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This report summarizes the results obtained in the research program at

the University c" Florida sponsored by NASA Lewis Research Center under

Grant No. NSG-3018. The report covers the period of September 1977 - Sep-

tember 1979.

In addition to the senior investigators, graduate students S. C. Pao

and M. A. Shibib participated in the research. The technical collaboration

with M. P. Godlewski and W. H. Brandhorst, Jr., of NASA Lewis Research Center

was very helpful during the research work. Discussions with C. T. Sah and
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CHAPTER 1

INTRODUCTION

The previous reports covering the period ending September 1977

concentrated on studies of basic mechanisms limiting the power con-

version efficiency n, and particularly the open-circuit voltage Voc,

of n+-p juncti-n silicon solar cells. Both theoretical and experi-

mental studies were done to determine which mechanisms are responsible

for the discrepancy between the theoretical and experimental efficiencies

and open-circuit voltages.

In the classical analysis of silicon p-n junction solar cells,

which neglects certain fundamental physical mechanisms (1), the limit

Value of VOC iQ calculated to be about 700 mV. The values of V
OC ob-

served experimentally fall well below this limit value. The efficiency

s
	 n of silicon solar cells will be limited byVim , as first noted by

Brandhorst (2). The conclusion from our experimental work [3,4] was that

the factors which most influence VOc are the dark recombination currents

in the emitter and base regions of the solar cell. In particular, for

cells with base resistivity of about 0.1 ncm, the emitter dark recombi-

nation current is dominant [3)•

One of the possible mechanisms contributing to this dominance is

bandgap narrowing AEG [1) in heavily-doped regions of p-n junction solar

cells. In our previous report we proposed a new method [5], based on

the temperature dependency: of the emitter current, for measuring AEG

in the emitter quasi neutral region as a function of the emitter doping

concentration. Chapter 2 gives a detailed theoretical treatment under-

lying this method including now the effects of the Fermi-Dirac statistics.

Experimental results for the emitter dark current density and AE G for
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emitter doping concentrations from 3 x 101 
93 

to 2 x 
1020 

cm 3 are

given for n+-type emitters. These data are the firs: accurate experi-

mental results covering the range of dopings above 10 cm 
3.	

f

To provide theo::etical support for investigating different ways

to obtain high open-circuit voltages in p-n junction silicon solar cells, 	 !
5

in Chapter 3 an analytical treatment of heavily doped transparent-emitter
i

devices is presented that includes the effects of bandgap narrowing,

Fermi-Dirac statistics, a doping concentration gradient, and a finite our- .	 t

face recombination velocity S at the emitter surface (6). Transparency

of the emitter to minority carrier is defined by the condition that the

transit time T  is much smaller than the minority carrier lifetime in

the emitter Tp , Tt << Tp. As part of the analytical treatment, a self-

consistency test is formulated that checks the validity of the assumption

of emitter transparency for any given device. The transparent-emitter

model is applied to calculate the dependence of the open-circuit voltage

V 
0 of n+-p junction silicon solar cells made on low-resistivity substrates.

The calculated 
V 
0 agrees with experimental values for high S p (1 5 x 104am/8)

provided the effects of bandgap narrowing (modified by Fermi-Dirac sta-

tistics) are included in the transparent-emitter model.

As was discussed earlier, the dark emitter recombination current has

to be suppressed in order to achieve 
V 
0 of about 700 W. A new structure

to achieve that goal, the high-low-emitter (HLE) solar cell was proposed

[7,8). The study of HLE devices was one of the main purposes of the

research under this grant. A detailed report of our accomplishments is

in Chapter 4. Chapter 4 deals specifically with the cell in which the

high-low (H-L) junction is induced by a positive oxide charge in the

silicon-dioxide layer covering the emitter surface (9). The maximum

V 0 
achieved to date is 647 mV (measured by NASA Lewis in May 1979).
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About 50 fabrication runs were made using different substrates and

fabrication procedures. The most important results are summarized and

described in detail. High values of V0C in a range of 640-647 mV were

obtained in at least 20 fabrication runs, repeatedly and reproducibly,

using base substrate resistivities of 0.1 Qcm and 0.025 Qcm. The first

devices, fabricated in January 1978, still maintain V 
0 

observed origi-

nally twr years ago.

Chapter 5 discusses new methods for the determination of lifetimes

and recombination currents in p-n junction solar cells and diodes (10).

aThese methods are particularly applicable to devices in which the minor-

ity carrier diffusion length is longer than the width of the region of

the interest (HLE, BSF, IBC, FSF, and TJ cells). These methods are then

Y	 directly applicable to determine the lifetime in the epitaxial emitter

of the HLE cells described in Chapter 4. Once the lifetime is determined,

this result allows determination of the dark recombination current in the

emitter and also leads to the determination of the effective surface recom-

bination velocity S
eff 

at the n+-n H-L junction in the emitter.

Chapter 6 discusses a new approach for the fabrication of BSF cells

[11), in which the heavily doped region in the base of a BSF cell is

eliminated. Instead, the desired high concentration of majority carriers

at the back surface is obtained by a biased metal-oxide-semiconductor

structure (MOS-BSF cell).

Chapter 7 deals with design proposals for high efficiency high-low-

emitter solar cells [12). A first-order analysis of HLE cells is presented

for both beginning-of-life (BOL) and end-of-life (EOL) conditions. Based

on this analysis and on experimentally observed values for material Para-

meters, we present design approaches for both space and terrestrial cells.
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The approaches result in specification of doping levels, junction depths

and surface conditions. The proposed structures are projected to have

both high VOC and high JSC , and consequently high q.
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h.X1'FH1M1:NTAL DI:"PERMINATICN OF UANI GAP NARIt(MM

IN 11111 1110"J'M REGION OF SILICON P-N JUNCTION ULVICES

2.1 Introduction

Bandgap narrowing in heavily-doped regions of silicon p-njunction

devices has been the subject of several publications 12,6-121. The

degradation in open-circuit voltage in low resistivity p-n junction

solar cells 121 and the low values of emitter efficiency observed in

silicon bipolar transistors (8,9) i,w've been attributed, in part, to the

excessive minority carriers stored in the heavily-doped emitter region as

a result of bandgap narrowing in that region.

Recently several methods have been proposed to determine the magnitude

of bandgap narrowin7 AEG in the base region of bipolar transistors.

These methods employ measurements of the temperature dependence of the

transistor emitter-base junction voltage, at a fixed collector current

[61, and of the transistor collector current (7,131. Because the base

doping concentration of transistors is limited to about 1019 
cm 3

these methods do not allow investigation of an entire range of high

doping densities up to about 10 21 cm 
3. 

The higher levels of doping

concentration are often present in the emitter region of conventional

p-n junction solar cells and bipolar transistors and can significantly

influence the device performance.

To determine AEG of the emitter, we propose an alternative method

which makes use of the temperature-dependence measurement of the

5
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injected minority-carrier current in the emitter region. This method

applies over the entire range of emitter doping, concentration present

in p-n junction devices and allows, for the first time, determination

of AEG as a function of doping concentration up to about 10 21 em 3.

In the context of this dissertation, we assume that the classical

parabolic quantum density of state description is adequate for both

carriers (rigid-band approximation) and that the minority carriers obey

the traditional macroscopic flow equation in uniformly-doped regions.

Discussions related to these subjects can be found in literature (14-20).

In the interpretations of experimental results, we have taken into account

the effects of Fermi-Dirac statistics, which decrease the minority-

carrier concentration below the values predicted if Boltzmann statistics

are used.

2.2 Theoretical Grounds for the Method

2.2.1 In ected Minority-carrier Current in Heavily-Doped Mitter
Region

We consider the structure shown in Fig. 2.1. For simplicity of

discussion, we assume the quasi-neutral emitter region (0 1 x < WE) to

be uniformly doped with donor concentration NDD . Devices with an

uniformly-doped emitter region allow direct correlation between the

measured value of bandgap narrowing and the doping concentration without

complications arising from the built-in electric field and quasi-field

(18) associated with a position-dependent doping profile. We further

assume the emitter to be transparent to the minority holes, that is,

the hole transit time T  across the n+ region is assumed to be much

shorter than the hole recombination lifetime t p in the n+ relion. A

u
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Figure 2.1 A diode structure under 
external bias VBE .
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thin emitter with large surface recombination velocity helps to decrease

the hole transit tine. Experiments with p+-n-n+ back-surface-field

solar cells indicate that even some n+ layers as thick as 1 pm ( formed

by phosphorous diffusion at 1000 0C for 30 min) exhibit transparency

properties (21).

Under the above assumptions, the injected hole current density

J  is spatially constant:

IJp I - gDp'dAP
 dxW = qDp AP (0)
	

(2.1)

where D  is the hole diffusivity, 
WE 

is the width of the quasi-neutral

emitter region, and AP(0) is the excess hole density at the edge of the

quasi-neutral emitter, which we next discuss.

2.2.2 Excess Minority-Carrier Concentration in Degenerate Silicon

in thermal equilibrium, for a parabolic quantum density of states,

the concentrations of charge carriers in a semiconductor are given by

NO = NC FO nc )	 2(2AmankT/h2 )
3/2

 F^(nc )	 (2.2)

PO = NV F^( nv) - 2(2AmdhkT/h2)1/2 F^(nv)	 (2.3)

where NC and NV are the effective density of states in the conduction

A	 A
and valence bands respectively, mdn and mdh are the density-of-state

effective masses for electrons and holes respectively, F^ is the Fermi-

Dirac integral of order ^, and

nc - ( Ef - Ec MT	 (2.4)

nv - (Ev - E f ) /kT	 ('d.5)
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For an n-type region, independent of the doping concentration,

equation (2.3), which describes the minority hole concentration,

reduces to the familiar form given by boltamsgn's statistics:

PO - NV exp[(Ev-Ef)/kTj 	 (2.6)

if we use the analytic approximation for F% (n) [is],

n
F. (n) .-	 e	 0	 (2.7)

i + C(n)en

where C(n) is a function of n given in reference 1221, then the thermal

equilibrium value of PH product is

NC 
enc env

POND -	
nc	

(2.8)

1 + C(nc)e 

When an external bias is applied to the structure shown in Fig. 2.1,

the hole quasi-Fermi level in the n + region shifts from its equilibrium

value. The electron quasi-Fermi level, however, remains fixed relative

to the conduction band as given by the relation

n
NC e c

NDO - N -	 n 
c	

(2.9)

1 + C(nc)e 

where we assume for doping concentrations above 2 x 10 18 cm 3 all

impurity atoms are ionised 123,241. Thus we have

N N e
-(Ec-Ev)AT e[Efn-EfpWIAT

NDDP(x) -	 -	 n 01	 (2.10)

1 + Code c
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and, at x=0,

-EG /kT qV
B
 E/kT

NCNV e	 e 
P(0) _

n	
1	 (2.11)

NDD [1 + C(nc)e c]

where Efn and Efp are the electron and hole quasi-Fermi levels,

respectively, VEE is the external voltage bias, and E0 is the energy

bandgap, which for lightly doped silicon is [25,26]

E  = EGO - aT

= 1.206 - 2.8x10 -4 T eV for 300 K < T < 400 K 	 (2.12)

Here EGO is the extrapolated energy bandgap at 0 K which differs from

the actual energy bandgap value of 1.170 eV at 0 K due to the parabolic

dependence of the energy bandgap on temperature at lower temperatures

[27]. The experimental uncertainty in (2.12) is about *0.0015 eV [25].

Combining (2.11), (2.12), and using the equilibrium value of PO

in (2.8), we obtain the e:ccess hole concentration

a/k 
-EGO 

/kT qV
B
 E/kT

NCNV e	 e	 [e	 - 1]
AP(0) n

ni

qV E/kT
[e B
	

- 1 ]
=	 n	 (2.13)

NDD [1 + C(nc)e c]

where ni is defined to be the intrinsic carrier concentration squared

corresponding to energy bandgap E GO . The usefulness of the analytic

approximation for F  is obvious. It allows direct assessment of the effects of
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carrier degeneracy on tits minority carrier storage and therefore on

the recombination current in the heavily-doped region. Specifically,

the effect of Fermi-Dirac statistics decreases the minority carrier

concentration by a factor of (1 + C(nc)exp(nc)] below that resulting

if Boltzmann statistics were used. In Table 2.1 and also in Figure 2.2,

we display numerical results of the reciprocal of this quantity as a

function of temperature for several doping concentrations. It is noted

that the hole concentration is depressed by as much as 701 at 300 K in

an n-type region with NDD=1020 cm-3 as a result of electron degeneracy.

The value of effective density of states in the conduction band (281 used

in these calculations is NC = 2.88 x 10
19
 (T/300) 3/2 . For n S 4,

Fh (n) in (2.7) cpn be approximated by exp(n)/(1 + (0.3- 0.0413n)exp (n)1

to within 4% (18).

2.2.3 Temperature Dependence of Injected Minorite-Carrier Current
in Heavily-Doped Emitter Region

The expression for the injected minority-carrier current in a

heavily-doped thin region can be obtained by combining (2.1) and (2.13)

qV AT

gDPni (e 9E - 11
(2.14)

NDD (1 + C(nc )e c1WE

If we use Einstein's relation between carrier diffusivity and mobility

for the minority holes, D (kT/q)U p , and assume the hole mobility to

be independent of temperature in the degenerate material (231, the'hole

saturation current then varies with temperature as

'JPO' a T4exp(-EGO/kT)/(1 +C(nc)exp(nc )]	 (2.15)

(
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Figure 2.2 Ratio of minority carrier concentration with consideration
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The value of EGO in units of eV is then equal to the slope of the plot

in(JPO[1+C(nc)exp(nc)/T4) versus qAT. Values of EGO smaller than

1.206 eV correspond to an increase of minority-carrier concentration

not accountable by traditional theory and we attribute this phenomenon

as a consequence of an effective reduction in the energy bandgap.

Thus we define

AEG - 1.206 - EGO (measured) eV	 (2.16)

To incorporate the effect of bandgap narrowing, we re-write from (2.14)

the expression for the emitter saturation current

_ gDPnio 
exp(AEGAT)

jiPO 	̀ n	 (2.17)

NDD [1 + Chc)e a1WE

where nio is the intrinsic density squared corresponding to E GO - 1.206 eV.

2.3 Illustration of the Method

In this section we illustrate the above mYthod with two device

structures: a transistor structure and a diode structure.

The transistors under study are n-p-n silicon bipolar transistors.

There are two transistors studied, which we will designate as SHF 70

and TXA. The n+ emitter region of transistor SHF 70 is ion-implanted

with a uniform arsenic concentration of 1.5x10 20 cm 3 . The depth of

the emitter-base junction from the silicon surface is about 0.37 Nm.

The net impurity profiles obtained by incremental sheet resistance

measurement is shown in Fig. 2.3. The n + emitter region of transistor

TXA is arsenic diffused with a near-uniform dopant concentration of

1.5x1020 em 3 . The impurity profile is shown in Fig. 2.4.
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A convenient way to study the injected minority-carrier current

in the heavily-doped emitter region would bc. by measuring the transistor

base current I  as a function of the forward biased emitter-base

junction voltage 
VBE 

as shown in Fig. 2.5. However, the transistor base-

current consists not only of the injected minority hole current (in a

n-p-n trans 4_a*or) supporting recombination in the quasi-neutral bulk

region :.ad the surface of the emitters it also has a component of current

supporting bulk recombination in the quasi-neutral base region and a

component of current supporting recombination in the emitter-base

junction space-charge region (29). we have already discussed the

recombination current in the thin heavily-doped emitter in Section 2.2.1

and 2.2.2. The bulk recombination current in the base region is often

negliyible= indeed if this were the only component of the transistor

base current, the static common-emitter current gain hFE of conventional

silicon t.polar transistors would be several orders of magnitude higher

than the values of hFE commonly seen (N102 ). The transistors under

study have values of h
FE 

less than 100. The component of current due

to recombination in the emitter-base junction space-charge region prevails

at lower values of VBE . This current component has a characteristic

exponential dependence on voltage: I a exp(gV
BE
/mkT) with m > 1 13,41.

At higher biases, this current component is less significant due tc the

weaker exponential dependence on voltage but nevertheless still

constitutes a portion of the total current. Thus, in order to obtain

the emitter recombination current, which has an ideal exponential

`	 voltage dependence (m = 1), the space-charge region recombination current

must be subtracted from the total measured terminal current 14,81.

A computer program written to analyze data resulting from the transistor
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Figure 2.5 Circuit diagram for transistor base current measurement.
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base current measurements is listed in Appendix 1. A typical IS

versus VQC plot for transistor SHF 70 is shown in Fig. 2.6. In

Tables 2.2 and 2.3, we summarize the values of emitter saturation

current 
ICO 

determined for several temperatures for the two transistors

under study. The values of rt	
CCC	 EO

and I (1+C(ni )exp(nt )J/T4 are also

tabulated in .ables 2.2 and 2.3. In Fig. 2.7, In(ICO(1+C(nc)exp(nc)J/T4}

versus 1000/T is plotted. 
EGO 

in units of eV can be obtained by

multiplying the magnitude of the slope of the least-square-fitted

straight line by 1000k/q. For transistor SHF 70, 
EGO 

is found to be

0.981 eV. This corresponds to a bandgap narrowing AEG of 0.225 eV.

For transistor TXA, AEG is found to be 0.227 eV.

We have .1so studied bandgap narrowing in heavily-doped n + regions

F	 using diode structures. The starting material is boron-dopod p-type

silicon wafers with doping concentration of 2.0 x 10 17 cm 3 . The wafers

are cleaned and oxidized at 800°C for two hours in dry oxygen to grow

200 A of silicon dioxide. The wafers are then implanted with different

arsenic doses and annealed at 10500 C for 20 min. in dry nitrogen.

The thin oxide on both surfaces of the wafers is removed and the wafersI

are metallized with Ti-Ag on both surfaces. Square chips of 110 mil x

110 mil are scribed from the wafers and circular mesa structures of

different areas are made on the chips as shown in Fig. 2.8. The devices

are mounted on TO-5 headers with silver epoxy at room temperature and

ultrasonically wire-bonded at room temperature.

The measurement circuit for the diode I-V characteristic is shown

in Fig. 2.9. The current source used is an EAC-CR 103 current standard.

The current is incremented such that the terminal voltages across the

diode are 10 mV apart for each reading, starting from 0.1 V to 0.7 V.

r
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a

Table 2.2 txperiesntal Values of tmttter Saturation Current I20
and Calculated Values of n	 at Different Tenmratures

for Transistor 8!1! 70 (N
DD

 •^ 1.5 x 1020 
=7 3  .

T(K) .s0 (amp) ric
ric
	 4I$011+C(nc)e	 I!T

s317 2 5.67x10 17 3.198 2.86x1026

322.2 1.11x10 16 3.139 5.08x10 26

327.3 2.12x10-16 3.080 8.79x10 26

332.4 3.93x10 16 3.022 1.4840 25

337.3 7.17x10'16 2.968 2.4740-25

342.8 1.36x10 15 2.908 4.23x10 25

348.0 2.4440-15 2.854 6.9346-25

353.4 4.5140-15 2.798 1.1746-24

#. 358.S 7.66x10 
15 2.745 1.81x10 24

363.4 1.26x10 14 2.697 2.744024

368.6 2.09x10 14 2.647 4.18x102;

373.6
14

3.6140 2.601 w246.6640

i
i
i
i

t
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Table 2.3 Sxperimntal Values of 0sitter saturation current I
and Calculated Values of ho at Different Texperaturif

for Transistor TXA (N^	 1.5 x
X020 cm-3).

T(K) Ito (am) no Itotl+c(%)e^e]/T4
.

318.6 5.23x10 16 3.181 2.57x10-2S

327.2 1.56x10-15 3.080 6.48x10 2S

337.5 5.5540 15 2.965 1.90x10 24

348.0 1.83x10 14 2.854 5.203g1024

358.2 5.57x10-14 2.749 1.32x10-23
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Ti-Ag
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P (NA 2x1017 cm 3)

Figure 2.8 Mesa diode structure. The silicon etchant used is
1HF : 1CH3000H : 6HNO3 . Etching time is about 1 min.
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J

Figure 2.9 Circuit diagram for diode I-V characteristic measurement.
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There are several groups of diodes under study, which we designate

in Table 2.4. All these devices have shallow n+ emitters with uniform

doping concentrations. The impurity profile in the n+ emitter region

of these devices as measured by a spreading resistance method are shown

in Fig. 2.10. A typical I-V characteristic of these devices is displayed

in Fig. 2.11. All devices selected for measurements have an easily

recognizable space-charge recombination current component at lower

biases, that is, I a exp(gV/mkT) with m > 1 and m .approximately constant

for two orders of magnitude range of current. This allows straightforward

extraction of the ideal recombination current component (m = 1) from

the measured terminal current [4]. The computer program used to analyze

the transistor current can be also used in this case (Appendix U.

The pertinent geometrical and electrical parameters including minority

carrier diffusion length in the substrate material measured by an X-ray

irradiation method [30] for these devices are summarized in Table 2.4.

The extracted va?ues of saturation current IQNO for the ideal recom-

bination current component at different measurement temperatures are

tabulated in Table 2.5a-2.5d.

In a diode structure, the ideal recombination current has two

components: a component supporting recombination in the bulk region and

surface of the emitteF
.
 and a component supporting recombination in the

bulk region and back contact of the base. For diffused p+-n diodes

fabricated on low-resistivity silicon, it has been demonstrated that

the recombination current in the emitter region can be significant [4].

For the n+-p diodes under study we expect the emitter recombination

current to be even more significant, partly due to the thin emitter with

large surface recombination velocity and partly due to a larger value
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Table 2.4 Geometrical and Electrical Parameters of Arsenic-implanted
Diodes Under Study.

Device Device Area N

D

Emitter-Base N L
2

(cm ) 3(cm
Junction Depth D3

n

) Wm) (cm	 ) (um)

OF 2-2 2.29x10 2 3.0x1019 0.15 2.0x1017 65

OF 3-2 1.06x10 2 2.1x1020 0.32 2.0x1017 67

OF 8-2 9.90x1Q 3 1.5x1020 G.31 2.0x1017 76

OF 12-2 1.37x10-2 1.0x1020 0.30 2.0x1017 62
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Figure 2.10 Impurity profile of the n+ emitter region of the
ion-implanted diodes under study.
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Table 2.5a ideal Saturation Current for Device UP 2-2

(N DD a 3.0 x 1019 cm -3 ).

T ( K)
IQNO (	 )

 JQNO ( 
amp/cm2 )

322.5 2.23x10-12 9.74x10 11

327.3 4.05x10-12 1.77x10-10

332.3 7.47x!3-12 3.26x10 10

337.5 1.42x10-11 6.20x10-10

342.6 2.63x10-11 1.15x10-9

347.8 4.70x10-11 2.05x10-9

353.6 8.60x10-11 3.76x10-9

Table 2.5b Ideal Saturation Current for Device LIP 3-2

(N DD' 2.1 x 1020 cm-3 ).

T (K) IQNO (amp) JQNO (amp/em2)

322.3 3.90x10-13 3.68x10-11

327.3 7.56x10-13 7.13x10-11

337.5 2.57x10-12 2.42x10 10

342.9 4.85x10-12 4.58x10-10

347.9 8.45x10 12 7.97x10 10

358.7 2.58x10-11 2.43x10-9

f
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Table 2.5c Ideal Saturation Current for Device OF 8-2

(N DD 0 1.5 x 1020 cm-m 3).

T (K) IQNO (amp) JQNO (aap
/cm2)

322.2 5.66x1013 5.72x1011

327.2 1.08x10-12 1.09X10-10

332.3 2.00x10-12 2.02x10-10

337.5 _ 3.67x10 12 3.71x1O-)'0

342.6 6.77x10-12 6.84x10 10

348.1 1.23x10-11 1.24x10-9

Table 2.5d Ideal Saturation Current for Device OF 12-2

(N DD a 1.0 x 1020 CM-3 
).

T (K) IQNO (amp) iQNO (amp/cm2l

332.5 1.76x10-12 1.28x10 10

337.5 3.11x1012 2.27x10 10

342.6 5.76x10 -12 4.23x10-10

348.1 1.08x10-11 7.88x10-10

353.7 1.99x10-11 1.45409

358.5 3.30x10-11 2.4140-9
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of effective density of states in the conduction band for silicon in

cogparison with the value of effective density of states in the valence

band. This expectation of large I 8 is consistent with experimental

findings ( 3) on diffused n+-p solar cells having a 0.1 11-cm base

resistivity. We will discuss this effect in the next section.

To illustrate that the emitter recombination current is the

dominant current component in these diodes, we measure the minority

carrier diffusion lengths in these devices using the X-ray irradiation

method ( 30). Consider device vF 2-2, for example. The extracted ideal

recombination current IQNO is shown in Fig. 2.11. The base recombination

current component (dashed line) as calculated from (gAn2 Dn/N^Ln) x

(exp(gV/kT)-1) is only a few percent of the total ideal recombination

current. The emitter of the device is designed to be thin and with a

large surface recombination velocity so that the dominant recombination

process in the emitter is mainly at the emitter surface and therefore

(2.15) and (2.17) apply. This requires the hole lifetime in the emitter

region to be longer than the hole transit time across the emitter region,

which we will discuss in further detail in the next section.

In Fig. 2.12, we display a plot of In{IEO (l+c(nc ) exp(nc))/T4}

versus 1000/T for two devices having different values of AEG . The values

of AEG determined for different values of arsenic concentration using the

diode structure are summarized in Table 2.6. The values of AE G obtained

using the transistor structure are also included. In Fig. 2.13, we show

the results graphically. The experimental values of AE G as a function

of impurity concentration 
NDD 

can be fitted by

AEG a 0.037 In(N
DD

/1020) + 0.210 eV	 (2.18)

Kira
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Table 2.6 Bandgap Narrowing AEG as a Function of Emitter Doping
Concentration.

Device Emitter Concentration AEC (eV)
3)

(cm-

OF 2-2 (diode) 3.0x1019 0.175

OF 12-2 (diode) 1.0x1020 0.204

OF 8-2 (diode) i.5x1020 0.236

SHF 70 (transistor) 1.5x1020 0.225

TXA (transistor) 1.5x1020 0.227

2.1x1020OF 3-2 (diode) 0.247



35

0.300

0.250
•

•

0.200	 •

-- 0.150

0.100

0.050

0

10 19	 1020	 1021

NDD (cm^3j

'	 Figure 2.13 EAperimentally determined AEG as a function of
arsenic doping concentration.
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2.4 Discussion

We have demonstrated an experimental method to study energy bandgap

narrowing in heavily-doped emitter regions. This method employs the

study of temperature dependence of the minority carrier recombination

current in a thin transparent emitter. The accuracy in determining

620 relies on an accurate description of the variation of emitter

saturation current Iso with temperature and also on the accuracy in

obtaining the emitter saturation current from the I-V characteristics.

In deriving (2.15), which describes the temperature variation of

the emitter saturation current, we have assumed . :%at the minority-carrier

mobility and majority -carrier concentration are temperature independent

and that the energy bandgap in intrinsic silicon varies linearly with

temperature. At lower temperatures (below 200 K), these assumptions may

be questionable (6,25], particularly for emitters with lower doping

concentrations (below 10 19 cm 3 ). To minimise these possible sources

of error, we have selected the measurement temperature range to be between

320 K and 380 K. We note that (2.15) and (2.17) hold only for a transparent

emitter. This requires the hole lifetime 
T  

in the emitter to be longer

than the hole transit time 11j/2Dp. As an example, for an n♦ emitter with

a doping concentration of 1020 cm-3 and NE - 0.25 on, the hole transit

time is approximately 0.2 nsec which is smaller than the hole Auger

lifetime of 0.6 nsec reported for this doping concentra H n (31,32).

In this calculation, we assume D  r 1.5 cm2/sec at 320 K. At higher

temperatures, D  increases slightly with temperature and " .refora the

transit time is shorter. For thicker emitters, recombination '^. *cesses

such as Auger recombination and Shockley-Read-Nall recombination can be

important in the emitter bulk region and W  
in (2.14) should be replaced

i
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i

3

fI
i

by the corresponding diffusion length Lp. Uider this situation, the

emitter is defined to be opaque to the minority holes. However, if L 

doom not vary significantly with temperature in the ra:'4ge of

saasurf.4wnt Lemparature, (2.15) remains valid. Despite these possible

sources of error, it is preferable to use (2.15) to determine AEG

rather than determining AEG from a single value of I EO using (2.17).

The uncertainty in D  in the heavily-doped n# region may cause large

error in AEG.

The experimental accuracy in the I-V measurement is extremely good.

The current standard we use has an accuracy about i 1 nA. Thus the

accuracy in determining IEO from the I-V characteristics depends mostly

on the device having a well-defined space-charge recombination current

component so that the ideal recombination current component can be

separated from the measured I-V characteristics accurately. Devices

with surface and other leakage current components are not suitable for

this measurement. We estimate the error in determining I EO to be less

than 3•. Assuming the values of I EO can be obtained sufficiently

accurate, the uncertainty in DE G, which is related to the slope of the

activation energy plot, can be reduced by taking more values of I EO at

closer temperature intervals. The experimental accuracy in determining

AEG, as obtained by a least-square-fit to the measured data as shown in

Figs. 2.7 and 2.12, is ea:.imated to be ± 5 meV.

We now discuss :he experimental results further. Consider device

OF 8-2, for example. JEO is found to be 5.72 x 10-11 amp/cm2 at 322.2 K

for this device. The large value of dark saturation current density in

this device cannot be explained by an opaque emitter with very short

minority-carrier lifetime alone. If we ignore the effect of bandgap
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narrowing and relate the saturation current in an opaque emitter,

gniop/NODp[l+c(nc)exp(nc)], to the measured dark saturation current

density, a minority-carrier lifetime as low an 10-16 sec. is required

to account for the dark recombination current measured. These low

values for minority-carrier lifetime are not consistent with lifetimes

reported in heavily-doped silicon [31,32] and are lower than the mean

free time between colli ions. inclusion of the effect o! bandgap

narrowing provides a mcu,.A ttit is consistent with the large observed

value of saturation current density.

In this chapter, we have concentrated our study on n+ emitters.

For devices with p+ emitters we anticipate the effect of Fermi-Dirac

statistics to be more significant because NV < Nc. For silicon, the

value of NV is about a factor of three lower than the value of N C. Thus

for an n+ emitter with doping concentration of 3 x 10 19 cm 3 (* Nc), the

effect of majority-carrier degeneracy depresses the minority-carrier

concentration by about a factor of 0.7 at 300 K, as shown in Fig. 2.2;

but,for a p+ emitter, a doping concentration of 1 x 10 19, cm 
3 i

u NV)

suffices to depress the minority-carrier concentration by the same

factor of 0.7. We note here that other workers [7,8,131 have not taken

into account the effect of Fermi-Dirac statistics in their studies of

energy bandgap narrowing in silicon p-n junction devices. Our results

indicate that, for an n+ region with doping concentration of 3x10 19 cm 3

(device OF 2-2), this neglect underestimates AEG by about 0.015 eV. For

an t:+ region with doping concentration of 2.1 x 1020 em 
3 

(device OF 3-2),

the underestimation in AEG is about 0.070 eV. These results can be

obtained from the plot of I n[I EO/T4 1 versus 1000/T. For a p+ emitter

with the same doping concentration, the underestimation in AEG by

neglecting the effect of Fermi-Dirac statistics would be even greater.

k
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I. Introduction

Excess minority carrier injected into the emitter of p-n junction

devices recombine in the bulk and at the surface of the emitter. If

the emitter junction is shallow enough, the minority carriers can

cross the quasi-neutral emitter region without appreciable bulk recombi-

nation. The minority carriers then recombine at the emitter surface.

For this case the emitter is transparent to the injected minority

carriers, and an important parameter then is the surface recombination

velocity S at the emitter surface.

This parameter is particularly important for p-n junction silicon

solar cells in which most of the illuminated surface is not covered by

metal. In devices in which thermal SiO 2 covers this nonmetallized

portion of the surface, experiments show that S can be less than 104

cm/sec for both p-cells (p-type substrate) (1) and n-cells [1). This

value of S is orders of magnitude less than that at an ohmic contact

and is consistent with values determined earlier by different experi-

mental methods [2). Furthermore, recent experiments on p-cells (1)

and n-cells (1) demonstrate that the emitter can be completely transparent.

The purpose of this paper is to provide an analytical treatment

of transparent emitter devices, pa rticularly solar cells, that is

more complete than treatments previously available [3-8). In this treatment,

we include the effects of: (a) bandgap narrowing [9,10], (b) Fermi-Dirac

statistics, (c) built-in field due to the impurity profile, and (d) a

finite surface recombination velocity S. Detailed numerical studies including

these various effects have been done (11-13), but they have not treated the

case of the transparent emitter.
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A major result of the paper is the demonstration that the transparent-

emitter model can predict experimental values of V 
0 

observed on nt-p thin

diffused junction silicon solar cells made on low-resistivity (0.1 0-cm)

substrates. Thus, the transparent-emitter model is shown to provide an

explanation for the discrepancy between the prediction of simple classical

theory (V 0C = 700 mV) and the measured maximum value (V 
0Cz 

600 AV). The

transparent-emitter model gives V 0 = 600 mV for high values of Sp

(SP > 104 cm/sec) provided the effects of bandgap narrowing (modified by

Fermi-Dirac statistics) are included. This result suggests that V 
0 

can

be increased toward the classical value of 700 mV if S P is decreased and

the effects of bandgap narrowing are reduced. This is accomplished in the

HLE solar cells, early versions of which have shown increases in V 
0 

to

the 640-650 mV range 1141.

In addition to the development of the theory for the transparent-

emitter device, and its application to solar cells, the paper will
g.

include a test for the self-consistent validity of the transparent-

emitter model. This test compares the calculated transit time of

minority carriers across the emitter with the Auger-impact minority

carrier lifetime within the emitter region.

II. Derivation

We consider an n-type heavily doped quasi-neutral emitter region;

analogous results apply to p-type emitters. The minority carrier

current density in the n-type region is

Jp ( x ) = qp AP(x)E(x) - qDp dxp 
x)	 (1)

	

If low-level injection in the emitter is assumed, then E(x) is given 	 0

by its thermal-equilibrium value,
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D	 1	 dP0(x)

E(x) = P O xP)	 dx	 (2)

We now define an effective intrinsic density n 1e such that

	

n1e(x) = PO (x) NO (x)	 (3)

in which P0 (x) and N
0
 (x)are the hole and electron concentrations in

thermal equilibrium. The parameter nie depends on position for two reasons:

1. the influence of Fermi-Dirac statistics, and

2. the influence of bandgap narrowing.

These influences are discussed in section III. For Maxwell-Boltzmann

statistics and no bandgap narrowing, n ie is the square of the intrinsic

carrier concentration in silicon and is a function of temperature only.

If the expressions in (2) and (3) are used in (1), we get, after

some manipulations,

N (x)	 N (x)
J (x)	 dx = -qD d OP(x)	

0	
(4)

P	
nie(x)	

P	
nie(x)

If we integrate (4) over the quasi-neutral emitter region, we get

rWE	 N (x)	 _	 N (x) WE

J 
JP (x) •	 2	 dx = - qD AP(x)	 20	 (5)

0	 nie(x)	 p	 nie(x) 0

where 
6  

is some average value of Dp . If the emitter is transparent

(transit-time limited), that is, if the minority carrier transit time

i t is much less than the minority carrier lifetime 
T  

(for an n-type

emitter), then J  is constant independent of position in the emitter.

b
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Use of the minority carrier boundary conditions 115)

AP (0) = PO (0)(egVlkT - 1) 	 (6)

at the edge of the emitter space charge region, and

JP(WE) = q • Sp • &P (WE)	 (7)

at the emitter si , _:ace, enable (S) to be expressed as

gDP(egV/kT ' 
1 )	 (g)

JP 
f WE NO (x)	 DP ' NO(WE)

2	
dx +
	 2

0	 n1e(x)	 Sp n1e(WE)

Equation (8) is the general expression for the minority carrier current

in a transparent emitter.

To check the condition, i t << IP , required for transparency, we

must determine the steady-state transit time I t , which is defined by

the charge control relation,

z = QP
	

(9)t	 JP

Here Q  is the excess minority carrier charge storage in the emitter:

W
QP = q j 

E 
AP(x) dx	 (10)

0

Using (4), (8), and (10) to express Q P , and combining with (9), we



NO(WE)	 WE aie(x)
dx +	 2	 dx

SP aie(WE)	 NO(x)

NO	 l(x . )	 n2(x)	 (11)

•	 dx dx

N0 (x)n2 W)

1 WE NON)

tt	
DP	 e0	 ni(x)

1 
f 
WE j 

x

Dp 0 0

47

i

t

i

f

1

i

•

find the following expression for the minority carrier transit time:

Some special cases are of interest. For a flat impurity concen-

tration profile, the above expression reduces to

t = WE + WE	 (12)
t 26  SP

If, furthermore, S P is infinite, (12) reduces to the familiar ex-
pression,

2
it = wE 	 (13)

2D 

III. Heavy Doping Effects

In thermal equilibrium, heavy doping concentrations of shallow

level impurities affect the minority carrier concentration in a quasi-

neutral region by two mechanisms: bandgap narrowing and Fermi-Dirac

statistics. These two mechanisms affect the minority carrier concen-

tration in opposite ways. For any given position of the Fermi level

relative to the band edges, bandgap narrowing tends to increase the

I

^	

a

y^
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minority carrier concentration, while inclusion of Fermi-Dirac statis-

tics tends to decrease the minority carrier concentration below the

value calculated using Maxwell- goltzmann statistics. The dominance of

either of the two effects, at any specific impurity concentration, depends

on the model of bandgap narrowing adopted.

In this treatment, we assume that bandgap narrowing occurs without

changing the parabolic dependence on energy of the density of states in

the conduction and valence bands. This is the rigid-band approximation.

The effects of bandgap narrowing and Fermi -Dirac statistics can

be lumped into a position -dependent effective intrinsic carrier con-

centration at thermal equilibrium given by

n2e AE
G
 (x)/kT

n1e (x) = i	 (14)
1 + C(n) en

-,;.,here

n = nC = (EF - EC ) /kT	 (15)

for n-type material, and

n = nv = (EV - 
EF) /kT	 (16)

for p-type material. The derivation of (14) appears

In (15) and (16), EC and E  are the edges of the con

bands, respectively, and E  is the Fermi level. The

function of n, which, for n < 4 (e.g., N0 < 2 x 1020

silicon), is 1161

C(n) w- - 0.04n + 0.3

in the Appendix.

duction and valence

factor C(n) is a

cm-3 in a-type

(17)

The above approximation of C(n) gives values of the Fermi-Dirac

intergral of order ^ (see Appendix) with less than 4% error.
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In nonequilibrium conditions, bandgap narrowing increases the

minority carrier current by:

1. Increasing the minority carrier concentration.

C	

2. Decreasing the retarding built -in electric field acting on
the minority carriers.

The increase in the minority carrier concentration P results from

the increase in n2
it 
W. The decrease of the built-in electric field is

due to the position dependence of n ie (x) (and hence of the effective

bandgap) to the inhomogeneously doped emitter.

To develop a simple expression illustrating the reduction of the

electric field, we now include only bandgap narrowing excluding the

3	 effect of Fermi-Dirac statistics for thy: present. Then the effective

{	 electric field acting on the minority carriers, given is (2), can be

expressed by using (3) and (4) as:

'	 D 	 I	 dN (x)

	

N	 0

where

	

A(N ) = 11 - N
0 W	 d 4EG(x),^
	 (19)

0	 KT	 dN0 x

The factor A(N0) measures the reduction of the built -in electric field

due to bandgap narrowing. For any model of bandgap narrowing, A(N0)

is always less than one. Figure 1 shows A(N O) as a function of the

electron (majority carrier) concentration for three models of bandgap

narrowing: Slotboom and DeGraaff (17), Hauser (18], and Lanyon and
i

Tuft (19).

1

t



If

NO(WE)
S »
P	

nie(WE)

(21)
•	

D 

f WE NO(x) dx

0 n2 W
ie
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In the absence of bandgap narrowing, the holes experience a

retarding electric field in an n-type diffused emitter. Equations (18)

and (19) indicate that the position dependence of the bandgap narrowing,

in effect, decreases the retarding electric field. The, 
more 

it is

decreased the smaller is the transit time for a specific surface

recombination velocity. In (11) the transit time is shown to be a

function of n ie . In Figure 2 the transit time is plotted as a

function of WE , the width of the quasi-neutral emitter region, in

two cases: neglecting bandgap narrowing, and including bandgap

narrowing (Slotboom and De Graaff model). Note that inclusion of

bandgap narrowing makes the transit time close to the value it has

if the impurity profile is flat. In general, bandgap narrowing

decreases the transit time if the impurity profile is not flat.

Conversely, inclusion of Fermi-Dirac statistics increases the

transit time as can be seen in Figure 2. Inclusion of Fermi-Dirac
A.

statistics shifts the value of the transit time closer to that

calculated when heavy doping effects are neglected.

IV. Discussion

From ( 9), the minority carrier saturation current for a transparent

emitter is
qDp

JPO =

f 
WE NO (x)	 DpNO(WE)

0	 2	
dx ^
	 2

nie (x)	 SPnie(WE)

(20)
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then (20) reduces to

qDp

(22)
JP4 j WE NO(x) 

dx

0	 nie(x)

which is the exact expression for an infinite surface recombination

velocity. For

S << NO(WE	
Dp	

► 	 (23)

f	

P	

nie(WV) j WE NO(x) dx

	

0	

nie(x)

(20) reduces to

gSl,n2
i e (WE

(24)JP r NO(WE)

It is desirable to make JY0 small for the bipolar transistor. This

results in a large emitter efficiency. For the p-n junction solar cell,

if the emitter recombination current JPO is small compared witb the base

recombination current, the value of V 
0 

can approach the classical

theoretical limit.

To illustrate the dependence of JPO on Sp , consider the desirable

case in the transparent-emitter model in which S p is small enough to

satisfy (23). Figures 3 and 4 show the variation of the emitter

saturation current density, JpO , and the transit time, i t , as a

function of S P for three models of bandgap narrowing: Slotbooia and

De Graaff (111, Hauser (18], and the recent model of Lanyon and

Tuft (19(, which has the form
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AEG = 22.5x10-3 (N110
is ) 1/2

 eV

for non-degenerately doped silicon, and
	

(25)

AEG = 162.x10 -3 (N/10
20 ) 1/6 

eV

for degenerately doped silicon.

A Gaussian impurity profile is assumed with a surface impurity concen-

tration of 1020 cm-
3
 and a junction depth of .25 ^M. Full ionization

of the impurity atoms is also assumed.

For values of SP below.106 cm/sec, JPO and 
Y  

vary rapidly with

variations in Sp , while for values of SP above 106 cm/sec, both JPO

and T  saturate. JPO saturates to its largest value, and T  saturates

to its lowest value. The largest value of JPO at any SP occurs for the

Lanyon-Tuft model of bandgap narrowing.

The validity of the transparent emitter model is based on the condi-

tion that the minority carrier transit time is much smaller than the

minority carrier lifetime: T t << Tp . To test this condition, Tt is calcu-

lated from (11). Values of T  are plotted in Figures 4 and S. In Figure 4,

T  is plotted as a function of SP for the three modelr of bandgap narrowing

(assuming WE _ .25 pm).	 While in Figure 5, values of 
I
 are plotted as a

function of the quasi-neutral emitter region width, WE , for SP = 5x105 cm/sec.

The recombination lifetime Tp has an upper bound determined by the Auger

band-to-band recombination at high impurity concentration.

To illustrate the self-consistency test for transparency, we assume

the surface concentration of a diffused emitter to be 1020 cm-3 . With

the impurity profile assumed gaussian, this corresponds to an average 	 0
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Auger lifetime of Y  = 2.4 x 10 -9 sec [20). In Figures 4 and S, we

compare this lifetime with 
x  

for each of the three bandgap narrowing

models (assuming that WS = 0.25 pm). Note that the emitter is completely

transparent if Sp exceeds 105 cm/sec an! is opaque if SP is below 104 cm/sec,

V. Application to 2-n  Junction Silicon Solar Cells

In this section, we apply the transparent-emitter model to

calculate the open-circuit voltage of silicon p-n junction solar

cells having low substrate resistivity.

The open-circuit voltage is given by

V -Z kT 
2n 

JSC
OC - q	 JO

whr-re JSC is the short-circuit current density and J 0 is the saturation

current of the solar cell in the dark. The saturation current density

JO of the diode is

J0 = J PO + JNO
	

(27)

where JPO is the emitter minority carrier saturation current density

and JNO is the base minority carrier saturation current density.

The base saturation current density is

JNO N^LN

_ gn i DN .	
(28)

Consider low-resistivity silicon solar cells with base doping concen-

tration of NAA = 5 x 10 17 Cm- 3 . Measurements made on such cells

indicated the minority carrier diffusion length, L N , to be 80 pm (21),

corresponding to J NO ?' 6.2 x 10
-14 

A/cm2 . The general expression for

(26)

0

r
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the transparent emitter current density, given in (8), has yielded

JPO as a function of SP , as shown in Figure 3.

Combining these characterizations for JNO and 
JPO 

with J 5 = 23 mA/CM2

(AMO conditions) (22), we plot, in Figure 6, VOC versus Sp . For low Sp

(about 103 cm/sec), 
V 
0 is limited by the base current, and for higher

values of SP , VOC is limited by the emitter current, as has been

observed experimentally (22). Note that fog Sp > 10 5 ci/sec, VOC

saturates to its lowest value. Note also that the Lanyon and Tuft

model of bandgap narrowing gives lower values of V 
0 

(for any given

value of SP) than those given by the Slotboom and De Graaff and

Hauser models.

So far we have assumed, for simplicity, that all of the emitter

surface is characterized by a single value of S P . We now consider

a more realistic structure of silicon solar cells, Figure 7(a). The

emitter saturation current JPQ is the sum of three components from

regions 1, 2, and 3 shown in Figure 7(b), (23). The components of

the current density from the metal-covered surface, region'1, and

the nonmetal-covered surface, region 2, are given by (8). In region

3, the flow of minority carriers is two-dimensional since the minority

carriers within about a diffusion length from region 1 are much more

influenced by the high value of SP of region 1 than they are by the

relatively low value of S p of region 2. To avoid the complexity of

two-dimensional analysis, we make the first-order approximation that

the component of JPO from region 3 is essentially the same as that

from region 1 (JP3 = JP1 ) because Sp of the unmetallized surface can be

made orders of magnitude smaller than S P of the ohmic contact. 	 s

,^r
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The emitter saturation current is then

I PO = (A 1 + A3) JPO1 + A2JPO2
	

(29)

where A l is the metallized surface area and (A 2 + A3) is the unmetal-

lized surface area and 
JPO1 

and 
JP02 

are the corresponding currents.

The area A3 is approximately equal to

A3 = 2nL
G
LP	(30)

where n is the number of metal grid lines (or fingers), L  is the

length of the grid lines (see Figure 7), and A 2 = AT - (A3 + A l ), AT

being the total area of the cell.

As a numerical example, let AT = 4 cm2 , L  = 2 cm, a = 6,

LP = 1Nm, and assume 10% metal coverage. Then A l = 0.4 cm2,

A2 = 3.59 cm2 , and A3 = 0.0024 cmZ . In this case, A3 is negligible,

and

J

VOC - 
qT 

In A	
ASC	

(31)

AT 	 JPO1+ AT 	 JPO2 + JNO

This expression can be used to estimate S P of the nonmetallized

surface from experimental values of V OA . For diffused, thin-junction

p-n junction solar cells made on low resistivity (- 0.1 0-cm) material,

the maximum observed open-circuit voltage is about 600 mV [22]. As one

r	 example, if we consider the Lanyon-Tuft model of bandgap narrowing, and

let SP of the ohmic contact be 10 6 cm/sec, let the doping concentration

be gaussian with a surface concentration of 10 20 cm-3 , then by using (31),

with A l /AT = 0.1 and V 0 = 600 mV, we get S P (nonmetal) = 5x104 cm/sec.

Thus this value for SP could result in the low 
VOC 

seen in conventional,
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diffused, thin-junction solar cell. Note that Figures 4 and 5 indicate

the self-consistent validity of the transparency assumption for this

device in the Lanyon-Tuft model which permits use of (30).

Although the preceding discussion has focused on the transparent

emitter model applied to n
+
-p silicon solar cells, the model can also

be applied to p
+
-n cells. It is straightforward to show that heavy

doping effects (bandgap narrowing and Fermi-Dirac statistics) degrade

n+-p cell performance more than that of p
+
-n cells because the

effective mass of electrons in silicon is greater than the effective

mass of holes. The resulting different effective densities of states

in the conduction and valence bands (N
C
 and NV) cause the onset of

degeneracy to occur at lower impurity concentrations in p-type

material than in n-type material 1131, if both n-type and p-type

regions have the same bandgap narrowing. Thus the net effect of

bandgap narrowing and Fermi-Dirac statistics is to degrade the n-type
9.

heavily doped region more than the p-type region with the same impurity

concentration. This may, in part, be responsible for the High effi-

ciency p+-n-n+ cells that have been observed experimentally 1241.

VI. Perspective

This paper has dealt with the transparent-emitter model of a solar

cell, which is defined by the condition that the minority carriers in

the dark quasi-neutral emitter recombine mainly at the surface rather

than in the bulk. Surface recombination can predominate over bulk

recombination if the emitter junction depth is shallow enough and if

the surface recombination velocity is high enough. In fact, this occurs

in typical pn-junction silicon solar cells, as demonstrated by recent

.. _	 -_	 __ tea.. =.ter .
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experiments showing the sensitivity of 
V 
0 to the surface recombination

velocity Ill. From a theoretical standpoint, the self-consistency test
in Section IV can determine the validity, for a given solar cell, of the

transparent-emitter model, provided the emitter recombination center

density is low enough for the Auger process to dominate over the Shockley-

Read-Hall process.

Although the transparent-emitter model may describe many conventional

shallow pn-junction silicon solar cells, the high value of the surface

recombination velocity S necessary to validate the transparent-emitter

model is not necessarily desirable from a design point of view. Growth

of a thermal SiO
2
 layer on the emitter surface can substantially decrease

S and increase VOA , particularly if a high-low junction barrier is present

near the emitter surface [14]. For such devices, the dark emitter re-

combination current is determined mainly by bulk recombination.
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Appendix

In thermal equilibrium, for a parabolic quantum density of states,

the concentrations of charge carriers in a semiconductor are given by

N0 = 
NCFk(nC )	 (A-1)

PO = NvFk(nv)	
(A-2)

where NC and NV are the effective density of states in the conduction

and valence bands, respectively, F  is the Fermi-Dirac integral of

order k, and

nC = (EF - EC )/KT	 (A-3)

nv = (EV - EF)/KT	 (A-4)

As suggested by Landsberg et al. 1161, the analytic approxi-
mation

F (n)
en	

(A-5)_
1 + C(n)en

can be used in the range -4 < n < + 10. Here C(n) is a function of

n given in figure 4 of [161.

Using (A-5) in (A-1) and (A-2), we can write

NCenC
N0	nC

1 + C(nC ) e

(A-6)
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nv
Nve

PO 1 + C(ny) env (A-1)

Thus, from (A-6) and (A-7),

-E G(x)/KT

2	
NCNVe

nie (x) = N0P0

1 + C(nC)e nC + C (nv) a nv + C(nd COO a 
-E
G
 (x)/KT

(A-8)

where

EG(x) 
= EGO - 

AEG(x) I	
(A-9)

in which Er0 is the bandgap of the intrinsic semiconductor, and

AE
G
 (x)is tae bandgap narrowing due to heavy doping. For an n-type

heavily doped region, n  << 0 and C(nv) = 0 in (A-8). Furthermore,

the term C(nC ) C(nV
) e -EG(x)/KT << 

1. Therefore, for a heavily

doped n-type region, (A-8) reduces to

i

i

i

i

z AEG(x)/KT
n 

n1e (x)
	 NOPO 

+	 1	 n
1+C(nde C

(A-10)

Similarly, for a p-type heavily doped region
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2 AEG(x)/K

a2 (x) = N P = 

n i e	 (A-11)
ie	 0 0

1+c(nv)e^

In (A-10) and (A- 11), n  ii• the intrinsic concentration in the pure

semiconductor.

a
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Figure 1: The bandgap-narrowing reduction factor A(N) versus the electron
t

(majority-carrier) ,• ncentration N for: (A) Lanyon-Tuft model,

(B) Hauser model, and (C) Slotboom-De Graaff model.

i	 Fi ure 2: The transit time Tt versus the width of the emitter region WE

for S = Sx105 cm/sec and a gaussian profile with: no heavy doping
I_

(NHD), bandgap narrowing (Slotboom-De Graaf model) and Fermi-

?	 Dirac statistics (BGN+FD), bandgap narrowing (Slotboom-De Graaf

i	 model) only BGN and for a flat. on y (	 ),	 0	 1 profile (NHD+FLAT).

l

Figure 3: The emitter saturation current density J PO as a function of the

surface recombination velocity S P , for WE = .25 pis, Fermi-Dirac

statistics and bandgap narrowing included: (A) Lanyon-Tuft,

(B) Hauser, and (C) Slotboom-De Graaf. For low values of Sp

(less than about 104 cm/sec) the self-consistency test yields
6.

t t > T  so the emitter current is then due to Auger re-

combination and may be larger than values reported above.

Figure 4: T  as a function of surface recombination velocity S p for

WE = .25 dam, Fermi-Dirac statistics and bandgap narrowing

are included: (A) Lanyon-Tuft, (B) Hauser, and (C) Slotboom-

De Graaff.

Figure S	 T  versus WE for S = 5x105 cm/sec. Fermi-Dirac statistics and

bandgap narrowing are included: (A) Lanyon-Tuft, (B) Hauser,

and (C) Slotboom-De Graaff.
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Fiture 6: VOC versus Sp for W9 = .25 W. Fermi-Dirac statistics and

bandgap narrowing are included: (A) Lanyon-Tuft, (S) Hauser,

and (C) Slotboom-De Craaff. In (D) heavy doping effects are

not included. For low values of Sp (less than 104 cm/sec)

V 0 is limited by the Auger-recombination current in the

emitter because t t > I  and V 
0 

may be lower than values

reported above.

Figure 7:	 (a) The structure of p-n junction solar cell

(b) The three components of the emitter current:

3 P1 JP2' and JP3.

0



1
7m

0
0-.r

A (N)
0
o

4

4

Z
own%

Ed
%MO

I

0
6

aL0
m i^

FIGURE 1

65



'00000 1

0.2	 0.4

WE (µm)

FIGURE 2

o.6	 0.8
10 ,,L

66

10'8

4;0--oloo

10

r1

10^
01

S = 5 x 108 cm/sec .I



^O

. 1

N
iO

(awo/v) Od r

JoM 2
iO

U
U

E
o U_ v

IL

i3

F



co
'o 0

0

0

r
0

ti
O

00

0
O

co
O

V

E
V

4.
cn

(09 S) +s

68



10" 9

%moo

1+00

10-1 c

69

-
IV

8

C

A	
S 5 x10

5
 cm/sec

B

10 -11
V. r-	 U-4	 0.6	 0.8

WE '(AM)

FIGURE 5



O

V

W

'O V a

d
co

O

t0	 N	 O	 ^	 O Jco	 co	 co	 cD

(AW) 00n

9

70



metal)

SP (metal)

71

(a)

Soff "S p( metal)

FIGURE 7



CHAPTER 4

HIGH-LOW-EMITTER SOLAR CELL

4.1 Introduction

As Brandhorst first noted [1) 	 the power conversion efficiency n

in silicon p-n junction solar cells is considerably less than the

maximum theoretical value of n mainly because the open-circuit voltage

VOC is smaller than simple p-n junction theory predicts. Experiments

[2] on n+-p silicon cells have shown that this discrepancy in VOC results

from the dominance, in the non-illuminated cell, of the emitter recom-

bination current J  over the base recombination current J B . In cells

having base doping concentrations of the order of 10 i7 cm 3 , for which

the largest values of VOC are seen, J  exceeds J  by about an order

of magnitude [2), rather than being several orders of magnitude less

than J  as is predicted by simple p-n junction theory. The excess J 

has been attributed to the mechanisms [3,4] of energy bandgap narrowing

and lifetime degradation that accompany heavy doping concentrations in

the n + emitter. The excess J  may also arise, in part, from a large

surface recombination velocity over the non-metallized portion of the

surface.

To suppress J  and thus raise the achievable values of V
OC

, a now

structure, the High-Low-Emitter (HLE) solar cell has been proposed and

its performance has been calculated on theoretical grounds [5-7].

This device contains a high-low junction near an emitter surface of low

72
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Isurface recombination velocity. In the second section of this chapter

we outline the theory underlying HLE solar cell behaviors then we

discuss early experimental results on test devices employing the HLE

	

1	
structure. In particular, we focus on one category of HLE solar cell:

the Oxide-Charge-induced (OCI) 11LE solar cell in which an electron

accumulation layer is used to form a high-low junction (7,81•

4.2 Physical Basis Underlying Emitter Current Suppression in HLE

As is illustrated in Fig. 4.1(a), the HLE cell differs from the

conventional p-n junction solar cell in that it contains a high-low

junction in the emitter. The mechanisms,underlying the suppression of

the emitter current resemble, in part, those which suppress base current

in Back-Surface-Field (BSF) solar cells: as the injected minority

carrirrs (holes) diffuse across the lightly-doped n region into the

n+ region, where the electron density is much higher, the partially

reflecting boundary condition (9) at the high-low junction depresses

the hole density near the emitter surface. In contrast to the BSF

cell, however, in the HLE cell the emitter surface, which is close to

the high-low junction, is designed to have a low surface recombination

velocity Sp . The combination of low hole density and low S p results

in a suppression of the injected hole current.

In Fig. 4.1(b) we contrast the spatial distributions of the excess

hole concentrations in the quasi-neutral emitters of two structures:

one, an HLE structure, the other, a structure with no 11-L junction

	

9
	 and with a Large value of Sp . In this comparison, it is assumed that

the holes injected from the base into the emitter recombine mainly at

the emitter surface (x=0). Figure 4.1(c) shows qualitatively the effect
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Figure 4.1 (a) High-Low-Emitter junction solar cell structure under
external bias voltage VA.

(b) Excess hide distribution in a IILI structure (dashed
line) and in a structure with no II -L harrier and with
high value of Sp (solid line).

(c) Energy band diagram showing the Coulomb repulsion of
injected holes by the H-L barrier.
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of Coulomb-force repulsion associated with the high-low barrier on

injected holes in the vicinity of the high -low junction.

To study the emitter current in the HLE structure more quanti-

tatively, we make use of the discussion in Chapter 3 for the Back-

Surface-Field solar cells. Analogous to (3.1), the emitter current

in HLE structure can be decomposed into two components: JE, the current

component duo to recombination in the n + bulk and surface region and

JE , the current component due to recombination in the n bulk region.

Using the same notations as in (3.1), we write the total emitter current

JP (X 3) as

IJP ( X 3 )I =' 9aP(x2)SE	
2	

T+ q	 (4.1)
P

where the first term on the right hand side represents JE, the second
term represents JE , SE is the effective reconbination velocity for holes

at x a x2 , and the geometrical variables x 2 , x 3 , and WE are as defined

in Fig 4.1(a).

For good cell performance both JE and JE must be made small.

The current J  must be small so that the injected carriers can interact

with the high-low barrier. This imposes the following conditions on

the n region: (a) its hole lifetime must be long compared to the hole

transit time across the n layer so that nearly all the holes injected

from the base diffuse through to the high-low junction rather than

recombining within the region, and (b) its doping concentration must be

low enough (less than 10 17 to 10 18 cm-3 ) to avoid the effects of energy

band-gap narrowing and severe hole lifetime degradation. These

con.3iderations suggest that a 5 to 20 um thick n-type epitaxial layer

with rrtsistivity in the range of 0.1 0-cm to 1 S2-cm would be appropriate.
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n 	 Note that higher conductivity offers the advantage of reducing the

lateral component of series resistance.

We next investigate JE, the recombination current component
in the n+ region. for concreteness in the discussion, we assume for

now that the n+ region is formed by a heavy doping concentration of

donor atoms, resulting from diffusion or ion implantation or some

other method of fabrication. A later discussion, in Section 4.3,

generalizes to include the possibility that the large electron concen-

tration in the n+ region is formed without heavy doping as in the OCI-

HLE solar cell.

For this diffused (or ion-implanted) HLE device, we assume the

n+ region to be thin enough that all the holes recombine mainly at the

surface which can be characterized by a surface recombination velocity

SP . We further assume the quasi-neutral n+ region to be field-free,

as a result of the built-in electric field due to the doping gradient

being balanced approximately by the quasi-field due to the gradient of

the energy band-gap narrowing AEG W. Solution of the continuity

equation for holes then yields [7),

(J+`	 q nie
(xl)

E 
Y NDD(x1)

-1
1 +	 l

SP DP/WE
(exp(gVA/kT)-1l	 (4.2)

where DP is the hole diffusivity, WE is the thickness of the quasi-

neutral n+ region, x  is the quasi-neutral region edge of the high-low

junction nearest the surface, 
NLD 

is the doping concentration, and nic

is the effective intrinsic density squared which can differ from 112

the intrinsic density squared for intrinsic silicon because of the

effects of Fermi-Dirac statistics (10) and energy band narrowing [3,11).
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In the field-free model for the n + region (10), note that

n2 (xl) IN+ (x l ) 	 n1 e( x) IN ++ W
	

(4.3)

where x is any point in the n + region. This relation can simplify

the quantitative use of ( 4.2) in analysis.
(

For a well passivated surface, S P is low and often WE is thin

enough that DP/WL is much larger than S P . Under this assumption,

the total emitter current is

g nie 
S	 q nio WE

(JP (x3 )^ 	 +	 + N
	

(exp(gVA/kT)-1)	 (4.4)
Npp	 DD P

Here we assume AP (x2 ) = AP (x 3) n io N pp	 where NpD is the doping con-

centration in the n region.

Provided that the bulk recombination in the n-type region is

negligible, the emitter current is then

2 
S

JP (x 3) = q n+e P
	

(exp(gVA/kT)-1l	 (4.5)

NDD

The same suppression would occur in a conventional n +-p solar cell if

all the holes were transported across the emitter to the surface and

if the surface were passivated to reduce SP . The advantage of the

HLE structure is that the n + layer of the 11LE cell can be made very
0

thin (% 1000 A) with lower doping concentration to decrease the heavy-

doping effects. The lower sheet resistance of the n + layer will be

compensated by the parallel resistance of the n-type epitaxial layer.

7be low-doped emitter epitaxial region will contribute significantly

to the short-circuit current, since for low S
P 
most of the optically

^ 
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generated carriers will be collected by the p-n junction. The low

doping of the n region is consistent. with long minority-carrier lifetime

which enables the achievement of a high collegtion efficiency.

In the Oxide-Charge-induced HLE structure, which we will study in

the following section, the emitter currant is suppressed so low by

the surface and the high-low barrier that the base current J  alona

determines the dark current.

4.3 Oxide-Charge-induced HLE Solar Cell: Structure, Fabrication,
and Performance

4.3.1 Structure

As is shown in Fig. 4.2, the high-low junction in the emitter

results from an electron accumulation layer induced in the n-type

epitaxial emitter region by a positive oxide charge Q OX . "w charcle

QOX 
is created near the silicon-silicon dioxide interface during a low-

temperature oxygen heat treatment (12). Experiments on MOS capacitors

indicate that the positive oxide chr_rge QOX resides within about 300 A

from the silicon-silicon dioxide interface and strongly depends on

the last high temperature process and the crystal orientation (12,13).

For <ill> wafers annealed in 700% dry oxygen, Q OX is found to be about

5.5x1011/em2 (12,13). The total charge accumalated near the silicon

surface is approximately QOX . The electron distribution is described

by tMS theory (26), and most of the electrons in the accumulation

layer reside within about three extrinsic Debye lengths from the uurf.wa.

For the above value of QOX , the electron surface concentration is ajouC

9.3x1017 cm-3 for Pepi01.5 A -cm and about 1.2x1018 
M-3 

for Pepi
'3

0.1 O-cm.

To assure a qood ohmic contact, a shallow phosphorous diffusion is

. a	 1
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Figure 4.2 Cross section of an oxide-charge-induced high-low-emitter

(OCI-FILE) solar cell. Electron accumulation layer is
induced by a positive oxide charge 
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diffusion also provides a high-low barrier and a small effective surface

recombination velocity [9] for holes. The p-type base has a doping

concentration N. = 5x10 i7 cm-3 , which approximately minimizes J 

in a cell without a back-surface field [1].

From a device performance point of view, the oxide-charge-induced

H-L structure of Fig. 4.2 is an attractive realization of the HLE

solar cell because it avoids a high concentration of donor impurity

atoms in the thin H layer near the surface. This diminishes some

sources of degrading heavy-doping effects [3], such as some mechanisms

that give rise to band-gap narrowing [14 ] and hole lifetime degradation

in the H layer, and it can also help the achievement of low values of

surface recombination velocity. The avoidance of a diffusion step to

form a highly-doped H layer eliminates, over the nonmetallized portion

of the surface, the diffusion of unwanted impurities and vacancies into

the silicon along with the donor atoms. These advantages can result

without the occurrence of a large lateral component of the series

resistance Rs , and consequent degradation of the fill factor FF [15],

because the thickness and doping concentration of the L portion of the

H-L junction can be adjusted to supply the needed lateral conductance.

For applications in concentrated sunlight, this is particularly important.

The preceding section contains expressions for the dark emitter

current for the diffused (or ion-implanted) HLE. These were based on

a :Meld-free model of the n + region in which the built-in electric

field and the quasi-field nearly cancelled one another. For the OCI-HLE

solar cell, however, this is an inappropriate model because the gradient

of the energy band gap that produces i-,.e quasi-field is small for the
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low values 0.10
18	

-cm 3 ) of electron concentration induced at the

surfact- while the electron concentration can change by several orders

(if magnitude in a Debye length thereby producing a large built-in

electric field. To derive an expression for the dark emitter current

in the OCI -11LG cell, note that the large electron concentration and

the desired suppressed hole current suggest that the quasi-Fermi levels
h

for both electrons and holes are nearly flat throughout the emitter

region, as Fig. 4 . 1(b) indicates. Then by multiplying together the

expressions for the electron and hole densities ( in terms of the gausi-

Fermi levels), one finds the excess hole density at the surface. If

the injected holes recombine mainly at the surface, which is a preferred

design for the reasons indicated in the preceding section, then the

surface excess hole density times qS gives the magnitude of the dark
p

emitter current:

(Jp ^ - gSp(n 
2
ies /Ns

) [exp (qVA/kT)-1]	 (4.6)

where N is the electron concentration at the surface and n. 	 is
s	 ies

the effective intrinsic density squared at the surface. It can differ

from nio even though the electron concentration Ns is low because of

the effects of minority-carrier screening by the majority carriers

[14,16) and of Fermi-Dirac statistics [10). Note that (4 6) is essen-

tially the same as (4.5) for the field-free model of the 	 used (or

ion-i •,olanted) 11LE cell. indeed, an alternate, but not equivalFnt,

deriv..tion of (4.5) could follow the reasoning directly above employing

the near flatness of the quasi-Fermi levels in the emitter region.
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4.3.2 Fabrication

The fabrication of the OCI-HLE solar cell is simple. A major

portion of the devices fabricated in this stu4Y are made using the

following basic processing steps:

1. Wafer cleaning.

2. Thermal oxidation of silicon surfaces.

3. Defining ohmic contact windows on front surface using

photolithographic process (mask #1).

4. Phosphorous diffusion through contact windows.

S. Low temperature oxygen annealing.

6. Etching oxides over contact windows.

7. Metal deposition on front surface.

8. Defining metal grid pattern on front surface by

photolithographic process (mask #2).

9. Lapping the back surface.

10. Metal deposition on back surface.

11. Annealing the wafer in forming gas (108 hydrogen,

908 nitrogen).

Details regarding processing temperature and time for devices

fabricated using the above schedule are summarized in Appendix II and

Appendix III. We have also fabricated some devices using proc:essinq

schedules that are slightly different from the above and they are also

listed in Appendix III. The layout of masks used are shown in Appendix IV.

4.3.3 Performance of OCI-FILE Cells

We now discuss the experimental results of process r ,ins number 25

and 26. The starting material for run #25 is <111> p-type Czochralski-

grown wafer with a 10 um, 1. ,. .2-cm n-type arsenic-doped epitaxial
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layer.	 The p base is boron-doped with a resistivity of 0.14 9-cm and

a thickness about 300 pm.	 The wafer was oxidized in dry oxygen with

R 0.3% Lrichloroethylene (TCE) at 1100°C for three hours to grow a

u
1500 A thick oxide.	 The temperature of 1100 0 C was chosen for this cell

to assure a good quality oxide and a low value of surface recombination

velocity.	 Holes were opened in the oxide for a phosphorous diffusion

done at 900°C for 15 minutes. 	 The phosphosilicate glass was etched off

and the wafer was heat treated in dry oxygen for two hours at 700°C

to increase the oxide charge QOX [12].	 The thin oxide over the contact

a
opening was then etched and the field oxide was thinned to 1100 A

to improve the antireflection properties. 	 An aluminum grid pattern

was defined photolithographically on the front surface. 	 The back

surface was lapped in silicon carbide abrasive powder, and aluminum

was evaporated on the back surface.	 The wafer was then annealed in

forming gas at 450°C for 15 minutes. 	 This serves to anneal the surface

states at the silicon-silicon dioxide interface (17) as well as to

make the aluminum-silicon contact ohmic.	 The wafer was then scribed

into cells of different sizes. 	 It is found that the scribing process

introduces crystal damages at the periphery of the cell.	 The effect

manifests itself as an edge recombination current in the current-

voltage characteristics of the cell. 	 Although the magnitude of this

current is insignificant at higher voltages (> 0.6 V), its presence

at lower voltages can often decrease the fill factor and hinder proper

data analysis, for example, the determination of the quasi-neutral

saturation current (18). 	 To eliminate this current component, all

finished cells are etched in CP4 solution (3 parts hydrofluoric acid,

5 parts nitric acid, 3 parts acetic acid) for 10 minutes.	 The front

A.
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and back surfaces of the cells are protected by wax while the edges

are left clear of wax during the etching.

The base diffusion length Ln , measured using the X-ray excitation

method [19) was Ln = 20 um. Measurement of the dark I-V characteristics

shows that the ideal saturation current (determined by subtracting the

space-charge-region recombination current (181) is 2.9x10 i3 Amp/cm2
at 294.8°K. The corresponding base saturation current at this

temperature, q nio Dn/(N
AA

Ln), is 2.8x10
-13

 Amp/cm2 . This demonstrates
that J  << JB . Thus the open-circuit voltage V 0 is determined mainly
by J  in this device. The results of the measurements show further

that the emitter saturation current JEO is suppressed to less than

about 1.5x10-14 Amp/cm 2 , assuming an experimental uncertainty of 5%.
This current component corresponds to a voltage, kT/q ln(J SC/J

go
) > 720 mV,

fora short-circuit current density JS_ of 35 mA/cm2 (measured in this
device). Thus J  is suppressed to values so low that it presents no

barrier to the achievement of VOC = 700 vV, which is the maximum value

of VOC predicted by classical theory for a 0.1 Q-cm base resistivity

for Air-Mass-Zero (AMO) illumination.

The experimental setup for the V 0 and JSC measurements is shown
in Fig. 4.3. The light source is a General Electric 300 watt ELH lamp.

The standard cell is a diffused HLE solar cell which has 3 S 2 36.7 mA/cm2
and VOC = 620 mV at 25°C under AMO conditions as measured by NASA

Lewis Research Center. The value of J SC for the standard cell, as

well as for all cells we measured, are calculated on an per-effectivc-

area basis.

For the VOC measurement, both standard and test cell are placed

side by side and the intensity of the light source is adjusted by a
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Figure 4.3 Experimental setup for 
V 
0 and JSC measurement.
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variac such that 
V 
0 of the standard cell is 620 mV. A reading on

the test device is -then taken. This value of 
V 
0 is then the 

V 0

of the test cell at 25°C. This method works even when the ambient

temperature is slightly different from 25°C since the change in 
V 0

with temperature is mainly due to the change of n2 for both the
io

standard and the test device. Likewise, for the J SC measurement, the

JSC of the test device, as measured by a high impedance voltmeter across

the 1 R resistor, is taken when the short-circuit current in the standard

cell corresponds to a value of 36.7 mA/cm 2 . The experimental accuracy

is about i 3mV for V 
0 

and t 0.3 mA/cm2 for JSC , determined by comparing

with the measurements done at NASA Lewis Research Center on the same

devices.

The open-circuit voltage measured on devices of Run . #25 is

v
 0 = 627 mV at 25°C and AMO illumination, thc. short-circuit current

density is JSC = 35.5 mA/cm2.

For Run #26, the starting material is different from that of Run #25.

It is a <111> p type Czochralski-grown wafer with a lOpm, 0.1 n-cm

n-type arsenic-doped epitaxial layer. The p-type substrate is boron-

doped with a resistivity of 0.1 9-cm. The processing schedule for

Run #26 is summarized in Appendix III. For this device, the emitter

current again is completely .suppressed. The measured V 
0 

is 634 mV

at 25°C and JSC is 32.8 mA/cm2 . Although the base diffusion length

for these devices is only about 13 um, the higher doping concentration

and lower electron diffusivity reduce the base recombination current

that V0C is higher than that of Run #25. The smaller value of 3 S i:j
probably due to the heavier-doped epitaxial layer and a shorter base

diffusion length.
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Although the emitter current is suppressed in these devices, the

results suggest that if the base diffusion length of these wafers can

be improved, better cell performance can be expected. One approach

would be to modify the fabrication procedures, particularly the higher

temperature steps, to achieve a longer base diffusion length. Another

approach would be to obtain better quality starting material. We will

discuss these approaches in the next section.

4.4 Fabrication Considerations for OCI-HLE Junction Solar Cells

In Section 4.3 we have discussed the experimental results of

process runs 1125 and 1126 which were the first runs made. It is noted

that the degrading effects of heavy doping concentration and large

surface recombination in the emitter region have been avoided in the

OCI-HLE junction solar cell so that the open-circuit voltage in these

cells is determined primarily by the base recombination current.

However, the base minority-carrier lifetime in these devices is more

than as order of magnitude lower than that of conventional n + -p solar

cells fabricated on substrate materials with about the same doping con-

centration. Diffusion lengths in the substrates of wafers used in

Run 1125 and N26 before processing were about 50 um and 25 um respectively,

compared to a diffusion length of about 100 Um measured on some 0.1 n-cm

substrates without the epitaxial layer. The low values of lifetime

observed in these epitaxial wafers is probably due in part to the poor

starting substrate, and to the defects or impurities introduced into

the substrate during the epitaxial growth. The introduction of stacking

faults during the initial high temperature oxidation can also reduce the

bulk lifetime.

__ fit..
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In this section we discuss the results of a sequence of device

runs that employ fabrication schedules designed to improve the bulk

minority-carrier lifetime compared to the schedules used for Run #25

and #26. These methods include the use of phosphorous gettering for

metallic impurity removal [201 (Run #27), lower oxidation temperature

(Run #31, #32), slow cooling of wafers after high temperature processes

(Run #35, #36), and prolonged high temperature oxidation in the presence

of chlorine compounds for annihilation of oxidation-induced stacking

faults (21-231 (Run #48). Not all of these methods are suitable for

the OCI-11LE solar cell fabrication since some of these processes may

cause degradation in the emitter region, such as an increase in surface

recombination velocity. The purpose of this study is to implement

the most compatible method to improve the open-circuit voltage of the

device. The relevant descriptions of the epitaxial wafers used for

these runs are listed in Appendix 711.

To find the bulk lifetime of the starting material, measurements

were performed utilizing the existing p-n junction between the epitaxial

layer and the substrate (Run #28). A low temperature n + phosphorous

layer was diffused into the epitaxial wafer. This provides a better

electrical contact to the lightly-doped epitaxial layer. The n+ la,-.r

at the back side was removed and ohmic contacts at both surfaces of the

wafer were created by evaporating Ti-Ag to both surfaces. Several

1 cm x 1 cm diodes were scribed from the middle of the wafer and the

edges were etched in CP4 solution. Diffusion lengths in these devices

were measured using the X-ray irradiation technique. The results were

L  = 50 um for the 0.15 S2-cm bulk material and L n = 25 um for the

0.1 Q-cm material.

r.
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We now discuss the results of Run 1127, 31, 32, 35, 36, and 48.

The starting material of Run #127 is the same as Run #26 and except

K	 for an additional phosphorous gettering step the two runs are identical.

The bulk diffusion length measured is about 15 um, which is about the

same as that for Run #26. While phosphorous gettering is known to

result in significant improvement of bulk lifetime in lightly-doped

materials (24), the ineffectiveness of this method to improve the bulk

properties of these heavier-doped substances suggests that metallic

impurities are not the dominant factors limiting the bulk lifetime in

these materials. The result is consistent with the observed decrease

in bulk diffusion length with higher substrate doping concentrations [25).
1

Run #31 and #132 investigate the possibility of improving bulk

lifetime using lower oxidation temperatures. The main differences

between these runs and the previous ones are the 900°C wet oxidation

step (Run 1131) and the 800°C dry oxidation step (Run #32). Details of

the fabrication schedule are summarized in Appendix III. The diffusion

lengths measured on these devices are low in comparison with that of

Run #28. The open-circuit voltages of these devices are also low.

Analysis of dark I-V characteristics (181 shows that the recombination

current in the emitter region is significant. The results are displayed

in Table 4.1. The low values of open-circuit voltages observed suggests

the presence of a high density of surface states at the silicon-silicon

dioxide interface as indicated by a control MOS capacitor made on

1 n-cm n-type wafers as shown in Fig. 4.4.

In Run 1135 the epitaxial wafers are cooled slowly in nitrogen

1
	 after the 1100°C oxidation and the 850°C phosphorous diffusion. In
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1

Run 436 the wafers were cooled in an oxygen ambient. For devices of

Run #35, the diffusion lengths measured were L n
 
as 54 Vittfor cells

fabricated on 0.15 0-cm substrate and L  a 21 um for cells fabricated

on 0.1 A-cm substrate. If the emitter recombination current is

suppressed and the space-charge region recombination current is small,
_	 s	 .

the open-circuit voltages of these devices would be about 660 mV and

650 W ai: 25°C respectively. However, the observed V0C is only 604 my

for cells made on the 0.15 n-cm material and 623 MV for cells made on

the 0.1 Q-cm material. Analysis of dark I -V characteristics reveals

that the emitter recombination current in these devices constitutes

about 90• and 60%, respectively, of the total quasi-neutral region

a	 recombination current. The results again suggest the influence of

surface states associated with low temperature oxides 117,132. The

diffusion length for devices of Run #36 is L  2 35 Um for the 0 . 15 n-cm

material. The degradation in L n is probably due to prolonged heat

treatment in oxygen.

In Run #48 the wafers are oxidized in 1150°C for 5 hours with

1.5 R/min dry oxygen with 0 . 3% TCE. An oxidation time of five hours was

chosen with the intent to suppress the oxidation-induced stacking

faults (OISF) [21,22). Following the standard n+ contact diffusion the

phosphosilicate glass is etched off and the wafers are annealed in dry

oxygen at 700°C for 2 hours. The diffusion lengths for this run are

L  = 50 um for the 0 . 15 11-cm material and L  = 23 um for the 0.1 n-cm

material. Although we have obtained long diffusion lengths for

these materials, the open-circuit voltages of these devices are stall

low. They are 606 mV and 622 mV respectively. Capacitance -Voltage

I
measurement on control Mu.,; capacitors made on 1 a-cm n-type wafers

indicates the surface state density is low, as would be expected for

f•

I
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higher temperature oxides (Fig. 4.4). The low values of V 
0 

are due

to an inadequate density of oxide charge to induce a sufficient high-

low barrier (QOx/ga4.2x1011 
cm-2). 

In Run 451 we repeat Run 446

except the wafors are annealed in dry oxygen at 700'C for 12 y hours to

allow more time to form the oxide charges (QOx/ga5.5x1011 cm-2 ). The

results are L  a 34 um, 
V 0 

a 635 mV for the 0.15 0-cm material and

L  a 16 Pm, 
V 0 

a 639 mV for the 0.1 n-cm material. We have also

fabricated devices using epitaxial wafers with heavily-doped (0.025

n-cm) substrates. 
V 
0 of 640 my has been obtained. These results

emphasize the importance of th4i properties of the front surface.

Although the values of L  are smaller for Run 451 than Run 448, values

for 
V 
0 are higher due to a mor3 effective high-low barrier.

we have discussed several approaches of OCI-HLE solar call

fabrication to improve the open-circuit voltage. It is important that

these devices have a well passivated surface with low recombination

velocity as well as long diffusion length in the substrate for good cell

performance. Oxidation in dry oxygen at elevated temperatures with TCE,

followed by low temperature dry oxygen annealing was found to be the

best approach for the silicon materials used in this study. In Table 4.1

we summarize all pertinent results obtained for the devices under study.

In Table 4.2 we characterise the surface properties of the OCI-HLE

solar cells under study. The oxide charge density QOx/q is obtained

from the flatband voltage shift in the C-V plot for control MW

capacitors, the electron concentration at the surface Ns follows from

classical MOS theory (26), and the surface recombinati i velocity Sp

is evaluated using (4.6).
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Table 4.1 Fxperimental Results of OCI-HLG Solar Cells Performance.
Data with Asterisk Were Measured at NASA Lewis Research

3	 Center.

Substrate
Resistivity Device Non-Metallized Measurement

Run N Wafer (By Four Point Area Surface Area Temperature

Probe method)

P base (11-cm)
A(cm2) Ae (cm 2 ) T(K)

25 9900AP 0.14 0.99 0.75 294.8

26 MONSANTO '0.10 1.00 0.83 293.2

27 MONSANTO 0.10 0.72 0.58 293.4

28 9900AQ 0.14 1.00 0

MONSANTO 0.10 1.00 0

31 9900AP 0.14 1.65 1.30 295.2

990OAQ 0.14 1.59 1.26 294.8

32 990OAQ 0.15 0.90 0.77 292.6

35 9900AP 0.14 0.91 0.76 293.4

MONSANTO 0.10 1.89 1.56 293.5

36 9900AP 0.14 1.21 0.97 293.4

48 9900AP 0.14 0.84 0.68 292.7

MONSANTO 0.10 0.98 0.79 293.4

S1 9900AP 0.14 0.95 0.'7 292.6

MONSAN70 0.10 0.95 0.80 293.5

MOTOROLA 0.024 1.91 1.68 293.1

w
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Table 4.1 (extended)

L JQNO JBO JEO V0C`25°C ISC/Ae till
Factor

(um) (Amp/cm2 ) (Amp/cm2 ) (Amp/cm2 ) (mV) (mA/cm2)

20.1 2.86x10 13
2.83x10

-13
<1.Sx10 

-14 627* 35.5* 0.7C."

13.5 1.90x10 13 1.90x10-13 <1.Ox10 -14 634* 32.8* 0.801*

14.1 1.87x10-13 1.87x10-13 <1.Ox10 -14 635 32.8

49.4

26.6

s	 19.3 1.40x10 12 2.94x10 13 1.11x10-12 584 32.2

9.6 3.39x10-12 5.94x10-13 2.80x10-12 566 29.4

26.3 7.50x10-13 1.61x10-13 5.89x10 13 603 28.7

53.5 7.93x10-13 8.36x10 14 7.10x10 13 605 35.2

21.0 3.16x10 13 1.28x10-13 1.88x10-13 623 31.3

34.5 7.05x10 13 1.30x10-13 5.75x10-13 602 33.6

49.9 5.62x10-13 7.83x10-14 4.84x10-13 606 34.6

22.7 3.85x10-13 1.16x10-13 2.69x10-13 622 32.7

33.8 1.73x10 13 1.20x10 13 5.30r.10 
14

635* 36.0* 0.717*

17.0 2.13x10-13 1.60x10-13 5.30x10-14 639* 34.3* 0.806*

ti 2.5 1.25x10-13 4.00x10-14 8.50x10 -14 640* 29.r* 0.739*

C
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Table 4.2 Characterization of Surface Properties of OC:I-HGE
Solar Cells Fabricated.

Run N Wafer QOX/q (em 2 ) NS (cm 3) Sp (cm /sec)*

25 9900AP 4.8x1011 6.9x1017 8.7x102

31 9900AP 5.8x1011 1.0x1018 9.1x104

n900AQ 5.8x1011 I.Ox1018 2.4x105

32 990OAQ 3.3x1011 3.3x1017 2.4x104

35 9900AP 5.9X10 6.2x104

MONSANTO 5.9X10 2.6x104

36 9900AP 8.5x10 2.2x1018 1.3x105

40 n100AP 4.2x1011 5.2x1017 3.1x104

MONSANTO 4.2x1011 7.7x1017 2.2x104

51 99OOAP 5.5x1011 9.3x1017 6.1x103

MONSANTO 5.5x1O11 1.2x11118 7.2x103

MOTOROLA 1.6x1O11 2.:x1017 2.3x103

* UPPER limit (recombination losses in the n-type epitaxial

layer neglected)
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4.5 Additional Experiments

About 20 additional runs were made using wet oxidation in a

temperature range of 1100-1150°C. The oxidation time was 15-45 min.

Best results obtained using wet oxides to date were: (a) V 0 = 647 W

for a Motorola wafer described in Appendix III with base resistivity

of 0.024 Qcm, and (b) V 	 643 mV for wafer with 0.1 Skm base resis-
OC

tivity and an 8 um, 0.15 Qcm epitaxial layer. These results are repro-

ducible and were repeated at least five times. The values of 
V 
0 using

wet oxides were always above 640 mV in all runs.

Wet oxidation at high temperatures has several advantages compared

to dry oxidation for the fabrication of the OCI-HLE cells:

0
(a) Shorter oxidation times are required to grow about 2000 A

Si02 . This will reduce the damage to both the substrate and

epitaxial layers that results from long 0,5 hrs) d,y thermal

oxidation.

(b) Oxidation temperatures of about 1100°C were sufficient to

obtain 
V 
0 = 640 mV compared to 1150 9C required for dry oxide.

(c) Wet oxides have a smaller density of surface states at the

Si-Si02 intezface and a higher density of oxide charge,

resulting in smaller values for Seff*

One fabrication run using a diffused n n HLE junction was done.

This run used the 0.1 Qcm p-type Monsanto substrate (Appendix III).

Phosphorous was diffused into the entire area of the epitaxial emitter

at 850°C for 15 min, followed by a thermal oxidation at 900°C for 10 min

in a dry-wet oxygen ambient. This device had V. = 625 mV and a dark

emitter recombination current JEO = 3 x 10-13 A/cm2 at 25 •C, AMO.
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APPENDIX I

PROGRAM TO ANALYZE TRANSISTOR AND DIODE I-V CHARACTERISTIC

DIMENSION V(100),AMP(100),X(100),Y(100)
REAL MX,IXO,IX,ID, ISAT
CHARACTER*10 DEVICE,DATE

1 FORMAT(F10.3)
2 FORMAT(2F10.2,I10)
3 FORMAT(8E10.3)
4 FO1tMAT(9X,'V',12X,'I(DATA)',9X,' ISAT '/)
5 FORN.AT(F10.3,17PE20.4)
6 FORMAT(F10.3 1PE20.4,E16.4)
7 FORMAT('O',' T=',F9.3/)
8 FORMAT('O',' MX=',F8.3,2X,'IXO=',1PE11.4)

111 FORMAT('1','DATE:',A10,'	 DEVICE NUMBER:	 ',A10,
1//1X,'SOLAR CELL PROJECT, UNIVERSITY OF FLORIDA,',
1' GAINESVILLE, FLORIDA'//1X,'PROGRAM PA05 I - V DATA',
1' FITTING' ///)

222 FORMAT(2A10)
C
C THIS PROGRAM COMPUTES MX AND IXO FROM A SET OF PRF.CHOSEN I-V DATA
C POINTS AT LOWER BIASES WITH INITIAL VALUE AT V1 AND SUBSEQUENT VALUES
C AT DV1 APART. THE CONTRIBUTION OF THIS COMPONENT AT HIGHER BIASES
C IS SUBTRACTED FROM THE ACTUAL MEASURED DATAS AT HIGHER BIASES
C (STAZTING AT V2 WITH AN IIICREMENT OF DV2) TO OBTAIN THE DIFFUSION
C COMPONENT ID. ISAT IS CALCULATED USING ISAT = ID/EXP(V/VT)
C N1 = NUMBER OF DATA POINTS FOR MX, IXO FIT
C N2 = NUMBER OF DATA POINTS FOR ISAT CALCULATION
C MX = SLOPE FACTOR OF LOWER PORTION OF I-V CURVE
C IXO = PRE-EXPONENTIAL FACTOR FOR LOWER PORTION OF I -V CURVE
C IX = SPACE-CHARGE COMPONENT AT BIAS V
C ID = DIFFUSION COMPONENT AT BIAS V
C VT = KT/Q
C ISAT = ESTIMATED DIFFUSION SATURATION CURRENT. THERE WILL BE A
C	 RANGE OF VOLTAGES THAT ISAT IS APPROXIMATELY CONSTANT (VALUES
C	 OF' ISAT AT LOWER BIASES CALCULATED USING THIS ALGORITHM ARE NOT
C	 THE REAL VALUES OF DIFFUSION SATURATION CURRENT DUE TO THE
C	 DOMINANCE OF SPACE-CHARGE RECOMBINATION CURRENT AND VALUES OF
C	 ISAT AT HIGHER VOLTAGES ARE ALSO NOT THE TRUE VALUES OF DIFFUSION
C	 SATYRATUIB CURRENT DUE TO THE EFFECTS OF SERIES RESISTANCE).
C	 A SINGLE VALUE OF ISAT CAN BE OBTAINED BY AVERAGING ALL VALUES
C	 OF ISAT IN THE VOLTAGE RANGE WHERE THEY ARE APPROXIMATELY
C	 CONSTANT.
C

888 READ(5,222) DEVICE, DATE
READ(5,1) T



100

IF(T.LE.0) GO TO 999
READ(5,2) V1,DV1,N1
READ(5,3) (AMP(I),I-1,N1)
VT=T*8.616E-5
DO 10 I-1,N1
V(I)=V1+(I-1)*DV1
X(1)sV(I)/VT

10 Y(I)-ALOG(AMP(I))
CALL LSQ3(X,Y,NI,MX,IXO)
IXO=EXP(IXO)
WRITE(6,111) DATE,DEVICE
WRITE(6,4)
DO 20 I-1,N1

20 WRITE(6,5) V(I),AMP(I)
READ(5,2) V2,DV2,N2
READ(5,3) (AMP(I),I-1,N2)
DO 30 I=1, N2
V(I)-V2+(I-1)*DV2
IX-IXO*EXP(V(I)/(MX*VT))
ID-AMP(I)-IX
ISAT-ID/EXP(V(I)/VT)

30 WRITE(6,6) V(I),AMP(I),ISAT
WRITE(6,7) T
WRITE(6,8) MX,IXO
GO TO 688

999 STOP
END

SUBROUTINE LSQ3(X,Y,N,A,B)
DIMENSION X(D'),Y(N),XN(30)
XBAR-0
DO 10 I=1,N

10 XBAR=XBAR+X(I)
XBAR-XBAR/N
F-0
FX1=0
X2=0
DO 20 I=1,N
XN(I)=X(I)-XBAR
FX1=FX1+Y(I)*XN(I)
F-F+Y(I)

20 X2-X2+XN(I)*XN(I)
A=FX1/X2
B=F/N
B=B-A*XBAR
A=1./A
RETURN

END
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APPENDIX II

STANDARD WAFER CLEANING PROCESS

1.

2.

3.

4.

5.

6.

7.

9.

k
10.

Scrub with cotton swab soaked with TCE.

Boil in TCE, 5 min.

Boil in ACE, 5 min.

Boil in methyl alcohol, 5 min.

Rinse in deionized water, ' 5 min.

Dip.in 1HCL:l11 202 :6H20 solution at 80°C, 15 min.

Rinse in deionized water, 5 min.

Deglaze in 1HF:10H20 solution, 10 sec.

Rinse in deionized water, 5 min.

Spin dry with N 2 gas flow.
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APPENDIX III

FABRICATION SCHEDULE FOR OXIDE-CHARGE-INrIUCED
HIGH-LOW EMITTER JUNCTION SOLAR CELL

We have fabricated OCI-HLE solar cells on several types of wafers.

We will identify them as follows:

1. 9900AP - 1.5 n-cm, 10 um thick n-type arsenic-doped

epitaxial layer on 300 um thick <111> 0.15 0-cm

boron-doped Czochralski-growth substrate.

2. 9900AQ - 1.5 a-cm, 4 um thick n-type arsenic-doped

epitaxial layer on 300 um thick <111> 0.15 11-cm

boron-doped Czochralski-grown substrate.

3. MONSANTO- 0.1 0-cm, 10 um arsenic-doped epitaxial layer on

300 um thick <111> 0.1 A-cm boron-doped

Czochralski-grown substrate.

4. MOTOROLA- 0.15 0-cm, 5 um n-type epitaxial layer on 500 um

thick <100> 0.025 0-cm boron-doped Czochralski-

grown substrate.

In the following process runs all push-in and pull-out of wafers

for the oxidation, phosphorous diffusion, and oxygen annealing processes

are done in a nitrogen ambient in about 5 min unless otherwise :specified.

._
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1
	

3

a	
Run #25

e
Wafer: 9900AP with 5000 A of chemicu'L-vapor-deposited (CVD)

i
oxide on front surface.

Steps:

1. Phosphorous gettering: 1100 eC, 3 hr.

2. Etch oxides from both sides.

3. Standard wafer clearning (Appendix II).

4. Oxidation: 1100 eC, 3 hr with 1 t/min dry 02 and 5 cc/min N2

0
bubbling through TCE. Oxide thickness 11 2500 A.

5. Define front contact openings using mask M1.

6. Standard wafer cleaning.

7. Phosphorous diffusion through contact openings: 900 eC, 15 min
F

with 20 cc/min N 2 bubbling through POC1 3 at 30 e C, 100 cc/min 02,

and 1.5 k/min N 2 as carrier gas. Rs = 30 0/square.

8. Etch phosphosilicate glass in BOE etch for 10 sec.

9. Oxygen anneal: 700 eC, 2 hr with 1.5 :/mi.n dry 02.

e
10. Oxide etch until field oxide reaches 1100 A.

11. Aluminum deposition on front surface.
Lr

12. Define metal grid pattern using mask 1'2.

13. Remove the n+ diffusion from the backside by lapping with

silicon carbide abrasive powder.

14. Aluminum deposition on back surface.

1.. Forming gas anneal (10• if 2 , 90% N2 )	 450°C, 15 min.

16. Scribing and edge etching.
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Run #26

Wafer: MONSANTO

Steps:

1. Standard wafer cleaning.

2. Oxidation: 1100°C, 7 hr with 1 R/min dry 02 and 5 cc/min N2

bubbling through TCE. Oxide thickness n 3750 A.

3. Define front contact openings using mask R.

4. Standard wafer cleaning.

S. Phosphorous diffusior, through contact openings: 900 aC, 20 min

with 20 cc/min N2 bubbling through POC1 3 at 30'C, 100 cc/min 02,

and 1.5 L/min N2 as carrier gas. Rs a 25 n/square.

6. Oxygen annealing: 700'C, 10 hr with 1.5 L/min dry 02.

7. Etch oxide until field oxide is about 1100 A.

8. Aluminum deposition on front surface.

r
9..	 Define metal grid pattern using mask 12.

10. Lapping the back surface.
i
I	

11. Aluminum deposition on back surface.

12. Forming gas anneal: 450°C, 15 min.

13. Scribing and edge etching.
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Run 027: Effect of phosphorous guttering on bulk lifetime

Wafer: MONSANTO

Steps:,

1. Standard wafer cleaning.	 j

2. Oxidation: 1100 'C, 7 hr with 1 t/min dry 0 2 and 5 cc/min NZ	j

i
bubbling through TCE.

3. Remove oxide at the back surface.

4. Phospkorous guttering: 10O0 0C, 45 min with 20 cc/min N2 bubbling
i

throe POC1 3 at 30 'C, 100 cc/min 02 , and 1 . 5 VainN2 as carrier

gas.

5. See steps 3 - 13 of Run 026.

I	 i

" ^'^ j `t rryk ?U:^il
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Run 028: Determination of bulk lifetime in starting wafers

Wafor: 99OOAQ, MONSANTO

Stops:

1. Standard wafer cleaning.

2. Phoinhorous diffusion: 850'C, 15 min.

3. Etch oxides from both sides.

4. Remove n+ diffusion from back side.

5. Evaporate aluminum on both front and back surfaces.

6. Scribing and edge etching.

L
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Run M31: Oxidation (wet) at lower temperature (900 C)

Wafer: 9900AP, 9900AQ, both with CVD oxide on front surface.

Steps:

1. Define contact windows through CVD oxide for n + contact diffusion.

2. Standard wafer cleaning.

3. Phosphorous diffusion: 850°C, 15 min with the same flow rates

and source temperature as previous runs. Cool wafers down to

700°C in N2 (90 min).

4. Strip'oxides on both surfaces.

5. Oxidation: 900°C, 5 min dry oxidation, 10 min wet oxidation,

5 min dry oxidation. Wafers cooled to 700 0C in dry 02 (9000C).

6. Reopen contact windows using mask R.

7. Standard metallization and annealing process (steps 11-16 of

Run #25).
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Run 032: Oxidation (dry) at lower temperature (800°C)

Wafer: 9900AQ with CVD oxide on front surface.

Stops:

1. See steps 1 - 4 of Run 031.

2. Oxidation: 800°C, 16 hr and cool wafers down to 700°C in

N2 in 1 hr then in 02 for 2 hr at 700°C in same furnace.

3. Reopen contact windows using mask 01.

4. Standard metallization and annealing process (steps 11 - 16

of Run 025).
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Run #35:	 Slow cooling of wafers in N2 after high temperature
processes

Wafer:	 9900AP, MONSANTO

Steps:

1. Standard wafer cleaning.

2. Oxidation:	 1100eC, 3 hr with 1 i/min dry 0 2 and 5 cc/min N2

bubbling through TCE. 	 Cool wafers down to 1000 0C at 0.5eC/sin

and to 900eC at 1.5eC/min and then to 700 eC in 90 min.	 The

cooling was doge in a nitrogen ambient.

3. Define contact openings using mask A1.

4. Standard wafer cleaning.

S. Phosphorous diffusion: 	 850e C, 20 min.	 Cool wafers down to

700*C in N2 in 90 min.

6.
e

Etch oxide until field oxide is about 1100 A.

7. Oxygen annealing:	 700eC, 2 hr.

8. Etch thin oxide over contact windows.

9. Standard metallization and annealing process (as steps 11 - 16

of Run #25).



i

110

Run #36:	 Slow cooling of wafers in 02 after high temperature
processes.

Wafer:	 9900AP

Steps:

1. Standard wafer cleaning.

2. Oxidation:	 1100°C, 3 hrs with 1 t/min dry 02 and 5 cc/min N2

bubbling through TCE.	 Cool wafers dawn to 1000°C at 0.5°C/min

and to 900°C at 1.5 0C/min and then to 700°C in 90 min.	 The

cooling was done in an oxygen ambient.

3. Define contact openings using mask #1.

4. Standard wafer cleaning.

5. Phosphorous diffusion: 	 850°C, 20 min. Cool wafers down to

700°C in 02 in 90 min.

6. Etch oxide until field oxide is about
0

1100 A.

7. Standard metallization and annealing process (as steps 11 - 16

of Run #25).
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Run #48: Oxidation with TCE at 1150°C

Wafer: 9900AP, MONSANTO

Steps:

1. Standard wafer cleaning.

2. Oxidation: 1150°C, 5 hr with 1.5 R/min dry 0 2 and 3cc/min

N2 bubbling through TCE.

3. Define front contact openings using mask R.

4. Standard wafer cleaning.

5. Phosphorous diffusion: 850°C, 20 min.

6. Oxygen annealing: 700°C, 2 hr.

0
7. Oxide etch until field oxide reaches 1100 A.

8. Usual metallization and annealing process (steps 11 - 16 of

Run #25).

I
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Run 151

Wafer: 9900AP, MONSANTO, MOTOROLA

Stalls

As Run #48 except the wafers are annealed in dry oxygen at

700°C for IA hours in Step S.
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APPENDIX IV

LAYOUT OF MASKS USED IN SOLAR CELLS FABRICATION

We use photolithographic techniques to define the contact openings

to the front emitter surface and also the metal grid pattern on the

front surface. The layout of masks used are shown below. The shaded

areas correspond to the darkened area in the emulsion plate. Wayeoat

negative photoresist is used throughout.

20 mil

-►1 N—

Repeated
pattern

0.8"

2 mil	
0.8"

Mask N1: Mask used for contact openings to the front emitter
surface. It consists of thirty nine 2 mil x 800 mil
strips, with 20 mil center to center spacing.



0.2"

0.8" 1

0.2"

action
ips

2 mil

PI
_f

0.8"

Mask 02: Mask used for defining metal grid pattern on the front
surface. The thin contact fingers occupy 10% of the
area excluding the collection strips.

114
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I. INTRODUCTION

The minority carrier base diffusion length is an important material para-

meter determining the performance of solar cells. Very long diffusion lengths,

longer than the base width, are desirable for the successful operation of

BSF, tBC, FSF, and TJ cells [1) - [4). Such long diffusion lengths are

necessary to achieve large values of the short circuit current J SC , to
i

minimize the base dark current, and thus lead to large cell efficiency n .

A long diffusion length is also necessary in the emitter of the HLE cell

[5) for similar reasons.

Numerous methods exist to measure the base diffusion length L B [6,7).

These methods are based on the measurement of some device parameter, such as

`	 current, capacitance, etc., which is dependent on L B . To measure LB accurately,

LB has to be smaller than the base width W B , i.e., LB < WB . In this case, the

i	 minority carriers recombine within the base without interacting with a back

y	 contact. If, however, LB ti WB the minority carriers interact with the back

contact and the measured parameter is dependent on a slowly varying (hyper -

#	 bolic) function of WB/LB [7]. If LB > WB , the measured parameters depends on WR

only, and is independent of LB . Thus, existing methods of measurement do not

work well for cells with LB > WB.

An accurate knowledge of L B is still very important even if LB > WB,

since the dark base recombination current QB /TB can still significantly contri-

bute to the total dark current of the device.

In this paper, methods for the accurate measurement of L in a narrow

region W in cells for which L > W are described. The methods are applicable

to essentially all cells and diodes with a narrow region either in the base

or in the emitter.

The first method, described in Section II, is based on basewidth-modulation

of n-p-n or p-n-p transistor-like structures. The method involvos Teasurement

r of the low-frequency small signal conductances which arise from the basewidth-

s
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modulation by a small ac signal. TJ cells are directly applicable for the

method, since they are, in essence, transistor structures. For other cells,

transistor-like structures can be obtained by modification of the cell struc-

tures done at low temperature. The method requires only a knowledge of the

base width W  and the base doping, and the accuracy is better than about + 102.

The method applies for both high and low levels of carrier injection.

Section III discusses the small-signal admittance method. This method

can be applied to practically any cell with a narrow region either in the

base, or in the emitter whict. is the case for the HLE cell (S). It also leads

to determination of the recombination velocity at the back of the narrow region.

Section Iv describes a simple method to determine the diffusion length, which

is based on measurements of do currents on two related structures.

Based on an accurate knowledge of L. a simple analysis of the cells can be

made. This analysis, described in Section V, uses measurement of dark currentn and

small-signal admittance, and leads to determination of the recombination currents

in each region of the cell. Section VI shows illustrative examples of the analysis

of three cells: n+-p-n+ TJ cell, n+-p-p+ BSF cell, and p+-n-n+ BSF cell.

Section VII discusses the accuracy of the measurements.

II. BASEWIDTH MODULATION METHOD

A. Minority carrier lifetime

The basewidth-modulation (BWM) method for determination of the minority

carrier base lifetime of junction transistors was recently published (8). This

method is applied here for the case of very wide base regions in solar cells.

The method is also extended to determine the recombination currents in the

quasi-neutral emitter and collector regions of the cells.

The basewidth-modulation effects :rise from voltages appearing;

across the base-collector junction of the transistor. Any change in the base-

collector voltage will produce a change in the width of the junction space-

t
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charge-region (SCR) which, in turn, produces a change in the width, W B , of the

quasi-neutral base (QNB) region, as illustrated in Fig,l for an n ♦-p-n♦

transistor. The change in the base width, AW B , produces three effects:

a) the amount of excess minority carrier (electron ) charge Q  stored in the

QNB changes by AQB ; b) the component of the base current due to recombina-

tion within the QNB changes by AQB IT B ; and c) the collector current changes

because of the change in the slope of the excess minority electron distribu-

tion NW in the base.

The BWM effects can be detected by measuring a low-frequency small-signal

output a inductance Go and a reverse transconductance G r (2) of the device:

	

. is	. a a
c WB

Go vCe v
	 0 aW

B VCB 

IV	
(1)

be	 BE

	

ib	
31  

aWB

	

Gr 
n v	 aW 1 aV	

(2)

	

ce	 B	 CB

vbe- 
0	

VBE

Co and Cr result from modulation of the base width by a small ac signal

applied between the collector and emitter terminals with base-emitter voltage

VBE kept constant. For an n-p-n transistor (for example) with a uniform base

.	 doping N
AA

, under condition of low-injection and negligible recombination in

the QNB (Ln >> WB), the charge-control minority carrier (electron) lifetime 
T 

is (8]	 G
Tn • -TF 6	 (3)

r

where	
2

W
TF	 2D	 (4)

n

is the minority-carrier transit time across the QNB and D  is the electron diffu-

sion coefficient. The minus sign in (3) results from the fact that C r is negative.

Co and G  are both proportional to exp(gV BE/W (8]. The minority carrier lifetime

in the base can thus be determined by measuring Co and Cr and calculating 
T 

from the base width and base .loping.
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This method can be extended for use under the condition of high-

injection occuring in the p-type base. In high injection (9)

N(o) • n1	 2kT2

av 

	 (S)

Using (S), we obtain for the collector and base currents:

E2gD n	
qVIE	I C a	 a i exp 2kT
	 (6)

IL
ABeniWB	 gVBE

	

Ib ^T2t. --P 2kT	 (^)

where TH a T  + T  is the high-injection lifetime (9).

Using (1) and (2) we obtain:

_ 1 ^o	
(8)TH - 2 F Gr

This expression is similar to (3) for the low-injection case except for a fac-t

or of 1/2. Note also that Co and G r are both proportional to exp(gVBE/2kT)

in high-injection (9j. Equation (6) is valid if W < L and if the recombination

current in the emitter is negligible [9]. This will apply to many devices with

a wide low-doped base region. If the above conditions do not apply, then a more

general solution is required to obtain T  (9).

our treatment was restricted so far to the case for which L  ^ WB.

resulting in a linear dependence of N(x) on distance within the base. The method,

however, is applicable also for L WB . It can be easily shown that for this

general case:	 W
i

	G 	
cosh LB	 I

	

G . -
W	

(9)

	

r	 sinh 2L
n

This expression converges tc (3) for W B/Ln < 1. For W B A n - 1, the difference

between L determined from ( 3) and (9) is only about 82. i.e., for W^{ " I.n.
n

(3) can be used with only a small error.
t
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Conductances G and G are due only to changes in the QNB region provided
o	 r

VCB is low enough to make the generation currents in the collector depletion

layer negligible. They are independent of the recombination currentas in the

emitter and in the base-emitter space-charge region, since VBE is held con-

stant. Therefore, Go and G  will follow the ideal exp(gV BEAT) dependence in

low-injection and exp(gVBEj 2kT) dependence in high-injection. This ideal

exponential dependence of both Go and G  on voltage serves as a very convenient

self-consistency measurement check of the method. This check also arsares

us that series resistance is low enough, mainly in high-injection, to validate

the assumptions underlying the method.

B. Determination of the emitter current

Once the base lifetime, T n , is measured using the BWM technique, the emitter

contribution to the base current can be easily found. Th:_ tote.l m"..4: d base

current IBT for forward-betive operation in low-injection is fi0,llj

QIBT QB + 
tE 

♦ QSCR	
(10)

n	 E	 SCR

where QB , QE and 
QSCR 

are the excess minority carrier charges in the base, emit-

ter, and SCR, respectively; and Tn ,T E and 
TSCR 

are the respective charge-control

time constants. The SCR recombination currant 
Q 
SCR 1TSCR can be removed from

the measured IB VBE characteristic by an appropriate subtractior.[1 0 9 11] . The

remaining base saturation current, I BO is then

	

IBO . !
BO + QEO	

(11)
n	 E

Lwhere QBO and QEO are the minority charges at equilibrium: Q  = Q BO exp(gVBENT).

QE s QEO 
exp(gVBEW).

The ideal common emitter current gain is gi%!n by fill

hFE (ideal) . ICO	
QBO/Tp	

(12)
BO QB 

T + Q=
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M,

Solving for 
QEO/TE and combining with (3), the recombination current 	 fi

occuring within the quasi-neutral emitter is	 •	
yy

4
t

QEO - QBO	 Go/Gr - 1	 (13)tE	 Tn . hFE ea

QEO
/TE is thus found by combining the small-signal ac measurements (Go/Gr) with

do characteristics of the transistor (hFE)•

For a transistor with negligible recombination losses in the emitter,
ii

QEO/TE << QBO
/TB, note that

hFE (ideal) - QB
	

- ,fin	(14)
BO n	 F

in accord with conventional transistor theory. The minority carrier base lifetime

is then simply Tn - T  hFE (ideal). This provides a method for finding Tn that

is an alternative to that based on (3). But finding h FE (ideal) requires sub-

traction of the SCR current component from I BT . This subtraction is subject to

errors depending on magnitude and voltage dependence of components in (10).

Thus, the method based on (3) is the more accurate method.

The current due to recombination in the n+-collector quasi-neutral region

can be measured by reversing the roles of collector and emitter and using

(13) again.

III. SMALL-SIGNAL ADMITTANCE METHOD

A. Minority carrier lifetime

The BWM technique described in the previous section is directly applica-

ble for TJ cells, since the TJ cell is actually a transistor-like structure. It

cannot, however, be applied directly to some other cells with a narrow base or

emitter region which are diode structures only, without a collector. Tn these

cases, a different measurement method has to be used. In this section we

present a method applicable to all cells with a narrow base or emitter region.
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Fig. 2 shows two different cells with either narrow base, BSF cell--Fig. 2(a),

or narrow emitter. HLE cell--Fig. 2(b). In both cases a high-low junctiva exists

In the narrow region of the cell, and is characterized by an effective surface

recombination velocity Seff for the minority carriers. Fig. 2(c) shows the basic

structure of the IBC, FSF, and TJ cells [2,3,4). In this structure both the n+-

region and the p+ contacts to the base are on the bottom nonilluminated surface.

The p+ regions cover only a small portion (ti10%) of the total area. The top

illuminated surface is left floating and is characterized by the surface recom-
i

bination velocity S for the IBC cell. If a 
p+ 
_p junction (FSF cell) or a n+-p

junction (TJ cell) is used on the top .surface, then the surface region can be

characterized by an effecti 	
eff

ve surface recombination velocity S . Due to
^:• 

structural similarities which are evident in Fig. 2, the cells shown in Fig. 2

will all have a similar treatment for the narrow region small-signal admittance.

The treatment shown below is done for a n+-p-p+ BSF cell as an illustration.

Consider, for example, a n+-p-p+ BSF cell, Fig. 3, with a base width Wp

and minority carrier base lifetime T  corresponding to the diffusion length

L 
	 D_T. The electron current at the high-low junction (x = Wp) is [12]

	

Jn (Wp) = gSeffN(Wp )	 (25)

where Seff is the effective surface recombination velocity for electrons at

x = W 
p

. By solving a continuity equation [13] in low-injection for an ac signal

superimposed on a steady forward bias, and using boundary condition ( 15), we

can derive the expressions for the small-signal quasi-neutral base capacitance

CQNB and conductance G QNB valid for a low frequency signal with wT n << 1:

2
Wp 	 ffDn - LnWpSe _	 Dn

	AqD n 2 	L	 D	 SeffL	 L + Seff Goth L
C	 .^	 n i	 n	 n	 + T n	 n xp(^) - 11 (16)QNB kT 2N L	 W D	 JAA n 2 sinh2	n coth LR + S	 n c.oth - L' + S

Ln Ln	n	 eff	 Ln	 Ln	 eff

r
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D	 W
n

G ! ^ nAgDni nL + Seff Goth ^ ex

p

	

QNB kT L N	 D	 W	 [ (kT) - 1]	
(17)

	n 	 Ln coth -k + Seff
n	 n

The expression for CQNB can be simplified for the following conditions:

Wp /Ln `̂ 1	 (18)

Seff ti 100 cm/ sec	 (19)

These conditions are not restrictive for an actual device, with good performance

and a narrow base. Under these conditions the first term inside of the

parentheses in (16) can be neglected and combining (16) and (17) yields
C

T = 2 -NB 	 (20)
n	 GQNB

This expression for T  is similar to that valid for Tqp » L  [141.

To determine CQNB , we measure the capacitance at two frequencies: CLF at

WT  << 1 and CHF at WT  » 1 to obtain [141:

CQN = CQNB = CLF - CHF	 (21)

This results because the n+ base and p+ emitter regions are much narrower than

W  and the amount of minority -carrier charge in these regions will be negligible

compared to that in the wide base, giving CQN = CQNB.

To determine GQNB , we measure a total conductance G at the terminals which

consists of a few components [10]:

_G 
GQNE + GQNB + GSCR	

(22)

where GSCR is the conductance from the bulk and surface base-emitter space-
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1

t

i

charge region, and GQNE designates the contribution of the emitter quasi-neutral

region. 
GSCR 

can he eliminated from the data by a subtraction technique

to give

GQN GQNE + GQNB	 (23)

If C
QNE < 

GQNB , then GQN= GQNB and t o can be then determined from (20). This

condition will apply for many devices made on high resistivity substrates

04-10 ncm) with wide base. If GQNE is not negligible, an independent

method is required to determine it before we can calculate t
n 

from (20).

One simple method involves thinning the base region to assure W  < L
n 

and

providing an ohmic contact to the base instead of a high-low junction.

The narrow-base current can then be calculated using a conventional formula and

subtracted from the total measured diode current to give the emitter current

or CQNE

For the case of the HLE cell of Fig. 4, we note that the n-type emitter is

the narrow region of interest, with a minority carrier (hole) lifetime T p . To

determine T p , we proceed as follows: we measure the electron diffusion length

in a wide base by an X-ray technique, [15] or some other suitable method, and

calculate CQNE and GQNB . These two values are then subtracted from measured

CQN , GQN to give C
QNE' GQNE' 

and

T a 2 QNE	 (24)p 
QNE

The small-signal admittance method can be also applied for conditions of

high-injection in the narrow region. Following the derivation of (16) and (17)

for P 1 N we obtain for high-injection lifetime:

T  = 4 
sNB	

(25)
QNB

Equation (25) is similar to (20) except for a factor of two which results because

the electron diffusion constant D  is doubled in high-injection [9]. This
r
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equation is valid for the !ommon case of a negligible emitter current and

Wp/Ln < 1 [9].

A more complicated, but accurate way to determine both G QNE and T  in the

BSF cell and other structures of Fig. 2 is to use the BWM technique described

in the previous section. In order to do that, we have to first create a modified

transistor-like structure from the actual cells. This can be done quite easily

as shown in Fig. 5. For the case of p+-n-n+ BSF cell, the n+ region on the back

can be etched-off from about 90% of the area and Al can be evaporated on n-type

base to create a Schottky barrier collector; the remains of n + BSF region serve

as a contact to the base, see Fig. 5(a). This procedure can be also used for

n+-n-p hLE cell from Fig. 2(b). In the case of a n+-p-p+ BSF cell, Fig. 5(b),

an n+-diffusion is performed simultaneously from both sides of the p-type sub-

s

	

	 strate. Emitter can then be a mesa-type ar_d the p+ region for the base contact

over about 10% of the area can be done by a standard method used to create a BSF

region. Schottky barrier collector using Al cannot be used on p-type substrates

because a metal-semiconductor junction on p-type substrates is usually very poor.

Similar transistor-like structures can be made also from the FSF and IBC cells.

B. Determination of S (Seff)

Once the minority carrier lifetime in the narrow region is found, then

SO eff )  can be determined either from small-signal quasi-neutral conductance

or capacitance of this region. The capacitance is, however, a much better choice

because of reasons discussed earlier (see also Section VI C). This procedure is

strictly valid only if 
S(Seff) 

is constant, independent of applied voltage. Th im

condition will be satisfied at low-injection for BSF, FSF, and 111.1' cells [12], but

may not be satisfied for T3 and IBC cells. If S(Seff) 
is not constant, then using

(16) or (17) will result in an average value.



f'	 126
r

IV. MINORITY CARRIER BASE LIFETIME FROM DC CURRENT MEASUREMENTS

An alternative method, suitable for TJ cells or the transistor-like struc-

turus, Vig. 'i, Is proposed. This method requires only do current measurements

on two related structures. The first structure is the "dual TJ cell (for

example), Fig. 6(a). The other structure, Fig. 6(b), is created by removing

the n+ layer on one side of the cell and replacing it by an ohmic contact.

We will neglect the contribution of the SCR, which can be removed by an

experimental procedure [101. The base saturation current of the transistor-like

structure is given by (11), the collector saturation current is I
CO a QBO/T F'

The saturation current 
1  

of the narrow-base diode from Fig. 6(b) is

	

IO = 'BO + QEO	 (26)

F	 E

Combining; (11) and (26), we obtain for T 
n :

ICO
_

	

Tn 
= IBO + 

ICO	 IO TF	 (27)

In (27) all currents are measured and T F = WB/2Dn is calculated.

The disadvantage of this procedure is that the separation of SCR current

components [101 is subject to errors. This will limit the applicability of this

method, mainly if IBO + ICO ti 10 , which is the case when the emitter dominates the

current. The recombination current in the emitter is simply found from (26)

	

QBO 
= IO - ICO	 (28)

E

An expression similar to (28) can be derived for T IC , differing only by a

factor of 1/2 on the right side of (28). Note that in this case the currents in

(27) are proportional to exp(gV/2kT). Also note that a highly-doped emitter will

remain in low-injection.
i

V. ANALYSIS OF DARK CURRENTS IN THE CELL

The analysis of dark currents in the cell is demonstrated for a n+-p-p+
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BSF and for n+-n-p HLE cell shown in Figs. 3 and 4, which also show distrihir-

tion of minority carriers in these cells. The analysis is based on independent

measurement of T  by one of the three methods described before. The effec-

tive surface recombination velocity is determined from a small-signal capacitance

using (16). This allows us to calculate N(x) [9] and the recombination currents in

the p and p+ portions of the base. The SCR current, 
1SCR 

is determined graphi-

cally [10],the recombination current in the emitter region can be obtained by

the BWM technique or using the do method. The sum of all currents recombining

within the cell has to be equal to the total measured dark current I. This serves

as a self-consistency check of the analysis. Another check for dark current I

results from measurement of the short circuit current I SC and open-circitit voltnl%e

VOC through	 V	 kT 
In 

ISC	 (29)

► 	 0C	 q	 I0

where I0 is the dark saturation current corresponding to I.

The analysis of the n+-n-p HLE solar cell, Fig. 4, starts with the wide

p-type base. The electron diffusion length is measured by the X-ray method [15),

and the base dark current and small-signal quasi neutral capacitance

[14] are calculated. The hole lifetime ip and Seff at the n+-n junction

are then evaluated as was described in Section 3A, 3B. The rest of the analysis

follows the BSF case above.

For high-injection conditions in the low-doped part of the base in the BSI-'

cell or low-doped part of the emitter in the HLE cell, we again measure T
11 

111

these regions as described in Sections IIA, IIIA, and IV. The value of Seff Increaser:

with applied voltage in high-injection CL21. The analysis has to be then made for

a certain .voltage, for example V - V 
0 

corresponding to a certain illumination

level; Seff can then be calculated based on its low-injection value provided that

the voltage drop in the quasi neutral low-doped portion of the base is negligible

[12). The high-doped regions of the cell will reanin in low-injection. The analy-

sis then follows the low-injection case.
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VI. ILLUSTRATIVE EXAMPLES
t

To demonstrate the various methods for analysis of the cells, we have done

measurements on three different types of cells. The complete analysis for these

devices is summarized in this section.

A.n+ ^-n+ TJ cell

This cell is fabricated on 6 11cm(N
AA

= 2 x 1015 cm-
3
 ) p-type substrate. The

top illuminated n+-layer is about 0.3 Um deep, the surface is texturized and

covered by an AR coating. The bottom n+-layer is about 0.7 um deep. The base

width is 160 um. Measured performance at one-sun AMO illumination at 25°C with

top junction floating was: V 
0 

M 577 mV, JSC M 30.5 mA/cm2.

An ohmic contact to the top junction was provided after removing the AR

coating. The measured do and ac characteristics for this transistor-like struc-

ture are shown in Fig. 7. The data were taken with the bottom n+-region serving

as an emitter. The BWM conductances were measured at 2kHz using a Wayne-Kerr

8224 admittance bridge. The dependencies of I c , Go and G  are proportional to

rxp q(VBEAT), which confirms that the BWM effects alone are responsible for Co

and Gr . For VBE < 0.4 V the leakage of the base-collector junction may dominate

Co and Gr , in some devices, giving almost constant values independent on VBE.

These values can be then subtracted from the measured G and G to extend the
o	 r

range of the exponential dependence on VBE.

From Fig. 7 we have for the low-injection case: G o /Gr = Tn /T F = 13;

hFE (ideal) = 13. Using (4) and (13) we then obtain: T  = 50 usec (L n = 410 um)

and QEO/T E = 0, i.e. QEO/TE << 
QBO/

 Tn' Examination of the IB-VBE dependence

in Fig. 7 shows that the base will be in high-injection for V BE > 0.6 V. The

base current follows an exp q(VBE/2kT) dependence in accord with (7), provided

that the effects of series resistance R s are negligible. Because QE/TE <<

T  can be found from (7): T  = 200 usec. Further analysis of the cell,

described in Section V, with the top junction left floating leads to determination

t
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of recombination losses in the top n+-layer and in the p-base region. A summary

of all results obtained for this cell are shown below. The dark currents are

given as a fraction of the total dark current density J w 3 x 1012 A/cm2 mea-

sured at V - VOC - 577 V. The results are:

T  a 50 Usec

L an 410 Ym

T 
	 200 usec

Seff 0 350 cm/sec

J  a 0.52 J

J  a 0.42 J

JSCR ° 0.06 J

J  << J 

The measurements of Go and G  in high-injection were not possible, because

the collector current in this region exceeded the maximum allowable current of 	 fi

the bridge for the large area (4 cm2) device used.

B. n -p-p+ BSF cell	 {

This cell was fabricated on 1.5 Ocm(N
AA
 1 x 1016 

c.73 
substrate. The

n+ region is about 0.3 um deep, sheet resistance is about 55 0/square. The BSF

high-low junction was created by an Al-paste alloying [16). The cell was 220 Um	 }

thick and has a Ta205 AR coating on the top. The parameters measured at one-sun

(AMO, 25°C) illumination are: V (, M 617 mV, JSC 38 mA/cm2.

The values for T  and QE /TE were measured by the BWM method on a modified

structure shown in Fig. 5(b). The recombination currents in the p and p+-region

were then measured on the actual BSF cell, S eff was determined from the dark base

current using (17). The inspection of the dark I-V characteristic showed that

this cell is in low-injection at one-sun illumination level.

The results are: t a 120 Usec
n

Ln s 600 um
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J,

S	 o 380 cm/sec
3
	 eff

JR a 0.4 J
	 i

i

	 JB w 0.15 J

JB+ = 0.4 J
i

JSCR °t 
0.05 J

where J 3.8 x 10-2 A/cm2 is the measured total dark current density at

V - VOC - 617 mV.

3	 C. p+ -n-n
+
 BSF cell

This cell was fabricated on about 7 Ocm (N DD2 6 x 1014 cm 3 ) float zone

silicon wafer. The p+-emitter is about 0.25 um deep. The n+-layer on the

back is about 1 um deep. Thickness of the cell was 320 um. The details of the

fabrication process are in Ref. 17.

The one-sun (AMO, 25°C) data were: V 0 - 605 mV, J SC - 39 mA/cm2.

We will demonstrate here the use of the small-signal admittance method, described

in Section III. Fig. 8 shows the measured dependencies of C and G on voltage

V. The low frequency capacitance CLF and conductance GLF were measured at 500 Hz,

CHF was measured at 100 kHz using a Wayne-Kerr B224 bridge. Subtraction of these

two dependencies yields CQN - 
C
LF CHF which follows the exp(gV/kT) dependence for

about 2 decades. Similar procedure is used to extract G QN [10].

Using a simple test described in Section IIIA we found that G
QNE« GQNB.

The hole lifetime is then obtained from (20) and Seff from (16):

T z 200 Nsec, Seff a 80 cm/sec. Using these values for T  and 
Seff' 

we find that

the first term in the parentheses in (16) is indeed small compared to the second

term, which then validates (20). These results are consistent with measurements

on p+-n-n+ cells reported by others [17, 181.

The advantages of calculating Seff from C QN (instead of from) GQN are

clearly evident in Fig. 8. The measured CLF characteristic is almost an ideal

one; the correction by subtracting CHF is very small. On the other hand,the

correction due to GSCR to obtain GQN is very substantial.
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For V > 0.6 Volts the n-region of the base is in high-injection as shown

}v^QN a exp (gV/2kT) for V > 0 . 6 Volts, which was obtained by subtracting GSCR

from G. The CLF dependence on voltage for V > 0.6 Volts is also expected to

be proportional to exp (gV/2kT). The CLF in Fig. 8 shows, however, an excessive

bending due to the contact resistance between the cell and the measurement

probes. The CLF was measured using only 2 probed, however 4 probe measurements

are necessary to eliminate the contact resistance. Such capacitance measurements

are possible. The series resistance Rs will have a negligible effect on CLF [19).

The G-V curve was taken using 3 probe arrangement, effectively suppressing Rs

for V < 0 . 7 Volts. Due to the difficulty with the high -injection value of CLF,

T  could not be found using the admittance method. The estimate of T  follows

from recognizing that GQNE < GQNB at V a 600 mV, W  < L  and S eff is small. This

will result in a nearly flat profile of P(x) in the n-base, and

IB = AgniWn/TH lzxp (gV/2kT )j,which yields T  a 320 usec. The fact that

GQN « exp (gV/2kT) indicates that the low -doped portion of the base dominates the

dark current at V a V 0 - 605 mV.

The results for this cell are summarized below:

T a 200 usec;
p

L  a 500 yam

T  a 320 psec

Seff a 
80 cm/sec (low injection)

J  a 0.8 J

JSCR a 0.2 J

J  « J 

JB+ « JB

where J a 2.9 x 10-2 A/cm2 is the measured total dark current detsity at

V-VOCa605W.



132

VII. SUMMARY

This work presented new methods for determining the minority-carrier life-

time in narrow regions of solar cells. This leads to a simple analysis

which results in determination of recombination currents in each region of

the cell. Such an analysis was demonstrated for three different types of cells.

The basewidth-modulation (BWM) and the small-signal admittance method involve

measurements using very accurate admittance bridges. The accuracy of the

BWM method depends on the accuracy with which 
T  

can be determined from (4).

This can be done very accurately for wide regions with a uniform

doping. No other material parameter is required to obtain the lifetime from

(3) or (8). Additional reasons for the high accuracy of this method are that it is

independent of the currents not associated with the region in which the life-

time is measured and that it has a self-consistency check. The accuracy of the

BWM method is estimated to be about + 5%.

The lifetime measured by the small-signal admittance method, as determined

from (20) or (25), does not require knowledge of any materiel parameter of the

cell. The high frequency capacitance C HF can be measured at relatively small

frequencies ( '400kHz) because of very long lifetimes in the measured cells.

:his  allows measurements on large area devices ( 'Acm 2 ) using commerically

available bridges. This method also has a self-consistency check. The total

accuracy of this method is estimated to he about + 10%. The do current method

is less accurate than the previous two methods, mainly if the emitter current

Is df-or, inant.

The determination of lifetimes and recombination currents in the cell allows

identification of regions that limit cell efficiency. It will also allow moni-

toring of fabrication steps and material properties.

I'
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FIGURE CAPTIONS

Fig. 1	 Basewidth-modulation effects in n+-p-n{ TJ cell.

Fig. 2	 Schematic illustration of (a) n+-p-p+ BSF solar cell; (b) n+-n-p

HLE sviar cell; and (c) the basic structure of the TJ (with floating

front surf:3ce), FSF, and IBC cells.

Fig. 3	 (a) Schematic diagram of a n -p-p BSF cell; (b) Qualitative sketches

of minority carrier distribution in dark.

Fig. 4	 (a) Schematic -.L.-Agram of a n -n-p HLE cell; (b) Qualitative sketches

of minority ca- ier 11istribution in dark.

Fig. 5	
+	 +

g	 (a) p -n-n BSF cell and a modified transistor-like structure

with a Schottky barrier collector, (b) n+-p-p+ BSF cell and a modi-

fied n+-p-n+ transistor-like structure.

Fig. 6	 (a) Schematic diagram of TJ cell; (b) Schematic diagram of a n+-p

diode structure obtained from the TJ cell.

Fig. 7	 Measured I C , IBT , G0 , and Gr versus forward bias 
V,3,. 

for n+-p-n+

TJ cell. The base quasi-neutral current components are indicated

by the dashed lines, ISCR is the extrapolated SCR current component.

Fig. 8 Measured capacitance and conductance versus forward bias V for p+-n-n+

BSF cell. The quasi-neutral components are shown by the dashed lines,

GSCR is the extrapolated SCR conductance component.
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CHAPTER 6

NOS AND OXIDE-CHARGE-INDUCED (OCI) BSF SOLAR CELLS
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I.	 Introduction

The power conversion efficiency of silicon p-n junction solar cells is

limited mainly by thn recombination currents from highly-doped regions of the

cell. The advantages of replacing the highly-doped n+ diffused emitter region

by an electron accumulation layer was very successfully demonstrated recently

in the oxide-charge-induced high-low-junction-emitter (OCI-HLE) solar cell (1).

In this particular cell a thermal oxide layer containing a positive oxide

charge induces high-low-emitter junction, which together with the low surface

recombination velocity resulting from the oxide layer effectively suppresses

the emitter current. As a consequence, silicon solar cells with open-circuit

voltages 
V 0 

of 650 mV were made, which compares with the maximum value of about

600 mV seen in conventional silicon cells. Another demonstration of the

desirability of avoiding a highly-doped n +- emmitter region is pr:Dvided by

recent work in n+-p MIS solar cells, in wich the oxide -charge-induced n

region is an inversion rather than an accummulation region. These devices

show a maximum V of 655 mV 12).
oc

Fig. 1 shows a schematic diagram of a p+-n-n+ BSF cell 131. As was doted

above, the limiting factor in determining the cell efficiency of state-of-the-

art silicon solar cells, including BSF cell, is the dark recombination current

14,51. The dark current is a sum of a recombination currents from the quasi-

neutral emitter and base regions. For a low-doped base (' 6100CM) , typical of

BSF cells, the emitter contribution is negligible (51: the recombination current

comes mainly from recombination in the n± region. The n+-region currant is 161

2

	

q11
i 	 1	 ^ V

	

J p = N
	 W	

1expOL
V)- 

11	 (1)

UU	 13 + 
1kT

D 
	

Seff

where NDD is the doping level in the low-doped part of the Lase, and 
Soff 

is an

effective recombination velocity at the n-n + low-high ( L-11) boundary 16,71.

In the derivation of Eq. ( 1) we asstxmcd a long diffusion length of minority

holes in the low-doped part of the base L  > WB . This is a necessary condi-
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Lion if the hunk-surface field is to Dove any considerable uffuct (K1. 7 

addition, in tha derivation of Eq. (1), the recombination current in the low-

	

;	 doix-d hart of the base was neglected. This recombination current will ulti-

mately limit the cell performance, as discussed in Section III. In present-

day i)+-n-n+ BSF cells of the best quality, in which the n
+
-region is formed by

phosphorus diffusion, the experimental values of Seff are about 40 cm/sec [4].

This limits V 
0 

of present cells to about 615 mV at 300K for one-sun AM1 illu-

mination. For this cell, WB 2 300 Nm, DP = 40 cm2/sec, and Tp 2 0.7 msee (5) which

implies that	 2

Jp 
qN i Seff [exp(

(L) -11	 (2)
DD

Thus, reduction of JP in this cell would result if Seff could be lowered. The

next section describes one approach for going this.

	

r	 II. MOS-BSF and OCI-BSF cells

Proposed device structures are shown in Figures 2(a) - (c). Instead of

creating the L-H junction by the diffusion process, we suggest creating an

accumulation layer at the back surface by a MOS gate structure, as in Figures

2(a) and 2(c). In the case of the p+-n-n+ structure, the accumulation layer

can alternatively be induced by a positive oxide charge Q 01 as was done in OCI-

I

HLG cell [1•], Figure 2(b).

rSince the accumulation layer is very thin, it will be essentially trans-

!	 parent to the minority holes (for p+-n-n+ structures, for example) which will

recombine at the Si-Si0 2 interface, with a surface recombination velocity SP

[1,9]. The electron concentration in the base is shown in Fig. 2(d). The induced

accumulation layer extends several Debye lengths from the surface, and thus

s

can be as thin as 100 A. For an electron concentration N S at the Si-SiO2 inter-

face, Seff can be written as (6]

NDD S
Seff	 Ns P	 ( 3)
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As can be seen from Eq. (3), if the ratio S p/NS can be made small enough, JP

will be small.

Fig. 3 showns Seff as a function of Sp for NOD-6x1014 c m 3 at 300•K as

	

a function of oxide charge density 	 Q0 /q, or equivalent gate voltage V
G
 for SiOZ thick-

ness of 1000 A. Values for NS are calculated using standard NOS theory (10).

From Fig. 3 note that VG > 5 Volts makes Seff < 40 cm/sec even for Sp as

large as 106 cm/sec. Seff M 40 cm/sec was the value obtained for diffused n+

regions (5). The expected values for S P for oxidized Si surfaces are much

below 106 cm/sec. Therefore the NOS gate structure on the back side of the

cell is expected to decrease JP to a larger extent than that achieved in diffused

p+-n-n+ cells. Thus V 
0 

is expected to increase be,:ause

V - kT 
in 

JSC

	

OC - 
q	 JPO

Fig. 4 shows the dependence of V 
0 

on SP at 300•K, for the proposed

structures, calculated from Eqs. (1) and (4);where the n-region recowbination

has been neglected for now) for JSC-35 mA/,am2 and W.=250 um. Values for V 0

larger than 650 mV result even for S P = 13 cm/sec provided VG > 5 Volts or

QO/q > lx101Z cm-Z . Similar curves can txc calculated for n+ -p-p
+
 structures.

From two sets of experiments till t+ith OCI-HLE cells, one which included

thermal oxidation (dry and wet) of the front emitter surface at low tem1wratures

(tl00-900°C) and a second which used chemical-vapor-deposition (CVU) of Siu ll at

400°C, followed by heat treatment in oxyqen, it was concluded that S P for these

low temperature oxides is about 10 cm sec and (QO/q) max-7x10
11
 cm 

2. 
LOW

temperature oxides will have to be used for HSF cells, since high ttmix•rature

treatments degrade the base material pro}x±rties, mainly this diffusion len.lt•h.

(4)
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Very long diffusion lengths, at least as large as W B , are necessary if the back-

surface field is to have any considerable effect (8) arKI if the total recom-

bination is to be low enough that V 0 a 700 mV is obtained.

-	 Our experiments (11) and other published data indicate that Q
0
 /q is

limited (for the st±+ndard process of thermally grown dry oxides followed by

r	
heat treatment in oxygen at about 700 •0 to about 7x1011 

M-2 
for (111) orienta-

tion (12,131 and to about 3x1011 cm 2 `12,13	 or (100) orientation (12). Wet oxides

grown at low temperatures (700 9 -9000C) have Q0/q = 5x1011 cm 2 on a (111) sur-

face (13). CVD SiG„ prepared at temperatures from 300 to 450 0C and evaporated
0

SiO have Q0 /q high than that for thermally oxidized samples. Q O/q for these

oxides is about 2x1012 cm 2 (2,14). However, these oxides have a much higher

density of surface states, and thus higher S p, than that typical of thermal oxides.

Therefore p+-n-n+ OCI-BSF cell which relies on oxide charge QO and is made using

the oxidation techniques described above MX have VOC limited to about 625 mV.

Additional experiments are necessary to determine whether this is a real limita-

tion or whether substantially larger VOC can be obtained by these structures.

on the other hand, the MOS-BSF structure, in which we apply a bias voltage to

an MOS structure at the back side, has no apparent limitation to prevent

achieving VOC = 700 mV. Notice that for p +-n-n y cells, one has the choice of

using either Q0 or VG as the origin of the H-L junction. Because Q  is

positive, in an n+-p-p+ cell, the gate-voltage approach is the only feasible one.

III. Discussion

As discussed in Section II, the recombination current in BSF cell can be

I
very effectively suppressed by a back accumulation region at the Si-SiO2

interface. If the currents in the back accumulation region and the emitter

region are low enough, then the recombination currents in the low-doped base

region and at the n-n + or p-p+diffused Ohmic junction will limit the maximum

achievable VOC and n.
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Based on available experimental data for lifetimes for holes and electrons

[5,15,161 we estimate that the base will not be an obstacle in achieving

(VOC)max = 700 mV and max = 20% for one-sun AM1 illumination. In this calcu-

lation, we accounted the high injection condition present in the low-doped base region.

Fabrication of the proposed structures will involve, over a small part of

the area, diffusion of n +or p+-region$ to insure good ohmic contact to the base,

as shown in Fig. 2. Thus created n-n+or p-p+ junctions will contribute to the

base recombination current. The recombination current density at the n-n+

diffused junction, for example, is

Jnn+	 q(ni2INeff)(Dp/Wn+)eqV/kT
	

(5)

where N
eff - 10

18 cm 3 is the effective doping concentration including the effects

of bandgap narrowing [171 due to heavy doping DP is the average hole diffusivity

in the n+ region and W n + is the thickness of the n +-region. In deriving Eq. (5),

we have assumed that the hole diffusion length exceeds W n + in the n +-

region so that the n+-region is nearly transparent to minority holes. From l:q. (5)

we find that J
nn	 OC
+ presents no obstacle to obtaining V > 700 mV provided the

area of n-n+ functions is 20% or less.

These predictions did not consider heavy-doping effects [17,18,191 which may

occur in very strongly accumulated surfaces. Since the accumulation layer is

very thin, .these effects will be much less severe than in diffused junctions

and are not expected to appreciably change our predictions.

The main advantage of the new MOS-BSF and OCI-BSF cells compared to conven-

tional BSF cells is that using the Si-SiO 2 interface instead of an ohmic contarL allows

very low values of 
Seff to be achieved at the L-11 back junction, yicldinq larq(! Vex,

and improved JSC [8,201. Another advantage is the possibility of using CVD oxides

deposited at low temperatures or evaporated oxides to create the MOS gate. The

emitter difi ,ision in the n +-p-p+ BSF cell can be replaced by an induced n+-inversion

layer [2,14 which will allow complete fabrication of the cell at very low temperatures,

possibly increasing the base lifetime in the finished device.

i
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The disadvantayc is that a voltage supply for gate bias V
G 

is rec{aired. No jx)wcr

will Ix., consumed, since the oxide is a very good electrical insulator. The voltage

can come from 10 to 30 conventional silicon cells in series. which can supply

hundreds of the new proposed cells because no power is consumed by their MOS

gate structure. As another disadvantag--•, a-lditional photoresist steps on the

back side are also necessary to define a contact pattern, which raises the cost.

We feel, however, that these disadvantages will be outweighted by increased

performance of the cell, even for normal illumination levels. The performance of

a BSF cell can improve with increasing of illumination level [5]. For high con-

centration application the increased cost of production due to additional steps

required to produce this new device will becomes less important, since cost of a

cell is very small compared to the cost of an entire system.
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Figure Captions

Fig. 1	 Schematic diagram of a p} n-n+ BSF solar cell.

Fig.2	 Schematic liagram of MOS-BSF and OCI-BSF cell structures.
(a) p+-n-n+ MOS-BSF cell, (b)p+-n-n+ OCI -BSF cell,
(c) n -p-p MOS-BSF cell, (d) concentration profile of minority
carriers in the base.

Fig. 3.	 Effective surface recombination velocity S 	 versus %urface
recombination velocity Sp for SiO2 thickness of 1000 A.

Fig. 4	 Open-circuit voltage VAC versus surface recomiination velocity Sp
for Sio2 thickness of 1000 1, Jsc = 35 mA/cm and WB = 2501im.

s
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CHAPTER 7

DESIGN OF HIGH EFFICIENCY HLE SOLAR CELLS

FOR SPACE AND TERRESTRIAL APPLICATIONS

1. INTRODUCTION

the purpose of this paper is to discuss design approaches for silicon HLE

solar cells. L)esign of cells for radiation and terrestrial environments are

considered. Two main types of HLE cells receive attention: (a) the oxide-

charge-induced (OCI) HLE cell, and (b) a new HLE cell having a wide p-epitaxial

emitter for which the appropriate choices of emitter width and doping levels in

the emitter and base are made to yield both high V 
0 

and high 3SC'

SYMBOLS

Da	ambipolar diffusivity (cm 2/sec)

On , Op	electron and hole diffusivities (cm /sec)

00	oxide charge density (C/cm2)

CSC	
short circuit current density (A/cm2)

J
n0' Jp0	

dark electron and hole saturation current density (A/cm 2)

L n , L 	 electron and hole diffusion length (cm)

An,Ap	 excess electron and hole concentration (cm-3)
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i

n 
	 intrinsic carrier concentration (cm-3)

ns ,Ps	 electron and hole surface concentration (cm-3)

ns (QO )	 oxide charge dependent electron surface concentration

(cm-3)

NOD' NDD donor concentration in n and n + material (cm-3)

NAA, NAA acceptor concentration in p and p + material (cm
'3)

q electronic charge (Coulombs)

Sp hole surface recombination velocity (cm/sec)

Seff
effective surface recombination velocity (cm/sec)

T temperature (°C,°K)

VA applied voltage (Volts)

V 0
open circuit voltage (Volts)

(VOC ) B'	 (VOC)E
open circuit voltage established by base and emitter

(Volts)

WE emitter thickness (cm)

Xj junction depth (cm)

P resistivity (Q cm)

Tn ,T p lifetime of minority electrons and holes (sec)

P, P+ associated with p and p+ region

n, n+ associated with n and n + region

BOL beginning-of-life

EOt. end-of-life

E.	 B associated with emitter and base

II. OCI-HLE CELL

Fig. 1(a) shows the cross-section of an OCI silicon HLE solar cell. The

principles of operation of this cell, which have previously been discussed ill

are illustrated in Figs. 1(a) and 1(b). A positive charge QO , achieved by suit-

able heat treatment (2,31, induces an electron accumulation and an electric

field near the silicon surface which reduces the effective surface recombination

velocity for holes Seff to (4)

NDD S

Seff "	 ns	 p
(1)
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By solving the hole continuity equation for the desired case, W E < 1p , and low

injection, one determines the hole saturation current JPO to be (41

WE

qn i Seff+ T
(2)

JPO " N
DD 1 + eff

in which the first term in the numerator accounts for hole recombination at the

surface and the second term accounts for hole recombination in the bulk. The

current 
JPO 

must be small if high 
VOC 

is to result.

2.1 Beginning of life - (BOL) Design

For BOL, our experiments (1) show that Sp < 104 cm/sec can result from the

f _	 presence of the SiO2 layer on the illuminated surface. For a wide range of

}	 doping levels NDD . the term WE/Tp in (2) can be made negligible, and the diffu-

z	 4sion velocity Dp/WE will typically be of the order of 10 cm/sec. Thus, if Seff

can be made much less than 104 cm/sec, then (2) reduces to

^	 -	 qni	 2
JPO - NDD Seff " qni ns	 (3)

which also holds for high injection provi.ded D
a 
/W

E
 and W

E 
/( ,r n+ Tp ) are both small

compared with (Seff )high injection $ (n
i /ns ) exp qVA' W, as can be shown by

solving the ambipolar transport equation for high injection f5). To show that.,

Ij	
Seff ` 104 cm/sec is possible, we indicate in Fig. 2, for different values of

NDD and QO , the resulting values of n  and 
Seff. 

The functional dependence
F	

ns(QO) is found from standard MOS theory (6).

Because Seff can be small, we consider now the value of J PO for the limit-

ing case Seff = 0. Fig. 1(b) shows the minority hole density in the dark cell,

resulting from an applied voltage, for the desired condition, L  > WE:

JPO : qni WE(NDDTp)-1 	 (4)

To estimate JpO , we use the empirical data of Kendall 171, which gives, for

NDD Z 5 x 1016cm-3 ,

TpNDD = 3 x 1012 sec/cm
-3
	(5)
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thus, at T = 25^C,

JpO 7 7 x 10-12 WE
	

(6)

Thus, if J SC m 35 mA/cm2 (AMO), which was seen in OC1-HLE cells, the open-circuit

voltage limit, (VOC)E - kT/q In(J SC/JpO ), established by the emitter current Jp0

is, for example, 800 mV, 780 mV, and 718 mV for WE - 2 j,m, 5 jim, and 50 um,

respectively, independent of N DD (provided low-infection levels are maintained).

From a design viewpoint, this demonstrates that 
(V
DOE > 700 mV can be achieved

for a wide variety of choices of NDD and WE provided only that L  > WE.

2.2 End-of-Life (EOL) Design

Radiation damage increase Sp and Q0 (8); it will also reduce T p (9,101. As

a design approach, we choose W E small compared with anticipated degraded diffu-

sion length to minimize bulk recombination; that is, we require W E < L  (after

irradiation). Then (2) still applies, and J pO is determined by the velocities

Seff' 
WE/T p , and DpAE . As a worst -case limit, we consider the case Seff = "'

`	 Then the transit time t  for holes to cross the emitter is

t t - WE/2Dp	(1)

which, for example, is of the order of 10 -9sec for WE w 2 ism. Thus,if T  after

irradiation is larger than 10-9 sec, the emitter will be transparent to holes

and (2) reduces to
2

_n 
i

q

JpO NDD E	
(8)

This worst-case dependence suggests that NDD should be large enough, both

to assure small lateral series resistance and to decrease J 0 , but small enough

to avoid heavy-doping degradation. For example, consider a pdesign with

WE = 2 um, and N DD - 1018 cm-3 . For T - 250C and J SC = 25 mA/cm2,

(VOC )
E > 640 mV. For electron fluences up to 10 15 cm-2 , J SC = 25 mA/cm2 is

expected if prior to radiation J SC = 35 mA/cm2(10).

2.3 Examples of 
V 
0 established by the emitter for BOL and EOL

We have previously discussed 
(VOC)E 

for two limiting cases: S
eff - 09

i
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which corresponds to the BOL condition, and S
eff	

which corresponds to the

EOL condition. We now remove these limiting-case assumptions by considering

intermediate values of 
Seff' 

as determined by (1) and the condition that
in3 

rm/src	
' 	

107 cm/sec. The lower bound on Sp is easily achieved, as is

italictiled by uur experiments for a surface passivated by SiO2 (11.	 The upper

Wind is a theoretical limit for a silicon surface (111.

In Fig. 3 we plot (VOC)E as a function of Sp for two values of emitter

widths 1 WWE = - 3. 5 l,m and 15 i,m and for emitter doping densities of NOO = 10 17 cm-
3

and 10 cm . Three values of oxide charge densities are considered:

(a) QO/q - 4 x 10 11 cm-2 , which is the order of magnitude obtained in thermally

grown dry oxides followed by oxygen heat treatment at about 700 C (2,3) before

the irradiation; and QO/q = 1 x 10 12 cm-2 and 5 x 10-12 cm-3 , which is the range

of values expected after irradiation (8). As shown in Fig. 3 for BOL with

Sp 7 103 cm/sec, the emitter recombination is no barrier for achieving

(VOC )
E j 700 mV for variety of emitter doping levels and thicknesses. After

irradiation, for EOL, S p is expected to increase significantly 181, but will not

be larger than the order of 10 6 cm/sec (111. But QO/q will also increase, as

mentioned above, which will increase n  161, and S
eff ' NOO S p 

A s (QO ) will

depend on the ratio S 
p 
A 

s 
NO ) after the irradiation. It follows from Fig. 3,

consistent with our previous worst-case calculation, that ( V(1C ) E > 650 mV is

still possible at COL, if WE ` (Lp)EOU

2.4 VOC established by the base for BOL and EOL

As shown in Fig. 1(b) for the dark case with applied voltage V A , the quasi-

neutral saturation current J 0 in low injection, neglecting heavy-doping effects

(121 ' is JO	 JpO + JnO' and the base saturation current is

_ qn i ^n
JnO NAALny

To minimize J nO , note that, for NAA > 10 17 cm-3 , D11 /NAAL n is a decreasing

function of NDO (131, provided heavy doping effects are negligible. As a result,

the open-circuit voltage limited by the base (V 0C ) B is an increasing function

of NOO until NAA = 10 19 
cm-3 (pbase ; 

0.01 S2cm) which is a doping level at which

the heavy doping effects in p-type material became important 1121, as shown in

(9)

_
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Fig. 4. The broken line in Fig. 4 shows an experimental dependence of VOC on

NAA (141 which peaks at N A A = 5 x 10 17 cm
-3

. This is a result of the Increasing

importance of the emitter current J pO , for base dopings larger than about

5 x 1017 cm 3 , in conventional cell where the emitter current is not suppressed

by an HLE structure such as that present in the proposed device.

3. Design concepts for space and terrestrial applications

Based on the foregoing analysis we present design concepts for two different

types of space cells and for a terrestrial cell.

1)	 n+-n-p OCI-HLE (diffused HLE) space cell

Fig. 5 shows a cell designed for space applications. The p-type base dop-

ing is NAA " 5 x 1017 (p = 0.1 Slcm) which appears to be an optimum value which

gives L  in a range of 85-150 um in a finished cell 115). This long diffusion

length, which will assure collection of most of the generated minority electrons,

provides a high value of the short circuit current J
SC

. The epitaxial emitter

is narrow, about 2 um, and highly doped, N DD r! 1017 to 1018 cm-3 , to assure low

series resistance. The thinness of the emitter offsets, to a large degree, the

effects of significant degradation of lifetime in the n-type material after the

irradiation [91. The H-L emitter junction can be achieved using either OCI

induced or diffused n + layer [161.

The following conclusions about this structure can be made based on the

discussion in the previous sections:

a) (VOC )
E > 650 mV at EOL, 

if tt < ( Tp)EOL*

b) (VOC)B at EOL will depend on the radiation damage [10). Since the

base is the same as in the conventional n on p cell, results obtained

for the conventional cell radiation damage [10] also apply here.

C)
	 W SC ) EOL	 (J SC ) conventional + ( JSC)E

base

d) For an OCI structure, Seff ' NDD S
p/ns , where both S p and n  increase

with radiation, thus tending to keep S
eff 

low. S
eff 

controls 
(JSC)E

and JpO.

e) For BOL, with Sp Cl! 10 cm/sec, 
(VOC )

E > 700 mV, and 
(VOC)B 

depends on

minimizing D 
n 
A 
n N

AA' (VOC)B of the order of 700 mV can be expected

for Ubase ' 0.1 pcm with L  > 75 um.
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f )	 For 
tit)/g 

N IO
12  c111-2 , heavy doping effects in the accumulation layer

may become important (fig. 21. However, since the accumulation layer

is very narrow, these effects are expected to be very small (171.

g)	 A structure with a diffused n +-region offers larger flexibility in

choosing N0D because of the low shunting resistance of the n+-diffused

layer.

2) A wide-emitter p±-p gin± space cell

We propose a new silicon solar cell structure (181 which is projected to

have both high J SC (45 mA/cm2 ) and high V0C (700 mV) and consequently high n

(20'X, AMO). The new structure is projected to have good performance in radia-

tion as well as non-radiation environments.

The structure is shown in Fig. 6.

minority carrier distributions in Fig.

hole and electron profiles reversed.

The qualitative sketches showing the

1 are valid for this case, too, with

We emphasize some special features of this structure:

a) The surface is passivated with SiO2 on top of which a suitable antire-

flection (AR) coating is deposited. The 11-L emitter junction is

achieved b a thin ti0.1 m p4 -diffused(	 u ) p -diffused layer resulting in [41

N

(NAA)eff

where 
(NAA )eff - 

10 19 cm
-3 

is the effective doping in the p+-diffused

layer for NAA = 1020 cm
-3 

at the surface. An electron recombination

velocity at the Si-SiO2 interface on the order of 10 3 or less can be

easily achieved (1). Therefore, for N AA = 5 x 1017 cm-3, Seff is of

the order of 10 cm/sec or less; thus Seff - 0 is a reasonable approxi-

mation.

b) As a result of S
eff t. 

0, and the choice of a 50 l ► m wide emitter region,

about 90% 1191 of all available optically generated minority electrons

will be collected. Using a 5' loss Al? coating and 4 :'1 metal coverage

the projected AMO JSC - 45 mA/cm 2 . P-type material is chosen as a

region from which the 
JSC 

is collected due to smaller sensitivity to

the radiation than seen in n-type material 19).

c) The doping level in the n + -base is optimized to he about 10 18 cm-3,

which is the onset level for heavy-doping effects 117). The doping

a
f

L
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level in the emitter (--5 x 10 17 cm-3 ) is chosen to minimize NA4tn 1131.

d) U-ing published data for lifetimes for holes and electrons 17,131, we

can calculate by use of Eqs. (2) and (9), for structure shown in

Fig. 6, that the saturation current J O ^. 7 x 10
-14 

A/cm2 , implying

V 0 = 700 mV for JSC = 45 mA/cm2 at 25 C, and implying n = 20% AMO.

e) Significant differences exist between this new cell and a previously

proposed epitaxial p +-p-n cell (201; these are discussed in detail in

Ref. 18.

f) An alternative related structure (p+-p-n-n+) can be made, which employs

an n-n+ low-high junction back-surface-field base 141. This structure

will have higher JSC at BOL due to improved collection of minority

holes from the n-region of the base.

3)	 n+-n-p OCI-NLE terrestrial cell (Fig. 1)

There are two approaches to minimize the base current in this cell, Fig. 7:

a) Choose Pbase = 0.1 "m (NAA = 5 x 1017 cm-3 ). In this case L  > 70 l,m

is required for (V 	 700= 700 mV 25°C and JSC = 35 mA/cm2 . Such values

for L  can be achieved in finished cells using a low temperature fab-

rication process [13,151. Epitaxial growth of the emitter and a high-

temperature oxidation required for low Sp(11 may decrease L  below the

70 l,m;this would result in(VOC)B < 700 mV. The largest V OC seen

experimentally for a cell with Pbase = 0.1 stcm is 643 mV AMO, at 25"C.

b) A second approach is to use a highly doped p-type (5 x 10 18 - 1019 cm- 3)

base. Note that for NAA = 5 x 1018 cm 
3, 

for example, L n = 2 um is

sufficient to achieve 
(VOC)B 

of 700 mV. Such values are expected even

after the high-temperature fabrication steps. In this second approach,

WE ti 50 um, since the base will contribute negligibly to J SC . Such a

wide emitter is required to collect about 90% of generated minority

holes. In approach (a), W E can range from about 10 to 50 t,m. The

largest VOC seen experimentally for a cell with 
'base	

0.024 s^cm

(NAA 	 2.5 x 1018 cm-3 ) is 647 mV AMO, at 25°C.

c) Fmit.ter doping can be chosen from range of about 5 x 10 16 cm
-3
 to

about 5 x 10 17 c111-3.



166

CONCLUDING REMARKS

first order analysis of HLE solar cells for BOL and EOL conditions is

presented. Based on this analysis and on experimentally measured material para-

nMters, design concepts for both space and terrestrial cells are discussed.

The proposed structures include: n +-n	 ^I-HLE space cell, wide emitter

p+-p-n space cell, and n +-n-p OCI-HLE terrestrial cell . All structures are

projected to yield both high V OC and CSC'

i
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CHAPTER 8

SUMMARY

f	 }	 The project "Studies of silicon p-n junction solar cells",

sponsored by NASA Lewis Research Center started in June 1974 and

ran through December 1979. The project produced two M. S. Theses

and three Ph.D. Theses. It also yielded 15 journal papers and 12

conference presentations. All this would have been impossible

without the close cooperation of H. W. Brandhorst, Jr., and M. P.

Godlewski (Technical Monitor) of NASA Lewis. We also profited

from interactions with other NASA Lewis people including C. A.
t

Baraona, D. T. Bernatowicz, R. E. Hart, Jr., C. K. Swartz, and

I. Weinberg.

This report summarizes our progress during the period of September

1977 - September 1°79. It contains the most significant results of

both theoretical and experimental studies done in this period, as

follows:

(a) Development and fabrication of an OCI-HLE cell yielding

reproducibly VOC = 647 mV (AMO, 25°C), which is the largest

VOc observed at NASA Lewis in Si p-n junction solar cells up

to date.

(b) Determination of bandgap narrowing as a function of doping

density in the emitter in a range of 3 x 10 19 cm-3 to 2 x 102 m

(c) Development and demonstration of methods for measuring very

long diffusion lengths (ti500 ym) in solar cells and associated

4	 __



173

dark recombination currents.

(d) Development of a comprehensive analytic theory for the

limit placed on V 
0 

by a heavily-doped emitter region

subject to the condition that most minority carriers

in the forward-biased nonilluminated emitter recombine

at the surface rather than in the bulk.

t
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