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ABSTRACT

The kinetic theory of turbulent flow previously developed is
employed to study the mlxing-limited combustion of hydrogen in axisyrmetric
Jet. The integro-differential equations in two-spatial and three velocity
coordinetes describing the combustion are reduced to a set of hyperbolic
partial differential equations 1ln the two spatial coordinates by a
bimodal approximation. The MacCormick's finite difference method is then
employed for solution. The flame length is longer than that predicted
by the flame-sheet analysis, and is found to be in general agreement
with a recent experimental result. Increase of either the turbulence
energy or scale results in an enhancement of the combustion rate and,
hence, in a shorter flame length. Details of the numerical method as

well as of the physical findings are discussed.
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SUMMARY

Kinetic theory of turbulence developed previously was employed to
analyze the turbulent diffusion flame in axisymmetric hydrogen jet. The
fluid was assumed to be incompressible, and the mean flow field was
considered to be given for convenience. The kinetic equations governing
the chemical specles and energy were transformed into a set of hyperbolic
differential equations by the use of bimodal moment method which has been
modified to circumvent certain: difficulty encountered in earlier works.
These equations were integrated by a finite difference scheme. This
method of solution was shown to be flexible and applicable to many
combustion problems of engineering interest. The solution was compared to
the existing experimental data. Satisfactory agreements with the
experimental data were obtalned on the flame length and on the centerline

variations of the chemlcal species concentrations. The maximum temperature
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éf:the flame was substantially below that predicted by the conventional

flame-sheet solution. The overall cambustion rste enhances and,

therefore, the flame length shortens as the t.rulence energy and scale
were increased. Greater turbulence energy enhances the overall combustion
rate by increasing both the mixing and the turbulent dissipation-

limited chemical reaction rate. On the other hand, the larger scale

gave a greater overall cambustion rate through increased mixing, but a max-
jram would be reached beyond which the combustion rate would decrease
because of the reduced dissipation-limited reaction rate.

INTRODUCTION

Recognizing certain inherent limitations of the conventional
method of analysis of chemically reacting flows, a kinetic theory of
turbulence was developed previously. (See ref. 1-6.) This theory
describes the probabllity density function of the fluid elements
caprising turbulence field. Probability density functions of the
chemical specles being transported by the fluid elements are also
described in similar manner.

The governing kinetic equations are integro-differential equations
in both velocity and physical spaces, similar to those for the molecular
kinetic theory, and present a formidable chalienge to the avallable
methods of solution. The only practical method of sclution for chemically
reacting flows was found to be the bimodal moment method, which was
successfully employed to solve several chemically reacting flow problems
of engineering interest (refs. 1-4). However, when the method was applied




to the cambustion problems of initially unmixed reactants, it was found
that the generated mean profiles contained certain discontinuities in
the gradients which were not real. These discontinuities are direct

consequences of the bimodal method of solution, as explained in ref. 5,
and they do not affect the combustion rate and other pertinent description
of the physical problem. Nevertheless, a method should be found which
will remedy this difficulty.

The ultimate answer lies In the exact numerical integration of the
kinetic equations. The equations were solved exactly at least in one

velocity space for a combustion problem in ref. 7, and the solutions gave

correct continuous mean profiles to all orders as expected. The numerlcal
complexity, however, was such that the solution was confined to a
relatively simple shear flow.

As an interim remedy of the difficulty with bimodal method, an

additional kinetic equation was constructed in ref. 6 which governs the
correlation function representing the chemical reaction. This equation
circumvented the difficulty of the bimodal moment method, and the method

was successfully applied to solution of the turbulent chemlcal laser
problem in ref. 6.
Aside from the problems discussed above, there exists the difficulty

of rnumerically integrating a set of hyperbolic partial differential

equations resulting from the moment method in two physical dimensions. The
MacCormick's finite difference scheme (ref. 8) was shown to be useful in
the solution for simple two-dimensional flow (ref. 6). However, application

of this scheme to the axisymmetric jet twmed out to be a formidable task.




A substantial portion of the effort expended in the present work

concerns the numerical integration of the governing moment equations
by the MacCormick's method.

Text of this report begins with formulation of the kinetic
equations governing the mixing-limited combustion in axisymmetric Jet.
The fluld was assumed to be incompressible and the mean flow field
was considered to be known in terms of the existing incompressible
solutions. Appropriate derivation and transformation of the momént
equations are given. Solutions for the hydrogen combustion in air
are then obtained and compared to the available experimental data.
Because of the importance of the numerical scheme to the success of the
kinetic-theory approach to turbulence, a detailed description of the
numerical solution technique is included in the appendix.

SYMBOLS

a stoichiometric coefficient for oxidant

8)585,83,8) constants for Egs. (14), (16), and (17).

b stoichiometric coefficient for fuel

c mass fraction

¢y i-th mass fraction used in appendix

°h specific heat

D molecular diffusivity

d stolchiometric coefficient for combustion product
E <G>/
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b W&

function defined in Eq. (Al)

probability density function of fluld elements
0

Cp T/&h

heat of cambustion per unit mass of product
forward reaction rate coefficient

nozzle diameter

molecular weight

general function of U

r/L

radial coordinate defined in Fig. 1

function defined in Eq. (A5)

absolute temperature

x=component of instantaneous velocity relative to the mean veloclty

i-component of instantaneous velocity relative to the mean velocity

instantaneous velocity vector relative to the mean velocity vector
x-component of instantaneous velocity

average center line veloeity
i-component of instantaneous velocity
average velocity at the nozzle
average free stream velocity

r~-component of instantaneous relative velocity
r-component of instantaneous velocity

instantaneous relative velocity component normal to x-r plane




instantaneous velocity component normal to x-r plane
x/L

axial coordinate defined in Fig. 1

general mass fraction representing Cps Cps ete.
functions defined by Egs.(22) - (24)

functions defined by Eq. (37)

- | 1QdU

dissipation ratio in turbulence
1= (u/u,)

eddy diffusivity

similarity variable defined by Eq.(17)
turbulence scale

A/L
characteristic directions defined by Eq. (39)
functions defined by Egs.(A9) and (A10)

density
constant for Eq. (17)
function defined by Eq.(32a)

functions defined by Eq. (36)

functions defined by Eq. (32b)

functions defined by Eqs.(A3) and (AS)

instantaneous production rate per unit mass by chemical reaction




Subscripts

fuel
1 center line
d product
e chemically inert speciles
h ch g h
1,J,k Carteslan tensor indices
o ensemble averaged
P at the nozzle
o free stream

Superscript

-, vectors

Note that all symbols for velocities, except up L and u_ ,
represent dimensionless quantities after Eq. (26).

FORMULATION

Chemical Reaction

The standard axisymmetric turbulent jet shown iIn Fig. 1 is studied.
The Jet, consisting of a fuel and a chemically inert species, is swrrounded
by air, and the following one-step combustion is considered to take place.

k
a(oxidant) + b(fuel) __{'_____, d(product) (1)




~= - From the law of mass action, the rates of production by chemical
reaction of the three reactants are given by

AdMy a4l a b

krﬂp Ca Cp»

“a

M
u -<§>(m§)wa» (2)
and :
. %)
w = *@(g’%'
All symbols are defined in the nomenclature.
Kinetic Equations
Starting point of formulation of the governing equations is the
kinetic equation (see refs. 1, 5, amd 6),
172
arz U )
(UOJ + uJ) '&-J- " — [(1 +v) ‘m; (fUJZ)
1/2
<UU> 2 <U U >
* —l(—.L %T%gﬂ;] - kZI; £(z = 2,) + fu, (3)

where J and k are the (artesian tensor indices. The symbol z stands
for difinite quantity being transported by the fluid elements. For the
combustion described by Egs. (2), Eq. (3) represents the five kinetic
equations respectively for
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Z = c,, 0. Cq G, AN N, (4)
These equations will be solved by the bimodal moment method
subsequently. As was discussed in the preceeding section, certain
discontinuities in the gradients of the mean profiles are expected
in the results when kr + o, Although these do not affect the combustion
rate and other physical descriptions of the problem, the discontimuities
themselves are umreal consequences of the bimodal method of solution.
As was discussed in ref. 5, the bimodal method approximates the
continuous distribution of a reactant concentration among the fluid
elements with various instantaneous velocities by two discrete values of
the concentration depending only on tie sign of V. At the edge of a

diffusion flame zone, therefore, concentration of one of the reactants
contained in all fluld elements becomes zero simultaneously. This results
in the discontimious gradients of the mean reactant concentrations at

the flame edge. Such unreal discontinuities naturally disappear as more
exact method is employed for solution of the kinetic equations (refs. 5,
ad 7). These methods (refs. 5 and 7), however, are of such complexity
that their application to practical flow problems such as the axisymmetric
Jet 18 extremely difficult.

As an interim technique to circumvent the difficulty with the bimodal
method, until a niore viable method of solution is found, it was suggested
in ref. 6 that an additional kinetic equation be employed. This
equation 1s constructed by letting




(5

in Eq. (3) as

are? >
R N s

2,ab : 3172
<l > 3 )
+ Ok ja:b]_ U (eled - 8 D

+ . (6)

Expression for Wb is constructed such that the first moment of

Eq. (6) corresponds to the conservation equation for <c:cg> derived
from the Navier-Stokes and standard species conservation equations. When
a=b =1, the expression for w, .as obtained in ref, 6 as

Cpug * C by, (7

such that the first moment of Eq. () was term-wise comparable to the
conservation equation for <°a°b> derived from the standard speciles
conservation equations for Cy and ¢, subject to the correspendence

172
3cy 3y, Ul
2D<3xJ axJ > ) (<°a°‘b> - caoc‘bo)' (8)

The present analysis is mainly concernad with the combustion of

10




hydrogen

ko

02 + 21-12 —enlp 2-120 (9
for vhich a=1,and b= 2, For these stoichiometric coefficients,
it wus found that "

2 .
Wy = Cpuy * 20,04 (10)

gives the term-wise compatibility ol the first moment of Eq. (6) with

the conservation equation for <cac§> derived from the conventional

conservation equations for ¢

a
correspondence for dissipation,

and ¢, , subject to the following

2
3¢ acb acb écb
2 (o w0 am w)

172
> 7Y
= &%x_ (<cac§> - Caoc 2) . (11)

The dissipation correspondence of Egs. (8) and (11) are plausible
hypotheses, and consistency of Eq. (6) with the original kinetic equations
for Cqr Cp» ete. cannot be established. Therefore, the bimodal
solutiona using this additional equation must be considered interim
ones until more exact solutions of the integro-differential kinetlc
equations can be obtained.
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Mixing-Limited Reaction
when the chemical reaction rate, kr » is cufficiently larger

than the mixing and other characteristic rates of the problem, Egs.
(2) demand that

ab \
Cp " 0 (12)

->
for all x and U. Each temm of Eq. (6), then, vanishes except the
last two terms, the dissipation and chemical reaction terms, which

become with the use of Eq. (10) and Egs. (2),

1/2 2
fu = = Y ¢ 20’ . (13)
a )y '

(°’§ + 4 gcacb)

As explained in vef., 1, the above shows that, in the 1limit of fast
reaction, the reaction rate 1s equal to the turbulent dissipation rate.
The set of kinetic equations governing the hydrogen combustion
now consists of the five equations represented by Egs. (3) and (4), and
the degenerated equation, Eq. (13). Solution of this set is discussed
in the next section following the brief consideration of the flow

field given below,

Mean flow field for incompressible turbulent Jet 1s well known.
(See refs. 9 and 10.) So that full attention can be given to describing
the combustion phenommenon, the mean flow fleld solutioris fourd in
refs. § and 10 are enmployed in the present analysis ifistead of solving

12




for the flow field by the kinetic theory.

Recognlzing the fact that exact detalls of the flow field have

only a secondary effect on cambustion, solution of ref. 9 for u«/‘ﬁ; =0

is first modified slightly to include the influence of the finite initial

Jet diameter on the flow fleld using the information given 1 ref. 10.

The result is then generalized so that it can be approximately used for

arbitrary values of “«/% also. The mean veloclity components employed

are
Y
o
u
c
and
Yo
u
c
where
€
n
and
a

a

+5.8
%Tl's'.'g [1*(1'%?)(—)] ’

1
1-¢l1- —————-—] ,
[ (1 +3n%)°

]
2)2

6.4, a, = 0.6, and ag = 0.03295,

t

(14)

(15)

(16)

(17




Having completed formulation of the problem, solution of Eq. (3),
with Eq. (U), and Eq. (13) constitutes the next section.

ANALYSIS

As stated earlier, the kinetic equations governing cambustion will
be solved by the bimodal moment method. The method 1s similar to that
employed in the previous work, ref 6, except the mean velocity component,
Vg s is not zero in the present problem, and this requires a somewhat
different approach in the dlvision of the veloclty space.

Moment Equations

The first two moments of Eq. (3) are obtained by multiplying the
equation by 1 and V successivély and by integrating the resulting
equations term-wise with respect to the velocity space. In eylindrical

coordinates, these equations are

Hf(uo'*'U)deU-l';E (VO+V)deU -ff w, au , (18)

3
=
i
3
i
£

I S 3 + >
uo-ﬁfw‘sz+vo-5fosz+$fV2f‘zdU

avo avo -+ Bvo -
+ uo'é-x—- +Vo-5}—ffsz+'3—r— Vi z dU

i A A R

1

1/2
<UkUk>

= - = (1+2y) szdU-l—fo‘wsz : (19) -

14




In the derivation of Eq. (19), the continuity equation resulting from

setting z = 1 in Eq. (18), and the relationships

> ->
fUVf‘sz << uofosz,

and | (20)

-+ -+
fosz < < uoffsz ,

have been employed.

Bimodal Approximation

For convenience, the probability density function of the fluild elements

is approximated by a Maxwellian function in terms of the velocity components ,

relative to the mean velocity. Thus,

. 1 A
£= 3 72 S GO 2
(-37 ™ <UkUk>)

The species mass fraction, 2z , is then approximated by a bimodal

function as,

z(;,a) z(x,r,V)

zl(x,r) + zz(x,r'), (22)

where

15




zzfx,r) = 0 for V> v,

and (23)
zl(x,r) = 0 for V < vy

Note that the above relationships imply
zz(x,r) = 0 for v > 0,

and (24)
zl(x,r) = 0 for v < 0.

Therefore, the bimodal division is actually carried out in the absolute
velocity space.

Eqs. (21) and (22) facilitate the evaluation of a moment as

Qz> = fosz =I dededUsz
-V, ) 00
-vo o o«
+ de dedUsz, (25)

=00 -

->
where @ denotes an arbitrary function of U..

Governing Equations for Combustion

With the use of Egs. (21), (25), and (13), and the relationship
between w, , Wy, and o, glven in Egs. (2), Eas. (18) and (19) are
reduced to a set of explicit partial differential equations in x ard

r for each of the z defined.by Eq. (4). Then, with appropriate non-

16
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dimensionalization and some manipulation, the following four sets of
equations are ootained.

In all subsequent equations, the symbols for velocities, except
% s Uy and u, , represent the normalized velocitles with respect

to u,

= =
u, uo/u - vy Vo/uc .

U = U/uc, VvV = V/uc, and W = w/uc .

172 ¢ 2
o2 )

¥(c,) = -[(:-% %ﬂg + v, ;\g)cao"' <Ve,> ZZVTO]
- 9:——;-?1 (1 +27)<Ve > - ;ﬁ;ﬂ?cao%g o
(- 44) .
M g2, ¢ °b2 + - 3 1/2
o(c,) = ", xY 302 o {ep + ¢ erf‘[(—g) vo]}’

(27a)

(27b)
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E b E »
-—-—-——(1+2y)<Vc>-—- .

23 > My Reem
caocbg ¢~ exp (- 2—% vg) . (28b)

2
M, .1/2_ ¢c__C 1/2
ch) - M_d E - Y aozbo {¢* + ¢ erf [(2-%) Vo]} , (29a)

gl/2 M

d E
- = (1 + 2y)<Vc > + Mo d
23 VT T Sem 172
cato? ¢ o1 (- A7) 2o
2
1/72_ ¢ 1/2
- d E Y “ao’bo + 3
¢(h) = N z 3 {¢ + ¢ erf[(ﬁ) VO]}, (30a)
u_ av.u Bv v
_ o “o"¢c o
¥(h) = - [(Q 3X + Vo 3R ) h + <Vh> aT]

gl/2

- E (1 + 2y)<vn> + --Jljr-
2% Y M— A(Gw)l e

caocbc2> ¢~ exp (- 7% vg) . (30b)
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~ The functions gzoverning the chemically inert species are obtained from
those of the other chemical specles as

> -»>
fog dl = f[l- (Cyy +cb1+cdl)] au ,
(31)
-> -
f Cas au = ¢ [1 - (°a2 + Cpo + °d2)] au .
The operators & and V¥ are defined by
92 3z
- 2 Po 13
8(z) U5t * Vo 3R * B3R (Revz>) (32a)
and
u. Ju _<Vz>
= 0 _°¢C <Vz> ___
¥(z) uc T O T + <V22> . (32b)

Various ensemble averaged quantities appearing in Egs. (27) - (32) are glven
by

1/2
z, = <z> = %— (zl + z2) + % (z:L 2) erf [( \ ] ’ (33)
1/2
<\Vz> = (z1 - 2,) (6%) exp (— 2% vg) , (34)

1/2
<V22> = % (z1 +22) + (z:l - z2) ggerf[(ﬁ?’-) vo]




(&) v (-22)} -

Runctions ¢ and ¢ arising from Eq. (13) are defined as

> (36)

where

+ -

With the velocity profiles given by Egs. (14) - (17), and the

~

turbulence properties, E and A , considered to be known in the present
analysis, as will be discussed subsequently, Eqs. (27a) through (31) constitute

ten equations for the equal number of unknown functions, Ca1s Ca29 Cp1s Cppo

h,, and h2 % Solution of these equations and discussion

Ca1° Ca2° Ce1® Ce2» M0
of the results comprise the remainder of this report.

*One may alternatively consider c+, e, c+, s etc., as the
a’ %a’ % %
unknown functions via Egs. (37).

20




Wave Behavior of Equations and Boundary Conditions

As was stated earlier, the governing equations, Eqs. (27a) - (31), are
hyperbolic.. These equations will be solved by a finite difference scheme;
however, it will be useful before the solution to study their behavior on
the characteristic plane. Such a study, among other things, will clarify
the boundary conditions to be applied.

The sets of two equations, (27a) and (27b), (28a) and (28b), etc., are
all similar. Equations (27a) and (27b), therefore, are used in the following
discussion of the general behavior of the governing equations.

o)

1/2
The terms ¢~ erf (5%) v_ inEq. (27a) and [(uo/uc)(avouc/ax) +
vo(avo/aR)] a0 in Eq. (27b) do not affect the basic behavior of the equations.

Neglecting these terms for the present discussion, Egs. (27a) and (27b) can
be transformed into the followlng set of characteristic equations.

dg
O [ T @ e
' (%)1/2 a Yo d g uc” ’ (38)
(@): 5 1(-‘3 )1/2 ' (39)
dx Ug ;12-
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For the axisymmetric jet shown on Fig. 1, the characteristic

directions defined by Eq. (39) are sketched in Fig. 2. The two waves

consisting of {c; - (2/w)1/2c;] and Ic; + (2/w)1/2c;1 propagate along

the two characteristic directions £ and £ respectively according to

Eq. (38). These waves dissipate by the quantities contained in the last

curly bracket of Eq. (38). These quantities represent three physical

phencmena, The first and third terms involving ¢' and ¢~ denote

the chemical reaction, the second and the last terms signify the turbulent

mixing, and the term next to last represent turbulent dissipation. These

physical phenomena combine to dissipate the waves as they travel along the ?
characteristics. The wave behavior will be discussed further following the
numerical solution later.

As seen from Eq. (39) and Fig. 2, the R-axis 1is "space-like" whereas
the X-axis is "time-like" (see ref. 11). Therefore, two boundary conditions
are required along the R-axis and one along the x-axis. These requirements
can be satisfled by the conditions that,

for x = 0 andall R & 0 ,

- c; = (c;)x_o , (40)

c. = (c;) . (41)

w1

x=0




T R R

(42)

By the use of Eq. (33), Eq. (U40) can be replaced by the mean mass fraction
profile, (cap)x-o . The boundary condition of Eq. (U42) arises from the

reflective wave condition,

2 2
a-@) % - @) B

which can be satisfied only by Eq. (42).
SOLUTION

As was stated previously, the governing equations, Eqs. (27a) through
(31), are solved by the MacCormick's finite difference method (ref. 8). Details
of the numerical method and the computer program are given in the Appendix.

The turbulence properties and the boundary conditions corresponding to Egs.
(40) - (42) employed are discussed in this section.

Turbulence Propertles

Turbulence energy and scale are needed to render the governing equations
self-contained. Here, these quantities are chosen such that they will
give the conventional eddy diffusivity (ref. 9) in the limit of the
statistically near-equilibrium turbulence field (refs. 5, 6). As was done
for discussion of the wave properties of the governing equations in the
preceeding section, Egs. (27a) and (27b), with the term [(uo/uc)(avouc/ax)

n,
Ml 11t e st ot s T i




+ Vo(avo/mn"ao neglected, are used for demonstrvtici. Oeneral
behavior of all sets of the two equations, (27a) and (27b), (28a) and
(28b), ete., is the same.

Equilibrium turbulence field is approached as

oada (4b) ;

0 (45)

N ———

and ¢ —_— 0

Eq. (27b) then reduces to the conventicnal, gradient driven diffusion
relationship,

n oc
A El/2 a0 (46)

2
Vo> T TR oK

The eddy diffusivity is defined by the above equatio. as

€
m 2 3 gl/2

A substitution of Eq. (46) into Eq. (27a) results in the conventional,
parabolic conservation equation (refs. 9, 10) with the same flame-sheet reactlon
(ref. 12),
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ac
ueuo u.?x__ + u(!vO —— ; .ﬁ (f’ gm —s-r—) + waot(r - ) ’ (ue)

vhere r* denotes the position of {lame shect,

he turbulence scale and energy, A ana E , are chosen to satisfy
Eq. (57) with the conventional value of eddy diffusivity, €, . The mean
velocity profilus to be employed, Egs. (14) = (17), have been cbtained from
ref. § for the axisymmetric jet with u,/up-o . The same reference gives

o = 15.17,
and (49)
€, ® 0.01388 Lu‘D .

Implicit in the conventional similarity analysis of ref, 9 is that all length
scales vary as 1/(32 + X) according to the variable n given in Egs. (17).
Therefore , the present turbulence scale A should be a constant fraction of
the jet radius, and should vary with respect to X such that n 1is a constant.
Denoting this constant by 8y » Eqs. (17) give the relationship

~ x+32
A o= au( = ) (50)

A substitution of Egqs. (14), (49), and (50) into> Eq. (47) results in

8 = 0.0&9;17(%4- 2y) ) (51)
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The turbulence dissipation ratio, vy , 1s set to 1/3 as was done in
the previous work, ref. 6 .

Eq. (51) shows that E must be a constant vali~ in order to produce
the conventional conservation set, Eqs. (47) and (48), in the limit of near-
equilibrium turbulence field. Existing literature (see, for instance, refs. 10
and 13) shows that E 1is of order 0.1. The values oi'.é employed in
the present camputation are,

E = 0,05 to 0.2, (52)

The corresponding values of a, are determined from Eq. (51). Note that

ay = 0.26 when E = 0.1. Since the Jet boundary corresponds to n & 2.5,
the turbulence scale represented by a; = 0.26 is about one tenth of the jet
radius which 1s of the order of the mixing length as expected. Solutions for

E = 0.1 and a; = 0.26 will be used for comparison with the experimental
data subsequently.

Boundary Conditions
The boundary conditions for Eqs. (27a) - (30b) are the same as Eqs. (40)

- (42) for each of the variables, c , c; , ¢y , ¢y , etc. The conditions
of Egs., (40) and (41), however, also imply that each of the variables is
specified at R+ forall X.

Before the boundary conditions are explicitly specified, a consideration
should be given to the following. The similarity velocity pro%les given by
Eqs. (14) - (16) are valid for X 2 5.8 (see ref, 10). In iact, ususally,
the flow is not fully turbulent for X < 5.8 and there the present turbulence

26
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analysis does not apply. Since the present interest lies with the

combustion description for large X's where influence of the initial

condition is negligible, the initial conditions are specified at X = 5.8 .

Solutions of Eqs. (27a) ~ (30b) are obtained for the following

initial and boundary conditions.

At X = 5.8,
c.ao = éao(R> ’ C;
%0 ° cbo(R) ’ Cg
w0 = 0 3
h, = h(R) , h
¥or R » » and X > 5.8,
6o = 9.22 , c;
%o 0 cg
C3%0 0, cc-i
h, = 0.1, h™
At R = 0,
c; = c =2¢ = h =0.

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)

iy i
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The initial profiles for a0 and o shown on Fig. 3 are specified

for Eqs. (53) and (54). The profile for c is chosen such that it

bo
corresponds to the pure hydrogen jet issuing fram a circular nozzle of

radius L/2 as seen in Fig. 3; that is

2 o
111‘4. = 21r(J Cpolol dr)x 5.8 (62)
o .

The a0 profile of Fig. 3 is chosen arbitrarily with only two conditions

in mind. The mixing with hydrogen begins at X = 5.8 , and that ¢,, profile

is continuous with Eqs. (57) satisfied. Any overt discontinuities will tend

to propagate along the characteristics and may cuase numerical difficulty.

An arbitrarily continuous profield for h 5 is specified at X =5.8 for
Eqs. (56) to satisfy Eags. (690).

The simplest value for c; , cg , and h to be assigned at X = 5.8
is zero. It was found, however, that numerical stability of the solution is
improved by specifying a small but non-vanishing function for each to satisfy
Egs. (57), (58), and (60). Both 4o 2and ca are specified to be zero for
all R initially.

As was stated earlier, the present interest lies with the combustion
description for large values of X and with the overall combustion phenomena
for the entire jet. Detalls of the initial conditions have very little
effect on these.

Solutions of the governing equations, (27a) through (31), satisfying the
boundary conditions, Egs. (53) - (61), are obtained by the MacCormick's (ref.
8) finitie difference method. Details of application of the method are found

in the Appendix. Results of the solution are discussed in the next section.
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DISCUSSION OF RESULTS

Figs. 4, 5, and 6 show the mean reactant mass fraction and temperature
profiles for the three different axial locations of X = 21.81 , 61.82 , and
105.81 respectively. These are the solutions for E = .1 and g, = 0.26
which together comprise the eddy diffusivity given in ref. 9 in the limit

of an equilibrium turbulence field (see the preceding section). -‘Therefore;-these

solutions are considered as the more representative ones for the standard
Jet issuing into a stationary air.

Solutions were found to be insensitive to u“/up when it is smaller
than 0.2. On the other hand, the numerical difficulty increased rapidly
with decreasing ua/% . Therefore, the solutions discussed in this section
were obtained for um/u\p =0.2 .

The general shapes of the mean profiles are same as those found in
the experimental works of refs. 14 - 17. Note that the present results,
a0 and ¢, , are in mass fractions whereas those given in refs. 14 and 15
are in mole fractions. Mean profiles of the combustion product are similar
to those of temperature, and are not shown in the figures.

The temperature peak is located at a point away from the jet axis for
small values of X (see Fig. 4). The peak point is slightly on the fuel-rich
side from the stoichiometric location, where the fuel-to-oxygen mass ratio
is 1/8 , in agreement with the finding of ref. 14. Location of the temperature
peak moves to the jet axis as X 1s increased.

At the larger X's (Figs. 5 and 6), oxygen survives through the

combustion zone and appears in the Jet axis. The flame comprising a shell
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in the Jet (Fig. 4) for smaller X's pervades throughout the inner core
of the jet (Figs. 5 and 6) for larger values of X . The flame thickness
is of the arder of one~tenth of the jet axial distance, X , and comprises
about one<half of the jet cross section.

Distribution with respect to R of the combustion rate is shown in
Fig. 7. Note that the maximum bwrning point does not correspond to the peak
temperature position; particularly for X = 61.82 and 105.81 . For all
X's , the maximm combustion point is slightly on the fuel-rich side of the
stoichiametric position. For X = 21.81 , the maximum burning takes place
at a point between the temperature peak and the point of stolchiometry.

Comparison of Figs. 8, 5, and 9 shows the effects of varying
turbulence energy on the mean profiles. Other than the substantial change
in the burning rate evident from the level of Cpo ? E does not basically
change the mean préfiles. The combustion rates will be elaborated upon
subseguently in conjunction with another figure. Thickness of the flame
is seen to be insensitive to the turbulence energy variation.

Figs. 10, 5, and 11 show that the flame thickness 1s substantially
affected by the turbulence scale represented by ay (see Eq. (50). Greater
the scale (size of the energy containirg eddies), greater is the flame
thickness. This was expected from the previous studies (refs. 1 and 6).

The flame is thick in contrast to the Infinitesimally thin flame sheet
predicted by the conventional theory (see ref. 12). Therefore, the flame
shape and length for the jet flow camnot be precisely defined. However,
loci of the stochiometric locations may be used for camparison of the
flame shapes and lengths. Fig. 12 chows the stoichiometric positions
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for the four of the computed cases. Both increased turbulence energy and

© scale result in the shorter flame lengths.

Shorter flame lengths, of course, are caused by the enhanced burning
rates, and this is seen in Figs. 13 and 14. These figures show the total
integrated burning rates across the jet cross-section as functions of X .
Stoichiometric lengths of the flames for E = 0.1 and 0.2 with a = 0.26
found in Fig. 12 are also shown in Fig. 13. Because of the very thick nature
of the flame zone, the cambustion rate does not become zero at the
stolchiometric end of the flow (Fig. 13), but it asymptotically approaches
zero.

Both larger turbulence energy and scale result in enhanced combustion
rates (Figs. 13 and 14), and, hence, in the shorter flame lengths (Fig. 12).
Increased turbulence energy enhances both mixing and the chemical reaction
rate which is controlled by the turbulent dissipation (Eq. 13). This is
evident in the characteristic equations, Eqs. (38) and (39). Larger
turbulence energy implies, according to Eq. (39), the greater slopes of
the characteristics which cause a faster mixing between the fuel and the
surrounding air. The increased turbulence energy also enlarges the
dissipation-limited chemical reaction terms of Eq. (38), which are the
terms involving ¢+ and ¢ . Therefore, turbulence energy has a
substantial influence on the combustion rate and flame length. This is in

agreement with the previous findings (ref. 6) in plane mixing layer of infinite

domain. It was found in ref. 6 that the combustion rate increased with & .

Although the present jet problem is quite different from the plane mixing layer
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problem analyzed in the reference, it i1s interesting to note that the two
~Jet cambustion rates respectively for E = 0.1 and 0.2, as represented by

rocals of the two stoichiometric lengths of the flames (see Fig. 12),
Larger turbulence scale, \ , enhances the combustion rate through
increased mixing which 1s brought about in a manner quite different from

that for the larger E discussed above. The characteristic directions

are independent of the turbulence scale (Eq. (39)). Increased scale
actually reduces_the furbulence dissipation-limited chemical reaction

rate as seen in Eq. (38). In fact, magnitudes of all the terms on the
right-hand side of Eq. (38) are reduced by the increa<si A except the
mixing terms which are the second and last terms in the second curly
bracket. However, as explained in the sentences following Egs. (38) and
(39), this right-hand side constitutes the wave dissipation.® With the
dissipation action on the wave diminished, the wave propagates further and
for a longer period of time. For instance, the wave consisting of the fuel
properties propagates into the oxygen-rich territory until the chemical
reaction, the dissipative action on the wave, completes its task. Therefore,
inecreased ; simply stretches the reaction zone as seen in Figs. 10, 5, and
11, and in so doing, brings the reaction zone into the oxygen-rich region.

#Note that the word "wave dissipation" is employed to mean the standard
dissipative action on the wave. This should not be confused with the
"turbulence dissipation" which refers to the viscous dissipation of
the turbulent fluctuations.
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‘Ihis implies an enhanced mixing and, consequently, an enhanced combustion
vate. This is in agreement with'the findings of ref. 6 for the plane
mixing layer.. As was found in that reference, however, it is expected that
- continuous increase of the scale will eventually result in the reduced
combustion rate. This is because a point must be reached with increasing
’7: beyond which no amount of efficient mixing can overcome the inefficlency
of the turbulence dissipation—limited reaction rate caused by the large
scale.

Typicéal variations of the reactant mass fractions and temperature
along the jet centerline are shown in Figs. 15 - 17. As explained earlier,
the temperature peak occurs away from the centerline for small values of X .
The maximun temperature is also indicated in the figures when it does not
correspond to the centerline value. When the conventlonal flame-sheet
solution is obtained, the temperature peak exlsts at the sheet which is located
away from the centerline until the end of the flame. Also, this temperature
is constant until the flame ends and it can be readlly computed. This flame
sheet temperature 1s shown in the figures for comparison. Because the
chemical reaction 1s spread across a thick flame zone, the peak temperature
computed in the present study is substantially below the hypothetical
‘flame sheet temperature. This difference is greater than the difference
found in the experimental work of ref. 14. As was stated previously,
variation the cambustion product is similar to that of the temperature.
Since concentration of the combustion product was measured in ref, 15, but
not the temperature, as well as in ref. 14 for pure hydrogen jet combustion,

the present computed values of the combustion product 1s compared with those
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_of refs, 14 and 15 in Fig. 18, The present values of the H,0 concentration

agree rather closely with the experimental values of Hawthorne, et al, (ref. 15)

Bt are considerebly below those of Kent (ref. 14).

Fig. 18 shows that the computed concentrations of N, and 0, agree
satisfactorily with the experimental data of both refs. 14 and 15. Note:that
the O, centerline concentration was found to be practically zero in ref. 15
up to X of about 66, which is in agreement with the present results.

Finally, the computed stoichiometric contour of the flame is compared
with that measured in ref.l4 in Fig. 19. No detailed agreement in these
contours was expected since the present solution was based on an
incompressible flow assumption. However, it is rather surprising to see
the close agreement on the flame length, that is, on the overall combustion
rate. Hawthorne, et al, (ref.15) measured the "luminous" flame lengths
for various jet flow conditions and found them to be between about X & 128
+ 146, These values also agree closely with the computed results. The
computed contour for the hydrogen mass fraction of 0.003 is also shown
in Fig. 19. This shows that the flame 1s thick and the combustion continues
for a substantial distance following the stolichiometric end of the flame, though
at diminishing rates, as explained earlier.

CONCLUDING REMARKS

The kineti: theory of turbulent flow was employed to analyze the mixing-
limited combustion in axisymmetric jet. The bimodal moment method of
solution of the kinetic equations was modified to circumvent certain

34

W




il

i

ORI il

)

E

T R T

© difficulty encountered previously. In the absence of a more direct

numerical capability for solution of the original kinetic equations, this
modification enables one to obtain satisfactory solutions of the turbulent
canbustion problems. - It is noted that a direct numerical technique is
being tried elsewhere (see ref., 7) with some success, and such a method
should eventually replace the present method.

The modified bimodal method was employed to transform the kinetic
equations governing the cambustion energetics into a set of hyperbolic
differential equations. Assuming, for convenience, that the incompressible
mean flow field is given, this set of the equations was integrated by the
MacCormick's finite difference scheme for combustion of hydrogen.

Detailed structure of the flame as well as the overall combustion
rate of the hydrogen jet were computed. The centerline varlations of
the reactant concentrations and the flame length cbtained were compared
with the available experimental data which showed a satisfactory agreement.
A full discussion is found in the preceeding section.

One of the contributions of this report is the successful application
of the finite difference scheme to solution of the governing equations for
combustion based on the kinetic theory. This numerical technique—-together
with the modified moment method=--should provide a considerable flexibility
for analysis of the various combustion problems of engineering interest.
Details of the application of the numerical method are given in the appendix.
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APPENT:V'Y

INTEGRATION OF THE GOVERNING EQUATIONS

Numerdcal is

Egs. (27a) - (30b) are transformed into a first order vector
differential equation. Numérical solutions are obtained for the variables
+ -
¢y and ¢y where

(A1)
Gy = Cp, € ™ Oy, C T Cg, Cg = O .
The vector differential equation 1is
B+ mi@ =35@ . (A2)
Components of the vectors are given as follows.
; For {1 = od4;
g, = c‘; , (A3)
v v
> o) 2 0 2
; “'1“" - ’T;;' C0 + \'I; <V°i> - /Fﬁo- exp (é-% Vo ) Cyo (AY)
-~ . /"- 3 2 ( 2)3\70
Si(ﬂ) - [-J; (1 +E vo)exp % ve )57 .
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2 Vo 3 2\%
+ u_o.;i-%ﬁa-o- exp(mv )Ci (A5)
ey (A6)
(A7)




(A8)

Ci = Right hand side of Eq. (27a)a (283)3 (298,), or (303) (A9)

% = Right hand side of B, (270), (28), (29b), or (30)
v

- 359. wT,> | (A10)
The wdifferentiated term §(§) is treated as source term,

The mumerical method employed 1s based on the two-step explicit procedure
developed by Lax and Wendroff (ref. 18) and, more recently, by MacCormick (rer,

8). The intermediate state, 53* » 18 computed as

-

= ~‘ - “ (O - P 0
ot = A - [, FE] + ax 3@ (AL2)
The final state is then determined by

Al . 0.5{i + By - % [Fae - Fam_ )]
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Thus, for a given vector f* at X = nax , the subsequent state vector is
rarryted forward in the X-direction. The two-step explicit procedure provides
a solution with second order acouracy in the finite difference increment. This
method has an advantage in which no maxtrix inversion and iteration are
required. It has, however, the disadvantage of being conditionally stable.

Stability condition of the difference equations requires that the Courant
condition be satisfied at each axial position X as, ®

X < mn(‘gé; exp (- évg)uo AR, 0.5 g-:lm) . (A13)

For the jet problem, the non=dimensional velocity Uy varies from one at
the center to zero at the jet boundary. Therefore, it is difficult to satisfy
the stability condition. This, however, can be ameliorated by specifying
a small but non-zero value of U, at the jet boundary.
There exists another difficulty assoclated with the small uj for
R=»» , The difficulty arises because the gradiant of the flux functioen,
aF/3R , is smell while the source function, S , does not vanish due to
the terms containing 1/uo . This causes an inaccuracy near the Jet boundary

which then propagates inward. This difficulty, of course, can be remedied

-

by demanding a higher degree of accuracy for 1 by reducing the g-id size,
AR . However, the required computer time rapidly increases with the reduction

b




of AR . For instance, halving of the AR results in quadrupling of
the computer time. The problem was resolved by the combination of reduction of
AR to a practically feasible value and imposition of the condition,

+ + +
ey = min [c1 > C (R~ w)] . (A1k)
on the oxidant which diffuses fram jet boundary to the core regi: .. With

the above stability and accuracy considerations, solution of the soverning
equations is obtalned by the two-step lax-Wendroff procedire.

One additional point should be made. The dependent variables of Egs.
(27a) - (30b) are Cyq 5 <Vey> , and . <V2c:i> . These are functions of

z, , and z, , as defined in Egs. (33) - (35), which are, in turn, functions

of z¥ and z= via Eq. (37). It was found that the stability and accuracy
eriteria were best satisfied by employing c'{ and c; as tne dependent

variables of the equations rather than ¢ <Vci> , ete.

io ?

Camputer Program

The computer program is written in PL/I language. A brief description
of the procedures (subroutines in FORTRAN language) used in the code is given.
The program structure is implicit so that numerous variables are implicitly

passed through the procedures.

1. Procedures
JETFLAME — This is the main procedure which calls the necessary

procedures and controls the step-size DX . The standard step-size DX SAVE ‘

by




is first tried, and if Cyao € 0 at any point in R the step-size is
reduced by 80 percent.

SOLVE -- This procedure performs the solution by the two-step Lax-
Wendroff numerical scheme.

SOURCE — This is the procedure in which F(R) and S(8) ave
computed and the procedure SOLVE calls SOURCE.

BOUNDRY — The boundary values for c;, s C4 s c;, Co s Cp s
c;,and c, are specifiedat X=X . '

ERRFCIN -- This procedure computes the error function with the

polynomial fit,
erf (x) = g a, ", (A15)
n=1
where
t = 1 (A16)
1+0.32759 X °
REACTION RATE ~~ The overall effective reaction rate,
] <w>» RdR , (£17)
o)
is computed where
~ u
= oK 2 ot -
<w> 5 3 €20%0 [¢ + erf (J;f Vo) ) ] . (A18)
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TRAPEZO -- Integration is performed by a trapezoldal scheme.

2. Inputs to the Code

Tt consists of the procedure INPUT and a file INPUT 1. Tre varilables

for the input are as follows.

E e = 1- (ua/%)

ETAMAX maximum value of n
XSTART X-value -at which the initial values are specified

XSTOP maximm value of X

XOuT output control parameter; prints for every XOUT

DR grid size in R

E_HAT E

MB_OVER MA M /M,

MD OVER MA MM

d a
Al ay
A2 a,
A3 a3
Au a n
D Y
2 SIGMA o

SPECIES{I,J) i-th species at j-th grid point where
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L4y

the values in the file INPUT 1. The values of c; ’ c; R

1=1->c;, 5+cd,
2*0;, 6 + ¢;
3+ g s T v oo
M*cg, 8+cg

The varlables listed--except SPECIES(#, 1) and SPECIES(#, MAXG)--are given

in the procedure INPUTS. However, they are overridden and replaced by

+ +
cd,and N

at the jet center and at R + «» must be glven in the file INPUT 1.

3. Outputs from the Code

The final outputs are the average mass fractions, the turbulent

~

diffusion fluxes, and the local chemical reaction rate, «<w> .

A 1list of the other program symbols is given below.

czo 2,
<Vucz> <\Vz>

<Wp> [o<m>R dR
WP(R) <>, (Eq. (A18))
ETA n

Program Listing

(A19)




B

bt

e
"

(39YNONYT I/1d)
WOND0Nd ¥3LNdWOD
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gh

?.

8.

9.
10.
11.
i2.
13.
14.
15.
16.
17.
18.
19.
co.
el.
e2.
23.
c4.
5.
6.
27.
c8.
29.
30.
31.
ac.
33.
34.
35.
36.
37.
38.

- 39.
40.

FLAME:PROC OPTIONS(HRIN)g

DCL(SPECIES(X,X), F(Xx,x), S(X%,%x), SPT(%,%)) CTL FLOAT Dﬁﬂﬂlﬂl“

DCL (CHEM. REQCTION(X). SPECIES-QQUE(!p*) ) CTL FLOAT nﬁﬁitﬂig
DCL(AA, BB, A1, A2, A3, A4,

X, X2, DX, DX_SAVE, XOUT. ETAMAX,

XSTART, XSTOP,

R, DR, RMAX, E,

A, D, E_HAT, LAMDA, SIGMA, REF_CBO,

MB_OVER._MA, MD_OVER_MA, SQRTE ) FLOAT DEC(16);
DCL (SET_PROFILE, YES INIT(’Y’), NO INIT(’N’)>) CHAR(1);

DCL(GRID, MAXG, MAXR, INCREMENT, ITR, ITR_MAX) FIXED BIN(!E);; :

DCL(EXP, MAX, MIN, SQRT, FLOAT, ABS, FIXED) BUILTIN;
DCL(I,J) FIXED BIN(15);
DCL INPUT1 FILE;
7% SPECIES(I)= c- VECTOR
UHERE 1=CAh0
2=<UxCad,
3= CBO,
4= UXCB>,
5= CDo,
6=<VUXCD>,

8=<ULH> b ¥4
CALL INPUTS;

AA=SQRT(1.5/E_HAT);
BB=SQRT(E.HAT/18.848);
DX_.SAVE=0.70Xx(1. -E)XDR;
INCRENMENT=FIXED(@.1/DR);

IF INCREMENT=0 THEN INCREHENT-i;
X2,X=XSTART;

SGRTESSQRT(E-HQT)
CAaLL BOUNDRY(SPEOIES);
SPT=SPECIES;
NRXR'HRXG*E;




41. LAMDA=A4X(X+A2)/S1IGMA;

42. SET.PROFILE=YES;
43. DX=DX_SAVE;
44. © MAXR=FIXED(20.X(X+A2)/(SIGMAXDR));
45. CALL 0UT1;
46. LLL:DO J=1 TO 15;
47, CALL SOLVE(SPECIES,F,S,RETRY);
48. END LLL;
49. SET.PROFILE=NO;
se. CALL QUT1;
51. MAIN:DO WHILE(XKXSTOP);
sa. DX=DX_SAVE;
53, RETRY$X=X+DX;
54. IF DX<1.E-@9XDX_SAVE THEN e
56. PUT SKIP(4) EDIT(’SPECIES(1) IS NEGATIVE’ )
57. (COL(4),A);
58. GO TO FINISH;
59. END;
60. LL2:D0 J=10 TO MAXG; <
61. MAXR=J;
gg. IFDSPECIES(I.J))0.9998*5PECIES(1;HGXG) THEN GO TO OP2;
64, OP2:LAMDA=A4X (X+A2)/SIGMA;
65. MAXR=MAXR+8;
€6. CALL SOLVE(SPECIES,F,S,RETRY);
67?. IF SPECIES(3,1)¢0.005 THEN GO TO FINISH;
68. IF X>=X2 THEN DO;
69.  X2e=X24XOUT;
70, CALL OUT1;
n". END;
7. IF SPECIES(3,1)<0.005 THEN GO TO FINISH;
?3. END MAIN;

= 74. 0

- 5. e :

0

78,




gt

7.
78.
9.
80.
8i.
82.
83.
g84.
85.
86.
87.
88.
89.
ge.
91.
92.
93.
94.
9s5.
96.
97.
98.
99.
100.
101.
1e2.
103.
104.
105.
106.
107.
108.
109.
110.
111.

SOLVE :PROC (SPECIES,F,S, RETR?)
DCL(SPECIES(X,%),F (%,X), S(£,%), SIGN,SLOPE) FLOAT nect16).¢
(I,GRID,IX) FIXED BIN(15);

pcL J FIXED BINC1S);

DCL RETRY LABEL;

CALL SOURCE(SPECIES,F,S);

FIRST:DO GRID=2 TO MAXR-1;

SPEC13D0 I=1 TO 8;
IF ABSCF(I,GRID))>1.E-30 THEN
SPT(I,GRID)=SPECIES(I,GRID)-(F(I,GRID+1)

/F(1,GRID)-1.)% F(I,GRIDIEDX/DR
+DX$S(1,GRID) 3

SPT(1,GRID)=SPECIES(I,GRID) |
-(F(1, GRID+1)-F(I GRID))SDX/DR +DX!S(I.GRID) 3
IF SET-PROFILE-NO THEN
CHECK1:DO;
SPT(4,GRID)=MNAX(0,.0,5PT(4,GRID));
IF SPT(l GRID)<0.0 THEN
DO;
X=X-DX3
DX=0. EXDX
IF RBS(SPT(i GRID))>1.E-06 THEN GO TO RETRY;
ELSE SPT(1, GRID)'O 03
END;
END CHECK{;
ELSE SPT(1, GRID)'HGX(O 0,SPT(1,GRID));
IF QBS(SPT(I GRID))<1.E~-12 THEN SPT(I, GRID)-O 03
END SPEC1;
END FIRST;
DO I=1 TO 4;
SPT(2%1-1,1)=5PT(2x1-1,2);
END;
CALL SOURCE(SPT,F,S);
SECOND:DO GRID=2 TO MAXR-1;

ELSE




bh

112.
113.
114.
11S.
116.
117,
118.
119.
120.
i21.
i12e.
123.
124.
12S.
126.
1a7.
1e8.
129.
130.
131.
13e.
133.
134.
13S.
136.
137,
138.
139.
140.
141.
142,
143.
144.
145,
146.

SPEC2:D0 I=1 TO 8; S
IF ABS(F(I,GRID-1)3>1.E-30 THEN |
SPECIES(I,GRID)=@.5X(SPT(I,GRID)+SPECIES(I,GRID)

~(F(I,GRID)/F(I,GRID-1)-1,)3F (] cnxn«x)xnx/nn
cLe +DX3S(I1,GRID)) 3
LS

SPECIES(I,GRID)}=0.52(SPT(1,GRID)+SPECIES(I,GRID)
-(F(I, GRID)*F(I GRID-i))tDX/DR
. +DX¥S(I GRID)) ;

IF ABS(SPECIES(I,GRID))<i.E~12 THEN sPEcIEscx.eaxnrao.o,]

END SPEC2;
END SECOND;
DO I=1 TO 4;
gpchES(axx 1,1)=SPECIES(2%1-1,2);
N
END SOLVE;

SOURCE :PROC(SPECIES,F,S);
DCL(SPECIES(X,X), F(X,X), S(%X,X),
ETQ' UO’ Uo, U0-0UER-HO ERF’ R'
61, G2, G3, VA,
FS, UC,
CHEM1, CHEM2, STCHMTRY,
TERML, TERM2, TERM4, TERME,
UsP(4), Ui, W2,
DERI_VG, DERI_VO_X, DERI.VO.R,DERI UO-R,DERI-LOGUOp
PHI.PLUS, PHI_MINUS ) FLOAT DEC(16);
DCL SPECI(X,X) CTL FLOAT DEC(16);
DCL (I,J) FIXED BIN(15);
QLLOCGTE SPECI(8,MAXR);
BOUNDRY$DO 1I-1 TO 4;
F(exl,1)=1, 447202!50RTE!SPEOIES(231-1 1)78.3
END BOUNDRY;




147,
148.
149.
15e0.
151.
152.
153.
154.
1SS.
156.
15%7.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
i72.
173.
174.
175,
176.
177.
178.
179.
180.
181.

IF SET_PROFILE=YES THEN
LL:DO I=2 TO MAXR;
IF SPECIES(1, I)(0¢0 THEN SPECIES(1,1)=0.0;

IF SPECIES(E.I))O ® THEN SPEOIES(B,I)ﬂSPEOIES(?,I*l)z

END LL;
L8:DO I=1 TO 8
L63DO J=1 TO MAXR;

IF ﬁBS(SPECIES(I J))I<1.E-12 THEN SPEOIES(I.J)‘GaOz Y

END L6;
END L8;
R=90.0;

L1:DO Jta TO MAXR-1;

R=R+DR;
ETA-SIGnaxR/(x+na)
FS=1./(1. +o.astTanTa)
UC=A1/(A24+5.8) - EX(AL/(A245.8) - AL/(AZ#X) )3
Uo=1.-EX(1.-FSX%¥2);
U@=EXA3X(ETA-0. astTnxxa)szxxa;
DERI_UO_R~=-EXETAXFSEXIXSIGHA/ (X+A2);
DERI.VO=EXA3%(1.-0. 7SXETAxETﬁ)tFStFS-UOXETAtFS;
DERI_VO_R=DERI_VOXSIGMA/ (X+A2);
DERI_VO_X=-DERI_UGXETA/ (X+A2)
DERI-Locuc--exnlzt(x+na)xxaxuc);
UA=AAXVO;
IF ABS(UA)>0.09 THEN CALL ERRFCTN(VA, G1);
ELSE Gi=VUA;
casEXP(-uaxuaJ;
G3+1./62;
CONTROL_AT_LARGE _ETA:

IF ETAY2.45 THEN

SPECIES(2, J)=-ABS(SPECIES(2,J));

SPECIES(1,J)=MIN(SPECIES(1,J), SPEcIES(l.HAXG));

L9:DO I=1 TO 4;

SPECI(2x1-1, J)-O.SX(SPECIES(B!I -1,J)+1. 2847448/SGRTE

XVOXSPECIES(2X] J));
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182.
183.
184.
18S.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
209.
201.
2ea.
203.
204.
205.
2os.
207?.
208.
209.
2160.
e2i1.
e12.
213.
214.
215.

a16.

SPECI(2%1,J)+0.2303294%SQRTESG2ESPECIES(251,J);
END L9;

L3:D0 I=1 TO 4; |
F(2XI-1,J)=2.%XV0/U0XSPECI (2%XI~1,J)+2.3SPECI(221,J)7U0
-1.773245385%XV0XG3XSPECI(221~-1,J)/U0;
E;%X{éJ) *1.4472025XSQRTEXG3IXSPECI(281~1,J)/U0;
3 .
IF SPECI(1,J)=0.0 THEN SPECI(2,J)=0.0;
IF ggECI(l.J)(S.OE-O3 THEN
3
CHEM1=SQRTEXD/LAMDAXSPECI(1,J) ;
CHEM2=0.0;
CHEM_REACTION(J)=CHEM1;
GO TO OPT;
END;
ELSE I;OSPECI(Q,J)(S.OE-O3 THEN
H
CHEM1=-0.25XSGRTEXD/LANDAZSPECI(3,J)/MB_OVER.MA ;
CHEM2+0.0; '
CHEM_REACTION(J)=CHEN1;
GO TO OPT;
END;
ELSE L7:DO0;
TERM1=(0.25%(SPECIES(3,J)+SPECIES(4,J))%%2
+MB_.OVER_MAX(SPECIES(1,J)+SPECIES(2,J))
X(SPECIES(3,J)+SPECIES(4,J)))
TERM2=(0.25%(SPECIES(3,J)-SPECIES(4,J))xx2
+MB_OVER_MAX(SPECIES(1,J)-SPECIES(2,J))
X(SPECIES(3,J)-SPECIES(4,J))) ;
IF ﬁBS(;gRHl-TERHZ)(I.E-OG THEN
3
PHI_PLUS=2./TERN1;
PHI_MINUS=0.0;
END;

=z T izogme




N
» a17. ELSE DO;
e18. PHI_PLUS=1./TERM1 + 1./TERMR ;
219. PHI_NINUS=1./TERM1 - 1./TERM2;
eel. CHEM1=NAX(0.,0.5XSORTEXD/LANDASSPECI(1,J)XSPECI(3,J)x%2
e2e. X(PHI_PLUS+G1XPHI_NINUS)) 3
223. CHEM2=MAX(0.,0.2303292%E_HATED/LAMDAXSPECI (1,J)XSPECI(3,J)ss2 1
ec4. XG2XPHI_MINUS);
ees. CHEM_.REACTION(J)=0.5:SARTEXD/LAMNDAXSPECI(1,J)XSPECI(3,J)%%2
e26. T(PHI_PLUS+G1SPHI_MINUS)
eav. END L7; |
e28. OPTITERM4=(UOXDERI_VO_X + VOSDERI_VO_.R +VOIUOLDERI_LOGUC); "
e29. TERNE=SARTE/LAMNDAX(1.+2.2D)/2.0; ‘
23e0. 7% SOURCE TERNMS FOR ORIGINAL EQUATIONS PSI’S x/
e31. $(1,J)=-0.53XCHEMS ; 3
a32. $(2,J)=~(TERM4XSPECI(1,J)+TERMNEISPECI(2,J)+0.53CHEN2); ﬁ
233. $(3,J)=-MB_OVER_MASCHEM] ; . i
234. S$(4,J)=-(TERM4XSPECI(3,J)+TERMGISPECI(4,J) ‘ ‘ 1
23s. +MB_OVER_MASCHEM2) 3
236. $(5,J)=MD_OVER_MAXCHEM1;
237. $(6,J)=-(TERN4XSPECI(S,J)+SPECI(6,J)XTERNG)
238. +MD_OVER_MASCHEM2 ;
239. $(?7,J)=MND_OVER_MAXCHEM1;
240. $(8,J)=-(TERM4XSPECI(7,J)+SPECI(8,J)STERNMSG)
241. , +MD.OVER_MAXCHENMZ ;
e4e. L4:D0 I=1 TO 4; ,
_ 243. S(2%1-1,J)=(~-1.77245385%(1.+3.3V0XVO/E_HAT )SGIXDERI..VO.X/US
244. +1.77245385%VOXG3XDER]I UG R/UGXX2
24sS. +2.X(DERI._.VO_R/UO-DERI_UO._R2VO/UOXI2))
c46. ' XSPECI(2XI-1,J) + (-5.31736155/7E_HATEGI
247. X(DERI_VO_X-VOXDERI_LOGUC) -2.XDERI._UG_R/UOXX2
248. ~2.7(UBLR) -15.9520846/7E_HATEX2SVOXVOXGILDERI..VO.X)
249. XSPECI(2%1,J) +2.%5(2%1-1,J)7U0
250. -5.317361553xG3xV0x5(221,J )/ (E_HATIU®);
251. S(2X1,J)=(4.34160752/SAGRTEXVO/UGSDERI..VO.X
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-1.44720252S0RTEXG3XDERI_UOR/UOXX2)XSPECI (231~-1,J)

+(-4.34160752%G3/SORTESDERI..LOGUC

+13.024822/ (SORTEXE_HAT )XVOXGIIDERI_VO_X))ESPECI(281,J)

END L4;
END Li;
FREE SPECI;
END SOURCE;

+4.34160752/SQRTEXGIXS (221,J)/U0;

BOUNDRY : PROC(SPECIES);
DCL{ SPECIES(X,%X), ETA, R, TERM, VO_OVER.U® ,U8) FLOAT DEC(16);
DCL(EXP1, EXP2) FLOAT DEC(16); “

pCL (I, J) 7%
R‘0.0;

XED BIN(15);

L1:DO I=2 TO MAXG;

R=R+DR;

ETA=SIGMAXR/ (X+A2);

TERM=1./(1.

+0.253ETASETAIEE2;

SPECIES(1,I)=SPECIES(1,MAXG)S(1.-TERM);
SPECIES(2,1)=SPECIES(3, 1 )STERM;
EXP1=1.-EXP(-0.0005XR3%6);

EXP2=EXP(-1.52ETA);

IF EXP1<1.E-12 THEN EXP1=0.90;

IF EXP2<1.E-12 THEN EXP2+0.0;

IF ETAC13. THEN SPECIES(1,I)=SPECIES(1,I)XEXP1;
IF ETAY7.5 THEN SPECIES(3,1)=SPECIES(3,1)SEXP2;
SPECIES(S5,I)=(SPECIES(5,1)-SPECIES(S,MAXG) )XTERN

+SPECIES(S, MAXG )

SPECIES(7,I)=(SPECIES(?7,1)-SPECIES(?,MAXG) )STERN

END L1;

+SPECIES(7,RAXGC);

F(4,1)=1.4472025%SQRTEXSPECIES(3,1)/2.
F(6,1)=1.4472025%XSQRTEXSPECIES(S,1)/2.}




e87.
288.
289.
296e.
a91.
a92.
293.
294.
295.
296.
297.
298.
299.
300.
301.
Jee.
3J03.
304.
36S5.
Je6.
307.
308.
309.
3160.
<} 8
3ie.
313.
314.
315.
316.
317.
318.
319.
320.
321.

F(8,1)=1,44720253S0RTESSPECIES(?,1)/2. ;
END BOUNDRY;

ERRFCTN:PROC(YY, ERF);

DCL(YY, ¥, ERF, P, T, EXPY2 ) FLOAT DEC(16);

DCL A(S) FLOAT DEC(16) INIT(0.254829592, -0.284496736,
1.421413741, -1.453152027,
1.061405429 ) ;

DCL I FIXED BIN(1S5);

Y=ABS(YY);
IF v<(6.01 THEN
DO;
ERF=0.0;
RETURN;
END;
IF ¥>4.0 THEN DO;
ERF'l .03
GO TO RTN;
END;
P«0.32759;
T’lo/( 1.+PtV)’
ERF=0.9;
D0 I-1 TO 5;
ERF'ERF+R(I)!T¥2!; .
END;

EXPY2sEXP(-Y3VY);

IF EXPY2<{1.0E-08 THEN EXPY2+0.0;
ERF=1.-ERFXEXPY2;

RTN:IF YY<0.0 THEN ERF=-ERF;
END ERRFCTN;




322. e
' 323. @ REACTION_RATE:PROC(UWP);
; 324. DOL(UC, WP, RESULT,ETA,R,F5,FCTN(X) CTL) FLOAT DEC(16); :
325. DCL J FIXED BIN(1S)y .
326. ALLOCATE FCTN(MAXR); ?
327. R=0.0; |
328. FCTN(1)=0.0; -y
329. L1:D0 J=2 TO MAXR-1; i
33e. R=R+DR; 3
331, UC-A1, (A2+5.8) - EX(AL/(A2+5.8) - A1/(A2+X) ) }
33a. FCTN(J)=UCXCHEM_REACTION(J)XR; i 5
333. END Li;
334, CALL TRAPEZO(FCTN,DR,MAXR,RESULT);
335. UP=RESULT;
336. FREE FCTN;
337. END REACTION_RATE;
338, ' _
, 339. e . 5
| 340, ® TRAPEZ0:PROC(FCTN,DR,MAXR,RESULT); s
341. DCL(FCTN(X),DR,RESULT) FLOAT DEC(16); S
342. DCL(I,MAXR) FIXED BIN(15); 2o
343. RESULT=0.0; :
344, LL:DO I=1 TO MAXR-2; a
345. RESULT=RESULT+(FETNCI 14FCTNCI+1))XDR; .
2 347, END TRAPEZO; 2k
1 4 348, ° uE
o 349, 0 |
- ; 350. 0 i
. : 351, ©  INPUTS:PROC; } 4
N 352. DCL AAARA CHAR(1), BBBB CHAR(1); B
B T 353. E=0.80; g
= 354, ETAMNAX=8.0; : §
i - 55, XSTART=5.8;
i | - -
i




DR'O . 20}
D=0,333333333;
E-HAT=0.10;
MB_OVER_MA=2.732.;
MD_OVER.MA=18.-/32.;
Al=6.4;
363. A2=0.6;
‘ 364. AR3=0.03295;
] 365. A4:0.10;
; . 366. SIGMA=16.;
i 367. GET DATA(
C 368. E
I 3 370. +»XSTART
P 371. , XSTOP
| . 372. ,DR
| $ 373. +XOUT
f 374. +E-HAT
3 375. +MB_OVER.MA
! 1 376. +MD_OVER.NMA
: 377. ,A4
. . 378. ) FILECINPUT1) COPY(SYSPRINT);
' ] : 379. MAXG=F IXED(ETAMAXX(XSTOP+A2)/(SIGMAXDR)};
1 E 389. ALLOCATE SPECIES(8,MAXG),
- 381. SPT(8,MAXG),
382. F(8,MAXG),
383. CHEM_REACTION(MAXG),
384. S(8,MAXG);
385. SPECIES, SPT, F, $=0.0; CHEM_REACTION =0.0;
P ] ! 386. GET LIST(AARA, BBBB
. 387. »SPECIES(1,1), SPECIES(1,MAXG)
- 1 388. »SPECIES(3,1), SPECIES(3,MAXG)
” 1 389. »SPECIES(5,1), SPECIES(S,MAXG)
1 390. +»SPECIES(7,1), SPECIES(7,MAXG)
1 391. ) FILECINPUT1)> COPY(SYSPRINT);
b




LS

-3 ot o i i A

392.
393.

- 394.

395.
396.
397.
398.
399.
400.
401.
402.
403.
404.
405,
406.
407.
408.
409.
410.
411.
412.
413.
414.
415.
416.
417.
418.
419,
420,
421.
422.
423.
424.
425,

_ 426.

END INPUTS;

OUT1:PROC;
DCL ( R, UP, UPR, UC, CD, ETA, F5, VO, G2) FLOAT DEC(16);
DCL SPECI(X,Xx) CTL FLOAT DEC(16);
DCL (J,I) FIXED BIN(15);
ALLOCATE SPECI(8,MAXR);
PUT PAGE FILE(SVSPRINT) EDIT(’X=’,X) (COL(3)},A, COL(6) F(9,5));
CALL REACTION_RATE(UWP);
PUT SKIP FILE(SYSPRINT) EDIT(’<KUP>=’ .UP)(COL(B).G,E(10.3))3
PUT FILE(SYS®RINT) EDIT(’R’,’CA0’,’<{VUXCA>’,’CBO’,’<{VXCB>’,
’CDO’,’<UXCD>’,’ HO’,’<VXH>’,’CE®’,’UP(R)’,’ETA’)
(COL(3),A, COL(9),A, COL(19),A, COL(29),A, COL(39),A,
CoL(102),R,C0L(113),R);
R'0.0;
DO I=1 TO MAXR BY INCREMENT;
ETA=SIGMAXR/ (X+A2);
FS=1./7(1.+0.25XETAXETA);
VO=EXA3X(ETA-0.25XETAXX3)XFSXX2;
G2=EXP(-1.5XVOxx2/E_HAT);
LL3:DO J=1 TO 4;
SPECI(2xJ-1,1)=0.5%(SPECIES(2%J-1,1)
+1. 8847448/50RTE300*SPE01ES(atJ,I))3
g:gC{iatJ ,1)=0.2303294%XSQRTEXG2XSPECIES (2%J,1);
3
CD=MAX (0.0, 1.~SPECI(1 I1)-SPECI(3,1)-SPECI(5,1));
UC-ﬁl/(92+5 8) - E*(Al/(ﬁa+5 8) - ALl/(A2+X) )3
WPR=UCXCHEM_REARCTION(I);
PUT FILE(SYSPRINT) EDIT(R, SPECI(1,I), SPECI(2,I),
SPECI(3,1), SPECI(4,1), SPECI(S, I). SPECI(S.I),
SPECI(?,1), SPECI(8,1),CD,UPR, ETR )
(CoL(1),F(5,2), COL(?), E(9 2). coL(1?),E(8,2), COL(27),E(8,2),




427.
428.
429.
430.
431.
432.
433.
434.
435.
436.

COL(37),E(9,2), COL(47),E(8,2), COL(S7),E(9,2), COL(67) ,E(8,2),
COL(77).E(9,2),C0L(88),E(9,2),C0L(99),E(9,2),CO0L(110) F(?.sm),
R=R+INCREMENTXDR;

END;

FREE SPECI;

END OUT1;

FINISH:CALL OUT1;
END FLAME;
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Figure 9.- Mean mass fraction ang temperature profiles.
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