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CHAPTER |
INTRODUCTION

The phase-locked loop has long been recognized as o circuit with many impor-
tant applications, and as such, the description of analog phase-locked loops (APLL's)
has become well known as a large volume of material has been published to facilitate
their use. In a survey of phase-locked loop deveiopment Gupta [ 11] has listed thir-
teen books and over 120 papers which discuss APLL design and applications. In recent
years, there has been an increasing use of various types of loops employing discrete
elements. Among these have been hybrid loops that utilize both analog and digital
circuitry. Newer loop realizations have been circuits composed entirely of digital
elements, the digital phase-locked loop (DPLL). The importance of these types of
configurations lies in the relative ease of design and construction and, of equal im~
portance, the ease in which such circuits can be maintained.

Unfortunately, the very attributes that make DPLL's attractive from a design
and construction standpoint also contribute to difficulties in the theoretical analysis
of DPLL operation and in this area the available literature is relatively thin. The
first description of a general DPLL model was given by Reddy and Gupta [ 3 ] and
further discussed by Gill and Gupta [ 10]. A more resiricted but usefus! DPLL model
for second order DPLL's has been presented by Weinburg and Liv [ 4 1. However for
both of these general DPLL models, little has been done to describe the response of
the DPLL under specified ideal inputs.

In the area of fading input analysis of DPLL"s the available literature may be

separated into two approaches. The first approach as employed by Holmes and
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Tegenelia [ 13 1, Weinburg and Liv [4 ], and Lee, Harington, and Cox [ 12 1, has
been to model the DPLL configuration under study to operate linearly under some set
of linearizing assumptions and then use classical techniques to determine the char-
acteristics of the loop response. The second approach is more limited in that spe-
cific loop configurations are assumed and are then analyzed by random walk tech-
niques. This method was first used by Holmes [6] and has the advantage that no
linearizing assumptions are required. This approach has also been used by Cessna
and Levy [5], Yamamoto and Mori [14], and Ransom and Gupta [15] for other spe-
cific loop configurations all of which employed resetting loop filters.

In the following chapters, both the time response and the steady state noise
response of first- and second-order DPLL's will be discussed in detail. The loop
configuration used throughout will be based on the model described by Weinburg
and Liv [4], however the results will not be restricted by the linearizing assumptions
made in reference [4]. Since the initial impetus for the study of the digital phase
lock problem was provided by an application to an Omega navigation receiver, the
practical realization of the DPLL"s considered will be presented and all examples
ond parameter selection will be based on this application. However, neither the
analysis techniques developed fo describe the DPLL's operation nor the general
hardware design presented are limited in any way to this application solely.

In Chapter 11, the APLL is described to provide a background for the phase lock prob-
lem. In Chapter Ill, the response of the DPLL to specified ideal input signals is

considered. In particular, new expressions are derived for frequency lock range

.
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for first and second order DPLL" and a new partial solution for the difference equa-
tion describing second order DPLL operction is cbtained, Chapters IV and V are de-
voted to the steady state noise analysis of first and second order DPLL's respectively.

In both cases, the loops are modeled as first order Markov chains and from this

model the steady state phase error and mean time to phase lock are determined for
an input signal corrupted by white gaussian noise. For the first order DPLL, a loop
employing a non-resetting loop filter is analyzed and found to have essentially
equivilant steady state phase error as for the loops using Random-Walk loop filters
described in references [5], [14], and [15], but with less circuit complexity.
Chapter V presents a new analysis for a second order DPLL, using the Markov chain
model, that is valid for all values of input signal-to-noise ratio. The previous
methods of analysis for second order DPLL's as described in references [4] and [131]
have involved linearizing assumtions that have limited the usefulness of the analysis
to signal-to-noise ratios greafer than 0.0 dB. Experimental verification of the
Markov chain model was desired to show validity of the noise analysis of Chapters
IV and V and therefore, in Chapter VI, a description of the design and construction
of a first- and second~order DPLL is given. The experimental test data used in

Chapters IV and V were obtained from this loop design.
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CHAPTER I

THE ANALOG PHASE-LOCKED LOOP

A. Introduction. The standard analog phase~locked lbép as shown in

Figure 2-1 has been widely described in the iiierature for a variety of applications.

The following brief description of the APLL is presented to develop the background
material necessary for a comparison with the DPLL operational characteristics to be
developed in the following chapters. In particular, it wiil be necessary to develop
APLL response characteristics for both ideal and fading input signals.

As can be seen from Figure 2-1, the APLL consists only of a phase detector
(multipiier), a linear filter, and a voltage-controlled oscillator (VCO) arranged
in a feedback loop. in operation, the APLL is essentially a very narrowband filter
whose characteristics are significantly dependent upon the type of linear filter em-
ployed in the loop. The derivation that follows is similar to that by Viterbi [ 1]

and Lindsey and Simon { 2].

PHASE
DETECTOR
, ¥
0 () e
VOLTAGE
CONTROLLED |fe——
y(t) OSCILLATOR e(f)

Figure 2-1.  Standard APLL Configuration.

G A DO I T PSS s SNk et e ot

I T P L S A R L T T~ TR S R N PP T T T

= FaEf e O



AT SR TR T, e s el R L T L R A W e TR T T R T L e anssn s sy 08 W

B.  The AFLL with Ideal Input. Consider the case of an ideal signal of

the form,

ri) = v 2 Asin[uof + 8()] (2-1)

2
where A” is the total power of the input signal and “, is the quiescent frequency

of the YCO. The input is angle modulated by 8(t) which is given by

o) = Qt + Go(f) (2-2)

where Q is defined as the frequency offset from the VCO quiescent frequency

and 60(1') is some function. The reference signal, y(t) at the VCO output can be

expressed as,

yh) = /2 K] cos [uof + chofe(T)dT] (2~-3a)

= /2 K] cos [uof + 81 (2-3b)

where Ki2 is the total power of the reference signal, K is gain of the VCO

VCO
with units rads/sec-volt, and

A —
o) = chofe('r)d'r (2-4)

z is the instanteous phase estimate of the reference signal.

For the input and reference signals given, the error signal x(t) at the phase

detector output is given by,

x(t) =AK; K_sin [8() -0 ] (2-5)

-5

o etr e gk tan



where the ferm involving 2(.)01' has been ignored since it will be removed by the
loop filier/VCO combination and ‘Km is the phase detector (multiplier) gain. [f
the initial conditions of the loop filter are zero, then the filter output e(t) can be
expressed as,
elt) = A’ lt(m Jo'r ft - ) sin [0k) = B(r) ] dr (2-6)
where f(t) is the impulse response of the linear filter. Defining the phase error
¢(t) for the loop as,

oft) = 8(t) -8 (2-7)

and substituting (2-6) into (2-4) and taking the derivative gives,

9 - - AR LT - ) sin o) d (2-8)

where K = K] KmKVCO is defined as the loop gain. Thus given some input phase
function 6(t), the solution of the integro~differential equation of (2-8) for () com-
pletely describes the operation of the APLL, Equation (2-8) also suggests the stan-
dard APLL mode! as given in Figure 2-2.

C. The Linear APLL Model. The APLL model of Figure 2-2 can be

simplified and more readily described mathematically to a good approximation

whenever the phase error is less than 0.5 radians. In this case the approximation

sin ¢lt) ~ ¢(t) 2-9)

can be made so that (2-8) becomes,

-b-
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30 A do/dt

Figure 2-2. Standard APLL Model .

Taking the Laplace transform of 2-11) with initial conditions assumed to be zero

gives the irequency domain phase error as,

ols) = ?‘1‘75\‘(%“(;) a(s) @-11)

Since ¢(s) = 0(s) - 8(), equation 2-11) leads directly to,

o) = X TE S 06) (2-12a)

= H(s) 66) (2-12b) 3

where ’

‘ AK F(s)
! Hee) = AKFG) 1
[ o Ak F(s) (2-13) |

is the closed loop transfer function of the linear APLL. Equation (2-12a) suggests

- e wae T

the s=domain linear APLL mode! shown in Figure 2-3.
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8(s) + ™  AK F(s)

> 1 S —

Figure 2-3. Frequency Domain Model of Linear APLL.

Under the linearizing assumption of (2-9), the APLL response as described
by (2-11) and 2-12a) can be readily analyzed by classicol techniques and defi-
nitions. Also, the APLL can be classified according to the characteristics of the

open-loop transfer function G(s),

F(s)
G(s) = AK

(2-14)

In general for any control system, the order of the system is equal to the number of
finite poles of the open-loop transfer funciion. Thus from (2-14) an APLL would
be classified as a first-order system if there were no linear filter included in the

loop. Thatis, F(s) = 1, Similarly, if,
Fs)= 1 + a/s (2-15)

so that a signal-plus-integral loop filter is present in the APLL, then the APLL

would be classified as a second-order system.

Using classical techniques, consider the case of a first-order APLL with a

frequency step input. This corresponds to,

-8-
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8(t) = Qtr + eo(f) (2-16)

which after tcking the Laplace transform with Go(t) a constant gives,

Qc + eo
| 86) = 5— (2-17)
S

Substituting (2-17) into 2-11) with F(s) = 1 gives

Q 0
) o

]
S

From the final value theorem, the steady-state phase error for the APLL can be

found as

lim 4= Q/AK (2-19)

t >

Thus the first-order APLL can achieve frequency synchronization but will not

achieve perfect phase synchronization unless the frequency offset between the VCO

and the input signal is zero.

————— TNy T e T T T L R

Next consider the case in which the loop filier is the imperfect integrator of

Figure 2-4. For this filter mechanization,

e = — "*‘i'&'v'—
LT Ly oy oy
bl

> T

Figure 2-4. Imperfect Integrator Loop Filter.
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1 +125

)= e (2-20)
where
™= (R] + R2) C , 2-21)
T,= R, C (2-22)

Substituting (2-20) and (2-17) into (2-11) gives,

s(s + 1/715) Q @6
PR w25 e

s + (AKTz/T" + ]/T])S + T S S

1

and again applying the final value theorem gives the steady-state phase error as,

lim oft) = %
t - o AK/'r]

(2-24)

which is equal to the stady-state phase error of the first-order loop attenuated by
gr Since in practice it is usually desired that the filter be of the signal-plus-
integral type, m will be a large number so that the pole of the loop filter is as
near the origin as possible. Once again, this loop is capable of frequency syn-

chronization but will track the phase with a constant offset.

D. The APLL in Additive Noise. The effects of additive noise on APLL

operation may be studied by considering an input signal of the form,

r)= /2  Asin (ot + 001 + n.(t) (2-25)

where n. (t) is the narrowband noise process given by

n. M= /2 [xc(f) cos uof - xs(f) sin ..,or] (2~26)
-10-
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The terms xc(t) and xs(f) are assumed to be independent, stationary Gaussian
white noise processes of zero mean and identical variances. Inclusion of the

noise term gives a phase detector output of (referring to Figure 2-1)

x(t) = AK]Km sin ¢(t) (2~27)

KK X _(F) cos off) - X () sin ¢(t)]

where

X () = x_(1) cos 8(f) + x () sin B(}) (2-28a)

"]

Xs(f) = xc(t) sin 6(t) - xs('r) cos (t) | (2-28b)

Note that again the terms involving 2wof have been ignored.

Following the same procedures as for the noiseless case, an integro-differential

equation describing the APLL's operation is found to be,

do/dt = do/dt = K[ f(t = 7) [ Asin ofr) (2-29)

- XC(T) cos ¢(T) - XS(T) sin ¢(1) ] dT

As before, it is possible to represent the APLL by the simple mode! given in
Figure 2-5,

Applying the linearizing assumption, sing~ ¢ gives a simplified fading
input model which can be analyzed by superposition. Thus it is only necessary

that the noise terms be considered at this point since the effects of the determin-

. e T e

istic portion of the signal was considered earlier. Considering just the nolse

term gives,

o) = B(t) (2-30)
-1 ] -
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which will have a noise spectral density given as,
Solw) = Seﬁg) 31a)

KFw)/jw
1+ AkFO,

5, @) @1b)

where Sn W) is the noise spectral density of the noise input. If the input noise is

assumed to be white with single-sided density N0 then,

KEW o |

() =
547 l 1 + AKF(“)/iu

(2-32)

]

Recalling the closed-loop transfer function of (2=13), the phase error spectral

density can be rewritten as,

N 2
Spla) = —=—  |H(iw) (2-33)
2A
The steady-state variance of the phase error then is easily found as,
N B
ol = —2-t (2-34)
* A
where BL' the loop noise bandwidth, is defined as
B, = 4 [® Hjw ) 2 cho (2-35)
L 2v 0

Thus once a loop filter has been specified, the loop noise bandwidth can be cal-
culated and from this the operation of the APLL in the presence of noise is easily

determined.

-12-
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Xc(f) cos oft) + Xs(f) sin o(t)

68— {  Asing(r) —> K

é* LINEAR |

o® FILTER

Figure 2-5. APLL Model with Fading Input .
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CHAPTER 111

THE DIGITAL PHASE-LOCKED LOOP

A. Introduction. For the APLL of Section II.B, it was possible to derive
an integro-differential equation in terms of the input signal phase and the phase ;
error of the tracking loop, the solution of which completely describes the APLL's
operation. However, unlike the APLL a standard form of DPLL has not as yet
developed in the literature. This is due in part to the non-linear operation of

virtually all DPLL components. Still it is possible, for a specific DPLL configura-

ya——

tion, to develop a difference equation that describes the DPLL's operation. This

difference equation for the DPLL is analogous to the integro~differential equation

of the APLL.

Difference equations have been derived for first and second-order

DPLL's of a somewhat general configuration by Reddy and Gupta [31 and Wienburg
and Liv [4]. However, the response characteristics of the DPLL's under considera~

t tion were largely investigated by iteration of the difference equations. This approach
is basically a simulation of an ideal DPLL.

In the following, since the DP LL under consideration here is a slightly

modified version of those given in references [3] and [ 4], the describing differ-
ence equations wili be derived in detail. Further, it is very useful for a designer

to have some knowledge of the response characteristics of a circuit without perform-

it i & R e et

: . ing a simulation. Therefore, through analysis of the describing difference equation,
| the partial DPLL response characteristics for specified inputs are derived. This
includes determination of time required to achieve phase lock for some initial phase
offset and frequency range for phase acquisition.

-* =14~
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B.  The Digital Phase-Locked Loop. The DPLL configuration under con-

i

sideration here is shown in Figure 3-1. For this loop the input is sampled at the

positive-going zero ¢rossing of the reference clock and the output of the phase

P

detector is quantized to plus or minus one depending on the sign of the sample. In
this manner, the phase difference measurement between the reference clock and the
input signal is essentially reduced to a determination of phase lead or phase lag of
the reference clock with respect to the input signal. The two forward paths repre-
sent a filter in the sense that they alter the phase detector output to create a signal

suitable for adjustment of the reference clock phase. Notice that the reference

clock phase will take on a finite number of values determined by A] and A'Z'
’ 1
4
—® - A ‘
3 E
X,
S0) —= o : ’
‘ +
- A2 I,
+

:

,3
; £
\ Y ‘i
: Reference 4
| r(t) Clock '

Figure 3~1. Second-Order DPLL .
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Operation of the loop can best be described by considering the case of
an ideal input signal of the form,

s(t) = A_ sin lo t + o)1 3-1)

where

6t) = G, - Wt + 8. (3-2)

defines a frequency offset plus a modulating phase function. The reference clock
is given by,

= gi + 3-3
r(t) = sin [ t + 6 ()] (3-3)
which is assumed to be quantized to N distinct phase states so that (3-3) may be
written as,

f(t) = sin [u_t +l—‘\'l— (N-2i +1)] i=1,2,""%N
(3-4)

For example if the phase state of the reference clock is
i = N/4 (3-5)
when the reference clock is given by

() = sin ot 1 ( _N_z;_g )] (3-6)

For the sampling example depicted by Figure 3-2, the input is sampled at
the positive-going zero crossing of the reference clock giving a positive value for
the first sample. Since this first sample is positive in sign, the output of the phase
detector, X (1) is +1. This phase detector output is then modified by the two for-
ward paths to produce the signal,

y() = - A - A2 radians (3-7)

~-16-
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Figure 3-2. Waveform Sampling.

which is the phase increment by which the reference clock is altered. Obviously,
the values of A] and A, are related to the quantization of the loop. If at the
second sample of the input signal (the second positive-going zero crossing of the
reference clock) the reference clock still lags the input, then the reference clock

will be altered in phase by,

y@) =- A] -2 A, radians (3-8)

Similarly, if the lag condition still exists at the third sample, then the reference
clock will be altered in phase by,

y@) = - A] - 3 A2 radians 3-9)

This condition will continue until the j~th sample, at which time the reference

clock phase leads the input signal phase and the reference clock will be updated

in phase by,

-17-
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y(i) (3~10a)

+ A= (=18, (3-10b)

Similarly, if at the (j+1) —th sample the reference clock still leads the input then,

y(i + 1) =+ A +24, - A, (-1) @-11)

The loop updating will continue in this manner until the DPLL achieves a lock
condition which is characterized by
IR S Y B CRERORIO (3-12) .’

th

for all successive samples with T(i) defined as the time interval between the i
and (i = 1)=th sample.

For the analog phase-locked loop described in Section H.B, it was

possible to study loop characteristics from the solution of an integro-differential

equation that modeled the loop's behavior. In an analogous manner, it is possible

to develop a difference equation for the digital phase~locked loop that character~

izes the loop phase error on a sample~to~sample basis. Becuuse the loop phase

1 error is determined in terms of loop sample number, it is also necessary to develop

? an equation describing the time of occurrance of a particular loop sample. The

combined use of these two discrete equations then will completely model the opera-

:
’B tion of the DPLL for an arbitrary phase input. The remainder of this section then
; will develop in detail these two describing equations.

Proceeding in a manner similar to [3], the total phase of the input
signal given by (3-1) is,

BO) = ut + 60 (3-13)
-18-
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and the total phase of the reference clock given by (3-3) is,

3,0 = ot + 8 () (6-14)

However, the input signal can be sampled only at discrete times and the reference
clock phase can exist only in specified states so that (3-13) and (3-14) are more

properly written as,

Bk = w ) + 8k (3-15)
and

B () = u k) + 8 K -16)

)
where for simplicity f [ #(k)1 is written as f(k) with k representing the sample
number of the loop.

The output of the phase detector is a sequence of values £1, the sign
being determined by whether the phase of the reference clock leads or lags the

phase of the input signal. Thus the phase detector output sequence, X(k), may be

written as,

X(k) = sgn [sin (B, (k) - B_(k)1} (3-17a)
= sgn {sin [ ¢(k) 1} (3-17b)

where
glk) = 8(k) -8_(k) (3-18)

is defined as the phase error for the DPLL. Further, the phase of the reference
clock is altered by a value Y(k) radians at the k~th sample so that the phase of the

reference clock is given as,

k-1
6,k) = I vG) + g,0) (3-19)
i=1

-19-
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where 8(o) is the initial phase of the reference clock which will be assumed to be

zero, Substituting (3-2) and (3-19) into (3~18) gives the loop phase error as,
k=1
o) = (o, =0) t0) + 8,00 -1 vi) (3-20)
i=1
As was stated previously, it is desired to develop a difference equation
that is independent of time. Therefore, it is necessary to determine an expression
for t(k) in (3-20) that is dependent only on the sample number k. First, define the
value T (k) as the time interval between samples so that,

Tk) = tk) - tk-1) (3-21)

However, this can also be expressed as,

T0) = T =5y 1) (3-22)

2 - - . .
where T=== s the period of the quiescent reference clock. The time of occur-
[A]

)
rence of the k~th sample then is just the sum of all T(i), i< k, or,
k
tk) =1 T() ' (3-23a)
i=1
T k-1
= kT-5— 1 Y() (3-23b)
T =

Substituting (3-23b) into (3-20) gives an expression for phase error,

after algebraic manipulation, as,

mo"m [A] k'l ’
olk) = 0,(k) + 2tk =— ¥ Y (@) (3-24)
i [A] [A] .=-I
(o) [ |

and the sample~to~sample difference in phase error is,

W "W W

ok +1) - olk) =0, +1) - 6,0 + 21 —— -—— Y()

-20-
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The value Y(k) is defined as the phase increment of the reference clock for the

k-th sample and will take on values determined by the gain constants A, and A2
of,
k
Yk = A XK +4, 1 X() (3-26q)
=l
k
= A] sgn [sin ¢(k)] + A2 I sgn [sin¢fi)] (3-26b) 3

i=l ‘

Substituting (3=26b) into (3-25) gives the phase error difference equation for the

DPLL as, 3
|
ok +1) - olk) = ei(k +1) - ei(k) +2m - (3-27)
)
k
-2 {A] sgn [sin o(k)] + A2 I sgn[sing¢(i)]}
“o i=l 1

To be complete, it is necessary to express (3-23b) in terms of the phase

error by substituting (3-26b) into (3-23b) giving,

k-1
t) = kT=5— % [A sgn [sin gf)] (3-28)

i=1

i s s

i
+ A, y ] san [sin ¢(j) 7]
I=

The DPLL then is completely described by the equation pair, (3-27) and (3-28),
the former describing the phase error of the loop and the latter describing the

discrete time ut which the phase of the reference clock may change state.

C.  First Order DPLL Time Response. A first order DPLL results for the

system of Figure 3~1 when the gain term A2 is set to zero. For this case (3-27)

and (3-28) become, respectively,

-21-
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e+ 1) - ¢k) = 0.0k +1) - 8,(k) + 2w ‘(’J (3-29)
- -:T’—— A sgn #k)
(e]
ond
I k-1
tk) - kT - 5 A] 2‘ sgn oi) (3-30)

-1

Note that for first order DPLL response the phase error is constrained to

| )| < (3-31)
so that

sgn [sin ¢k)] = sgn ak) (3-32)
As defined previously, the total number of phase states of the reference clock is N.
Since at each sample of the input signal the reference clock phase is incremented
by a value t A 1 then

N - 2¢ /A] (3-33)

M) - K= T sen (i) (3-34)

Consider first the response of the first order DPLL to an input signal
whose frequency is identical to that of the DPLL's reference clock but differs

initially in phase by some constant @ . For this case, W and the input phase

"
will be a constant with Gi(k + 1) Qi(k') for all k which without loss of generality

can be assumed to be zero. Thus, (3-29) becomes
ek + 1) - ek) - -A] sgn ¢k) (3-35)

with the boundary condition ¢{o) = @ I For this simple case, the loop will be up-

-22-

i 27

ol e



-

dated by a value Ay radians at each sample until the phase error changes sign
at which point the quantized phase error will oscillate about the true phase of the
input. An example response is given in Figure 3-3. It is evident that a lock con-
dition occurs whenever

| o) ] < A, forallk > K (3-36)
where K is given as,

K = Integer I Gl /A]]-l (3-37)

The time of occurrence of the lock condition can then be found by evaluating (3-34)

for K given by (3-37). Note that for all k < K the value of sgn ¢(k) will not change.

® (k) Phase Error

I I O I -—

| NSNS0 R GO0 R AN R WO R SN

Sample Number k -

Figure 3-3. Response of First~Order DPLL to Phase Step Input.
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Next consider the case where the input signal is offset by a constant
frequency from the first order DPLL reference clock. For this condition the phase

error difference equation of (3-27) is given as,

ok + 1) - ¢k) = 2n “z'“ - : A] sgn ¢k) (3-38)

(o] (o)

where it has also been assumed that Gi(k) is equal to zero. In reference 37 an

sl b, 053

expression was obtained for frequency lock range by making the approximation

(k)= @ in the steady state which ignores the quantization of the loop. However,
it is possible to include the effects of quantization in determining frequency lock

range. Recalling the condition for first order DPLL lock as given by (3-36), then
an equivalent condition for lock is,

| e+ 1) - el | < 24, (3-39)

which after some algebraic manipulation gives

el &

N-2 w N +2
N-T S o S N

(3-40)

This expression is plotted in Figure 3-4 and gives the normalized frequency range
over which the first order DPLL can remain locked as a function of the number of
states of the DPLL reference clock. Note that the undefined lower limit for N=1
is of no consequence since this would correspond to a DPLL with only one phase

state.

24~
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Figure 3-4. First Order DPLL Lock Bounds for Frequency Offset.

D. Second Order DPLL Time Response. The time response for a first order

DPLL has been characterized in the previous section for specified inputs. Notice
however that the characterization of the time response did not involve the solution
of the phase error difference equation because of the nonlinear nature of the equa-
tion. Likewise, it is not possible to find a direct solution for the phase error differ-
ence equation for a second order DPLL. Furthermere, no significant discussion of
second order DPLL response has been found in the literature for the generqlized

mode! of Figure 3-|. The following, while not giving a complete solution, fills

some of this void by determining valid and pertinent characteristics of the second

' order DPLL time response for specified input conditions.
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As with the first order DPLL, the first case to be considered for the
second order loop is an input signal with a constant initial phase offset 9| and
zero frequency difference with respect to the reference clock. Also, the input

signal phase will again be assumed to be zero radians and the constraint of (3-31)

is applicable so that (3-27) becomes

k
tk + 1) = ¢tk) =-A] sgn ¢(k) - A2 Y sgndi) (3-41)
i=1

with ¢(0) = 8- Since the total number of phase states of the reference clock is

N, it is necessary that some relationship exist between A 17 A2, and N. For

the second order loop it is assumed that A, and A, are integrally related a3,
= iy
A, n oA, (3-42)
and the total number of phase states will be given as,

N = 2n/A, = 2u/n A, (3-43)

The typical phase error response versus the loop sample number as given
by (3-41) is shown in Figure 3-5. While a complete solution of (3-41) is not per-
formed it would be of interest to determine the sample number of each zero crossing
of the phase error function and both the sample number and the value of each peak
overshoot of the phase error function up to the occurrence of phase lock. A
knowledge of these values not only characterizes pertinent parts of the phase error
function but can be used in conjunction with one another to give the total time re-
quired to achieve phase lock for an initial phase offset. Therefore, it will be
necessary to determine the values k], k2, e, ko k k ., kPi’ and

14 i’ P"I P2I‘ M
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Figure 3-5. Response of Second-Order DPLL to Phase Step Input.

Ou1? g2 7 = - 2B UP to the value,

q>osi < A] + A2 (3-44)

at which time a lock condition has been achieved at k..
]

If the initial phase offset is assumed to be 6, > 0, then the first zero

crossing of the phase error function occurs when
This value of k] may be found by considering the phase error for values of k < k]

which is given as,

k
o) =8, - kA, -4, ;.] (3-46)
1=
~27-
2 oot "“MMMMWMAM e

R A T



IR A e

Rttt R S S i Yt A 2 AR SN A SR SR S o 2t it

The first zero crossing of the phase error function occurs at

k
kA] + A2 )I:—]l > GI (3-47)
However,
k
yi= Kktl) (3-48)
i=1 2

which may be substituted into (3-47) to give (after rearranging terms),

2A. + A
s — 2 o 2 g 50 (3-49)

A2 2!-

The positive root solution for (3-49) evaluated for equality to zero gives the number

of samples required for the first zero crossing of the phase error function as,

2 8 :

~(2A, + A,) 2A, + A )
1 2 1 2 | N
ko = % 4 —_— L b o—_— (3-50)
1 2 4, 24, A,

— ‘1
After the k - th sample the sign of the phase detector output changes giving

the phase error as,

ok, + 1) = q:(k])+ Ay = b, (k- 1) (3-51) %

which can be generalized to ’
£ 'f

q:(k] + i) = q;(k])+iA] - —2—2 i(2k]—i—l) (3-52)

for k] + i< kpi' Defining kpi as the sample for which the peak overshoot !

occurs following the ki zero crossing, then it is obvious that,

te) <ol ) (3-53)
Applying the constraint of (3-53) to (3-52) gives the sample at which peak over-

shoot occurs as,

-28-
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i = 2y = A /Ay -] i (359
= 2% -n-1 (3-55)
The value of the peak overshoot is found by evaluating (3-52) at i=l<p] + k] with
kp] determined from (3-55) giving, '
A, ‘
ok ) =dk)+k,=-n=-1TA, - — k, +n)] (3-5¢)
pl 1 1 1 2 1

It is important to note that at the peak overshoot point that the value contained

in the summation block of Figure 3~1 will be zero.

The partial response of the loop giving the zero crossings and the peak
overshoot values for the phase error function can be found by repeated application
of (3-50) and (3-56). Notice that since the summation term of the phase error
function is zero at sample kpi , then ki+ p can be found from (3-50) whefe the
initial phase offset is given by ¢ i Further, once the values of A, and A,
have been specified it is a simple manner to determine the required response values
graphically. As an example, consider the case for which A= Ay = %;——- .
For this case (3-50) reduces to,

1

k] =-1.5+(2.25+4 10.2 8')‘ (3-57)
and the phase error of the first zero crossing is determined from (3-46) as,

o) = 8, - 0.196 y” o+ 3)) (3-58)

Equation (3-58) is in slope-intercept form with the intercept determined by (3-57).

Notice however that the value of k determined by (3-57) applies only over a
1
certain range of 9' and therefore (3-58) is likewise applicable only over the same
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range of el. Thus, when (3-58) is plotted in Figure 3-6 it takes on a saw-~tooth
characteristic. Substituting the loop gain values into (3-56) gives the value of the

first peak overshoot as,

ok 1) = #(k;) + 0.098 (¢ - 2) (1 -k (3-59)

which is also in slope-intercept form and is plotted in Figure 3-7. Notice that when
the zero crossing occurs at the second loop sample, the loop will be in phose lock.

It is noted that the phase error at the occurrence of fh.e first zero cross-
ing of the phase error is plotted on the ordinate of Figure 3-6 and on the abscissa of

Figure 3-7. Further, since the i-th zero crossing parameters are found by using the

above procedure with the initial phase offset equal to the value of the (i-1) - th peak
overshoot, then the abscissa variable of Figure 3-6 is equal to the ordinate variable of

Figure 3-7. Therefore it'is possible to combine the results of these two plots. This is

emden o gab

done in Figure 3-8 where (3-58) for 8, > 0 is plotted in the first quadrant and for

I
8, < 0 in the third quadrant. Similarly, (3-59) for a negative phase error at the

!
zero crossing is plotted in the second quadrant and for a positive phase error at the
zero crossing in the fourth quadrant.
Using Figure 3-8 it is possible to determine the phase error character-
istics during loop phase acquisition as follows. Assume that the initial phase offset
of the loop is Gl = 2.75 radians as shown in Figure 3-8. The first zero crossing of

\
the phase error function will occur at the fifth sample and the phase error will be

- 0.98 radians. The value of the first peak overshoot is the projection on the -8

|
axis of the intersection of ¢(k) = 0.98 radians with the k=5 line in the second qua-

drant which is equal to ~2.04 radians. This value of first peak overshoot is then used

-30-
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Figure 3-6. Phase Error at First Zero Crossing for an Initial Phase
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Figure 3-7. Value of First Peak Overshoot Versus the Phase at the
First Zero Crossing.
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to find that the second zero crossing occurs four samples after the peak overshoot
and has value 0.72 radians. The value of the second peak overshoot is seen to be
1.3 radians. The value of the second peak overshoot is then used to find the third
zero crossing and the third peak overshoot value. This process is just continued in a
clockwise manner until only two samples are required for the occurrence of the i-th
zero crossing at which time phase lock has occurred. Thus the phase function char-
acteristics for any initial phase offset can easily be determined by Figure 3-8.
Consider next the case where the input signal differs by a constant
frequency from the quiescent frequency of the second order DPLL with Gi(k) = 0.
Since for this case the condition of (3-31) is not assured during loop phase acquisi-

t'on the phase error difference equation is given by

e + 1) —lk) = 2n (1 - w/wo) - A :’ sgn [sin @)1 (3-60)

1
k (o]
- u/mo A, 7 sgn [sin d(k)]

i=1

with 0) = 6

T The inclusion of the constant ferm for the frequency difference and
the sine function complicates (3-60) to the point that even a partial solution as was
performed for the case of zero frequency difference is not possible. However, it is
possible to study the stability of the second order DPLL by means of an incremental
phase plane portrait. In the incremental phase plane, ¢k + 1) - ¢fk) is plotted as
the ordinate and ¢tk + 1) is plotted as the abscissa while k is a variable parameter.
Then for any k, [ék + 1), ¢k + 1) = ¢(k)] describes the state of the system and a
siable region of operation is found when, for any given initial conditions,

FTek + 1), ¢k + 1) ~¢(k)] » M2gi, 0.0] i =0, £1,=2...(3-61)

as k +o
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For the case of A, = A, = w/32and 6, = n/4 incremental

1 2 |

phase plane portraits have been plotted in Figures 3-9 and 3-10 for various values of
m/wo. From Figure 3~9 it is seen that for w/wo < 1, but sufficiently large, that it

is possible to achieve phase lock without cycle slipping. However, as w/uo decreases
the loop will achieve phase lock after slipping an increasing number of cycles. Notice
that as the number of cycles slipped increases the length of time required to achieve
rhase lock also increases. Similarly, from Figure 3-10 it is seen that for u/wo > 1,
but sufficiently small, that it is possible to achieve phase lock without cycle slipping

but as w/wo increases the number of cycles slipped prior to phase 'ock increases.

Figure 3-9. Incremental Phase Plane Portrait for®, = n/4 and w/uo <.
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Figure 3-10. Incremental Phase Plane Portrait for 8, = n/4 and w/w ~ 1.
o

For some applications it is necessary that phase lock be achieved in
minimum time so that it is necessary that no cycle slipping occur during phase acqui-
sition. Consider first the case of 9' > 0 and u./wo <1, so that the phase error

can be expressed as

gk +1) = O]+2v(1 - w,'/uo)k'-w_/wo A] k (3-62)
o a, ME2D
° 2

up to either the first zero crossing of the phase error function or the first cycle slip
sncesgn [ sin afk) ] = 1 until either of these occurrences. Equation (3-62) can

be rewritten as

ks 1)

ok +1) =8 - A]' k- A, \ (3-63)
2
vhere
A] = =27+ m/mo (2w 4 A]) (3-64)
A2 = w/uo A2 (3-65)

-35-

G xS




A e S T T T TR TR T T T T e o I T S s TR

and for a cycle slip to occur

ok + D> (3-66)

From (3-63) and (3-66)

2 A. 1+ A
N R (3-67)

oy A,

Since k is the sample number of the occurrence of a cycle slip during phase acquisi-

tion, k must be a positive, real value. Since k must be real then

20y Ay (8, =) > 0 (3-68)
i ]

2A2 A2

and, since 6 w, for k to be positive then,

=
208,41 A

1% 9 (3-69)
2 A 9
For (3-68), the worst case for cycle slip occurs as 8| ~ 1w, therefore if Si -8
and [.\] & g T 32 the constraint of (3-68) gives
6o _ 0.971 for & 0.01 (3-70)
while the constraini of i3-69) gives
w w - 0.977 (3-71)

Therefore, k will be a positive real value for indicating a cycle slip will oceur for
all values of u 'mo . 0,971, Asimilar procedure can be followed for

-7+ &6 ¢ 0 ond w Wy "1 which for the same case of A, = A, = ©w/32

-1 1 2

will give a cycle slip for
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w/u, > 1.03, &~ 0.01 (3-72)

Thus once A 1 and A, are defined, it is possible for the 2nd order DPLL to define
the frequency offset range over which phase acquisition can occur without cycle

slipping.
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CHAPTER IV

FIRST ORDER DPLL WITH ADDITIVE NOISE INPUT

A. Introduction. In the preceeding chapter partial response characteristics
for a first- and second-order DPLL with ideal input were developed. As for the case
of an ideal input, little has appeared in the literature concerning the characteristics
of DPLL operation with a noisy input. For the most part any analysis that has appeared
in the literature for stochastic inputs has involved linearizing assumptions on the DPLL's
operation. Two notable exceptions have been the DPLL configurations studied by
Cessna and Levy [ 51 and Holmes [ 6 1 where random walk techniques were used to
determine the statistical characteristics of the loop. For the DPLL of reference 151,

the first order loop utilized resettable low pass digital filters in the phase correction

path while the DPLL in reference [ 6] did not utilize a filter. A DPLL configuration
that uses a non-resetting filter is analyzed in the following without linearizing assump=
tions using a Markov chain model that achieves the same statistical performance of that

described in [ 5 Thut with less physical complexity.

B. First~Order DPLL Configuration. The specific loop configuration consid-

ered here is shown in its implementation form in Figure 4-1 and is a slightly modified
version of the generalized DPLL model shown in conceptual form in Figure 3-1 with

A, = 0. This loop configuration is that of the Ohio University MAPLL [ 77 with

2

the exception that the loop is assumed to operate continuously instead of in a gated
manner. Assuming for the moment that M 1 in Figure 4~1, then this loop implemen-
tation is easily seen to be identical to the model of Figure 3-1 with A, = 0 since at
each sample of the input signal the phase of the reference clock will either be advanced

or retarded by A 1= g[l—;- radians depending on whether the reference leads or lags the

input signal.
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An improvement can be made in the loop's operation for a fading input by
the addition of the divide=by M up/down counter preceeding the divide-by N up/
down counter. It is obvious that to change the phase of the reference clock it is
necessary for the divide=by M counter to cycle through its M disiinct states to either
an overflow of underflow condition. Thus, while the phase output takes on N distinct
states, the loop itself has Mx N distinct states. Further, the divide-by M counter

constitutes a digital low-pass filter whose transfer function is found in Appendix D as,

. W ™ -t
sinM3 e 'z—-‘l (M-1) (4-1)

sin mr?wc c

Hiw) = &

It is seen from the plots of the magnitude-squared function of (4~1) in Appendix D
that as M increases, the bandwidth of the filter decreases.

A state diagram for the loop is given in Figure 4-2 where the values of P;
and q, are the probabilities associated with the indicated state changes. Several
things are worth noting about this state diagram. First, for any present state, when a
new sample is taken a new state will result; and second, the new state will always be
adjacent to the previous state. Also, for a given reference clock state the transitions
occur uniformly with time but, following a transition from one reference clock state
to another, the time interval to the next sample is either longer or shorter than the
time interval between the previous two samples depending on whether the reference
clock phase was advanced or retarded as it passed from the previous reference clock
state to the present reference clock state.

If the phase samples are independent and the non-uniform sampling interval is
ignored, then the DPLL given by the state diagram of Figure 4-2 can be approximated
by a first-order Markov chain, the properties of which are outlined in Appendix A.
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If a. is defined as the probability that the loop is in state i then the system of

equations describing the loop probabilities is given as,

-40-
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Or,

rpl fal = [a] (4-3)
where [ P] is called the matrix of transition probabilities. The non-trivial solution
to this system of homogeneous, linear equation is the one that satisfies the total proba-

bility relationship,

N M
RN (4-4)
i=1 =1

and, from the characteristics of Markov chains, represents the steady state probability
for the loop states. That is, at any given instant of time the probability of observing
the loop in state sii is given by aii .

The steady state probabilities for the reference clock states, s, are given

S =7y a, i=1,2,...N (4-5)

Once the steady state reference clock state probabilities are known, it is possible to

find the variance of the reference clock phase from

2 1 N-1 L . 2
% TN ;zzo Si+1 ,:N—— (]—N+21ﬂ (4-6)
where it has been assumed that the phase of the input signal is a constant 0. radians
corrupted by noise.
Another quantity useful for the evaluation of a DPLL with a fading input
is the mean time to lock-up for some initial phase offset. This can be evaluated by

considering the loop transient response in terms of the classical ruin problem (Feller

[ 81)for a random walk. The mean time to lock for an initial phase offset then would

~41-

can . ot Bl

s e

IV IR R SN



o em g oecEmesT o pTTTT T o T

be equivalent to a determination of the expected duration of the game in the classi-

cal ruin problem. |If Toi i is defined as the expected time required to reach a mini~
’

mum phase error when the initial state of the loop is s, then the Toi i must satisfy
! '

the difference equation,

Toi, i = VP T,y -t Top i+ (4-7)
for J# 1, M and with the boundary conditions :
: 1

Tok,]_Tk+1,i—O i=1,2,...M (4-8)

where reference clock states k and k +1 represent the minimum phase error states.

For the input signal assumed to be 0. radians then the system of non-homogeneous, 3

linear simultaneous equations results,

T Y T

-42-

B e u A




R e e A 4

[ -
1 9 0 0 0 Toll
Ppp 1 a9 0 0 To12
0 Py 1 9, 0 To]3
ol4
To?]
T02M
(o]
1 0 T
Pi-1 9%y ok-1, M
0o 0 1 0 Tk
o 1 0 O BRI
O Pl G Tok+2,1
0o 0
PN TN ToN, M1
N 0
q 0 py! TN, M
-43-
e s o

o0 ¢ =

(4-9)

T T N T - S UL Ry SR i g S Py v P T T P N 1Y




C. Matrix of Transition Probabilities.

Consider the case where the input to the DPLL is of the form;

s (1) = s(t) + n(t) ' (4-10q)

1l

Accos ((.ect + @) + x(t) cos wt+ y(t) sin wcf (4-10b)
i

where Ac is the carrier amplitude and x(t) and y(t) are zero mean independent gaussian
distributed random processes of bandwidth B and variance ax2 = 02 = ¢2. Thatis, the

input to the DPLL is some signal plus narrowband noise. The input can also be written

in the form:
sr(f) = x'(t) cosucf +y'(t)sin ucf (4-11)
whzre
x'(t) = x(f)+Accos ¢ (4-12a)
y'(t) = y(t) +Acsin ¥ (4-12b)

The positive going zero crossing is always assumed to be the correct phase of the signal
s(t). That is, the reference clock is always assumed to be in phase lock with the signal
s(t), and the error signal generated by the phase detector is used to tell the loop differ-

ently. Therefore, the loop always assumes the samples of the incoming signal occur at:

wcfi = (1+2)n/2 i=20,1,2,... (4-13)
so that
cos wcf = 0 (4-14a)
sin wcf = 1 (4-14b)
giving
sr(f) = y(t) + Ac sin ¢ (4-15)
44

T e ummmmoat oy

N I PP .



where g is the phase difference between s(t) and the reference clock. Note that as
the loop approaches lock, ¢ approaches 0. Also, the reference clock can take on
only N distinct values so that ¢ too can take on only N distinct values Yoo i=1,
2, ..., N. From earlier y(t) is a gaussian distributed random process so that the
probability density function for sr(f) is:

] 2
1 _ (y+Acsm Lpi)

p(sr)=\/;1m2 e 2 (4-16)

o

1o}

From the state diagram of Figure 3, the p, s are the probability that the sampled

value of sr(f) is less than zero and can be found from:

P, = J-O p(sr I q:i) dSr (4-17q)
! fo N {y+Acsm Lpi :
= e - o (4-17b)
2no - o dy
= probability that sr(f) < 0 (4-17¢)
Also,
q; = 1 - P, (4-18a)
= probability that sr(f) >0 (4-18b)

D. Application of the Markov Chain Model. The phase error and transient

response of the DPLL given in Figure 4-1 can be determined from the solution of
(4-2) and (4-9), respectively, once the values of M and N have been specified. To
perform the solution to these two sets of equations, the three Fortran computer pro-
grams given in Appendix B were written. The first program, PBSTGEN, is used to

set up the matrix of transition probabilities for the systems of (4-2) and (4-9) once
-45-
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the values of M and N are given. The second program given in Appendix B,
PBDPL2, is used to solve for the steady state probabilities of the loop states and from
this calculates the steady state probabilities of the reference clock states and finally
the variance of the phase error for specified input signal-to~noise ratios. The final
program given in Appendix B, PBDPL2T, is used to defermine the solution to the
transient response system of equations given in (4-9). Both PBDPL2 and PBDPL2T use
a successive approximation technique to determine the solution to the system of equa-
tions. Note, all three programs were written to be used both for the first-order DPLL
considered in this chapter and also for the second-order DPLL which will be given in
the next chapter.

The steady state probabilities for the reference clock states were found for
various values of M and signal-to-noise ratio with N =64 and are plotted in the terms
of the phase error probability density function in Figures 4-3 and 4~4. The value of
N = 64 wa chosen to be consistent with the application to an Omega navigation re-
ceiver as outlined in [7]. Note that for all cases, the value of N and M will be
assumed to ke a power of two so that a practical realization of the counters can be
achieved with a standard binary counter. In Figure 4-3, the envelope of the proba-
bility density function for the phase error is shown for M=1 and signal-to-noise
ratios of 20., 0.0, ~20., and 40.dB. Notice that as the signal-to-noise ratio de-
creases, the envelope of the density function approaches that of a uniform phase error
distribution as would be expected. In Figure 4~4, the envelope of the density func-~
tion is shown for a constant signal-to-noise ratio of -20. dB while M takes on values

1,2,4,and 8. From this plot the effects of the digital low-pass filter (the divide~

by M counter) can be seen since as the bandwidth of the filter decreases, the den-
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sity functions tends to flatten,

Once the steady state probabilities of the reference clock states are deter-
mined the phase error variance can be easily calculated. In Figure 4-5, the standard
deviation of the phase error is plotted for M=1, 2, 4, and 8 versus noise-to~signal
ratio. For low values of noise-to-signal ratio these curves are asymptotic to a value
fixed by N, the quantization level of the reference clock. For high noise~to-signal
ratios, these curves are asymptotic to the standard deviation of a uniferm phase dis-
tribution. Note also that as the value of M increases by a power of two that there
is an approximate 3.0 dB increase in the performance of the loop.

The mean time to lock in terms of the number of samples required to
achieve phase lock for some initial phase offset was determined for M=1, 2, and 4
for various values of signal-to-noise ratio. Note that phase lock following some
initial phase offset is defined as the first occurrence of the minimum phase error con-
dition as determined from the solution of (4-9). Since the phase of the reference
clock is assumed to take on values from - to w, a minimum phase error condition

would be reached for M=2 when the loop reached states S99 17 , or

$32,2' °33,1

533 9 for N=64 and the input signal a constant 0.0 radians. However, for the

7

case considered here, a more stringent lock condition was imposed in that only states
s and s were considered to constitute phase lock. For this case the bound-
32,2 33,1

ary conditions for (4-9) become T032,2 and To equal to zero. Similarly, for

33,1

the case of M=4, only the states s and s were considered to constitute
32,4 33,1

phase lock. The solution to (4-8) under the above conditions are plotted in Figures

4-6, 4-7, and 4-8. As expected, for a given initial phase offset, the mean number

of samples to the first occurrence of a phase lock condition increases as the signal-
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to-noise ratio decreases for all three plots. Notice that for a 20. dB signal-to~-noise ?

ratio that the expected time to lock is very nearly equal to the time required for lock

under ideal conditions. A cross comparison between Figures 4~6, 4-7, and 4-8 indi-

cates that the expected time to achieve phase lock increases as the value of M in- E
!

. creases as would be required since more loop states must be traversed to achieve phase

lock.

In addition to the theoretical values, Figures 3-5 through 4-8 also include

experimental data taken from a hardware realization of the first-order DPLL. This

hardware realization will be discussed in Chapter VI.

[
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Figure 4-1. First-Order DPLL Implementation. 1
Note: i is Present Value of + N
Up/Dn Counter.
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Figure 4-3. Probability Density Function of Phase Error, N =64,
M=1.

-51-

il i e,




A )

e R . Sl

<y

Y

-

- ——

. e T Y WO W

/4 7

Phase (Rad) -

Figure 4-4. Probability Density Function of Phase Error, N =64,
SNR = 20.dB,

-52-




- ia ol e Saliail I R R A
¥ i b L bk v b adl M I a4 A
Sdadies v ¥ iatia o g o y ,.

| “
r
,w 79 = N ‘onpy |oubig o) asiopN *sp o143 asoyd dooT jo uoyoiAa( piopuUD)S "G~ 24nB1y .W
| <« (@P) jpubis/asion M
:
oy o€ 0¢ 0l 0 oL- 0¢Z-

[— $ } + t ~ 3
| _“I|.I|-||..|||||I| 1
», 8 = W
m B
'v Ed
w g0 :
”w |potjaloay| —— | roa_a w
w Do |pjuswiiadxy W ﬂ
7= W .

0°1
| , oy
m ¢ =W T Gl o
ﬁ v o
w s
ﬁ ¥
uolinqiasiq wiojtun Jo A3 *p4s

| L oz

.
;




o
T

Mean No. of Samples to Locx.
)

/ //ﬁ/ /“3’//5-\1/; 20 dS‘

~

ol D//
/-
/

Srat - =23 dB
3

o —

————-  Theoreticol

a=- Experimental Data

it . s 4+ e et et e marr s
n 4 n

Initial Fhase Offset (RAD.)

Figure 4-6. Loop Transient Response

M=1,

N=64,

SR

R e

e e i e s



5 e

D e e

IO3 r
)
SNR = -20 d8B
//0
[y
X
(8]
3 2
o107 SNR =0 dB
k]
2.
g 2 ////Q
n Y e
s SNR =+ 20 d8
o
z
5
D
=
(Y
1ol
«———  Theoretical
a - Experimental
100 L L 1 3
w4 w2 3,4 n

Initial Phase Offset (RAD)
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V. SECOND ORDER DPLL WITH ADDITIVE NOISE INPUT

A. Introduction. Second order DPLL configurations have been analyzed by
Holmes and Tegenelia [ 13] and Weinburg and Liu [ 4] for an additive white gaus-
.ian noise input. However, in the case of reference [ 13 ], the loop was modeled
s a linear system and then analyzed by classical techniques. The results presented
for this linear model showed close agreement with experimental data for signal-to-
noise ratios greater than 0.0dB. In reference [ 41, the steady state phase error for
the second order DPLL was determined from a solution of the Chapman-Kolmogrov
equation in the z-domain under the assumption of small values of steady state phase
error. Again, the usefulness of this solution is [imited by the input signal-to-noise
ratio. In this chapter, the author presents a method of analysis for a second order
DPLL that is not limited by the input signal-to-noise ratio.

In the previous chapter, the analysis of a first order DPLL was performed
by modeling the loop as a first order Markov chain. In the following, the idea and
methods used in the previous chapter will be modified to allow a similar approach to
be used for the analysis of second order DPLL's. It will be shown that a second order
DPLL can be modeled as a first order Markov chain with alternatives and that these
alternatives themselves can be thought of as states in a first order Markov chain.
The steady state distribution of the Markov chain alternatives can be determined and
“rom this distribution it is possible to find the steady state phase error of the DPLL,
The transient response of the loop is also determined in a similar manner.

B. Second Order DPLL Configuration. The second order DPLL configuration

considered in this paper is shown in its implementation form in Figure 5-1. The loop
is identical to that of Figure 4-1 with the exception of the addition of the divide~-by
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L up/down counter and the K-bit binary adder wherellf = log2 (MxN). The in-
clusion of the divide=by L counter provides the A, I R X (i) function of the gen-
eralized model of Figure 3-1. Note however that Fo: a_practiccl implementation,
the divide-by L counter cannot be allowed to either overflow or underflow since
this would have the effect of resetting the summation value to zero. Therefore, the
divide-by L counter is structured so that it will saturate at values of + L.

Operation of the loop is as follows. The input signal is sampled at the
positive-going zero crossing of the reference clock to determine whether the refer-
ence clock leads or lags the input signal. If a phase lead is detected, the divide-
by M and divide-by L counters are incremented by one and if phase lag is detected,
the divide-by M and divide-by L counters are decremented by one. Following this,
the value of the divide-by M and divide-by N counter combination is added to the
value of the divide~by L counter and the result loaded into the divide-by M and
divide~by N counter combination. Finally, the phase of the reference clock is up-
dated to reflect the value contained in the divide-by N counter after the load has
occurred.

Referring to Figure 3-1, the value of A, will in this case still be given

by A= 2n and the value of A, is determined by the bit in the divide~by M and

N 2
divide-by N counter combination to which the feast significant bit of the divide-by
L counter is added. For example, if the binary adder is configured so that the least
significant bit of the divide~by L counter adds to the least significant bit of the
divide-by N counter then A] = A2' However, if the least significant bit of the
divide~by L counter adds to the most significant bit of the divide-by M counter,
then A, =2 A,. Note that this leads to a more limited relationship for A] and A2

1 2
-58-
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than given in (3-42) since for this configuration,

yoee (5-1)

Note also that a first order DPLL results from this configuration if the divide~by L
counter is configured fo saturate in its zero state.

For the first order DPLL, the loop states were defined by the combination
of the divide-by M and divide-by N counters giving a total of Mx N loop states.
For the second order DPLL, the loop states are defined by the value contained in
the combination of the divide-by M and'divide-—by N counters following the loading
of the K-bit binary adder output so that once again there are a total of Mx N loop
states. However, for the second order DPLL the loop state transitions are dependent 4

not only on the present output of the phase detector but also upon the value con-

tained in the divide=by L counter. Thus the value of the divide-by L counter can )

be thought of as providing alternative loop state to loop state transitions for a given

phase detector output. The loop can then be modeled as a first order Markov chain i
t with alternative state transition vectors. The characteristics of the Markov chain
with alternatives is discussed in Appendix A.

y C. Markov Chain Model of the Second Order DPLL. Use of the Markov

chain with alternatives for the modeling of the second order DPLL configuration con-
sidered here will be shown by means of an example. For this, consider the DPLL of
Figure 5~1 withM = 2, N = 4, and L = 3 so that there are eight loop states which
, define the states of a first order Markov chain. However the divide-by L counter
can take on seven values so that for each loop state there are seven possible alterna-
tive loop state transitions. A state diogram of the Markov chain model for the DPLL

under consideration is shown in Figure 5-2. In this figure, the loop states are situ-
-60-
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ated horizontally while the alternatives associated with each loop states are situ=-
ated perpendicularly. Thus the top row labeled alternative 1 gives the state trans-
itions for the divide-by L counter having a value +3. Similarly alternative 2 applies
for the divide~by L counter having value 2, alternative 3 is for the divide-by L
counter having value 1 and so on. The loop states are plotted such that the first
column is for a reference clock state of one with the value of the divide~by M
counter equal to zero while the second column is for reference clock state one with
the value of the divide~by M counter equal to one. Similarly, the third column is
for reference clock state two with a value of zero contained in the divide-by M
counter and so on.

Since there are eight possible loop states with each loop state having
seven possible alternative actions, there are a total of 56 alternative state vectors
in the matrix of transition probabilities as given in Appendix A. However, for each
loop state, the alternative vector to be used is uni;quely defined by the value of the
divide-by L counter so that the alternative vectors themselves can be thought of as
states in a first order Markov chain. That is, instead of considering the transition
from loop state to loop state, the transitions from loop alternative to loop alternative
are considered. Thus in the state diagram of Figure 5-2, the loop alternatives are

successively numbered SyrSor e e« and the possible transition from loop alterna-

56
tive to loop alternative is assigned a probability as indicated by the directed arrows.
The values of the indicated probabilities are dependent only upon the reference

clock state associated with each loop alternative and the method of determining their

value was discussed in Chapter IV.C.
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To show that the state diagram of Figure 5-2 will achieve a phase lock
condition, consider the case of an ideal input sigial. For this case the transition
probabilities as given by (4-16b) and (4-17a) are,

Py = Py =43 =9, =1 (5-2)
and

Py = Py =9y =9y =0 (5-3)
If the loop is assumed to initially be in alternative state S40 then on successive
samples of the input the path traced through the state diagram will be

4> °17 »27 > 738 = 32> "19 + 725 » “38
so that when phase lock is achieved, the loop will continuously cycle through the

closed path

°38 « %32 - *19 » 25 . "38 " "

Inspection of Figure 5-2 will show that the same state cycle will be obtained for
any initial alternative state.

Once the state diagram for the alternative loop states is defined, it is
clear that the steady state phase error for the loop may be obtained by the same
method as was used for the first order DPLL in Chapter IV. For the example of
Figure 5-2, if the steady state probability of occupancy of alternative state s. is
lenoted as a., then for state Sy

9 = Py 99t % (5-4)
Similarly for alternative state Sy
Ay = Py Gy 4y ag (5-5)
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Obviously there exists a similar equation for each of the 56 alternative loop states
so that there exists a system of homogeneous, linear equations similar to (4~1) which

can be written as,

re —1 r "
9 o
02 02
[A] ) = ] (5-6)
954 %564 ]
N B >

where [A]56 < 56 is the stochastic matrix of transition probabilities for the alterna-
tive loop states. The nontrivial solution to (5-6) which satisfies the constraint,
56
v a, 1 (5-7)
. i
i 1
gives the steady state probabilities for the alternative loop states. As for the case of

the first order DPLL, the steady state probabilities of the reference clock states, S,
i

cun be determined from the steady state probabilities of the alternative loop states

as,

14

S T a. (5-8c)

1 . i
i ]
28

52 ] a, (5-8b)
P15 !
42

53 - 7 Q. (5-8¢c)
P29 !
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54 = 2' a, (5-8d)

The variance of the steady state phase error can then be determined from the distribu-
tion ofSi by (4-5). This methed of finding the steady state phase error of the loop can
obviously be extended to any value of M, N, and L.

The mean time to phase lock for some initial phase offset can also be deter-
mined by the method of Chapter IV, If Toi is defined as the mean number of samples
required to the first occurrence of phase lock for an initial alternative loop state s,
than for state s,

]

T T

ol P3 029" P3 T30 " ! (5-9)
A similar equation can be written for each of the alternative loop states with the
exception of the alternative states which define phase lock for the loop. For the ex~
ample of Figure 5~2, the alternative loop states defining phase lock were found earlier

to be S197 5957 S37 and Sag° For these states the loop is initially in phase lock so that,

Toro Tos Tozz Tozg !

Thus there exists a system of non-homogeneous, linear equations similar to (4-10)

which can be written as,

65~
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where [T] is 56 x 56 matrix involving P; and g, As with the steady state phase
error, this method of determining the mean number of samples to phase lock can be
extended for arbitrary values of M, N, and L.

D. Application of the Markov Chain Model. The use of the Markov chain

utilizing the alternative loop states can be generalized for arbitrary values of M, N,
and L as has been done via the Fortran programs given in Appendix B, Use of these
programs has been outlined in Chapter IV.C. For all cases considered it was assumed
that A] = A2 and N =64, Further it was found in [9] that the phase error de-
graded rapidly as L increased, so for all cases considered L was limited to values of
0,1, or3.

Using PBDPL2 in Appendix B, the standard deviation of the steady state
phase error was determined for L = 0, 1, and 3 for various signal=to noise ratios.
Figures 5-3, 54, and 5-5 give the phase error for values of M = 1, 2, and 4, re-
spectively. As can be seen from all three plots there is an approximate 20. db de-
gradation in loop performance for L = 3 as opposed to a first order loop (S = 0).

Using PBDPL2T given in Appendix B, the transient response of the second
order loop was determined for M = 1, 2, and 4, L = 1 and 3 and signal-to-noise
ratios of -20., 0., and 20. db. The results are plotted in Figures 5-6 through 5-11
where for all piots the value of the divide by L counter was zero at the initial phase
offset. When the results are compared to those for the first order loop given in

Figures 4-6, 4-7, and 4-8, it is seen that for identical values of M and signal-to-

noise ratios, that the second order DPLL achieves lock in a lesser expected time for
initial phase offsets greater than m/8 radians. However for smaller initial phase off-
sets, the first order DPLL actually achieves phase lock in a lesser expected time than
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CHAPTER VI

FIRST AND SECOND ORDER DPLL DESIGN
A. Introductien. To experimentally demonstrate the validity of the Markov

chain model for the first and second order DPLL's described in Chapters IV and V, a
hardware DPLL was designed, constructed and tested for additive noise inputs. The
hardware loop wos designed so that either first or second order operation was selec-
table. Also, a primary design objective for the hardware DPLL was to allow for easy

alteration of important loop parameters to facilitate testing of the loop under various

e

conditions. Therefore, the design presented is not intended to incorporate minimal
components. The general range over which the parameters could be varied was limi-

ted to values thought to be useful for an application to an Omega navigation receiver

as were the parameters used inn Chapters IV and V. It should be emphasized however,

that neither the theory nor the generai DPLL design presented in this paper are in any

way limited to this particular application.

B. DFLL Design and Testing. The block diagram tor the DPLL design is shown

in Figure 6-1. All register lenaths shown in the block diogram indicate the maximum
values and during testing the actual register lengths were altered to verify the etfects
of various loop parameters upon the DPLL's performance. The functional groupings of
components in relation to the DPLL given in Figure 5-1 are indicated for comparison.
Referring to Figure 6-1, the phase detecior will sample the binary quan-

tized incoming signal at a frequency Fc and then output a count~down signal if the

.~ T -

sample is a high level or a count-up signal if the sample is a low level. The count-
up or count-down signal is than applied to both the divide-by L saturating counter

and the divide-by (MxN) counter. Inhibiting logic is included with the divide-by

i
L. counter so that the counter will saturate at selectable values of +(2° -1),
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i-1,2,...,7. The somple command also initiates the control logic so that the
new value of the divide~-by {Mx N) counter (following the count-up or count-down
sigral) is loaded into the 12-bit buffer by means of the LOAD2 signal. After set-
tling, the output of the 12-bit adder will be the sum of the divide-by L saturating
counter and the divide-by (Mx N counter. This value is then loaded into the
divide-by (Mx N) counter by means of the LOAD1 signal. The value of the N most
significant bits of the divide-by (Mx N) counter now represents the phase estimate
of the DPLL. To establish the variable phase reference clock, this phase estimate is

compared to the value of a divide-by N counter being clocked at a rate Nxfc using

a |ogzN - bit binary magnitude comparator. Upon coincidence of the two input words,
the magnitude comparator output takes on value ONE. Note that this pulse output
occurs at an Fc rate. Notice also that this loop will operate in the first order mode
simply by inhibiting the LOADIT signal to the divide-by (MxN) counter. Detailed

schematics fer the DPLL may be found in Appendix C.

The primary objective for construction and testing of the hardware DPLL
was the veritication of the theoretical data obtained from the Markov chain model in
Chapters IV and V. As such, it was desired to determine the steady state phose error
and the mean time to phase lock for some initial phase offset for the DPLL operating
with an additive white gaussian noise input. The determination of these two values
can be made using the same basic test configuration shown in Figure 6=2. This test
configuration allows the use of identical frequency but phase shifted signals for the
DPLL's input and reference source. Also, provision is made for the addition of
gaussian noise fo the input signal,

Referring to Figure 6-2, the source used for both the DPLL reference
source and the DPLL phase shifted input was a Sulzer temperature controlled crystal
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oscillator operating at 100 KHz. Since the reference source for the DPLL is re-
quired to be 8 xf s this sets the quiescent frequency of the DPLL at approximately
390Hz, To develop an input signal for the DPLL the 100 KHz hardlimited source is
applied to a presettable 8~bit counter. Then by presetting the counter to various
values a phase shifted signal at an Fc rate is obtained.

The output of the digital phase shift network was then filtered using a
standard state variable active bandpass filter with center frequency of fc Hz and
Q= 100. Utilization of this particuler filter design allows for easy and precise turn-
ing of the filter for zero phase shift. The sinusoid output of the bandpass filter was
then selectably attenuated using Hewlett-Packord Mode! 3558 attenuators to vary
the signal amplitude. Gaussian noise from a General Radio Type 1381 noise source
w s then added to the attenuated phase shifted sinusoid. The power spectrum for
the Type 1381 noise source is flat over a 25 KHz bandwidth and will therefore look
to be a white noise source to the DPLL. Noise power was monitored by a HP true-rms
voltmeter so that accurate signal-to-noise ratios could be set. The corrupted signal
was then hardlimited using a two stage amplifier followed by an LM319 analog
comparator. Each amplifier stage consisted of an AD518 op-amp configured for
20. dB of gain at a 40 KHz bandwidth. The output of the LM319 was then used as
the noise corrupted hard limited input to the DPLL,

The first test performed on the DPLL involved only the phase detector of
the loop. For this, the inputs to the divide-by (M x N) and divide-by L counters
of the loop were removed so that the phase of the DPLL's reference clock could not

be altered. In this manner, any phase shift between the DPLL's input and reference
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clock that was preset by the phase shift network would be maintained. The proba-
bility of a count down phase detector output as a function of phase shift and signal-
to-noise ratio was then determined simply by counting the number of count down out-
puts and the total number of phase samples taken. The probability of a count down
output is then the ratio of the former number to the latter, and gives an experimental
verification of the values of q, as defined by (4-17a). The experimental results are
plotted in Figure 6-3 and -4 and show close agreement with the calculated values
in all cases.

The DPLL was then reconfigured for proper operation so that steady state
plase error test could be performed. For these tests, the phase shift network of
Figure 6-2 was set to zero so that in the absence of noise the phase error of the
DPLL would be only the quantization error of the loop. The phase state of the DPLL's
reference clock was then recorded on a Kennedy incremental digital recorder for
each sample of the input signal. The steady state probability for each reference
clock state is just the ratio of the number of occurrences of each reference clock
state to the total number of reference clock samples taken. The variance of the
reference clock phase is then determined from (4-6). The standard deviation of the
loop's phase error as determined experimentally has been presented in Chapters IV
and V along with the theoretical values predicted by the Markov chain model. Each
of the experimental data points represents at least 300,000 samples of the loop phase
error and it is obvious that good agreement exists between the experimental and theo-
retical results,

The final objective for the hardware tests was verification of the predicted
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loop transient response. For this, an initial phase offset was applied to the loop
via the phase shifting network and the number of samples required to the first occur-
rence of the phase lock state as defined in Chapters IV and V was recorded. This
was done by detecting the states which defined phase lock as given in Chapters IV
and V. The detected phase lock state was then used to gate off an event counter
thot was counting to number of phase detector samples taken following the initial
phase offset. Again, the experimental data has been plotted previously along with
the theoretical daia in Chapters IV and V. Each experimental data point represents
at least 500 trials and once again close agreement is seen between the theoretical

and experimental results.
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CHAPTER VII
CONCLUSIONS AND RECOMMENDATIONS

First and second order all digital phase-locked loops have been analyzed for
both ideal and additive gaussian noise inpufs. In addition, a hardware DPLL capable
of either first or second order operation has been designed and tested for verification
of the analytical results. For all cases tested, the experimental data showed close
agreement with the analytical results indicating that the Markov chain model for first
and second order DPLL’s given in Chapters IV and V are valid,

In Chapter 11, ideal inputs were considered for both first and second order
DPLL's with the objective of classifying the time response of the loops. For both
locps it was found that the phase error response was given by a non-linear difference
equation for which no direct solution was found. However, partial response choracter-
istics of the phase error was determined for both first and second order DPLL's when
the frequency of the input signal is identical to that of the loop's quiescent frequency.
Also, expressicns for the frequency range over which phase lock can be achieved for
a fi-st order DPLL and for the frequency range for which a second order DPLL can
achieve phase lock in minimum time were derived. In both cases it was found that
the frequency range was directly dependent upon the number of distinct phase states
of the reference clock. As would be expected, it was found that the frequency range
for which a second order DPLL will achieve phase lock, even with the constraint of
minimum time to lock, is significanily greater than the frequency range over which a
first order DPLL will achieve phase lock.

Specific first and second ordzr DPLL's were also analyzed for stochastic inputs

by means of a Markov chain model in Chapters IV and V, respectively. From this
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Markov chain model, the steady state phase error and mean transient response were
determined. The loop configurations used for the noise analysis were specifically
chosen to both match the general loop model given in Chapter 1l and to be realized
in hardware by standard binary logic families. For both first and second order loops
it was found that the usual tradeoff between steady state error and transient response
existed. That is, the steady state error can be decreased only with the cost of a
longer transient response and the transient response can be decreased only with an
increase in steady state error.

For the data presented in Chapters IV and V several specific points are worth
noting. First, in comparing the transient response of the first and second order DPLL
it is found that the first order DPLL will achieve phase lock in less expected time than
the second order DPLL for initial phase offsets less than approximately /8. Also, for
a second order DPLL, the steady +!.te phase error degrades rapidly as the signal-to-
noise ratio decreases below 0.u dB. Thus for an application such as an Omega receiver,
if the initial phase error as the received signal is gated on is expected to be small then
a first order DPLL will perform in a superior manner over a second order DPLL. However,
if the signal-to-noise ratio can be expected to be in excess of 0.0 dB and the initial
phase error is unknown then the second order DPLL will give superior performance.

Completion of the goals of this paper also points to areas in which further research
would be of use. In particular, for the case of an ideal input, it would be of great
utility if the determination of the phase error response characteristics were extended to
include the case of frequency offsets. This extension would thén allow the determina~

tion of time required to lock for an initial frequency offset without the necessity of
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pe forming a simulation. For the case of stochastic inputs, further research on several
po nts is recommended. First, the concepts of Chapters IV and V should be extended
to determine pertinent statistics on loop cycle-slippage. Secondly, it would be use-
ful to develop a comparison of the DPLL's transient response to the standard loop band-
width used to characterize APLL's. Finally, because of the transient response/steady
state error tradeoff previously mentioned research into adaptive loops could provide an

optimum relationship between these two parameters.
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A.

Markov Chains. A Markov chain can be characterized by a system con-

taining a number of distinguishable states (finite or infinite) for which transition o a
new state denoted si from any present state 5. depends solely on the present state s,
For the application of interest in this paper, assume that the number of system states
is N, finite. For each state to state transition, define pii as the conditional proba-
bility of a transition to state si given that the present state is s, Then for 9 defined

as the probability that the system is initially in state St 7 the conditional probability

that the system has traversed through states Sﬂ , Si2' . sin'-  to the present state

sin is given by,

Pe s |51 S2 o v+ Sn-1) T 9P 12Pi27 43 ¢ 1 * Pine1, jn(AT)
For each system state ./ i=1,2,

.+ «, N a vector of transition proba-

bilities, Pi may be written as,
Pi=(p” pi2"'piN) i=1,2,...,N (A-2)
Note that the N transition probability vectors must satisfy the requirements,

(A-3)
and

N
)X p.. = 1.0 i =1
=1

i !

, ..., N (A-4)

and are called stochastic vectors. The N vectors may be artanged in a stochastic

matrix of size N x N to give the matrix of transition probabilities, [P 1,
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P21 Pa P2N

[P =1 . . . (A-5)
PnT PN2 S S NIN

This matrix then defines all of the state to state transitions for the system and together

with the initia! state distribution ar i =1,2,..., N forstates S17 5o .S

N
cempletely defines the Markov chain for states SprSgs s e s S
The matrix of (A-6) defines the probabilities for state to state transitions
fo- asingle step. Next consider a transition from state s, to state s that occurs in
exactly nsteps. Denote pl<|n) as the probability of observing the system in state s,
at time r + n given that at time r it was observed in state . Obviously there will

exist a number of different paths for which the transition from s_to's, will occur in
i
exactly n steps and pfr) will be the sum of the probabilities for all of the possible

paths. For example,

Pi(gl) = Py (A-6)
and
N
@ _ ]
Pii '2; o pik pkl (A-7)

It can be shown by induction that pfln) is given by the recursive relationship,

N
(n) _ (n-1) _
Py = kf: L Pk P (A-8)
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n
If the value pfl) are arranged as elements of a matrix denoted [P1" then it is

obvious from (A-8) that standard matrix multiplication is applicable so that
-1
tp)” = (p1cPI" (A-9)
Recall that a, was defined as the probability of observing the system in

state s, at time zero. Then the unconditicnal probability of observing the system in

state si after n steps is

N
o™y a e (A-10)
I I

Further the distribution of o(,n) will tend to be independent of the initial distribution

a.,i=1,2,...,Nif pfr) is independent of i which will be the case if (p1”

1
n
converges to a matrix of identical rows. If [P1 does converge, then as n » w the

distribution a(.n) is the steady state distribution for the system.
It is now necessary to show that such a steady state distribution exists.
First, define the states of an aperiodic Markov chain as being transient if the proba-

bility of reoccurrence of that state is less than one for infinite time so that

Qo

(A-11)

n=1
and define the state as being null if the probability of reoccurrence of that state is
one but the mean time to reoccurrence is infinite. It has been proven by Feller [ 81,

Chapter XV.6 that for an aperiodic Markov chain that all states are either fransient

or null or all states are ergodic. If all states are ergodic then

, (n) _
in =y >0 (A-12)
N < 00

where 1/Uk is the meon reoccurrence time of state 5\ and Uk’ k=1,2,...N
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is the unique steady state distribution for the system.

A Markov chain can also be specified for which each state has one or
more possible vectors of transition probabilities. For each state si , the possible
vectors are called alternative vectors and transition from the present state to some
new state is governed by one and criiy one of the alternative vectors associated
with the present state. In this case, for each state s there exists ki alternative

vectors,

k = (k k ook o )Yi=1,2,...N (A=13)
i i i 1,2 K

where lp,, is the probability that the system will make = transition to state si given
1
th . .
that the present state is s, and k' alternative for s, is used. As before, each of the
i
alternative vectors of fransition probabilities are stochastic vectors and must satisfy

the conditions,

k >0i,{=1,2,...,Nandk =1,2,...K, (A-14)
pii I
and
N
L kp =1.O=1,2,...,Ncmdk=I,2,...,.Ki (A-15)

The vectors may be combined to give the K x N stochastic matrix, P,
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(A-16)

PIN
PIN
PIN

AN

AN
PaN
PNIN

P12
P12

P12
P22
P22
P22
P2

I T i o i e Al dh e o S ARt R
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B. Program Listings. The following three fortran programs were written to

solve for the DPLL's performance characteristics as described by the Markov model
given in Chapters IV and V.

1. PBSTGEN. Program PBSTGEN is used to establish the systems of
equations associated with (4-1)/(5-2) and (4-9)/(5-10). For these systems of

equations it is seen that only two elements of each row are non-zero. Therefore,

instead of storing the entire coefficient matrix for these systems of equations, PBSTGEM

generates two vectors whose lengths are twice the dimension of the coefficient matri=-
ces for each system. The first vector, PNTRI for (4-1)/(5-2) and T1 for (4-9)/
(5-10), contains the alternative loop state number for each equation (i.e. the pos-
sible state to state transitions for each equation) while the second vector, PNTR2

for (4-1)/(5-2) and T2 for (4-9)/(5-10), contain a pointer for the probability co-
efficient associated with each state to state transition. The actual value of these
probability coefficients will be calculated in the following programs.

2. PBDPL2.,  Program PBDPL2 uses the vectors PNTRT and PNTR2
generated in PBSTGEN to solve for the steady state phase error of the DPLL. Solu-
tion is performed by means of Jacobi's iterative technique until the steady state prob-
ability for all alternative loop states converges a difference of less than 10‘8 for
successive iterations. If convergence is not achieved, a maximum of 10,000 itera-
tions are performed. The iterative solution is performed for signal-to-noise ratios
from -40. dB to 20. dB in increments of 5. dB and the output consists of the steady
state probability of each reference clock state and the standard deviation of the phase

error.
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3. PBDPL2T. Program PBDPL2T uses the vectors T1 and T2 generated by
PBSTGEN to solve for the mean time to phase lock for an initial phase offset. Solu-
tion is performed by Jacobi's iterative technique until the result converges to a dif-
ference of less than 10-5 for successive iterations. Again, a maximum of 10,000
iterations will be performed. The solution is performed for signal-to-noise ratios
from -40. dB to 20. dB in increments of 5. dB, The output consists of the mean time
to lock for initial phase offsets from - to w where the value of the divide-by L

counter is initially zero.
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FLLE: PBOTIEN FUOKTRAN A uHIO UNIVERSITY AVIUNILS EVOINEERI'WG CENTER
C#*#tt#.####ln####a#*‘0###&&*###3#‘##&vat##‘##to#‘ R ERLREXEREGEREXCEEGCIRSOIV10
" ABS0J0020
[ CALLULATIUN UF STATE TRANSHER VECTURS FUR DPLL PBSOUL3L

) ¢ MARKOV CHAIN MUOOEL. THIS PRUGKAY 10 BE USED IN PRS00U40
C CONJUNCTIUN wilH PBDPL2 AND PBOPL2T. 285000509
C 2BSGO060

. C INPUIT READ UJN OEVICE 5 23500070
C M=VALUE OF DIVIOE-bY M CLUJNTER 28500080
C NaVALUE ufF DIVILE=-BY N COUNTIER ?350003%0
C L=VALUE UF DIVIDE~-BY L CUJNTER PdS001L00
C . 273500110
[ UJTPUT-STEADY STATE PAASE ERRUR DaTA (WALTE UM DEVICE ol PB8300120
[ My Ny AND L AS DEFINED FGR INPUT PB83500130
Cc PTRL= VECTUR CONTAINING THE STATE TJ STATE TRANSITIUNS 23500140
C PUSSIBLE ’ PBS0OIL5U
c PTIRZ2= VECTUR CONTAIWING THE PRUBABLITIES FOR THE STATE 28500160
C TU STATE TRANSITIUNS S 23500170
(o PBSVOLBO
C , OUTPUT =MEAN TRANSILIE XU RESPUNSE DATA {wRITE UN DEVICE v) P35SJ01490
[ My Ny ANU L &, DEFLMHLD Lud INPUT AHSUAZ2U0
C TL=VECTUR CUNTAINING THE STATE TG STATE TRANSITIUNS 28500219
C POSSIBLE P13S00220
C 12=VECTUF CUNTAINING THE PROBABLITIES FUR THE SUALL PrisJQ230
c TO STAYE THANSISTIONS. P8500240
C P1SJu250
C#0&‘0#040#04##td#‘#&ltﬂ###t&“##it#tﬂ;&ﬂ##&‘&-###v&a###oov‘-0#“4‘0*&60;!#4»0‘});]500300
IRTEGER PIRLL{Z160) 2P TR2UZLOB) s INITs512) vALTALT2 P3s00270
INFTcOkR Tlillol),T2(/160b) PAS00240

¢ PBSOL290
C SET DPLL PARAMETERS P3S00300
[ PBS00310
REAVO(Sy3) 1MyNsL PBS00320

3 FURMATIL31%) PBS0033¢
WRITE(B2 N ML PBSO0340
WRITE(9,2INyiel P350035C

2 FURMATULXy "Nz g 135X, M=, 13,5XKy'L=? 131 PBS0036C
ALT=2%_L+] PBS0O037C
Mi=M*N PB5003gl

DO lu [=1,ALTY PBSUO3YL

K=1 PBSO04UC

DU 20 J=1¢MN PBSULALL
IN{Ied)=K P830042L

20 K=K+ALT PBS0043(

10 CUNTINUE PBS0044(
L=1 PB8S0045(
KALT=(ALT+1l.)/2. PBSO046L

.. ALTZ2=ALT/2 PBS00GT7(
K=1 PBS0048¢

DO 40 J=1,MN PBS0049I

00 30 I=1,ALT PBSUOSUI

3 . Rl1=1 PAS00S1!

) IFLRI-RALT) 50+60,70 PB3S00Y 21

3 50 IFifl.EQel) GU TO 51 PHS0053

) IK=]-1 PLS0054

f JK=J+ALT2+1L PES0055!




FILE:

51

~

60

ol

10

71

80

30

4Q

93

94

92

PUSTULN FURTKAN &

ikl=1l+1
JKL=J+ALTR2-1-1

GO 10 80

k=1

JAN=J+ALT2+]

IKL=1¢l

JKL=J+ALTZ2=-2

60 TO 80

[FLALT.EWQeLl) WU TO ol
ik=s1l-1

JK=Jd+2

Inl=1+1

Jhl=Jd-2

vu 10 80

IR=7J

JK=J+1l

IKl=1

JKL=J-1

GO TO dU

TF{IaEQ.ALT) GO Tu 71

“Ik=1-1

JK=sJd-1+ALT2¢3

IKLl=1+1

JKL=J=-1+ALT2~]

G0 TO so

IK=I~1

JK=J-ALT2¢2

IKl=1

JKL=J=-ALT2-1
IF(JKUTJMN) JK=JK-MN
[FUJKLaLToMNI) JKLI=JKLI=MN
TRFCJKLTLL) JR=JIn+MN
[FIJKLeLTal) JKL=JKLI+MN
PTRI(KY=IN(IK,JK)
PIRLIK#L)=IN{IKL JKL)
K=K+2

CUNTINUE
TF(MUDCJ oM cEQa0) Lstkl
CUNTINUE

NST=K~1

K=1

LC=~1

LCl=0

DO 90 I=L,NST

IF{MODiL,2)aNe.0) GO TO 94

IFLLEL.NELL) vl TO 92

IF(PTRL(I) NEL(K#1)/2) GO Tu 92

TI(RI=(T¢L)/2

Wilu UNIVERSILTY

PTRZ(K)=({{TLIKI+M=-L)/MIeALT-1)}/ALT

K=K+l

LC=LT+1

LCl=1

IF(LC.MNE.L) GU TU 9O
LC=~-1

LC1=0
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PBS00560
P3500570
P3500530
PBS00590
PBSV0600
PBSVVG610
PBS00620
PBS0V630
PBS0OU640
P8S00650
PHBSOULLY
PBSUV6TO
PBSO0VA80
PBS00690
PBS00700
PBSOUTLIO
PBSOQT20
PBS00T30
PBS00740
PBSV0750
PBSU0 760
P8500770
PBSQL780
PBS00T90
PBS00800
#BS00810
PBSU0820
P3S00830
PBS00840
PBS00850
PBS00860
PBS0O8T0
PBS00880
PBS00&30
PBS00900
PBS0Q910
PBSV0920
P8S0J930
PBSOLY4O
PBS00950
PBS00960
PB8S0Q970
PB500980Q
PBSJU990
PRSOLO0Q
P8SOL010
PBSOL020
P8S01030
P3501040
PBRSO1050
PBSUL1060
P8501070
PBS0108Y
PBS0L1090
PB501100

i £ R AR

PP I S Ay L TN TP VT T 2 N P T T PO T P P

P S

P RN Rt

g e e T

Y

BRI U T T



Fllk: PBSTGEN &u AN A

A Anata i A aba it o s A, - T e N o L I

UHIU UNIVERSTIY AVIUNICS eNGINELRING CENTER

GO TU 93 pBsolllo

90 CONTINUE PBSO1120
IF(K.GT.NST) GC 10 96 PBSOL 130

LCl=1 PBSUL140

GU T 93 PBSOLLSO

96 DU LOO [=2,NS51,2 PBSOLL60
108 PTRZ(I)=PTR2L1)+N PBSOLLTO

1F LALT.LQe1) Gu 10 Lol PBSOL180
MM=2wALT PBSOLL90

DU 11O [=2,N3T, MM PBSUL200

LIV PTR2(LI=PTR2(1)=N PBS01210
MML=MM=1 PBS0L220

DU 120 [=MAL,NST,HiA PBS0L230

120 PTR2(1)=PTR2 1) +N PBS01240
LOL DO 95 f=1,NST PBSOL250
T2(1)1=PTRL(T) PBSOL2060
PIRLEEY=TLLL) PUS01270

95 TL(L)=T2(1) PBSULA0

c PBS0L290
c STEADY STATE DISIRIBUTIUN DATA PBSOL300
¢ PIRI=STAIE TU STATE THANSITIUN VELTUR. PUSOL3LU
c PTR2=PKROBABILITIES VECTUR FOK >TAIE T0 SIATE TRANSITIJINS. PBSVL320
c PBSOL330
WREITECS, L)PTRLUL) I=1,NST) PBSUL340
WRITE(B, LIAPIR2(T 1 i=LyNST) PBSOL350

L FURMAT(L14,2015) PBSOL360

K=1 ‘ PBSOL3TO

DO L3O I=1,NST,2 . PBSOL330
r201)=K PUS0L390
T2Ui+1)=K+N PBS01400
KK=MUD (L i+11/2,M4%ALT) PBSOL410
IF(KK.EQa0) K=K+l PBSUL420

130 CUNT INUE PBSO1430

¢ PBSUL440
C MEAN TRANSIENT KLSPUNSE UATA PBSU1450
c TL=STATE TG STAVE TRANSITIUN VLCTUR PBS01460
C F2=PROBABLITY VECTUR FUR S1adle B STARL TRANGTILTEIUNS PUSVLAT0
c PBSUL4BO
WRITE(9L)(TLUL) 1=1,NST) PBS0L490
WRIVECY, LILT2UEDol=L,NST) PBSULS00

STUP PBSOL510

END PBSUL520

-103-

i it s ek B2 L3 v

N T T O AR P 3

e

P P T T L



R atratts sasibave ot U ARSI RIS 4 bl pow o f WAL T o

FlLE: PBOPL2 FUORKTKAN A OHIO UNIVERSITY AVIUNICS UNGINEERING CENTER

UEARC GO URTC TR G E ORI D ERBEC RPN ME RS UDAC AR UG RGUOO R TR RSB E AU AT ULNE RGOSR ESXPHOO0ULO

w
c PBDOVV20
o DETEKMINATION uF LULP PHASE PDF AND STEADY-STATE ERKOR PBUONG30
c FRUM MARKUV CHAIN 4UDCL. PBUOVO40
c PBD00OSO
¢ ENPUT (READ ON DEVICE u) PEBULUGO
c DATA FURMATS ARE SAME AS UUTPUT UF PHSTULEN PB0OOGOT0
c MxVALUE OF DIVIDE=-BY M COuNiER PBDV00RO
C WEVALUE OF DIVIOL=8Y N CIOUNTER PYNOVVOYO
c L=VALUE GF DIVIDE-BY L CUUNTEK PB3000100
c PUINTL=VECTUR CONTAINING PUSSIBLE STATE TU >TATE PBDOOL 10
4 TRANS T TIUNS . PRUVULLO
c PUINT2=VELTOR CONTAINING THE PUINTER FOR THE PBDOOL30
. PRUBABLETIES GF THL STale 10 SIATE PODUO 140
c IRANSTELUNS . PRDO0150
< PADUD 160
COVERA[ CORNKCISRBBLAURULONVNOLCHOLAARUUGUCUECUMBOSUUANUREOEINEUSUGEUREGROBIPBOOOL /O
Lo LICLT KREALSB(A~-H,i~d) PBLOOLAO
INTEGER PLINTLLTLOS) yPOINI2ZCTLO0) JALT PHDO0 19U
DIMENSTUN PUOLD (35840 2 PNER{3584) ,A006%) s AL(04) ,A0L128) s THETA{uS) PBOYV200
F DIMENSION PHASE(64) PTEMP(3584) PEDO0210
¢ PBULYL20
" Sci UPLL PARAMEIERS PBD00230
¢ PRIV 240
HEAU(B, 1T NoeMyL PBDOO2S0
7 FURMAT(3X,13,7X,13,9%,13) PB0GO260
Al =222 4+] PUDVO2 IV
SNR==40. PRADVV280
MN=MEN PBDVO 290
IST=ALT &M%N PRDOV 300
NST=28(ST PBUVO310
LU 20 L=L1s151 PBD00320
20 POLD(L1)=1a/15T PBOVO3 30
c PBOOV340
L KEAD STATE THANSFER VECTURS PBDCO350
c PBLO0360
READ(B, 11iPUINILCL) yi=1,NST) PHOOO370
READUE, LIEPUINT2(E) 021 4NST) PBOUVIBO
L FURMAT(1X,20151) PBDO0390
o PHDO0400
C CALCULATE STATE YKANSFER PARUBAGILITIES PBLUV4LD
o PBDO0420
: DU 500 MM=1,13 PHRNOVS30
l PI=3.14159205 PBUUO«40
‘ AC=USURTI2.D0) “1U.¢8 [SNR/20.) ‘ PBO0D45V
PSI==Pl¢PI/N PHOUU460
: DO 10 I=1,N PRUOD4TO
' HMEAN=ACEDSINIPSL)/USART(2.00) PuD0048D
. ALUI)=0.5+0.5%0ERF (RMEAN) PBD0G4S0
AO(L)=L.-AL(1]) PBDOOSIO
THETA{1)=PS1 PHDOOSLO
10 PSI=PSI#2.6PI/N PAD00520
DU 12 [=1,N PIDV0S 3O
ALL)=A0( 1) PBDO0540
ACT#NI=AL(L) PBDO0550
— N
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FILE: PBUPLE  FUKIRAN A Uil UNIVERSTTY AVIONILS ENGINEERING CENTER
1
12 LUNTINUE PBDOO560
Ja=t PBLO0ST0
¢ PBLOVSHO
% CALCULAITE STEADY=STATE LOUP STAILC pPROVBABILITICS PBOOVOSYO 4
C by 11ERAJIUN. PBNDOV60Y
¢ PBOOC61D i
. 30 DIFEa0. PHBL006G20 4
Jd=Jddel PLDO0GLIO 7
K1 PADVV64V '
J=i PBDUYLES0
UU w0 L=i,0510 PUD00660
’ PNEa(T)=ALPOINIZIJ) ) oPULDIPUINTLIJ) ) ¢ALPUINT20d0L) )0 PBLO06TO
LPULDIPULINTL(UL)) PHDUV6GY
LR OPNL (1) LTl o0=200 PNEnt)=u.u0u PBO006YY
el J=Jdey PRRNO0 7TV
40 CUNI INUE PBOOOTLO
SUM=0. PHDOUT20
DU SO I=1,181 PUDOOT 30
50 SUMESUMePNERLT) POOVT40
DO 6O J=Ll,187 PRDOATHY
00 PNEW(!)=PNEWLL) /UM P3U00T60
00 ol t=1,18T PBDVOTTO
ol PIEMPLL)=PLLDEL) PHUOOTHY
DU TO B=1,051 . PBVOOT90
CNG=DAUSIPNEn(LI-PULOL Y PRDOOVAV
TLAONG.ul dUulFE Y UlEE =UNG PULOOBIO
70 PULO{ 1) =PNEN(T) PBDOVB20
1F{dJet da Y000 GJ U dgo PIDVYY 0
IF(DIFFaLl el abl=t8) U TU S0 APBDOVB 4O
d0 SUM=0. PBDOVESO
C PBDO0B LY
“ CALCUL ML aFeddY=3Talt LUJdP vdadt PradadiLITitS PBDOOBTO
C ANO STANDARY DLVIATIUN JF LUUP PHASCE. PRADOVBRO
¢ PUDVOBIO
Slu=v. PRDOUIDO
PYlz=PlePl/N PRDYUwIY
K=l PHOOOY 20
VO 90 1=1,1851 PRDDOY IO
SUM=UM«PULDIEL) PHIOVY40
it (AUUE L eMeAL L) NLa U LU TU U PUDY09SL
PHASEIK ) =5UN PBDOD%0LO
K=K+l PBDVOYTO
ST0=5TO¢SUMePS | 202 £BNVVLYBR0
SuUM=0. PRDOL9QO
PSL=PS1+2.0P /N PROVLOVD
90 CUNTINUFE PBOOLOLO
STO=USIRT{STD) Pavolozo
L PBUOLO 30
. C PRUGKAM GUIPUT PBDOLO4O
; . . PUDOLUSO
\ 91 WHITE(O,2) PUDO1UGQ
2 FOKMATEOL® ,*OPLL PARAMETLRS') PBDOLOTO
' WRITE(6,8) SNReNyMpALT PBOOLUBO
) 8 FURMAT LLX o "SNR=0 s F Tl aOX o N=0 41 3,5K0°M20 1 3,y5Xe'ALT=514,7) PRDVILOYO
WRITECG3) STD,JJ,DItF PaDUL 100
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FILE: PobPLZ FURTRAN A

500 SNR=SNR+5
130 STuP
* CND

- TRy

TR TR Y

LHIU UNIVERSLTY AVIUNICS LHGINELRING CENTER

3 FUKMAT(LX,*ST1) JEVS' ¢FBe3yHXe 'l UF
. WRITE(O s @) {THETALL) WPHASEL L) sl =LV}
4 FURMAT (1X,'PHALE DIFE=9,812.%09X0'PU=,012.4)
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LIER=0 4 Lo, bA'DLFF =t eEL2.44/)PBDOLLLO

P8DOLL20
PODVULL3O
PHDOL 140
PUOOL1LS0
PBLDULLG6O

_—y

s



FILE:

R R

v T o T YT T TmW R e

PBLPLLT  FURTRAN A

UHLO UNIVLKSITY AVIUNICS ENOINEERING CENTER

LIGHBER R EUGCKIR UG ERRORLUERLE R REGRI S FR LR ETRG USRI NER U R LS U B UL SS SR T XS OERAR&PHDU0O0L0

CcCocOoocaOooOoaaGOOOn

oae

[N el o

o000

DETERAINATIUN UF MEAN TIME TU LUCK FUR INITIAL PHASE UFFSCT
FRUM MARKOV CHAIN MUDEL.

INPUT (REAJD UN LEVICE 8)
DATA FORMAT SAME A5 OUTPUT UF PBSTGLEN
A=VALUE LF DIVIOE-bY M CUUNTEK
N=vVALUE UF DIVIOE-8BY N CUUNTER
L=VALUE GF DIVIDE-BY L CUOUNTER
PIINTL=VELTUR CONTAINING THE PUSSIOLE STAlE T4
STATE TRANSITIUNS.
PUILNI2=VECTOR CONTIANING THE PUINTER FUR JTHE STAITE
TU STAIE TRANSTTIUN PRUBABLITICGS.

PBDO00Q20
PBNOVO IO
P8DO0QO40
P3O00S0
PBLOOUGY
PBDO0O70
PBDOLOBO
PB0O0OVOY0
PADOOLVO
PBO0VLIV
PBDOULZ20
PBNAOL 30
PBDOOL4O
PBDOOLSY

CX0PI SRV ERECUEEURBAUGEREFELCLUUUUAETABOPE VLS SIS SRR UTURSEIGUED OO ORMBBREPUDOVLOD

20

10

IMPLICIT REAL*8(A=H,L~2)

INTEGER POINTLI(TLod) »PUINT2(/LaB) »ALT

DIMENSICN PULD{S58%) yPNEWIIDB4) dA01041 9ALI64) ¢ALL128) s THETAL 6%)
JDIMENSLIUN PHASE(04) s PTEMP(35b4)

SET OPLL PARAMETERS

REAL(ds /) Moyt
FORMAT{3Xs i3 0 7A0i399A,yl3)
ALT=2¢1+]

SNR=-4Q,

MN=M*N

1ST=AL T+#M4*N

NS [=2%]5T

00 20 [=1,IST
PULLIT)=1.
JL=IST/2-LALT/2)
JLI=JL=(M=1)*ALT
JLU=JLLH({2%M )~ L} ®ALT

READ STATE TRANSFER VECIUKRDS

READ(By LI(PUINTLIL) ol=1,4NST)
READ(B,y L){POINIZ2(L),1=14NST)
FORMATILX,2015)

CALCULATE STATE TRANSFER PROBABILITIES

00 500 MM=1,13

Pl=3.14159265
AC=DSURTI2. U0 ¢ LU %[ SNR/20.)
PSI==Pl+PI/N

DO 10 [=Ll,N
RMEAN=AC®DSINIPOLI/USIRTL2.00)
ALLT)=0.5¢0.5%DERFIRMEAN)
AUlL)=Ll.~-AL (1)

THETALL)=PSI

PSI=PS[e2.%P[/N

DU 12 1=1,N
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PHDOVLTO
PUL00L80
PBOO0L90
PBNO0ZO0
PBuYL21V
PRD00220
Pi3LYU2 30
FudoL240
P8huL250
PBLOOZLO
P3anvL270
PBDUOZ28BO
PB8V0O0290
PBD0O0O300
PRDOVL 31O
28000320
PBDO0V330
PBLOO340
PHDO0350
PBOOQ360
fT8ou3io
PBU0V380
PBD00390
PUODOUV4LO
PBDOOG4ILO
PBOOVS2U
PBDOV430
PBO00440
PBOOUGSU
PBNUO46O
PHD004YY
PHUOO430
PBNOV490
PHUOVOS00
PHNOOS510
PBDOVS20
PBOVOS3U
PBD0OVS40
PBDO0S550
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FILE: PBOPL2I  FURTRAN A

A{l)=A0CL)
AlLLeNI=ALLLI

12 CUNTINUE
Jy=l

cec

CALCULAIE MEAN TIME TU LUCK

30 DIFF=0.0
Jd=JdJdtel
. K=l
=l
DO 40 L=ty 1v!
PNEWIT)=A(PUGINIZ(JIISPULDIPUINTL(J) I vALPUINT2LUeL) ) *
LPULDIPUINTL(J*L )]
IFIPNEW(L ) el TeleD=20) PhNealll=U.000
4l J=d+2
40 LUNTINJL
DU 11 JJdl=JdLlsJLUgALT
7L PNEW(JJL) =0,
D0 70 [=1lelb4
CNG=O0ABS{PNLEW( L }=-PULD(1))
LE(UNULGYDEFF) DIFF=ULNGL
70 PULDCLY=PNENWLL)
IF(JJ.E4.10000) GO 10 80
IFLDIFFGTalatk=9) LU YU 40O
60 SUM=0.
Kl=ALT/2¢L
K2=M&AL T
J=1
JU L10 [=K1 15T ¢K2
PULD(JI=PNEN(I)
110 Jd=Jd+i)

PRUGRAM QUTPUT

<

91l WRITE(O64+2)
2 FURMAT(*¢1%,'0PLL PARAMETERS ')
WRITE(O8) SNROyNgMaALT
FURMAT (L Xa " SNREY g b7 ol uX e 'NS [ 3 )X "Mty [ 309X, ALT =4 4,/)
WRETE(O6,3) JJ,DIFF
3 FURMATOLXy *Nitle UF TTER=® gL O0¢SXe0lFEF=%yEL20%0 /)
WRITE(G6s4) LTHETACL) »PULDIL Y T2 N)
4 FURMATULXp'PHASE DIFEF=Y qEL2e% 95K, *REAN NU. SAMP .= ,El2.4)
500 YNK=SNR+5
L00 STuP
END

-108-

UHEL UNLVERSITY AVIUNICLS ENGINEERING CENTER

PBOOUSLU
PsDOULS TV
PBDOOS80
PBOLOSYY
PBDO060O
PiBDVOGI1O
PBD00620
PHDOOG3L
PBNV064L
PBDULGSY
BHOVO6GLO
PUOVV6 TV
PBDOV6SY
PH8DUYEY0
PRNVOTVO
PBLOVTLU
PODRUT20
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C. Binary Phase-Locked Loop Design. The following sections discuss in

detail the design of the hardware DPLL used to validate the Markov chain model.

The block diagram for the DPLL may be found in Figure 6-1.

a. Binary Phase Detector. Referring to the schematic of Figure C-1, the

binary phase detector operates by sampling the binary input signal Fc and producing
a complemented pulse output on either the count-up or count-down line. This func-
tion is produced by three D-type flip~flops as follows. The OPEN SW signal is
applied to the clock input of ff B3 while the binary signal FC is applied to the data
input of the same ff. Thus on a positive transition of OPEN SW the value of Fc is
latched, giving the sampled value IN at B3's Q output. The two ff's of A6 are
initially set to the ONE state so that when SET LAT latches the input values to

the ff's (IN and IN), one ff goes to the ZERO state while the other remains in the
ONE state. The SET LAT signal is followed by the CLR LAT signal which sets both
ff's to the ONE state. Thus the count-up or count~down are produced in a mutually
exclusive manner when one of the ff's of A6 toggles HIGH LOW HIGH while the

other remains HIGH.

b. DIVIDE-by L Saturating Counter. The saturating up-down divide-by

L counter is shown in Figure C-Z. The counting function is performed by two serinlly

connected 74193 4-bit synchronous up-down counters. The output states of the

counter is detected by a logic network to produce the INHIB UP and INHIB DN
signals that will inhibit the UP and DN clock signals respectively. For example,
if switches SW1 through SWé are closed, then for a counter state of 0000 0001 the

MHIB UP signal will be TRUE, thus inhibiting the UP clock signal and saturating

the counter at that value. Note, a DN clock signal will still count the counter
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to the 0000 0000 state. Similarly, for all switches closed and the counter in state
1111 1111 the INHIB DN signal will be TRUE and the counter is saturated at that
state. If switch SW1 is opened while all other switches remain closed, then the
counter saturation states will be 0000 0011 and 1111 1101 (£3). Continuing in this
manner, the counfer saturation states may be selected fo be i:2i -1,i=1, 2, .7
by opening switches SW1 through SW (i-1) while all other switches remain closed.

c. Divide-by (M x N) Counter. The schematic for the divide by

M x N) counter along with the buffer register and adder are shown in Figure C=3.
The counter consists of three serially connected 74193 4~bit up-down counters.
Following an UP or DN clock signal the value of fHe divide~by (M x N) counter is
loaded into the 12-bit buffer register composed of two 74174 hex D-type flip-flops
by the LOADZ2 signal. The values of the 12-bit buffer and the divide-by L satura-
ting counter compose the inputs to the adder circuit consisting of three 7483 4-bit
binary adders. The output of the 12-bit adder is applied to the preset terminals of
the divide-by (M x N) counter. If the type select switch is set for first-order opera-
tion, the adder output will not be loaded into the divide-by (M x N) counter. If
a second~order loop is selected, the LOAD1 signal will be applied to the load in-
puts of the 74193's thus presetting the divide=by (M x N) counter to the value of

the 12-bit adder output.

d. Variable Phase Reference Clock. Referring to Figure C~4, six

selectable contiguous bits from the divide=by (M x N) counter are applied to one
input side of a binary magnitude comparator formed by two 7485 4-bit magnitude
comparators. The other input to the comparator is obtained from the lower N bits

. N
of the two series~connected 74193 counters that are being clocked at a rate of 2
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time the input frequency. Thus the EQUALS output pin 6 of A31, of the magnitude

comparator will be a ONE when the two inputs are equal and this will occur at a

rate equal the input frequency Fc. The circuit formed by A33 and A34 prevents the

sample output from occurring at a rate greater than fc. For example, if pin 8 of A34

is HIGH then when the magnitude comparator detects the equal condition, pin 5 of

|

A34 is set HIGH cousing the phase detector to sample the input signal. The SAMPLE

e i o L

signal is reset LOW by the LOAD1 signal at the end of the loop phase update. How-

R T

ever, since the (M + N) -bijt counter may have counted up during the last phase up-

date and the counters of the reference clock have also counted up, it is possible for

*f
the magnitude comparator to detect equal states occurring at a rate of 2N c.

- - e ol e i
L e ST Smnl

Thus it is necessary for the LOAD]T signal to reset pin 8 of A33 to a ZERO so that

another sample cannot occur until the reference clock counter loads a ZERO into

e B et el el e A

that flip-flop.

e. Control Logic. A timing diagram for the necessary control wave-

forms and the logic schematic used in their generation are given in Figures C-5 and

C-6, respectively. Use of the control waveforms have been described in the pre-

vious sections.
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D. Digital Low-Pass Filter. Consider a divide~-by M binary up/down counter

whose input x(t) = = 1 is clocked at a rate fc = 1/T. The contents of the counter

will be the sum of the previous M -1 inputs plus the present input, so that the value

of the counfer y(t) may be expressed by the discrete equation

|
; M- |
ykT) = 5 I x [(k-i)T] (D-1) |
i=o i
|
\ up to the point of counter overflow or underflow. Taking the Fourier transform of 1
(D-1) gives 3
p M- SjioT
Yio) =g I X e (b-2)
i=o0

T TP R WP P Ty Py § TP SR

Hi) = - QA-] o THWT (D-3a)
j0) = ¥ .
M i=o |
1 - -jwT™ :
- M | - e-in (D-3) i
sin <wTM\ 4
1 2 -jwT (M-1 |
i e o5 ;
s (T) 4
4
Substituting for T = 21r/wc in (D-3c) gives rhe magnitude-squared function for the |
counter cs, i

2
2 _ | 1 sin(7M w/uc) _
H(im) - [ M sin (7 w/uc } (D-4)

which has been plotted in Figure D-1 for M = 2, 4, and 8. As can be seen from

Figure D-1, the binary up/down counter acts as a digital low-pass filter whose band-

width decreases as M increases.
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