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INTRODUCTION

Thermal convection is a phenomenon which is very common in 	 /*3
astro- and geophysical conditions. Energy transport by convect-

ion occurs in the nuclei of stars of the upper part of the main

sequence and in the shells of the stars of its lower section,

particularly on the Sun. The interaction of convection with

radical pulsations and rotations is apparently the mechanism

which causes the cepheid variable. Let us assume that the band

structure of the surface of the planets, giants Jupiter and Saturn,

is the reflection of the convective instability of the atmospheres

of these planets. On the Earth, convection influences the global

motion in the atmosphere and the oceans, and convection in the

mantle of the Earth is responsible for the motion of the continents.

-1
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The classical problem of Raleigh-Benar has been known for

a long time. it covers the convective stability of an infinite

horizontal layer of an incompressible liquid, in which a vertical

temperature gradient is maintained I11. However, the convection
occurring under the conditions in which we are interested is a

much more complex phenomenon. It is basically related to the fact

that convection is not an individual, isolated process, but occurs

in interaction'with other phenomena of stellar or planetary dynamics

and thermodynamics. Thus, in many astrophysical cases, it is neces-

sary to consider the influence of rotation and magnetic fields upon

convection. Layers which are convectively unstable in real objects

usually are connected with thermally stable layers. The penetra-

tion of convective pulsations in these layers must be considered

in order to obtain the correct physical picture.

Frequently, a vertical temperature gradient which causes con-

vection arises in moving media; in this case it is important to

consider the interaction of convection with the shear velocity

fields.

Convection is not a unique process which performs the transport

of heat in stars or planets. Frequently, along with convection,

radiation involves the transport of a section of the heat flow, by

a certain method of changing convection.

Large density gradients in astrophysical convective zones

Cthus, on the Sun the density changes by 6 orders of magnitude in
the convective shell, and on Jupiter -- by approximately 3-4 orders

of magnitude) make it impossible to use a very simplified study of
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convection with the Boussinesq approximation for incompressible

liquids (see, for example, I1]).

In order to study the global convective phenomena under

astrophysical conditions, it is necessary to consider the spheri-

cal geometry of the layers in which it occurs. Finally, we must

note one of the very important factors which complicate the cal-

culation of the convective zones in astro- and geophysics: con-

vection is always turbulent in them due to the enormous linear

dimensions of these zones.

Examples of special effects which complicate the convective

motion in astrophysical objects may be given later on, but it is

sufficient to illustrate the difficulties arising in a study of

convection under such conditions. A more detailed discussion of

the specific nature of astrophysical convection in stars and the

Sun may be found in I2,31.

In this report, we discuss the influence of only individual

factors upon convection, but in a more rigorous mathematical form-

ulation., This influences the convection of spherical geometry.

Secondly, it influences rotation and partially shear flow and

the nonuniform distribution of temperature at the layer boundaries.

A discussion of the influence of certain other effects may be

found in the report by Spiegel [2] and the studies I3-81.

Section 1. Development of corrective instability in spherical

layer at rest.

Let us begin by examining the problem of convective stability

of a viscous, incompressible liquid in a spherical layer of the

thickness h, located between two concentric, spherical surfaces

with the rad A r  = r oh and re = Cro + M. A spherically symmet-

ric radial g ravitation field . 4
*9 

acts upon the liquid (below, we
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shall use the spherical system r;#;4# T	 ). The tempera-

ture constants at the boundaries of the layers Ti and Te and

the heat sources of constant intensity q, which are distributed

uniformly in the liquid, create a radial temperature gradient

T. When the gradient is small, the liquid is at rest, and

the temperature distribution is determined by the heat conduc-

tivity

?. 

2F( j + z r	 r $o ^lr-^.

where _
x

/6''^, Jt î = -Te — ,Z/;^ r jr f ^^^ : --/ 	 6.1 t
heat conductivity coefficient assumed to be constant.

When V is large enough, the heat conductivity mode becomes

unstable, and convection arises.

The linear problem of the development of convection in a

spherical layer at rest was first examined in the studies of

Chandrasekhar [4]. The dimensionless equations for small equili-

brium perturbations in the Boussinesq approximation have the

form:

^u _ ^,	
Q	 R r d'T- ©p f u t a (r)8,

Ar t f u V 7— = 4d 0 . chi cr u`
Here t.C^ P and 8 -- velocity, pressure and temperature of the
perturbed motion , T -- temperature gradient determined by the

heat conductivity; the length, time, veloc-

ity, pressure and temperature are used as characteristic scales

and are represented by

L
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(l.5)

,, shy,/h v7h= 8.hPrP
The following notation is introduced:

_^- Prandtl number,
pp Lw

0^9* Oe R f j^ .-- the Rayleigh number;
ajv and X -- coefficients of volumetric expansion, viscosity

and heat conductivity

eJ-• 
^^ and go -- density, temperature gradient, and accelera-

tion of gravity at the external layer boundary,

It is apparent that at the layer boundaries the following con-

ditions are satisfied:

Ut a Ra 0 at r = re and r= r,, ♦ .l	 (1.3 )

If the boundaries are solid, then it is necessary that the remain-

ing velocity components also vanish:

u49 - u9 a3 D.	 (1.4)

The corresponding viscous tangential stresses must vanish at the

free boundaries:

3

Let us give the exponential dependence of the perturbations
	 L

on time:	 U" )O , P ~ a xp St.

In order to exclude the continuity equation, it is convenient

to use the general representation of a solenoidal velocity field

in the form of the sum of the poloidal and toroidal components:

a c "COL S r * T'Ot W;=,,	
X1.6)
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Applying the operationsd	 and
to the first equation (1,2), we obtain:

L z n ^^ W '-V.l	 ^	 1
^z 	

^S ^RQIr 
l :8 ^^^ (1,7)

I(r)

Pr6 $ + U7 D'r -,d g =09'.

Here we use !	 to designate the operator

The boundary conditioi ,a in terms of the scalars of the

poloidal t and toroidal W of the fields may be written in the
form:

,Q	 ^S
W =	 on the solid boundary,

(1.$)

t a 
t7W ^ - W 	 on the free boundary8 ^ r" r 0

The spherical symmetry of the problem makes it possible to

expand the solution in spherical harmonics

(PC .-- associated Legendre functions). We set

w0:
 'o	

"K 7 = `^ii) .Y^ (49i (?) , etc.

Then we obtain the following equation for radial perturbation ampli-

tudes:

6



' 6& ) V
Ra. IN 9

Pr 6-) 8 .. I

mere the differential operator D e is determined as

Q^	 d	 f

XF ' r r	 r

and the indices 1 and m are omitted here and below.

Thus, the problem of the convective stability of equilibrium

Is reduced to the problem of the eigenvalues for the Rayleigh

number Ra.

It is known from (1.9) that W - 0 0 i.e.., the convective flow

arising at the stability limit is poloidal. We should note the

following singularity of the problem being considered: The

azimuthal wave number m is not included in the boundary value

problem ( 1.8) - (1.9). For this reason, the critical Rayleigh

numbers will depend only on the wave number 1, but not on m, i.e.,

the following degeneracy holds: 2e4-1 perturbations correspond

to one and the same critical Rayleigh number with a differenti^my
angular dependence F'e ^,^,^^	 ^M i f)	 . A situation

arises which is similar to that which occurs in the plane layer.

An infinite set of solutions corresponds to the same Rayleigh

number, since Ra depends only on the square of the modulus of

the horizontal wave vector C& X Ca ,# 42 =̂ t , and the relationship

between ax and ay is arbitrary 11,41.
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When the following condition is satisfied

CL r X(r).
	

(1.10)	 ZI

C F
the problem (1.8) - (1.9) is self -conjugate, and consequently

the principle of the stability displacement 6 0 w 0 is valid

and the convection which arises at the stability limit is

stationary. Numerical calculations later performed by Durney

I91 and Young 110] showed that the principle of the stability dis-

placement is apparently valid not only under the condition (1.10),

but also in the more general case of convection development in a

quiet spherical layer. In the particular case Yjr :	 •l /	 •1r = r.
the system (1.9) assumes the form:

A,^S	 +iJ'B,zv.

pie +e(e•iX..^^-'s^a,
5,W=O

(1.11)

We shall discuss briefly the method of solving the system

(1.11) with the boundary conditions (1.8), since it is character-

istic for solving the more general problems of liquid motion in

spherical layers. In many cases it is convenient to use the Galerkin

method expanding the radial amplitudes in series with respect to

the Chandrasekhar functions

e	 qte, 

	
ge-o%t
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.ch represents a combination of Sessel f ctions o half-integral

ler and which satisfy the conditions t► mi re =	 anal)
fcolV eR	 , w2,ere ai are the roots of the equation

C e (0(; (6-0 l), 20,	 (1.12)

It is known (4) that equation (1.12) has an infinite set of

real simple roots, and the functions C.(o(jr) form a complete

orthogonal system of functions with the integral proper`

Cc r)d

.r,44

jr Cjcv)
ro

ra ,I: ^y ,^^ -yam 	 .L •
fro.!	 1

Perturbations of temperature and the toroidal component of the veloc-

ity field, when it differs from zero, may be represented in the form

of a series with respect to the Chandrasekhar functions, and the

poloidal component of the velocity field in the following form:

Ct*f4
io

)/O(; t Y&
 j	 t.

t	 t e	 -^ fC rt

W''°re the constants	 (^ ( ) L and Kl	 are selected 8o as to
isfy the four boundary conditions applied to the function S.

n the problem may be solved according to the well-known procedure.

The critical Rayleigh numbers for Four types of boundary con-

ions are found in (4)and given in the table, together with the

9
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values of the critical wave numbers. It may be seen from the table

that layers with more rigid boundaries are more stable, and the

convective .ells in them have a smaller size than in layers with

Fka,
 boundaries.. A' decrease in the layer thickness
hIn It = re	 leads (see the table) to a decrease in

the dimensions of the convective cells, i.e., to an increase in the

critical wave number 1.

For a study of convection in the atmospheres of the planets

and in convective shells of stars like the Sun, of greatest inter-

est are the rules for convective flows in thin layers S 0.25•
with free boundaries or with a rigid lower and free upper boundary.

Within the limit of very thin layers at
the system (1.11) may be reduced to a system of equations for con- 112

vection in an infinite horizontal layer [1, 41. 	 As is known, in

this case for a layer with free boundaries, the critical Raylejah

number Rao 	 -,y^ the horizontal wave number
Vl ^ "^'^^ w I^

and the radial amplitudes do not depend on the wave number 1:	
IG►

../
Sin ./f t̀jr) = re r_ ro^; ,^lr^ = a ' in J (^^- o0.

Section 2. Influence of rotation, shear, and latitudinal tempera-

_	 ture gradient upon convection in a slowly rotating

layer

For problems of astrophysics, there has been great interest in

the development of convection in moving rotating media with non-

uniform temperature distribution at the boundary. 	 This formulation

of the problem occurs, for example, when modelin g the global hydro-

dynamic movements in atmospheres of large planets, particularly

11



Jupiter 1111.

Actually, the existence of an internal heat source for Jupiter

(121 must lead to convective instability of the lower part of its

atmosphere and to establishment of a turbulent convection mode,

since the Rayleigh numbers are enormous.

However, the data from observations of the visible surface of

Jupiter Cthe ordered band-like structure) point to the highly organ-

ized nature of large-scale movements in the atmosphere of the planet

(see, for example,1131 ) .

It must be assumed that large-scale convection having the form

of axisymmetric rolls develops on the background of comparatively

small-scale turbulent convection, which may be taken into considera-

tion by the introduction of the effective viscosity coefficients.

If the atmosphere of the planet is not comparatively dense,

then the absorption of solar radiation plays an important role,

which may cause both shear zonal flows in the atmosphere and heating /13

which. is not uniform with respect to latitude 1111.

The study 111] examined convective stability of shear flow of

a viscous liquid in a slowly rotating spherical layer with a lati-

tudinal temperature gradient on the external boundary. For simplic-

ity, it was assumed that the flow arises due to the difference in

the angular rotational velocities 0 and QU + e) of the internal
and external. boundaries of the layer and the latitudinal temperature

gradient. It is assumed that the temperature is constant on the in-

ternal boundary. The latitudinal temperature gradient which simu-

lates the heating of the planetary atmosphere by solar radiation

Is assumed to be symmetric with respect to the equator, i.e., the

temperature on the external boundary may be represented in the form

of a series in terms of even Legendre polynomials

12



Te (PY)	 T f-a")
n 	Z

It is apparent that the temperature T  which is average on

the external boundary equals T (O	 Let us examine the case

T^ = T^+T(4p

Due to two factors (differences of angular velocities of sphere

rotation and latitudinal gradient), a stationary flow arises which

may be described by the following dimensionless equations in a sy-

stem of coordinates rotating at the angular velocity a,

71`X7171=-VP * AV # Pr 4al Rd A1r)jF T--.2/'1e(^'^x11^,
C

Pr  V 7' =,dTf7^'q, dct	 '0r ^:

with the boundary conditions

r= ro	 V ='T =II ,	
(2.2)

r = r ,t 7/=e . Re (Ar.+s/siti ^9 Spo T= - /-- a,

Here:

and T -- velocity, pressure and flow temperature,

Re =	 f	 -- Reynolds number,	 (a)	 ^^ 	 it , --O /^	 y	 -- T /7'	 , .
unit vector along the axis of rotation. When deriving the equa-

tions, it was assumed that the relationship of centrifugal force

to the gravitational force is small, and VP includes all the
potential forces.

The stationary flow (.2.1) - (2.2) may be unstable with re-

spect to small perturbations at large c Re numbers -- shear in-

stability, and at large Rayleigh numbers Ra -- convective

/14
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instability.

!)we

In the general case in the space of the parameters

	

(&Re, Ra►, A 	 may find the surface of the neutral stability

and determine the region of motion instability.

The system of equations for small perturbations may be great-

ly complicated as compared with the case of a fixed layer (1.7):

L=^a-^)*2R¢a ^w-290-s- put ^u V^^t^`7)^ =t^.

	

Z -C'-t	 ` As+2 Re •w-Ra4r LAO -*

_&u-7)V 4 V)a]
Pr e e + PriI VO ,+ V 7T -460 Q, 	 ( 2 .3)

where

p' . .o
The boundary conditions remain the same (1.8). The dependence

of the Coriolis force components on the angle n9 in a spherical

rotating layer does not allow separation of the variables in the

system (2.3). However, if we are interested in convective stabil-

ity of the flow in a. slowly rotating layer for a small latitudinal

temperature gradient at the external boundary, then this difficulty /15

may be avoided by solving the system (2.3) with the boundary condi-

tions (.1.8) by the method of regular perturbations.

The basic flow becomes unstable at a certain critical value

of the Rayleigh number, which in the general case must depend on

other dimensionless parameters: Re, Ar.̂  .Z

If the characteristics of the basic motion and the perturba-

tions are represented in the form of series with whole positive

14



powers of Re and a [11 1

Z :o	 Re	 4 )

then the solution of the boundary value problem (2.3), (1.8) re-

duces to solving a sequence of systems of equations with boundary

conditions of the type (1.8). The system of equations for a zero

approximation coincides with the system (1.7) for a quiet layer.

Similarly, (2.4) may be represented in the form of the series

RQ and ^, since the principle of stability displacement in
C 

rotating liquids is not valid in the general case and

differs from zero. We should note that the rotation, shear and

latitudinal gradient, as will be seen below, remove the degeneracy,

since the critical number RQ'C depends on the azimuthal wave num-

ber m and its minimization makes it possible to establish the form

of the perturbations precisely which arise at the stability limit.

It is apparent that the solution depends on the relationship

between the parameters Re and a 	 Therefore, we set Re— 1 .
Then in different ranges of changes in the parameter a , other

physical factors will have the basic influence upon flow stabiliza-

tion and the convection which is produced.

.M

In the case of a thin layer r. * L and
the solution of the problem is obtained in anal;

bitrary values of a. The limited nature of the

a thin layer requires that	 _	 r.• -^ , where
P 0

7 0

the free boundaries,

ytical form for ar-

viscous stresses in

CC  ,L1
It was shown in [11] that in the following intervals in which

a changes

15
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Y, Q 4 of 4.1/2	 Re 6o , Rai = pa. -*,Re 'Raj o,
2, oc = /2	 Rg 61 o	 s At ,
S, « 

'/2 
6 Re Co,

qualitatively different solutions are obtained; QQ	 critical

Rayleigh number for a spherical layer at rest. In the expansion

of ^, and ^^ Q^ , only the main terms of the series are written

which, in the given interval of change for a, take into account the

contribution of the basic factor.

At Q 4. OC Z. I/2 	 the stability limit, the form and the phase
propagation velocity of the critical perturbations w are determined

by the rotation and the shear. Outside of the region of values

for the parameters 1. and Pr, lying between the curves to and ^o

(.Fig. 1, the convective flow has the form of axisymmetric stationary

rolls (m	 Between the curves 6o and 6e the convection is

three-dimensional, has the form of banana -like cells with an azi-

muthal wave number M a c̀ , and is propagated in a wave-like manner

in the q direction with the phase velocity W. a Zo Ror,,
determined by the shear parameter 1. . On the curves E 

*41 (Pr)
the convection form is indeterminate, and it is necessary to con-

sider the following expansion terms with respect to Re in order to

eliminate the degeneracy.

At &o ff O the critical Rayleigh number R Q c is always

greater than Rao, i.e., the shear flow in the rotation direction
always stabilizes it independent of the form of the convection. A

very large negative flow shear Fp<•8 :•,3.5.	 destabil-

izes the convection, although the form of the convection does not

change. The dependence of	 Abt RQe • ô on the Rossby num-

ber	 Fo is given in Fig. 2.

The value ^
0
 s Q corresponds to convection in a slowly rotat-

ing but solid layer and was studied in detail in 1141. In this	 /17

case, as may be seen from Fig. 1, convection is established in the

16
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form of banana-like cells, but its velocity 90I211-	
ire

is always directed toward the inverse rotation of the layer, and

is much less than wo o since it is proportional to ro-2 . We

should note that in thin layers (greater than l c ) the axisymmetric

stationary convection (m - 01 has maximum amplitudes in the polar

regions, and on the other hand the banana -like convection (m n lc)
is concentrated close to the equator.

Allowance for the nonlinearity in this problem by studying

the effects of second order terms of flow amplitude A shows

that the redistribution of the angular convection moment leads

in the second approximation to differential rotation of the layer.

Actually, for the 4 -components of the velocity field averaged

over f and r, the following analytical expression was obtained

in [141

U'.	
Z	 e	 e 2

'. > = A Re.	 Pe S." 7̂  c2.51r
for the case of a thin layer and free boundaries. Numerical calcu-

lations carried out for other boundary conditions show that the

case of free boundaries to a certain degree is exclusive, since the

value of the rotation greatly decreases for more general boundary

conditions. However. in all cases the differential rotation is

characterized by the equatorial acceleration of the layer.

This model for the interaction of convection with rotation may

be used to explain the observational data regarding the Sun. If

the theoretically examined convective cells are identified with

gigantic cells on the Sun, and the action of the convective flows

of smaller scales is taken into account by the introduction of the

effective viscosity, then the amplitude of the differential rotation

In the case of free upper and solid lower boundaries according to 	 /18

Busse estimates [14] coincides with the observed equatorial accelera-

tion of the Sun.
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At (X a Tf2 , the total effect of shear, rotation and the

latitudinal temperature gradient determines the parameters of

critical convection. In Fig. 3, in the space of the parameters
to, pjr-j ; j#e s , the surface " given by the equation

c(pf)e= 
—^^o --o t	

pe A=O

at Ro s 8 985,	 • 2,492, C (Pr') a 0,206Prs+0,289Pe 047
= Y9/ IT

delineates, together with the planes j *J, and	 p	 ,s
the region within which the critical perturbations are realized in

the form of three-dimensional banana-like cells with M a G r and

outside of it in the form of the axisyrmaetric rolls with m - 0.

The region of stabilization and destabilization of the basic flow

is divided by the plane /7 given by the equation

Below this curve there is always stabilization of the basic

flow; above it -- destabilization. Axisymmetric convection is

always stationary, and three-dimensional cells are propagated in

a wave-like manner with the azimuthal phase velocity wo.

When 0( '> 4/2 , the stability limit and the form of the
critical perturbations are determined by the latitudinal tempera-

ture gradient, and the decrement 6' and the phase velocity w 

proportional to it -- by rotation. Depending on the sign of X

the minimum critical number Ra c will be achieved it the case of

axisymmetric convection, if A > L7 and three-dimensional cells
if .2 < O. In both cases, Ra c < Rao , i.e., the nonuniform

temperature distribution at the external boundary as compared

18



with the uniform distribution leads to destabilization of the basic

mode for one and the same total supply of heat passing to the

layer 115).

Thus, the total action on convection of all three effects in

thin spherical layers is determined by the values of the similarity

parameters Eo , Pr and X/Re2 . In the case of slow rotation (small

Re), critical convection is always three-dimensional and has a wave

nature 1141. The shear and the latitudinal temperature gradient

at a > 0 and in rotating layers coi.^r'.bute to the development of

convective cells in the form of axisymmetric rolls. As applied to

the astrophysical problem being considered, this means that allow-

ance for solar radiation in a certain form may lead to a visible

hand-like structure of the planet surface. Actually, in adjacent

rolls (two rolls form a convective cell), the gas in the meridional

plane moves in opposite directions, forming ascending (warmer) and

descending (cooler) streams. If, as is assumed, we interpret the

light bands (zones) as ascending streams in the atmosphere of

Jupiter, and the dark bands (belts) as descending streams, then the

picture obtained for axisymmetric convection qualitatively explains

the visible band-like structure of the surface.

If we assume that the band-like structure of the surface of

Jupiter represents the occurrence of convective motions arising

under the influence of an internal heat source and solar radiation,

in the visible surface layer of the planet, and that this convection

is close to a critical value with respect to the effective transport

coefficients, then on the basis of the results obtained we may de-

termine the thickness of the convective layer and the effective

transport coefficients which are on the order of 150 km and 106

10 7 cm2/sec, respectively [11].
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Section 3. Influence of rotation on critical convection in

the case of arbitrary Taylor numbers

In the case of the rotation of a spherical layer with an arbi-

trary velocity, the problem is greatly complicated, and complete 	 LLO
separation of the variables cannot be achieved. It is possible to

separate only the dependence in terms of longitude represented by

the azimuthal wave number m. To study the influence of rotation

on critical convection, it is necessary to solve a linear system of

partial differential equations.

Gilman 1161 obtained more complete results for this problem for

a layer with the thickness d = 0.25 with free and infinitely heat-

conducting boundaries. The calculations were performed for the

Prandtl number Pr - 1. The system of linear equations in this

study was solved by the method of finite differences in the (Ot

plane for given m from 0 to 24. A determination was made of the

rate at which the perturbations increased 6 and the frequency

of oscillations of the most unstable symmetric and anti-symmetric

perturbations with respect to the equator for a given m. The Rac

numbers at the stability limit for each m and the structure of the

perturbations were found by inter polation up to the zero rate of

increase. The Taylo 6r numbers ^, r,, n-2 It : y/P^a
changed frog• 0 to 10	 The calculation results were the following:

1) The rotation had the strongest stabilizing influence upon

modes which were anti-symmetric with respect to the equator, and

on modes with low azimuthal wave numbers m (Fig. 4 and 4a);

2) With an increase in Ta, the wave number me of the most un-

stable perturbations increases, i.e., critical convection in a ro-

tating spherical layer is always three-dimensional, and the dimen-

sions of the cell in the azimuthal direction decrease with an in-

crease in the rotation rate (Fig. 4);
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3) With an increase in the rotation rate, the modes corre-

sponding to different wave numbers m may be divided into two

classes: a large part of the modes with high m have a maximum

of amplitude on or close to the equator, and a small part with
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small m have a maximum at the pole (Fig. 5);

4) The equatorial modes of both symmetries are distributed

in the azimuthal direction toward a side which is inverse to the

rotation (w < 0), for a slow rotation of the layer in accordance

with the results of Busse 1141 and the side of rotation (w > 0)

for large Ta (Fig. 6). 	 Polar modes (with the exception of the

stationary mode m - 0) are propagated at much slower rates;

5) The critical convective modes for large Ta are character-

ized by the asymptotic relationska ,^, 7"^ 813	 TQVS -Ta?

obtained ea.rliCr b,, Roberts 1171 and Busse [321 for convection in

rapidly rotating spheres;

6) In rapidly rotating layers, symmetric equatorial modes

assume the form of rolls twisted around an axis parallel to the

axis of rotation. The antisymmetric modes also have the form of

rolls, but the direction of motion in them has different signs in

different hemispheres and the liquid is Input through the equatorial

plane parallel to the axis of rotation. With an increase in Ta,

the rolls are pressed into the internal sphere, obeying the Taylor-

Praudmen theorem. The polar modes turn in a circular vortex, press-

ing closely against the poles;

7) Determinations show that the radial heat flux has a maxi-

mum at the equator for symmetrical equatorial modes, and at lower

latitudes for antisymmetric modes. However, at large Ta, both

fluxes are greatly suppressed close to the equator at the upper

boundary of the layer. 'she symmetrical equatorial modes transfer

the heat flux to the equator, and the antisymmetric ones -- to the
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pole at the lower latitudes and to the equator at the higher lati-

tudes. The symmetric equatorial modes transfer the angular moment

to the equator from the high latitudes for al' value of the Ta

numbers;

8) For layers of other thicknesses d n 0.11 and 0.67, the
behavior of the critical convective perturbations is similar to

that described.

These results are confirmed by the studies of Roberts 1171
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and Busse 1321 on the asymptotic modes of critical convection in

spheres for very rapid rotation (Ta 	 Eckman number E s

s Ŷ  ltradius of the sphere) . The dynamics of
the convetion which can be realized physically must in this case

obey the Taylor-Praudmen theorem, according to which slow, steady

motion of a slightly viscous liquid cannot depend on the coordinate

along the rotation axis. Since such motions cannot be realized

either in spheres or in spherical layers, the convective movements

predominate over the limitations imposed by the theorem due to Whe

nonstationarity and increase in the influence of viscosity due to

a decrease in the scale of motion in the azimuthal direction.

At the stability limit, convection in the spheres arises close

to a cylindrical surface located at a distance of approximately

1/2 rc from the rotation axis, and has the form of thin cylindrical

rolls parallel to the rotation axis and slowly moving in the azi-

muthal direction at a velocity which depends on the Prandtl number.

The horizontal scale of the rolls is approximately E 1/3 (Fig. 7).

It is clear from the form of the convection that the component

of the gravitational force which is perpendicular to the rotation

axis has the basic influence upon motion of this type.

Apparently in thick spherical layers with h >^- convection,

just as in a sphere, arises close to the cylindrical surface with
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the radius rc/2, and in thin layers with h t 4/2- the convective
rolls parallel to the rotation axis are tangent to the internal
sphere, i.e., they have a maximum possible vertical scale and,

consequently, a minimum deviation from the Taylor-Praudmen theorem.

Thus, at the stability limit in spherical layers both in the

case of slow and rapid rotation, a non-axisymmetrieal mode is es-

tablished which is symmetrical with respect to the equator and

with a high azimuthal wave number m. In the case of rapid rotation,

the convection is concentrated in the pre-equatorial band, and the

phase velocity is directed toward the side of the basic rotation

rate.

Section 4. Nonlinear convection in a quiet spherical layer

The solutions of a linear system of equations which describe

convection in a quiet spherical layer are, just as in the plane

case, degenerate. This means that the solutions with a different

spatial dependence (in this case with different azimuthal wave num-

bers m) correspond to one and the same eigenvalue -- the critical

Rayleigh number Rac . Their realization at the stability limit is

equally probable. This set of solutions Is a reflection of the

high degree of symmetry of the problem, but is this the physical

result or is it due to disregarding important physical effects?

As is clear from the preceding, including even small additional

effects (rotation, temperature nonuniformity, etc.) usually elimi-

nates or decreases the degeneracy. One of the most important effects

in the linear problem is the effect of the process nonlinearity.

Therefore, it is important to establish whether allowance for non-

linear terms makes it possible to determine, in addition to the am-

plitude, the form of the finite-amplitude convection.

Close to the stability limit (Ra - Ra o ), the nonlinear terms

may be regarded as a perturbation of the linear problem and the
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asymptotic method may be used for expanding the solution in powers

of the small parameter -- the flow amplitude A. This method was

used very successfully for studying the nonlinear convection

motions Rao in the plane horizontal layer 11$l. This method was 	 24

used by Busse 1191 to study the form of stationary finite-amplitude

convective motions in a spherical layer.

The nonlinear system of equations

RV (V^ ,p
(_4.1)

46 P f T Irkt' I =S = pi-

with allowance for the expansion in terms of amplitude

Xg 4406

Nf

may be transformed into a sequence of linear nonhomogeneous systems

of equations for S i , ei and Rai . The well-known system (1.9) is

used as a system of the first order with respect to A. This system

determines the critical convection in a spherical layer, the criti-

cal wave number l c and the Rayleigh number Rao.

The general solution of the system may be given in the form

V_
	 y	 f c^,,, cos rr^ y f 

Sin 
Mop) P ^"(coa :9,^

oleo

11^L s
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The system of second order

as follows

A L s - ft 1trA 49
-
-WAS, -r.^11

with respect to A may be written

z17^r1^+^1s^ , 11.^.^^

d ^^ .+ Dt r1 r'Ls s= = Pr COX P'X i"s ^7v (4.4)	 X25

The solvability condition (4.3) and (4.4) has the form

Ra .C^'s tL
2
B,^ - Cs ̂= 

- ^Y r^*^^s;^4^, ^^sr"-vest
(4.5)

- Pr- h'ao <0 17(1+'P S, - rAS,)FP th
where the brackets designate integration over the entire volume,

and S+ and A+ -- the solutions of a conjugate homogeneous sytem

d G sRa. t.I (4.6)
69 -t X(r) G s' = Q.

It is convenient to represent the solution (4.6) in the form

(4.90	 (r zq " (.V9

where jf^.(i^^(P'	 -- spherical harmonics of order 1. Then (4.5)

may be written in the general form
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Ra,c tla ^
+^/- >-- ttr# 

*0 irc tra > Of wq:(4.7)

When the linear system corresponding to the nonlinear system

(4.1) is self-conjugate, H(8) 3 a for any 1. For nonlinear
systems of the more general form, the condition of the linear sy-

stem self-conjugate property does not :ead tr 
Af 

to

We should note that the condition (4.7) is equivalent to the

system ,Z e + l- of nonlinear equations obtained due to the existence
of Z G *	 independent harmonics of the order 1.

The normalization condition v  supplements the last missing

equation for determining Am'

2	 2	 Z
/26

F

Since the system (4.7). - (. 4 .8) is satisfied by tie value Rae,
1	 for any am and 0m for odd 1, the solvability condition does not

eliminate the degeneracy of the solution for odd 1. It may be

readily shown that all Ra_ at 1 which are odd vanish. All even
IR^^ are usually positive, and we may thus conclude that in the

case of odd 1 the subcritical instability( RQ• e.Rao }
may not occur in the spherical layer.

In the case of even 1, there is no general method for solving

the system (.4.7) - (4.8). . Busse 119) examined several particular

cases corresponding to 1 	 2, 4, 6 and very large even 1. A solu-

tion of the system (.4.7) - (4.8) for any 1 is the axisymmetrical

solution

of << _	 ral ^e^= ^`J = !1	 rr, =1`

with the corresponding value
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In the case 1 s 2 the axisymmetrie solution within an accuracy

of the rotation transformation is unique and satisfies the condi-

tion of solvability.

In the general case of even 1 there are several solutions corre-

sponding to different values of Ra j , i.e., the degeneracy is only

partially removed by the solvability condition. A certain physical

principle is therefore necessary for selecting the flow which can

be realized in practice. However, usually for selecting the finite-

amplitude flow, its stability is studied. However, this is a very

complex problem, and Busse in this study confined himself to the

"softest" principle, namely he assumed that close to the stability

limit the finite-amplitude flows may be realized physically with

a minimum value of the Rayleigh number, i.e., the flows correspond- /27

ing to the point E in Fig. 7a.

The minimum value of Ra is given by the formula

Roo — 2 has'

where Ra2 is usually positive and reflects the change of the tem-

perature field averaged horizontally due to convection, i.e., it

changes very little with a change in 1. If we disregard these

changes and the contribution of the terms of higher order, it is

apparent that Ramin will correspond to the largest value of Raj.

At 1 = 4 and 1 = 6, there are other stationary solutions in

addition to the axisymmetric solution. Thus, in the case 1 = 4 the

value of R  is reached for solving with cubic symmetry ( -Fig. 81,
	and at 1 = 6	 for solving with dodecahedron symmetry (Fig. 9).

For large even 1, only partial solutions are obtained. However,
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the problem regarding the form of the most preferred mode remains

open.

If the corresponding values of Ra1 (1) are not very small and

Rao (1) has no sharply expressed minimum for odd 1, then the realiza-

tion of the convective flow with odd 1 is only slightly probable,

and convective motions arise close to the stability limit in spheri-

cal layers as finite-amplitude suberitical instabilities correspond-

ing to the even spherical harmonics. The form of these motions ap-

parently has the greatest possible symmetry.

For a very large supercriticality, expansion with respect to

amplitude is not applicable and it is necessary to solve the prob-

lem numerically. Durney [91 first attempted this, and calculated

nonlinear convection in a spherical layer in the quaslinear ap-

proximation.

The basic assumption used in this approximation is disregard-

ing the nonlinear terms corresponding to the intrinsic interaction 	 /28

of the perturbations, i.e., only those nonlinear terms remained in

the equations which describe the interaction of the average tempera-

ture field with fluctuations of velocity and temperature 1201.

As Herring [20] showed, the quasilinear approximation gives

good quantitative results when calculating convective flows with

large Prandtl numbers. In the nonlinear case, this approximation

permits separation of the variables. The finite-amplitude solution

may be represented in the form of one unique mode, when the solution

is decomposed in series with respect to the spherical harmonics
/ff
C ^ 9^ yl	 The system of equations of motion may be solved

by the establishment method. Calculations for the layer with a

thickness of d	 0.25 showed that convection at the stability limit

and nonlinear motions in the case RQ C,3p #?(?, are always sta-

tionary and correspond to the wave number 1 = 7.0, i.e., 1 equal to

the critical value of the wave number for a given layer thickness.
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The wave number realized in the case of convective motions may be

determined by studying the stability of the solutions for given 1

with respect to small perturbations corresponding to ^^.^ and-►,^
harmonics. For small supercriticality, the stable solution corre-

sponded to the solution maximizing the heat flow, in accordance

with the Malkus principle [21].

Certain types of convection (for example, flow with cubic

symmetry, Fig. 8) obtained by Busse analytically for small ampli-

tudes were calculated by Young numerically for convective motions

of arbitrary amplitude.

Young [10] assumed a numerically complete nonlinear system

of equations of hydrodynamics in the Boussinesq approximation for

a spherical layer with free, infinitely heat-conducting boundaries.

He used a rather original computational method: expansion in terms

of spherical harmonics was used for angular variables, and the

method of finite differences was applied with respect to the radius.

The nonlinear terms were calculated using the modified transforma-	 /29

tion method of Orszag [22], and the order of magnitude of the other

derivatives with respect to r in the system of equations was reduced

using the Green function for the operator 2. and the one-dimension-

al diffusion equation.

The problem was solved by the establishment method for layers

with the thickness S = 2.33 and 0.67, the Prandtl number Pr = 1 and

5 and the Rayleigh number ^a ^.5=5 ^Q^	 Both axisymmetric and

non-axisymmetric solutions were studied.

Basic results:

1) The axisymmetric solutions were not preferred for the com-

plete three-dimensional equations of motion. 'Where is an interval

of values- for the Rayleigh numbers RQ. 4 Ra c Ma%(prl5)
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where there are simultaneously two steady state modes depending

on the initial data: the axisymmetric and the non-axisymmetric.

A similar result for the dependence of the solution on the initial

data was shown in the work by Schluter, et al. [181.^r a plane
horizontal layer. Krishnamurti confirmed experimentally [231 that

three-dimensional cells in a plane layer may exist in the region

of values for the Ra numbers where the two-dimensional rolls are

stable.

2) At RCL > RO& IC 	 v^ , the axisymmetric convection be-
comes unstable with respect to three-dimensional perturbations.

The ratio & ^*' decreases with an increase in the layer thick-

ness d and increases with an increase in the Prandtl number.

Busse [241 obtained a qualitatively similar result pertaining to

the instability of two-dimensional rolls with respect to three-

dimensional perturbations in a plane layer.

3) In contrast to the quasilinear approximation [91, the

dominating mode of the finite-amplitude solution does not always

coincide with. the most unstable mode at the stability limit. With /30

an increase in the Ra number, in individual cases there is a sharp

change in the horizontal flow structure (decrease in the dominating

wave number 1), accompanied by a sharp change in the dependence of

the heat flux on the Ra number (Fig. 10). This phenomenon has an

analog in a plane layer and was observed experimentally in 123, 25,

261.

4)_ The dimensionless heat flux determined by the Nusselt num-

ber Nu increases- with an increase in Ra/Ra o (Fig. 1Q). However,

the difference in the heat fluxes transmitted in axisymmetric and

non-axisymmetric modes is small, on the order of 5% (Fig. 11).

51 For those values of the parameters when there are stable

stationary modes, an oscillatory three-dimensional convection mode

may be established depending on the initial data. The dependence
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of the oscillation amplitude on time has almost a sinusoidal nature,

but the oscillation periods of the heat flux and the poloidal and

toroidal mode are different.

It is important to note that toroidal modes in a quiet spheri-

cal layer are always negligibly small, except for the case of the

oscillatory mode. This fact and the absence of oscillatory modes

in the quasilinear approximation indicates that the occurrence of

oscillations is related to nonlinear terms which describe the in-

trinsic interactions of the modes in the equations of motions.

The results obtained by Busse 119] and Young I101 are insuffi-

cient for formulating a general, although qualitative, representa-

tion of nonlinear convection in a quiet spherical layer. On the

other hand, the studies of Busse 119] assume that close to the

stability limit, just as in a plane layer when there is asymmetry

between the upper and lower half of the layer, the three-dimensional

cells are the preferred form of the finite-amplitude convective

motions. In the opinion of Busse, the reason for this is the geometric

asymmetry of the spherical layer. If we make an analogy with the

plane layer later, then convection in the form of rolls must re- 	 /31

place the three-dimensional structure, when the amplitude of the

motion becomes large as compared with the asymmetry. However,

the numerical calculations of Young point to the opposite picture:

the axisymmetric convection becomes unstable with respect to three-

dimensional perturbations with an increase in the Rayleigh number

(_at least for a Prandtl number which equals unity).

However, we must keep in mind that the calculations of Young

pertain to Rayleigh numbers R ,pxcl r-1.3 - 1.4, whereas the

results- of Busse 1191 are limited to small supercriticality. It

is possible that the case ^t^^ = Q , which was not studied by Busse

corresponds to a plane layer which is symmetric with respect to

the middle, and convection in this case is excited very smoothly

and has the form of axisymmetric rolls.
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But this pertains to the area of analogies. Many problems

are still not explained. Is there an axisymmetric solution with

a unique stable solution for small supercriticality? If the

answer is yes, then in the space of the parameters (Pr,d ) where

does the stability boundary lie of axisymmetric convection with

respect to three-dimensional perturbations? What will occur in

very thin layers d + 0 (correct limiting transition to plane layer)?

What is the influence of initial perturbations on the establishment

of a certain form of convection motions? What is the influence of

the Prandtl nwaber on the transition from stationary convection to

oscillatory convection?

Section 5. Nonlinear convection: interaction with rotation.

Results of numerical calculations.

Calculations of the nonlinear convection in a rotating spherical

layer were first performed by Durney 127 in the quasilinear approxi-

mation. This approximation in the case of allowance for rotation

makes it possible to greatly simplify the problem due to the fact

that modes- with different azimuthal wave numbers m in the equations /2

do not interact directly. The case of azisymmetric convection

m = 0 was examined for a layer with the thickness a = 0.25, the

number Ra = 1500 and the Taylor number Ta < 500. The main influence

of rotation on axisymmetric convection is reduced to its strong

stabilization in the equatorial region, where pulsations of velocity,

temperature, and the convective heat flux 
H-vX2
	 sirl^

are suppressed (Fig. 12a).

As the calculation showed, an increase in the angular rotation

velocity requires considering a large number of harmonics for an

adequate description of convection. Thus, in the case Ta = 500,

close to the value Ta for which convection is completely suppressed,

it is necessary to consider modes with wave numbers from the interval

zo i e 1 s.
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However, it is known that the strongest stabilizing influence

of rotation is exerted on axisymmetric convection [28, 291. There-

fore, it is important to examine the non-axisymmetric case m 16 0,

which was done by Durney 1301 for the number Ra P1500 and the num-

ber Ta = 4.

To establish. the preferred form of convective motion, integra-

tion was performed over time of a system of equations in which

several anodes were retained corresponding to different m. With

time, all of the modes were damped except m - 10. In the equations,

modes were retained with poloidal wave numbers 1 = 8, 10, 12 for

temperature and the poloidal field component and 1 - 9, 11 for the
toroidal component. We should recall that 1 = 10 is the critical

wave number for a spherical layer at rest with the thickness

d - 0.25 and the mode l c = 10 is the unique stable mode when cal-

culating nonlinear convection in a spherical layer at rest in the

quasilinear approximation at Ra - 1500.

Thus, for small Taylor numbers, the convective flow arises in 	 133

the form of three-dimensional cells with m = l c , which coincides

with the results of Busse for critical convection in thin layers

1141. The dependence of the solution on time has, in accordance

with [14], a specific form expC^L m 4e)' which is characteris-
tic for gravitational-hygroscopic waves. The value of 6 does

not depend on r and 19 , and in this case equals 3 .755.

The convective heat flux ( („9 0 > , averaged over if , does
not depend on time and is only a function of Ot and $ . Figure

12b shows the dependence <U..8> on a, in the middle of the
layer. It may be seen that the heat flux is maximal at the equator,

i.e., non-axisymmetric convection is more effective at the equator,

in contrast to axisymmetric convection.

After the solutions are found in the qua.silinear approximation,

we may calculate the nonlinear terms corresponding to the intrinsic

interaction of the modes and determine how the angular moment is
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redistributed by convective mi

the nonlinear terms are small

considered in the quasilinear

the dimensionless part of the

at the external boundary as a

Dtion. This procedure is valid if

as compared with terms which are

approximation. Figure 13 shows ^•

angular frequency depending on

function of the angle.

Thus, although the convective motions are non-axisymmetric,
the intrinsic interaction of non-axisymmetric modes in the subse-

quent approximation excites the axisymmetric mode, leading to dif-

ferential rotation of the layer and equatorial acceleration.

This property of convective motion causes differential rota-

tion at the external boundary and may be used to explain the

equatorial acceleration of the Sun 1301.

The studies of Gilman [161 and Busse [141 of critical convec-	 Z
tion in a rotating spherical layer and of Young [101 and Busse

[191 on nonlinear convection in a quiet layer showed that both

effects (_rotation and ronlinearity) operate in one direction, i.e.,

they cause non-axisymraetric convection. Durney came to the same

result 1301, when studying the interaction of nonlinear convection

with rotation in a quasilinear approximation.

Therefore, at first glance the result obtained in the study

of Williams and Robinson [311 is somewhat unexpected, where a

numerical calcination was made of nonlinear convective motion in

the approximation of a "semi-thin layer s' for theRQ .s 950229RQo
number and the Taylor number 0 4 T'Q sc 5•I05	 and

Pr - 7.1 (Rao -- critical Rayleigh number in a quiet layer). The

calculations employed the grid method, the equations were integrated

over time for a layer with the thickness 6 - 0.15 with a free upper

and rigid lower boundary, and both boundaries were assumed to be in-
finitely conducting.

The basic result is reduced to the fact that in this range of
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Ra and Ta numbers, a stationary axisymmetric convective mode is

established which is stable with respect to three- dimensional

(azimuthal) perturbations.

It may be assumed that this divergence in the results may be

explained by the large value of the Prandtl number used in 1311.

However, this is not the case and may be seen from calculating

A-12 (see 1311, table). Actually, this case Ra - 2376 and Ta

2.9 . 10 5 pertains to convection at the stability limit (Nusselt

number Nu - 1.001), and as is known, the Prandtl number is not

included in linear equations in the steady state case. The deci-

sive factor is the fact that the authors used the "semi-thin"

layer approximation, in which they disregarded the components of

the Coriolis force, proportional to Sipja and making the greatest
contribution at the equator.(i.e., the r-component and the part

„Qj,, Sj»	 -- the azimuthal component of the Coriolis force).

The authors explain the difference with the results of calculat-

ing critical convection in a thin layer [141 by the fact that the

analysis of Busse applied only to slow rotation.

The behavior of the axisymmetric solution 1311 differed great-

ly from the axisymmetric flows of Gilman 1161 and Durney 1271. In

contrast to the latter, the axisymmetric flow in the approximation

of a "semi-thin" layer was suppressed at the poles, and not at the

equator with an increase in the angular velocity o," rotation (Fig.

14).

As may be seen from the latitudinal velocity profiles (Fig.

14), for different Ra and Ta, the zonal flow in the solution which

is symmetric with respect to the equator has a maximum close to

the equator at the upper layer boundary. There is a small de-

crease in velocity at the equator itself.

The axisymmetric structure of convective flow, the accelera-

tion of the flow close to the equator, the alternating ascending . I
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and descending flows in adjacent axisymmetric rolls make this model

of convection very interesting for explaining the observed phenomena

on the surface of Jupiter.

The convection calculation performed by the authors, taking

into account the planetary scales, showed that equatorial accelera-

tion corresponding to the observational data may be obtained for

a comparatively fine atmosphere of approximately 150 - 500 km.

However, it must be assumed that there is strong anisotropy in the

transport coefficients in the horizontal and vertical directions

X0 104 7 A

Section 6. Laboratory modeling of astrophysical conve ction.

The difficulties arising when creating a gravitational field

with spherical symmetry under laboratory conditions 'ead to the

fact that the experimental studies on convection are limited to

a plane layer. However, convection in a plane layer has the prop-

erty of horizontal isotropy, which does not exist in rotating

spherical layers with intrinsic gravitation. Therefore, the anal-

ogy with experiment is very poor. The greatest difference is due

to the fact that the angles between the force of gravitation and

the angular velocity vector in plane and spherical cases do not

coincide.

However, in the case of rapid rotation, as shown by Busse

1333, due to the specific form of convection in the form of columns

vr,rallel to the axis of rotation, the basic force is the component

of the force of gravity perpendicular to the angular velocity.

This fact is the starting point for laboratory modeling of astro-

physical convection performed in the division of Space Physics

of Columbia University 1341. The force of gravitation was modeled

in the experiments by centrifugal force arising during the rotation

of a spherical layer around a vertical axis. Figure 15 shows a
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diagram of the laboratory equipment. To compensate ft-T' the dif-

ference in the signs of centrifugal and gravitational force under

laboratory conditions, the direction of the temperature gradient

was changed to the opposite direction. The spherical layer be-

tween the external (transparent) spherical shell and the internal

sphere was filled with liquid, to which aluminum flakes were

added to visualise the flow. The layer was placed in a trans-

parent container, in which thermostatically controlled water cir-

culated to maintain the temperature at the external boundary of

the layer. To maintain a constant temperature of the internal

sphere, the thermostatically controlled water was added along the

axis of rotation at a lower temperature.

The preliminary results now published qualitatively describe

certain convective modes which are produced. For a high rotation

rate and a corresponding 47, a very non-axisymmetric convective
mode was established, having the form of vertical, columns regularl;,

distributed in space (Fig. 7a). With a further increase in the

rotational velocity, the convective columns were filled with the

external section of a spherical ring. Due to the difference in the

phase propagation velocities, the location of the columns in space

was irregular. However, their form was rigorously parallel to the

rotation axis.

The thin layers make it possible to implement flows with rela-

tively low Taylor numbers without decreasing the rotational velocity

below the limit when the gravitational force begins. In this case

convection assumes the form of banana-like cells obtained theoretic-

ally in slowly-rotating thin layers 114) .

However, there is another possibility inr modeling convection

in spherical layers with central gravitation The basic idea is

to produce a central field of forces by an elee4ric field. It was

tested on equipment with spherical geometry by Chandra and Smylie

1351 at the Columbia University in Canada.

37



In this case the central field of forces was produced by the

dirferenco in the potentials' I on external and internal spheres.

Heating the internal sphere and cooling the external one estab-

lished the necessary temperature gradient. lbe calculation showed

that the volumetric force directed along the radius of a spherical

layer has the value

where'`; ^^ - temperature coefficient of the dielectric con- 	 8y	

•.

stant. For a thin layer

2

Ye 22- r.h 	 aeaT•

In dielectrics of the silicon oil type at T - 20 0 C

• /0 C	 0( .. ./0 'C
Ja	 /

2 v-
.

In order that the force of the Earth attraction does not have

a great influence upon the convection produced, the following is

necessary:

If we set 4Ft f	 s Igo then for a field strength of

100 kV/cm, the following condition is obtained for the geometry

of the layer ri S - 7. 3 cm, i.e., the dimensions of the equip-
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ment are very limited. The basic limitation it, imposed by the
strength of the field Y/h	 It must not exceed a certain value
of 2100 kV/cm, at which breakdown may occur in the liquid.

It is apparent that the use of the electric field for model-

ing convection in a spherical layer was implemented most effec-

tively by Busse and Carrigan, but the equipment was more complex

to use.

CONCLUSION

The problem of convection in a spherical layer without con-

sidering any complicating factors (rotation, shear, etc.) is de-

termined by three-dimensionless parameters: the Rayleigh number

Ra, the Prandtl number Pr, and the dimensionless thickness of the

layer S, i.e., one parameter of similarity more than in the prob-

lem of Raleigh-Benar.

Just as in the problem of convection in a plane layer, the

linear problem is degenerate, but 
24,41 

solutions correspond to

the critical Rayleigh number in a spherical layer, and not an in

finite set, and	 greatly depends on the layer thickness and,

to a lesser extent, on the boundary conditions.

Allowance for small supercriticality of the motion does not

completely eliminate the degeneracy, although it greatly reduces

the possible solutions 1191. Just as in the plane case, for one

and the same values of the similarity parameters, there is nor-

uniqueness of the solutions for nonlinear convection. However, in

contrast to the plane layer, the horizontal dimensions of finite-

amplitude flow are completely determinate, and the arbitrary selec-

tion of a poloidal wave number is impossible. This is due to the

closed nature of the volume. The nonuniqueness of the solution

may be due to the form (_azimuthal wave number) or nonstationary

/39
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The existence of such complicating factors as rotation, lati-

tudinal temperature gradient at the boundary, shear flow leads

to the elimination of degeneracy in the linear problem [111.

Shear and the latitudinal gradient with A >0 lead to establish-

ing axisymmetric convection, and rotation causes three-dimensional

cells having an intrinsic phase propagation velocity in the azi-

muthal direction. In thin layers, even in the case of slow rota-

tion, convection is concentrated in the equatorial region.

At large rotation velocities	 Ttx '060	 critical convection

in the polar.regions is suppressed, and convective cells assume

the form of thin rolls -- columns parallel to the axis of rotation.

The critical convective modes at TQ, ..,r^ are characterized by the

asymptotic relations-:

jeacm
e 

Ta 
s c .: 

Tom.

A study of the interaction between nonlinear convection and

rotation has only begun. The studies of Durney 127, 301 and	 /40

Williams and Robinson 1311 pertained to specific approximations

which cannot give a complete representation of nonlinear convec-

tive flows in spherically rotating layers. The difficulties con-

sist of the fact that modes of nonlinear convection which can be

physically realized (stable) in this case are always three-dimen-

sional, which greatly complicates the use of numerical methods.

The studies performed on convection in spherically rotating

layers show the promising use of the simple models for understand-

ing and explaining the observational phenomena on planets and stars.

These models help to explain the most characteristic aspects of

the phenomenon, in the case of convection in rotating spherical

layers. These models also provide a basis for understanding the

mechanism of the phenomenon as a whole and the formulation of more
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complex models which are closer to real conditions, whose numerical

modeling is still very difficult 133,363•'

Along with this, certain difficulties have arisen. As was

shown in 114, 30, 311, the interaction of rotation with convection
leads to two basic effects: transport of the angular moment to the

equator and stabilization of large-scale convection at the poles.

A consequence of the second effect is the great difference in the

heat fluxes and temperatures at the poles and the equator at the

upper boundary of the convective zone; this difference was not ob-

served either on the Sun I371 nor on Jupiter I381•

In addition, convection in rapidly rotating spherical shells

strives to assume a non-axisymmetric form in the form of cells ex-

tended in the meridional direction, and this contradicts the ob-

servations on Jupiter.

Recent results of spectroscopic measurements on "Pioneer 10 	 /41

and 11 11 1381 and theoretical studies 133, 36 1 show that the convec-
tive model of Jupiter must be more complex than was assumed previous-

ly.

The model of Jupiter must explain the absence of a difference

in the heat fluxes at the equator and at the poles and the develop-

ment of convective cells in the form of axisymmetric rolls parallel

to the equator. Studies we performed earlier I11, 361 lead to the

assumption that both of these phenomena may be related to the ab-

sorption of solar energy close to the upper boundary of the con-

vective zone.

Actually, it is difficult to assume that the heat flux from

the Sun, which comprises approximately half of the internal heat

flux, does not have a great influence upon the hydrodynamics of

large-scale phenomena in the atnosphere of Jupiter. Apparently,

in the upper layers of the atmosphere where priiaarily solar radia-
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tion is absorbed, the viscosity is small (the penetrating convec-

tion is suppressed due to the stable temperature stratification)

and due to a geostrophic balance zonal westerly flows arise. The

action of these flows on the underlying layers may be represented

as tangential stresses 	 , which are continuously,distributed

at the boundary and which change with latitude. In the case of

rapid rotation of the planet Re >>,	 and for small Rossby num-
hers	 qC4	 , the influence of Zs^ on the lower layers

{	 leads to the formation of a cylindrical shear layer parallel to

the axis of rotation and tangent to the lower boundary of the con-

vective zor it the equator. As was shown in 1361, the extension

of this layer to the external boundary causes a sharp change in

the angular velocity at the surface, and may thus explain the

existence of an equatorial stream in the region of + 10° of the

Jupiter latitude.

In addition, a strong zonal flow at the upper boundary,

together with the latitudinal temperature gradient 1111, in the

presence of rotation contribute to the development of convective /42

cells in the form of axisymmetric rolls. The band-like structure

of the surface of Jupiter at latitudes of + 10 0 - + 450 may be the

result of large-scale convective cells of this type reaching the

surface.

The difference in the absorption of solar radiation at the

equator and the poles must lead to a decrease in the convection

Intensity in the pre-equatorial zone and may balance the influence

of rotation causing a decrease in the intensity of convection at

the poles. Actually, both of these factors, rotation and absorp-

tion of solar radiation, will suppress the convection selectively:

rotation -- at the poles; absorption -- close to the equator. As

a result, the heat flux produced by the planet at different lati-

tudes may be approximately the same.

The three-dimensional structure of convection at high latitudes
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1381 must be explained by a decrease in the velocity of the zonal
flow and the absorption of solar energy [11]. It is apparent

that the model approximates the real one most closely if convec-

tion is regarded in a compressed medium, in contrast to the

Boussinesq approximation.

The situation is more complex with the solar convective model.

Although the model of the convective shell has good agreement with

the observational data referring to large-scale motions in the

photosphere (differential rotation, dimensions of gigantic cells,

weak meridional circulation, etc.), there is a great contrast be-

tween the observed and calculated heat fluxes on the surface.

Rough estimates of the difference in the heat fluxes at the

equator and the poles d & .for a deep model of the solar convective

zone give values of 	 8 F/ ^ f f-291439.40] . There is no
validity to the ideas that the equations and boundary conditions

are not sufficiently realistic for predicting heat fluxes close to

the upper boundary of the convective zone, since the mechanism of

transfer from convective heat transport to radiant heat transport

close to the boundaries was not considered. Additional concepts

regarding the possible redistribution of heat flux within the con-

vective zone are necessary.
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Fig. 15. Diagram of equipment for modeling the astrophysical con-

vection.
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