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This report was prepared to document work sponsored by

the United States Government. Neither the United States

nor its agent, the United States Department of Energy,

nor any Federal employees, nor any of their contractors,
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responsibility for the accuracy, completeness, or useful-

ness of any information, apparatus, product or process

disclosed, or represents that its use would not infringe
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SUMMARY

Under Department of Energy Interagency Agreement EC-77-A-31-1044,
the NASA Lewis Research Center issued Contract DEN3-84 to William M. Brobeck
and Associates for the design and fabrication of a state-of-the-art, ac
vehicle propulsion system breadboard. A two-speed transaxle employing a
Dana-Spicer IS-18 differential was built by McKee Engineering Corporation
of Palatine, Illinois, for the breadboard. An overall reduction ratio of
9.667:1 or 19.333:1 is selected by the position of a shift rod linearly
actuated by a shift mechanism.

In assessing the interrelationships of the ac motor-controller and the
transaxle, it was determined that an automatic shifting system would prove
advantageous in a vehicle. These advantages are a probable overall
efficiency gain due to optimal shifting in both the powered and regenerative
rAodes, smoother operation over the operating range and the fact that nearly
all control information is already available in the ac controller. For
these reasons it was decided to pursue a preliminary design of an automatic
shifting system consisting of a control logic unit and shift-rod ar.'uators.



INTRODUCTION

Under an interagency agreement with the Department of Energy, the NASA
Lewis Research Center (NASA-LeRC) was authorized to issue contracts for the
development of propulsion system and component technology for electric and
hybrid vehicles to aid in implementing the Electric Vehicle Program
initiated in 1976. In December, 1976, two contracts were issued to analyze
and identify the best propulsion system that could be assembled from state-
of-the-art components. One of these contracts resulted in a preliminary
design of an ac propulsion system. The design is contained in Section 6 of
,..'ie report, "Preliminary Power Train Design for a State-of-the-Art Elect-
ric Vehicle," Report No. DOE/NASA/0592-18/1.

In May, 1978, a Request for Proposal was issued to design, build and

check-out test a state-of-the-art ac vehicle propulsion system
resulting from the preliminary design. In December, 1978, a contract to
undertake this work was awarded William M. Brobeck & Associates. The pro-
pulsion system design consists of a General Electric 29.8 kW (40 hp) ac
motor flange-mounted to the integral two-speed transmission-differential
housing. The ac motor was to be controlled by a Rohr Industries, Inc.

three-phase, variable-voltage, variable-frequency converter.

The system was to consist of these components provided with sufficient
instrumentation to measure the independent component efficiencies.
Inasmuch as a preliminary design existed for such a system, the
implementation of the concept was expected to consist primarily of pro-
curement of specified components and their incorporation in a static assem-

bly--a breadboard--to be used at the NASA Lewis Research Center. It would
serve as a benchmark system against which to measure future propulsion system

developments. The vehicle and motor characteristics upon which the breadboard
design was based are listed in Appendix A.

Coordination by RASA-LeRC of the various program elements dictated a
fast-paced schedule for the breadboard project. Long-lead items required

advance-procurement authorization before final design approval. It became
clear that procurement of a critical component of the system--the ac-motor
controller--required further development to reach even the prototype level
with resulting unpredictable costs and schedule. After significant effort
to establish an acceptable controller specification, the controller
procurement fell behind the overall program schedule. Furthermore, other
controller development contracts were underway as a part of the overall
Electric and Hybrid Vehicle Program. Consequently, the major part of

the work on the state-of-the-art project was terminated.

Design and fabrication of the two-speed transaxle was underway at the
time of contract termination as a result of approval of advance procurement.

PRE(7:rT, 
.
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This report was authorized to make the information concerning an automatic
shift concept available for use with the transaxle in other parts of the
overall program. The automatic shifting system is projected to be as
smooth as that experienced with the conventional torque converter automatic
transmission while retaining the high efficiency of the manually-shifted

transmission.

This report also includes the operating requirements assumed for the
transaxle system, the results of stress calculations and the recommendations
for lubrication of the transaxle system.

4



TRANSAXLE DESCRIPTION

The transaxle is a custom-fabricated unit comprising a modified
Spicer differential, Model IS-18, on which is mounted a two-speed,
synchromesh transmission built by McKee Enqineering Corporation. All bearings
are rolling-contact ball type with the exception of those for the differen-

tial bevel gears. All power train gears are helical-type including the
differential ring and pinion gears. The latter change permitted replacement of
the tapered roller bearing carrying the differential assembly with lower-loss

ball bearings. Gears run continuously in mesh and speed selection is per-

formed through synchromesh clutches. Figure 1 is a "roll out" which

shows the transaxle elements as they would be displayed on a cutting
plane passing through successive shaft centerlines. Figure 2 shows the
external configuration of the transaxle.

The input shaft gears have 12 and 19 teeth meshing with countershaft

gears of 48 and 38 teeth, respectively. The jackshaft output pinion of
18 teeth meshes with the differential ring gear of 87 teeth. These
combinations give a high-gear ratio of 9.667 and a low-gear ratio of
19.333. The ratio is selected by the position of the shifting rod.

A question had arisen as to the torque handling capacity of the
output splined shaft of the transaxle as designed when it was used with a locked-

up differential as the sole output connection to the dynamometer. An inquiry
made of Dana-Spicer elicited the information that the design endurance

limit torque was 1193 N-m (880 lbs-ft) for each of the two shafts for the
ASTM 1035 material used. The endurance limit for the other components
of the differential was 1763 N-m (1300 lbs-ft). The maximum torque which
could be exerted by the three-phase traction motor of 89.5 N-m (66 lbs-ft)
corresponded to 89.5 x 19.333= 1729 N-m (1276 lbs-ft) for the singie
output shaft. The McKee transaxle was, therefore, equipped with output
spline shafts made of heat-treated and shot-peened ASTM 4340 alloy. The
endurance limit of these shafts has been computed to be 2983 N-m (2200 lbs-ft).
An analysis of the transaxle operating limitations when used with a locked-
up differential is presented in Appendix B.
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AUTOMATIC TRANSAXLE SHIFT CONTROL SYSTEM

Automatic shifting of the transaxle of an electric vehicle may be

more easily accomplished than that for an internal combustion powered
vehicle because precise control of the torque and speed of the electric
motor is inherently simpler. The motor torque can be easily reduced to a
zero value for gear disengagement and the motor speed can be rapidly
brought to its ideal synchronizing value for reengagement of the gears.
The manner of speed and torque control varies with electric motor types.
For the ac motor system studied in this contract, the motor speed and
torque are controlled by the output frequency of the do-ac controller
making it fairly simple to create the ideal conditions for automatic
shifting. For do motors, the speed and torque are controlled by terminal

voltage and field current.

For the ac system studied under this contract, changing the transaxle
drive ratio while the vehicle is in motion is accomplished with the
following steps:

First, the drive torque is reduced to zero by changing the controller
output frequency to reduce the motor slip to zero. Second, the transmission
is shifted to neutral disengaging the gears. Third, the motor speed is
resynchronized for the new ratio by lowering the frequency for an upshift

or raising it for a down shift. Fourth, the transmission is shifted to
the new ratio. Fifth, a new value of slip is established to produce a
rear-axle drive torque matching as closely as possible that which existed
prior to initiation of the speed change ratio and, in the optimum case,
the product of torque and speed, i.e. the power, would remain constant.
The entire sequence can be executed in a Fraction of a second, and will
dipend in part upon the rate of change of motor speed that can be forced.
Smooth acceleration or deceleration will be interrupted only momentarily.

The shifting sequence is generated and controlled by the shifting
logic. The shifting logic is interfaced between the controller and
transaxle as shown in the block diagram Figure 3. A circuit schematic of
the shifting logic is shown in Figure 4. The circuit description that
follows and also the list of material, Table 1, both refer to the identifi-
cation numbers that appear on the circuit schematic.

The instant of shifting is determined when a signal proportional to
the difference of the vehicle velocity and a function of the developed
torque reach the value set by the shift poin-^ adjust. In Figure 4,
Shift Logic Schematic, amplifiers UTA and U1B modify the slip signal to

develop a function of torque. Vehicle tachometer 1 112 produces a signal
that represents the vehicle velocity. These sign ,!'; are subtracted by U1C
so its output represents a function of torque subtracted from the vehicle

speed. This difference is then compared to the shift point voltage such
that the output of U1D is either high or low corresponding to the required
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Table	 1. Transaxle Shift Control Components

Symbol Quantity Part Mo. Description

Ul,	 U2,	 U17 3 LF347 Quad Bi-FFT
Operational	 Amplifiers

U3, U4, U5 3 CD40AlB C-MOS Quad Two Input
AND Gate

U6 1 CD4071B C-MOS Quad Two Input
OR Gate

U7 1 CD4072B C-MOS Dual	 Quad Input
OR Gate

U8 1 CD40698 C-MOS Hex Inverter

U9 1 CD4050B C-MOS Hex Buffer

U10 1 CD4001B C-MOS Dua l	Input
NOR Gate

Ull 1 CD4027B C-MOS Dual	 Master-
Slave Flip-Flop

U12,	 U13 2 LM2907 Frequency to Voltage

Converter

U14 1 555 Timer

U15 1 CD4022B C-MOS Octal	 Counter
with Decoded Outputs

U16 1 CD4016B Quad Bilateral	 Switch

R 42 N/A 1/4 Watt Resistors

Q1'	 Q 2'	 Q3
3 N/A NPN Transistors

C 11 M/A Capacitors

R 1 N/A Trim Pot

CR 6 C-2 Signal	 Diodes

Item No.

2

3

4

5

6

7

R

9

10

11

12

13

14

15

16

16

12

0

I



state of the transaxle. This output initiates three functions. First,
it determines the state of the gear indicator U1lB, by setting its inputs

prior to its being clocked by the neutral pulse. The gear indicator
enables either the high or low actuator (through U3A or U3B), determines

the polarity of the integrator U2C, and sends a gear indicator signal to
the main controller. This gear indicator signal allows the main controller
to scale the slip command and thereby maintain an even torque at the
wheels within the limitations of the power train. This will eliminate
jerks while shifting. The shifting can be smoother than that experienced
with current automatic transmissions. Second, through U2A, U8B, U16A,
and U16B, it changes the scale factor of the gear speed signal. This
scaling produces, from the vehicle speed tachometer, a signal that
represents the speed of the driven gear. The gear speed signal is used by

the synchro switch to allow synchronization of the drive and driven gears
prior to engaging. Finally, any change in the comparator output is
decoded through UU, U4B, U6A, and U11A to generate an initiate-shift
pulse. This pulse is passed through U4C only when the counter is in
position zero. In this condition the pulse is passed through U7A to
increment the counter. The output of the comparator U1D is logically
combined with a safety override U17B. This forces a shift when the rotor
reaches a preset speed and prevents a down shift if the low gear will
cause excessive rotor speed. U9A, U9B, and U9C are current drivers and
perform no logic function.

Once the shifting sequence has been initiated the counter is incre-
mented through five positions that performs the shift and then resets the
counter. Position one sends a signal to the controller, through U6C, to
set the slip to zero. It also enables U4D whose output further incre-
ments the counter when the slip nears zero. This low slip condition is
determined by the comparators (U2B and U17A). The next state of the
counter, position two, maintains the slip at zero and also initiates a
400 msec neutral pulse from U14 to disengage the gears through the now
enabled M. Besides disengaging the gears the leading edge of the neutral
pulse sets the gear indicator (UllB) to the correct state. The trailing
edge of the pulse, through U8C, U5A, and U7A, increments the counter to
its next position. Position three sets the S-R flip-flop (UIOA and U10B)
which implements synchronization of the drive gear to the driven gear.
Prior to setting the S-R flip-flop, U16C and U16D are in the closed state.
With the switches closed U2C and U2D are voltage followers and therefore
pass the rotor speed command, unaltered, back to the main controller to
control the rotor speed. When the S-R flip-flop is set, a signal is sent
to the main controller which interrupts the rotor control, the two switches
are also opened. With the switches open U2D and its components hold the
instantaneous value of the rotor speed command while U2C ramps this value
either up or down as determined by the ramp polarity control (output of the
gear indicator). The result is that the drive gear speed is either
increased or reduced toward the value of the driven gear's speed. At the
point at which the two speeds are equal, the synchro switch (U13) generates
a pulse that increments the counter through the now enabled U5B. Position
four again initiates a 400-msec actuate pulse. This pulse is directed to
the first or second gear actuator through U3C and either U3A or U3B,
whichever is selected by the gear indicator (Ul1B). After the gear is

13



engaged, the trailing edge of the pulse increments the counter as previously

described. Position five then resets the S-R flip-flop and the counter

back to position zero. Since the shifting mechanism and the actuators
are unknown, the engage/disengage time is also unknown. Therefore,
the 400 msec was assumed due to the lack of this information. The actual
time would be calculated as a portion of the final design and may be

shorter than 400 msec depending upon the controller/motor characteristics.

The use of a two-speed transaxle in an ac motor/controller vehicle
propulsion system requires a shift-actuating mechanism if automatic speed

changes are to be made. Two electric actuator concepts are shown in
Figure 5 and Figure 6. Either concept uses a pulse from the shift
control to actuate the electromagnet performing the desired function:

shift to neutral, up-shift from neutral or down-shift from neutral.
Common to both concepts is the need to develop sufficient force to
overcome the shift rod detent when the electromagnet is in the minimum
force position. The detent force should be adjusted to the minimum value
necessary to maintain clutch engagement in either drive position.
Final engagement is achieved by the electromagnet with the armature in
the position of maximum attractive force. It is assumed that the magnet
pulse lasts 400 milliseconds. After actuation the detent must provide
the force necessary to maintain the shift rod in the selected position.

Of the two concepts illustrated, the first, Figure 5, is the simplest
because all motions are linear and traction-type solenoids are used.
Because the traction force is a minimum at the extended position of
the armature, the force to overcome the detent is a minimum. Since detent
and gear engagement forces are not known at this time, solenoid selection,

force and power requirements cannot be calculated.

The second concept, Figure 6, uses a "rotary" solenoid. Due to the
fact that the tractive force developed by the magnet elements is translated
into rotary motion by means of balls rolling on properly contoured inclined

ramps, the torque developed by the solenoid can be made substantially
constant and the torque forces can be applied to the linear-motion-shaft
rod in a calculable fashion. Although the system is more complex, it
may prove more reliable.

It is likely that reliable shifting will require more force than can
be developed by direct application of solenoids and a power-assisted

system may be needed. An electric-motor-driven screw-jack or a hydraulic-
actuated three-positon linear actuator could be used. Since it is probable
that hydraulic power steering and power brakes would be used on the vehicle,
a source of hydraulic power would be available. Power relays for the
electric linear actuator or solenoid valves for the hydraulic servo-system
could be designed to accept the input signals from the shift-control logic.

14
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CONCLUSIONS

A compact, light-weight, inexpensive and reliable shift-control
logic system can be built for use in conjunction with a multi-speed
transmission in electrically-powered vehicles. The logic system will
permit vehicle performance optimization in terms of range, acceleration,
cruising, hill climbing and dynamic braking requirements. Analog input
parameters of vehicle speed and torque permit the logic system to be
designed for either ac or do motor drives.
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APPENDIX A

VEHICLE AND MOTOR CHARACTERISTICS

The breadboard design was based upon an assumed vehicle having the
specifications and requirements given in Table 2.

Table 2. Vehicle Specifications and Requirements

Gross vehicle weight 1456 kg

Aerodynamic drag coefficient, C d 0.3

Frontal area 1.86 m2

Rolling resistance 8.1 kg/1000 kg

Tire rolling radius 292 mm

Maximum braking rate from 3.05 m/sect
regenerative braking alone

Maximum speed 96.5 km/hr

Minimum gradeability 109 @ 48.3 km/hr

Minimum acceleration in 15 seconds 0 to 72 km/hr

The corresponding traction motor specifications are given in Table 3.

Computed speed-torque data taken from Report No. DOE/NASA/0592-78/1
are plotted in Figure 7 to show the operating limits of the General
Electric traction motor.

• - *t NOT FILMED
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Table 3. Traction Motor Specifications

General Electric

TRI-CLAD 700 Aluminum Motor

K (NEMA Design B)

215T

29.8 kW (40 hp) @ 7200 rpm

40.8 Nm (30.1 ft lbs) at full load
89.5 Nm 66 ft lbs) at breakdown

Continuous at rated f0l load torque

1200 rpm

69.2 (line to line)

364 amperes

3

240 Hz

Dripproof

1.15

400 C

Horizontal

Ball

No internal fan (externally blower cooled)
Dynamic balance to 9000 rpm

Manufacturer:

Model Line:

Type:

Frame:

HP:

Torque:

Time Rating:

Synch. Speed:

Volts:

Current:

Phases:

Frequency:

Enclosure:

Service Factor:

Ambient Temperature:

Mounting Position:

Bearings:

Special Provisions:

20



V
 
u

G
9
 Z

L. v
ic
p

C
C

OL
L

R
E
P
R
o
-
	

O
F
 
T
H
E

O
R
I
G
I
N
A
L
	

i
s
 
P
O
O
R

en

.. 
I

S
.
S
Z
.
-
H

r^

i-
-
1
-
-

.0

c
o

r co
Ding

Ln

_
t
_
_

Lnco4wL
n

+
C%i

t	
I

Lo

C
I
Q

T

O

O04
-
V
-

9GJ C
k

0
6I

4--0O

4
JL.

4
c4
J1

4
-4
1M
4
1

L
A0

4
-cO
lc

.
1
.

E

AA

4
J4A
TW41OOu

x

a
 0

 
0
0
 C

) C
D

 0
 0

 0
 C
D
 
C
	

a a
 Q

 0
 0

 0
 0

co	
q
r
	

C
O
	

q
w

m
	

cli
C%,J

a
n
b
i
o
l

2
1



pp G ; ; .^ , r. ^ t'K NOT MMED

APPENDIX B

TRANSAXLE OPERATING LIMITATIONS

The external dimensions, input and output shaft and shift rod
attachments have been shown in Figure 2. The operating limitations for

•	 the transaxle-motor-vehicle system specified in Appendix A are given in
Table 4. Traction motor output and input power (propulsion and braking
respectively) in excess of 28.9 kW at speeds above 7200 rpm represent
short term conditions and may result in unacceptably high battery drain
or charging current.
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The transaxle gear train was analyzed by methods used for industrial
gears which are rated for performance under continuous load. From the
gear train analysis the capacity of the 18-tooth pinion was determined
to be limiting. This gear is the most critical of the gears. This analysis
implies that the pinion cannot carry the maximum motor torque in low
gear. The allowable input torque is summarized in Table 5 which shows
the maximum allowable input torque for both high and low gear.

Table 5. Transaxle Input Torque Limitations

Maximum Continuous Input Torque
Above these values fatigue life is reduced

Low Gear: 26 N-m

High Gear: 52 N•m

Maximum Peak Input Torque
Above these values gear damage will occur

Low Gear: 79 N-m

High Gear: 157 N-m

In Figure 8,these torque limitations are compared to the requirements of
the SAE J227a Schedule D Driving Cycle for the assumed vehicle. It can be
seen that the gear train will carry the required loading. The fatigue
life of the gear will be reduced if full regenerative braking is used.

Two considerations should be noted in assessing the importance of the
limits of peak torque and gear-tooth stress that have been computed.
First, the limit is assumed to be set by stresses in the 18-tooth pinion
engaging the differential ring gear. The pinion is 1.125 inches wide but
the stresses are computed on the basis of the ring-gear-face width of
0.750 inches. Thus, no benefit has been assumed from the pinion-tooth
overhang. However, the ring gear teeth, although subject to fewer stress
cycles, have stresses comparable to those calculated for the pinion.
Also, as previously mentioned, stresses calculated by the methods used
are very conservative as they apply to i ndustrial equipment design where
long life under high, continuous load-,,-)p is a requirement. Stresses
calculated by these methods are substa.::ially exceeded in automotive
practice as a matter of course because of the low duty factor. It is therefore
concluded that the transaxle can be satisfactorily used in a vehicle test
program..
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Due to the coarse pitch of the differential pinion and ring gear and
the potential high torque loads at low speeds on these critical components,
scoring of tooth faces is the most probable precursor of failure. There-
fore, greater protection would be afforded by use of an EP lubricant such
as multi-purpose hypoid-gear lubricant SAE Grade °0 (MIL-L-2015 B) (API
Service GL-4) than obtained from a lower viscosity, automatic transmission
fluid. The latter is compounded for service in systems which may reach
high temperatures since it must cool clutches and brake bands, must have good
oxidation resistance and anti-foaming properties, and must function as a
hydraulic fluid in the shift servos. None of these requirements apply to
the transaxle application although automatic transmission fluid has
been the lubricant of choice in other electric vehicle transaxles due to
its low viscosity and consequently reduced losses.

Due to the possibility of exceeding the strength limit of the trans-
axle in the NASA-LeRC dynamometer test facility, studies were made of the
adaptation of the Browning Shear-Pin torque limiter to the transaxle output
shaft. Two sizes are shown in Figures 9 and 10 with torque limits of 1814
N-m and 1689 N-m, respectively. These studies indicate that the breakdown
torque of the traction motor of 89.5 N•m, corresponding to 1729 N-m torque
on the single axle output torque of the transaxle, or the 1763 N-m limit of
the differential system, can be safely protected from possible overload
by the use cf the shear pin limiter in the NASA-LeRC dynamometer test
facility.

Wks
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