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SUMMARY 

This report describes the results of a study to define new misslon and 
sensor concepts for a 1990 oceanic observation program, which places strong 
emphasis on coastal monitoring needs. The concept assumes one active space­
craft in orbit and one in a backup inactive mode. Alrcraft and Data 
Collection Platforms remain active in a complementary support role in the 
coastal zone. Maximum use has been made of the Seasat and Natlonal Oceanic 
Satelllte System (NOSS) technology. 

Coastal and oceanic measurement needs expressed in past studies and 
conferences were considered in detail to define measurement goals for the 
prospective mlssion. User requirements were grouped according to flve maJor 
interests which apply to coastal and oceanic data users: physical oceanography, 
weather, bioresources, pollution, and shorellne phenomena. Bloresources and 
pollutlon interests required the most strlngent surface resolutions. Current 
NOSS-type sensors would need to be augmented with a special pointable, 
visible-IR sensor to meet such demands. The Multlspectral Resource Sampler 
was proposed to meet this need. On airplane platforms, laser sensors, 
multispectral vlsible scanners, microwave sensors, and cameras are proposed. 

Orbit designs which would meet mission needs were studied. The proposed 
orbit is Sun-synchronous with an inclination of 98.50 and an altitude of about 
750 km. These orblt parameters provide a repeat cycle of about 3 days which 
is desired. Two optional orbit sets, which use two simultaneously active 
spacecraft were also studied because of their attractlve surface coverages. One 
set is a Sun-synchronous and non-Sun-synchronous orblt combination, at 750-km 
altltude. This set combines the best of ocean and coastal coverage needs. The 
other set is two Sun-synchronous orbits at 775-km altitude providlng a 1-1/2-
day global coverage for improved repeat coverage. 

INTRODUCTION 

Remote monltorlng of U.S. coastal zones and global oceans has been of 
interest for more than a decade. Numerous studies have been funded to define 
objectives and measurement goals for such mlssions. The result of these 
studles was the Seasat program. Seasat was launched June 26, 1978, carrying 
flve sensors to achieve day/nlght ocean viewing and global ocean coverage 
every 36 hours. However, a major power fallure aborted the mlssion after only 
106 days in space. On October 23, 1978, the Nimbus 7 spacecraft was launched. 
It was the flrst U.S. satellite dedlcated to the monitoring of our envlronment 
and thus, lncluded water senslng. Two of lts six sensors now provlde temper­
ature and limlted spectral data over the oceans on a 6-day cycle. Other 
current satellltes which provlde data over the ocean lnclude the Landsat 
serles. Landsat 2 and 3 provlde limited multispectral data over the 
oceans on a comblned 9-day basls. Later, the Landsat-D satellites will 
contlnue this coverage but Landsat sensors are dedicated to and deslgned for 
Earth resources sensing over land. Likewlse, the meteorological satellites 
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SMS, GOES, NOAA, and TIROS-N, which provide sea-surface temperatures, do not 
provide sufficient data in many ways to satisfy our basic coastal zone and 
ocean monitoring needs. 

In response to this need, a second national ocean-monitoring satellite 
has now reached the advanced planning stage. This National Oceanic Satellite 
System (NOSS) (ref. l),is a cooperative endeavor between NOAA, DOD, and NASA, 
and if successful, would be launched in 1985. NOSS is not expected to be a 
copy of Seas at 1 but would incorporate some sensor changes in its basic 
complement and may incorporate some experimental sensors. NOSS is being 
planned as a 5-year mission involving the use of two satellites, one in 
orbit and one on standby. The NOSS would bring significant advancements in 
data-handling concepts and facilities. 

In light of these developments, future oceanic missions must now be 
examined. New sensor concepts will be available and understanding of the 
difficult coastal zone measurements will be advanced. More sensing of 
coastal zone parameters would be warranted and feasible in future oceanic 
missions. 

Coastal zone measurement needs differ from those of either open ocean or 
inland areas. In comparison to ocean needs, the coastal zone phenomena are 
often more dynamic, requiring more frequent monitoring and broader measurement 
ranges. Due to the physical boundaries, a finer spatial resolution is 
generally desired for coastal zone measurements than for those over the open 
ocean. In comparison to measurements taken over land, using optical sensors, 
coastal water radiances are weaker requiring sensors with greater signal 
gains. Specialized bands in both visible and infrared are desirable to 
maximize measurement capabllities in the coastal zone. 

This report describes the results of a study to define mission and 
sensor concepts for a 1990 oceanic mlssion which places a strong emphasis 
on coastal monitoring needs. Both coastal and oceanlC measurement needs 
expressed in past studies and conferences were considered in detail to 
establish the measurement goals. A broad prospective sensor complement 
is proposed, based strongly on the past Seasat and NOSS studies. Compatible 
sensor platforms are defined which include both spacecraft and aircraft. 
This combination was considered necessary to conduct a comprehensive mlssion. 
Spacecraft orbit designs that meet the mission goals are discussed and 
illustrated. 

ABBREVIATIONS AND ACRONYMS 

ALT Altimeter 

AOL Airborne Oceanographic Lidar 

CZCS Coastal Zone Color Scanner 

DCP Data Collection Platform 
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Tracking and Data Relay Satellite System 
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Visible and Infrared Radiometer 
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STUDY ASSUMPTIONS AND GUIDELINES 

This study was initiated to help guide future decisions by NASA and 
others in evaluating the best sensor complement and mission approach for a 
future coastal zone and ocean mission. Seasat 1 mission plans have been 
used as a guide. A large amount of data from the Jet Propulsion Laboratory 
(JPL) Seasat-B study (refs. 2, 3, 4, 5, and 6) also were considered in this 
study. The main reference, however, has been the NOSS report (ref. 1) 
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generated through the comb1ned inputs of NASA, NOAA, and the Department of 
Defense. In the NOSS concept, one spacecraft w1ll be placed in orb1t via the 
Space Transportation System (STS) with a second spacecraft on standby to achieve 
a 5-year mission. Spacecraft retrieval or in-orbit repa1r are possible 
follow-on options in the NOSS concept. The NOSS mlSS10n flight t1me 1S in the 
mld-1980's. Therefore, a follow-on m1ssion is reasonable 1n 1990. 

Guidelines followed in this study were: 

1. Apply mission measurement goals as def1ned from studies 1nvestigated 
in following sections of this report. 

2. Maxim1ze use of developed technology and technology inher1tance, 
thus reducing development r1sks, time, and costs. Cont1nued use of the NOSS 
sensor complement or some var1atlon is assumed. 

3. Assume two spacecraft, one launched in 1990 from WTR 1n a polar-type 
c1rcular orbit and the other remain1ng on the ground for later callup. 
Continuous ground support from aircraft and data-collection platforms will be 
employed to complement the active spacecraft. Use of the Multim1ss1on Modular 
Spacecraft launched by a Shuttle will be assumed. 

In the future, coastal activity will certa1nly not diminish. Navigational, 
natural resources, commercial, and env1ronmental interests must be considered. 
The coastal zone of the U.S. generally can be defined as the coastal waters and 
adjacent shorelines of the coastal states, including transitional and intertidal 
areas, salt marshes, wetlands, and beaches (Coastal Zone Management Act of 1972). 
Further, the outer boundary of the coastal zone often is taken as the point where 
~ater depth reac~es about 200 meters: Ho~ever, the U.S. territorial boundary 
1S now set 200 m1les from shore and 1n th1S study was considered the U.S. coastal 
zone outer boundary. 

The capability for true coastal monltorlng by remote sensors would lntro­
duce some important changes from that of the current NOSS m1SS10n concept. For 
example, 1n this study, vis1b1e spectrum sensors have been proposed w1th higher 
surface resolutions and wlth commandab1e pOlnting capab1llty. These steps were 
taken after carefully analyzing coastal and ocean user's needs reported ln 
studies of the past 15 years. These data were surveyed chronologically to 
understand trends and ass1mi1ate results. 

MEASUREMENT REQUIREMENTS 

Formatlon of "seawater measurement requlrements" for spacecraft began as 
early as 1964 when more than 150 oceanographers gathered at the Woods Hole 
Conference on Oceanography from Space (ref. 7). Only f1ve general requirements 
were formulated then: geoid, waves, lce, currents, and temperature. A study 
conducted in 1968 for Johnson Space Center (ref. 8) identlfied 26 requirements. 
The same year, two other studles, one for NASA/NAS (ref. 9), and one for 
Langley Research Center (LaRC) (ref. 10) identifled 12 requlrements. In all 
three 1968 studies, coastal-zone requ1rements were prominent ln add1tion 
to oceanographlc requirements. Three independent contract stud1es 
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were performed for LaRC in 1970-71 to define coastal and oceanographic 
measurement needs (refs. 11, 12, 13). Two of the three contractors (refs. 11 
and 12) developed a prioritized listing of the parameters desired, and the 
accompanying accuracy and frequency considered necessary for each parameter. 
The parameters are shown in table I. The most recent survey of user needs 
was made by JPL in 1976 (ref. 3) pertaining to the Seasat-B study. JPL's 
study, based on interviews with 40 potential users, gave little emphasis 
to coastal-zone needs, but recommended water color sensing. In 1977, NOAA 
provided a summary of its marine environment data needs (ref. 14) for 1980-1985 
and beyond. The report dealt particularly with oceanographic needs, because 
the impetus of the study was for remote ocean data, but the authors indicated 
that many additional coastal measurements also were needed. The measurement 
needs listed in the JPL and NOAA studies are shown in table II. 

Of all the studies reviewed, the four in tables I and II were considered 
the most applicable to the measurement goals of a coastal oceanic mission of 
the 1990 time period. Comparison of these four studies shows considerable 
agreement exists as to types of measurements although the priority of the 
measurements differ. Twenty-three different measurements were identified 
although some appear redundant, such as bioassays, plankton and fish. 
Many measurements may be difficult or impossible to sense presently but 
may be realistic goals for a 1990 mission. 

Coastal oceanic measurements can be grouped according to five major 
categorles of user interests. These categories are Pollution, B1oresource, 
Weather, Physical Oceanography, and Shoreline. The 23 measurement goals 
have been listed 1n table III according to these user 1nterests. This 
matrix readily shows where sensors might be selected to serve multiple 
User needs. An important complication arises at this point, however. 
The temporal and spatial resolutions desired for each user interest 
category vary from one study to another. Therefore, for the purpose 
of designating resolution goals for sensors, the ranges of resolutions 
found in the JPL, Virginia Institute of Marine Science, and Ocean Data 
System studies (refs. 3, 11, and 12) were used. The NOAA study 
resolutions were not included in this assimilation because these data 
were broken down by discipline and geographical areas; this made the 
asslmilation impractical. The range of spatial resolutions from the 
other three studies are given in table IV, while the temporal resolution 
ranges are given in table V. Thus, table III shows desired coastal 
and ocean measurements from the most applicable measurement studies, 
while tables IV and V show the range of spatial and temporal resolutions 
which apply to these measurements. The spatial resolutions for 
pollution and shoreline interests are the highest (generally between 
10 and 1000 m),while those for oceanographic interests are lowest 
(generally from 1 to 10 kilometers). Temporal resolutlons needed for 
pollution interests are the highest (hours), while shorellne lnterests 
are the lowest (days to weeks). 

New coastal measurement goals for this mission were established by 
segregating applicable measurement parameters from those of table III. The 
selection was based on the assumption that the pollution, bioresource, and 
shoreline interests represented the basic coastal zone measurement needs. 
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Therefore these measurement needs have been taken in this study as measure­
ment goals requiring new sensor approaches beyond those established for NOSS. 
These new coastal measurement needs are summarized in figure 1 along with the 
surface resolutions desired for each. The anticipated NOSS measurement 
capability for these measurements also is shown in figure 1 by the hatched 
tabs intruding from the right. This indicates graphically that although 
the NOSS sensors have a coarse measurement capability for many of the coastal 
parameters listed, the capability is basically outside the range of surface 
resolutions needed (10-800 m). A future oceanic and coastal mission must 
attempt to respond throughout the resolution ranges needed. 

The general conclusion drawn from these results has been that 1990 mission 
sensors must be capable of providing a wide field of view (FOV) for some needs 
while for other needs they must offer high surface resolution. Further, 
some areas must be viewed on a high-frequency basis while other areas will 
require only updates. In shor~ the sensor complement must provide a variety 
of coverage capabilities, and be able to respond within the scale of the 
U.S. coastal zone. • 

The following sections describe sensor/platform concepts which would 
respond to the coastal needs as well as to the oceanic needs. 

PROSPECTIVE OCEANIC AND COASTAL SENSORS 

Sensors considered for this mission included the optlons consldered 
for the NOSS, shown in table VI. Seasat 1 sensors are shown for comparison. 
Note that the Synthetic Aperture Radar (SAR) used on Seasat 1 was dropped and 
that the Visible and Infrared Radiometer (VIRR) will be replaced by the 
Coastal Zone Color Scanner (CZCS). The Seasat Scanning Multlfrequency 
Microwave Radiometer (SMMR) is now the NOSS LAMMR. The sensor options which 
are likely to fly on NOSS at this time are designated by an asterlsk. 
Approximately 25 percent of the NOSS total sensor complement (power, mass, 
and data capacity) may be reserved for new or modi fled sensors that are 
considered IIproof-of-conceptll types, providing funds are avallable. Other 
candidate ,aircraft and spacecraft sensors of both operatlonal or developmental 
types are listed in tables VII and VIII. Where known, the operational 
sensor's spatial coverage, mass, and power are included. 

Proposed Sensors for Oceanlc and Coastal Monitoring 

A proposed sensor complement was developed from table VI, and from 
tables VII, and VIII, for oceanlC and coastal needs, respectlvely. The 
sensor complement, which includes both spacecraft and alrcraft types, is 
detailed in table IX. In addition, for spacecraft, there are sensing systems 
for data collection from surface data gatherlng systems, and for precision 
orbit determination. 

Spacecraft sensor selection considerations.-The NOSS sensors were given 
first priority in the selection of proposed spacecraft sensors, but new 
sensors or variations were adopted where necessary to meet coastal-oriented 
user needs. The Scannlng Multifrequency Microwave Radiometer (SMMR), 
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Altimeter (ALT), Radar Scatterometer (SCAT), and Coastal Zone Color Scanner 
(CZCS) shown in table IX are early options of NOSS sensors. These have been 
selected as basically oceanic sensors for the proposed mission. The selected 
options of the SMMR, ALT, SCAT, and CZCS help to meet spatial resolution 
improvements desired by the coastal-oriented users yet take into account 
development risks (ref. 1) associated with the improvements. 

The coastal user needs stressed in figure 1 applied to near-shore waters 
as well as to outer coastal waters (or even open waters in some cases). 
To accommodate the near-shore part of this dual requirement the new 
Multispectral Resource Sampler (MRS) is proposed. The MRS (ref. 15) is 
under development by GSFC. Because it uses the later linear array detector 
technology, exceedingly good surface resolution (15 m) and sensitivity are 
anticipated at low mass and power requirements. Further, it will offer 
20 visible band choices in five combinations which are selectable from the 
ground. These bands can include polarization filters. The MRS will have a 
±40° crosstrack pointing capability for repeat coverage and ±55° along~track 
pointing for IIdwell ll coverage and stereo viewing. It should be provided with 
programmable pointing capability to maintain track on prearranged targets or 
on geographical zones of high interest such as the coastlines, where the orbit 
tracks permit. This feature incorporates the added flexibility of steering 
the sensor1s FOV out of the Sun-glitter cone. The CZCS would provlde 
complementary coarse resolution (600 m) and broad FOV sensing using IR and 
VIS wavelengths to cover the outer coastal waters. 

As a support system, the Surface Truth Acquisition System (STAS) will 
be needed to gather surface-truth data and emergency-condition data being 
beamed upward from the web of data collection platforms in the water. It has 
been assumed that both anchored and floating data collection platforms will 
be an important part of the overall mission concept. Table IX shows the 
anticipated capability for the STAS to communicate with surface collection 
platforms, research ships, etc. 

The Global Positioning System-Processor and Computer (GPS-PAC) is needed 
for precision orbit determination mainly for the ALT determinations of sea 
topography. To achieve accuracies of 10 cm, the GPS, laser retroflector, and 
a second satellite for triangulation could be used as well as S-band radar. 

Airplane sensor selection considerations.- Airplane sensors were 
considered necessary to provide adequate local coverage and proper spatial 
resolution for inner-coastal monitoring. Airborne sensors must be used to 
provide mission flexibility and to allow timely coverage over special coastal 
points of interest, for example, to accommodate a periodic monitoring 
emphasis on the coastline, or inner coastal zone. Several sensors should be 
available to meet different coastal needs. 

The Airborne Oceanographic Lidar (AOL) was selected particularly for its 
capability to perform vertical profiling, current detection, and environmental 
senslng in a highly localized area. AOL is currently in a state of development 
toward an operational instrument in either the bathymetric or fluorosensing 
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mode (ref. 16) through simple switching. In the bathymetric mode, the laser 
beam can penetrate to depths of 6 to 10 meters; in the fluorosensing mode, 
the return signal can be divided into 40 spectral channels for spectrographic 
analysis in the water. The AOL is limited currently to low altitudes and a 
relatively narrow FOV. Incorporation of a more powerful laser and an 
operationally modified design is needed. This would easily be possible by 
1990. 

The Modular Multiband Scanner (M2S) could be used when broader coverage, 
and coverage farther from the coastline is desired. The M2S (ref. 17) is 
an ll-band operational spectrometer with sensing capability ranging from the 
UV into the IR including the thermal IR. The M2S can be used at altitudes to 
4.6 km when carried on medium-size business aircraft. The scan mirror of the 
M2S is roll compensated to provide better scene control. As an airplane 
sensor, it is well proven for coastal and environmental needs. 

The Zeiss RMK-A is an aerial mapping camera that can be used with the 
AOL or M2S to locate and document their data sites and can provide high­
resolution maps of ground features. The Zeiss-RMK-A can accommodate four 
choices of aerographic film and a range of filters. Together with either the 
AOL or M2S, the Zeiss RMK-A can comprise a very powerful monitoring tool 
for airplanes. 

For salinity measurements and good temperature measurements on an inner 
coastal scale, an L/C-Band Radiometer has been incorporated in the airplane 
complement. Advanced technologies will provide pushbroom, multibeam coverage. 
Wind field support data would be needed and the Zeiss-RMK-A would supply 
documentation of data sltes. 

SENSOR SUPPORT PLATFORMS 

The satellite platform planned for future near-Earth payloads is the 
Multimission Modular Spacecraft (MMS) developed by GSFC. The MMS was not used 
on Seasat 1. It is fully compatible with the Space Transportation System (STS) 
(Shuttle) and can be comblned with mission-unique equipment to provide support 
for peculiar mission needs. This support can include add-on options such as 
tape recorders, computer memory, and propulsion modules. A complete 
description of the MMS and its options is given ln the MMS User's Guide 
(ref. 18). 

The MMS must be boosted to the deSlred injection altitude (700-850 km) 
from the STS parking orbit (278 km) by an intermediate propulsion system. 
The Teleoperator Retrieval System (TRS) (ref. 19) is one candidate to handle 
and deploy low-altitude STS payloads, although a special ~esign propulsion 
system can also be considered. The TRS can provide impulsive veloclty and 
attitude control thrusting, uSlng up to four propulsion kits, if necessary, 
with approximately 690 kg of hydrazine in each. 

The coastal oceanographic mission concept envisioned in this report, 
using the sensors proposed in table IX includes spacecraft, airplanes, and data 
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collection platforms. The basic support requirements imposed by the proposed 
sensor complement on spacecraft and airplane platforms are given in table X. 
Discussion of platform designs to meet these needs follows. Data collection 
platforms are discussed only in terms of their operational use. 

Spacecraft Platform 

This study assumed the use of the MMS with the STS, launched from the 
Western Test Range (WTR), and the use of the TRS for placement of the space­
craft in an orbit of approximately 700-850 km altitude. The STS would carry 
the spacecraft, the sensor payload, and the TRS to the parking orbit. Using 
only the integral propulsion kit of the STS, a 100 percent capacity payload 
delivery of about 14,500 kg is possible for high inclination orbits, but the 
75 percent effective loading is 10,875 kg. For comparison to this latter 
figure, a typical breakdown of the spacecraft/experiment/TRS mass requirement 
is shown in table XI. A total payload mass of 1111 kg was allowed to provide 
for a 25 percent mass margin to be reserved for growth or other sensors. 
About 525 kg of ascent propellant are required to boost the spacecraft to an 
800-km orbit, but 644 kg have been allowed to cover contingencies or a higher 
injection orbit (850 km). 

For electrical power, a four-panel, roll-up solar array has been assumed 
in this study. This array is sized to deliver 4600W at the end of 3 years 
in orbit aside from losses. This design would provide about 1200 W for 
experiment use plOOpercent margin). To allow for Sun occultations in the 
orbit, approximately six 50 ampere-hour batteries will be required. This can 
be accomplished (ref. 1) by using two baseline MMS power modules instead of 
the nominal one. 

Data handling, resulting from the operation of two to three sensors with 
outputs in the megabit per sec range, would impose an overwhelming data load 
on the Tracking and Data Relay Satellite System (TDRSS) S-band transmissions. 
Therefore, two NASA standard tape recorders with 4.5 x 108 bit capacity each 
would be needed. Part of the sensor output could be preprocessed or formatted 
onboard for easier transmission. Consequently, additional computer processor 
and memory units have been assumed in addition to that of the baseline MMS. 
In the event transmission to one of the TDRSS is not possible, communication 
to the Space Tracking and Data Network (STDN) stations could be provided as a 
backup. 

A sizable structural module must be added to the baseline MMS on which 
the solar arrays, antennas, and some sensor equipment can be located. With 
this module, additional wlring and thermal control would also be needed. 

Airplane Platforms 

Table XII shows several classes of commercially available propeller and 
jet airplanes and their cargo handling and flight characteristics (ref. 20). 
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Propeller airplanes are lower in initial cost than jets, but jets have greater 
speed and sometimes greater range. These airplanes can all be supplied with 
factory-built auxiliary fuel tanks, and alternators to extend performance. 

Support requirements imposed by the proposed airborne sensors would be 
dependent on whether all three sensors were carried simultaneously. Table X 
shows that the AOL, which is presently in a developmental state, is quite 
heavy and requires a high power level. Only the largest of the two airplanes 
of table XII could accommodate the present AOL. On the basis of an 
operational AOL of the 1980's, many airplanes shown in table XII may be 
capable of the job. When only the M2S or L/C-Band Radiometer and Zeiss RMK-A 
would need to be flown, any of the listed aircraft could be used. 

Airplanes will have the versatility to fly the sensors on regular 
mission runs or to provide special coverage of pollution episodes or disaster 
events. Airplanes can provide the very high ground-resolution data because 
of their low altitudes relative to satellites. This may require numerous 
passes to provide the required area coverage. In this manner, shoreline points 
of special interest around the coasts can be seen daily. This approach could 
require a fleet of airplanes, however, for high-density coverage of the 
coastal zone. Yet, this approach can be cost-effective and efficient (ref. 21). 
Unless a large number of sensors were to be carried simultaneously on the 
planes, power and volume requirements would not present a problem. Data­
handling requirements, however, could become astronomical, if continuous 
recording of high data rate sensors was attempted. Highly accurate position 
fixing of the airplane platform would be a problem also where the airplane 
operates farther from land. In fact, open ocean sensing well off shore by 
airplanes does not appear feasible for routine observations, but is excellent 
for disaster events. In marine water monitoring, the airplane should be 
considered complementary to the spacecraft platform but not a replacement. 

Data Collection Platforms 

When equipped with in situ marine sensors, Data Collection Platforms 
(DCP's) are the third support platform proposed. DCP's can provide in situ 
ground-truth data that remote sensors must have for calibration and frequent 
verification. In addition, the DCP's data can be taken with the frequency, 
and at the precise control point needed. In situ sensors could also be 
used to send a signal if dangerous pollution or weather conditions have been 
detected. 

Highly automated platfot'ms would be necessary to take advantage of a 
widespread distribution of the DCP's. The data could then be stored on the 
platform in a preprocessed form, and automatically relayed to the satellite 
or airplane when ln communication range. In other cases, free-drlfting 
platforms can be used in the water to obtaln data on local winds and currents, 
while the overflying satellite or airplane provides a position fix on the 
platform's location. Improvement in the environmental sensor is necessary 
at this time, however, to permit long-term, dependable operation in brackish 
and saltwater environments. Local users could be responsible for maintaining 
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the sensors and DCP's in their area, and thus, have a stake in gathering 
successful data. This approach will require compatible data receiving systems 
on the spacecraft and aircraft to gather DCP surface data. Surface data also 
could be gathered from ships and large data buoys on a continuous basis. 

PROSPECTIVE ORBIT DESIGNS 

The orbit design requirements for a 1990 coastal oceanic mission appear 
to be slightly different from those used for Seasat 1 (ref. 21). Orbit 
inclination requirements for Seasat 1 were ultimately dictated by the needs 
of the ALT and the SMMR. The two criteria were that intersections between 
the ascending and descending nodes of the spacecraft track be of sufficient 
angle to provide good surface-slope determinations by the ALT in two 
directions, and secondly, that the SMMR's coverage reach latitudes of at 
least ±72° for iceand other near-polar observations. The altitude requirements 
for the Seasat 1 orbit were based on orbit lifetime, tracking signal strengths, 
and sensor signal strengths. Ultimately, a non-Sun-synchronous, circular 
orbit of 108° inclination and 794-km altitude was chosen for Seasat 1. An 
approximate 3-day repeat was used which provided global coverage with the 
altimeter every 152 days. 

The final selection of orbit has not been made for the NOSS mission at 
this time. Primary considerations at this time are a Sun-synchronous orbit 
at 98.2° inclinatlon and 700-km altitude, and for non-Sun-synchronous orbits 
at about 87°, 93°, or 108° inclination and altitudes of 700-900 km. 

An important factor, which must be considered for a coastal oceanic orbit, 
is the ability to provide good upwelling light sensing, for maximal detection 
of material within the water. The visible sensors mentioned previously will 
need to Vlew upwelling light with mid-morning to afternoon Sun conditions. 
Generally the orbit design must provide for sensing over the water areas when 
solar-elevation angles of greater than 30° exist. These conditions suggest 
the use of a circular, Sun-synchronous orbit with an equatorial crossing 
time chosen to favor the measurement latitude of maximum interest. At the 
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ALTITUDE CONSIDERATIONS 
• Orbit trim maneuver not oftener than limo 
• Higher altitudes for long-tracking window 
• Higher altitudes for orbit stability 
• Altitude changes not greater than 50 m/s 
• Lower altitudes for increased signal 
• Higher altitudes for longer orbit lifetime 

SENSOR 
ALT 

ALL SENSORS 
ALT 
ALT 

ALT, CZCS, MRS 
ALL SENSORS 

The proper orbit should allow, among other things, contiguous surface 
coverage by the sensors between closest orbit tracks. Figure 2 illustrates 
how the equatorial distance between closest orbits varies with the number of 
orbits per day and how this affects orbit repeat cycle. For comparison, the 
swathwidth capability of the proposed sensors, including the MRS is also 
shown, using the orbit spacing scale. The SMMR, SCAT, and CZCS swathwidths 
are well matched with orbit-repeat cycles of 2 to 3 days, while the ALT 
swathwidth matches a repeat cycle that is 160 to 170 days. About 60-day 
repeat cycles are required for a match of the MRS swathwidths, but this is 
a pointab1e sensor, not responsible for contiguous coverage. An obvious 
solution for the ALT is to use either a compromise Q-value, or a repeat cycle 
of about 3 days which includes an extra longitudinal precession of about 18.5 km 
each repeat, sufficient to precess around the globe in the 160 to 170 days. 
The latter is proposed for this mission. 

Other orbit design factors affecting Q-va1ue are altitude and inclination. 
The effect of orbit inclination depends on whether Sun-synchronous or non­
Sun-synchronous orbits are chosen. Non-Sun-sunchronous orbits are more 
strongly affected by inclination angle. Figures 3 and 4 show the effect of 
both altitude and inclination on Q-va1ue for non-Sun-synchronous and Sun­
synchronous orbits, respectively. Near-polar inclinations appear most 
favorable for achieving altitudes in the range of 750 km, assuming Q-va1ues 
of about 14-1/3 are desired. The Sun-synchronous orbit case for a Q-value 
of 14-1/3 has an altitude of about 775 km. 

To illustrate surface coverage patterns from such orbits, a Sun­
synchronous orbit with h = 775 km and i = 98.2°, and two non-Sun-synchronous 
orbits (i = 84°, h = 752 km) and (i = 87°, h = 757 km) are shown in figure 5. 
The orbit node crossing angles, a serious concern for the ALT, can be seen 
for each of the orbits of figure 5. The Sun-synchronous orbit (i = 98.2°) 
provides the largest crossing angles of the three orbits shown. The proposed 
system option for the ALT could provide highly improved crosstrack slope 
resolution on the surface beyond that of the Seasat 1 ALT, thus greatly 
reducing the crossing angle restriction. Figure 6 shows the same three orbits 
from the polar view (north and south), and compares the polar coverage 
capabilities of the three orbits, where ice viewing is important. It must be 
recognized that the SCAT and LAMMR sensors will provide up to go to 60 of 
sidetrack coverage (see table IX). 
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Since it can be assumed that the MRS needs a Sun-elevation angle (SEA) 
of at least 30° to provide a sufficient level of upwelling light from the 
water, figure 7 shows the percent of days each year when a 30° or greater SEA 
exists at any latitude. Several important points can be made: at up to 
±36.5° latitude, a daily period of 30° or greater viewing exists on a 
year-round basis; at ±60o latitude only about 1/2 of the days each year allow 
such viewing. Above ±79° latitude, the available days per year of such 
viewing drop below 20 and reach zero at ±83.5° latitude. As shown in figure 8, 
viewing could occur only during the summer months in the polar areas. The 
result is that visible sensors can be used effectively only up to latitudes 
of about ±75°, and the upper reaches of these latitudes can be monitored 
only during the local summer months. 

A computer analysis was made to compare the visible sensing potential 
for each of the three previously mentioned orbits. This was done by comparing 
the viewing opportunities afforded a nadir-viewing sensor in each orbit. A 
viewing opportunity occurred for each degree of latitude flown over. If the 
SEA condition was 30° or greater anytime during the pass, a successful 
viewing opportunity occurred. For each orbit,a full year of opportunities 
was considered. The percent of successes was generated as a function of 
orbit latitude. Figure 9 shows these results for the three orbits, but 
with the data averaged over 5-degree latitude blocks. On an annual basis, 
the Sun-synchronous orbit provided 62 percent more successful opportunities 
than the 87° orbit and 54 percent more than the 85° orbit. 

A final consideration in the design of an orbit is the need for good 
solar illumination on the deployed solar panels which provide spacecraft 
power. The solar energy available will depend on the fraction of the orbit 
which is in sunlight versus that occulted by the Earth. The orbital factors 
involved are: orbit altitude and inclination, equator crossing time, and 
time of year. Figure 10 shows how the orbit fraction in sunlight for the three 
sample missions discussed thus far, varies with the time of year. The 
results for the Sun-synchronous orbit are highly dependent on the local time 
selected for equatorial crossing. Assuming crossing times around 12 noon, 
which are generally preferred, the Sun-synchronous orbits are seen to provide 
the lowest orbit fraction in sunlight. 

The assumed concept for this mission called for two spacecraft; one 
spacecraft would be active while the other is a backup. However, several 
attractive combinations using two active spacecraft should be considered. 
These can provide particularly desirable coverage of oceanographic and coastal 
parameters. Two such combinations are proposed here. One combination would 
be a Sun-synchronous and non-Sun-synchronous orbit set, with each spacecraft 
using the same circular altitude to provlde consistent sensor footprints. 
If the altitude of 750 km were chosen, the respective orbits could be the 
following: 
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Orbit element Sun-synchronous Non-Sun-synchronous 

Altitude, km 750 750 

Inclination, deg 98.399 82.35 

Semi-major axis, km 7128 7128 

Period, sec 5996.4 5996.5 

Q, orbits per day 14.408 14.333 

Repeat cycle, days ~2 1/2 ~3 

These data show that the orbits are nearly alike except in repeat cycle 
and inclination angle. These two parameters, however, produce different 
solar conditions for the two orbits. Thus, visible sensing could be emphasized 
on the Sun-synchronous orbiting spacecraft while microwave and IR sensing 
could be emphasized on the non-Sun-synchronous spacecraft. 

A second, attractive,two-spacecraft combination is to fly both spacecraft 
in Sun-synchronous 3-day orbits (775-km altitude), which are phased to produce 
global coverage in 1-1/2 days. This could be accomplished by initiating the 
orbit of spacecraft-B at a point midway between the first and second orbits 
of spacecraft-A and at 1-1/2 days later. When the 3-day repeat pattern of 
coverage is complete for each spacecraft, the equatorial distance between 
minimum (filled-in, not consecutive) tracks would be only 466 km. The CZCS, 
SCAT, and SMMR would view 86 percent of the equatorial area daily with this 
two-spacecraft combination. At latitudes beyond ±31o, 100 percent coverage 
woulrl be achieved daily. The MRS, which would have a 5wathwidth of about 15 or 
30 km, would be used on a pointable basis to cover important ocean or coastal 
targets with an excellent capability for repeat views from many nearby orbits. 

CONCLUDING REMARKS 

This study has shown measurement needs and mission approaches for a 
1990 oceanic mission which provides emphasis on coastal zone monitoring. 
Studies of marine monitoring interests over the past 15 years were surveyed. 
Most of these studies defined monitoring needs in the coastal zone, as well 
as the open ocean. All measurement needs were grouped according to five 
major monitoring interests: shoreline, pollution, bioresources, weather, and 
physical oceanography. Pollution and bioresource needs, which interrelate 
strongly, are the most demandlng from the resolution standpoint. The NOSS 
will concentrate on oceanographic monitoring mainly; although it will carry 
the CZCS for limited coarse coastal sensing. It has been proposed that a 
follow-on oceanographic mission have a sensor complement which is more 
responsive to the scale and needs of coastal areas. Specifically, sensors 
must be included which provide very high spatlal resolution, as well as 
sensing in the visible spectrum. 
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To meet both coastal and oceanographic mission goals, a broad spacecraft 
sensor complement was proposed. To provide versatility, airplane sensors and 
data collection platform sensors were required. The list of spacecraft 
sensors chosen included the SMMR, SCAT, ALT, CZCS, and MRS. Airplane sensors 
proposed were the AOL, M2S, L/C-band radiometer, and the Ziess RMK-A camera. 

Support platforms for the specified sensors can be supplied from systems 
now available or those which will be available before the mission time of 
1990. The space support platform proposed is the MMS/STS/TRS combination. A 
review of business airplanes showed that for airborne support platforms, 
numerous selections can be made. Data Collection Platforms (DCP), which are 
included in the proposed mission concept, would automatically provide the 
vital surface truth data, or special in situ data, on a high-frequency basis. 
Improvements are necessary, however, in the state-of-the-art of marine water 
sensors on DCP's to permit long-term, dependable operation. 

Orbit design for this mission required consideration of conflicting 
sensor needs. Because coastal science goals strongly favored selection of a 
Sun-synchronous orbit, this approach was proposed. Orbits with 3-day 
repeat cycles fit the swathwidths of the SMMR, SCAT, and CZCS, assuming 
about 750-km altitude orbits. The pointable MRS would look at targets of 
special interest lnstead of providlng contiguous coverage. For illustration 
purposes, two non-Sun-synchronous orbits (i = 84° and 87°) and one Sun­
synchronous orbit (i = 98.5°) have been used throughout as sample cases. In 
a computerized comparison of visible viewing opportunities between these 
orbits, opportunities were found to be more than 50 percent greater for 
the Sun-synchronous orbit than for either of the non-Sun-synchronous orbits. 
On the other hand, concerning an analysis on fraction of orbit time in 
sunlight to receive solar power, the Sun-synchronous orbit was the poorest 
of the three orbits. 

In this study, two spacecraft were assumed, one in orbit and one on 
standby. Two optional schemes were proposed for the use of two simultaneously 
active spacecraft to improve coverage capabilities. One scheme involves one 
spacecraft in a Sun-synchronous orbit and the other spacecraft in a non­
Sun-synchronous, hlghly inclined orblt at 750 km. The second scheme involves 
the two spacecraft in interlaced Sun-synchronous orbits of 775-km with a 
combined repeat cycle of 1-1/2 days. 
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TABLE I 

REQUIRED COASTAL OCEANOGRAPHIC MEASUREMENT PARAMETERS 

CONTRACTOR 
DATE OF STUDY 

PRIORITY OF PARAMETERS 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

VIMS* (Ref 11) 
SEPTEMBER 1970 

Water temperature 
Water color 
Sal inity 
Coastal vegetation, land use 
Oil 
Bathymetry 
Tides 
Shorelines 
Shore topography 
Sea state 
Sea level (altlmetry) 
Ice 
F1Sh 

* Virginia Instltute of Marlne Science, Gloucester, Va. 

** Ocean Data Systems, Inc., Rockville, ~1d. 

ODSI** (Ref 12J 
FEBRUARY 1971 

Currents 
Bathymetry 
Water temperature 
Tides 
Oil 
Sediments 
Winds 
Color 
Plankton 
Sal inity 
Precipitation 
Vegetation 
Alr temperature 
Fish 
Bioassays 
Nutn ents 
Topography 
Water density 
Freshwa ter i nfl 0\\ 
Particulates 
Metals 
Waves 
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STUDY GROUP 
DATE OF STUDY 

ORDER OF PRIORITY 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

* Jet Propulsion Lab 

TABLE II 

REQUIRED OCEANOGRAPHIC MEASUREMENT PARAMETERS 

JPL* (Ref 3) 
OCTOBER 1976 

Surface winds 
Water surface temperature 
Gravity waves 
Sea ice 
Ocean color 
Currents (topographs) 
Atmos. temp. profile 
Atmos. moisture profile 
Surface air pressure 
Buoy data collection 
Cloud cover 
Cloud velocity 
Marine geoid 
Land features 
SOll moisture 
Sal inity 
Radiation budget 
Subsurface lapse rate 

NOAA-NESS** (Ref 14) 
JANUARY 1977 
NOTE - NO PRIORITY WAS 
SPECIFIED BY STUDY 

Precipitable water 
Precipitation 
Surface winds 
Surface air temperature 
Sea surface temperature 
Wave directional energy spectra 
Sea ice conditions 
Surface currents 
Tides - astronomical and storm 
Salinity at surface 
Chlorophyll 
Turbidity 
Shallow water turbldity 

** National Oceanic and Atmospherlc Admlnistration-Natlonal Environmental Satellite 
Service 
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TABLE III 

MEASUREMENT PARAMETERS, LISTED ACCORDING TO MAJOR USER INTERESTS 

MEASUREMENT PHYSICAL 
PARAMETER POLLUTION BIORESOURCE WEATHER OCEANOGRAPHY SHORELINE 

Water color X X X 

Plankton X X X 

Sa 1 inity X X X X 

Bloassay X X 

Nutnents X X 

Particulates X 

Metals X 

Oil X 

Water temp. X X X X 

Bathymetry X X X 

Vegetation X X 

Fish schools X 

Wlnd dir.&vel. X X X X X 

Precipitation X 

Water density X X 

Currents X X X X 

Freshwater X X X 
inflow 
Ice X X 

Tides X X X 

Waves X 

Sea topography X 

Land use X 

Sediments X X 
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TABLE IV 

DESIRED SPATIAL RESOLUTIONS 

MEASUREMENT PHYSICAL 
PARAMETER POLLUTION BIORESOURCE WEATHER OCEANOGRAPHY SHORELINE 

Water color 10-100m l-lOkm l-lOOOm 

Plankton 20-50m 100-1000m O.l-lOkm 

Salinity 10-100m 100-1000m O.l-lOkm 10-1000m 

Bloassay lO-lOOm 100-1000m 

Nutrlents 10-100m 100-1000m 

Partlculates 10-100m 
Metals 10-1000m 
Oil 10-100m 
Water temp. 100-1000m 100-1000m 1-5km 100-1000m 

Bathymetry l-lOkm 1-10km 10O-1000m 

Vegetation 10Om-10km 1 Om-l km 

Fish schools 100-1000m 

Winds 10km 10km 10km 10-50km 1 km 

Precipitation 1 OOm-l Okm 

Water density l-lOOkm l-lOkm 

Currents 10-100m 100-1000m l-lOkm 
I 

100-1000m 

Fresh\'~ater 10-100m 100-1000m , l-lOkm 
inflow 
Ice 100m-l0km 1 OOm-l Okm 

Tldes 100-1000m 100-1000m 100-1000m 

Waves 100m 

Sea topography 1-10km 

Land use 10m-10km 

Sediments 10-100m lm-l km 

21 

TABLE IV 

DESIRED SPATIAL RESOLUTIONS 

MEASUREMENT PHYSICAL 
PARAMETER POLLUTION BIORESOURCE WEATHER OCEANOGRAPHY SHORELINE 

Water color 10-100m l-lOkm l-lOOOm 

Plankton 20-50m 100-1000m O.l-lOkm 

Salinity 10-100m 100-1000m O.l-lOkm 10-1000m 

Bloassay lO-lOOm 100-1000m 

Nutrlents 10-100m 100-1000m 

Partlculates 10-100m 
Metals 10-1000m 
Oil 10-100m 
Water temp. 100-1000m 100-1000m 1-5km 100-1000m 

Bathymetry l-lOkm 1-10km 10O-1000m 

Vegetation 10Om-10km 1 Om-l km 

Fish schools 100-1000m 

Winds 10km 10km 10km 10-50km 1 km 

Precipitation 1 OOm-l Okm 

Water density l-lOOkm l-lOkm 

Currents 10-100m 100-1000m l-lOkm 
I 

100-1000m 

Fresh\'~ater 10-100m 100-1000m , l-lOkm 
inflow 
Ice 100m-l0km 1 OOm-l Okm 

Tldes 100-1000m 100-1000m 100-1000m 

Waves 100m 

Sea topography 1-10km 

Land use 10m-10km 

Sediments 10-100m lm-l km 

21 



TABLE V 

DESIRED TEMPORAL RESOLUTIONS 

MEASUREMENT PHYSICAL 
PARAMETER POLLUTION BIORESOURCE WEATHER OCEANOGRAPHY SHORELINE 

Water color l/day l/day limo 

Plankton l/wk l/wk l/wk 

Sa 1 i nl ty l/wk l/wk l/wk l/wk 

Bloassay l/hr l/day-l/wk 

Nutn ents l/hr-l/day 
Particulates l/hr-l/day 
Metals l/hr-l/day 
Oil l/hr-l/day 
Water temp. 1 /hr-l /wk l/hr-l/day l/day l/day-l/w k 

Bathymetry limo l/wk limo 

VegetatlOn limo limo 

Fish schools l/day-l/wk 

Winds l/hr-l/day l/hr-l/day l/hr l/hr-l/day l/day 

Precipitation l/hr 

Water density l/day l/day 

Currents l/day l/day-l/wk l/day l/wk-l/mo 

Freshwater l/day-l/wk l/hr-l/day l/day-l/w k 
inflow 
Ice l/day lj'tJk 

Tldes l/hr l/hr-l/day l/day 

Waves l/hr-l/day 

Sea topography 1/2 day 

Land use l/wk-l/mo 
Sediments l/day l/wk-l/mo 
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TABLE V 
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I\) 
w 

SENSOR 
CHARACTERISTICS 

LAMMR 
Antenna aperture (m) 
Frequencies (GHz) 

Resolution (km) 

Scan (deg) 
Swath (km) 
Mass/Pwr(kg/W) 
Data rate (kbps) 
Goals: Accuracy/Resol. 
Surface Temp. (oK/km) 
Wind speed (m/s/km) 
Ice cover (km) 
Atmos. water vapor (km) 

ALT 
Nadir beam: 
Altlmetry precision (cm) 
Ground resol. (km) 
Off-nadir beam: 
Altimetry precision (cm) 
Ground coverage (km) 
Wind speed 

SEASAT 1 
SENSORS 

(SMMR) 

0.8 
6.6, 10.7, 18, 
21, 37 

TABLE VI 

NOSS SENSOR OPTIONS 

OPTION 
A 

-Ie 

4 

4.3, 10.65, 
18.6, 21.3, 
36.5, 91 

150, 90, 53, 43, 36, 15, 9, 8, 
27 7,3.5 
-3 to +47 (rt side) 360 
600 1350 
42/80 350/150 
2 

: 1.5/150 
2/90 
27 
53 

10 
1.6 to 12 

<20% 

100 

: 1. 0/35 
2/15 
7 

9 

-Ie 

10 
1.6 to 12 

<20% 

OPTION 
B 

3 

Same as A 

OPTION 
C 

4 

6.6, 18.6, 
21.3, 36.5, 
91 

47, 21, 12 23, 9, 8, 7, 
11, 7, 3.5 3.5 
360 360 
1350 1350 
260/150 340/140 
100 

+ 1 .0/35 
2/21 
7 

12 

7 
1.6 to 7.6 

35 
25 
<20% 

35 

: 1.0/35 
2/14 
7 

9 

7 
1.6 to 12 

18 
50 
<20% 

*-Most likely for NOSS flight 

OPTION 
D 

2 

18, 22, 37, 90 

18, 16, 14, 7 

360 
1350 
140/100 
12 

N.A. 
3/18 
14 
18 

7 
1.6 to 12 

18 
50 
<20% 
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N 
.j::o. 

SENSOR 
CHARACTERISTICS 

ALT (Continued) 

Sea state Hl/3 accuracy 
Ground resolution (km) 
Currents, speed (m/sec) 
Currents, direction (deg) 
Ice coverage (percent) 
Ground resolution (km) 
Mass/Pwr(kg/W) 
Data rate (kbps) 

SCAT 

Antenna per spacecraft 
Wind speed 
Wind direction (deg) 
Ground resolution (km) 
High-wind swath (km) 
Lo\',-wind swath (km) 
Mass/Pwr(kg/W) 
Data rate (bps) 

SAR 

Wave directlon 
Wave length 
Ice resolutlon(m) 
Feature resolution (m) 
Currents 
Salinity ppt, resol. (km) 
Frequency 
Antenna swath (km) 
t~ass/Pwr( kg/W) 
Data rate (Mbps) 

SEASAT 1 
SENSORS 

SO cm or 10% 
>10 
lS 
10 
10 
<lS 
94/164 
8.S 

4 
+ 2m/s or 10% 
+ 20 
<50 
750 @ + 200 km 
SOO @ + 200 km 
102/135 
S40 

TBD 
TBD 
2S 
2S 
TBD 

L-Band 
100 
80/421 
>100 

TABLE VI-Continued. 

OPTION 
A 

* 

SO cm or 10% 
>10 
lS 
10 
10 
<lS 
164/168 
8.S 

>I-

6 
+ 2m/s or 10% 
+ 10 
<SO 

600 @ + 70 km 
224/309 
<2k 

OPTION 
B 

SO cm or 10% 
> 10 
10 
S 
10 
<lS 
170/168 
17 

4 

<SO 

600 @ + 70 km 
297/312 
<2k 

OPTION 
C 

SO cm or 10% 
> 10 
10 
S 
10 
<lS 
200/168 
20 

8 

<SO 

600 @ + 70 km 
446/340 
<2k 

SAR will not be used on NOSS 

OPTION 
D 

50 cm or 10% 
>10 
10 
S 
10 
<lS 
220/168 
20 

SENSOR 
CHARACTERISTICS 
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N 
U1 

SENSOR 
CHARACTERISTICS 

VIRR 
Number of Channels 

Wavelengths(ll m) 

Grd. resolution**(km) 

Swath**(km) 
Mass/Pwr (kg/W) 
nata rate 

CZCS 

VIS 
IR 
VIS 
IR 
VIS 
IR 

No. of Channels VIS 
IR 

Center wavelengths (urn) 

Grd. resolution (km) VIS, 
IR 

Swath (km) 
Mass/Pwr(kg/W) 
Data rate 

SEASAT 1 
SENSORS 

1 
1 
0.4-0.7 

10.5-12.5 
2 
3.7 
1800 
9/8 
3.6 kbps 

TABLE VI-Concluded 

OPTION 
A 

OPTION 
B 

OPTION 
C 

VIRR will not be used on NOSS 

4 
2 

0.44,0.52,0.55 
0.67,0.75, 11.5 

0.6 
0.6 

1200 
40/39 
800 kbps 

* 
6 
2 

0.40,0.44,0.52,0.56 
0.64,0.685,0.75,0.88 

0.6 
0.6 

1200 
40/50 
1.2 Mbps 

8 
4 

0.4 
0.4 

1200 

6 Mbps 

** Ground resolution and swath based on 750-km altitude. 
N 
U1 

SENSOR 
CHARACTERISTICS 
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0.64,0.685,0.75,0.88 

0.6 
0.6 

1200 
40/50 
1.2 Mbps 

8 
4 

0.4 
0.4 

1200 

6 Mbps 

** Ground resolution and swath based on 750-km altitude. 



TABLE VII 

OPERATIONAL COASTAL OCEANOGRAPHIC SENSOR CANDIDATES 

SENSOR 

CZCS 

MSS-3 

RBV-3 

Thematic Mapper 

SAR 

SMMR (Seasat 1) 

SCAT (Seasat 1) 

ALT (Seasat 1) 

AVHRR 

L-band Radiometer 

AOL 

Ocean Color Scanner 

12S camera 

Zeiss RMK-A camera 

Hasselblad camera 

Vinten camera 

Enviro-Pod 

Spacecraft Types 

SENSING CHANNELS 

4 VIS, 1 NIR, 1 Therm 

2 VIS, 2 NIR, 1 Therm 

2 VIS 

3 VIS, 2 NIR, 1 IR, 1 Therm 

1 L-Band 

2 X-Band, 2 K-Band, 1 Q-Band 

1 Ku-Band 

1 K-Band 

1 VIS, 1 NIR, 1 IR, 1 Therm 

Alrcraft Types 

8 VIS, 2 NIR, 1 Therm 

L-Band 

1 VIS 

9 VIS, 1 NIR 

B&W, Color, I.R. Films 

B&W, Color, I.R. Films 

B&W, Color, I.R. Films 

B&W, Color, I.R. Films 

B&W, Color, I.R. Films 

*Dependent on sensors carried 

26 

MASS, KG 

40 

64 

60 

227 

80 

42 

60 

70 

27 

113 

140 

680 

226 

20 

45 

3.4 

6.3 

* 

POWER, W 

39 

55 

160 

250 

421 

80 

140 

150 

27 

740 

330 

6 KVA 

7 amp- 115V AC 
2.5 amp-28V DC 

230 

224 

12 

280 

* 
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TABLE VI II 

EXPERIMENTAL COASTAL OCEANOGRAPHIC SENSOR CANDIDATES 

Aircraft and Spacecraft Types 

SENSOR 

Advanced Ocean Color Sensor 

Advanced Airborne Ocean Lidar 

Radar Ocean Wave Spectrometer 

Advanced Spacecraft Scatterometer 

Multip~rpose Ocean Radar 

Multifrequency Ice Mapping Radar 

Advanced SAR 

Swept Aperture Radar 

Surface Contour Radar 

Surface Pressure Radar 

Rain Radar 

Advanced Scanning Multichannel Microwave Radar 

High Resolution Microwave Radar 

Stepped Frequency Microwave Radar 

Advanced Radar Altimeter 

Subsurface Sounder 

Fraunhofer Line Dlscriminator 

Airborne Lidar Ocean Pollutlon Experiment 

L/C-Band Radiometer 

Multispectral Resource Sampler 

ORGANIZATION 

GSFC-NASA 

WFC-NASA 

LaRC-NASA 

LaRC-NASA 

GSFC-NASA 

LeDC-NASA 

JPL-NASA 

APL 

WFC-NASA 

GSFC-NASA 

GSFC-NASA 

GSFC-NASA 

LaRC-NASA 

LaRC-NASA 

WFC-NASA 

WFC-NASA 

USGS 

LaRC-NASA 

LaRC-NASA 

GSFC-NASA 
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TABLE IX 

PROPOSED SENSOR COMPLEMENT 
SURFACE SURFACE 

SENSOR (OPTION) 
----.- MEASUREMENTS ACCURACY RESOLUTION SWATH 

Spacecraft Sensors Km Km 

SMMR (NOSS-C) High wind speed, 7-50 m/s 2 m/s 14 1350 
Surface temperature 10K 35 1350 
Ice cover 1% (precision) 7 1350 
Precipitation over water 1 octave ~precision) 9 1350 
Atmospheric water vapor 200 mg/~m (precision) 9 1350 
Atmospheric liquid water 5 mg/cm (precision) 9 1350 

ALT (NOSS-B) Geoid 7 cm 1. 6-7.6 1.6-7.6 
Wind speed <20% <15 1.6-7.6 
Sea state 50 cm or 10% 10 1.6-7.6 
Ocean current speed 10 cm/s TBD 1 .6-7.6 
Current direction 50 TBD 1.6-7.6 
Ice cover 10% <15 1 .6-7.6 
Ice height 0.2m TBD 1.6-7.6 

SCAT (NOSS-A) Low wind speed, 4-28 m/s 2m/s or 10% 25-200 1200 
Wind direction 100 25-200 1200 

CZCS (NOSS-B) Water temoerature 0.80K 0.6 1200 
Turbidity TBD 0.6 1200 
Ch 1 orophyll TBD 0.6 1200 

MRS Coastal chlorophyll TBD MODE 1 0.015 15 
Sedlment, Turbidity TBD MODE 2 0.030 30 
Vegetation TBD 
Ocean dumps TBD 
Acid and sewage plumes TBD 
Oil TBD 

N 
Q:) 

TABLE IX 

PROPOSED SENSOR COMPLEMENT 
SURFACE SURFACE 

SENSOR (OPTION) MEASUREMENTS ACCURACY RESOLUTION SWATH 

Spacecraft Sensors Km Km 

SMMR (NOSS-C) High wind speed, 7-50 m/s 2 m/s 14 1350 
Surface temperature 10K 35 1350 
Ice cover 1% (precision) 7 1350 
Precipitation over water 1 octave ~precision) 9 1350 
Atmospheric water vapor 200 mg/~m (precision) 9 1350 
Atmospheric liquid water 5 mg/cm (precision) 9 1350 

ALT (NOSS-B) Geoid 7 cm 1. 6-7.6 1.6-7.6 
Wind speed <20% <15 1.6-7.6 
Sea state 50 cm or 10% 10 1.6-7.6 
Ocean current speed 10 cm/s TBD 1 .6-7.6 
Current direction 50 TBD 1.6-7.6 
Ice cover 10% <15 1 .6-7.6 
Ice height 0.2m TBD 1.6-7.6 

SCAT (NOSS-A) Low wind speed, 4-28 m/s 2m/s or 10% 25-200 1200 
Wind direction 100 25-200 1200 

CZCS (NOSS-B) Water temoerature 0.80K 0.6 1200 
Turbidity TBD 0.6 1200 
Ch 1 orophyll TBD 0.6 1200 

MRS Coastal chlorophyll TBD MODE 1 0.015 15 
Sedlment, Turbidity TBD MODE 2 0.030 30 
Vegetation TBD 
Ocean dumps TBD 
Acid and sewage plumes TBD 
Oil TBD 



N 
1.0 

SENSOR 

STAS 

GPS-PAC 

Laser Retroflector 

AOL 

M2S 

Zeiss RMK-A Camera 

LIC Band Radiometer 

TABLE IX- Concluded. 

MEASUREMENTS ACCURACY 

Spacecraft Support Sensors 

OCP positions 
OCP data collectlon 

Bathymetry 
Oil 
Fish 

Airplane Sensors 

Chlorophyll, plankton 
Currents 
Acids, sewage 
Chlorophyll, plankton 
Acids 
Sediments 
Oil 
Vegetation 
Sea state 
Beach erosion 
Shoreline features 
Turbidity 
Shore vegetation 
Coastal structures 
Ship identification 

Salinity 
Temperature 

Skm 

Sm 

0.3m (depth) 
TBO 

1 

SURFACE 
RESOLUTION 

8 DCPs simultaneously, 
or 200/Mlnute 

1.07 m RMS 
TBD 

1 
10.8 m 

at 4.3 km alt. 

! 
3.7-S.8m at 6km alt. 

1 

SURFACE 
SWATH 

1000 per 
orbit 

Zenith to 
100 below 
horizon 
±600 FOV 

0- lSo 
1-20 mr 

1 
10.3 km 

at 4. 3 km alt. 

! 
41-42km at 6km 

alt. 

1 

"='2km at 6 km 

! 
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SPACECRAFT SENSORS 
Core Types 

SMMR 
ALT 
SCAT 
CZCS 
MRS 

Support T~pes 
STAS 
GPS 

Laser Retrof1ector 

AIRPLANE SENSORS 
AOL 
M2S 

Zeiss RMK-A Camera 

LIC Band Radiometer 

TABLE X 

SUPPORT REQUIREMENTS FOR PROPOSED NOSS SENSOR COMPLEMENT 

PREFERRED SPECIAL SUPPORT REQUIREMENTS 
VERSION MODIFICATION KG W KBPS 

NOSS-C 340 140 35 

NOSS-B 170 168 17 

NOSS-A 224 309 2 

NOSS-B 45 55 1.9K 

New 55 55 15K 

ARGOS 20 40 
20 31 0.5 
15 N.A. 

Core and Support Total 889 518 ~17K 

680 6KVA 100 
121 1.6KVA 67-670 

45 224 N.A. 

<100 
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TABLE XI 

POTENTIAL SPACECRAFT MASS BUDGET 

SPACECRAFT ITEMS MASS, KG 

MMS baseline modules and equlpment 746 

MMS Options 

2-STDN/TDRSS NASA 5W transponders 11 
2-NASA Standard 4.5 x 108 bit tape recorders 26 
3-50 Amp-Hr batteries 150 
Propulsion module (for orblt adjustment, includes propellant) 153 

Mission Unigues 

Additional power modu~e 
Solar array, 4-15.2 m wings for 4600 W EOL 
Solar array drives, electronics 
Added power distribution/regulation 
High gain S-band and Ku-band antennas, booms 
Low-gain STDN antennas (2) 
Extra cabling 
Additional thermal control 
Experiment support module 
Additional mechanlsms 
Remote interface units (22) 
Computer memory units 

Core/complementary sensors 
Growth sensors, (25% of total) 

Basic core (fully loaded) 
2 Impulsive thrust kltS (dry) 
Impulsive thrust propellant 

Payload Allowance 

TRS Allowance 

Subtotal 1086 

Subtotal 

Subtotal 

Subtotal 

128 
120 

70 
35 
60 
2 

85 
40 

611 
45 
37 
55 

1288 

889 
222 

TI1T 

1045 
357 
644 

2046 

Grand Total 5531 
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TABLE XII 

TYPICAL BUSINESS AIRPLANES FOR AIRBORNE SENSORS 

AIRPLANE 

PERFORMANCE CESSNA BEECH PIPER CESSNA GATES GATES ROCKl4ELL 
CHARACTERISTIC GOLDEN BARON PA-3lT CITATION I LEAR JET LEAR JET SABRELINER 

EAGLE 58P CHEYENNE (JET) 24E 36A 80A (JET) 
421 IIC 

Maximum take- 3379 3992 4082 5375 5850 8164 9150 
off mass, kg 

Empty mass equi pped, 2074 2393 2257 2935 3186 4152 5103 
kg 

Fuel capacity, 806 809 1476 2393 2706 4201 4024 

Payload mass*, kg 725 1017 764 720 718 992 1156 

Crulse speed, km/h 450 362 393 649 774 817 850 

Cruise altitude, km 7.6 4.6 7.6 <12.5 13.7 <12.65 12.0 

Cruise range*, km 2317 1773 2739 2474 2343 5287 3239 

Cabi n i nterna 1 
slZe, m 

Length 4.42 6.97 4.90 5.33 5.28 5.77 5.79 

Width 1.40 1.37 1.30 1.50 1.50 1.50 1.60 

Height 1.29 1.45 1.32 1.32 1.32 1.32 1.60 

Power supply, VIA 28/100 28/300 28/400 30/800 30/800 

* Assumes fully fueled take-off 
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Fiqure 1.- Summary of coastal measurement needs. The major user interests served by each 
measurement are shown along with the range of desired surface resOlution for each measure­
ment. The measurement capability of the NOSS sensors within this range is shown by the 
hatch marks. w 
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Figure 2.-Effect of Q-selectlon and reneat cycle on mlnlmum orbit 
spacing. Proposed NOSS sensor s\oJathwidths are shown for comparison. 
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Figure 3.-Effect of altitude and inclination on O-value for 
circular, non-Sun-synchronous orbits. 
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<3) Orbit parameters: i=84°, h=752 km, Q=tlf 1/3 orbits/day. 

Figure 5.- Ground track coverage with 3-day repeat orbits, initiated 
at the equator, beginning at the Greenwich meridian on Jan. 1, 1983, 

at 12 noon. Ground tracks are shown on a Mercator projection. 
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Figure 5.- Ground track coverage with 3-day repeat orbits, initiated 
at the equator, beginning at the Greenwich meridian on Jan. 1, 1983, 

at 12 noon. Ground tracks are shown on a Mercator projection. 
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Figure 10.- Variation of orbit fraction In Sunlight with orbit parameters. 
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