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GLOSSARY OF SYMBOLS
Y

I = RF frequency index; Ie[l,Imaxa

L = Range gate index; J 1
	 early gate

1+1. late gate

k = Time index for a specified pair (I,L); ke[O,N - 11

m = Doppler filter index; mc[O,N-1], N =16

'	 SR (L,k), S I (L,k) = Real anf^ imaginary parts, respectively, of the signal
component at the output of the Lth range gate, at
time k.

NR (L,k), N I (L,k) = Real and imaginary parts, respectively, of the noise
component at the output of the Lth gate, at time k.

PSI
(L 	 _ _ Real part of the total output of the Lth gate at

SR (L,k)+ NR (L,k) - time k.

PSQ(L,k) _ = Imaginary part of the total output of the Lth gate
S I (L,k) + N I (L,k) at time k.

F(L,m) = Output of the mth doppler filter following the Lth
gate.

FR (L,m), F I (L,m) = Real and imaginary parts of F(L,m), respectively.

a 2 = Variance of the in-phase and quadrature phase
s

Gaussian signal components.

ant = Variance of the in-phase and quadrature phase
Gaussian noise components.

N = Order of the Discrete Fourier Transform (DFT) filter.

1.1 = Norm of ( , )
ti

P = Noise correlation coefficient.

j=

I



SUMMARY

In this report, the statistics of the CFAR threshold for the

Ku-band radar are determined. Exact analytical rc%,*:0ts are developed

for both the mean and standard deviations in the designated search mode.

The mean v111lue is compared to the results of a simulation reported in

[ 1 ]. The analytical results are more optimistic than the simulation

results, for which no explanation is offered.

The normalized standard deviation is shown to be very sensi-

tive to signal-to-noise ratio and very insensitive to the noise corre-

lation present in the range gates of the designated search mode. The

substantial variation in the CFAR threshold is dominant at large values

of SNR where the normalized standard deviation is greater than 0;3.

Whether or not this significantly affects the resulting probability of

detection is a matter which deserves additional attention.

On the optimistic side, the threshold setting and target return

are correlated; this leads us to conjecture that this variation may not

appreciably affect the probability of detection, On the pessimistic

side, there is a substantial variation of the CFAR threshold setting

away from that developed from the noise-only condition.

•,

Li^G



1.0	 INTRODUCTION

The constant false alarm rate (CFAR) thresholding scheme in the

Shuttle Ku-band radar is analyzed for the "designated mode" of operation.

In particular, both the mean and standard deviations are determined for

the threshold level.

In search, there are two basic modes of operation: designated

and undesignated. In the designated mode, range being designated, there

are two overlapping range gates of width 3T/2, where T is the transmitted

pulse width. Four nonoverlapping range gates of width T are used in the

undesignated mode.

Sixteen pulses are transmitted at each of the five RF frequen-

cies. When range designation is available, the pulse width and pulse

repetition frequency are functions of the designated range.
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2.0	 DESIGNATED MODE THRESHOLD

The basic signal processing of th:e Shuttle Ku-band radar for

the designated mode in search is shown in Figure 1. Only those signal

processings pertinent to the VAR threshold formulation are shown. For

a more detailed description of the signal processing for the Ku-band

radar see [2].

The output of the IF filter is downconverted to a complex base-

band waveform

I + jQ = SI(I,J,k) + jSQ(I,J,k)	 (1)

Before A/D, the I and Q waveforms for the kth pulse are given by

I + JQ = A I P(t - kTp) exp[(Wdt +6 i )l + Nc(t) + JNs (t)	 (2)

where	 r

A I = the random amplitude of the target return which has the

Rayleigh probability density function with parameter Qs2,

which represents signal power

e i = a random phase uniformly distributed over (0,27r)

W  = the doppler frequency, which is neglected in this analy-

sis. The effect of doppler on the final results is not

expected to be appreciable.

P(t) = pulse shape of width T seconds

Tp = (PRF)-1

Nc (t), N s (t) = independent zero-mean Gaussian processes with one-sided
 ,	 r

power spectral density N0 W/Hz and one-sided noise band-

width f  (fc = 237 kHz), which is the 3 dB bandwidth of

H l (f) (see Figure 1).

The noise power in N
C
(t) and N s (t) is therefore given by

	

N0 fc	-
	 (3)

for each process.



+•) r0 a
(Z W N

	

C7	 raa tr C1..
Q1 C

	

4-)	 S-	 Ca„1

J W ^

'D
0.

N	 'p

N	 rAtS

I

X

a

	

^	 N

1	 1

ba
In

^r

a.D

`v
a

ro
G
01

Nv
CO

i»

c
^r
N '
Na
U
O
$I.
0.

r-'
rti
C

'r
N

r-

a
i.
A

rr
LL.

* r

3

c41
a c
N aa N
ad
4J 4Ja a
010)
^. s-

F^ h%

S»
A

rG3
rd
CL yE
t^

n

H

Q' +-^

x a LL

7 'n

V	
r- i, Cr ^ II

o m^w
H

	

	 0 
LL. . i 

mcz

^--r

X S)	 p

H	 /r

H	 ^
N	 N

it	
a
L

Cyn

H

Q

N

4- S-.	 4-) -0 Y

O ia)	
d i- c t\

N r-	 H > 1] N
G.li	 .^ p Ln II

= U-	 C. m 4-
O H	

' 3	 II
S 0 ^ 3

co

R

c
G
'r

G 4 C
C4 CD

Na
Q

a
'L1 o

or^

F— Li

H
3

r,.L
x

Ir

a

L-
'n
+

J

r- H
^ • C]

LO CL

E

LL.
'7

U-

II ^ U
n r-. 41

J	 ^ rd O



4

The integration process of the presum is also shown in Figure l

for the designated mode in search. We assume that the received pulse is

ideally designated so that it appears exactly between the two range gates

of width 3T/2, as shown in Figure 1. This, coupled with neglecting the

doppler effect, maximizes the effect of the signal received from the tar-

get on the CFAR threshold,

With these assumptions, the presum output for the kth pulse

for the Lth range gate is

t+3T/2

PSI(L,k) + i PSQ(Lpk) :[SI(t) + j SQ(t) dtT f
t 

is+3T/2

= A I T exp (je I ) + I
S

[Nc (t) + i N s (t)]dt	 (4)

where the sum of the samples at the output of the A/C is approximated by

analog integration. This is an excellent approximation since the number

of samples in 3T/2 is sufficiently large at long ranges, The starting

time of the range gate integration is designated ts,

The signal part of the presum output is designated

AI T exp(je I ) = S R (L,k) + ,jS I (L,k)
	

(5)

where S R and S I are independent zero-mean Gaussian random variables,

with variance as 2 , This is the same value found at the input to the

presum because of the normalization in our definition.

The noise components of the presum output are designated

t 

+3T/2

	

N R (L,k) + J N I (L,k) - T f	 [Nc(t)+3 N s (t,dt	 (6)
is 	 --- ►̂►

where N R and N I are independent Gaussian random variables with variances

an	 . 2 / 2
	 4-

	

2_ NO 3_3	
(7)
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Formulation of the CFAR threshold for the designated mode in

search is shown in more detail in Figure 2. In particular, the outputs

of the pFT doppler filters are given by

N-1

	
d

F(m)	
L'.SI(k)+j 

ASQ(kexp (1
^-^'»k 	 (8)

kx0

for both the early and late range gate outputs. Note that the doppler

filter outputs from the early and late range gates are correlated; this

affects the evaluation of the variance of this CFAR threshold.

The CFAR threshold, T, is formed via the following average

Imax +1 N-1

T Q Cl	 I I F(L,m,I)	
(g)

I = L=-1 m=0

where

I	 the RF frequency index, I = 1 1 6.0 9 I	
, 'max
	 5

max max

L = the range gate index, L =-1; early gate; L=+1; late gate

k = the time or pulse index, k = 0,.,., N-1, N = 16.

m = the frequency of doppler filter index, m = Q,..,, N-1.

In the next section,the results of the statistical analysis of

T are discussed.

1	 I	 f / ° i
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3.0	 PERFORMANCE OF CFAR THRESHOLD

The mean (ensemble average)of the VAR threshold is determined

in Appendix A and plotted in Figure 3. In this analysis, any doppler

frequency shift away from the center frequency of the nearest doppler

filter is neglected. In addition, it is assumed that the range designa-
tion is ideal. Roth of these assumptions maximize the effect of the sig-

nal on the statistics of the CFAR threshold,

Under the above assumptions, the average CFAR threshold value

for the designated mode versus the SNR at the output of the presum is

plotted in Figure 3, where

SNR = asZ/ant	 (10)

As expected, at small values of SNR, the effect of the signal

from the target disappear and the threshold becomes the value correspond-

ing to noise only,

Also in O uded in Figure 3 is the result of the simulation

reported in [1]. The results of our analysis are normalized in Figure 3

so that the average threshold value at 0 dB coincides with that in [1].

At this time, we have no explanation for the significant dif-

ference between the exact analytical and the simulation results since

their target dependence is less, even though we assumed maximum target

dependence.

In Figure 4, the normalized standard deviation of 'the CFAR

threshold is plotted versus the SNR at the output of the presum. This

exact analytical result shows a significant dependence on SNR and a neg-

ligible dependence on the normalized noise correlation coefficient p.

For the actual case, we have, as des., gibed for the range gates in Fig-	 k

ure 1,

p = 2/3,

Inspection of the plot in Figure 4, however, shows little variation as

p varies from 0 to 0.7

It is worthy to note the substantial variation in the CFAR

threshold, particularly at large values of SNR where the normalized

standard deviation is greater than 0.3. No attempt has been made to



Inn^

r

}

SNR, dB

Figure 3. Average Threshold Values for Zero Doppler Shift,
Designated Mode
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determine the effects of this variation on the probability of detection.

On the optimistic side, the threshold setting and the target return are

correlated; this leads us to conJecture that this variation may not

appreciably affect the probability of detection. O'n the pessimistic side,

there is a substantial variation of the CFAR threshold setting away from

that developed from the noise-only condition.

T

'1



APPENDIX A

Here we wish to derive the expected value EM of the random

variable T, defined as (see Figures 1 and 2):

Imax 1 N-1
T ^ ^1.

	

	

^ I 

IF(L,m,I)I	 (1)

I = I  L=-1 m=0

where the dependence of F on the frequency range I is explicitly shown

in (1) and where C 1 is a normalizing constant.

Before we proceed, let us first list the assumptions entailed

in the following derivations.

Assumptions

(1) The in-phase and quadrature-phase components of the sig-

nal and noise are zero-mean, independent, Gaussian random variables (rv).

(2) For different RF frequencies, all rv's are independent.

We-can therefore confine our interest to one specific frequency.

(3) For the same range gate (L) and different time slots (k),

the noise variables are independent, i.e.,

NR (L,k 1 ) 1 NR (L,k2 )	 for k  # k2

N I (L,k l ) 1 NI(L,k2)

(4) Real and imaginary parts of either signal or noise are

always independent, i.e.,

NR 
1 

N I 0	 SR 1 SN

(5) For the same k but different gate, the noise components

are correlated. The covariance matrix is

1 0 p 0

OIOp
R = ^cov*NR (-l,k),N I (-l,k)„NR (l,k),NI(l,k)	

n2 
p 0 1 0

0 P 0 1

a



A2

Therefore, for different k's, the noise rv's are independent, regardless

of the value of L.

(6) For both range gates and all times k associated with one

RF frequency, the parts of the signal are identical, i.e.,

SR (-1,k l ) = SR (-1,k2 ) = SR (1,k3 ) = SR(1,k4),

for every k l ,k2 ,k3 ,k4 [0 , N]. Likewise for the imaginary parts of the

signal 
S I *

As an immediate result of assumption (2), the frequency

dependence can be dropped and T can be written as

1	 N-1

T = 
C 1 ,1max' ^ I IF(LoOl

L=-1 m=0

N-1	 1

C 
I 

I JF(L,m)l

m,0 L=-1

N-1

	

= C ► 1 X(111)	 (2)
111=0

where C = C1.Imax and we have defined the r y X(m) by

X(m) =	 IF(-1,m)' + (F(l,m)j	 (3)

In the following, we shall derive the expected value of X(m). From (3),

it follows that

E{X(m)} = E{jF(-l,m)j} + E{jF(l,m)j}	 (4)

, e -,

and, because of the symmetry existing between the two gates, (4) simpli-

fies to

E{X(m)} = 2EfjF0,m)j}
	

(5)

It is obvious from (5) and the assumptions made that the first moment
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(ensemble average) is not a function of the range gate. henceforth, we

will drop the gate-index dependence from the symbols listed before in

order to simply matters.

Let us call

y(m)	
Q	 ^F(m)^	

_ N;t.^ ,
r ^) + F, 

2 
(111)

	 ()

so that, from (2), (5) and (6),

N-1

EM = 2C, I E{y(m))	 (7)
m=0

Since F(m) is the output of a DFT filter whose input is the set

fPSI(k) + jPSQ(k)}, we have that

N-1	 _i 27rmk

F (m) _ ^ (PSI (k)+j PSQ (k) ) , e	 N

k=0

which means that

N-1

2^rmk	 2^rmk
FR (m) _	 PSI(k) cos	 N + PSQ(k) sin	

hJ	
(8a)

k=0

N-1

F I (m) _	 - PSI(k) sin 21N^ + PSQ(k) cos 2 mk	 (8b)

k=0

Since PSI(k), PSQ(k) are Gaussian rv's, (both signal and noise are Gaus-

sian), so are their linear combinations F R (m) and F I (m), which are also

zero mean.

We will need the covariance matrix of IF R (m),F I (m)I. From

(8a), we have that



2iN1`°'	 2^rt1 ► k	 2^rmk 2E{FP (nt)} - E	 PSI(k) cos --,--+ PSQ(k) sirs —^--

^k=0

N-1 N-1

+	 PSIM cos 2 N + PSQ(k) sin ITN
k=0 T=0

OT

PSI(T) cos 2i	 + PSQ(T) sin z

But

E{PSI2 (k)^ = E^SR2 (k) +NR2 (k) +2SR (k) N,,(k)^ = os2 + ^rn 2 	00a)

and, similarly,

E^PSQ2(Q)	 = a^2 + a-2	 (10b)

For k # T,

EIPSI(k)-PSI(T)) = E^(SR(k)+NR(k)) (SR(T)+NR(T))} 	 (Assumption 1) i

= E{SR(k)-SR(T)) + EIN R (k) NR (T)}	 (Assumptions 3,6)

= Q
s 

2	 (lla)

and, similarly,
r

EIPSQ(k) • PSQ(-r)) = c1 S 2	 (llb)

Also, from Assumption 4,

EIPSI(k)•PSQ(k)) = EIPSI(k)•PSQ(T)) = EIPSI(T)-PSQ(k)) = 0 	 (12)

i

A4

(9)
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Substituting (10), (11), and (12) into (9) and after some manipulations,

we get

N-i	 =1

E 
FR2(m)^ = (crs2,'c#1) .	 cos2 211m + sin 2 2 '- `q

k=0 (

N-1 N-1
+ as2	

[Cos 2Nrn (k-,r

k=0 T=0
VT

or

N-1

E^FR2 00 = N(a,2 + an2) + 2as2 1 (N-^) cos

	

g =1	

N

The corresponding result for E IF 2 (rn) is easily shown to be the same as

in (13).	

I

Before we examine (13) closer, let us calculate the cross

covariance term:

N-1 N-1

E {FR (nt )^ F I (m)^ = E

1k=0
I 	 PSI(k) cos 2 Ntk + PS Q ( k) sin N k

 T=0

x -PSI	 27rmT +	 2 7fmT(T) sin N
	

RSQ( T ) cos N
	

(Assumption 4)

1
N-1 N-1

E	 (-PSI M PSI(T) sin 2 N T cos 2 Ntk
k=0 T=0	 I	 1	 ' '

+ PSQ(k) PSQ(T) cos 2 miT sin 2 Nick

N-1 N-1
- Qs2	

sin 2Nm (k -T )	 (14)

k=0 T=0

OT

(13)
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We now notice in (14) that, to each term g= k-T>0 in the double summation,

there exists a corresponding term -9=T-k<0 which, because of the sine

function being an odd function, cancels with.the former term. Hence,

E^FR(m)-FI(m)^ = 0 , for all mel0,151 	 (15)

and this holds independently of N. The covariance matrix of FR(m),

F I (m) can now be written as

A(nt)-us2 + a n 2	 0

	

A 4 cov^FR (m),F I (m)}	 N	 2	 2 (16)

0	 A(m), us + un

where, from (13) and (16), it follows that

N-1

A(m) = 1 + 2 1 (1 - N) cos 2,a 
	

(17)

=1

We will briefly examine A(m). We have that, for m=0,

N-1	 N-1

A(0) - 1 + 2 1 (1 N) = 1 + 2 (N-1) - N

g=1	 g=1

= 1 + 2 [N-1
 _ N NN1	

N.	 (18)

To study the case m^0, let us assume that N is divisible by 4. Then, if

we call g' = N - ^, it follows that 	 , II .	 ,A

2Trme l	 2,m	 2'mecos	 N	 = cos 
N 

(N-^) = cos N

so that (17) reduces to

v	 ^	 ^1
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/2-1

A (m) u 1 + 2	 (l - f+ 1 - NN ^ cos 2 Ni 
	 c°-- 2

or

N/2-1

A(m) = 1 + 2	 cos 2N + cosmrr

If we now call V = N/2-1, it follows that

cos 2Trm_g = cos 2frm N 2-E _ 	 m	 2nm
N	 N	

(-1) cos N

so that (19) yields

N/4-1

A(m) = 1 + 2	
(
1 +(-1)m^ cos 

2 
N + cos 2 + cosmTr

=1

An immediate conclusion of (20) is that A(m) =0 for m= odd. For m= even,

(2) reduces to

N/4-1

A(m) = 2 1 + (-1) m/2 + 2	 cos 
2 
N	 (21)

^=1

The above holds for an arbitrary N divisible by 4. In the general case,

(6) might yield a nonzero value of A(m), which nevertheless will be

small. However, it is straightforward to show that, if N is a power of 2.,

(which is almost always the case in practice), A(m) of (21) identically

vanishes. Below we summarize the conclusion for the covariance matrix A:

(19)

(20)

L.-"',



s:

A8

•
Fars2 

cn2	 0

N	 m=00	 I' 	 2
A = cov^FR(m),FJWm	

s	 n __	 (22)

ant	 0

N	 ►n#0

	

0	 cn2

Front (22), some useful conclusions can be drawn. First, we notice that

the noise components at the input affect all doppler filter outputs,

while the effect of the signal is confined to the m= 0 doppler filter

only. Furthermore, the effect of the signal on that term is enhanced

by a factor of N as compared to the noise. Hence, for the moderate-to-

high signal-to-noise ratio (SNR) environment, we can claim that the

zeroth filter output is produced by the signal only and the other out-

puts by the noise only. Finally, we notice that, in all cases and for*

every doppler filter output, the real and imaginary parts of the output

are independent. This enables us to conclude that y(m) of (6) is a

Rayleigh ry with mean

E{y(m))=	 2 y(m)	 (23)

where

rNon	 ; m=0
Y(m ) _(24)

ym # 0

From (7), (23) and (24), it follows that

E{T) = C 2n JN
2

 a. 
S
2 + N'n2 + (N-1)	 Nan

or

E{T) = C-N	 as + a n 
N + 

ANT	 (25)	
I



SNR = 
SNRi

^A/D

an	
ant /L A/D

LA/D = 1.,0129 + 0.0129	 SNRi

and

where

(29a) ?

(29b)

(30)

► i

A9

or in terms of the signal-to-noise ratio SNR = as2/on2,

: C•{T}	 V 2^r ► N o•	 SNR+ N " 
1^

n ---E
Yff

Typically, the constant C1 in (1) is defined as

Cl 
s	 1

In this case, C = C
l' Imax ' 1/2N, and (26) modifies to

E{T} _ ^2 , a^n. SNR + I + N - 

1YINT

For the specific application considered, N = 16, so that the factor

1/N z 0.06 can be neglected for even very moderate SNR (say, SNR ? 0 dB).

In this case, we conclude that E{T} varies linearly with (SNR)1/2,

A final comment pertains to the values of SNR and 
ant 

of (28).

These are the values of the signal-to-noise ratio and noise power at the

input of the doppler filters. Since an A/D converter precedes these fil-

ters, the values of these parameters at the input of the A/D converter,

denoted here by (SNR) i and an i , respectively, relate to the A/D output

parameters (which are the inputs to the filters) by [2]:

(26)

(27)

(28)

a
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If we incorporate (29) and (30) into (28), we get

E(T)
7-an i ' App	 ^--	 N	 ^	 (31)

which is plotted in Figure 3 for N s 16 as a function of SNR i in dB.

.,



APPENDIX 0

We evaluate herein the variance aT2 of the-random variable T,
as defined in equation (1) of Appendix A.

From (2) of Appendix A, it follows that:

-1	 N-1 N-1

E^T2J w 02. ^ X' (m) + I I X(m1 ) X(m2 )	 (1)

MXO	 TO m2_0

mlm2

where

X(m) - FR
2

(-1,m) + F, (_1	 + FR (1 ,m) + F l2 (l,m)	 (2).

To simplify matters, we will examine two distinct cases: moderate-to-high

and low SNR.

	

1.0	 MODERATE-TO-NIGH SNR

According to the previous comments of Appendix A, we can justi-

fiably assume in this case that the zeroth doppler filter output X(0) is

produced by the signal part of the DFT input only, while all other X(m),

m¢O are produced by noise only.

	

1.1	 final Output (m=0)

E {X2 (4} = (from (2))= E FR ( -1,0)+FI2(-1 '0)+FR2(1,0)+FI2 (IM s

+2 FR (-1>0)+F I (-1, 0 )	 FR (100)+FI 
(1'0)_	

(3)

Since we have assumed that all random variables appearing in (3) are

exclusively signal functions, we can further invoke Assumption 6 of Appen-

dix A, according to which

(Z3) "FR (-1,O) = FR (1,0) and F I (-1 1 0) = FI(l,0).

a

{	 t is



1^^1

Substituting the above into (3) yields

a X2 (0) : 4E(FR2 (-1,0)^ + 4E^F12(- 1 ► 04

From (22) of Appendix A, we have (setting as 2 » an 2) that

EJFR2 (
- 1,A)} x EIF 1 2 (-1,04 = Na

so that (4) and (5) combine to give

E(X 2 (0)^ a 8N2as2

1.2	 Noise Outputs (m#O),

EJX21m)tzEl 
R

l
,-*2	 ,.) F 2 	 +F 

R
2 , n 	 2

i	 )	
I (-1,m)	 ^	 (,,,^:)	 F I (1,t^)

m¢o

	

+ 2 (F
R
 (-1

)
tn)+FI (-1,m) (FR (1sm) + F 1 (1,m y	 (7)

Since all random variables are produced by noise, it follows from (22)

of Appendix A that

E{FR2(-1 ,m)^ - E{F I 2 (1^m)}	 EIFRz (1,m)	 E{FI`(1,m)) = 
Nang 	 a2

so that

E X2 (m)} = 4Nar2 t 2 D
m0

02

(4)

(5)

(6)

(8)

where	 , r

D 
Q 

E	 R2 (-1 ,m) + F j (-1,rri) F R̂m) + F  (1 ,m) -	 (9)

We now proceed to evaluate D. To (P-this,  we need the joint statistics

of the zero-mean, Gaussian rv's appearing in (9). Let us find the covar-

iance matrix R of {F R (-',m), F I (-1 'm) ' FR (l,m), F I (l,m)}, 00.	 U

^.t
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From (8a) of Appendix A t we have that (assuming only noise input),

E F
R 
2 (-1 0m) • E	 (NR (k,-1) cos 2"	 + N I (k,-1) sin z-`

kxo

(because of assumption 4)

N-1
2 1 

(

2 2,rmk	 2 2,m^k	 2	 2on	 cos w ,+sin --^--	 Non = a	 (10)

k=0

and similarly for the others.

Furthermore,

N-1 N-1	 .

2 FR (-1,m)•FR (l Im	 F	 (NR(-Iok) cos 
2	

+N I (-1,k) sin Nk

k^0 T=0

(NOPT) cos r+N l (i,-c) sin 
2^N )	

(1^)

which, because of Assumptions 4 and 5, reduces to

N-1

E FR(-l,m).FR(l,m) = F	 NR(-1,k)NR(l,k) cost 
2 
Nk	 .

kc0	 Y`,.

	+ Np(-l,k)-NI(l,k) sing 
2 
N
k 	 N-a

n
	= Pd 	 (12)

Hence, the covariance matrix R is

1 0 p 0

R= cov FR(-l,m),FI(-l,m),FR(l,m),Fj(1 -m) 	
2	 0 1 0 P	 ( 1 3)

P 0 1 0

0 p 0 1

Comparing (13) and Assumption 5, we draw the interesting conclusion that

the noise statistics remain unaltered after passing through the complex

DFT doppler filters.

Wft



FR (-1,m) = V B cos OE

R 1 (-1 0m) = V E sin ¢E

FR ( 1 ,m) = VL cos OL
and

F I (1,m) = VL sin k

(14)

B4

We are now in a position to evaluate D. If we change to
polar coordinates

then (9) is simply written as

D = EIVE.VL^
	

(15)

The joint distribution of the envelopes V 
rv's coil-related as in (13), is found from

VEVL	 ^VEVL .Q2P
•I

P(V E $V L ) =	 I R I
1/2	

0 I R 11/2

1

0

and V L , for the four Gaussian

:3] to be

02(v2+V2
- • exp - 	 E	 L )

RIB
(16)

for VE ,VL > 0

elsewhere

where IO
(.) is the zeroth-order modified Bessel function. From (

15) and
(16), it follows that

A 2 2
D	 VE VL •I  /^VEVLa2P 	 Q2(VE2+VL2)

0 0 
IRI 1 2	 0 I R 11/2	

exp -	
}/2	

dVEdV L 	(17)

II

If we make the transformation

2	 R 1/2

V 
	 _ .J	 _ • y • exp {2z}

a

V2	 R1/2
L	 •y exp {-2z}

0

k
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whose Jacobian is

1/2

Cr

and, upon substituting into (17), we get

00
D '	 6	

dy - Y2 . IO (yp)•	 dx	 ex p{-y cosh (2z)} (18)
a 

O (J_ 00

The inner integral equals KO (y) [4], where KO (y) is the zeroth-order

modified Hankel function. Therefore, from (18),

D = -	 Y2 J0 (jpY) k O (Y) dY 	 (19)
0

where we have used the fact that I O (n) = JO(jn)(Jo(.) is the zeroth-order

Bessel function).

The integral of (19) can be evaluated. From [5], we find that

Ka (az) J(bz)•z"Y dz

fow . 

_ bs r ( R-^+a+1 kri s-1-a+1 1 -(Y+12 

2F 1	 -- 
_+1

s" "
a+1	

0+1; - b2
	

(20)

where 2F 1 (•) is the Gaussian hypergeometric function [5]. Applying (20)

for a = 0,  s 0, Y = -2, a = 1, b = jp, we get from (19) that

D = 6 2 • 2Fl(3/2; 3/2;1; p2 )	 (21)

q

I
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From [5], we find that

FI	
2F1(3/2, 3/2; 1; p2 ) = 0_

P 2 ) -2. 2F 1
(-1/2; -1/2; 1; P2)

_ (1- p 2 )
-2,F4 

E(P2) _(1_P2)-k(P2 	 (22)
71

Tr

where k(•) and E(-) are the complete elliptic integrals of the first and

second kind [6].

Upon substitution of (22) into (21), we find that

D = I-'V •(1-p2)-2 [2E(P
2
) - (1-p 2 ) k(P 2 )^	 (23)

Cr

From (13), the determinant )R I can be evaluated to be

2

R' = Q8 ( 1 , p 2 ) = N4 n8 (1-P 2 )	 (24)

From (23) and (24), we finally get

D = Non 2 
CE

 ( P 2 ) - (1-P 2 ) k(p2
)]
	 (25)

From (8) and (25), we derive that

E X (m) 2 	= 2N n 2 C + 2E(P 2 ) - (1-P2 ) k(P2 )]	 (26)
00

Equations (6) and (26) yield the result for the first summation in (1).

The second term (double summation) is now evaluated.

First let us assume that m 1 # m2 and none of them equals zero.

In this case, both X (m 1 ) and X (m2 ) are produced by noise, and from (2),



1^

R7

E JX (ml ) 
X (m2)1 = E 

(
FR (-1,m 1 ) + F  (-1 ,m1))

 '('R 
2

(-1,m2 ) + F1
2 (_, 'M2

 )^
0^mltm2#0

+ E J^
FR 

(l,m l )+F I2 (1,m l 	 ( F
R 
2 (1 on +FI (1,m2),

+ E 
l FR2 (-1,m 1 )+F I 2 (-l,m l ))•^FR (1,m2)+FI2(1,1112))

+ E	 FR2 (1,n1,)+F
I
 (l,m l ) FR (-1,m2 )+F I (-1,m2 ))	 (27)

We will now show that all random variables under the same square root are

mutually independent. To do this, let us evaluate

	

N-1 N-1	 2^rml k	
27`m, 

k l
E FR (-l ' m l ) • FR (-1,m2 ) = E1k=0I I C 

NR (-l,k)COS	 N + NI(-l,k)sin N I

m l #m2 	 T=0

	

2,rnt2T	 2^rm2T l
NR (-1 ,T) cos	 N + N I (-1 9 T) sin	 N

(Assumption 4)
J	 .

N-1	 2	 27rmi k	 27rm2k
E I NR (-1,k) cos N cos N —

k=0

2	 21rml k	 27rm2k+ N
	I (-1,k) sin N	 sin	 N

	

N-1	 Z
	vn2 I cos ^ k (m

N 
- m2)	

(28)

	

k=0 	 I	 I	 , , .

For N a power of 2 and m l # m2 , it is easy to show that the summation in

(28) vanishes which, in,turn, means that F R (-1,m l ) and FR (-1,m2 ) are inde-

pendent. Identically, we show that F I (-l,m l ) ,L F I (-1,m2 ). Similarly,



,.e 1.

(31)
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2 N-1	 2,rk (n) - m2 )

E FR (-1 ,ml ) • FR (1,m2 ) = par
	 I cos	 N------ = 0

k=0

Finally, by interchanging 1 and -1, we get the symmetrical results for

both gates, which justify our earlier claim that all rv's i n (27) are

independent. Therefore,

E X (m l ) X (m2 ) = 4E2	FR (-1 ,m l ) + Fr (-1 ,ml
0#ml #1112#0

= 4• (
	
2= 21TNan

2 	
(29)

Second, assume that to = m 2 = 111 
# 0. Because X (0) is produced by the sig-

nal, X (m) by the noise and, due to the high SNR assumption, we get

E  X (m) X (0)} = E{ X (m)} -E{ X (0)}	 (see ( 22) of Appendix A)

m#0

f J N2as2 • - • Nan 2 = 2 NX os an (30)

From the N2 terms involved in (1), one term is given by (6), (N-1) terms

are given by (26), 2(N-1) terms are given by ( 30) and ( N-1)•(N-2) terms

are given by (29). Summarizing, we get that

EJT2) = C2.[8N 2crs2 + (N-1)•2Ndn 2 12 +2E(p2 ) - (l-p2) 
k(p2:

+2 (N-1) • 2TrNrcrs crn + (N-1) (N-2) 2-ff Na
n 2

= 2C2N2Qn2 4•SNR+ (1 - 
N

[2 +2E(p2) - (1-p2) K(p2)^

+ 2wr N-1	
+ (1 - N) • (N-2) •7r

fN

J
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But from (28) of Appendix A, we have that (for high SNR)

E{Tj = C - NV2-7 - a	 -n [rS 7N +

therefore,

E
2

(T) = 2C 
2 
N 2 • a 

n' [ SNR +
	

N	
+ 21r (N- I) .=SRI	

(32)

From (31) and (32), it follows that

var(T) = a 
T 2

= EIT
2 i
 - E 

2 
{T}

= 2C 
2 

N 
2 

a n 2 [(4-7r) SNR + (I - N / [2 +2E(P 2 )  (1-P 2 ) K(P2)

+ (N-2)w	 (N-1 )7T]]

or

a
T 

2 
= 2C 

2 
N 

2 
Crn 
2 

[(4-7T) SNR + ( I 
N 

H (P

where

H(P) = 2 - Tr + 2 E(P 2 ) 	 (1-P 2 ) K(p 2
	

(33)

(Moderate-to-high SNR)

The primary quantity of interest is the ratio a
T
/E{T} which,

for case 1.1 is given by

Cr	 V2—C N a
n 

- ( 4-7r) SNR + (1 - N) ) H(pT

E(T)	
C No V2--ir - 

G n (/NR + N-1
AT )



or

aT	
_ 

1	 (4-n) SNR + (1 - N/ H(p)

'rNSR+N-1

(Moderate-to-high SNR)

2.0	 VERY LOW SNR (OR SIGNAL, ABSENT)

In this case, all the doppler filter outputs are produced by

noise. If signal is also present (in order for this assumption to be

valid, even for the m= 0 filter), we must have that

a 2

Na 2 << U	 sn2 -► 	
2 

«	 .

an

For N= 16,  such an inequality is satisfied for SNR in the order of

-20 dB or less.

From (26) (which also holds for m = 0 now) and (25) (which is

now restricted only to ml # m2 ), we get that

E^T2) = C
2 I 2N 2 a n 2 C +2E(p2 ) - (1-p2 ) k(p2 ^+ N(N-1) 27rNan2

	

= 2C2N2an2 [2 (N-1) + 2E(p2 )-(1 -p2 ) k(p2 
^	

(35)

For very low SNR, we have from (28) of Appendix A that

E{T} = C	 27 . N • Nan2

therefore

010

(34)

'n

E2{T} = 27r C2 N3 a n 2



Rll

01

and

var{T} = a T 2 ' 2C 2N2a n2 r2 + (N-1 )7t * 2E (P2) - (1" p2 ) k ( p2 ) - 
N 

or

var M = 2C2N2 CF n2 . H(p)	 (36)

where H( p ) has been defined in (33). The ratio a T/E(T} for this case

(2.0) is found to be

a 	
VIN C an A p7

3Z' ,C•N 3ff•an

or

aT	 _	 H p )	 (37)
E{T} _
	

Nor

(Very low SNR)

independent of the SNR, as expected, The ratios of (36) and (37) have

been plotted in Figure 4 for various values of p. The function H(p)

depends on the complete elliptic integrals E(p 2 ) and K(p 2 ), which have

been tabulated for different values of the argument p 2 [6]. In Table 1,

we give some values of H(p) as a function of p.
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