NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE
Lasing Characteristics of Gas Mixtures Involving UF₆:
Application to Nuclear Pumping of Lasers

Prepared for
National Aeronautics and Space Administration
Langley Research Center, Hampton, VA 23665

26 March 1980

by

J.T. Verdeny
J.G. Eden

Gaseous Electronics Laboratory
Department of Electrical Engineering
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801
Our research efforts during this past year of NASA sponsorship have concentrated on identifying atoms or molecules that are attractive as potential nuclear-pumped lasers. These studies have led to the examination of the iodine-monofluoride (IF*) molecule. Specifically, as a direct result of NASA funding, the following accomplishments have been realized in the past year:

1) The blue-green emission spectrum of IF* in e-beam excited Ar, NF_3 and CF_3I mixtures has been observed and assigned to the E \rightarrow A _3\Pi_1 transition.

2) From fluorescence measurements, the radiative lifetime of the excited molecule has been estimated to be \(~15\) ns.

3) The IF* kinetic formation chain has been determined to be: Ar* \rightarrow Ar_2* \rightarrow I* \rightarrow IF*, where * indicates an electronically excited state of the atom or molecule indicated.

4) The rate constants for quenching of I* and ICI* by various atoms and molecules (including UF_6) have been measured.

Simply stated, IF appears to be a very attractive choice for a laser to be pumped by the gaseous core reactor. For instance, the E \rightarrow A _3\Pi_1 band of IF lies in the blue-green and, therefore, UF_6 ground state absorption will be negligible. Also, quenching of IF* by UF_6 is sufficiently small that a potential IF laser would be compatible with \(~1-10\) Torr of UF_6. Also, since IF contains one fluorine atom, then UF_6 can be used to form the laser's upper state.
Finally, the highly structured nature of the IF* blue-green emission band, the short (~15 ns) IF* radiative lifetime and the Franck-Condon shift between the IF E and $\text{A}^3\Pi_1$ states all indicate that the small signal optical gain from IF* should be large.

In the last two months, a research group at Garching has succeeded in obtaining stimulated emission from IF. Lasing occurs at $\lambda = 491$ nm. It is our intention of continuing the study of IF* and, in particular: 1) to measure the pump power threshold for the laser and 2) determine the efficiency of an IF* oscillator or the extraction efficiency of a dye-laser saturated IF* amplifier.

The experimental results obtained during this past year are presently being written up for publication. However, the highlights of this experimental effort are summarized in the attached paper which has been submitted for publication.
IODINE-MONOFLUORIDE (IF) EMISSION SPECTRUM AND
FORMATION KINETICS IN ELECTRON BEAM PRODUCED PLASMAS

S. B. Hutchison, J. G. Eden and J. T. Verdeyen

Department of Electrical Engineering
University of Illinois
Urbana, Illinois 61801

ABSTRACT

Intense blue-green fluorescence from a structured band centered
at $\lambda \sim 484$ nm has been observed from Ar, CF$_3$I and NF$_3$ gas mixtures
($T = 300^\circ$K) excited by a ~ 3 ns FWHM electron beam. This emission is
tentatively assigned to the $E \rightarrow A^{3} \gamma_1$ transition of the iodine-
monofluoride (IF) molecule. From the temporal behavior of the IF* and
I$_2^*$ (342 nm) emission, it has been determined that the IF(E) level is
formed primarily by excitation transfer from I* ($4P$) states. The
fluorescence efficiency of the IF(E \rightarrow A) band and the IF* (E) state
radiative lifetime have been estimated to be $\sim 6\%$ (in 99.83$\%$ Ar/1.13$\%$
CF$_3$I/0.04$\%$ NF$_3$ mixtures, $P_{\text{TOTAL}} \sim 2300$ Torr) and ~ 15 ns, respec-
tively. The emission band structure, the short IF(E) radiative life-
time and the Franck-Condon shift between the E and A states suggest
that IF* is an attractive candidate for a blue-green laser.

*Work supported in part by the NASA Langley Research Center under
Contract No. NSG 1609.
The spectroscopic properties of the diatomic halogen molecules have been studied extensively for several decades and since 1975, stimulated emission has been obtained from each member of this molecular family (I₂, Br₂, Cl₂ and F₂).¹

In contrast, although numerous studies of the low-lying A³π₁ and B³Σ₀ states of the interhalogen molecules (BrF, ICl, etc.) have been conducted,²⁻⁵ for many of these molecules little detailed information regarding higher excited states is available. Consequently, only recently have the interhalogens received attention as UV and visible laser candidates.

Huestis and co-workers⁶ have observed strong fluorescence bands (from electron beam (e-beam) excited Ar and ICl or IBr gas mixtures) at 385 and 430 nm which were attributed to ionic to covalent transitions of IBr and ICl, respectively. Optical gain was observed on the blue ICl band but, due to ground state ICl absorption,⁶,⁷ oscillation was not obtained. Diegelmann et al.⁸ subsequently reported lasing at 285 nm from the CEF molecule when formed in e-beam excited Ne/F₂/Cl₂ gas mixtures. However, the identity of the states responsible for these e-beam pumped ICl, IBr or CℓF emission bands remains unclear.

The observation of intense blue-green spontaneous emission from e-beam excited Ar/CF₃I/NF₃ gas mixtures is described here. To our knowledge, this emission band, which peaks near λ ~ 484 nm, has not been reported previously⁹⁻¹¹ and is tentatively assigned to the E → A³π₁ transition of the iodine-monofluoride (IF) molecule. Both CF₃I and CH₃I have been utilized as iodine donors to minimize absorption in the 450-500 nm spectral region.¹²⁻¹⁴

The experimental apparatus used in these studies consisted simply
of a Febetron 706 e-beam generator, an optical cell and gas handling equipment and a detection system. After traversing a ~1 cm thick atmospheric drift region, an intense (∼1 kA·cm⁻²), ∼3 ns FWHM beam of 600 keV electrons irradiated a mixture of Ar, CF₃I and NF₃ contained in a stainless-steel cell. The emission from the excited gases was viewed transverse to the e-beam axis by a 0.6 m spectrograph (in first order) and Polaroid Type 57 (or Kodak Tri-X) film and by a biplanar photodiode with an S-20 surface. Bandpass or calibrated neutral density filters were placed in the optical path to prevent saturation of the photodiode and to isolate the desired spectral region. Research grade rare gases and technical grade CF₃I, NF₃ and F₂ (as supplied by the manufacturer) were used in these experiments. Passivation of the e-beam cell and gas handling system was accomplished by allowing ~50 Torr of F₂ to stand in the cell for ~0.5 h. Finally, calibration of the observed spectra was afforded by a Hg pen lamp.

Upon exciting 2000–4000 Torr Ar, 3 Torr CF₃I and 1 Torr NF₃ gas mixtures with the e-beam, the intense blue-green emission band shown in Fig. 1 was observed. Vibrational structure in the band is evident and maximum emission occurs for λ ~ 484 nm but the fluorescence extends to wavelengths < 430 nm. When either the NF₃ or CF₃I was removed from the gas mixture, the band of Fig. 1 vanished. Also, the same spectrum was recorded (although with diminished intensity) if NF₃ was replaced by F₂ or if He or Ne was used as the mixture diluent. Therefore, this blue-green band is attributed to the diatomic iodine-monofluoride molecule (IF) and is the longest wavelength diatomic halogen emission yet observed for relativistic electron beam excita-
tion. Table I shows that the ~484 nm peak wavelength of the IF spectrum is consistent with the known wavelengths3,6 of the other iodine-monohalide emission bands (e-beam produced).

In order to identify the electronic states responsible for the 484 nm emission, an analysis of the ICl and IBr spectra (from e-beam irradiated Ar, CF\textsubscript{3}I and Cl\textsubscript{2} or IBr gas mixtures) was undertaken. This approach was adopted simply because the excited states of ICl and IBr are better known than those of IF. For ICl, a close coincidence was found to exist between the measured emission spectrum and v' = 0,1 + v'' = 3-6 transitions of the ICl (E + A3π\textsubscript{1}) band, as calculated from the spectroscopic constants and vibrational transition assignments given by Rosen.3 The peak ICl emission at 433 nm was identified as the (0,4) transition of the E + A3π\textsubscript{1} band. A similar analysis of the e-beam excited IBr band led to an analogous conclusion: that the band peak at λ ~ 356 nm corresponds to the (0,4) transition of the D + A3π\textsubscript{1} band.15 Neither the ICl nor IBr spectra could be explained by assuming B3π\textsubscript{0} to be the lower energy state,8 a result which may bear on attempts to identify the origin of the 342 nm band of I\textsubscript{2}.16,17

Preliminary analysis18 of the wavelength separation between the local maxima of the IF* emission spectrum (Fig. 1) suggests that ω\textsubscript{e} (upper level) ≈ 250 cm-1. Hence if the emission band peak at λ ~ 484 nm is assigned to the E + A (0,4) transition (consistent with the ICl and IBr spectra), then T\textsubscript{e}(E) ~ 37967 cm-1. Table I shows that these rough estimates of T\textsubscript{e} and ω\textsubscript{e} are in agreement with the trends established by I\textsubscript{2}, IBr and ICl. Moreover, if ω\textsubscript{e} and T\textsubscript{e} of the E state are taken to be those estimated here, then the vibrational lines in
the IF* spectrum apparently originate from the \(v' = 0,1 \) levels of the E state and terminate on \(v'' = 3-6 \) of the \(A_2^\pi_1 \) level.

In addition to the IF band, the only emission detected (from the Ar/CF\(_3\)I/NF\(_3\) plasmas) between 250 and 650 nm was due to I\(_2^*\) (342 nm). So, in order to investigate the formation kinetics of the IF* molecule, the temporal behavior of both the I\(_2^*\) and IF* fluorescence was recorded using bandpass filters (I\(_2^*:T_{\text{max}} = 18\% \text{ at } \lambda_0 = 352 \text{ nm, } \Delta \lambda = 12 \text{ nm FWHM; IF}^*:T_{\text{max}} = 70\% \text{ at } \lambda_0 = 495 \text{ nm, } \Delta \lambda = 38 \text{ nm FWHM}).

Over a wide range of gas mixture compositions, the time decay of IF* and I\(_2^*\) waveforms (for an example, see Fig. 2) was found to be identical to within experimental error. This suggests that these excited molecules are fed by a common precursor. A similar conclusion was reached in ref. 6 from experiments involving Ar/ICl plasmas.

Partial energy level diagrams for Ar, I, I\(_2\) and IF are illustrated in Fig. 3. The I\(_2\) states were redrawn from refs. 16 and 19 and the IF (X and A) levels were taken from the paper by Birks, Gabelnick and Johnston.\(^{11}\) The E state of IF is included simply to indicate its position relative to the I\(_2^*\) (1432, \(\pi_2^g \)) state but its equilibrium radius is probably slightly larger than shown in the Figure. Clearly, at least one of the I* (\(^4\)P) levels has sufficient energy to simultaneously break either the CF\(_3\)-I or NF\(_2\)-F bonds (2.32 and 2.52 eV, respectively) and populate low vibrational levels of I\(_2^*\) or IF*.

Consequently, the kinetic scheme for IF* production is expected to be analogous to that proposed by Huestis et al for ICl.\(^6\) That is:
\[
\text{Ar}^* (\text{or Ar}^* _2) + \text{CF}_3\text{I} \rightarrow \text{I}^* (4P) + \text{CF}_3
\] (1)

and

\[
\begin{align*}
\text{I}^* (4P) + \\
\text{NF}_3 \rightarrow & \text{IF}^* (E) + \text{NF}_2 \\ + \text{CF}_3\text{I} \rightarrow & \text{I}_2^* (1432, 3\pi_2g) + \text{CF}_3, \\
\end{align*}
\] (2)

where \(\text{Ar}^*\) represents one of the low-lying \(\text{Ar} (3P)\) states and \(\text{Ar}_2^*\) is the metastable \(3I_u^+\) excimer state.

Figure 4 shows the dependence of the time and wavelength integrated IF* fluorescence on the argon partial pressure for \(\text{Ar}, 2\ \text{Torr} \ \text{CF}_3\text{I}\) and \(1\ \text{Torr} \ \text{NF}_3\) gas mixtures. Initially, the integrated spontaneous emission increases as \(\sim \text{Ar}^*\), which suggests that \(\text{Ar}_2^*\) may be primarily responsible for \(\text{I}^*\) formation in Eqn. (1). Above \(\sim 2300\) Torr, the IF* fluorescence levels off due to increased Ar quenching of the molecule. Here, it should be noted that the internal energy of the \(\text{Ar}_2^* (3\Sigma)\) molecule is \(< 1000\ \text{cm}^{-1}\) in excess of that required to break the CF3-I bond and subsequently excite I to the \(6s^4P_{1/2}\) or \(3/2\) levels. However, \(\text{Ar}^* (3P)\) atoms are capable of populating \(\text{I}^*\) states \(\sim 3\cdot10^6\ \text{cm}^{-1}\) above the \(4P\) levels. Also, the \(\text{Ar}_2^*\) excimer formation process, \(\text{Ar}^* (3P) + 2 \text{Ar} \rightarrow \text{Ar}_2^* (3\Sigma) + \text{Ar}\), competes with Eqn. (1) for the available \(\text{Ar}^* (3P)\) atoms. Taking the \(\text{Ar}_2^*\) formation rate\(^{20}\) to be \(1.7 \cdot 10^{-32}\ \text{cm}^6\cdot\text{s}^{-1}\cdot[\text{Ar}]^2\) and letting \(k_1 = 4.7 \cdot 10^{-10}\ \text{cm}^3\cdot\text{s}^{-1}\)\(^{21}\) then for \(3\ \text{Torr} \ \text{CF}_3\text{I}\) and \(p_{\text{Ar}} > 1700\ \text{Torr}\), \(\text{Ar}_2^*\) formation is the dominant \(\text{Ar}^* (3P)\) loss mechanism. The apparent conclusion, then, is that for the high Ar pressure gas mixtures characteristic of these experiments, the \(\text{Ar}_2^*\) molecule, rather than an \(\text{Ar}^* (3P)\) atom, is the imme-
diate precursor to the I* (4p) state.

From the single exponential decay of the IF* waveforms from low pressure (P_{TOTAL} < 10 Torr) CF3I/NF3 gas mixtures, the IF* (E) state radiative lifetime has been estimated to be \(\approx 15 \) ns.22 This result is consistent with the \(\approx 7 \) ns lifetime for the upper state of the I2 342 nm band.19,23 Therefore, the waveforms shown in Fig. 3 (for Ar, CF3I and NF3 mixtures) reflect the quenching of I* by CF3I or NF3.

Measurements of the rate constants for collisional quenching of I* by various atoms and molecules and the IF* radiative lifetime will be described elsewhere.22

Finally, by comparing the time-integrated IF* blue-green fluorescence to the N2 (C + B) emission from Ar/5% N2 gas mixtures,19 the fluorescence efficiency of the IF* (E \rightarrow A^3\pi_1) band in e-beam produced 2300 Torr Ar/3 Torr CF3I/1 Torr NF3 mixtures was found to be \(\approx 6\% \). Also, measurements of the branching ratio for IF* formation by quenching of I* (BR = \(\int (IF^*(\lambda, t))d\lambda dt/\int (IF^* + I_2^*)d\lambda dt \)) in 2300 Torr Ar, P_{CF3I}, 1 Torr NF3 gas mixtures revealed that 25% \(\leq \) BR \(\leq \) 44% for 4 \(\geq \) P_{CF3I} \(\geq \) 1 Torr.

In summary, strong blue-green fluorescence has been observed from electron beam excited Ar, CF3I and NF3 gas mixtures. This emission has been tentatively assigned to the E \rightarrow A^3\pi_1 transition of the IF molecule and is likely the same transition that is responsible for the 385 and 430 nm bands of IBr and IC1, respectively. The emission spectrum and short radiative lifetime of IF* and the Franck-Condon shift between the E and A states make the molecule attractive as a potential laser. Also, none of the ground or excited state species that are known to be present in Ar/CF3I/NF3 plasmas absorb strongly in
the 480-500 nm spectral region. Since it would likely operate at room
temperature, an IF blue-green oscillator would represent an improve-
ment over the HgBr laser which requires operating temperatures in
excess of 100°C. Consequently, experiments to obtain lasing from this
molecule using both e-beam and discharge pumping are in progress.

The authors thank R. Dixon and Dr. R. W. Waynant of NRL for the
use of a microdensitometer. Also, discussions with Prof. J.
Tellinghuisen of Vanderbilt University regarding the IF spectrum are
gratefully acknowledged.
TABLE I

Peak emission wavelengths and spectroscopic constants for the e-beam excited iodine-monohalide bands.

<table>
<thead>
<tr>
<th>MOLECULE</th>
<th>(\lambda_{\text{PEAK}}) (nm)</th>
<th>UPPER DESIGNATION</th>
<th>(\omega) (cm(^{-1}))</th>
<th>(T) (cm(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>I(_2)</td>
<td>342</td>
<td>E(1432, 3(^2)(\Sigma)(_g^+))</td>
<td>104.2</td>
<td>(\sim 40,000)</td>
</tr>
<tr>
<td>IBr</td>
<td>386</td>
<td>p(b)</td>
<td>90.1</td>
<td>38,713</td>
</tr>
<tr>
<td>IC(_2)</td>
<td>433</td>
<td>g(b)</td>
<td>174.2</td>
<td>37,741</td>
</tr>
<tr>
<td>IF</td>
<td>484</td>
<td>E</td>
<td>(\sim 250)(^{(c)})</td>
<td>(\sim 37,967)(^{(c)})</td>
</tr>
</tbody>
</table>

\((a)\) The identity and spectroscopic constants of the upper level of the I\(_2\) 342 nm band are still somewhat uncertain; see refs. 16 and 17.

\((b)\) Ref. 3.

\((c)\) Estimated, this work.
REFERENCES

1. For a set of references concerning the e-beam and discharge pumped \(X_2 \) (\(X = I, Br, Cl \) and \(F \)) lasers, see: A. K. Hays, Opt. Comm. 28, 209 (1979); also see ref. 8.

15. The upper energy levels for the IBr, ICl and IF emission bands are likely the same state. However, the decision of whether to label this state D or E must await more detailed (and higher resolution) studies of the absorption and emission spectra of these molecules.

18. J. Tellinghuisen, Vanderbilt Univ. (private communication).

FIGURE CAPTIONS

Fig. 1. Densitometer tracing of the IF* emission spectrum observed from e-beam excited 99.83% Ar, 0.13% CF3I, 0.04% NF3 (pTOTAL = 2300 Torr) gas mixtures. The spectrograph resolution was 0.16 nm and the vertical scale is linear in optical density. The same spectral profile was observed regardless of the iodine/fluorine donor molecules or rare gas diluent used in the mixture.

Fig. 2. Temporal decay of the I2* (342 nm) and IF* (484 nm) fluorescence waveforms for a 2300 Torr Ar/3 Torr CF3I/1 Torr NF3 gas mixture. The I2* and IF* emissions were spectrally isolated by bandpass filters. For clarity, the IF* waveform has been intentionally displaced horizontally with respect to the I2* trace.

Fig. 3. Partial energy level diagrams for the atomic and molecular species involved in IF* formation in e-beam produced plasmas. The I2 and IF (X and A) energy levels were redrawn from refs. 16 and 19 and ref. 11, respectively. Only the I* (4P1/2 and 4P5/2) states are shown for clarity. At the bottom of the graph are also shown the NF2-F and CF3-I bond energies.

Fig. 4. Variation of the time and wavelength integrated IF* fluorescence with the Ar partial pressure for pAr/3 Torr CF3I/1 Torr NF3 gas mixtures.
Fig. 1 Hutchison et al.
Fig. 2 Hutchison et al.
Fig. 3 Hutchison et al.
Fig. 4 Hutchison et al.