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CHAPTER I

INTRODUCTION

The phase-locked loop has long been recognized as a circuit with many impor-

tant applications, and as such, the description of analog phase-locked loops (APLL`s)

has become well known as a large volume of material has been published to facilitate

their use. In a survey of phase-locked loop development Gupta [ 11 1 has listed thir-

teen books and over 120 papers which discuss APLL design and applications. In recent

years, there has been an increasing use of various types of loops employing discrete

elements. Among these have been hybrid loops that utilize both analog and digital

circuitry. Newer loop realizations have been circuits composed entirely of digital

elements, the digital phase-locked loop (DPLL). The importance of these types of

configurations lies in the relative ease of design and construction and, of equal im-

portance, the ease in which such circuits can be maintained.

Unfortunately, the very attributes that make DPLI2s attractive from a design

and construction standpoint also contribute to difficulties in the theoretical analysis

of DPLL operation and in this area the available literature is relatively thin. The

first description of a general DPLL model was given by Reddy and Gupta [ 3 1 and

further discussed by Gill and Gupta [ 101. A more restricted but useful DPLL model

for second order DPLL's has been presented by Weinburg and Liu [ 4 1. However for

both of these general DPLL models, little has been done to describe the response of

the DPLL under specified ideal inputs.

In the area of fading input analysis of DPLL s the available literature may be

separated into two approaches. The first approach as employed by Holmes and



Tegenelia [ 13 ], Weinburg and Liu [4 ], and Lee, Harington, and Cox [ 12 ], has

been to model the DPLL configuration under study to operate linearly under some set

of linearizing assumptions and then use classical techniques to determine the char-

acteristics of the loop response. The second approach is more limited in that spe-

cific loop configurations are assumed and are then analyzed by random walk tech-

niques. This method was first used by Holmes [6] and has the advantage that no

linearizing assumptions are required. This approach has also been used by Cessna

and Levy 151, Yamamoto and Mori 1141, and Ransom and Gupta [15] for other spe-

cific loop configurations all of which employed resetting loop filters.

In the following chapters, both the time response and the steady state noise

response of first- and second-order DPLL°s will be discussed in detail. The loop

configuration used throughout will be based on the model described by Weinburg

and Liu 141, however the results will not be restricted by the linearizing assumptions

made in reference [4]. Since the initial impetus for the study of the digital phase

lock problem was provided by an application to an Omega navigation receiver, the

practical realization of the DPLOs considered will be presented and all examples

and parameter selection will be based on this application. However, neither the

analysis techniques developed to describe the DPLL°s operation nor the general

hardware design presented are limited in any way to this application solely.

In Chapter II, the APLL is described to provide a background for the phase lock prob-

Iem. In Chapter 111, the response of the DPLL to specified ideal input signals is

considered. In particular, new expressions are derived for frequency lock range

-2-
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for first and second order DPLL's and a new partial solution for the difference equa-

tion describing second order DPLL operation is obtained. Chapters IV and V are de-

voted to the steady state noise analysis of first and second order DPLL's respectively.

In both cases, the loops are modeled as first order Markov chains and from this

model the steady state phase error and mean time to phase lock are determined for

an input signal corrupted by white goussian noise. For the first order DPLL, a loop

employing a non-resetting loop filter is analyzed and found to have essentially

equivilant steady state phase error as for the loops using Random-Walk loop filters

described in references [57, [147, and [157, but with less circuit complexity.

Chapter V presents a new analysis for a second order DPLL, using the Markov chain

model, that is valid for all values of input signal-to-noise ratio. The previous

methods of analysis for second order DPLL's as described in references 147 and 1137

have involved linearizing assumtions that have limited the usefulness of the analysis

to signal-to-noise ratios greater than 0.0 dB. Experimental verification of the

Markov chain model was desired to show validity of the noise analysis of Chapters

IV and V and therefore, in Chapter VI, a description of the design and construction

of a first- and second-order DPLL is given. The experimental test data used in

Chapters IV and V were obtained from this loop design.

-3-



CHAPTER II

THE ANALOG PHASE-LOCKED LOOP

A.	 Introduction. The standard analog phase--locked , loop as shown in

Figure 2-1 has been widely described in the lherature far a variety of applications.

The following brief description of the APLL is presented to develop the background

material necessary for a comparison with the DP LL operational characteristics to be

developed in the following chapters. In particular, it will be necessary to develop

APLL response characteristics for both ideal and fading input signals.

As can be seen from Figure 2-1, the APLL consists only of a phase detector

(multiplier), a linear filter, and a voltage-controlled oscillator (VCO) arranged

in a feedback loop. in operation, the APLL is essentially a very narrowband filter

whose characteristics are significantly dependent upon the type of linear filter em-

ployed in the loop. The derivation that follows is similar to that by Viterbi [ 1 ]

and Lindsey and Simon 2 J .

PHASE
DETECTOR

r(t) 
	
X /
	

x(t)	 LINEAR
FILTER

VOLTAGE

Y(t)
	 CONTROLLED

OSCILLATOR

Figure 2-I. Standard APLL Configuration.

e(t)
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B.	 The AFLL with Ideal Input. Consider the case of an ideal signal of

the form,

r(t) = r —2	 A s  n [ tjo + e (t) 1	 (2-1)

where A2 is the total power of the input signal and wo is the quiescent frequency

of the VCO. The input is angle modulated by ©(t) which s given by

0(t) = of + 
e a (t)	 (2 -2)

where o is defined as the frequency offset from the VCO quiescent frequency

and 6 o(t) is some function. The reference signal, y(t) at the VCO output can be

expressed as,

y(t) _ V —2 K1 cos [ 
wo t + KVCO f e(T )dT 1 (2-3a)

=	 2	 K1 cos [ W t	 + ^(t) 1 (2-3b)

where K 1 2	is the total power of the reference signal, KVCOis gain of the VCO

with units rads/sec-volt, and

8(t) = KVCO f e(T)dT	 (2-4)

is the instanteous phase estimate of the reference signal.

For the input and reference signals given, the error signal x(t) at the phase

detector output is given by,

x(t) = AK 1 K m sin [ 8(t) 4(t) 	 (2-5)
-5-
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where the term involving 2(j ot has been ignored since it will be removed by the

loop fi Iter/VCO combination and K m is the phase detector (multiplier) gain. If

the initial conditions of the loop Filter are zero, then the filter output e(t) can be

expressed as,

e(t) = A	 m ft f(t-T)sin[A(T)-6(T)] dT 	 (2-6)

where f(T) is the impulse response of the linear filter. Defining the phase error

0) for the loop as,

o) = A (t) - 0 (t)	 (2-7)

and substituting (2-6) into (2-4) and taking the derivative gives,

dd) = 
O - AK ^ t f (t - T) sin ^(T) dT	 (2-8)

where K = K 1 Km KVCO ^'is defined as the loop gain. Thus given some input phase

function 6(t), the solution of the i ntegro-di fferenti a I equation of (2-8) for cp(t) com-

pletely describes the operation of the APLL. Equation (2-8) also suggests the stan-

dard APLL mode l as given in Figure 2-2.

C. The Linear APLL Model. The APLL model of Figure 2-2 can be

simplified and more readily described mathematically to a good approximation

whenever the phase error is less than 0.5 radians. In this case the approximation

sin C (t) ^ ^(t)	 (2-9)

can be made so that (2-8) becomes,

d t) = d8(t) - 
AK ft f(t - T) ^(T) dT	 (2-10)

dt	 dt	 o

-6-



b (t)	
AK sin^(t)

LINEAR
FILTER

J.
8 (t)	

t
o

Figure 2-2. Standard APLL Model.

dq /dt

Taking the Laplace transform of (2-11) with initial  conditions assumed to be zero

gives the frequency domain phase error as,

4(s) =	 s	 O(S)	 (2 -11)
s + AK F(s)

Since ^(s) = ®(s) — W, equation (2-11) leads directly to,

__	 A K F(s)9(s)	 s + AK F s 6(s)	 (2-12a)

H(s) A(s)	 (2-12b)

where

H(s) =	 AK F(s)	
(2-13)

s + AK F(s)

is the closed loop transfer function of the linear APLL. Equation (2-12a) suggests

the s-domain linear APLL model shown in Figure 2-3.

-7-
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+	 (P(S)
8(s)	 AK F(s)

1 /a

Figure 2-31 . Frequency Domain Model of Linear APLL.

Under the linearizing assumption of (2-9), the APLL response as described

by (2-11) and (2-12a) can be readily analyzed by classical techniques and defi-

nitions. Also, the APLL can be classified according to the characteristics of the

open-loop transfer function G(s),

F (s)
G(s) = AK s	 (2-14)

In general for any control system, the order of the system is equal to the number of

finite poles of the open-loop transfer function. Thus from (2-14) an APLL would

be classified as a first-order system if there were no linear filter included in the

loop. That is, F(s) = 1 . Similarly, if,

F (s) = 1 + a/s	 (2-15)

so that a signal-plus-integral loop fi Iter is present in the APLL, then the APLL

would be classified as a second-order system.

Using classical techniques, consider the case of a first-order APLL with a

frequency step input. This corresponds to,

-8-
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e(t) = of + 00 (t) (2-16)

which after toking the Laplace transform with 8 0 (t) a constant gives,

g(s) = 2 + ea	 (2-17)
S

Substituting (2-17) into (2-11) with F(s) = 1 gives

	

Q	 8

^(s)	 +s + AK	 2	 s o	 (2-18)
s

From the final value theorem, the steady-state phase error for the APLL can be

found as

lim	 Q /AK
	

(2-19)
t y Co

Thus the first-order APLL can achieve frequency synchronization but wi II not

achieve perfect phase synchronization unless the frequency of -et between the VCO

and the input signal is zero.

Next consider the case in which the loop filter is the imperfect integrator of

Figure 2-4. For this ti Iter mechanization,

D

Tti

Figure 2-4. Imperfect Integrator Loop Filter.

-9-
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1 + T S

F(s) - 1 
+ T	

(2-20)
1 s

where

T1 = (R 1 + R2 ) C	 (2-21)

T2 = R2 C	 (2-22)

Substituting (2-20) and (2-17) into (2-11) gives,

S (S + 1/T1 )	 0+ 0
4)(s)	 AK 2  

0
a	 (2-23)

S + (AK T,Z/T1 + 1 /T 1 ) s+ T	 S	 s
1

and again applying the final value theorem gives the steady-state phase error as,

I i m	 0) _ %
	

(2-24)
t -► ao	 A K/Tl

which is equal to the stady-state phase error of the first-order loop attenuated by

T 1 . Since in practice it is usually desired that the filter be of the signal-plus-

integral type, T 1 wi II be a large number so that the pole of the loop filter is as

near the origin as possible. Once again, this loop is capable of frequency syn-

chronization but wi II track the phase with a constant offset.

D. The APLL in Additive Noise. The effects of additive noise on APLL

operation may be studied by considering an input signal of the form,

r(t) _ V 2	 A sin [ wo + 6 (t) ] + n  (t)	 (2-25)

where n  (t) is the narrowband noise process given by

n, (t) _	 2	 [ x (t) cos w t - x (t) sin w t ]i	 c	 o	 s	 o (2-26)

-10-



The terms xc (t) and xs (t) are assumed to be independent, stationary Gaussian

white noise processes of zero mean and identical  variances . Inclusion of the

noise term gives a phase detector output of (referring to Figure 2-1)

x(t) = AK 1 K m sin 4(t)	 (2-27)

-K 1 K
m 

[X (t)cos 4 (t) - Xs (t) sin 0(t) ]

where

X (t) = xc (t) cos 9(t) + xs (t) sin 8(t)	 (2-28a)

Xs (t) = xc (t) sin 0(t) - x s (t) cos 0(t)	 (2-28b)

Note that again the terms involving 2W0
t have been ignored.

Following the same procedures as for the noiseless case, an integro-differential

equation describing the AP LL's operation is found to be,

d^/dt = d0/dt - K f t f(t - T) [ A sin ^(T)	 (2-29)

- Xc (T) CAS ^(T) - Xs (T) sin ^(T) ] dT

As before, it is possible to represent the APLL by the simple model given in

Figure 2-5.

Applying the linearizing assumption, sings	 gives a simplified fading

input model which can be analyzed by superposition. Thus it is only necessary

that the noise terms be considered at this point since the effects of the determin-

istic portion of the signal was considered earlier. Considering just the noise

term gives,

ot) = 8(t)
	

(2-30)



which wi II have a noise spectral density given as,

S;(w) = S8 ((J)	 (31 a)

2
KF((j)/iw

=	 (w)
1 + AK F (u )/

 
iw	

S "
	

(31 b)

where Sn W is the noise spectral density of the noise input. If the input noise is

assumed to be white with single-sided density N
0 then,

KF(w)/^w 	
2

4((J) =	 N	 (2-32)
1 + AKF	 iw 1 2 0

Recalling the closed-loop transfer function of (2-13), the phase error spectral

density can be rewritten as,

N	 2
46) = 2-- 0	 H(i(j)	 (2-33)

The steady-state variance of the phase error then is easily found as,

N B

62 = 2 L(2-34)
A

where B L, the loop noise bandwidth, is defined as

B L 27r	 oC	
( H(iw) 12 dw	 (2-35)

Thus once a loop filter has been specified, the loop noise bandwidth can be cal-

culated and from this the operation of the APLL in the presence of noise is easily

determined.

-12-
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e (t)

X o (t) cos 4(t) + XS (t) sin ^(t)

.w

Figure 2-5o APLL Model with Fading Input.
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CHAPTER III

THE DIGITAL PHASE-LOCKED LOOP

A.	 Introduction. For the APLL of Section 11.13, it was possible to derive

an i ntegro-differential equation in terms of the input signal phase and the phase

error of the tracking loop, the solution of which completely describes the APLL's

operation. However, unlike the APLL a standard form of DPLL has not as yet

developed in the literature. This is due in part to the non-linear operation of

virtually all DPLL components. Still it is possible, for a specific DPLL configura-

tion, to develop a difference equation that describes the DPLL's operation. This

difference equation for the DPLL is analogous to the integro-differential equation

of the APLL.

Difference equations have been derived for first and second-order

DPLL's of a somewhat general configuration by Reddy and Gupta [31 and Wienburg

and Liu [4]. However, the response characteristics of the DPLL's under considera-

tion were largely investigated by iteration of the difference equations. This approach

is basically a simulation of an ideal DPLL.

In the following, since the DP LL under consideration here is a slightly

modified version of those given in references [3] and [ 4], the describing differ-

ence equations wili be derived in detail. Further, it is very usefu I for a designer

to have some knowledge of the response characteristics of a circuit without perform-

ing a simulation. Therefore, through analysis of the describing difference equation,

the partial DPLL response characteristics for specified inputs are derived. This

includes determination of time required to achieve phase lock for some ini.tial phase

offset and frequency range for phase acquisition.

-14-
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B.	 The Digital Phase-Locked Loop. The DPLL configuration under con-

sideration here is shown in Figure 3-1 . For this loop the input is sampled at the

i
	 positive-going zero crossing of the reference clock and the output of the phase

detector is quantized to plus or minus one depending on the sign of the sample. In

this manner, the phase difference measurement between the reference clock and the

input signal is essentially reduced to a determination of phase lead or phase lag of

the reference clock with respect to the input signal. The two forward paths repre-

sent a filter in the sense that they alter the phase detector output to create a signal

suitable for adjustment of the reference clock phase. Notice that the reference

clock phase will take on a finite number of values determined by A 1 and 0 2 .

VA

Figure 3-1. Second-Order DPLL .
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Operation of the loop can best be described by considering the case of

an ideal input signal of the form,

s(t) = Ac sin [ w 	 + A(t) ]	 (3-1)

where

9(t) _ (wo - w) t + g i (t)	 (3-2)

defines a frequency offset plus a modulating phase function. The reference clock

is given by,

r(t) = sin [w 0 t  + e o (t) ]	 (3-3)

which is assumed to be quantized to N distinct phase states so that (3-3) may be

written as,

r(t) = sin [wo + N (N - 2i + 1) ] 	 i = 1 , 2,	 ', N
(3-4)

For example if the phase state of the reference clock is

i = N/4	 (3-5)

when the reference clock is given by

r(t) = sin [ wot - N ( N2 2 ))	 (3-6)

For the sampling example depicted by Figure 3-2, the input is sampled at

the positive-going zero crossing of the reference clock giving a positive value for

the first sample. Since this first sample is positive in sign, the output of the phase

detector, X (1) is +1 . This phase detector output is then modified by the two for-

ward paths to produce the signal,

YO) _ - A l - A2 radians	 (3-7)

-16-
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Figure 3-2. Waveform Sampling.

which is the phase increment by which the reference clock is altered. Obviously,

the values of A l and A 2 are related to the quantization of the loop. If at the

second sample of the input signal (the second positive-going zero crossing of the

reference clock) the reference clock still lags the input, then the reference clock

wi I I be a Itered i n phase by,

y(2) = - A l - 2 A 2 radians	 (3-8)

Similarly, if the lag condition still exists at the third sample, then the reference

clock will be altered in phase by,

y(3) = - A l - 3 A 2 radians	 (3-9)

This condition will continue until the i-th sample, at which time the reference

clock phase leads the input signal phase and the reference clock will be updated

in phase by,

9

-17-



I
y(j) _ + A  - e2 

T 
1 X(i)	 (3-1 Oa)

= + e 1 - ( j - 1) p2	(3-1 Ob)

Similarly, if at the (j+1) -th sample the reference clock still leads the input then,

A + 1) = + p 1 + 2e2 - e 2 Q - 1)	 (3-11)

The loop updating wi II continue in this manner unti I the DPLL achieves a loci;

condition which is characterized by

Y(i) < I e l + 0 2 + I ( (jo - c,) T(i) (3-12)

for all successive samples with T(i) defined as the time interval between the ith

and (i - 1 )- th sample.

For the analog phase-locked loop described in Section II.B, it was

possible to study loop characteristics from the solution of an integro-differential

equation that modeled the loop's behavior. In an analogous manner, it is possible

to develop a difference equation for the digital phase-locked loop that character-

izes the loop phase error on a sample-to-sample basis. Because the loop phase

error is determined in terms of loop sample number, it is also necessary to develop

an equation describing the time of occurrance of a particular loop sample. The

combined use of these two discrete equations then will completely model the opera-

tion of the DPLL for an arbitrary phase input. The remainder of this section then

will develop in detail these two describing equations.

Proceeding in a manner si mi lar to [ 31, the tots I phase of the i nput

signal given by (3-1) is,

(3 (t) _ mot + ®(t}	 (3-13)

-18-
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and the total phase of the reference clock given by (3-3) is,

(3o (t) = (10 t + ea (t)	 (3-14)

However, the input signal can be sampled only at discrete times and the reference

clock phase can exist only in specified states so that (3-13) and (3-14) are more

properly written as,

pi (k) = w 0t(k) + e(k)	 (3- 1 5)

and

p0(k) = wo (k ) . + 80 (k )	 (3-16)

where for simplicity f [ t(k) ] is written as f(k) with k representing the sample

number of the loop.

The output of the phase detector is a sequence of values A, the sign

being determined by whether the phase of the reference clock leads or lags the

phase of the input signal. Thus the phase detector output sequence, X(k), may be

written as,

X (k) = sgn ( si n [ pi (k) - po(k) 1 }	 (3-17a)

= sgn [sin [ ^(k) ] I 	 (3-17b)

where

^(k) = e(k) - e0 (k)	 (3-18)

is defined as the phase error for the DPLL. Further, the phase of the reference

clock is altered by a value Y(k) radians at the k -th sample so that the phase of the

reference clock is given as,

k- 1
8 0(k) _	 Y (I ) + 80 (o)	 (3-19)

i=1

-19-
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k-1

= k'f - 2^ , I Y (i )
=1

(3-2 3b)

where A(o) is the initial phase of the reference clock which will be assumed to be

zero. Substituting (3-2) and (3-19) into (3-18) gives the loop phase error as,

k-1

^(k) = (wo - w) t (k) + 0 (k) - F_ Y(i )	 (3-20)
i=1

As was stated previously, it is desired to develop a difference equation

that is independent of time. Therefore, it is necessary to determine an expression

for t(k) in (3-20) that is dependent only on the sample number k. First, define the

value T(k) as the time interval between samples so that,

T (k) = t(k) - t(k-1) 	 (3-21)

However, this can also be expressed as,

T (k) = T - 
2
T Y (k-1)	 (3-22)

where T= 
2117 

is the period of the quiescent reference clock. The time of occur-
G) 0

rence of the k-th sample then is just the sum of all T(i), i ; k, or,
k

t(k) = r T (k)	 (3-23a)
i=1

,.a

Substituting (3-23b) into (3-20) gives an expression for phase error,

after algebraic manipulation, as,

W _ W 	 w k-1
(p(k) = Ai (k) + 0	 27rk --- I	 Y (i)	 (3-24)

wo	 wo i=i

and the sample-to-sample difference in phase error is,

W -w w

,p(k + 1) - ^(k) = Ai (k + i) - Ai (k) + 27r w
	

- w
	

Y(k)

-20-	
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The valueY(k) is defined as the phase increment of the reference clock for the

k-th sample and wi I I take on values determined by the gain constants A 1 and A2

of,

k

Y(k) = A 1 X(k) + A 2 E X(i)	 (3-26a)
^=1

k

= A l sgn [ sin ^(k)] + A2 1 sgn [sin ^(i)]	 (3-26b)

Substituting (3-26b) into (3-25) gives the phase error difference equation for the

DPLL as,

^(k + 1 ) - ^(k) = 8. (k + 1 ) - 8 i (k) +2Tr -
	

(3-27)
0

k
-	 {A1 sgn [sin cp(k)] + A 2 F sgn [ sin (p(i) ] }

o	 i=1

To be complete, it is necessary to express (3-23b) in terms of the phase

error by substituting (3-26b) into (3-23b) giving,

k-1

t(k) = kT - 2n	 r	 { A 1 sgn [ sin tp(i)]	 (3-28)
i=1

i

+ A	 F	 sgn [sin 4,(j)];
1=1

The DPLL then is completely described by the equation pair, (3-27) and (3-28),

the former describing the phase error of the loop and the latter describing the

discrete time ut which the phase of the reference clock may change state.

C.	 First Order DPLL Time Response. A first order DPLL results for the

system of Figure 3-1 when the gain term A 2 is set to zero. For this case (3=..

and (3-28) become, respectively,

-21-
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W -w

Ok + 1)	 6i(k + 1) - 0 i (k) + 2n w
	

(3-29)
0

w	 1 sgn 4{k)
0

and

k-1

t(k)	 k  - 2n	 1 F	 sgn g(i)	 (3-30)
i= 1

Note that for first order DPLL response the phase error is constrained to

I ^(k)	 n	 (3-31)

so that

sgn [sin d(k)] = sgn ±(k) 	 (3-32)

As defined previously, the total number of phase states of the reference clock is N.

Since at each sample of the input signal the reference clock phase is incremented

by a va lue r L1 1 , then

N = 2n /A 1	 (3-33)

so that (3-30) can be written as,

k-1

t(k) - k  - N F	 sgn q(i)	 (3-34)
i- 1

Consider first the response of the first order DPLL to an input signal

whose frequency is identical to that of the DPL !'s reference clock but differs

initially in phase by some constant 0 1 . For this case, do	 (i and the input phase

will be a constant with 0 i (k + 1)	 A i (k) for all k which without loss of generality

can be assumed to be zero. Thus, (3-29) becomes

0 1 1 ) - (► k)	 - A 1 sgn q(k)	 (3-35)

with the boundary condition e(o)	 A 1. For this simple case, the loop will be up-
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dated by a value Al radians at each sample until the phase error changes sign

at which point the quantized phase error will oscillate about the true phase of the

input. An example response is given in Figure 3-3. It is evident that a lock con-

dition occurs whenever

#) i< A I	 for al I k> K	 (3-36)

where K is given as,

K = Integer f AI /0 1 ] - 1	 (3-37)

The time of occurrence of the lock condition can then be found by evaluating (3-34)

for K given by (3-37). Note that for all k < K the value of sgn it(k) will not change.

r

Sample Number	 k -.

Figure 3-3. Response of First-Order DPLL to Phase Step Input.
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Next consider the case where the input signal is offset by a constant

frequency from the first order DPLL reference clock. For this condition the phase

error difference equation of (3-27) is given as,

w -^
q(k + 1) - ^(k) = 2,r 0

	
-	 p 1 sgn ^(k)	 (3-38)

	

0	 0

where it has also been assumed that 0 i (k) is equal to zero. In reference f 3 1 an

expression was obtained for frequency lock range by making the approximation

q^k)-- 0 in the steady state which ignores the quantization of the loop. However,

it is possible to include the effects of quantization in determining frequency lock

range. Recalling the condition for first order DPLL. lock as given by (3-36), then

an equivalent condition for lock is,

	

^(k + 1) — e(k) f < 2 A 1	 (3-39)

which after some algebraic manipulation gives

N-2 
	

N+2	
(3-40)NN-1 ^	 ^ N+1

0

This expression is plotted in Figure 3-4 and gives the normalized frequency range

over which the first order DPLL can remain locked as a function of the number of

states of the DPLL reference clock. Note that the undefined lower limit for N=1

is of no consequence since this would correspond to a DPLL with only one phase

state.
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w	 1.0
0

0.5

N (Number of Phase State)

Figure 3-4. First Order DPLL Lock Bounds for Frequency Offset.

D.	 Second Order DPLL Time Response. The time response for a first order

DPLL has been characterized in the previous section for specified inputs. Notice

however that the characterization of the time response did not involve the solution

of the phase error difference equation because of the nonlinear nature of the equa-

tion. Likewise, it is not possible to find a direct solution for the phase error differ-

ence equation for a second order DPLL. Furthermore, no significant discussion of

second order DPLL response has been found in the literature for the generalized

model of Figure 3-1. The following, while not giving a complete solution, fills

some of this void by determining valid and pertinent characteristics of the second

order DPLL time response for specified input conditions.
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As with the first order DPLL, the first case to be considered for the

second order loop is an input signal with a constant initial phase offset 0 1 and

zero frequency difference with respect to the reference clock. Also, the input

signal phase will again be assumed to be zero radians and the constraint of (3-31)

is applicable so that (3-27) becomes
k

4(k + 1) - q(k) =-A 
1 

sgn c (k) - A 2	 sgn ^( i) 	(3-41)
i=1

with ^(0) = 9 i . Since the total number of phase states of the reference clock is

N, it is necessary that some relationship exist between A 1 , A 2 , and N. For

the second order loop it is assumed that A 
1 

and A 2 are integrally related ai,

A l = n A 2	 (3-42)

and the total number of phase states will be given as,

N == 27r/A 1 = 27rA A 2
	

(3-43)

The typical phase error response versus the loop sample number as given

by (3-41) is shown in Figure 3-5. While a complete solution of (3-41) is not per-

formed it would be of interest to determine the sample number of each zero crossing

of the phase error function and both the sample number and the value of each peak

overshoot of the phase error function up to the occurrence of phase lock. A

knowledge of these values not only characterizes pertinent parts of the phase error

function but can be used in conjunction with one another to give the total time re-

quired to achieve phase lock for an initial phase offset. Therefore, it will be

necessary to determine the values k l , k2 , . . . , k i , kP 1 If kP2 , - - . , kPi, and

F.
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Figure 3-5. Response of Second-Order DPLL to Phase Step Input.

%s1' (Pos2'	 ° Iasi up to the value,

dos i < i D 1 + A 21	 (3-44)

at which time a lock condition has been achieved at k..

If the initial phase offset is assumed to be 0 1 > 0, then the first zero

crossing of the phase error function occurs when

0 1 ) < 0	 (3-45)

This value of k 1 may be found by considering the phase error for values of k < k 

which is given as,
k

4'(k)=0 1 - k A 1 - 0 2 Fi

i=1
(3-46)
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n 	 ,

The first zero crossing of the phase error function occurs at

k
k A 1 + A2 E i > 0 1 	(3-47)

i=1

However,

k i = k(k+ 1) (3-48)
i=1	 2

which may be substituted into (3-47) to give (after rearranging terms),

2	 2p1 + 42	 2

	

2	 2

The positive root solution for (3-49) evaluated for equality to zero gives the number

of samples required for the first zero crossing of the phase error function as,

- (2p 1 + Q	
+

2 )	 2^1 + D2 2	 01
k 1 =	 2 ,N

2
	 2 62	 + -42

(3-50j

After the k - th sample the sign of the phase detector output changes giving

the phase error as,

0 1 + 1) = gnk 1 ) + 0 1 - A 2 (k 1 - 1)	 (3-51)

which can be generalized to
A

^(k 1 + i) _ ^(k 1 ) + i A l - 22 i (2k 1 - i - 1)	 (3-52)

for k l + i < kpi . Defining kpi as the sample for which the peak overshoot

occurs following the k, zero crossing, then it is obvious that,

kpi) <	 kpi + 1 )	(3-53)

Applying the constraint of (3 -53) to (3 -52) gives the sample at which peak over-

shoot occurs as ,

N
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kpi = 2k
1
 - A l /A 2 - 1	 1 (3-54)

= 2k 1 - n - 1	 (3-55)

The valueof the peakovershoot is found by evaluating (3-52) at i=kp1 +k l with

kp1 determined from (3-55) giving,

(gk PI 	 ^(k 1 ) + (k 1 - n - 1) f A 1 - 
2 
2 (k 1 + n) 1	 (3-56)

It is important to note that at the peak overshoot point that the value contained

in the summation block of Figure 3  1 will be zero.

The partial response of the loop giving the zero crossings and the peak

overshoot values for the phase error function can be found by repeated application

of (3-50) and (3-56). Notice that since the summation term of the phase error

function is zero at sample k
pi , 

then kk,_,1 can be found from (3-50) where the

initial phase offset is given by 1asi. Further, once the values of A 1 and A2

have been specified it is a simple manner to determine the required response values

graphically. As an example, consider the case for which 6 =1	 L\ 2 = 32	 .

For this case (3-50) reduces to,

k 1 = -1 .5 + (2.25 -+ 10.2 0 1 ) ` 	(3-57)

and the phase error of the first zero crossing is determined from (3-46) as,

^(k) = e l - 0 .196 (k 1 2 + 3k 1 )	 (3-58)

Equation (3-58) is in slope-intercept form with the intercept determined by (3-57).

Notice however that the value of k determined by (3-57) applies only over a
1

certain range of A l and therefore (3-58) is likewise applicable only over the same

A



range of 9 1 . Thus, when (3-58) is plotted in Figure 3-6 it takes on a saw-tooth

characteristic. Substituting the loop gain values into (3-56) gives the value of the

first peak overshoot as,

(o(k p1 ) = 1.(k 1 ) + 0.098 (k 1 - 2) (1 - kp )
	

(3-59)

which is also in slope-intercept form and is plotted in Figure 3-7. Notice that when

the zero crossing occurs at the second loop sample, the loop will be in phase lock.

It is noted that the phase error at the occurrence of the first zero cross-

ing of the phase error is plotted on the ordinate of Figure 3-6 and on the abscissa of

Figure 3-7. Further, since the i-th zero crossing parameters are found by using the

above procedure with the initial phase offset equal to the value of the (i-1)-th peak

overshoot, then the abscissa variable of Figure 3-6 is equal to the ordinate variable of

Figure 3-7. Therefore it'is possible to combine the results of these two plots. This is

done in Figure 3-8 where (3-58) for A I > 0 is plotted in the first quadrant and for

G I < 0 in the third quadrant. Similarly, (3-59) for a negative phase error at the

zero crossing is plotted in the second quadrant and for a positive phase error at the

zero crossing in the fourth quadrant.

Using Figure 3-8 it is possible to determine the phase error character-

istics during loop phase acquisition as follows. Assume that the initial phase offset

of the loop is 8 1 = 2.75 radians as shown in Figure 3-8. The first zero crossing of

the phase error function will occur at the fifth sample and the phase error will be

-0.98 radians. The value of the first peak overshoot is the projection on the -81

axis of the intersection of 0) = 0.98 radians with the k=5 line in the second qua-

drant which is equal to -2.04 radians. This value of first peak overshoot is then used
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to find that the second zero crossing occurs four samples after the peak overshoot

and has value: 0.72 radians. The value of the second peak overshoot is seen to be

1.3 radians. The value of the second peak overshoot is then used to find the third

zero crossing and the third peak overshoot value. This process is just continued in a

clockwise manner until only two samples are required for the occurrence of the i-th

zero crossing at which time phase lock has occurred. Thus the phase function char-

acteristics for any initial phase offset can easily be determined by Figure 3 -8.

Corr!der next the case where the input signal differs by a constant

frequency from the quiescent frequency of the second order DPLL with 6 i (k) = 0.

Since for this case the condition of (3-31) is not assured during loop phase acquisi-

t'on the phase error difference equation is given by

^(k + 1) - c k) = 2;r ( 1 - w/wo ) - '6 1	
w	

sgn [ sin 0(k)] (3-60)
W

k o
- w /wo A 2 T sgn [sin 0(k)]

i= 1

with ^(0) = 6 I . The inclusion of the constant term for the frequency difference and

the sine function complicates (3-60) to the point that even a partial solution as was

performed for the case of zero frequency difference is not possible. However, it is

possible to study the stability of the second order DPLL by means of an incremental

phase plane portrait. In the incremental phase plane, 4 + 1) - 4<) is plotted as

the ordinate and ^(k + 1) is plotted as the abscissa while k is a variable parameter.

Then for any k, f (# + 1), 0< + 1) - #)] describes the state of the system and a

stable region of operation is found when, for any given initial conditions,

f t(k + 1), * + 1) -^(k)]	 f 21ri, 0.01 i = O f ± i, s2 . . . (3-61)

as	 k —co
-33-
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For the case of A 1 = A2 = Tr/32 and 0 1 = Tr/4 incremental

phase plane portraits have been plotted in Figures 3-9 and 3-10 for various values of
	

I

f

a" /wo . From Figure 3-9 it is seen that for w/w o < 1, but sufficiently large, that it

is possible to achieve phase lock without cycle slipping. However, as w/(j 0 decreases,

the loop will achieve phase lock after slipping an increasing number of cycles. Notice

that as the number of cycles slipped increases the length of time required to achieve

chase lock also increases. Similarly, from Figure 3-10 it is seen that for w/w o > 1,

but sufficiently small, that it is possible to achieve phase lock without cycle slipping

but as w/w0 increases the number of cycles slipped prior to phase'ock increases.

2 # + 1) - (k) (Rad)

._.-	 w /w = 0.87

Ilk •w^

3 Tr

-^	 ^^	 '}^.•.•^°' .^'
	 + 1)	 (Rod)

2 TG

w /wo = 0.885 w /w o = 0.877

-7r/2

Figure 3-9. Incremental Phase Plane Portrait forO I = Tr/4 and w/wo < 1 .
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Figure 3-10. incremental Phase Plane Porirait for 0 1 - Tr / 4 and w/wo 	1 .

For some applications It is necessary that phrase lock be achieved in

minimum time so that it is necessary that no cycle slipping occur during phase acqui-

sition. Consider first the case of 0 l J 0 and w /wo 	1, so that the phase error

can be expressed as

^(k + }) _ 0 1 + 2n (1 - w wo) k - w./w
0
 A 1 k	 (3-62)

- w lwo Q2 
k(k + 1)

2

up to either the first zero crossing of the phase error function or the first cycle slip

s nce sgn f sin elk) ] = 1 until either o f these occurrences. Equation (3-62) can

be rewritter, as

d^k + 1) = P l - A 1 k - A'	 kk (k-, 
1)	

(3-63)

2

r
<	 < here

21T + w / w° ( 2 1r 4 p })	 (3-64)

L^ 2 	 w /w° A 2	 (3-65)
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tin y! for a cycle slip to occur

¢(k	 1 )	n	 (3-66)

From (3-63) and (3-66)

k2 ^ 2 ^1 
	

2	 2
k -	 (6 	 Tr	 0	 (3-67)

^2	 A2

Since k is the sample number of the occurrence of a cycle slip during phase acquisi-

tier., n; must be a positive, real value. Since k must be real then

2 A 1	 A 2	 2	 ( 0 1 - Tr	 0	 (3-68)o^
2 n 2	 A2

and, since 0	 n, for k to be positive then,

2 6 1 { C2
_	 0	 (3-69)

2n2

For (3-68), the worst case for cycle slip occurs as 0 1 -• n, therefore if A l - n - 8

and n 1	 tN 2	 n ''32 the constraint of (3-68) gives

W 'w	 0.971 for 8	 0.01	 (3-70)
o -

while the constraint of (3-69) gives

W 'w	 0.977	 (3-71)
o -

Therefore, k will be a positive real value for indicating a cycle slip will occur for

all values of w " w
o	

0.971 , A similar procedure can be followed for
°

- n 4 b ._ ( 1 	 0 and w wo	 1 which for the some case of A 1 = 
6 2 =7

	 132

will give a cycle slip for
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w/w
o 

^ 1.03, S - 0.01
-

(3-72)

Thus once A 1 and A 2 are defined, it is possible for the 2nd order DPLL to define

the frequency offset range over which phase acquisition can occur without cycle

slipping.
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CHAPTER IV

FIRST ORDER DPLL WITH ADDITIVE NOISE INPUT

A. Introduction. In the preceeding chapter partial response characteristics

for a first- and second-order DPLL with ideal input were developed. As for the case

of an ideal input, little has appeared in the literature concerning the characteristics

of DPLL operation with a noisy input. For the most part any analysis that has appeared

in the I iteratui a for stochastic inputs has involved linearizing assumptions on the DPLL's

operation. %o notable exceptions have been the DPLL configurations studied by

Cessna and Levy f 51 and Holmes [ 6.1 where random walk techniques were used to

determine the statistical characteristics of the loop. For the DPLL of reference f 5 1,

the first order loop utilized resettable low pass digital filters in the phase correction

path while the DPLL in reference [ 6 1 did not utilize a filter. A DPLL configuration

that uses a non-resetting filter is analyzed in the following without linearizing assump-

tions using a Markov chain model that achieves the some statistical performance of that

described in [ 5 1 but with less physical complexity.

B. First-Order DPLL Configuration. The specific loop configuration consid-

ered here is shown in its implementation form in Figure 4-1 and is a slightly modified

version of the generalized DPLL model shown in conceptual form in Figure 3-1 with

C
2 :_ 0. This loop configuration is that of the Ohio University MAPLL f 71 with

the exception that the loop is assumed to operate continuously instead of in a gated

manner. Assuming for the moment that M 1 in Figure 4-1, then this loop implemen-

tation is easily seen to be identical to the model of Figure 3-1 with A2 = 0 since at

each sample of the input signal the phase of the reference clock will either be advanced

or retarded by A 1 = N radians depending on whether the reference leads or lags the

input signal .
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An improvement can be made in the loop's operation for a fading input by

the addition of the divide-by M up/down counter preceeding the divide-by N up/

down counter. It is obvious that to change the phase of the reference clock it is

necessary for the divide-by M counter to cycle through its M J:s► inct states to either

an overflow of underflow condition. Thus, while the phase output takes on N distinct

states, the loop itself has MxN distinct states. Further, the divide-by M counter

constitutes a digital low-pass filter whose transfer function is found in Appendix D as,

H(Iw) _ 1	 sinMWC 	e I ^n ( M _1)	 (4-1)
M —	 w

sin WTT w	 c
C

It is seen from the plots of the magnitude-squared function of (4-1) in Appendix D

that as M increases, the bandwidth of the filter decreases.

A state diagram for the loop is given in Figure 4-2 where the values of p.i

and q.i are the probabilities associated with the indicated state changes. Several

things are worth noting about this state diagram. First, for any present state, when a

new sample is taken a new state will result; and second, the new state will always be

adjacent to the previous state. Also, for a given reference clock state the transitions

occur uniformly with time but, following a transition from one reference clock state

to another, the time interval to the next sample is either longer or shorter than the

time interval between the previous two samples depending on whether the reference

clock phase was advanced or retarded as it passed from the previous reference clock

state to the present reference clock state.

If the phase samples are independent and the non-uniform sampling interval is

ignored, then the DPLL given by the state diagram of Figure 4-2 can be approximated

by a first-order Markov chain, the properties of which are outlined in Appendix A.

i

,s

^T.
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If a ii is defined as the probability that the loop is in state s ii , then the system of

equations describing the loop probobilitios is given as,

2

0	 p l	0	 0	 0	 0	 0	 q l all all

q l	0	 p l	0	 0	 0	 0	 0 a12 a12

0	 q l	0	 p l	0	 0	 0	 0

a1M °1M
a21

a 21

•	 \ a 22
a 22

• a 2 a 2

•

•

a N I aNl

\ aN2 aN2

0	 0	 0	 0	 .	 q 	
0	 pN

p N 0	 0	 0	 0	 q N 0 aNM aNM

(4-2)
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Or,

d p i (a] _[ a]	 (4-3)

where [ pl is called the matrix of transition probabilities. The non-trivial solution

to this system of homogeneous, linear equation is the one that satisfies the total proba-

bility relationship,
a

N M

F	 F a.. = 1	 (4-4)

and, from the characteristics of Markov chains, represents the steady state probability

for the loop states. That is, at any given instant of time the probability of observing

the loop in state s.. is given by 
aii.

The steady state probabilities for the reference clock states, s i are given

by,

M

S. = F	 a..	 i=1, 2 1 . . . N
i	 i=1	 ii

Once the steady state reference clock state probabilities are known, it is possible to

find the variance of the reference clock phase from

2	 1	
N-1	 ^	 2

°d^ - N F	 S i + 1	
IN (1 - N + 2 i 	( 4-6)

i=o

where it has been assumed that the phase of the input signal is a constant 0. radians

corrupted by noise.

Another quantity useful for the evaluation of a DPLL with a fading input

is the mean time to lock-up for some initial phase offset. This can be evaluated by

considering the loop transient response in terms of the classical ruin problem (Feller

[ 8])for a random walk. The mean time to lock for an initial phase offset then would

(4-5)
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be equivalent to a determination of the expected duration of the game in the classi-

cal ruin problem. If T. 	 defined as the expected time required to reach a mini-
01 J,

mum phase error when the initial state of the loop is s,,
i ^ 

then the T 
oi,l 

must satisfy

the difference equation,

To i I I 
= 1+ p i To i, j- 1+ q i To 

i j
+ 1	 (4-7)

for J / 1 , M and with the boundary conditions

Tok , j	 T  + 1, j = 0	 j = 1, 2, . . . M	 (4-8)

where reference clock states k and k +1 represent the minimum phase error states.

For the input signal assumed to be 0. radians then the system of non-homogeneous,

linear simultaneous equations results,

^r
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1	 q1	 0	 0	 0	 0	 Toll	 1

P I	1	 q1	 0	 0	 0	 To12	 1

0	 p 1	 1	 q1	 0	 0	 To13	 1

To 14

To21

To2M0
0

0	 pi-1 1	 qr-1 0	 Tok-1,M 	 1

0	 0	 0	 1	 0	 Tok 1	
_ 0 (4-9)

	

0	 1	 0	 0	 Tok+l , M	 0

	

0	 pk+2 1	 qk+2	 Tok+2 , 1	 1

i I .	 0	 0	 pN	 1 qN	 ToN, M-1	 1
qN 0	 0	 pN 1	 ToN , M	 1
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C.	 Matrix of Transition Probabilities.

Consider the case where the input to the DPLL is of the form;

s r(t) = s (t) + n (t) 	 (4-1 Oa)

A 
c	 c	 c
cos G! t + ^) + x(t) cos w t + y(t) sin w c t 	 (4-10b)

'p
where A c is the carrier amplitude and x(t) and y(t) are zero mean independent gaussian

distributed random processes of bandwidth B and variance a x 2 = a2 = a2. That is, the

input to the DPLL is some signal plus narrowband noise. The input can also be written

in the form:

s r(t) = X , (t) Cos w ct + y'(t) sin wc t	 (4-11)

wh are

x' (t) = x (t) + A c cos	 (4-12a)

y'(t) = y(t) + A c sin	 (4-12b)

The positive going zero crossing is always assumed to be the correct phase of the signal

s(t). That is, the reference clock is always assumed to be in phase lock with the signal

s(t), and the error signal generated by the phase detector is used to tell the loop differ-

ently. Therefore, the loop always assumes the samples of the incoming signal occur at:

ca c t i = ( 1 + 2i ),r/2	 i = 0, 1, 2 1 . . .	 (4-13)

so that

(4-14a)

(4-14b)

cos w t = 0c

sin w t = 1c

giving

sr(t) = y(t) + A  sin (4-15)
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^	 4

where T is the phase difference between s(t) and the reference clock. Note that as

the loop approaches lock, ^ approaches 0. Also, the reference clock can take on

only N distinct values so that ^ too can take on only N distinct values ^. , i = 1 ,
i

2,	 . , N. From earlier y(t) is a gaussian distributed random process so that the

probability density function fors r (t) is:

1

	

(y +A	 2csin ^I)

p (s ) = ^
	

e	 (4-16)
r	 2ir o 2	 v

From the state diagram of Figure 3, the p.^s are the probability that the sampled

value of s (t) is less than zero and can be found from:
r

P i = f a P (sr 	) dsr
	 (4-17a)

-00

1  y+Acsin tj^i 2

	

V
-^^ f ° e

_ [
	

v	 d	
(4-17b)

27r o	 - oo	 y

	

= probability that s r (t) < 0	 (4-17c)

Also,

q. = 1 - p.	 (4-18a)

= probabi I ity that s r (t) > 0	 (4-18b)

D. Application of the Markov Chain Model. The phase error and transient

response of the DPLL given in Figure 4-1 can be determined from the solution of

(4-2) and (4-9), respectively, once the values of M and N have been specified. To

perform the solution to these two sets of equations, the three Fortran computer pro-

grams given in Appendix B were written. The first program, PBSTGEN, is used to

set up the matrix of transition probabilities for the systems of (4-2) and (4-9) once

^M
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the values of M and N are given. The second program given in Appendix B,

PBDPL2, is used to solve for the steady state probabilities of the loop states and from

this calculates the steady state probabilities of the reference clock states and finally

the variance of the phase error for specified input signal-to-noise ratios. The final

program given in Appendix B, PBDPL2T, is used to determine the solution to the

transient response system of equations given in (4-9). Both PBDPL2 and PBDPL2T use

a successive approximation technique to determine the solution to the system of equa-

tions. Note, all three programs were written to be used both for the first-order DPLL

considered in this chapter and also for the second-order DPLL which will be given in

the next chapter.

The steady state probabilities for the reference clock states were found for

various values of M and signaI -to-noise ratio with N=64 and are plotted in the terms

of the phase error probability density function in Figures 4-3 and 4-4. The value of

N = 64 wa chosen to be consistent with the application to an Omega navigation re-

ceiver as ou`lined in [ 71. Mote that for all cases, the value of N and M will be

assumed to be a power of two so that a practical realization of the counters can be

achieved with a standard binary counter. In Figure 4-3, the envelope of the proba-

bility density function for the phase error is shown for M=1 and signal-to-noise

ratios of 20. , 0.0, -20., and 40. dB. Notice that as the signal-to-noise ratio de-

creases, the envelope of the density function approaches that of a uniform phase error

distribution as would be expected. In Figure 4-4, the envelope of the density func-

tion is shown for a constant signal-to-noise ratio of -20. dB while M takes on values

i f 2, 4, and 8. From this plot the effects of the digital low-pass filter (the divide-

by M counter) can be seen since as the bandwidth of the filter decreases, the den-
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sity functions tends to flatten.

Once the steady state probabilities of the reference clock states are deter-

mined the phase error variance can be easily calculated. In Figure 4-5, the standard

deviation of the phase error is plotted for M =1 , 2, 4, and 8 versus noise-to-signal

ratio. For low values of noise-to-signal ratio these curves are asymptotic to a value

fixed by N, the quantization level of the reference clock. For high noise-to-signal

ratios, these curves are asymptotic to the standard deviation of a uniform phase dis-

tribution. Note also that as the value of M increases by a power of two that there

is an approximate 3.0 dB increase in the performance of the loop.

The mean time to lock in terms of the number of samples required to

achieve phase lock for some initial phase offset was determined for M=1, 2, and 4

for various values of signal-to-noise ratio. Note that phase lock following some

initial phase offset is defined as the first occurrence of the minimum phase error con-

dition as determined from the solution of (4-9). Since the phase of the reference

clock is assumed to take on values from -n to 1r, a minimum phase error condition

would be reached for M=2 when the loop reached states s32,1 , s32,2 , s33,1, or

s
33 2 for N=64 and the input signal a constant 0.0 radians. However, for the

case considered here, a more stringent lock condition was imposed in that only states

s32 2 and 
s33 1 were considered to constitute phase lock. For this case the bound-

ary conditions for (4-9) become To32,2 and 
To33,1 

equal to zero. Similarly, for

the case of M=4, only the states s32 4 and s33 1 were considered to constitute

phase lock. The solution to (4-8) under the above conditions are plotted in Figures

4-6, 4-7, and 4-8. As expected, for a given initial phase offset, the mean number

of samples to the first occurrence of a phase lock condition increases as the signal-
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to-noise ratio decreases for all three plots. Notice that for a 20. dB signal-to-noise

ratio that the expected time to lock is very nearly equal to the time required for lock

under ideal conditions. A cross comparison between Figures 4-6, 4-7, and 4-8 indi-

cates that the expected time to achieve phase lock increases as the value of M in-

110 creases as would be required since more loop states must be traversed to achieve phase

lock.

In addition to the theoretical values, Figures 3-5 through 4-8 also include

experimental data taken from a hardware realization of the first-order DPLL. This

hardware realization will be discussed in Chapter VI.
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Figure 4-1. First-Order DPLL Implementation.
Note: i is Present Value of - N
Up/Dn Counter.
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Figure 4-2. First Order DPLL State Diagram .
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V. SECOND ORDER DPLL WITH ADDITIVE NOISE INPUT

A. Introduction. Second order DPLL configurations have been analyzed by

Holmes and Tegenelia [ 131 and Weinburg and Liu [ 41 for an additive white gaus-

,ion noise input. However, in the case of reference [ 13 1, the loop was modeled

is a linear system and then analyzed by classical techniques. The results presented

for this linear model showed close agreement with experimental data for signal-to-

noise ratios greater than 0.0 dB. In reference [ 41, the steady state phase error for

the second order DPLL was determined from a solution of the Chapman-Kolmogrov

equation in the z-domain under the assumption of small values of steady state phase

error. Again, the usefulness of this solution is limited by the input signal-to-noise

ratio. In this chapter, the author presents a method of analysis for a second order

DPLL that is not limited by the input signal-to-noise ratio.

In the previous chapter, the analysis of a first order DPLL was performed

by modeling the loop as a first order Markov chain. In the following, the idea and

methods used in the previous chapter will be modified to allow a similar approach to

be used for the analysis of second order DPLL's. It will be shown that a second order

DPLL can be modeled as a first order Markov chain with alternatives and that these

alternatives themselves can be thought of as states in a first order Markov chain.

The steady state distribution of the Markov chain alternatives can be determined and

• 'rom this distribution it is possible to find the steady state phase error of the DPLL.

The transient response of the loop is also determined in a similar manner.

B. Second Order DPLL Configuration. The second order DPLL configuration

considered in this paper is shown in its implementation form in Figure 5-1. The loop

is identical to that of Figure 4-1 with the exception of the addition of the divide-by

-57-

4

I^



L up/down counter and the K-bit binary adder where  = log 2 (MxN). The in-
k

clusion of the divide-by L counter provides the Q2 1 	 X (i) function of the gen-
=1

eralized model of Figure 3-1. Note however that for a practical implementation,

the divide-by L counter cannot be allowed to either overflow or underflow since

this would have the effect of resetting the summation value to zero. Therefore, the

divide-by L counter is structured so heat it will saturate at values of f L.

Operation of the loop is as follows. The input signal is sampled at the

positive-going zero crossing of the reference clock to determine whether the refer-

ence clock leads or lags the input signal. If a phase lead is detected, the divide-

by M and divide-by L counters are incremented by one and if phase lag is detected,

the divide-by M and divide-by L counters are decremented by one. Following this,

the value of the divide-by M and divide-by N counter combination is added to the

value of the divide-by L counter and the result loaded into the divide-by M and

divide-by N counter combination. Finally, the phase of the reference clock is up-

dated to reflect the value contained in the divide-by N counter after the load has

occurred.

Referring to Figure 3-1, the value of A 1 will in this case still be given

by A 1 = N and 	the value of A2 is determined by the bit in the divide-by M and

divide-by N counter combination to which the least significant bit of the divide-by

L counter is added. For example, if the binary adder is configured so that the least

significant bit of the divide-by L counter adds to the least significant bit of the

divide-by N counter then A 1 = A 2 . However, if the least significant bit of the

divide-by L counter adds to the most significant bit of the divide-by M counter,

then A I = 2 0 2 . Note that this leads to a more limited relationship for A l and 82
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than given in (3-42) since for this configuration,

A I = 2 1 A2	i = 1, 2 1 . . .	 (5-1)

Note also that a first order DPLL results from this configuration if the divide-by L

counter is configured to saturate in its zero state.

For the first order DPLL, the loop states were defined by the combination

of the divide-by M and divide-by N counters giving a total of M x N loop states.

For the second order DPLL, the loop states are defined by the value contained in

the combination of the divide-by M and divide-by N counters following the loading

of theK-bit binary adder output so that once again there are a total of MxN loop

states. However, for the second order DPLL the loop state transitions are dependent

not only on the present output of the phase detector but also upon the value con-

tained in the divide-by L counter. Thus the value of the divide-by L counter can

be thought of as providing alternative loop state to loop state transitions for a given

phase detector output. The loop can then be modeled as a first order Markov chain

with alternative state transition vectors. The characteristics of the Markov chain

with alternatives is discussed in Appendix A.

C. Markov Chain Model of the Second Order DPLL. Use of the Markov

chain with alternatives for the modeling of the second order DPLL configuration con-

sidered here will be shown by means of an example. For this, consider the DPLL of

Figure 5-1 with M = 2, N = 4, and L = 3 so that there are eight loop states which

define the states of a first order Markov chain. However the divide-by L counter

can take on seven values so that for each loop state there are seven possible alterna-

tive loop state transitions. A state diagram of the Markov chain model for the DPLL

under consideration is shown in Figure 5-2. In this figure, the loop states are situ-
-60-
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ated horizontally while the alternatives associated with each loop states are situ-

ated perpendicularly,. Thus the top row labeled alternative 1 gives the state trans-

itions for the divide-by L counter having a value +3. Similarly alternative 2 applies

for the divide-by L counter having value 2, alternative 3 is for the divide-by L

counter having value 1 and so on. The loop states are plotted such that the first

column is for a reference clock stag, of one with the value of the divide-by M

counter equal to zero while the second column is for reference clock state one with

the value of the divide-by M counter equal to one. Similarly, the third column is

for reference clock state two with a value of zero contained in the divide-by M

counter and so on.

Since there are eight possible loop states with each loop state having

seven possible alternative actions, there are a total of 56 alternative state vectors

in the matrix of transition probabilities as given in Appendix A. However, for each

loop state, the alternative vector to be used is uniquely defined by the value of the

divide-by L counter so that the alternative vectors themselves can be thought of as

states in a first order Markov chain. That is, instead of considering the transition

from loop state to loop state, the transitions from loop alternative to loop alternative

are considered. Thus in the state diagram of Figure 5-2, the loop alternatives are

successively numbered s l , s2 , . . . s 
5 

and the possible transition from loop alterna-

tive to loop alternative is assigned a probability as indicated by the directed arrows.

The values of the indicated probabilities are dependent only upon the reference

clock state associated with each loop alternative and the method of determining their

value was discussed in Chapter N.C.
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To show that the state diagram of Figure 5-2 will achieve a phase lock
x

'	 condition, consider the case of an ideal input sigoal. For this case the transition

probabilities as given by (4-16b) and (4-17a) are,

P I = p2 = q3 _ q4 = 1	
(5-2)

and

P3=p4=g1=q2=0
	

(5-3)

If the loop is assumed to initially be in alternative state s 4 , then on successive

samples of the input the path traced through the state diagram will be

s 4	 s 17 - 5337 -- s 38	 s 32	 s 19 -0- s 25	 s38

so that when phase lock is achieved, the loop will continuously cycle through the

closed path

s 38 -• s 32 -,^ s 19 -. s 25	 s 38 ' '

Inspection of Figure 5-2 will show that the same state cycle will be obtained for

any initial alternative state.

Once the state diagram for the alternative loop states is defined, it is

clear that the steady state phase error for the loop may be obtained by the same

method as was used for the first order DPLL in Chapter IV. For the example of

Figure 5-2, if the steady state probability of occupancy of alternative state s.
i 

is

lenoted as a i , then for state s 1 ,

a l	 P1 a29 1 q l a9
	 (5-4)

Similarly for alternative sate s2,

a2 ^ p 1 a29 + q 1 a3
	 (5-5)
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Obviously there exists a similar equation for each of the 56 alternative loop stages

so that there exists a system of homogeneous, linear equations similar to (4-1) :vhich

can be written as,

.a	° 1 1

a2 	a2

(A ]	 _	 (5-6)

°5b j	 L°56

where 
[A156 

x 56 is the stochastic matrix of transition probabilities for the alterna-

tive loop states. The nontrivial solution to (5 -6) which satisfies the constraint,

56

F	 a	 )	 (5-7)
.	 i	 1

gives the steady state probabilities for the alternative loop states. As for the case of

tiie first order DPLL, the steady state probabilities of the reference clock states, S.,
i

cc.n be determined from the steady state probabilities of the alternative loop states

as,

14

S 1	 F	 a i	 (5-8c)
i	 1

28

S	 s	 a.	 (5-8b)
2	 i	 15	 '

42

5 - F	 a.	 (5-8c)
3	 i	 29 ^

F
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56
S 4 Z F ai

i = 43
(5-8d)

The variance of the steady state phase error can then be determined from the distribu-

tion of S i by (4-5). This method of finding the steady state phase error of the loop can

obviously be extended to any value of M, N, and L.

The mean time to phase lock for some initial phase offset can also be deter-

 by the method of Chapter IV. If T
of 

is defined as the mean number of samples

required to the first occurrence of phase lock for an initial alternative loop state s,

than for state s I ,

T 0	 p3 To29 + p3 To30 } I
	

(5-9)

A similar equation can be written for each of the alternative loop states with the

exception of the alternative states which define phase lock for the loop. For the ex-

ample of Figure 5-2, the alternative loop states defining phase lock were found earlier

to be s
19 , 525, s

32 , and s38 . For these states the loop is initially in phase lock so that,

To19	 To25	 To32	 0	 138 

Thus there exists a system of non-homogeneous, linear equations similar to (4-10)

which can be written as,

4
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IT]

Tol

To18

T 01

To20

1 o21

To25

To26

To31

To32

To33

To37

To38

To39

To56

1

0

1

1

0

1
(5-10)

1

0

1

1

0

1
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where [T] is 56 x 56 matrix involving p i and q.. As with the steady state phase

error, this method of determining the mean number of samples to phase lock can be

extended for arbitrary values of M, N, and L.

D. Application of the Markov Chain Model. The use of the Markov chain

utilizing the alternative loop states can be generalized for arbitrary values of M, N,

and L as has been done via the Fortran programs given in Appendix B. Use of these

programs has been outlined in Chapter N.C. For all cases considered it was assumed

that A l = A2 and N = 64. Further it was found in [91 that the phase error de-

graded rapidly as L increased, so for all cases considered L was limited to values of

0, 1, or 3.

Using PBDPL2 in Appendix B, the standard deviation of the steady state

phase error was determined for L = 0, 1, and 3 for various signal-to noise ratios.

Figures 5-3, 5-4, and 5-5 give the phase error for values of M = 1, 2, and 4, re-

spectively. As can be seen from al I three plots there is an approximate 20. db de-

gradation in loop performance for L = 3 as opposed to a first order loop (S = 0).

Using PBDPL2T given in Appendix B, the transient response of the second

order loop was determined for M = 1, 2, and 4, L = 1 and 3 and signal-to-noise

ratios of -20., 0., and 20. db. The results are plotted in Figures 5-6 through 5-11

where for all plots the value of the divide by L counter was zero at the initial phase

offset. When the results are compared to those for the first order loop given in

Figures 4-6, 4-7, and 4-8, it is seen that for identical values of M and signal-to-

noise ratios, that the second order DPLL achieves lock in a lesser expected time for

initial phase offsets greater than Tr/8 radians. However for smaller initial phase off-

sets, the first order DPLL actually achieves phase lock in a lesser expected time than
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the second order DPLL.
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CHAPTER VI

FIRST AND SECOND ORDER DPLL DESIGN

A. Introduction. To experimentally demonstrate; the validity of the Markov

chain model for the first and second order DPLL's described in Chapters IV and V, a

hardware DPLL was designed, constructed and tested for additive noise inputs. The

hardware loop was designed so that either first or second order operation was selec-

table. Also, a primary design objective for the hardware DPLL was to allow for easy

alteration of important loop parameters to facilitate testing of the loop under various

conditions. Therefore, the design presented is not intended to incorporate minimal

components. The general range over which the parameters could be varied was Iimi-

fed to values thought to be useful for an application to an Omega navigation receiver

as were the parameters used in, Chapters IV and V. It should be emphasized however,

that neither the theory nor the general DPLL design presented in this paper are in any

way limited to this particular application.

B. DELL Design and Tasting. The block diagram for the DPLL design is shown

in Figure 6-1. All register length; shown in the block diagram indicate the maximum

values and during testing the actual register lengths were altered to verify the effects

of various loop parameters upon the DP LL's pet formance. The functional groupings of

components in relation to the DPLL given in Figure 5-1 are indicated for comparison.

Referring to Figure 6-1 , the phase detector will sample the binary quan-

tized incoming signal at a frequency f
c 

and then output a count-down signal if the

sample is a high level or a count-up signal if the sample is a low level . The count-

up or count-down signal is tht-n applied to both the divide-by L saturating counter

and the divide-by (Mx",f) counter. Inhibiting logic is included with the divide-by

L, counter so that the counter will saturate at selectable values of -a (2 1 - 1 ),
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z

i 1, 2, . . . , 7. The sample command also initiates the control logic so that the

t
	 new value of the divide-by (Mx N) counter (foI lowing the count-up or count-down

signal) is loaded into the 12-bit buffer by means of the LOAD2 signal . After set-

tling, the output of the 12-bit adder will be the sum of the divide-by L saturating

counter and the divide-by (MxN) counter. This value is then loaded into the

divide-by (MxN) counter by means of the LOAD  signal. The value of the N most

significant bits of the divide-by ( Mx N ) counter now represents the phase estimate

of the DPLL. To establish the variable phase reference clock, this phase estimate is

compared to the value of a divide-by N counter being clocked at a rate Nxf
c 

using

a Iog2 N -bit binary magnitude comparator. Upon coincidence of the two input words,

the magnitude comparator output takes on value ONE. Note that this pulse output

occurs at an f
c 

rate. Notice also that this loop will operate in the first order mode

simply by inhibiting the LOAD1 signal to the divide-by (MxN) counter. Detailed

schematics fcr the DPLL may be found in Appendix C.

The primary objective for construction and testing of the hardware DPLL

was the verification of the theoretical data obtained from the Markov chain model in

Chapters IV and V. As such, it wos desired to determine the steady state phase error

and the mean time to phase lock for some initial phase offset for the DPLL operating

with an additive white gaussian noise input. The determination of these two values

can be made using the same basic test configuration shown in Figure 6-2. This test

configuration allows the use of identical frequency but phase shifted signals for the

DPLL's input and reference source. Also, provision is made for the addition of

gaussian noise to the input signal.

Referring to Figure 6-2, the source used for both the DPLL reference

source and the DPLL phase shifted input was a Sulzer temperature controlled crystal
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osci Ilator operating at 100 KHz. Since the reference source for the DPLL is re-

quired to be '4'8 x fc , this sets the quiescent frequency of the DPLL at approximately

390 Hz. To develop an input signal for the DPLL the 100 KHz hardlimited source is

applied to a presettable 8-bit counter. Then by presetting the counter to various

values a phase shifted signal at an f rate is obtained.

The output of the digital phase shift network was then filtered using a

standard state variable active bandposs filter with center frequency off
c 

Hz and

Q ^ 100. Utilization of this particular fi Iter design allows for easy and precise turn-

ing of the fi Iter for zero phase shift. The sinusoid output of the bandpass filter was

then selectably attenuated using Hewlett-Packard Model 355B attenuators to vary

the signal amplitude. Gaussian noise from a General Radio Type 1381 noise source

w is then added to the attenuated phase shi fted sinusoid. The power spectrum for

the Type 1381 noise source is flat over a 25 KHz bandwidth and will therefore look

to be a white noise source to the DPLL. Noise power was monitored by a HP true-rms

voltmeter so that accurate signal-to-noise ratios could be set. The corrupted signal

v,as then hardlimited using a two stage amplifier followed by an LM319 analog

comparator. Each amplifier stage consisted of an AD518 op-amp configured for

20. dB of gain at a 40 KHz bandwidth. The output of the LM319 was then used as

the noise corrupted hard limited input to the DPLL.

The first test performed on the DPLL involved only the phase detector of

the loop. For this, the inputs to the divide-by (M xN) and divide-by L counters

of the loop were removed so that the phase of the DPLL's reference clock could not

be altered. In this manner, any phase shift between the DPLL's input and reference
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clock that was preset by the phase shift network would be maintained. The proba-

bility of a count down phase detector output as a function of phase shift and signal-

to-noise ratio was then determined simply by counting the number of count down out-

puts and the total number of phase samples taken. The probability of a count down

output is then the ratio of the former number to the latter, and gives an experimental

verification of the values of q i as defined by (4-17a). The experimental results are

plotted in Figure 6-3 and 6-4 and show close agreement with the calculated values

in all cases.

The DPLL was then reconfigured for proper operation so that steady state

pk° ,ise error test could be performed. For these tests, the phase shift network of

Figure 6-2 was set to zero so that in the absence of noise the phase error of the

DPLL would be only the quantization error of the loop: The phase state of the DPLL's

reference clock was then recorded on a Kennedy incremental digital recorder for

each sample of the input signal. The steady state probabi lity for each reference

clock state is just the ratio of the number of occurrences of each reference clock

state to the total number of reference clock samples taken. The variance of the

reference clock phase is then determined from (4-6). The standard deviation of the

loop's phase error as determined experimentally has been presented in Chapters IV

and V along with the theoretical values predicted by the Markov chain model. Each

of the experimental data points represents at least 300,000 samples of the loop phase

error and it is obvious that good agreement exists between the experimental and theo-

retical results.

The final objective for the hardware tests was verification of the predicted
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x
loop transient response. For this, an initial phase offset was applied to the loop

a	 via the phase shifting network and the number of samples required to the first occur-

rence of the phase lock state as defined in Chapters IV and V was recorded. This

was done by detecting the states which defined phase lock as given in Chapters IV

and V. The detected phase lock state was then used to gate off an event counter

that was counting to number of phase detector samples taken following the initial

phase offset. Again, the experimental data has been plotted previously along with

the theoretical data in Chapters IV and V. Each experimental data point represents

at least 500 trials and once again close agreement is seen between the theoretical

and experimental results.
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CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

First and second order all digital phase-locked loops have been analyzed for

both ideal and additive gaussian noise inputs. In addition, a hardware DPLL capable

of either first or second order operation has been designed and tested for verification

of the analytical results. For all cases tested, the experimental data showed close

agreement with the analytical results indicating that the Markov chain model for first

and second order DPLL's given in Chapters IV and V are valid.

In Chapter III, ideal inputs were considered for both first and second order

DPLL's with the objective of classifying the time response of the loops. For both

locps it was found that the phase error response was given by a non-linear difference

equation for which no direct solution was found. However, partial response character-

istics of the phase error was determined for both first and second order DPLL's when

the frequency of the input signal is identical to that of the loop's quiescent frequency.

Also, expressicns for the frequency range over which phase lock can be achieved for

a fist order DPLL and for the frequency range for which a second order DPLL can

achieve phase lock in minimum time were derived. In both cases it was found that

the frequency range was directly dependent upon the number of distinct phase states

of the reference clock. As would be expected, it was found that the frequency range

for which a second order DPLL will achieve phase lock, even with the constraint of

minimum time to lock, is significantly greater than the frequency range over which a

first order DPLL will achieve phase lock.

Specific first and second order DPLL's were also analyzed for stochastic inputs

by means of a Markov chain model in Chapters IV and V, respectively. From this
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Morkov chain model, the steady state phase error and mean transient response were

determined. The loop configurations used for the noise analysis were specifically

chosen to both match the general loop model given in Chapter III and to be realized

in hardware by standard binary logic families. For both first and second order loops

it was found that the usual tradeoff between steady state error and transient response

existed. That is, the steady state error can be decreased only with the cost of a

longer transient response and the transient response can be decreased only with an

increase in steady state error.

For the data presented in Chapters IV and V several specific points are worth

noting. First, in comparing the transient response of the first and second order DPLL

it is found that the first order DPLL will achieve phase lock in less expected time than

the second order DPLL for initial phase offsets less than approximately n/8. Also, for

a second order DPLL, the steady • i ate phase error degrades rapidly as the signa l- to-

noise ratio decreases below 0.0 dB. Thus for an application such as an Omega receiver,

if the initial phase error as the received signal is gated on is expected to be small then

a first order DPLL will perform in a superior manner over a second order DPLL. However,

if the signal-to-noise ratio can be expected to be in excess of 0.0 dB and the initial

phase error is unknown then the second order DPLL will give superior performance.

Completion of the goals of this paper also points to areas in which further research

would be of use. In particular, for the case of an ideal input, it would be of great

utility if the determination of the phase error response characteristics were extended to

include the case of frequency offsets. This extension would then allow the determina-

tion of time required to lock for an initial frequency offset without the necessity of

-88-

.....N4	 '!i:'2.:'̂ey.^.at3]'^."'^ ^Y ^JQ►r^^..` .^LinW+



pe forming a simulation. For the case of stochastic inputs, further research on several

po nts is recommended. First, the concepts of Chapters IV and V should be extended

to determine pertinent statistics on loop cycle-slippage. Secondly, it would be use-

ful to develop a comparison of the DPLL's transient response to the standard loop band-

width used to characterize APLL's. Finally, because of the transient response/steady

state error tradeoff previously mentioned research into adaptive loops could provide an

optimum relationship between these two parameters.
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A. Markov Chains. A Markov chain can be characterized by a system con-

taining a number of distinguishable states (finite or infinite) for which transition to a

new state denoted s i from any present state s,
i 

depends solely on the present state s i..

For the application of interest in this paper, assume that the number of system states

is N, finite. For each state to state transition, define p..
il 

as the conditional proba-

bility of a transition to state s i given that the present state is s i . Then for a  defined

as the probability that the system is initially in state s k , the conditional probability

	

that the system has traversed through states s i l , s it ,	 . s in - 1 to the present state

s.In is given by,

Pr [ s in	
II s.l, s.I2	 in-], . . . s I = a I 1 P I.1	 I	 •-2I

p.2, 
I
.3 . . . P•!n - 1 , i n (A- 11  )

For each system state s.i , i = 1 1 2, . . ., N a vector of transition proba-

bilities, P. may be written as,

P i	(p il Pi2 . . . PiN)	
i = 1, 2, . . ., N	 (A-2)

Note that the N transition probability vectors must satisfy the requirements,

Pii > 0
	 i, i = 1, 2,	 ., N	 (A-3)

and

N

I	 p.i = 1.0	 i = 1 1 2 1 . . ., N	 (A-4)
i=,	 ^

and are called stochastic vectors. The N vectors may be arranged in a stochastic

matrix of size N x N to give the matrix of transition probabilities, [P ],
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P 11	 P 12	 PIN

P21	 P22	 P2N

[P] =	 (A-5)

PN1 P N2	 PNN

This matrix then defines all of the state to state transitions for the system and together

with the initial state distribution a i , i = 1, 2, . . ., N for states s l , s2 ,	 . s 

completely defines the Markov chain for states s l , s2 , . . . sN.

The matrix of (A-6) defines the probabilities for state to state transitions

fo- a single step. Next consider a transition from state s i to state s,
i 

that occurs in

exactly n steps. Denote p
(
n) as the probability of observing the system in state s.

'I	 I

at time r + n given that at time r it was observed in state s.. Obviously there willi

	

exist a number of different paths for which the transition from s
i	 I

to s, will occur in

exactly n steps and p(n) will be the sum of the probabilities for all of the possible
^I

paths. For example,

P I (1) 
= Pik	

(A-6)

and

pit) = F 	 Pik Pk'	
(A-7)

r	 I	 k = 1

It can be shown by induction that p(n) is given by the recursive relationship,q
N

P^jn) - 
F	 Pik Pki -

1)	 (A-8)

k= 1
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00

E	 p^^) < 00

n= 1	 ^^
(A-11)

r

If the value p!i) are arranged as elements of a matrix denoted [P ] n then it is

obvious from (A -8) that standard matrix multiplication is applicable so that

LP] n = [P] [P]n-1
	

(A-9)

Recall that a,i was defined as the probability of observing the system in

state s  at time zero. Then the unconditional probability of observing the system in

state s I after n steps is

a n) = N	 a, p ^n)	 (A-10)
I	 i = 1	 I	 ^I

Further, the distribution of a In) will tend to be independent of the initial distribution

a ` , i = If 2 , . . . , N if p
(
^) is independent of i which wiI l be the case if [ P ]ni

converges to a matrix of identical rows. If [ P ] n does converge, then as n -. co the

distribution a^
n
 is the steady state distribution ti::)r the system.

I
It is now necessary to show that such a steady state distribution exists.

First, define the states of an aperiodic Markov chain as being transient if the proba-

bility of reoccurrence of that state is less than one for infinite time so that

and define the state as being null if the probability of reoccurrence of that state is

one but the mean time to reoccurrence is infinite. It has been proven by Feller [ 81,

Chapter XV.6 that for an aperiodic Markov chain that all states are either transient

or null or all states are ergodic. If all states are ergodic then

I im	 P(n = Uk > 0	 (A-12)
n -^ co	 l

where 1/Uk is the mean reoccurrence time of state sk and Uk , k = 1, 2 1 . . . N
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is the unique steady state distribution for the system.

A Markov chain can also be specified for which each state has one or

more possible vectors of transition probabilities. For each state s. I , the possible

vectors are called alternative vectors and transition from the present state to some

new state is governed by one and ord'y one of the alternative vectors associated
4.	

with the present state. In this case, for each state s. there exists k. alternative

vectors,

k	 _ (k	 k	 . k	 ) i = 1, 2,	 . N	 (A-13)
p i 	 pi 1	 p it	 pi N k = 1 1 2,	 K i

where ip.,
^I	 I

is the probability that the system will make a transition to state s, given

that the present state is s. and k th alternative for s. is used. As before, each of the

alternative vectors of transition probabilities are stochastic vectors and must satisfy

the conditions,

k	 > 0 i, j = 1, 2,	 ., N and k = 1, 2,	 . K.	 (A- 14)
p ij	 -	 i

and

N
F_	 k	 = 1.0 = 1, 2, . . ., N and k = 1, 2,	 ; K. (A-15)
j=1	 p q	 t

The vectors may be combined to give the K x N stochastic matrix, P ,
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P 11
1
P12

1
PIN

2
P1l

2
P12

2
PIN

kt kI kl

P 11 P12 PIN

I P21 I P22
1
P2N

2
P21

2
P22

2
P2N

i

P=
- (A-16)

k2 k2 k2
P21 P22 P2N

•
k N k

N

7
a

PN 1 PN2 PNN
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B. Program Listings. The following three fortran programs were written to

solve for the DPLL's performance characteristics as described by the Markov model

given in Chapters IV and V.

1 . PBSTGEN. Program PBSTGEN is used to establish the systems of

equations associated with (4-1 )/(5-2) and (4-9)/(5-10). For these systems of

equations it is seen that only two elements of each row are non-zero. Therefore,

instead of storing the entire coefficient matrix for these systems of equations, PBSTGEN

generates two vectors whose lengths are twice the dimension of the coefficient matri-

ces for each system. The first vector, P NTRI for (4-1 )/(5-2) and T1 for (4-9) /

(5-10), contains the alternative loop state number for each equation (i.e. the pos-

sible state to state transitions for each equation) while the second vector, PNTR2

for (4-1 )/(5-2) and T2 for (4-9)/(5-10), contain a pointer for the probability co-

efficient associated with each state to state transition. The actual value of these

probability coefficients will be calculated in the following programs.

2. PBDPL2.	 Program PBDPL2 uses the vectors PNTR1 and PNTR2

generated in PBSTGEN to solve for the steady state phase error of the DPLL. Solu-

tion is performed by means of Jacobi's iterative technique until the steady state prob-

ability for all alternative loop states converges a difference of less than 10 -8 for

successive iterations. If convergence is not achieved, a maximum of 10,000 itera-

tions are performed. The iterative solution is performed for signal-to-noise ratios

from -40. dB to 20. dB in increments of 5. dB and the output consists of the steady

state probability of each reference clock state and the standard deviation of the phase

error.

^.4

M
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3. PBDPL2T. Program PBDPL2T uses the vectors T1 and T2 generated by

PBSTGEN to solve for the mean time to phase lock for an initial phase offset. Solu-

tion is performed by Jacobi's iterative technique until the result converges to a dif-

ference of less than 10 -5 for successive iterations. Again, a maximum of 10,000

iterations will be performed. The solution is performed for signal-to-noise ratios

from -40. dB to 20. dB in increments of 5. dB. The output consists of the mean time

to lock for initial phase offsets from -1r to Tr where the value of the divide-by L

counter is initially zero.
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FILE: PHST3EN FORTRAN A	 uHIO UNIVLAS1TY AVIUVILS &i6INE-L-RI'+v CENTER

La«##«#«##a#«#«#a##a*#a««a«##«#r•##«a#aaa«#a*****#a«a«#«#aaa#aa«aaaaaauap?NS00010
L. PUS0002J
C CALt.ULATIUN OF	 STATE	 TRANSFER	 VECTCJkS	 FOR	 UPLL PBSUUU3U
C MARKOV	 CHAIN MUDkL.	 THIS	 PRUl;h14	 10	 ISE USED	 IN P3SOOU40

C LUNJUNCTIUN	 wLIH PtiOrP L1	 AivU	 PBOPLT.T. ?dSJ0050
C PBS00060
C LNPUf	 READ UN JEVICL•	5 PdS00070
C M=VALUE OF	 UIVIOL-uY M LuJNrER P6500080
C N=VALUE	 uF•	 DIV1UE-BY	 N	 L0JlvrlcF. ?3SJ0090
L L=VALUE uF UIVIUt-6Y L CUJNTER PdSUUIUO
C ?BS00110
C uJTPuT-SfEAOY	 STATE	 PHASE	 EKRUR	 ;)ArA	 (WAIIE	 U`!	 DEVICE	 u) PdS00120
L Mr	 No	 AND L AS DEFINED FOR	 INPUT P6500130
C PTR1=	 VECTU14	 CONfAININu	 THE	 STATE	 TJ	 STATE	 fRANjItIdNS ?dSOOL40
L POSSIBLE PBSUJ15U
C PTR2-	 VELTOR	 CUNTAI .41NG	 THE	 PRUBABLITIES	 FOR	 THE	 STATE :'BSUU160
C TO	 STATE	 TRANSITIONS. RdS00170
C P85JOL80
C OUTPUT-MFA'4	 TRANSIE-IT	 RESPuNSE	 DATA	 lwklTE ON	 JE 3 ICE	 9) PdSJJ190
f. Mr	 No	 ANU	 I,.	 P,	 Uk1• INLU	 I uA	 INPUT Ptls.lvlou
C T1=VECTUR	 CUNTAININC,	 THE	 STATE	 TO	 STATE	 rRANSITIUNS ?BSOJ20
C POSSIBLE PBSO0220
C 12=VECIOP.	 CUNIAININ6	 1HF	 PKOBAuLI]ILS	 FUR	 THE	 SIAIL PiiS00230
C TU	 STATE	 TRANSISTIONS. PdSO0240
L POSOJ25U
Cp #a ### a #4*#w#####4#+fp#4 a•a q#4 aSa pa#4P aa# 4# #ppp#a #pp a p4P###4##404{gyp##04Pd S002GJ

INTEGER	 PTP.1(/16d1,PTR2(/L(,8), ► N(7,5L1)rALT#ALT2 PdSOU270
McGhK	 TIIlioB)rr2(7Irt)) PBS00290

C PBSOU290
C SET UPLL	 PARAME-iti(S POSO0300
L PBSOU310

kEAJ(5v3)	 t(rNrL PBS00320
3 FURMAT(315) PdSO033J
WRITE(8t2)NrMyL PBS00340
WRITE(9r2)NrMrL PBSUO35C

2 FURMAT(1Xr'N = 'rL3r5Xr'F1 = 'r(3r5Xr'L = 'rLJI PBS0036C
ALT=2*L+1 PBS0037C
MN=M*N PBS003dC
DO	 Lu	 L=IPALT PBSUO39C
K=l PBSOU4J(
DO 20	 J=LrMN PBSUU4IL
1N(IvJ)=K PSSO042L

20 K=K+ALT PBS0043(
10 CUNTINUE P13SOU44(

L=L PBSO045(
RALT=(ALT+L.)/2. PBS0046(
AL12=ALT/2 PBS0047(
K=l Pt3SO04d(
DO 40 J=1.MN PBS0049(
OU	 30	 I = 1.ALT PBSU050t
R1=I PBSU0511
IF(RL-RALf)	 5Ur6Ur70 PBS00524

50 IF([.EQ.L)	 GO	 TO	 51 PHS00531
IK=1-L PL S00541

JK =J+ALT2+1 PBSU0551
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FILE: PUSIGLN	 FUnIkAN	 i+	 will  UNIVLRZpIIY AVIUNILS	 L• NGLNEERING CENTEk

IKI=I+I PBSU05oO
JKL = J+AL12-1-I PBS00570
GU	 1()	 8U PBS005dU

51 LK=( PBS00590
JK=J +ALT2+1 PBS006UU
IKL=1+L POS00610
JKL=J+ALT2-2 PBSOU620
GU	 T()	 80 PUS00630

60 IF(ALT.EU.L)	 i,U	 TO	 al PBSOU640
1K=I-L P6SO0650
JK=J+2 PRSUUb6U
1KL=1+L PBSUU670
JKL = J-2 PHSOU68U
Gu 10 60 PBS00690

of 1K=T PBS007UO
JK=J+I PBS00710
IK1 = 1 PBSU0720
JKL=J-1 PBSU0730
GO TO dU PBS00740

7U iFII.EG.ALT)	 GO	 TO	 71 PBSU0750
r1K=l-1 PBSU0160
JK=J-I#ALf2 ► 3 PBS00770
1KL=I+I PBSOU780
JKL=J-I+ALT2-1 PBSOO790
GO	 TO dU PBSU0800

71 IK=I-1 PBS00810
JK=J-ALT2 ► 2 PBSUUd2U
1K1=1 PdSU0830
JK1 = J-ALT2-1 PBS00840

80 IF(JK.GT.MN )	 JK=JK-MN PBS00850
IF(JKI.uT.MN)	 JKL=JKL-MN PBSOO860
IF(JK.LT.1)	 JK=Jn+MAI PBSOU870
IF(JK1.LT.1)	 JKL-JKl+MN PUSUD880
PTR1(K) = 1N(IK,JK) PBS00690
PIRLIK+I)=1N(IKI,JKl) PBS00900
K-K+2 PBSO0910

30 CONTINUE PBSU0920
IF(MUU(JrM1.CV.U)	 L-LiL PBSOJ930

40 GUNTINUe POS00940
NSF=K-1 PBS00950
K=1 PBS00960
LC= -1 PdSO0970
LC1=0 PBS00980

93 00	 90	 I=lrNST PBSOU990
IF(MGO(1r2).Nt.0)	 GO	 TO	 94 PBSU1000
IF(L'_ I.NE.1)	 l,U	 TO	 92 Pd5010LU

94 IF(P1R M ).NE.(K+11/2)	 GO	 Fu 92 PBSOL020
T1(K)=l( ► L)/2 PBS01030
PTR2(K)=(((TL(K)+M-L)/M)+ALT-1)/ALT PdSO1040
K=K+I PBSOI050
LC=LC ► I PBSU1060
LCI=L PBSO1070

92 IFILC.NE.II	 GO	 TO 90 PdSUl080
LC=-I PBSOI090
LCI=O PBS01100
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FILE: PBSTGEN i ,,	 1N A	 uHIU UNIVtWil IY AVIONICS cliGINELRING CENTER

GU TU 93 PBSU1110
90 CONTINUE POSO1120

IF(K.GT.NST1	 GC	 10	 96 PBS0113U
LC1=1 PBSOL140
GU	 TO 93 PBSOLL50

96 DO	 LUO	 1 = 20ST92 PBSOLL60
1J3 PTk2(I) =PTR2(L)+N PBSOL170

IF(ALI	 L•'Q.1)	 Uu	 10	 101 PUSOLL80
MM=2 k, ALT PBS01190
DO	 ILL)	 1=2,NST,M1.1 PBSUL200

LIU PTIQ(I) =PTR2(1)—N Pt1501210

MM1=MM-1 PBSUL220
DO	 LLU	 I=Mi4Ir-VSl,1 , 1;1 P13SO1230

L2U PTR2(1) = PTR2(1)+N PBS01240
101, DO	 95	 I = 1,NST P6SOI250

T2(I) = PTRL(I) P13SUIZ60
PIR1(l1=T111) PdSU1270

95 T1(!)=1"2111 PBSUL280
G PBS01290
C STEADY	 STATE	 DISiR11SUTLUiq	DATA PBSOL30U
L t j`AI=STAIE	 lU	 STATE	 Ti(ANSIFLUN	 VLt.IOR. POSU131U

C PrK2=PROBA131LITIES	 VECTOR	 FOR	 TO	 STATE	 TRANSITIjNS. PBSUL320
C PBS0133U

WRIIL111,1)(0TA1(11,I = 1r14Si) PBSU1340
WrtlTEit)rl)(Pif(2(I)rl = 1,l^^Tl PBS01350

L FURMAN IX,2015) PBSUL300
K=1 PBSU1370
DO	 L30	 I=L,NST,2 PBS01380
1"2(1)=K POS01390
T2(1+1)=K+,N PBS0140U
KK= MOU((i+L)/2,m*ALT) PBS01410
IF(KK.EU.0)	 K=K+L PBSU1420

130 CONTINUE PBS01430
C PBSUL440
c MEAN	 IRAINS1EN)	 kLSPuNSL UATA PBSU1450
G T1=STATE	 TO STALE	 TRANSITIUN VCCTGR PBS014b0

12= PI(UU,IIILIfY	 VL(.TUR	 F(nt	 SIAIc	 1.)	 !.1 All.	 IRAN.,IlIONS PUSUI4/U
G PBSU1480

:rRITE(9,I)(TIII)rl = 1,NST) POSUI490
WKIIE(9,LM2 (I1,1=L,NSI) PUSU1500
STOP PBS01510
END PBSU1520
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FILE:	 PSUPL2	 FUK1kAN	 A	 OMO UNIVEnS1TV	 AVIUNILS CNGINLE'RING CENIER

C4aa#aaav#a*«+4aa*4a#ssso4sossaso4a44+o4++a+ofsaaaa4a+«sv«toaa4# ♦ *aa*a**pBUUUUIO
C PODO0020
C	 UETEkMINAriON uF LOUP PHASE PDF AND SJEADY — STATE 6RKOk P8000030
G	 FKUA MAAKUV CHAIN .iUUIL. Pb000U4U
G PHD00050
L	 INPUT	 (REAU ON DEVICE	 8) Pt3UuUU60
C	 UAIA FJAMATS	 ARE SAME AS OUTPUT OF 	 Pf)SrUEN PH000070
C	 M=VALUE OF DIVIDE —BY M LOUNIER PUD00080
C	 N-VALUC OF UIVIJE—LiV N LIJUNTFR PdUUUU9U
C	 L=VALUE	 Of-	 UIVIUE — tiY	 L CUUVTER PdJ001J0
C	 POI NTL=VELIUR	 CONTAINI(vv	 POSSIULI-	 SPATE	 TO	 SrArE PBUUJ1l0
C	 I KAN3 I I I u•NS. PBUJU 120
C	 PUINT2=VELTOR	 CUNTAIN1Nu	 THE	 POINTEK	 FOR	 THE PBOOOL30
L	 PkUdAIfLI1IFS	 OF	 MI.	 ST41t_	 10	 SIATF POD00140
C	 IKAly	 IIIUNS. PBOOO150
C PtiOJU I x0
(;4 W+ ► #^ «44i++4+i+++^04P44444446i+404P+44+444#4V+40+<+4 P44««Pt•J044+44+4*F**44PBDl)UL /U

I,• 4PL/CIT	 kEAL *8(A-11	 G — lr PbUOJ1M0
liJrF(;LR	 PI.INII(716d)rPOlN12(71htl),ALf Plioaul9U
01MFNS1UN	 PULU(3584)rPN4kd(3584),AU(tJ41rA1(b4),A(128),IHEIA(t,4) PbO00200

.D1MENS1ON	 PHASE(64),PrEl1Pt35d ,#) P6000210
L PBUUU220
C	 Stl	 11PLL	 PARAMEIEKS PH000230
C Pfll)UJ24U

kL-AU(8r70)	 N,M,L PBDUU25U
7	 FUitMAT(3X,i3v7XpI3r9XvI3) PB000260

At I'IfUUU2/u
SNK=-40. PROJJ280
MN=M*N PH000290
1S) = ALr O M*N PBDOU300
NST=201ST P8000310
uU	 20	 1=1,IST P000032U

20	 PULU(1) = 1./1Sr PB000330
C P8000340
L	 REAL)	 SIAIE	 IKANSFER	 VELIUKS PB000350
C PB000360

kEAD(8,i.J;PUINlI(I1rI—LpNST) PBOUO37U
kEAU(b,l)(PuINT2(I),1=1rNST) P13000380

I.	 FORMAT(LXr20151 P8000390
C P6000400
C	 CALCULATE	 STATE	 IKANSf-Ek	 PkUBAIJILITIES P60004 10
C P11000420

UU	 500 M.4 = 1,13 PHODU430
P I = 3. 1415')2x5 PBUJ0,94U
AC = uSUkr(2.D0) 4 1U.a 4 (S14R/2U.) P800045U
PSI=—PlfP1/N PHDOU460
DO	 10	 I = 1rN PB000470
kMEAN = AL*DSIN(PS1)/USQK T(2.UO) PoODU48U
A1(I)=0.5+0.5*UEKF(KMEAN) PBOU0490
A0(l)=L. —A1(I1 PbDU0530
THETA(1)=PSI P80005LO

10	 PSI=PSIt2.*P(/N PODO0520
DO	 12	 1=1,N PdU00530
Ali) = AOII) PUD00540
A(l+N)=AL(IJ PBDO0550
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FILL: PUUPL2	 FUkIl(AN	 A	 UH40 UNIVERS11V AVIONILS LNGINEERING CENfEK

12 LUNTINUE P0000560
JJ-L PBU00570

L PUUO0580
c CALCULAIE	 SICAUY-SIAfE LOuP	 M AIL PRUOAIJIL111L5 P0000590
C by	 IIERAIIJN. PBDUU600
C P6000610

3U DIFF=U.J PHo00620
JJ=JJ#1 PbU00630
K-1 P8000640
J-1 PHDOU650
UU	 vU	 1 = 11111 P0000660
PNEA111 = AIPOIN121J)) t PULD(P(J INTI(J)) +A(l'U1N72(J+11) 0 P6000670
IPULU(PUl7J1L(J0II) 1'11DUU600
IFIPVLh(II	 LT.1.J-2J)	 PNLn( I)-U.JJu P1100061tJ

41 J=J a e 11I)1)JOIJU
4U LU1`1INUL PH00071U

SUM=U. PHDOU720
UU	 '.l)	 I=1rlSl PUOU073U

5U sum-suN+PNEhII) P800U740
00	 bU	 I = lrlSI PIIDOJISU

oO PNFH(1)=PNtNlll/SUM PJU00760
DO o 	 1=LIST POOU0770

61 PILMeI l l-PULD(1) PIS00078J
Du	 JJ	 1=1rlSl PB000790
CNG= UAdS (PNEA (1 1-PUI.J(I I) PHDUUfIU''
II (CN6.61 .ulF) )	 Jlrl =LN. PdUOU#l10

Ill PULOI 1 ) =PNtnfl 1 ) PIIU00820
1 F (JJ . t . j. t JJUU)	 l;J	 ) u	 dU 1'1100011 SO
IF(0111-	 uI.I.L-d)	 vU	 f 	 JU PBOOO840

dU SUM=O. POD00850
L PBOOO86O

LALCUI AIL	 SILAJY-STAJt	 LLJJP	 i'r1ASt	 PkJBAdILI llt5 P6000870
C ANJ	 ST.IVOARJ	 DLVIATI(Jhd	 &)F	 LUUP	 1 1 11AS('. PHD00880
L PUUU0090

S I 0=0. P 11000900
1111 _-I' 1 01 1 11N PIIQUU`JI U
K =L PB000920
UU	 90	 1-1rISI PHIM 9JO
SUM=1UNrPl1L0(II PUJUU440
it (AUDI I9M O ALI),NL.JJ	 UU	 JU	 9U P000095U
P11AS(' I K) = SUN PISUOO'i60
K=K0l P80UU97O
S l O= S 1 J PSU,`1 p PS I Mpg P8000980
SUM=U. 1111000990
PSI =VS I o 2.*PI/N PBUJLODU

9U CON TINUF PBUOLOLO
SfO-JSUr(I(SfD) PODU1020

L PBOO1030
G PkUGKAN LIUIPUI P BOO 1040

PBOOlU7U
91 MkIII-(t)r2) PBDOIUbO

2 f'OkMA)('L'r'OPLL	 PAAAMEILKS') PUDOIU70
hKIIF(6rd1	 SKR.N,M,ALl PBDOLUdU

8 Paw) 1090
ak1TE(t.rJ)	 SfUrJJrDIIF PdOul100
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I-ILE: PdUPL1	 FUR IRAN A	 UIIIU UNIVLRSIfY AVIUNILS LNGINELKING GENfEII

f^

3 FUKMAf ( 1Xr'SfU	 OF lff- I( = 'rlbr5nr ' JIFf 'rE1L . 4r/1P11U01110
RITt(brhllTHLrA ( I),PHASE ( llrl s lrNl	 PBDO1120

4 F0RMA1 ( 1Xr'P1lASE UIFf = ' rL• lY . 4r5X. ' PUI -'rClL . 41	 1)OI)0113U
500 SNR=SNRe5	 PBUOL14U
1JO SFUP	 PBUOIL50

CNU	 I,BUU116U
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FILE: PBUPL21 FORTnAN A 	 UHIU UNIVERSITY AVIUNILS ENvINEEk1NG CENTER

L********* O#P* OO O1+RPPtP#YPC***#***POPPOP#b#4PP*c**4.**OMO#4P*OOOi**4:00 *v**PUUUU010
C PBD00020
C UCTERMINATIUN (lF	 rMEAN	 TIME	 TU LULK	 FUR	 INITIAL	 PHASE	 UFI - SCI PBODUO3U
C FROM MARKOV CHAIN MUJEL. PBD00040

'	 C PdOU0050
C INPUT	 IREAJ ON OEVILE	 8) PBUUU06U
C DATA FORMAT	 SAME AS OUTPUT OF PBSTGEN PBD00070

'	 C .4=VALUE	 LF	 U1VIDE-bY	 1 .1 COUNTER PBD00080
C N=VALUE OF DIVIDE-BY N LUUNFER PBOU0090
C L=VALUE	 OF	 DIVI0E -13Y 	 L	 COUNTER PHUOOLUO
L 11•Ji.`JI1=VtL[Ur(	 LUNJAININu	 IRE	 PUSSIJLE	 STATE	 IJ PBDOJIIU
C STATE	 rRANSIlluNs. PODOUL20
C 0UINI2=VECTOR	 LONIIANIN(,	 THE	 PUINTFI,	 FUR	 111E	 SIAIF. PHDOU130
C TO	 SIAIE	 IRANSIIIUN	 PRUUABLIIIES. PBOOOL40
L P60OOL5U
LP# P*b*4*#O*RPP***bPO# 4**Pf*#s•**#Pi*P**P**4#•0******4*0**O**00.0 4PP**4# *4#Pl(1)UJ160

IMPLICIT REAL*S(A-HrO-Z) PHDO0170

INTt+,ER	 P'OINTII 71bJ1 rPUINII(/1dH) PALI PdOU018U
DIMENSIUN	 PULU(35d4)rPNEr(3564)rAU(64)rA1164)rA(128)rTHETA(64) PBOOO190
DIMtNSIUN PHASElo4)rPTEMP(35b4) PU000200

L PBODU2IU
C SEF	 OPLL PARAMETERS PHD00220
C PIluUU23U

kCAJ(do1)	 Nr f4rl 12bouU240
7 FOKMATIJXrI3rIAPIJr VA, 131 PBDUU250
ALT=2*L+I PBUUU2uu
SNR=-40. PJUUU270
MN=.M*N PBDUU280
IST-ALT*M*N PHU00290
NSl=2*IST P6000300
UU	 2U	 1 = 1rLST PR000310

20 PULL)(I)=L. PB000320
JL=1ST/2-(ALT/2) PBDOU330
JL1=JL-(,'1-1)*ALT POD00340
JLU = JLL 1 - 1(2 *M)-L) *AL T PB000350

C PBD0036U
L READ STATE	 TRANSFER	 VELIUk:P VlWoU3/U
L P80OU380

HEAD18rI)IPU1NI1111r1 =IrNSI P8000390
REAU(8r11(PUIN12(Il.l-LrNST) PUUOU4JU

1 FORMAT(1Xr2015) PBOU04L0
C PBUOU42U
C LALCULATE STATE TRANSFER PkUUABILITIES PODOU430

C I'HDOU440
DO	 5OU f4M=1 .13 PBUUU45U
P1 = 3.14L59265 P8000460
AC= USVRT(2.UU)*1U. # *ISNk/2U. ► P600047U

. PSI=-PI +PI/N PIl000480
UU	 LO	 1=LrN PHUOU490
RMEAN = AL*0SIN(PSI)/USjArI2.U0) PBDUO5U0
Al(1) = 0.5+U.5*0ERF(Rf4EAN) PIIOU051U
AU(1)=1.-AL(l) PH000520
THETA(I)=PSI PBOU053U

10 PSI = PSI .2.*PI/N PB000540
DO	 L2	 1 = 1rN PB000550
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t•ILE: PBUPL21	 FJkTRAN	 A	 U111L) UNIVLKSIIY	 AVIIINICS	 ENGINEERING CENTEk

A(I)=AU11) PBUUU56U
All+NI = AL(T) PUDOU57U

12 CONTINUE P13000580
JJ=L PB0005-40

L PB000600
C CALCULATE MEAN	 TIME	

TO 
LUCK PIIODU610

L PBU00620
3U DIFF = U.0 PHDUO63U

JJ = JJ+1 PIID0064U
K-L PBDUU65U
J n 1 PH0U0660
DO	 4U	 1 = Lrl`l PUUUU67U
PNbW(I) = Ali' UIN12(J)) k, PULD(PU(irFL(J))+A(PUINT2lJ+111 • PBDOU68U
LPULU(POINF1(J+llltl. PtIUUJ690
IF(PNEW(1).LT.L.0-2u) 	 PNca4(1) = U.000 Pot) J0IU0

41 J=J+2 PBUOU7lU
40 LUNTINUC PIIUUU120

DO	 11	 JJI = JLLrJLUrALT P6000730
7L PNEW(JJL)=J. PHDOU740

UU	 70	 l = LrlSl POD UU750
LNG= JAbS(PNLW(I) — PULUIII) P800U760
11-(LNU.GT.UL1-FI	 U1FF=LNu P0000770

70 PULU(11 = PNEW(II PdD0078U
IF(JJ.EJ.LODUUI	 GO	 IU	 8U PROOU790
1F(UiFF.GT.L.k-5)	 GU	 1. O	 J0 P8U008J0

b0 SUM= U. P8000810
KL=ALT/LtL PIIUUUJ20
K2=MGALI PUUUU830
J=1 P BI)U084U
uU	 LIU	 1 = KlrlSirK2 PBUOU850
PULD(J) = 1'NEW(1) PUDO0860

LIU J=J+1 PUDUO870
C PRDOU88U
L PRUGRAM OUTPUT PBOU0890
L PHUOU900

91 WRITLlbr2) PBDOU910
2 FURMAT('1'r°UPLL PAAAAETEAS') PBODU920

NkI11:(0,81	 SNRrN.M,At T 110D00940
8 Pt300094U

WRIIE(6r3)	 JJt0IFF PB00095U
3 FURMAT(LX 9 'NO.	 IN-	 ITLk= °r 16r5Xr'011-1- kI.2.4r/1 P13DU0960

WkIFE(6r411 THE FAIIIrPOLU(IIrI=IrNJ P13000970
4 FORMAT 11Xr'Pt1ASL	 011F='rF12.4r5X, I MEAN	 NO.	 SAMP. = 'rE12.4/ PBODU`080

50U SNR =SNR+S PBDO0990
LUO SIUP PRD01000

LNU PBOJLULU
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C. Binary Phase-Locked Loop Design. The following sections discuss in

detail the design of the hardware DPLL used to validate the Markov chain model.

The block diagram for the DPLL may be found in Figure 6-1.

a. Binary Phase Detector. Referring to the schematic of Figure C-1, the

binary phase detector operates by sampling the binary input signal f  and producing

a complemented pulse output on either the count-up or count-down line. This func-

tion is produced by three D-type flip-flops as follows. The OPEN SW signal is

applied to the clock input of ff B3 while the binary signal f
c 

is applied to the data

input of the same ff. Thus on a positive transition of OPEN SW the value off
c 

is

latched, giving the sampled value IN at 133's Q output. The two ff's of A6 are

initially set to the ONE state so that when SET LAT latches the input values to

the ff's (IN and IN), one ff goes to the ZERO state while the other remains in the

ONE state. The SET LAT signal is followed by the CLR LAT signal which sets both

ff's to the ONE state. Thus the count-up or count-down are produced in a mutually

exclusive manner when one of the ff's of A6 toggles HIGH LOW HIGH while the

I I	 other remains HIGH.

b. DIVIDE-by L Saturating Counter. The saturating up-down divide-by

L counter is shown in Figure C-2. The counting function is performed by two ser;,,fly

connected 74193 4-bit synchronous up-down counters. The output states of the

counter is detected by a logic network to produce the INHIB UP and INH^ IB DN

signals that will inhibit the UP and DN clock signals respectively. For example,

if switches SW1 through SW6 are closed, then for a counter state of 0000 0001 the

II`1HIB UP signal will be TRUE, thus inhibiting the UP clock signal and saturating

the counter at that value. Note, a DN clock signal will still count the counter

,y
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to the 0000 0000 state. Similarly, for all switches closed and the counter in state

1111 1111 the INHIB DN signal will be TRUE and the counter is saturated at that

state. If switch SWl is opened while all other switches remain closed, then the

counter saturation states will be 0000 0011 and 1111 1101 (f3). Continuing in this

manner, the counter saturation states may be selected to be f 2 i - 1, i= 1,  2, ... 7

by opening switches SW1 through SW (i-1) while all other switches remain closed.

c. Divide-by (M x N) Counter. The schematic for the divide by

(M x N) counter along with the buffer register and adder are shown in Figure C-3.

The counter consists of three serially connected 74193 4-bit up-down counters.

Following an UP or DN clock signal the value of the divide-by (M x N) counter is

loaded into the 12-bit buffer register composed of two 74174 hex D-type flip-flops

by the LOAD2 signal . The values of the 12-bit buffer and the divide-by L satura-

ting counter compose the inputs to the adder circuit consisting of three 7483 4-bit

binary adders. The output of the 12-bit adder is applied to the preset terminals of

the divide-by (M x N) counter. If the type select switch is set for first-order opera-

tion, the adder output will not be loaded into the divide-by (M x N) counter. If

a second-order loop is selected, the LOAD] signal will be applied to the load in-

puts of the 74193s thus presetting the divide-by (M x N) counter to the value of

the 12-bit adder output.

d. Variable Phase Reference Clock. Referring to Figure C-4, six

selectable contiguous bits from the divide-by (M x N) counter are applied to one

input side of a binary magnitude comparator formed by two 7485 4-bit magnitude

comparators. The other input to the comparator is obtained from the lower N bits

of the two series-connected 74193 counters that are being clocked at a rate of 2N

-110-
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time the input frequency. Thus the EQUALS output pin 6 of A31, of the magnitude

comparator will be a ONE when the two inputs are equal and this will occur at a

rate equal the input frequency fc . The circuit formed by A33 and A34 prevents the

sample output from occurring at a rate greater than f c . For example, if pin 8 of A34

is HIGH then when the magnitude comparator detects the equal condition, pin 5 of

A34 is set HIGH causing the phase detector to sample the input signal. The SAMPLE

signal is reset LOW by the LOAD] signal at the end of the loop phase update. How-

ever, since the (M + N) -bit counter may have counted up during the last phase up-

date and the counters of the reference clock have also counted up, it is possible for

the magnitude comparator to detect equal states occurring at a rate of 2N *f C.

Thus it is necessary for the LOAD1 signal to reset pin 8 of A33 to a ZERO so that

another sample cannot occur until the reference clock counter loads a ZERO into

that flip-flop.

e. Control Logic. A timing diagram for the necessary control wave-

forms and the logic schematic used in their generation are given in Figures C-5 and

C-6, respectively. Use of the control waveforms have been described in the pre-

vious sections.
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D. Digital Low-Pass Filter. Consider a divide-by M binary up/down counter

whose input x(t) = t 1 is clocked at a rate f  = 1/T. The contents of the counter

will be the sum of the previous M-1 inputs plus the present input, so that the value

of the counter y(t) may be expressed by the discrete equation
M-1

y(kT) = M F	 x [(k - i) T]	 (D-1)
i = o

up to the point of counter overflow or underflow. Taking the Fourier transform of

(D-1 ) gives
M- 1

Y ('(J) - M	 X (j(j) e j uT	 (D-2)
I = o

which gives the transfer function for the counter as,

M-1

H(jw) - M F	
e -j iwT	

(D-3a )
r = o

1 1 - e -jwTM
= M 1 - e 

-jwT	
(D^36)

sin OM
1	 2	 -jwT (M-1)
M	 wT	 e 2	 (D-3c )

sin ( 2 )

Substituting for T = 2 ,rr/w in (D-3c) gives The mn,gnitude-squared function for the
c

counter as,

H	 2 _	 1 sin (,rM w w	
2

c)	 ( 4)
0 W)	 M sin (n w we)

D-

which has been plotted in Figure D-1 for M = 2, 4, and 8. As can be seen from

Figure D-1, the binary up/down counter acts as a digital low-pass filter whose band-

width decreases as M increases.
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