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SYMBOLS

2b width of the test piece

2c extensometer measurement base

2d length of the transverse gauge (see Figure 5)

e thickness of the test piece

E modulus of elasticity

G modulus of slippage

A length of the test piece

m surface glass content

P load applied to the test piece

Sij
. matrix of flexibility

T glass content by weight
Ti coefficient defined in Section 4.1

U, v displacement along the x and y axes

x, y axial orientation of the test piece

1,	 2 orientation of the principal axes of the test piece

a term defined in equation (30)

S term defined in equation (30)

y angular deformation

C normal deformation

(1 correction coefficient for the Poisson coefficient
(compare equations	 (37)	 and	 (38))

n xy , n yx coupling coefficients

(l - n I ) correction coefficients for the modulus of elasticity

(1 - nII)

6

	

	 angle formed by the fibers and the x-axis of the test
pieces

Poisson coefficient

term defined in equation (30)

s	 normal strain

T	 tangential strain

glass content by volume

(1 -)	 correction coefficient for the Poisson coefficient
(compare equations (37) and (38))

0	 section of the test piece
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INDICES

m	 matrix

f	 fibers

*	 indicates an apparent magnitude yielded by the measure-
ments

v
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DETERMINATION OF THE TECHNICAL CONSTANTS OF LAMINATES
IN OBLIQUE DIRECTIONS

P. Vidouse
Metallic Manufacturing Industry Scientific and

Technical Research Center

Summary

An off-axis tensile test theory is explained and coefficients are

given to correct experimental results obtained working on usual test-

ing machines. Theoretical results are compared with those obtained by

R.X', Courtade with a finite element method and with experimental re-

sults obtained on laminates reinforced with glass in various ways.

Introduction	 /1*

This work constitutes the fourth part of the research undertaken

by the Centre de Recherches Scientifiques et Techniques de 11Industrie

des Fabrications Metalliques [Metallic Manufacturing Industry Scientif-

ic and Technical Research Center] (CRIF) on dimensioning of reinforced

plastics, at the request of the industrial members of the Fabriplast

Group of Fabrimetal.

Previously published papers concerning this research are the fol-
lowing:

-- "Relation entre 1'etat de polymerisation, la fatigue et le
fluage dune resine epoxy renforcee au verre textile" [Rela-
tion between the State of Polymerization, Fatigue and Flow
of a Fiberglass-Reinforced Epoxy Resin](CRIF Publication PL 1)

— "Study for polymerization and curing of polyester and epoxy
resins by the dilatometric and resistivimetric methods" (CRIF
Publication PL 2)

-- "Theoretical and experimental study of the technical constants
of laminates" (CRIF Publication PL 3)

*Numbers in the margin indicate pagination in the foreign text.

1	 1I
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This study, like the preceding ones, is the result of collabora-

tion between various research organizations;
-- the Centre Europeen de Recherches et Essais [European Research

and Testing Center] (CERE) of the Fiberglass Division of Saint-

Gobain Industries at Chambery manufactured the rest materials

and participated in interpretation of the results;

-- the Institut National des Sciences Appliquees [National Applied

Sciences Institute] (INSA) of Lyon performed the calculations

according to the finite element theory;

-- the Laboratoire de Resistance des Materiaux [Materials Resist-

ance Laboratory] of the University of Liege performed the tests

and contributed to analysis of the results; and lastly,

-- the CRIF, acting as scientific coordinator, exploited the re-

sults and assumed scientific and technical resplosibility for

the work.

The CRIF is very grateful to these various organizations, without

whose assistance the research could not have been successfully conclud-
ed.

1. Pur2ose of `rests
	

12

At the time when work was being done as reported in the paper en-

titled "Theoretical and experimental study of the technical constants

of laminates" [1), traction tests in directions other than principal

directions were carried out on the same laminates. Since these tests

were carried out in a conventional manner, the results cannot be dir-

ectly exploited but must be corrected in order to take into account the

coupling phenomenon between traction and shear.

The purpose of this work is to analyze technical constants in ob-

lique directions and Co demonstrate that it is possible to predetermine

them theoretically with adequate precision.

Correction coefficients have been determined, based on an approx-

imate elastic theory, and verified for one type of laminate with an ex-

2
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act theory utilizing finite elements. (It will be recalled that this

method consists of cutting the structure under study into a finite num-

ber of areas with simple geometric shapes termed "finite elements" (in

this case, rectangles) and subsequently rejoining these areas with the

aid of a computer.) These coefficients take into account particularly

the type of extensometer utilized and the geometric parameters of the

test.

2. approximate Theory of Traction Tests in Oblique Directions	 /3

2.1 General

As demonstrated by the generalization of Hooke's Law [11, a sim-
ple traction test on an anisotropic material induces not only normal

deformation e, but also tangential deformations y.

Reportedly there is coupling of traction and shear effects.

e x	 S 1 	 S 12	 S1 6 	 vX

Cy	 Sly	 S22	 S te	 0	 (^)

lrxy	 Sae	 Sze	 See	 0

This equation demonstrates that e  and yxy are not non-existent

when S 16 and S 26 are not zero.

Experience also demonstrates clearly that warping occurs during

a traction test to the extent allowed by the anchorage of the ends of

the test piece (Figure 1) .

Figure 1 illustrates the deformation of a test piece made of a

material which is not symmetric with respect to thickness. If the ma-

terial is symmetric, warping occurs only on the plane surface of the

test piece (Figure 4) .

^f
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Conventional test equipment, designed for isotropic materials,

does not allow the ends of the test pieces to be rotated. When trac-

tion tests of anisotropic materials are carried out using this equip-

ment, parasitic moments are introduced which could invalidate the re-

sults. The following theory is intended to calculate the error intro-

duced by this procedure, and to correct the values obtained,by means

of a coefficient which, as will be shown, depends particularly on the

type of extensometer utilized.

Various types of extensometers exist, differing particularly with

respect to the test piece attachment means. As shown in Figure 2 1 the

relative position of the feelers can vary; the Type I extensometer

has feelers placed on both sides of the test piece while the Type II

extensometer has feelers only on one side. The Type I and Type II ex-

tensometers are located at the edge of the test piece. The Type III

extensometer is similar to the Type II extensometer, but its feelers

rest on one of the surfaces of the test piece. Lastly, the Type IV ex-

tensometer is an axially oriented strain gauge.

2.2 Traction Test Theory

2.2.1 Compatibility Equation

The analytic solution of the problem is obtained by applying the

theory of elasticity [2].

The reference axis orientation is illustrated in Figure 3.

The following relations must be satisfied [4];

-- equilibrium equations:

aQa T

aX + axy = 0

(2)

Lx + aTxy = 0
ay	 ax

4
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-- deformation/displacement relations;

 uxix

aY • ay
	

(3)

au + aV
YXy 77uX

the generalization of Hooke's Law:

e 	 S11	 S12	 SIG'	 a 

C 	 Ste	 S22	 S26	 a 
	 (4)

Y XY	 Sib	 S26	 S66	 TXY

When the displacement terms in equations (3) are removed, defor-

mations as a function of strain with relations (4) are subsequently

expressed, and equations (2) are utilized to find the compatibility

equation:

2	 2	 2
a s a s	 a s

(2S i2 + S 66 ) ` x +
 

S I I	 » 2 5 16	 x
2	 0X2 2	 ay2	 axay	 (5)saa•

	

- 2S26 y	
a

+ S22	 Y - p

	axay	 aX2

The Sa j matrix is termed the matrix of flexibility.

Utilizing the notation selected by Ashton and Whitney [4], flexi-

bilities are expressed as functions of technical constants according

to the following relations:

5	 x

F



1
S11	 E1	 S22 - - 1	 Soo •

	

Xx	 YY	 GXY

S12 a+* xX e- Yi

	

xX	 YY

S, 6 K , 2-X X 	 (6)

EXX

nx

EYY

2.2.2 Limit Conditions

If one end of the test piece (x - 0) is held by rigid clamps, the

limit conditions can be written in the following way:

	

V (0 ,Y ) R 0	 3u 0.1) . 0	 (7)
aY

Since the edges cf the test piece are free, it follow.-:

0  (x, ;b) r 
rXY 

(X,±b) a 0	
(a)

The analytic solution satisfying these conditions is extremely

(:omplex, or even impossible.

Equations (7) can be replaced by the following limit conditions

which are partially justified by experience:

V (0,0)	 0	 8u 0,0 
K 0	 u (0,0) - 0

aY	
(9)

V 
(R ► 0)	

0	 au	 0	 u (tiro) = Cot
ay

where e 0 is a deformation proportional to the magnitude of the applied

force P.

6



2.2,3 strain and Dis lacemcnt Expressions

Since shear is indopendont of x, it can be posited;

TXY R f (Y)
	

(10)

By integration in (2), it follows

41 X --xf' (Y) + 0 (Y)

(11)
0Y • h (x)

Taking into account the condition for compatibility (5) and pre-

ceding relations, we obtain;

f (Y) " C o (Y2 . b2

S16
9 (Y)	 - 2 ----- C OY 2 + C 1 y + C2	 (12)

S11

h (x)	 0

where C O , C 1 and C 2 are integration constants.

From (4), (11) and (12), the strain and deformation expressions

can be obtained quite easily;

^16
a x	 - 2C O xY - 2 .°P- C O Y 2 + C 1 Y + C2

S I1

Cy	 0

22

TxY` C
O (Y - b )

ex s 5 11 (-2Coxy + C1Y + C2) - S 16 C o (Y2 + b2)

C  = S12 (-2C O xY - 2 
536

C O Y 2 + C 1 Y + C 2 ) + S 26CO (y 2 - b2)
51.1

Y xY = Sts (-2Coxy - 2 S16 COY 2 + C1Y + C 2 ) + S6 6 C O (y 2 - b2)

S11

(13)

(14)

i-^

ZL

7
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By integration, the following displacement expressions are found:

U	 » S16Cox (Y 2 + b2) + Sl1x (C2 + ClY	 C o xY) + Cs
Sl6C1y2

+ (Sl602 - SooCW - Ca)Y +

C OY°	 W6

(l5)
2 Sl6	 2	 ClYY # S12Y (» T ^1t COY + 	 + C 2 - CoxY)

6 26COY	 SlICIX2	 Silcox,
+	 ( Y 2» 3 b 2 )+ C 4 +  C s x —s= + ^.

The integration constants are obtained by expressing the limit 	 L_.^.,

conditions:

6 S 16 co	 Cos lIt,

0	

6b 2 (S11566	 Sl6) + 
s 11t2	 y	

6	 ( 1 6)

C I » Cot	 C4	 0

Co
C 2 s	 (6 5661) 2 + Sl It`)	 CS	 0

2.2.4 Magnitudes Yielded by the Test

The traction test allows determination of two technical constants:

the modulus of elasticity and the Poisson coefficient of the material,

while simultaneously recording the (C x , P) and (C y , C x ) or (C y r P) graphs.

These measurements can be made without any particular difficulty

for isotropic materials, regardless of the type of extensometer utili-

zed.

in the case of anisotropic materials, the field of deformation is

not uniform, as shown in Figure 4, as charted for a flexible material

utilizing equations (15) (E ll = 8 kg/mm2 , E 22 = 0.5 kg/mm2 , v 12 = 0.5,

V21 = 0.03125, G12 = 0.2 kg/mm2 ) for elongation of co = 20 percent.

8



Therefore, for these materials, it is necessary to examine more

closely the magnitudes actually yielded by tile, measurement equipment.

In the case of Figure 5, the test piece is fitted with a Type z extens-

ometer (see Figure 2a) whose feelers are located at points A and B and

with a transverse strain gauge whose ends are located at points C and D.

Proceeding in the same manner as for isotropic materials, the mag-

nitudes measured are the following;

*

	

* A aX	 v*	 ev

EXX	 e * 	 xy ° eK	 (17)
X

with* P	 P
^X 

r 
S2

in fact, the values obtained (denoted by asterisks) aru^ not exact.

The extensometer does not yield ex but (see Figure 5) does yield:	 /8

	

*	 u Q - uA
e
x `

_2c _	 (18)

Likewise, the transverse strain gauge yields:

V
D
 - v

ey = ^	 (19)

The expression of or* is written:

b

^x = 'fie - n	
- bOx dy	

(20)

Therefore, the measured constants E* and vXy must be modified by

correction coefficients, to be determined, such as;

1*	 i
EXX 

=	 i- = E XX (	 - n )

v Xy =- E XX Saz =vX y P - ^)

7

(21)

(22)

9
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2.2.5 Correction Coefficients for the Modulus of Elasticity

Let us consider the Type Z extensometer as shown in Figure 5. When

ax is replaced in equation (20) by its expression (131, and relations

(16) are taken into account, the expression of a* is written:

*

	

CO	 b	 ` 
S 06	 S1G	 2 S11

2( .-_.- _ 2	 1	 R	
(23)

QX	 S16	 "T
S11 / + ^ S16

The .00rdinates of extensometer feeler application points A and a

are, ;:•espectively :

	

A (	 - c ; b)	 et	 B ( + c	 - b)
	

[23a)

When uA and uB are calculated by means of relation (15) and are

replaced in equation (18), we obtain:

I	
b3	 S12 S 66 - 2S1 6 	-	 b (^2

	 2)

	

)C  = Co
r
	Is	

S

^11	 -	 c	
S11	 S1 	 i	

C
I

c ^

S IG	 S 66	 2	 S16	 R2	 S 11	 (24)

S 11	 S16	 S11	 S16

yielding:
	

/9

I	 ^X
* * - S 11 (1 - nI)
E XX	 o X	 (25)

with the subscript "z" referring to a Type Z extensometer.

Whence, when c* and a** are replaced by the above expressions:

n	 - 8Sia + S 16	 ( 
' ' e2) S11 + 2	 (S12+scc-2Ŝ-1 )l	 (26)

I -

(	
2

	

S11	 6S cc + ^ S 11) - 4 Sic

'E.

10
e
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If the extensometer is turned so that the feelers are at points

,A' and II', it then follows, in the same manner:

x	 Sib)

	

f3S1 6 - S16(-^-	 C2) S11 + 2	 ( S 12+ S66
-2

(27)
I	 S11 (6SG6 + YrS11) - 4 Sib

Likewise, for a Type II extensometer:

8 Sib
n Ii =

2

	

S I1(6566 + E'r 	 S I1) - 4 Sf6	 (28)

The expression does not change if the extensometer is turned.

For the strain gauge:

2 SIG
n	 =

2
I	 S11(6S66 + 

	 S11) - 4 S16
	

( 2 9)

The Type TIT extensometer whose edges rest on the surface of the

test piece should not be utilized for tests in oblique directions,

since the edges thus rest along a line which will be warped, and the

contact point of the feeler cannot be determined.

Therefore, for this type of test, the extensometer should be lo-

cated along the edge of the test piece.

in summary, positing:

a = 2 Si6

X2	 (30)
Q = S IG	 (^	 - (:2) S 11 1'	 j ( S 1?. + S66

11

= S 11 (6 S 66 +;- S 11) - 2 a

/10
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(31)

4a + Q

nI	 F

4a
n II s ^;

4a - Q

n I 	 F

n IV =

the correction coefficient expressions become:

2.2.6 Correction Coefficient for the Poisson Coefficient

If the test piece is fitted qith a transverse gauge as shown in

Figure 6, the expression of ey is given by relation (19) in which the

v are replaced by their expression (15):

	

S11	 Sib
Cy =- v xy Co = I 6S G6 b 2 + S 11 k' - 4 - d21

With equation (23), C 0 can be expressed as a function of a*:

*	 b S16
Co = ax

( 65 66 b 2 + S 11 V - 4 5 11 6 b2,

whence:
S16

*	 *	 6S66 b2 + S 11 9 2 - 4 ^16 d2

	

e  = - vXy a  S11	
—	

Si6
6S 66 b 2 + S11 R 2 - 4 ^ 1 - b2

Positing:	 _	 4 S1 6 (7r	 1)

S 11 ( 6 S 66 + S11b2)- 4 S216

(35)

(32)

(33)

(34)

e	 1

12	 1
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and utilizing relation (25), the expression of e** becomes:

C  = - 
v XY a  

S 11 t 1 0

e*

xy	 e	 xy (1	 n)X

vXY	
vXy ( 1 - ^)	

(37)

with

1 - _ T T
(38)

The n to be taken into consideration is clearly that one corre-

sponding to the type of extensometer utilized to measure e*.

3. Comparison of the Approximate Theory and the Finite Element Theory

3.1 General

In their publication "Deplacements, deformations et contraintes

dans les materiaux elastiques anisotropes" [Displacements, Deforv-1tions

and Strains in Anisotropic Elastic Materials] [3], R.M. Courtade et al.

deal with the elaboration of the strain/deformation relation for an an-

isotropic elastic material, based on a procedure of calculations util-

izing finite elements.

As illustrated in Figure 6, this method allows limit conditions

which are slightly different from those set forth in Section 2.2.2.

Since this system is not symmetric with respect to the y-axis = 2,

in the case of the Type II extensometer, the results differ depending

on whether the extensometer is placed to the left (at AB) or to the

right (at A'B') of the test piece (Figure 6).

11
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3.2 Compari^don of Correction Coefficients Found by the Two

Theories

These coefficients were calculated for a plate (1B in Table 11)

with the following characteristics:

Resin: rigid polyester

Reinforcement: unidireotional (23% glass by volume)

R = 100 mm

b =	 10 mm

C =	 25 mm

d =	 5 mm

Ell 1914 kg/mm2

E 22 = 639 kg/mm2

v12 =
	 0.327

G12 = 257 kg/mm2

As shown in Table 1, the two theories yield correction coeffici- /13

ents which are relatively close, except in the case of the Type 11 ex-

tensometer.

These deviations principally result from limit conditions which

are not the same in the two cases. The deviations for the (1 	 co-

efficients are somewhat more significant.

This comparison allows us to conclude that the approximate theory

is sufficiently correct to be utilized in a study of the influence of

geometric parameters on test conditions.

4. Influence of Geometric Test Parameters on the Correction Coeffi-
	

14

cients

4.1 General

The influence of geometric parameters on the values of correction

coefficients was studied for a material with the following characteris-

tics: E f = 7000 kg/mm 2 ; v f = 0.25; Em = 395 kg/mm 2 ; vm = 0.35; p =0.23.

These characteristics are those of Plate 1B in Table 11.

14
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Moreover, the T1 parameter will vary, being proportional to the

quantity of fibers lying in direction 1. Thus, if T 1 = 1, the lamin-

ate is unidirectional; if T 1 = 0.5 1 the laminate is balanced and bi-

directional.; and, if T i = 0 1 the fibers all lie in direction 2. The

symbols utilized for dimensions are defined in Figure 4 and Figure S.

4.2 Influence of the Type of Extensometer and of Tj

Figure 7 illustrates for different values of T 1 the variation of

different correction coefficients as functions of the angle a formed
by the principal direction 1 of the material with the x-axis of the

test piece (Figure 3).

The geometric parameters selected for these calculations are those

utilized for the tests, i.e.: R = 100 mm; b = 10 mm, with c = 25 mm

for the Type I and Type II extensometers and c = 5 mm for the axial

strain gauge.

It can be seen that the coefficients with respect to the Type I

extensometer are the most significant. Then follow (1 - n II) and 	 LL5

(1 - nIV). With respect to the strain gauge, the latter is relatively

weak. The correction factor (1 - f) for the Poisson coefficient is
also small. It can also be seen that when T 1 = 1, the greatest abso-

lute value of these coefficients is obtained when angle 8 = 250.

4.3 Influence of the Length of the Test Piece

The curves shown in Figure 8 were calculated for T 1 = Ire = 22.50

and b = 10 for different values of c, with k being variable.

It should be noted that with respect to Type I extensometers, the

(1- n I ) coefficients do not converge towards 1, contrary to supposition.

This indicates that even if the test piece is quite long, a correction

factor should be utilized with this type of extensometer.

The other factors converge rapidly towards 1.

15
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4.4 Influence of the Length of the Extensometer Measurement Base

Figure 9 illustrates the influence of the relation cA on the val-
ue of the (1 - n i ) and (1 -- n i ) coefficients. The other coefficients
are not affected. The curves shown in Figure 9 were obtained for
Z = 100 mm, b = 10 mm, T i = 1 and 0 = 22.5 0 . In addition, Figure 9

shows the homologous curved obtained utilizing the finite element meth-
od.

4.5 Influence of the Lengthh of the Strain Gauge Measuring ey

Figure 10 illustrates the influence of the relation d/b on the

(1 - *) factor with respect to the Poisson coefficient. This curve was

also obtained for Tl = 1, 8 = 22.5°, b = 10 mm and R = 100 mm, with d

being variable.

5. Choice of a Type of Extensometer
	

16

Study of the influence of geometric parameters allowp conclusions

to be drawn concerning the type of extensometer and the dimensions of

test pieces to be utilized in traction tests in oblique directions.

Working conditions must be those under which the correction coef-

ficients are the smallest.

As noted above (Section 2.2.5), in order to measure e x , the Type II

extensometer located on the surface of the test piece should not be util-

ized. The Type I extensometer utilized for tests should also be eschew-

ed, since the corresponding correction coefficients do not converge to-

wards 1 (see Figure 8). For measurement of e x , the two best types of

extensometer are Type II and Type IV. Strain gauges are the most suit-

able to the extent that the operator is in complete control of their

method of utilization on plastic materials.

To measure e y , it is preferable to utilize a strain gauge whose

length is as nearly as possible equal to the width of the test piece.

In any case, the value of the (1	 coefficient is always very close

i
	 to 1.

I'
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A transverse extensometer may also be utilizers. in such tests,

the Q/b ratio should be at least 20 in order to yield virtually neg-

ligible correction coefficients.

6. Test Results Compared to the Puck Theory 	 17

6.1 Test Method

The tests were carried out under the following conditions and

with the equipment listed:

-- test piece dimensions: see Figure 11

-- test equipment: Tinius Olsen UEH Dynamic

-- feeler displacement speed: 1.25 mm/minute

-- extensometer: Tinius Olsen with 50 mm measurement base

-- strain gauge: TML Type Pl 10; 10 mm

load cell: Tinius Olsen 3 t.

6.2 Materials Tested

The materials tested were the same as those utilized in report [1].

The composition of these materials is given in Table II and their glass

content is given in Table III.

6.3 Test Results

Test results are summarized in Table IV, where they are compared

with the values obtained utilizing the Puck theory [1]. Table IV il-

lustrates, respectively:

-- the type of reinforcement:

U unidirectional

U + M unidirectional + mat

BE balanced bidirectional

BE + M balanced bidirectional + mat

B bidirectional

B + M bidirectional + mat

,I17



--- the angle 0 defined in Figure 3

---- the theoretical values of EPuck and vPuck

--- the experimental values E* and v* with the deviation in percent

from theoretical values

--• the corrected experimental values E eXp and vexp with the devia-

tion in percont from the Puck theory

7. Conclusions
	

/,^5

As shown in Table IV, the deviations obtained between the Puck

theory and the experiments are satisfactory (less than 15%) in a major-

ity of cases for measurement of the modulus of elasticity. Moreover,

utilization of correction coefficients more often than not brought the

measured value close to the theoretical value.

The deviations observed are slightly more important than they are

for the principal directions, particularly for unbalanced laminates.

This is due to the fact that only three tests were made for the latter

directions, while five tests were made for the principal directions.

Therefore, in the former case, the mean is less representative.

Some of the deviations obtained for Poisson coefficients are quite

large, as was the case for the principal directions [1). These large

deviations are probably attributable to faulty attachment of the gauge

to the test piece or to parasitic errors introduced into the measure-

ment system. This has led us to conceive of a systematic study of the

use of gauges on plastic materials. This study will be carried out in

the next few months. It is in fact important to answer the question

raised by an author: "Do we measure strain when we measure strain?"

Current work indicates that somet',mes this question must be answered in

the negative, and it is absolutely essential to resolve this problem if

we are to obtain a better understanding of the behavior of reinforced

plastics.

18
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Table I. Comparison of the correction coeff ciento
y i e 1 do d by tr lie t w 0 them riev

0__._,
22,68

45
67,5°

Coeffi Appxox.^rirtii;e Devia- Approx. , Finito l5eviv Tprox, ri nite
lement.

!1 viFi-ticient theory elements t on theory Itelement tl^n t jeory, n

1 - n 1 1,2844 1 ►3?17 2,80 1,1446 1,1521 0,92 1=07 1,0076 0,68

1 - n , 0,6172 0,6448 4,30 0,8356 0,8430 0,67 0,9993 0,9941 - 0052

1 - n11 0,9508 0,8435 - 12,70 0 ► 9900 0,9249 - 7 0 00 1,0000 0,9935 - 0,65

1	 - n1 l 0,9 1,08 1,1231 15,30 0,9900 1,0699 7,50 1,0000 1,0082 0,81

1 - n i v 0,9077

N M N N w w w

0 ► 9951
M s Nw w w M

0,70

N NN -iRN N N

0,9975

w w N W w w w

0,9986

w N- N w w M w w

0,11

w w N- N N w

1,0000

N N -^ w s N

1 1 0001

w ww w w M 4

0,01

w N w f.- w-

1 - t1 1,2844 1 ► 4558 11,80 1 1 1399 1 1 2280 7,25 0,9827 1,0521 6,60

1	 - r , 0,6172 0,7116 13,30 0,8323 0,9007 7,59 0,9813 1,0374 5,40

1	 - 3' 11 0 1 9500 0 1 9300 - 2,15 0,9860 0,9070 0,10 0,9820 1 iO374 5,30

1 - i1' 1 0,9508 1,2372 23,10 0,91160 1,1441 13,82 0,9820 1,0521 6,70

1 - t 1V 0,9877 1,0987 10,10 0,9935 1,0672 6,91 0,9820 1,0423 5,80

C 2))

t
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Table 11. Plate compooi,f ion

Resins	 : P a flexible polyester (Palatal	 1 1 51) (E *	 274 kg/mm = v	 a	 01,366)

B «rigid polyester (Stratyl	 0) (E w 395 kg/W ; v » Ot350)

Ex rigid epoxy (Ciba	 LY55C) (E =	 342 kg/mm 2 v - 0,294)

Plate No. Type of

reinforcement

Brand Name Gr/m2 Number of

layers

Method	 of

manufacture

1 P Satin Porcher 716his 200 17 Press

5 P Satin Porcher 716bis 200 6
Mat Govctex PI q 12 450 3

9 P Satin Tissaverre	 158 308 11 if

11	 P Taffetas Tissaverre	 249 200 16

17	 P Satin Tissaverre	 158 308 4
Mat Gevetex 1-1	 512 450 3

18 P Taffetas Tissaverre	 249 200 6
Mat Gevetex M 512 450 3

19	 P Mat Gevetex M 512 450 4
23	 1) Preformed „
25 Spray up Spray up

1	 8 directional Verester 29 400 5 Contact
5 B Catching	 rov, Cotton 5283 420 4
9 B Taffetas Verester 39 500 4

13	 B Serge Veret	 or	 131 470 4
17	 B Mats M1.100.P23 450 3
21	 B Mats M4.400.P3 450 3

25	 B Unidir. Verester 29 400 2 if

Mats M1.100.P23 450 2
29 B Taffotas Verester 39 500 2

F;at M1.100,P23 450 2

30 8 Serge Verester	 131 470 2
Mat M1.100.P23 450 2

31	 8 Spray up Spray up
34	 B Preformed Presse
36 B Mat Gevetex M512 450 4
38 B Satin Porcher 716bis 200 17
40 B Taffetas Tissaverre	 249 200 16
44	 B Satin Tissaverre	 158 308 11

48 B Satin Porcher	 716bis 200 6
Mats Gevetex M 512 450 3

52	 B Taffetas Tissaverre	 249 200 6
Mat Gevetex M 512 450 3

53	 B Satin Tissaverre	 158 308 4
Mat Gevetex M 512 450 3

1	 E Satin Tissaverre	 158 308 11 Presse
3	 E Satin Porcher	 716bis 200 17 it

5	 E Taffetas Tissaverre	 249 200 16
7	 E Unidir. Verester	 764 610 3 Contact
9	 E Taffetas Verester 39 500 4 If

^Ikl

t
a

L



Table III. Glass contents

T - Glass content by weight
Glass content by volume

M I:	 2
Glass content per square meter (m )

k

r

L,

Plate No. T	 M m

gr/ml

1	 P 61.46 +'.426 3274

5	 P 51.29 0.315 2361

9	 P 61.80 0.44"1 3270

13	 P 64.06 0.455 3432

17	 P 53.40 0.337 2545

18	 P 56.42 0.362 2708

19	 P 41.92 0.249 1854

23	 P 37.32 0.219 1637

25	 P 26.69 0.147 1638

1	 B 38.88 0.23 2106

5	 B 33.84 0.19 1642

9	 B 41.92 0.24 1999

13	 B 42.67 0.25 2235

17	 8 26.86 0.14 1253

21	 B 24.73 0.13 1147

25	 B 32.87 0.19 1517

29	 B 38.52 0.23 1748

30	 8 35.87 0.20 1828

31	 B 31.11 0.18 1221

34	 B 37.09 0.21 1598

36	 B 39.82 0.22 1727

38 B 59.44 0.40 3057

40	 B 63.95 0.45 3404

44	 B (111.59 0.43 3241

48	 B 51.97 0.32 2438

52	 B 53.70 0.33 2548

53	 B 52.48 0.32 2475

1	 E 61.48 0.41 3241

3	 E 60.98 0.41 3287

5	 E 62.40 0.42 3380

7	 E 42.49 0.25 1883

9 E 45.39 0.26 2058
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Figure 1, Deformation of an Anisotropic Test Piece
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