loss, then H(XIY) = H(X)
and MX = 0. On the other hand, if X is determinable exactly from the
stratification Y, there is no transmission loss and no remaining uncer-—
tainty so H(X|Y) = 0 and MX = 1. Thus, one interpretation of MX is as
the transmittance factor for input information through the processing

system.

In expanded form, the figure of merit is:

n m

I P T PGxlyy) loglRlxy|y))]

e ‘e J 173

J—l J i=1 (K—'lﬁ)

m
“izl B(x;) log[P(x)]

My =1 -

% . :
Figures of merit based on other normalization factors are discussed

in Section K.4.
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A two-class version of Equation K-16 is helpful for many of our

current studies. For convenience, it is expressed here in terms of the

wheat and nonwheat classes:

n n,
i :
) N ) I:ij log py +pg log Pﬁ]

MX -1 - J=1 1 J J (8~17)
. PW log PW + Bﬁ log BW
where
n.j = number .of pixels in Stratum j,
N = total number of pixels being considered,
Py = proportion of wheat in .Stratum j, .
J -
Py = proportion of nonwheat in Stratum j,
3 -
PW = overall proportion of Wheat,'
and
Pﬁ' = overall‘proportioﬁ of - nonwheat.

Calculation of the figure of merit MX was incorporated into one
of the programs used to evaluate the two-class performance of the BLOB
élgorithm in our Fall 1978 test of Procedure M [ 3]. Table K-1 lists
results obtained for 27 sSegments, along with the corresp&nding variance
reduction factors and average blob purity percentages. Values are

included separately for full big blobs and for their Interior pixels.

Figure K-4 presents a scatter diagram of variance reduction factor
vs. figure of merit wvalues for blob interiors. Note the high degree of

correlation between them, except for a few outliers. These outliers are
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TABLE K-1. RESULTS OBTAINED IN 1978 TEST OF PROCEDURE M

FULL 'BIG" BLOBS BLOB INTERIORS

0, te 2. 3, q, S. [ 7.
CASES SEGHENT RV, FULL FOH,FULL  PUR,FULL RV, INT FOM_INT  PUR,INT
1 1104,0 + 30800 .73060 97,210 Li0100 . 30900 98,250
2 1498,0 33300 .063200 90,270 13000 PA3200 95,270
3 T 1512,0 37004 .58100 R, 710 12000 LB8500 96,000
u £9135,0 21500 «15700 90,140 22000 -t 97900 99,370
5 1515,0 27900 269300 90,770 54000 =1 L,94500 97,620
b 1520,0 «39600 W&0100 91,090 13700 LBHL0Y 46,110
7 1602.0 47300 49400 83,720 18800 80800 43.920-
8 1606,0 35200 618600 88 6890 .10700 285700 96,110
9 16140 .53300 «3RBNO 51,230 «25300 71600 91,070
10 1625,0 .57A00 LA0600 83,820 32100 76600 92,990
i1 1633.0 .25100 69800 91,660 - +76000 =1 ,91200 97,190
12 1637,0 34100 Lé06N0 89,270 10200 88600 96,410
13 toa0,0 35600 L3BB00 A7.550 .11400 +B8400 95,980
iu ' les52,0 «53600 L1000 80,450 35300 L62000 85,390
15 1662,0 ] 39100 55900 86,310 100 . 85000 Qu,410
16 1663,0 £22700 73200 91,920 226000 «f  ,96B00 98,170
1/ 1669,0 .51%00 «54300 92,590 88200 77500 95,720
18 ie8l,0 .28500 67100 9n,9t0 71000 ~1 ,90900 97,170
19 1699,0 27700 2 6B500 93,640 82000 =1 90300 7,640
20 LEDO,0 L3T100 .SRUO O RG,Q70 10900 JB5600 95,410
21 1803,0 50100 60700 96,5680 38900 L FIROO qa:qao
22 1865,0 ,52700 Lab700 90,010 33300 68900 93,950
23 1811,0  .34906n + 75800 Q7,930 11500 82500 98,720
24 1899,0 28400 L69700 91,290 LAU3¢00 =t L,95800 98,409
25 1913,0 43900 40700 92,150 20600 78300 96,700
26 _1e27,0 L29600 +65500 91,240 99000 =1 LB7700 96,600
27 1929,0 T L 74260 23900 67,760 42000 +59600 82.310

Notes: RV = Reduction of Variance Factor
FOM = Figure of Merit, My
PUR = Average Purity (Percent)
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segments with low proportions of spring small grain, in which case the
entropy-based figure of merit appears to give more comsistent results.

Comparable correlations with average blob purity also were observed.

K.4 ADDITIONAL STRATIFICATION PERFORMANCE MEASURES

In stratification, the true class associated with each output
stratum is not of importamce; only the stratum purity is of concern.
For example, whenever all members of stratum yj are of the same input

class, P(Xilyj) is unity for one of the i's, say i = I, giving
log P(xllyj) = log (1) = 0, so H(xllyj) = 0 irrespective of the wvalue
* of P(xi,yj). For each other i # I, P(xi,yj) = ( and H(xi|yj) = 0, so

H(X[yj) = Z H(xi|yj) = 0. Thus with pure strata, H(XIY), the equivoca-
i

tion or average expected loss of information, is zero. As a result,
Mk is a maximum, MX = 1, because the integrity of the input classes has
been preserved by the stratification procedure. There is, however, one

important characteristic that is mnot measured by MX.

The unmeasured characteristic is the number of strata defined at
the output. As noted above, when all strata are pure, H(X]Y) is zero
and MX = 1; this is irrespective of the number or size of the strata.
An extreme case would be if each scene element or pixel were assigned
to a unique stratum and each and every pixel were pure, i.e., belonged
to only one of the input classes; here again MX would be unity, an

undesirable value for a performance measure in thig situationm,

The information content (self information) of the output is
measured by the output entropy H(Y) which does depend on the numbher
of output strata. This suggests a normalization by H(Y) instead of

H(X), giving rise to:

_I(%Y) O H(Y - HEIR) _ . BEX
Y= He T TE® =1 -y (K-18)
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Parts (a) and (b) of Figuré K-5 illustrate the relationships between

quantities used to define the figures of merit MX and MY. Referring
to the diagrams in Figure K-5, it is'obvious.that MY (as well as the
other figures of merit) has a maximum value of unity and a minimum

value of zero. To bettér understand the maximum of MY’ consider the

following version:

_HEX) - HE|D
M, = 50 (K-19)

H(X)
i H(Y) °
This quantity is less than unity, except when H(Y) = H(X), i.e., when

If all output strata are pure, H(XIY) = 0, resulting in MY =

these pure output strata exactly match the input classes in number and
size. The minimum value, MY = 0, results when the. output Y is inde-

pendent of the input X and H(Y]X) = H(Y) (See Equation (K-18)).

Welghted-sum normélization factors were suggested as possibilities
(See Figure K-5(d)), arising out of a concern that MY might impart too
severe a penalty on a system, as a function of the number of output
strata produced. Figure K-6 illustrates with solid lines the rela-
tionships for two input classes of equal size and 2" output classes of
équal size. A pronounced decrease in the MY curve 1s also present as
the average purity of output strata decreases, as shown for 95% and 90%
purity strata. Since MX reﬁains constant at the value for two output
strata, division by a weighted sum of H(X) and H(Y) would decrease the
rate of falloff from that shown in Figure K-6. However, a suitable

* criterion for selecting the weighting factor w has not yet been found.

The final normalization factor considered herein is H(X,Y):

CIY) | HE) - HE(D

MX,Y THE,Y)  HQEY) + HE|D) {K-20a)
_H@Y) - HE(X) (®e20)

MX,Y T HEX) + H(Y[X)
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I(X;Y)

(a) INEUT ENTROFY —> M, = 1}%&)& -1 - H}(I}({x[';_’)

_HE[X)
H{Y)

_I(GY) | HEX) - H(x|Y)
T HE,Y) T H(Y) + H(X[Y)

(c) TOTAL ENTROPY ==> M o
*

[NO DIAGRAM]

T(X:¥)
wHX) + (I-w)H()

(d) WEIGHTED SUM OF ENTROPIES —=p My . =
3 L3

FTIGURE K-53. ILLUSTRATION OF VARIOUS NORMALIZATION FACTORS
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FIGURE K-6. COMPARTSON OF INFORMATION THEORETIC FIGURES OF MERIT
FOR STRATTFICATIONS OF TWO EQUALLY LIKELY INPUT CLASSES
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or

_ L(XsY)
Yy vy = H® + HE|D)

(K~202)

An appealing feature of this figure of merit is the symmetry exhibited by
Equations K-20a and ¥~20b. Upon comparing Equation K-20a to Equation K-19,
one also sees that MX,Y dec?eases more rapidly with increasing output
entropy than does MY’ whenever H(X|Y) # 0; see dashed lines in Figure K-6.
Both numerator and denominator are affected by the information loss. When
H(XIY) = 0 and there is no information loss, MX,Y =-%%§% = MY and prior

comments apply.

Another insight into this last figure of merit is facilitated by
Equation K-20c. The denominator represents the sum of two terms, the
entropy or self information of the input and the error associated with
the output stratification, i.e., the uncertainty beyond that associated
with X. This is the total entropy of the processing channel and equals

the input entropy only when the exrror is zero.

The relationships in Equation K-20 also have implications for sam-
pling requirements to identify or determine which input class(es) should
be associated with each output stratum, e.g., for proportion estimatiom.
If the strata were pure and the label determination perfect, only one
sample per stratum would be required. The amount of information (in bits)
acquired from each sample would differ, however, according to the size of
its stratum, but summed together they would represent éhe output entropy
H(Y). Yet as can be seen in Equation K-20a, there is an additional term
paired with H(Y) in the denominator, i.e., H(X[Y) which is the equivoca-
tion or average expected loss of informatiomn. H(XlY) reflecits the dmpurity
of the output strata. One way to recover this lost information would be
by additional sampling so that proportional labels could be assigned to
some strata. H(X|Y) would appear to represent the needed information
content of additional samples, but relationships between entropy and sam-

pling have not yet been established.
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To summarize this section, it appears that a figure of merit for

evaluating the performance of stratifiers should include the output
entropy ;n the normalization factor so as to penalize a stratifier with
too many strata. Several candidates were discussed, with MX,Y’ which
normalizes by the total entropy, having several desirable features. Test-
ing-and evaluation should be conducted to make a choice. - Also, relation-

ships between sampling and information measures need study and development.

K.5 SUMMARY AND DISCUSSTON

The concept of relating information theory concepts ;o-evaluation
of area estimation systems employing processed remotely sensed data has
been developed and presented. New figures of merit have been defined
for comparing the relative’ performances of various stratification,

clustering, and classification operations.

One figure of merit Mﬁ measures the transmittance of scene informa-
tion by the processing system to the user. ZExample use in Blob per-
formance evaluation was presented, with preliminary indications of more
consistency than the variance reduction factor —- more analysis 1is re-

+

quired to be definitive.

The approach may be even more appropriate for the evaluation of
spectral stratification techniques, since spatial entities (and, thereuv
fore, the input entropy, H(X)) will remain constant from technique to
technique. However, use of the Mk’Yifigure of merit would be advantageous’

since it would penalize a stratifier with a large number of strata.

Information theory measures may well not be the complete answer,
but they appear to have potential. Therefore, it is recommended that
their u&ility in measuring system and component performance be investi-
gated and evaluated as supplements to current measures, such as variance
reduction factor, proportion bias, and probability of correct classifica-
tion. The figures of merit defined here provides a starting point; addi-
tional uses or measures may result from amalysis of their use, advantages,

and disadvantages.
) 261



) ERiM

-APPENDIX L
DESCRIPTION OF DATA BASE FOR SMALL GRAINS

The purpose of this section is to extend the data base discussion
begun in Section 7, and specifically to present the segments selected,
to describe the processing algorithms used, and to indicate the form
of the data. Much of the discussion of Section 7 is repeated teo make

this appendix self-contained.

The data base consists of 67, 5x6-mi segments located through—‘
out the United States Great Plains during the 1976 and 1977 winter and
spring wheat growing seasons. Each segment consists of data from all
available useable acquisitions (average 8) of Landsat 1 and Landsat 2,
merged together with wall-to-wall ground truth inventory data supplied
by USDA and prepared by JSC/LEC. Important pixel-by-pixel information
generated during processing, such as cloud/water/shadow identifications

or bleb numbers, were retained with each segment.

In ordexr teo suppeort the variety of tasks depending om this data
base, segments were selected after initial screening into two cate-
gories, A and B. The principal differences between the two categories
were in the segment selection procedures and the state ro which the seg-
ments were processed. For some applications it is gppropriate to use
Category A segments for development and training, and Category B segments

for test and evaluation.

The segment selection procedures used were as follows. First the
171 segments available to us were screened to eliminate those whose
acquisition history, ground truth quality, and data quality are inade—
quate. When carried out, 107 segments remained for possible selection.
Next, Category B segments were selected by randomly picking a quota (1/3)

of segments within each APU® and each year, subject to the constraint

* Agrophysical Unit, as used within LACIE.

263

wng A INTENTICGHALY B



Emm

that at least one segment is selected from each APU. Since there is
data from two growing seasons, for which different conditions pre-
vailed, the APU's were considered distinct from one growing season
'to the next when establishing this random draw. By this procedure,
38 segments were selected as a uniform draw that tended to cover the

variability of the region in a carefully drawn statistical sample.

The remaining segments were considered in picking Category A seg-
ments. Stricter minimum limits on acquisition history and data quality
were observed, so that selected segments were well suited for develop-
ment work. However, the selections were more qualitative, taking into
account desire for more acquisitions versus desire for a nice spread
to cover variability. Ewven though selecting Category A segments first
would have resulted in more and nicer segments, it was necessary to
select them second in order to maintain the statistical integrity of

the Category B sample.

The segments selected as described asbove are presented in Tables

I-1 and I—-2. Location, strata, and other information is include as well.

A set of flow diagrams that summarized the processing carried out
on each segment is given in Figure 1-1. Cacegory B segments are processed
using all steps except SUPERE, STRIP and COMPRS. A one-paragraph des-

cription of each processing step and related comments is given below.

CONVRT performs a reformatting of Accuracy Assessment 1-channel
ground truth data in 2x3 subpixel form into standard pixel form with

7 channels (summary code + 6 subpixel codes for each pixel).

MERGE reads ground truth data and several single-acquisition

Landsat files and writes a single file containing merged data.

SCREEN flags data as clouds, water, shadows, wild, etc, if not
within a predefined envelope for agricultural data. One channel is

added for each acquisition.
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TABLE 1L-1. CATEGORY A SITES IN THE SMALL GRAI&S DATA BASE

Number of

Site State County . APU Phagse Latitude Longitude  Acquisitions
1005  CO Cheynne 10 ITT 38.49 102.20 9
1035 XS Ford ) II 37.44 99.58 14
1041  Ks Meade ’ 8 1T 37.19 100.16 10
1059  TX Ochiltree 4 IIT  36.15 100.52 77
1099 €O Baca .9 III 37.25 102.18 © 10
1158  KS Washington 12 11 39.47  97.06 7
1175 XS Sedgwick 7. III 37.46 97.32 6
1178 XS Bourbon 7 IT 37.43 . 94.59 7
1506  CO . Sedgwich 10 111 40.51 102.31 11
1512 MN Clag 15 II1 47.01 96.22 5
1523 MN Cokkin 20 ITT  46.31 96.25

1566  NB Kimball 15 TTT 41.02 103.43 10
1586  NB Perkins 103 1II 40.46 101.20 13
1606  ND Ward ‘ 19 IIT - 48.16 101.22 4
1619 WD Grand Forks 20 ITI 48,04 97.30 6
1637 ND Stutsman . 21 1T 47.15 99.19 6
1640 ND Barnes 19 I1T 46.55 97.51 9
1642  ND Cass 20 11 46. 44 97.34 9
1645 WD Traill 20 IT 47.33 96.56 9
1648 ND Recoman 19 I1I ‘ 46.04 103.006 5
1652  ND Stark 20 III 46.56 102.50 . 5
1662 WD Ransom 19  II 46.24 98.02 9
1681 8D - Roberts 21 ITI 45.32 96.49 8
1807 SD ‘Bonhomme 18 IIT 4£3.03 97.57 6 .
1852  KS Lane 1 IT 38.30 100.26 12
1857  KS Gramt 9  II 37.41 101.08 15
1860  KS Hodgeman 11 iL 38.08 99,42 v 13
1865 KS Stevens 14 1L 37.12 101.09 11
1887 XS Russel 11 I 39.07 98.55 7
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TABLE 1-2. CATEGORY B SITES IN THE SMALL GRAINS DATA BASE

Number of

Site  State County APU Phase Latitude Longitude Acquisitions
1000 co Logan 10 ITT 40.34 102.54 13
1008 co Kit Carson 10 11T 39.33 102,19 5
1049  OK Texas 9 III 36.46 101.20

1060 TX Sherman 9 1TI 36.22 101.41

1102 MT Yellowstone 104 ITY 45,57 108.20

1154  KS Mitchell 12 II 39.25 98.00 10
1163 KS Coffey 8 it 38.15 95.38 5
1165 KS Lina - 14 1T 38.10 94.53 12
1167 XS Shawnee |14 I1 39.04 95.43 6
1169 Xs Commanche 60 I1 37.00 99.16 6
1179 KS Butler 7 I1 37.35 97.00 4
1181 KS Cowley 7 II 37.17 96.51 4
1242 0K Canadian 7 111 35.27 98.50 )
1355 oK Beaver 7 IITL 36.35 100.00 7
1489 SD Walworth 19 111 45,29 99.42 3
1498 SD Codington 16 11T 44 .57 97.02 8
1513 MN Kittson 15 ITI 48.52 97.06 4
1521 MN Grant 20 IIT 46.05 96.01 5
1560 NB Banner 10 ITI 41.29 104.00 10
1568 NB Sheridan 15 IIT 42,21 102.41 7
1576 NB Lancaster 14 11T 40.52 96.50 7
1602 ND Mountain 21 1TY 48.21 102,25 6
1614 ND Pierce 19 iT 48.31 100.10 5
1618 ND Grand Forks 20 IT 47 .44 97.32 10
1661 ND McIntosh 21 IT - 46.16 99.45 6
1663 ND Richland 20 ITI 46.23 96.44 11
1675 5D McPherson 21 III 45,56 99.13 . 5
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TABLE 1-2. CATEGORY B SITES IN THE SMALL GRAINS DATA BASE (Cont'd)

Number of

Site State County APU Phase Latitude  Longitude Acquisitions
1677 SD Spinks 19 IIT  45.04 98.06 7
1699 SD Hyde 16 III 44,28 99.27 . 10
1739 MT Teton 104 IIT 47.45  111.30 10
1800 SD Milook 19 IIT 43.41 97.24 7
1851  "KS Graham 9 II 39.33 99.57 11
1861 KS Kearny 9 il 38,12 101.25 13
1886 KS Rush 8 iT - 38.30 99.20 9
1891 kS Reno 1z IT 37.58 98.25 13
1913 ND Hettinger 21 111 46,33 102,47 7
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FIGURE L-l. FLOW OF PROCESSING CARRIED OUT FOR EACH SEGMENT (Cont'd)
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PFEAT calculates features (haze diagnostics) in support of a spa-—

tially varying XSTAR algorithm.

XSTAR carries out a spatially varying haze correction on each
acquisition. It also applies sun angle (cosine) and satellite cali-

bration corrections to the data.

TASCAP performs a linear transformation on,the data that for each
acquisition replaces the four Landsat bands with four Tasseled Cap

-~

features.

FLDS15 modifies ground truth codes referring to special fields,
when necessary, so that they reflect the correct ground truth class

of the fields.

SUPERR, described in Appendix D, was used to identify quasi-fields
that are spectrally homogeneous and spatially contiguous field patterns

that obey existing ground truth boundaries.

STRIP identifies pixels on quasi-field edges. A pixel is flagged

as edge if any of its four strong neighbors belong to a different blob..

COMPRS computes and outputs spectral and spatial mean values for
each quasi-field, as a compressed data set. This compressed data set
can be used economically for development tasks that require many passes

through the data.

For each segment, two output data products are made part of the

data base. These are pixel data and compressed da?a (field means).
Category B segments are not processed through BLOB or COMPRS, and do

not have compressed data available. For these segments, the final pixel
data used in the data base is that resulting from XSTAR and TASCAP. It
is in the same form as pixel data for Category A segments, except that

channels reserved for BLOB and STRIP results are zeroed.
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The pixel data for a segment consists of 22,932 pixels organized

into 117 scan lines. It contains (16+5n) channels, where n is the
number of Landsat acquisitions processed for the segment. The channel
assignments, detailed in Table 1L-3, were designed to allow a variable
number of acquisitions vet provide comsistent locations for most

channels.

Due to the number of processing steps that transform the pixel
data, it was necessary to avoid the possibility that significance
error would creep in when numerical values are converted to integer
form between steps. Thus, pixel values for some channels are maintained
in' floating point form, both during processing and when stored in an

external format.

For this reason, and because the largest number of channels we
used for one data set is 91, the data was stored in an ERIM-defined
format, rather than in a more widely known format such as UNIVERSAL.

The name of the format used for pikel data is OHALF.

The second data product used in the data base is compressed data
consisting of blob means produced by routine COMPRS. This product con-
sists of one record for each bleb, containing the channels described in
Table 1-4. The channel values within eacﬁ record are stored in 4-byte

binary floating point form.
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" Channel

2-7

§-9

10
11

12-16
17
18
19
20

(13+41)
thru
(L6+41)

(16+4n+i)

TABLE 1L-3. CHANNEL ASSIGNMENTS FOR PIXEL DATA USED

IN THE SMALL GRAINS DATA BASE

Explanation

Ground truth summary code (zero or equal to unanimous

. subpixel codes)

Subpixel ground truth codes in the order: upper-left,
middie-left, lower-left, upper-right, middle-right,
lower-right)

Blob number (is 256* chan 8 + chan 9)

Blob ground truth code (or zero if ground truth is
ambiguous or unknown)

StriE-channel (L if pixel is on edge of blob,
0 otherwise)

Reserved for future processing results

Tasseled Cap Brightness component, acquisition 1

Tasseled Cap Greenness component, acquisition 1
Tasseled Cap Yellowstuff cbmponent, acquisition 1

Tasseled Cap Nonesuch component, acquisition 1

Tasseled Cap components for acquisition i in the
order given above for i=]1.

Screen channel for acquisition i, given that there
are n acquisitions. Zero means pixel is good in
acquisition i.
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TABLE 1.-4. CHANNEL ASSIGNMENTS FOR COMPRESSED (FIELD MEAN)
DATA USED IN THE SMALL GRAINS DATA BASE

Channel

ok

9
10

11-(104n)

(114n)- (10+2n)

Explanation

Segment number
A unique job identifier
Blob number

Blob type. If 1.0, blob has interior pixels.
If 2.0, blob has only edge pixels.

Total number of pixels in blob

Number of interior pixels

Number of pixels used to form the mean (same as
Channel 5 if blob has only edge pixels; same as
Channel 6 if blecb has some interior pixels)

Blob ground truth code

Midrange of line number coordinates for this blob

Midrange of point number coordinates

Acquisition date given as number of days since
31 December

Spectral mean vector

N 5
Same for all blobs
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APPENDIX M
NONPARAMETRIC CROP PROPORTION ESTIMATION

bover and Hart [61] proved an asymptotic property of the nearest
neighbor decision rule " which raises the question of how this non-
. parametric clagsification technique can be extended‘to a nonparametric
crop proportion estimation technique. This section explores relation-—
ships between classification and proportion estimation and proposes a

proportion estimation procedure based on nearest neighbor classification.

Tn order to reduce notation, we will restrict the‘diécussion to
the two-class préblem. The reader can think of them as wheat and non-
wheat. Generalization to the multiclass problem offers no conceptual -
difficulty. Accordingly, let us assume a population with a multivariate

mixture density

£{x) = pfl(X) + (l—-p)fo(Jc)

It is convenient to think of the two-dimensional case. Further, we assume

a training sample of N points Xya%yse e e s Ky together with the true classi-

fication Ai of the point Xi’ l1<4izg¥N; i.e.,
AL
i

A,
i

1 if Xi ig from class 1

Il

0 if X, is frqm class O

The Nearest Weighbor Classifier

The nearest neigbbor (NN) rule classifies a sample point x as being
from class 1 if the pcint closest (Buclidean distance) . to x from among
the x5 is in class 1, and is classified as from class 0, otherwise.

'The probability of migsclassification for this classification scheme is

denoted by RN’ and R is defined by

R = 1im RN

N->ea
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. Now suppose p, fl, and f0 were known. Then one could use the
optimum Bayes classification rule to minimize the probability of mis-
%
classification. Let this probability be denoted by R . The Cover and

Hart result is that under very general conditions

* * *
B <R<2R (1R)

(Of course the left side inequality is an immediate consequence of the

optimality of the Bayes classifier.)

Classifiers and Proportion Estimation

We digress here to discuss the relationship between classification
and proportion estimation. Let us suppose we have a classifier such that
the probability of correctly classifying a point in class 1 is & and the
probability of correctly classifying a2 point in class 0 is §. If o and &
are known, then the minimum variance unbiased estimate 5 of the propor-
tion p is

u
~ _p - (1-8)
P o+6-1 —
where 3 denotes the relative number of sample points classified into

class 1.

If o and & are unknown, then, as discussed in Section 6, no
unbiased estimate of p exists and the mean square error of any estimate
of p is bounded below, independently of sample size, with the bound
depending on the ranges assumed for o and 8. Thus the extension of a
classifier intg a gatisfactory proportion estimator depends upon obtaining

adequate information about ¢ and §.

hs

¥ .
. The reader will recognize the NASA (Feiveson) bias correction
actor. ’
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Extension of -Nearest Neighbor Classifier to froportion Estimator .

In order to obtain estimates & and § of the conditional proba-
bilities of correct classifications o and § of the nearest neighbor
classifier, we proceed as follows. For each i, 1 £2 i £ N, let B, = 1
if the point in the sequence KysHgseers Xy g5 Kyggoeees¥ closest to x;

N
is in class 1, and let ”i = () otherwise. Then set

a = (?'ﬁ)/zl: Ay
AL 21
and
3 =[le (1- ui)] /Zi,‘(l - A,)
A;=0 A,=0

It appears reasonable to expect & and § to converge (in some sense) to

o and § with increasing N.

Now let VyoVgsr-esTy be g sample of data points without true class
information available, We refer to the xi‘s as the training data, and
the yi’s as the test data. We would like to estimate p using both the
training data and the test data. Let vj, 1£ 4 £ ¥, denote the class
assigned to yj by the nearest neighbor rule. For estimating p, we have
the information centained in the Xy with their true classificatiqns Ai’
the Yj with thelr assigned classifications vj, and the estimated conditional

probabilities & and § of correct classification of the NN classifier.
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If we had the training points x

1 with true class given, test
points yj, a classifier of the test points, and conditicnal proba-
bilities o and 6§ of the classifier, then we could readily write down

the likelihood for the M+N observations
(Xl’ll) 3 (XZ’}LZ) P (XN’}\N); (yl:"’l)_: (stvz) e (YMva)

assuming all these observations were independent. The nearest neighbor
classifier introduces dependencies between the (yj,ﬁj)'s and the Cxi,li)'s.
Furthermore, we only have estimates of o and § available. Nevertheless,
it seems reasonable to proceed to estimate p by using the maximum likeli-
hood procedure for independent observations and exact wvalues of o and §

instead of estimates.

Accordingly, we define the estimate p of p to be the value of p which

maximizes the function L{p) given by

N, Ng . . LT . M,
L) =p (A-p) [(e+s-1L)p+ (1-8)] [6§ - @+ 8- Ll
where
N
N, = 2. A
1 =1 i
N
N0=_Z (1—Ai)=N—N1-
l=
%
M = v
1 j=1 j
M
M0=_Z (l—vj)=M-Ml



D ERIM

Now the function -

1nL(p) = N, lnp + Nyln(l-p) + Mjlo[e+s-1)p + (1-6)] + M ln[8-(ots-1)p]

is concave (its second derivative with respect to p is negative) so that
there is a unique maximum. A4lso, concavity facilitates numerical compu-—

tation of p.

As of now we do not know if ﬁ possesses any useful properties. For

example, what about mean-square error? Let

2 L opn 22
I~ = E{p-p)

b
MY
Let p denote the minimum variance unbiased estimate of p based only on
the ¥ training data points and their associated classes. Let Var, denote

N
the variance of ;. Ifa+§ # 1, is it rrue that

] 2
1im VN’M 1 7
N arN
—KN

where lim denotes limit superilor, and K is any fixed integer. In words:

Does the test data help to estimate p in the large sample case?

We now consider the form the analog of the Cover and Hart result
" for p mlght take. Suppose fl(x) and fo(x) are knovn. Then one can, A
in principle, obtain the maximum likelihood estimate of p bdsed on the

obsexvations (xi,ui) and the yj. Let this estimate be denoted by p and

let EZN M be the mean-square error of this estimate. An analog of the
H]
Cover and Hart resuli would specify an upper bound for
E2
lim ZN’M
e E N.M
M=KN *
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APPENDIX N
STATIC STRATIFIED SAMPLING ALLOCATION TECHNIQUES

N.1 INTRODUGCTION, ASSUMPTIONS, AND NOTATTON

In this Appendix, we assume that there are M strata which are
defined only by spectral/temporal variables. Thus all segments would
have comparable strata. We also assume that the sampling targets are
the same size and the ratio of the sample size to the population size
is so small that we can approximate the sampling model with the model

which samples with replacement.

We denote the strata by §; for i=l,...,M; the size of the strata
by N., ®

;2 No= & N;, and the strata sample sizes by n.

i=1

N.2 SAMPLE ALLOCATION WHEN LABELS ARE CORRECT AND EACH STRATUM HAS
A TRIOR PISTRIBUTION FOR Pi

#

The Bayesian view of stratified sampling with prior distributions
for the strata proportions Pi is as followd: The proportion of wheat
in stratum i is a random variable with an unknown distribution Tt;.
Mother nature randomly chooses Pi according to 13i then chooses X;
according to a binomial (ni, Pi) distribution, where n; is the sample
size of stratum i.

We assume that we have a prior distribution for each stratum.
These priocrs were obtained from past observations or from the experi-
menter's intuition. The priors and outcomes of an experiment yield
posterior distributions. If the priors are "good" then the posterior
becomes the best estimate of the unknown Ti's. The posterior contains
all information from the prior and the experimental data. We wish to
use the priors to allocate samples to the strata in order to minimize

expected variance of the segment proportion estimate,
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gize is n4, then the distribution of X4, the number of wheat labels in
the sample, has density

'ﬂi 5 Ili""'X

If the proportion of wheat labels in stratum i is P; and the sample

*»=0,1,2,...,mn,, O E_Pi <1
If the density of the i£h prior is gi(P), then the density of the joint
distribution is

h, (X,P) = £ (X[P)g, ()
and the density of the marginal distribution of X; is

1
£, = j;h(x,P)dP

The posterior distribution of Pi given Xi=xi is

hi(x;é.)
g; ® %) = £, ()

Often for convenience, it is assumed that

v

This is called a beta (r,s) demsity. In this case gi(P]xi) is a
+ ~x.) d ity.

beta (r Xi’ s+n1 xl) ensity

) We estimate the segment proportion

M N, X,
p=_5 22
i=1 N n,
« i

And the expected variance of P is
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v ] . 2 1 )
J— M ' N- -
V@ = I (ﬁ-l) fo 3%1—” g (B)aP

Thus, the allocation which minimizes V(P) with a fixed total sample

_-size is to choose n, proportional to

N'\ 1
1 1
(N /&P (1-BJg; (P)dF

Example 1: Suppose that there are four strata, total sample size

of 30. We assume that we have no prior information about Tys Tps Tgs

and T4, 50 we set our prior densities as:

gi(P) 1if 0<P <1

0 otherwise

Suppose that N1=250, N2f150, N3=50, N4=50, and N=500. In order to

. mninimize the expected variance we much have. ’

Ny ' Ny
& L _ -t o«
0 ¥ Jo P(1-P)dp 3N Ni

which is consistent with [1]. Tn this case, it is possible to allocate
exactly proportional 7=n_, thus n1=15, n2=90 n3=3, and n4=3. The table

gives the number of wheat labels observed,

O Y

i 250 - 15 1

2. 150 9 2

3 50 3 2

4 50 3 3
500 30

We estimate P with

= _ 250 {1\ , 150 (2 50 (2 50 (3\ _ 12
P = 3500 (15) * 500 (9) * 500 (3) * 500 (3) = %45
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and obtain the posteriors as described above, namely:

gl(Ple=l) = 240 (1-p) 1
gz(PIX2=2) = 360P2(1-P)7
g4 (P|X3=2) = 12P2(]:—-P)

3

g, (B|X,=3) = 4P
The graph of these posteriors is given in Figure N-1.

Example 2: Suppose that we have the same four strata definitions with

another segment and we use the posteriors from Example 1 (view the

segment in Example 1 as 2 training segment). In order to allocate,

a sample of size 50 to these four strata, we give

‘N, T . \
N, (ﬁl—){-/;P(l—‘P)gi(P)dP and n

as follows.

N, —N—l‘U‘P(l-P)g (2)ap _ E

i i

1 ’z\oo E%G)E‘%= .12524 6 (16.52)
2150 (B) Y& - 2 17 (16.87)

5 100 %)E = .08944 12 (11.796)
4 . 50 -(—2%6) {?—5: .036514 5 (4.81)

In the last section, when we assumed that the labels were all cor-

rectly classified we could update our prior every time we sampled. In
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FIGURE R-1.

TLLUSTRATION OF POSTERIOR PROBABILITY DENSITIES
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this section, we assume that grain targets from stratum i are classified
as grain with probability o, and non-grain targets are classified as
non-grain with probability Bi. Unless we have ground truth for all of

the targets in the sample, we cannot update our prior.

We first assume that for some training segments we have ground
truth for our sample so that we can construct a prior. On the first
segment we set gi(P,a,B) =1, (P,u,B)E[O,1]3, i=1,2,...,M. Let n,
dencte the ith sample size, Wﬁ denote the grain targets which are
labeled grain, Yi’ denote the grain targets.which are labeled non-grain,
Wi’ denote the non-grain targets which are lTabeled grain, and Yi denote
the non-grain targets which are labeled non-grain. The density of
(Wi’ Yi’, Wi’, Yi) givgn‘(Pi, o Bi) is ‘

N.
1

. e _ el WY W (X7 WY WY
£, (0,Y7,W ?YlPi,ai,Bi) = (w YW Y)Pi o (la )" (1-2,) (1-;)" B
where WHY W +Y = ni.

The joint éen51ty of (Wi, Yi s Wi R Yi’ Pi’ o, Bi) is

h; (W,Y",W,Y,P,a,8) = gi(P,a,B)fi(W,Y’,W’,Y[P,a,B)

The marginal density of (Wi, Yi s Wi s Yi) is

N
_ i WIY 17 1Y
fi(W’Y W ,T) = (w ¥ W Y) (Ni+1)!(W+Y”+1) G-+

The computations are shown in Table N-1.

= P * - ‘; -
The posterior of ( g2 % Bi) given (Wi’ Yi s W.7s Yi) is
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Il

o
( ng

Y’ W"

WY W’

(U T W

TABLE N-1. COMPUTATICN OF THE MARGINAL DENSITY OF (Wi,

ff o (l—on) ‘(1 B)W Y(
f

Y

)
)
)
)

fi(W,Y’,W‘,Y)

fff (WY w}) LT v

(1~ P) RN

(WY ) 1 (W7+Y)

BY dP da dB

Y7, W, Y

(WHY )L (W)

(n, +1)' “3!

(HY7) | (W) | j f o (1-a) Y (1-)" 8" da dg

(ni+l !

GHY ) L ) !
() f o )"

WIY (W +T) ! W-IY!
(ni+l) V(WY +1) (W +Y+1)!

Wiy Wiy

(ni+1) V(WY ~+1) (Wo+Y+-1)

WiY?,!
(WY +1)! o

1
WIY”! (W7+Y) ! WY
(n+1) V (HY"+1) _/c: (1-8)" B~ dB

r

(W Y+1) !
WHIY!

(W+Y “+1)!
wiY“!

(1-g)" gY dB)

pWHT " _py¥ "'de) do, dp

N (1-0)Y do dp

A3
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hi (W,Y’,W’ ,Y,P,OL,B)
gi(Psaa 8 IW’Y’,W”Y) =

fi(W,Y’,W’;Y)

+ ! - -
(ni 1) (W+Y‘ +1) (W HY+1) WY W
Wiy iwely!

P o (1—u)Y (1—1’)1}“—Y

This posterior could be updated by still another experiment with labels

and ground truth using similar methods as given above.

In an experiment without ground truth, we only observe Wi+Wi‘ and
Yi+Yi’, that is we only observe the number of grain labels and non=grain
labels., Thus, it is not reasonable to update the priors. The variance

of

given (P,o,B) is

[Pat(1-P) (1-p)] [P(l-a) + (1-P)R}

V(Pi) = PO
i
Thus the variance of
o, N,
— i i —
. P = — P,
= Nt

given (P,a,B) is
Ty N\
V@ = T (—3) vV (P,)
= A

The stratified sampling allocation which minimizesg EV(?} with a

fixed total sample size is to choose n, proportional to

N. 1 L1 1
¥ ‘/ﬁ ﬁa fo”’“ + (1-P) (1-8)] [P(1-0) + (1-P)B]g, (P,c,B)

where the priors are the posterior from the training experiment.
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N.4 USE OF BOUNDS ON Pi’ ai, AND Bi N STRATIFIED SAMPLE ALLOCATION

We assume that we have obtained from training segments the following

bounds:

This gives the following results:

[Piai + (l—-Pi) (1—81)] [Pi(l—ai)= + (1—Pi)Bi]

n,
1

V(Pi) =

2% (o) + AP (g8 + (-0 (1-8,)) + (-2, (18))

o,
1

In case (i) we have
1 2 _
Ai(l—Ai) + CLi(l—CLi)(3—Ai—Bi) +-{1 CLi) Bi(l Bi)

n.
i

V(ﬁi)_ﬁ

and in case (ii)

. .2
V(Pi) . CUI Ai(l_Ai) + CUi(l—CUi)(3-Ai~Bi) -+ Bi(l“Bi)‘

—_ T,
i

In either case, denote these upper bounds on V(fi) as Dizlni. Thus,

the variance of

|
il
(o8
I
ks
Z’ =2
[
ro|
H

dis as follows
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M /N2 Y m\2 D, 2
v - 1 (5] v < LR

i=1'"- i

In this case we allocate the samples to the strata proportional to

D.
i

zr =
(RN

Example 3. Suppose we have four strata with 2.8, 2,>.9, a33,7;

@,2.9, B)>.9, B,>.95, B,>.8, §,>.99, Pi<.1, P,<.4, P.<.6, P,<.8, N, =250,

NZéZOO, N3%l50, and N4=100. Values for Ni’ Ai, Bi’ Ci’ and Di are:

i N, Ay B Cr,; Cuy D, D,

1 250 8 .9 - i /3086 114.182
2 200 .9 .95 - A /3379 116.258
3 150 .7 .8 "6 - /5956 115.763
4 100 .9 .99 .8 - /7267996 .51.768

Thug, if we have -a total sample size of 50, then

n; = 14 (14.35)
n, = 15 (14.61)
ng = 15 (14.54)
n, = 6 (6.50)
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