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ABSTRACT

Sanders Associates, Inc. has developed a design concept for a High Temperature
Solar Thermal Receiver (HTSTR) to operate at 3 atmospheres pressure and 2500°F outlet.
A parametric analysis wherein several receiver types were compared was performed
during the first two months of the study. The performance and complexity of
windowed matrix, tube-header and extended surface receivers were evaluated and the
windowed matrix receiver proved to offer substantial cost and performance benefits.
Subsequent effort was devoted to definitizing and pricing the receiver as a pro-
duction unit. The unit has evolved as an efficient (80%) and economical ($25/KWt)

receiver for operation at temperatures of 2500°F or less.
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SECTION 1
SUMMARY

JPL has identified areas of Advanced Technology requirements wherein study
level funding could lead to development of conceptual designs for solar receivers
to augment or displace fossil (or other conventional) energy sources for application
in the 2000 - 3000°F and 2 to 8 atmosphere pressure range.

Sanders Associates, Inc. has, under the aegis of one such program, performed
parametric analyses of high temperature receivers in the 25 - 150 KWt range. Based
on the findings of the parametric study, Sanders recommended further effort ve ap-
plied to a windowed matrix receiver operating at 60 KWt output, 3 atmospheres absolute,
and 2500°F outlet. During the second performance interval of this contract, Sanders
developed and analytically evaluated a hardware design for a cost effective high
temperature solar thermal receiver which can be readily interfaced to fuels and
chemicals processes or to heat engines for power generation. The strict adherence
to Design-to-Cost~Goal principles, and the parallel effort to employ only those
materials currently within present production technology, has led to a design which
offers an efficient and immediately cost effective alternate to other pressurized
receivers in the above 540°C (1000°F) range. The design is fully within today's
materials' state of the (manufacturing) art. This receiver could be built in pro-
duction for less than $25.00 per KWt. The design performance analyses support an

efficiency prediction of 79% to 867 including reflection and reradiation effects.

The Sanders HTSTR (Figure 1) is a pressurized cavity receiver which utilizes
a fused quartz window at the aperture for pressure containment and silicon
carbide honeycomb panels as the active solar conversion element. Internal receiver
structure and integral thermal impedance is provided by the use of preformed
semirigid insulatioen.

The receiver housing functions both as an ecto-skeleton and pressure vessel, per
the ASME* boiler code using 0.25-inch thick cold-rolled steel. In view of the small
internal volume of the receiver and dissimilitude of air and steam as working fluids,

an obvious area of potential cost reduction is present in the housing structure.

*Section VIII ASME Boiler and Pressure Vessel Code, Uufired Pressure Vessels
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Cost savings of up to $3.50 per kilowatt could be realized by use of a functionally
designed housing in lieu of a boiler code constrained pressurs vessel. This is a
problem which appropriately should be addressed before mass production is initiated.

Silicon carbide (SiC) was selected for the active receiver panels because of
its demonstrated suitability to the application. The panels are well within the
present firing capacity size limits. Reliable and extended service is predicted for
SiC in air at temperatures in the 2700° - 3000°F range. The material's high thermal
conductivity, visible absorptivity, and thermal shock resistance support its selec~
tion as an unstressed matrix naterial.

The mullite storage material was chosen for its high temperature stability,
sensible heat storage capacity, and low cost. As employed in the Sanders receiver,
the mullite i{s not subject to sudden or severe thermal transients.

The key consideration in establishing the functional viability of the design s
the developument of an {n-depth understanding of the flux distribution and its
effects on the receiver. To this end, extensive flux modeling, window analysis, and
receiver thermal simulation were conducted according to the flow chart of Figuve 2.

The flow chart portrays the methodclogy employed in the {terative design and
analysis process used to evolve the receiver from concept to preliminary prototype
status. CPCFLX is an in-house code developed to predict flux distribution and
power captured at the receiver,

Typical flux distributions are shown in Figure 3 for a receiver operating both
with and without a CPC. Based on these projected flux levels at the receiver
aperture, 3 window thermal analysis was performed using the optical and physical
material properties of the selected fused quartz window. The window heat loading
results from the spatial integration of the convoluted solar, cavity IR, and window
transmittance spectra. Thermal analysis shows maximum window temperatures of 950°¢

or less.

The window analysis predictions, combined with Sanders' own real experience at
White Sands in 1977, allows the prediction of long-term reliability for the windowed
matrix HTSTR.
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SECTION 2
TECHNICAL DISCUSSION

2.1 FINDINGS OF THE PARAMETRIC ANALYSIS
2.1.1 General

The complete Parametric Analysis Report (82 pp) was submitted in Septamber 1979
under separate cover. The principal recommendations from that analysis are iterated
in the following paragraphs.

2.1.2 Parametric Analysis Recommendations

The windowed receivers are recommended for their superior capabilities. The
two windowed concepts are very comparable in their overall evaluation but the
balance favors the matrix receiver for the following reasons:

e The matrix receiver panels are fully within present day production
capabilities.

¢ Thermal buffer material can be optionally installed or omitted.

o Thermal buffer materisl can be a less expensive material (Mullite,
Alumina) than the receiver matrix (silicon carbide) because it is not

exposed to step transients.

o Radiation losses from the thermal buffer are trapped by the receiver matrix
and are returned to the airstream; the energy cannot escape through the

aperture.

A review of the major points of the parametric analysis is presented below
as they comprise the start point for the design a-d analysis work which was
performed during Tasks 2, 3, and 4 of the study. The parametric analysis report
itself should be referred to for a definitive description of the Task 1 work.
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The subtasks (A-D) below are taken from the statement of work for Task 1. The
results and findings from these subtasks are presented here as backgrovnd for the
subsequent sections of this report.

(a) Preliminary receiver performance calculations and graphs related to thermal
efficiency, pressure drop, cavity temperature and flux distribution

The conversion efficiency is given in Table | for the baseline, 70 kW receiver/
CPC combination with and- without window as a function of temperature. Efficiency
(n) is defined as power in (delivered to cavity) less reradiated power loss divided
by power in:

TABLE 1. CAVITY EFFICIENCY

Temperature Open Aperture Windowed®
2000 0.912 0.937
2200 0.897 0.915
2400 0.891 0.895
2600 0.880 0.889
2800 0.864 0.874
3000 0.849 0.856

Table 2 summarizes the pressure drop data. Figure &4 depicts total flux versus
position.

(b) A material selection bSased upon thermal cycling, life-cycle requirements,
cost fabrication considerations and experience in similar or comparable
technologies

Table 3 summarizes the physical characteristics of the materials examined.
Table 4 shows material costs.

*Does not include 87 dielectric) reflection at window surfaces. Thus overall
radiative efficiency at 2000°F 1s 0.92 x 0.937 = 0.862.




B
3

TABLE 2.

PRESSURE DROP SUMMARY

PHYSICAL PARAMETERS

WORKING FLUID

Property Symbel, Units Alr Nitrogen Helium
Inlet Temp T., °r 1750.0 1750.0 1750.0
Output Temp T F 2500.0 2500.0 2500.0
Mass Flow o, 1b/sec 0.250 0.241 0.0853
Specific Heat @ 1750°F Cp;,  Btu/lb 0.279 0.288 1.25
Specific Heat @ 2500°F Cpy» But/1b 0.289 0.301 1.25
Enthalpy Change AH, Btu/1lb 213. 221. 624,
Power Pyps kW 56.2 56.2 56.2
Power Pr, Btu/hr 1.92E5 1.92ES 1.92E5
Pressure P» lb/ft2 6480. 6480, 6480.
Gas Constant R, £t/°F 53.4 55.2 386.
Density @ 3 ATM, 1750°F o1 1b/£¢3 0.055 0.053 0.0076
Density @ 3 ATM, 2500°F 0gr  Ib/ft’ 0.041 0.040 0.0057
Volumetric FLow, 1750°F 61, £t3/sec 4.54 4.55 11.2
Volumetric Flow, 2500°F 60’ ft3/sec 6.10 6.02 15.0
Tube ID DH’ inches 0.5 0.5 0.5
Number of Tube Pairs N, 96.0 96.0 96.0
Total Flow Area A, fe? 0.131 0.131 0.131
Velocity, RMS v, ft/sec 41.0 40.7 101.0
Viscosity Uy 1b/hr 4,39E2 4,13E2 4.76E2
Reynold's Number Ne 6.72E3 6.87E3 2.12E3

Btu/hr
Convective Film Coefficient h, ft2/0F 8.57 9.15 8.00
Active Length of Tubes 2, ft 5.0 5.0 5.0
Active Area of Tubes Ac, ft2 62.8 62.8 62.8
Film Drop AT °F 356.0 334.0 382.0
Friction Factor £, 0.0091 0.009 0.0075~
0.011

Pressure Drop Ap, 1b/£t2 88.0 83.0 61.0-90.0
% Pressure Drop Ap/p, & 1.4 1.3 .94-1.4

This table applies to the tube~header type receiver analyzed during Task 1.
Pressure drops for the matrix receiver are smaller by at least one order of magnitude.
Temperature, pressure and flow conditions correspond to design point for Task 2.
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TABLE 4. MATERIALS RELATIVE COST

SAHLMATERIAL _PROCESSING
Lowest Cost Cordierite Cordierite
Mullite Mullite
. Alumina 2irconia
Zirconia Alumina

Silicon Carbide
Refractory Metals
Other Carbides

Highest Cost Nitrides Silicon Carbide
Refractory Metals
Nitrides

Other Carbides

Based on Sanders' operating experience over the past three years, silicon
carbide and cordierite are known to be well suited to application in matrix or
windowed extended surface receivers where thermal diffusivity and expansion are the
controlling parameters. In these concepts, radiant energy 1s absorbed on the shrface
of a thin ceramic section. The energy is then convected off the same surface.
Thermal stresses in these applications (based on modeling performed under prior

contracts) are approximately an order of magnitude smaller, than inalternate materials.

Mullite is known to be a well-suited, sensible heat storage media and has been
used in the steel industry (blast furnaces) for decades. It exhibits long life in
those applications. Mullite could be used in the matrix receiver as the auxiliary
thermal buffer mass where it would be isdlated from radiantly and convectively

induced thermal shocks.
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- (c) Weight estimate and space envelope diagram with identification of major
components, physical arrangement, necessary supporting devices and

auxiliary equipment

The four configurations with options were analyzed to provide a weight and
center of gravity estimate. Figures presented in Table 5 refer to the 70 kW base-
line design.

TABLE 5. WEICHT ESTIMATES
(from Table 1)

Assnfiguratian Storage Weight, 1lbs| CG, inches*
Matrix, Windowed No 180 12.7
Matrix, Windowed Yes 310 14.1
Extended Surface, Open No 131 15.8
Extended Surface, Windowed Yes 337 13.9
Tubed Yes 287 15.2

*Distance behind window, on axial centerline.

(d) The merits of various thermal energy storage systems shall be assessed
with respect to thermal efficiency, size, weight, cost and material
compatibility. Storage time to be considered should be up to 3
minutes .

Thermal buffer material can be optionally instalied or omitted. Thermal buffer
material can be a less expensive material (Mullite, Alumina) than the matrix (silicom
carbide) because it is not exposed to step transientg. Radiation losses from the
thermal buffer are trapped by the matrix and are returned to the airstrean; the
energy cannot escape through the aperture. The 70 kW model (Figure 5) weighs 180
pounds as shown or 310 pounds with additional thermal buffer.

2.2 CONCEPTUAL DESIGN
2.2.1 Introduction
The work performed in Tasks 2, 3, and 4 of the contract has been performed in

accordance with the contractual statement of work and by subsequent JPL Technical

Direction Memoranda 001 and 002. These requirements are presented below.

12 ,
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2.2.2 Statement of Work Contents

Task 2 - Conceptual Design

Prepare a conceptual design for the engineering definition and preliminary
performances established in Task 1. The conceptual design shall be of sufficient
detail to provide the basis for engineering cost estimates and preparation of
prototype of production versions of the component design indicated in Task 4. The
results of thig effort shall include the following:

(A) Complete receiver performance analysis including heat losses. Computations

of efficiency over range of stated power inputs given in Exhibit I.

(3) Pressure drop of working fluid through the receiver for the inlet

pressures given in Exhibit I (not to exceed 4% of inlet pressure).
(C) Materials selection and rationale for selection.
(D)' Conceptual design drawings.
(E) Narrative explaining the receiver design, operation and salient features.
(F) Engineering analysis, assumptions and rationale in the following areas:

(1) Concentrator optical quality, thermal, and mechanical design
aspects including special seals.

(11) Structural analysis to indicate adequate strength and rigidity.

(1ii) Fluid flow analysis of heat transfer capability to meet the
energy, temperature, pressure, and other operational requirements.

(iv) Control system schematic and analysis to assure stability under

all conditions of operation.
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SECTION 3
CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS €

e The Sanders High Temperature Solar Thermal Receiver (HTSTR) has a high
probabilicy of success as an economic and reliable device.

o The concept is within the state-cf-the-art and represents an economic
alternative to other gas flowing receivers used adove 535°¢ (1000°F).

o The receiver window will, on the basis of extensive and conservative
engineering analysis, survive the solar and infrared environment to
which {t 1is exposed.

o Operating efficiency is predicted to be equal to or greater than 75%
at design power input and 2500°F output.

o Production cost estimates of »$25/kWe.
RECOMMENDATIONS -

e Prototype development, fabrication and testing should be funded to provide
a production baseliue unit and to expedite the deployment of a viable
solar powered fossil]l fuel offset heat source for fuels and chemicals

and power generation applications.

@ A separate Scientific Research Experiment (SRE) should be funded as a
follouw-on to this study program to further probe the window perforr ance
and to demonstrate its reliabilicy.

o Systen trade-off studies should be §nitisted to determine the system cost
impact of appending a terminal concenirator to the receiver to operate
with primary mirrors that have surface slope errors greater than 2 milli-
radians.
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