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1.0 	 INTRODUCTION
 

Estimates of surface soil moisture in a large 
area
 

context are primarily useful for large area crop monitoring,
 

estimating flood hazards, and as 
inputs into dynamic atmos

pheric models. Such estimates may also provide indications
 

of soil moisture below the surface as well as 
provide a
 

means for the determination of drought and aerial extent of
 

drought conditions. Conventional soil moisture measurement
 

are very time consuming and not widely or regularly obtained
 

over 	most of the United States. The spatial variation of
 

soil moisture make it difficult to extrapolate conventional
 

point measurements to represent an integrated value over a
 

large area. Two alternative techniques for obtaining large
 

area estimates of soil moisture are water balance and remote
 

sensing methods.
 

The attention of this study is focused on the latter
 

and is specifically directed toward testing and improving
 

correlations between passive microwave antenna temperatures
 

from space and indices of soil moisture over a large area
 

in the southern Great Plains. The two microwave systems to
 

be used are the Electrically Scanning Microwave Radiometer
 

(ESMR) and the Scanning Multichannel Microwave Radiometer
 

(SMMR). This progress report will only consider the ESMR
 

because SMMR data is not presently available.
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2.0 	 BACKGROUND
 

The 1.55 cm. ESMR is a quasi-operational spacecraft
 

system from which digital data can be acquired over the same
 

area on approximately a 3-day repeat cycle. This affords the
 

opportunity to use time series data for multi-temporal
 

mapping. Recent investigations by Cihlar and Ulaby (1975),
 

Meneely (1977), Schmugge et al. (1974, 1976a and 1976b),
 

Schmugge (1976 and 1977) and Newton (1977) have demonstrated
 

that 	surface emissivity at the 1.55 cm. wavelength is in

versely related to soil moisture content in the surface
 

layer. Sensitivity of this emissivity to moisture content
 

is significantly diminished by an increase in surface rough

ness, and/or an increase in vegetation density. Consequently,
 

the most significant results have been obtained on relatively
 

bare, smooth soils.
 

Schmugge et al. (1977) presented case studies of ESMR's
 

spatial response to recent rainfall as related to vegetation
 

and surface roughness. Relative vegetation densities was
 

obtained from Landsat false color infrared images and sur

face roughness features were inferred from U.S. Geological
 

Survey surface land forms. Their results show that varia

tions in surface roughness and vegetative cover plus the
 

absence of large areas-of bare soils restrict the spatial
 

mapping capabilities of soil moisture at satellite altitudes.
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Temporal mapping of soil moisture shows a greater
 

potential than other methods because the adverse effects
 

of point-to-point variations of surface roughness and vege z
 

tation cover are minimized (McFarland and Blanchard, 1977).
 

The moisture content and temperature of the emitting layer
 

integrated over the sensor footprint forms the major varia

tions of temporal brightness temperature changes. Since
 

the emitting layer temperature can be approximated, the
 

brightness temperature changes may provide a fairly accurate
 

indication of soil moisture changes from rainfall and sub

sequent drying. By using temporal mapping techniques with
 

FSMR, McFarland and Blanchard obtained high correlations
 

between microwave emissivity and soil moisture modeled by
 

antecedent precipitation indices (API) during the autumn
 

(minimum vegetative period) over relatively flat terrain.
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3.0 PROJECT DESCRIPTION
 

A large region of the southern Great Plains is being
 

used as a basis for calibration of passive microwave systems
 

as an estimator of antecedent precipitation which in turn is
 

related to soil moisture (Figure 1). This region-was selectee
 

for two reasons: first, it encompasses the area used by
 

McFarland and Blanchard (1977) in the preliminary study of
 

ESMR data, and, secondly, the area is a principle source of
 

hard winter wheat. This study will expand McFarland and
 

Blanchard's temporal techniques to include vegetated seasons
 

over a span of several years.
 

Daily values of precipitation and air temperatures and
 

all available ESMR brightness temperatures over this region
 

will be related to a 25 x 25 km grid. These values will
 

then be used to model emissivity and API in such a way as
 

to optimize their correlation. The block of grid points
 

used by McFarland and shown in Figure 2 will be used to
 

establish a relationship between effective microwave emissiv

ity and API. The relationship will then be used to predict
 

ESMR antenna temperatures for another large wheat producing
 

area in Kansas using API as an input. Comparison of pre

dicted and actual antenna temperatures in such a relatively
 

independent area should provide verification of the technique
 

Simultaneously time series estimation of API values on inde

pendent cells will be studied to determine if it is feasible
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4.0 PRESENT STATUS OF CONTRACT REQUIREMENTS
 

4.1 Procedure
 

ESMR antenna temperatures with appropriate locations
 

for each datum point have been received for the southern
 

Great Plains. The time frame of this data is September 1973
 

through May 1975 with a large gap in the data daring the
 

summer of 1974. Daily precipitation and temperature data
 

tapes have been received for the region for 1973 through
 

1976. These data and the ESMR data have been resampled to
 

emulate two separate grids with 25 km cells based on polar
 

stereographic projections. The training site grid is 
the
 

same as McFarland and Blanchard's (Figure 2) with projec

tion true at 350 latitude. The other grid extends over the
 

entire study area (Figure 1) and has its projection true
 

at 370 latitude. The grid point values were objectively
 

analyzed by using a modified Barnes exponential technique
 

(Barnes, 1973). The spacially grid data was then realligned
 

temporally in order to prepare each grid point for multi

temporal analysis.
 

4.2 The Soil Moisture Model
 

In the absence of actual soil moisture measurements, a
 

simple soil moisture model was used to account for changes
 

in moisture in the ESMR emitting layer. An antecedent pre

cipitation index (API) was 
selected because of its simplicity
 



and its ability to infer upper-level soil moisture. The
 

only input required by API is precipitation which, for
 

large areas, is readily available from climatological data.
 

Effective precipitation was considered a direct input to
 

the soil water storage that is estimated by the API. Losses
 

of soil moisture due-to evaporation and transpiration were
 

assumed to decrease exponentially with time (Linsley, Kohler
 

and Paulhus, 1975). Shown mathematically, the relationship
 

is
 

API. = Pkt (1) 

where P is effective precipitation, i is the day number, t
 

is the time after rainfall, and k is a recession factor which
 

accounts for seasonal differences in evapotranspiration
 

losses.
 

Rather than total the combined influence of all the rain

fall events in a period, daily indexes were calculated by 

setting t equal to 1. This yielded 

API. P. + (API x k) (2) 

from Equation 1 (Saxton and Lenz, 1967).
 

Before the first API value was used in a correlation with
 

emissivity, the API model was allowed to stabilize by using
 

a minimum of 30 days of rainfall history. The relationship
 

between rainfall amount CR) and effective precipitation,
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developed by Blanchard et al. (1979) (included in Appendix A),
 

was used to account for runoff. An empirical recession curve
 

developed at the SEA/AR (Southern Great Plains Watershed Re

search Center, Chickasha, Oklahoma) by DeCoursey (1974) was
 

-used for calculating the daily recession factor k. The final
 

form of the soil moisture model was
 

R:89 1 
A = + (APIi 1 x ki) (3) 

where
 

Ri = daily rainfall amount (cm.). 

4.3 Emissivity Model
 

The temperature of the emitting layer was approximated
 

by the daily maximum temperature (TMT) in the emissivity
 

model,
 

= TBT/TMT (4) 

where TBT is the ESMR brightness temperature and E is the 

emissivity. The emitting layer for the short wavelength
 

ESMR is limited to the top few centimeters. The overpass
 

time of ESMR over the study area is near local noon and
 

maximum air temperature usually occurs several hours later.
 

Because the maximum soil temperature usually leads the maxi

mum air temperature, this is believed to be a sound approxi

mation. The sensitivity of this model to errors in the
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emitting layer temperature is small. An error of 10 K will
 

only yield a 4 percent error in the predicted emissivity,
 

The dielectric properties of ice are completely differ

ent 	than water. Ice is not a dipole molecule and has a low
 

dielectric constant. When a soil is frozen the emissivity
 

is high and independent of soil moisture. Emissivity values
 

were not used in this study if the maximum air temperature
 

was less than 283 K.
 

Paris (1971) showed that rain in an atmosphere can have
 

a very significant effect on upwelling radiation. Radar
 

summary charts from the-NWS were used in determining the
 

presence of rain between ESMR and each surface grid point.
 

When this occurred, the emissivity data points were omitted.
 

4.4 	 Analysis and Discussion
 

During the period of this progress report the study was
 

directed toward developing relationships between emissivity
 

and API over the training grid area in Oklahoma (Figure 2).
 

The results were presented in a thesis by Theis (1979) and
 

by a paper presented at the 1979 AGU Spring Meeting (abstract
 

in Appendix B). These results are summarized and presented
 

here.
 

The calendar year was divided into four new-standard
 

ESMR seasons because of climatological factors, crop phenolo

gies and cultivation practices. Percentages of areas devoted
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to winter wheat and total croplands for the grid area are
 

presented in Figure 3. Fall was defined from August 12 to
 

November 1 which corresponded to a minimum vegetation period
 

when fields are relatively flat. This is the period studied
 

by McFarland and Blanchard (1977) and their results were
 

duplicated. The fall correlation coefficients between
 

emissivity and API for each grid point are presented in
 

Figure 4. By comparing the areas of greater than 0.80 to
 

Figure 3 and Landsat color composites (not presented) it is
 

apparent that cultivated agricultural lands give the best
 

correlations.
 

Winter, as defined by this study (November 2-February 27),
 

is characterized by periods of frozen soil surfaces and upward
 

movement of moisture due to temperature gradients. The corre

lations during this period are much less significant with
 

values generally around -0.60. Both the emissivity and API
 

models are not well suited for the winter. The API model is
 

very simple and doesn't account for movement of water due to
 

temperature gradients. The dielectric properties of ice is
 

significantly different than water, making the emissivity
 

independent of soil moisture in the frozen state.
 

Spring (February 28-April 15) was defined as a rather
 

short season generally bounded by the end of frozen soil
 

surfaces and the beginning of winter wheats boot stage. This
 

is a period of smooth soil surface with increasing vegetative
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Figure 3. Percentages of area devoted to winter wheat and total croplands
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cover over winter wheat acreage. Over other agricultural
 

croplands the soil surface is bare but is either in a rough
 

bedded condition or freshly planted in rows. The good
 

correlation areas, shown in Figure 5, generally correspond
 

with predominantly winter wheat agricultural areas.- This
 

shows up quite well when the grid is overlayed onto a Landsat
 

color composite taken during April when the only growing
 

vegetation is winter wheat.
 

All croplands are densely vegetated during summer
 

(April 16-June 8) as defined in this study. Correlation
 

coefficients are corresponding poorly with values averaging
 

around -O.SO.
 

The differences between the spring correlations of
 

winter wheat and non-wheat croplands were investigated further
 

by plotting six grid points from each area. The plots for
 

fall, shown in Figures 6 and 7, indicate very little differ

ences in the two areas. The values of the slopes and intercepts
 

agree closely with those obtained by McFarland and Blanchard
 

(1977) (slope = -0.0232, intercept = 0.92). It should be
 

pointed out that McFarland used one year's data and this study
 

used two.
 

Spring scatter plots are presented in Figures 8 and 9.
 

Correlations for the winter wheat area are significantly
 

higher than non-wheat croplands. The slope for the winter
 

wheat areas has slightly decreased from the fall value
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(-0.0227 to -0.0156). This indicates that the small winter
 

wheat vegetation may affect but doesn't destroy the good
 

relationship. The summer slope for the same grid points
 

decreases to -0.0081 with a corresponding correlation
 

coefficient of -0,48. During summer the vegetation has
 

reached a threshhold density so that ESMR's response to
 

API becomes masked by the vegetation.
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5.0 CONCLUSION
 

Agricultural lands show the greatest potential to use
 

ESMR to infer soil moisture. These usually are better soils
 

situated on smoother, less hilly, land. Tillage practices
 

are such as to afford periods of smooth and bare soils' during
 

the year. In contrast, pastures, rangelands and cross timber
 

usually are situated on poorer soils (some rocky) and terrain
 

which is unsuitable for agriculture. The surface of untilled'
 

lands is almost never completely bare. It is covered with
 

growing or dead vegetation or with timber.
 

Winter wheat yields are more sensitive to water stress
 

at some growth stages than others. There must be sufficient
 

moisture in fall in order to sprout the winter wheat and
 

sustain it until winter. During winter, soil moisture usually
 

is sufficient for the crop's needs.
 

Soil moisture during spring is very important in the
 

determination of wheat yield. The wheat begins jointing in
 

March and enters the boot stage in mid-April. The weeks
 

before booting are the most critical period because this is
 

when the crop is set. After the boot stage, ample soil
 

moisture is preferred to reduce shrinkage but is not as
 

critical.
 

Results over the predominant winter wheat areas indicate
 

that the best potential to infer soil moisture occurs during
 

fall and spring. These periods encompass the growth stages
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when soil moisture is most important to the winter wheat's
 

yield. With further research, ESMR could be used to identify
 

stress or drought conditions over winter wheat areas.
 

The results of this research indicate the general
 

conditions which are necessary for the short wavelength
 

ESMR to infer soil moisture. Atmospheric contributions,
 

vegetation, and roughness produce detrimental effects to
 

soil moisture detection at short microwave wavelengths.
 

Longer wavelength radiometers such as the Scanning Multi

frequency Microwave Radiometer (SM'R) will lessen these
 

dampening effects but resolutions will be larger. These
 

longer wavelengths may be able to infer soil moisture over
 

range, pasture, and densely vegetated croplands by using
 

the same temporal mapping techniques that were used in
 

this research.
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ESTIMATION OF SOIL MOISTURE WITH API ALGORITHMS
 

AND MICROWAVE EMISSION
 

Bruce J. Blanchard, Marhsall J.McFarland,
 

Thomas J. Schmugge, and Edd Rhoades1
 

ABSTRACT: Large area soil moisture estimations are required for global
 

systems of crop yield estimation and flood prediction. Microwave sensor
 

systems that as yet can only detect moisture at the surface have been
 

suggested as a means of acquiring large area estimates. Measurements
 

of soil moisture were studied to understand the correlation and inter

correlation between moisture insurface soil layers and moisture in
 

.deeper layers. Relations previously discovered between microwave emission
 

at the 1.55 cm. wavelength and surface moisture as represented by an
 

antecedent precipitation index were used to provide a pseudo infiltration
 

estimation. Infiltration estimation based on surface wetness estimated
 

on a daily basis were used to estimate soil moisture at a depth of 15 cm.
 

by use of a modified antecedent precipitation index with good results
 

(R2 = .7010 and R2 .7383). The technique was modified and used to
 

estimate soil moisture at 15 cm. depth when only an estimate of surface
 

moisture each three days was available. Predictions based on estimation
 

IRespectively, Remote Sensing Center, Texas A&M University,
 

College Station, Texas 77843, NOAA Environmental Studies Service Center,
 

College Station, Texas 77843; NASA/Goddard Laboratory for Atmospheric
 

Sciences, Goddard Space Flight Center, Greenbelt, Maryland 20771; SEA-AR,
 

Chicasha, Oklahoma.
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of surface wetness at three day intervals resulted in R2 value of .6811
 

and .7076 for the same date sets. The algorithms developed in this
 

study can be used over relatively flat agricultural lands to provide
 

improved estimates of soil moisture to a depth greater than the depth
 

of penetration for the sensor.
 

INTRODUCTION
 

Large area soil moisture measurements are needed for two primary
 

application areas. First to define the antecedent moisture condition
 

of watershed surfaces prior to flood producing storms and 'secondly to
 

provide objective numerical input to crop growth models.
 

To approach these needs we should understand that watershed runoff
 

resulting from any one rainfall event isdependent on a complex inter

action of several variables where one of the more significant variables
 

isthe moisture condition of the soil at the time the event begins. It
 

can be readily understood that when the soil is saturated, the major
 

portion of the rainfall will become runoff. Likewise, itcan be reasoned
 

that measurements of soil moisture can serve as an indicator of the
 

amount of storage available inthe soil profile for a portion of the
 

rainfall falling on a watershed surface. Measurements of moisture condi

tions over large areas are at present difficult to obtain and therefore
 

even crude estimates over watershed drainage areas may result in
 

significant improvement of flood predictions. Inthe central plains
 

area a measurement providing three or more levels of soil moisture (dry,
 

medium, wet) pertaining to the top 20 cm. will likely be of significant
 

value if itcan be provided routinelyeach three days or less.
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Soil moisture requirements for input to crop models on the other
 

hand are required for depths of as much as 150 cm. and it is generally
 

believed that they must be more accurate, Most experimental work con

cerned with soil moisture requirements of crops has been done on extremely
 

small areas. Measurement of soil moisture in crop experiments has also
 

been confined to discrete layers of soil with each layer being approxi

mately 15 cm. in depth. The conventional practice has led to development
 

of soil profile models using such depth increments. Little has been done
 

to determine if the requirements for crop models can be relaxed to accommo

date less detailed soil moisture data over large areas.
 

Large area estimates of moisture for both of these applications
 

are conventionally derived from rainfall data collected at widespread
 

locations. Such estimates are relatively good in areas with widespread
 

low intensity rainfall. Unfortunately, the major food producing areas
 

of the United States and watershed areas where flooding frequently occurs
 

are subject to frontal convective storms. Such storms produce non uni

form distribution of rainfall, and estimates based on the available rain
 

gauge data are frequently poor. To compound the problem, the separation
 

of rainfall into runoff and infiltration components is difficult on a
 

large area. It would therefore seem more appropriate to estimate large
 

area soil moisture directly.
 

Our ability to estimate soil moisture over large areas by conven

tional techniques is limited by three major problems. Spatial variability
 

in physical characteristics of the soils, variation in crop canopies of
 

agricultural lands and wide variations in local rainfall all tend to make
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estimates based on point measurements prohibitive. In order to make
 

such estimates on a regional or global basis it will be necessary to
 

employ the use of spacecraft sensors that can integrate the soil mois

ture over an area. The verification that an appropriate sensor in
 

space can indeed provide useful soil moisture measurements will require
 

large scale measurement of ground information.
 

Recent attempts have been made to establish the capability of
 

passive microwave sensors for estimating soil moisture in the surface
 

soils by monitoring the microwave emission from the earth's surface.
 

One passive microwave system, the Electrically Scanning Microwave
 

Radiometer (ESMR), in particular, has provided data from space that
 

has been correlated to an antecedent moisture index (API) by McFarland
 

and Blanchard (1977). The relation between the sensor data and the
 

API, illustrated in Figure 1, is valid only in non forested and
 

relatively flat agricultural terrain.
 

At the present time, passive microwave systems on spacecraft
 

employ wavelengths too short to effectively estimate soil moisture
 

in the 0 to 22.8 cm. zone of the soil surface. The estimation of
 

moisture in the surface zones by use of microwave systems is further
 

complicated by the fact that penetration achieved is dynamic and is both'
 

wavelength and moisture dependent. Wavelengths of 21 cm. (Iband) have
 

been shown by Newton (1977) to estimate moisture in the surface 20 cm.
 

when soil moisture is low while only penetrating to approximately
 

5 cm. when the soil is wet. Other studies (Schmugge, 1974; Wilheit,
 

1978) have indicated that the sampling depth is only a few tenths of a
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wavelength; i.e., 2.5 cm. at the 21 
cm. wavelength. Wavel.engths as
 

long as one meter are currently being investigated and may provide an
 

estimate of moisture in thicker surface zones more effectively than
 

systems available now. Meanwhile, as an interim technique, an estimate
 

of moisture in a significant depth of the surface soil might be derived
 

from an algorithm using the antecedent precipitation index that repre

sents the soil surface.
 

OBJECTIVE
 

The motivation for this study was 
the need to develop a technique
 

where the ESMR or a similar microwave system can be used to produce a
 

useful estimate of moisture in near surface soils. A better under

standing of the relation between surface moisture and moisture in
 

deeper layers of the surface, however, is necessary before we can
 

extrapolate short wavelength microwave measurements of the surface to
 

meaningful depths. The ESMR data are only related to an index of
 

moisture at the surface since a wavelength of 1.55 cm. cannot achieve
 

significant penetration in the surface. 
There may, however, be some
 

means of relating these measurements to meaningful depths in the surface.
 

This study was initiated to establish the relations between surface
 

measurements by spaceborne passive microwave and estimates of soil
 

moisture at some significant depth.
 

Related Studies
 

Numerous antecedent indicies of moisture based on either rainfall
 

or rainfall and runoff have been used by practicing hydrologists. Most
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successful techniques are based on the fact that soil moisture depletion
 

can be expressed as an exponential decaying function of the moisture
 

input to the profile, Lindsey et al. (1949) and Chow et al. (1964), in
 

the following form:
 

APIi = Pi + (fPI-l)ki (1) 

where: API = moisture index
 

P = daily effective rainfall or daily infiltration
 

k = depletion constant <1 and a function of time
 

i = day of the estimate
 

Several attempts have been made to improve on the basic concept by pro

viding methods of estimating the depletion constant k. DeCoursey
 

(personal Communication) inverted a curve representing mean daily
 

temperatures and found the general form of the curve represented the.
 

seasonal changes in k. Saxton (1967) investigated an extensive set of
 

soil moisture data from two instrumented watersheds in Wisconsin and was
 

able to establish that a seasonally variant k with a minimum value of
 

.92 would provide a best estimate of moisture in the top 30 cm. A
 

minimum value of .96 was most appropriate for soil moisture estimates
 

in the top 91 cm.of soil; i.e., the decay of moisture in this layer is
 

much slower. In Saxton's results, k values ranged up to .99 on April 1
 

and .98 on December 1. A curve representing his mean k values throughout
 

the year is remarkably similar to the inverse of a curve through the
 

mean monthly potential evapotranspiration (PET) calculated by the Penman
 

equation. Saxton was able to predict best estimates of soil moisture as
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a function of PET values by subtracting PET from moisture in the soil
 

at times when the moisture available in the soil surface was above 60%
 

of the field capacity. Computation for the latter approach requires
 

the additional data for input to the Penman PET model.
 

Saxton also investigated the time required for calculations using
 

Equation 1 to stabilize. The initial starting values have only short
 

term effects when the time series begins with small values'of the deple

tion constant k. The maximum time period that effects the initial 
input
 

can be significant in less than 90 days.
 

Another approach to estimation of soil moisture has been taken in
 

Russia by Basharinov et al. (1977). They reported attempts to extrapolate
 

near surface soil moisture measurements to deeper depths with a technique
 

based on the correlation between near surface soils and deeper layers
 

for certain times of the year. In Basharinov's report, correlation
 

between moisture in different zones are listed. Measurements for layers
 

of soil less than 15 cm. from the surface were not in this study. In
 

addition no mention was made of the time of day of the measurement. The
 

high intercorrelations between shallow and deep surface zones implied
 

that if the surface zone could be measured accurately, a reasonable
 

estimate of moisture in a deeper zone could be made. No attempt was
 

made to go 
one step further to relate the moisture measurements to
 

antecedent rainfall. 
 A review of these studies indicated that if the
 

results of both Saxton and Basharinov could be verified, a technique
 

might be developed to extrapolate surface measurements to a significant
 

surface soil zone. This is the approach that will be tested here.
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Data Used
 

Soil moisture estimates were available for sixteen unit source
 

watershed drainage areas being studied by the Agricultural Research
 

Service (ARS) at Chickasha, Oklahoma. Measurements with neutron probes
 

had been collected over 75 months from four points within each area at
 

time intervals of approximately fourteen days. The measurements were
 

taken in a six hour time frame in mid day but no effort has been made
 

to identify the diurnal fluctuation of the near surface measurement.
 

This record encompasses a full range of soil moisture conditions.
 

The neutron measurements had been taken at depth intervals of 15.2
 

cm, beginning at that depth and continuing to 121.9 cm. Measurements for
 

increments above the 15.2 cm. level were not available. The measurements
 

were converted to estimated soil water in centimeters for each interval
 

by using sensor calibration curves developed by SEA/AR. For this study,
 

averages of the four points in each small drainage area are used.
 

Eight of the areas are devoted to native grasslands. Four of the
 

grassland watersheds are located on silty soils derived from the
 

Chickasha formation of the Permian red beds. Two of these have very
 

poor vegetative cover while the other two have excellent native grass
 

cover. The remaining four watersheds are located on sandy soils developed
 

from Rush Springs sandstone and have a moderate cover of native grass.
 

Another eight drainage areas were located on cropland inthe
 

alluvial soils along the Washita River. These were devoted to cotton,
 

wheat or alfalfa production. Crops were usually rotated on each area;
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thus, the record does not represent any long period under a single crop.
 

The period of record used began in June 1966 and extended to September 15,
 

1969; beginning again in January 1971 and ending on January 1, 1974.
 

The last few months of the record covered the same time period used by
 

McFarland and Blanchard in their study of correlations between ESMR'data
 

and API values. Also, the sampled areas are located within the area
 

used in that study. These soil moisture records provide a data base that
 

can be used to verify the correlations reported by Basharinov.
 

In addition, rainfall data were available for all of these drainage
 

areas for the same period. The daily rainfall amounts were compiled for
 

the four rangeland sites located on the Chickasha formation, R5, R6, R7
 

and R8 in order to study the relations between the antecedent precipita

tion index and the soil moisture of different surface zones.
 

ANALYSIS AND DISCUSSION
 

Simple correlation coefficients were calculated between soil moisture
 

in the top 22.8 cm. and soil moisture in each incremental depth, Tables
 

1 and 2. Measurement of the moisture in this zone was made by a neutron
 

probe reading at the 15.2 cm. depth. Correlation coefficients were also
 

calculated between the soil moisture in the top layer and each depth
 

of the surface zone, Tables 3 and 4. These later correlations are
 

representative of intercorrelated values since the surface 22.8 cm. are
 

included in each surface zone.
 

Tables 1 through 4 confirm correl-ations reported by Basharinov and
 

indicate that reasonable estimates of soil moisture at depths as great as
 



Table 1. Correlation between soil moisture in the zop 22.8 cm. and soil moisture in other depth

intervals within the profile on rangeland sites.
 

Depth
Interval 

(C11.) 

Depth
Interval 

(in.) R1 R2 R3 
Wateirshed Number 

R4 R5 R6 IT- TR8 
Combined 
Rangeland 

0-22.8 0-9 1.0 1.0 1.0 1.A 1.0 1.0 1.0 1.0 1,0 

22.8-38.1 9-15 .9137 .9195 .9134 .9222 .9269 .9172 .8741 .9455 .9184 

38.1-53.3 15-21 .7169 .7676 .7802 ."841 . .8411 .7978 .7265 .8786 .8437 

53.3-68.6 21-27 .5373 .5924 .6265 .6409 .7661. .6915 .6031 .7885 .7655 

68.6-83.8 27-33 .4615 .4484 .5178 .!;231 .6448 .5705 .S465 .7077 .7060 

83.8-99.1 33-39 .4106 .3467 .4160 .4121 .5340 .4656 .5547 .6763 .6779 

99.1-114.3 39-45 .3614 .2579 .3360 .3311 .4726 .3967 .5828 .6429 .6566 

114.3-129.5 45-51 .3497 .2149 .2697 .:!280 .4524 .3527 .5338 .6629 .6264 



Table 2. 	Correlation between soil moisture in the 'op 22.8 cm, and soil moisture in other depth
 
intervals within the profile on crepland ;its.
 

Depth Depth lgatocshod Number 
Interval Interval Combined 

(cm.) (in.) Cl C2 0 7,4 CS CG C7 CS Rangeland 

0-22,8 0-9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

22.8-38.i 9-IS .8461 .8862 .8788 .7585 .8771 .8543 .9081 .9137 .8795 

38.1-53.3 15-21 .6722 .7291 .8034 .34S6 .8136 .7824 .8253 .8265 .7794 
Co 

53.3-68.6 21-27 .6009 .6042 .7785 .078 .7545 .7261 .7356 .6611 .7276 

68.6-83,8 27-33 .5529 .4690 .1879 1)499 .6500 .6034 .6963 .4924 .6433 

83.8-99.1 33-39 .5586 .3941 .7426 .3882 .5020 .5239 .6179 .3710 .5945 

99.1-114.3 39-45 .5150 .2986 .6715 4348 .4637 .5000 .7319 .3195 .5055 

114.3-129.5 45-SI .4545 .2160 .6670 .3886 .3265 .5061 .6299 ,3290 .4170 



Table 3. 	Correlation between soil moisture in tho top 22.8 cm. and soil moisture in other
 
surface intervals on rangeland sites.
 

Depth Depth 	 Watershed Number
 
Interval Interval Combined
 

(cm.) (in.) RI R2 R3 R4 RS R6 R7 RS Rangeland
 

0-22.8 0-9 1.0 1.0 1.0 ..0 1.0 1.0 1.0 1.0 1.0
 

0-38.1 0-15 .9879 .9896 .9871 .9869 .9874 .9778 .9653 .9866 .9785
 

0-53.3 0-21 .9485 .9658 .9590 .9588 .9613 .9408 .9198 .9657 .9494 

0-68,6 0-27 .8925 .9257 .9224 9281 .9526 .9020 .8791 .9398 .9227 

0-83.8 0-33 .8366 .8800 .8835 .8959 .9046 .8641 .8468 .9102 .8987 

0-99.1 0-39 .7897 .8342 .8449 .8656 .8818 .8264 .8211 .8935 .8808 

0-114.3 0-45 .7485 .7930 .8064 .8352 .8658 .7938 .8049 .8724 .8673 

0-129.5 0-51 .7150 .7528 .7748 .8016 .8523 .7694 .7893 .8623 .8560 



Table 4. Correlation between soil moisture in the top 22.8 cm. and soil moisture in other 
surface intervals on rangoland sites. 

Depth 
Interval 
(cm.) 

Depth 
Interval 

(in.) C CZ C5 

Watershed Number 

C4 CS C6 C7 C8 
Combined 
Rangeland 

0-22.8 

0-38.1 

0-9 

0-15 

1,0 

.9628 

1,0 

.9802 

1.0 

.9662 

1.0 

.9503 

1.0 

.9699 

1.0 

.9679 

lO 

.9772 

1.0 

.9803 

1.0 

.9675 

0-53.3 0-21 .9060 .9453 .9312 .8688 .9382 .9305 .9456 .9564 .9227 

0 

0-68.6 

0-83.8 

0-27 

0-33 

.8586 

.8262 

.9129 

.8840 

.9078 

.8540 

.8075 

.7591 

.9115 

.8846 

.8989 

.8627 

.9136 

.8991 

.9332 

.9109 

.8831 

.853 

0-99.1 0-39 .8085 .8433 .8746 .7131 .8541 .8243 3851 .8928 .8376 

0-114.3 0-45 .797Z .8011 .8611 .6863 .8291 .7926 .8756 .8778 .8159 

0-129.5 0-51 .7829 .7575 .8511 .6614 .7922 .7701 .8656 .8630 .7914 



50 or 60 cm. might be developed from measurement of a surface layer
 

having sufficient thickness. An examination of the tables indicates
 

that the rangeland areas produce higher correlations than the cropland
 

measurements. There is also less variation in correlations between
 

watershed areas than there is between the different cropland areas.
 

This variation may be partially due to moisture extraction from variable
 

root depths for the different crops as they are rotated year to year.
 

There is also a possibility of supplemental non recorded watering by
 

irrigation and the effects of tillage that are not reflected in the
 

rainfall data.
 

Soil moisture and rainfall data from the four selected watershed
 

areas R5, R6, R7 and R8 were used to investigate the effect of the
 

coefficient k in Equation 1 on correlations between API and the soil
 

moisture for different depths of the soil surface. The curve representing
 

the seasonal change in k developed by DeCoursey, Figure 2, was com

pressed between selected minimum values and a constant January value of
 

.994. Mean monthly values of k derived'from the compressed curves
 

were used to simplify the computations. Rainfall values used as input
 

to the API equation were modified to account for the fact that a portion
 

of the larger rainfall events ultimately becomes surface runoff. Storm
 

rainfall minus recorded runoff was calculated for watersheds R5 and R7
 

and these values were plotted versus rainfall, Figure 3, to derive the
 

relation between effective rainfall P. and the recorded rainfall P,
 

Figure 3, resulting in the following equation:
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= (2)Pe p.829 

Combining equations 1 and 2 leads to the modified API equation used
 

throughout this study.
 

API. = 8-29 + (API(i-l) )k()m (3)
 

where m - signifies the minimum monthly depletion constant.
 

Minimum values of k were varied from .84 to .98 by compressing the curves
 

as shown in Figure 2 and simple correlations were then calculated between
 

the API value and soil moisture in a discrete surface zone. Examples of
 

the results are plotted in Figures 4 and 5 for two zones of the surface
 

soils.
 

For the 0 to 22.8 depth interval, Figure 4, peak correlations were
 

found when the minimum value of k was .92 for three of the four watershed
 

areas. On watershed R6 the peak correlation occurred with a minimum k
 

value of .90 with an R value of .7882 while the R value when k minimum
 

was .92 is .7861, an insignificant difference. This surface zone can
 

be best estimated with a minimum k value of .92.
 

When considering the correlation of API with a deeper surface zone,
 

0-83.3 cm., Figure 5, a larger minimum value of k is more appropriate.
 

For this soil zone a minimum value of .94 is most effective. Generally
 

in these calculations the correlations improve slightly with an increase
 

in the minimum k value as the depth of the surface zone increases.
 

Similar results were evident in Saxton's work.
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McFarland and Blanchard found that the use of a very low .72 minimum
 

k produced an API value that was best correlated to ESMR band (1.55 a
 

wavelength) passive microwave sensor. Such a short wavelength pro

vides no effective penetration into the soil volume and is therefore
 

most sensitive to the wetness of the surface 1 or 2 cm. only. Soil
 

moisture measurements were not available to investigate the 0 to 15 cm.
 

depth increments of the near surface; however, it appears that optimum
 

minimum values of k minimum change rapidly in the depths less than 20
 

cm. Using their data a second order equation can be developed to estimate
 

API 72
 

API.72 = 196.97 - 414.62c + 218.32F 2 (4)
 

where z = emissivity at 1.55 cm. wavelength coming from the soil surface.
 

Extrapolation of Surface Information to Estimate Soil Moisture
 

Surface wetness of the top I or 2 cm.if monitored frequently may
 

serve as an indicator of rainfall distribution. When considered in this
 

context, the measurement of the surface wetness might serve as a pseudo
 

rainfall input to the API type estimator of soil moisture at a greater
 

depth. Acceptance of this concept is imperative to the understanding of
 

the following empirical development.
 

To proceed with this approach the available data for watersheds R5
 

and R7 were combined in a single set (R5&R7) to be'used in the develop

ment of a prediction algorithm. Data from watersheds R6 and R8 were
 

combined in a set (R6&R8) that was reserved for testing the algorithm.
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Two series of daily API values were calculated for each set of data. One
 

API value was based on a minimum k value of .92 and will be designated
 

APIA and another series based on a minimum k value of ,72 was designated
 

APIB. APIB should be equal to API. 72 inEquation 4 but has in this
 

instance been calculated from rainfall.
 

The relation between actual soil moisture measurements (ASM) from
 

the surface volume taken at 15 cm. depth and APIA values was first
 

examined graphically. An equation was then fitted to the data by using
 

an optimization technique described by DeCoursey and Snyder (1969). The
 

technique resulted inan R2 value of .7016 for the following equation:
 

ASM =.1.992 + .992 (APIA)"610 (5)
 

In order to use an equation of this form to predict soil moisture
 

from remote sensing inputs, antecedent indicies must be developed that
 

will simulate APIA. This requires some estimation of rainfall for input
 

to Equationl that is a function of emissivity. APIB responds to rain

fall in a similar fashion to the response of APIA to rainfall except
 

that the decay of APIB is more rapid during summer months. By re

arranging Equation 1 itcan be shown that the effective rainfall Px can
 

therefore be estimated by the following equation with the provision that
 

PX must be greater than or equal to zero.
 

PK = ApIB. - (ApIB x k) (6) 
V Pi- .72) 

Still using Equation 1, pseudo antecedent precipitation index (APIP)
 

related to the surface 0-22.8 cm, but derived from the surface related
 

A,q 



APIB can be 	calculated from the following equation:
 

APIPi = [APIBi - (APIBi_ x k(i)(.72)] + APIPi_ x K(i)(.92) (7)
 

Substitution of Equation 7 into an equation of the form of Equation 5
 

produces a predicted soil moisture (PSM) as a function of APIB.
 

PSM = Ci + 	C2 APIB(I) x k(i)(7 2) + (8) 

[APIPi_ 1 x k(i)(.92)]]61 

Coefficients cannot be optimized readily for this equation since APIP
 

is a time series function of APIB. The coefficients were therefore found
 

by first optimizing parts then adjusting the coefficients to produce a
 

straight line fit between PSM and ASM with an intercept near zero and a
 

slope near 	one. Coefficients C1 and C2 were found to'be .024 and 1.431
 

respectively. The predictions resulting from this equation versus actual
 

soil moisture content of the surface 0 to 22.8 cm. soil depth for the
 

R5&7 data are shown in Figure 6. The prediction scheme was then tested
 

on the R6&8 data resulting in the plot shown in Figure 7. R2 values for
 

the data in each plot were .7010 and .7387 for R5&7 and R6&8 respectively.
 

Now, it is doubtful if we can expect daily coverage from spacecraft
 

systems in the immediate future, With present technology and funding
 

a three day interval such as is provided by the ESMR sensor can reasonably
 

be expected. The previous development of Equation 7 was based on daily
 

measurement. To accommodate a three day coverage or availability of a
 

measurement, modification of the equation is necessary.
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The change required is in the estimation of effective rainfall.
 

Instead of depleting the APIB for the previous day by multiplication
 

with the depletion coefficient (k), the APIB for day (i-3) must be
 

depleted for three days. The estimator of the effective precipitation
 

then becomes
 

pX = [APIB(i) - (APIB(i 3) x k)] 	 (9) 

The data for R5&7 were again used to establish the coefficients for
 

an equation representing predicted soil moisture as a function of APIB.
 

The resulting equation for prediction of soil moisture based on availa

bility of an estimate of APIB each three days follows. A noticeable
 

change in the second coefficient in the equation is necessary to adjust
 

the slope of the predicted soil moisture values.
 

PSM = .12 + .765 [[APIB 	- APIB x k+
 
S(i-3) (i)(.72)+
 

(10)
 
[APIPi 1 x k(i)(.92) * 610 

Predicted soil moisture resulting from use of equation 9 was correlated
 

with R5&7 and R6&8 resulting in R2 values of .6811 and .7076 respectively,
 

Figures 7 and 8. The prediction capability then using the data available
 

from observations each three days are not significantly different than
 

they would be with daily 	observations. Similar equations could be
 

developed t6 accommodate 	other repeat cycles of remote sensor data and
 

thus produce a predicted 	soil moisture at two day or four day intervals.
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OBSERVATIONS AND DISCUSSION
 

The development of the preceeding algorithms for estimation of
 

soil moisture are based on coefficients suitable for a surface layer
 

approximately 22.8 cm. thick. It is obvious that thicker surface layers
 

can be estimated by increasing the minimum coefficient used to calculate
 

APIP. Examination of Tables 1 through 4 indicate that correlations
 

between predicted and actual soil moisture would rapidly decay with
 

added depth beyond about 80 cm. Some of the root zone measurements
 

requested by agricultural users therefore may not be reliable when using
 

this technique.
 

The technique can be applied in limited areas with the existing K
 

band (1.55 cm. wavelength) system already in global operation. Good
 

estimation of surface wetness with ESMR data is restricted to areas where
 

large relatively flat surfaces are observed. Rough terrain has signifi

cant influence on the sensor return and in those areas this technique
 

may not work well with the ESMR data. Added benefits could be obtained
 

with a longer wavelength and a slightly better resolution than is
 

currently available. It would seem advisable to use existing and near
 

future passive microwave sensors to provide the estimates while long
 

range experiments are conducted to determine optimum systems.
 

Flood prediction applications in regions where forests and extreme
 

roughness are not prevalent can definitely benefit from this technique.
 

Agricultural applications, especially the crop yield estimation for
 

small grains, could readily use this technique in the next decade when
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more sophisticated sensors will be unavailable on a regular basis.
 

In the course of this study the data used from the Southern Great
 

Plains Watershed Research Center and other sets of data available were
 

examined. In-the search for data to accomplish this study it became
 

apparent that there is a totally inadequate supply of long,term soil
 

moisture data that is applicable to areas-larger than a few square
 

meters. Problems in measurement, calibration, manpower and funding
 

indicate that large scale ground sampling under spaceborne systems is
 

impractical, if not physically impossible. It is likely therefore that
 

indicies such as the API may be the best measure available for testing
 

of space borne sensors.
 

CONCLUSIONS
 

This study has resulted in the following conclusions:
 

1. Correlations and intercorrelations between near surface soil
 

moisture and deeper layers have been shown. These correlations are
 

comparable to those reported in Russia by Basharinov et al.
 

2. Algorithms for prediction of soil moisture in the surface
 

22.8 cm. of soil have been defined and tested on independent data sets.
 

3. The above algorithms can readily be used to input remote
 

sensing data from a passive microwave imager to an equation that will
 

estimate soil moisture at a depth greater than the system can sense.
 

4. An interim system for estimation of soil moisture in relatively
 

smooth terrain for use in flood prediction and crop yield estimates
 

for small grains should be feasible when the algorithms in this report
 

are applied.
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5. More universa-l application of the algorithms defined can be
 

possible when passive microwave sensors with wavelengths long enough
 

to penetrate more dense vegetation become available in space.
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CORRELATIONS OF BRIGHTNESS TEMPERATURES FROM THE ELECTRICALLY
 
SCANNING MICROWAVE RADIOMETER (ESMR) WITH ANTECEDENT PRECIPIr
 

TATION INDICES (API)
 

M. J. McFarland (Dept. of Agricultural Engineering,

Texas A&M University, College Station, Tx.)
 

B, J. Blanchard, S. W. Theis (Remote Sensing Center,
 
Texas A&M University, College Station, Tx.)
 

Estimates of soil moisture in a large area context are
 

primarily useful for large area crop monitoring and for
 

estimation flood hazards on large and small drainage areas.
 

Such estimates may also provide indications of soil moisture
 

below the surface as well as provide a means for the determina
 

tion of drought and areal extent of drought conditions.
 

A preliminary study correlated digital data from the ESMR
 

to API that in turn is correlated to soil moisture over the
 

northwestern third of Oklahoma. Encouraging results were
 

obtained for a three month period in the fall of 1973 when
 

vegetation was sparse. Since the ESMR is a quasi-operational
 

system, data can be acquired over the same area on a three day
 

repeat cycle. This provides the opportunity to investigate
 

changes in soil moisture through a time series. Temporal
 

mapping reduces the effects of the point to point variations
 

in vegetative cover, surface roughness, and soil charac

teristics,
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The moisture content and temperature of the emitting
 

layer integrated over the sensor footprint forms the major
 

variations of the temporal brightness temperature changes.
 

Since the emitting layer temperature can be appr6ximated,
 

the brightness temperature changes-may provide a fairly
 

accurate indication of soil moisture changes for rainfall
 

and subsequent drying.
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The REMOTE SENSING CENTER was established'by authority of the Boardof Directorsof
the Texas A&M University System on February 27, 1968. The CENTER is a consortium of four 
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