NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE

e

m

mprny
@

T

a
+

wemmn

iy

..
i

i

S

i

(NASA-CR~161396)
DESIGN REQUIREMENTS SPECIFICATION

Report (Intermetrics, Inc.)
HC A05/4F AO1

78 p

N5SC—~2 OPERATING SYSTEHN

Final

CSCL 09B

63/61

N80~-19861

Unclas
14915

N

i
H
H
!
|
{
14
i
:

%

SN
it
e

5%

e

i
¥

TUTTR A vy
B
e &

et W

e

[R-432
NSSC~11 OPERATING SYSTEM
DESIGN REQUIREMENTS
; SPECIFICATION

AususT 15, 1979

(FINAL)

ConTrACT: NAS8-33382

SueMiTTED To: GEORGE C. MARSHALL SPACE FLIGHT CENTER
MarsHALL SPAacE FL1GHT CENTER, ALABAMA 35812

. SUBMITTED BY: INTERMETRICS, INCORPORATED
f 3322 S. MeMorIAL PARKWAY SUITE 2
HUNTSVILLE, ALABAMA 35801

T. T. ScHANSMAN
J. R. Bounps

» .

;l INTERMETRICS INCORPORATED -+ 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

Ve "
. 7 o4

PREFACE

This document presents the design requirements for
an NSSC-II Operating System.

This worxk was performed for the Marshall Space Flight
Center by Intermetrics Inc. under contract NASS.

Questicns concerning the contents of this document
should be directed to T. T. Schansman, Intermetrics,
Huntsville.

O |

"
)
{

i

i

E

&

_ INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

g

ST W

eI

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

TABLE OF CONTENTS

1.0 INTRODUCTION

1.1
1.2
1.3

Purpose
Operating System Objectives
Document Oxrganization

2.0 OVERVIEW

2,1
2,2
2.3

Methodology

Notation

General Description

2.3.1 System Timing

2.3.2 General Process Flow

3.0 SUBSYSTEM REQUIREMENTS

3.1
3.2
3.3
3.4
3.5

w W w
a
W o ~3

. Interval Timer

System Clock

Real Time Clock

Processor Allocation

Task Scheduling

3.5.1 Task State Control
3.5.2 Event Monitor
Input/Output

3.6.1 Input/Output Scheduler
3.6.2 Input/Output Manager
Interval State Recorder
Internal Exror Processing

Temporary Storage Allocation

i

16
18
21
24
26
30
36
39
41
44
48
50
53
56

TABLE OF CONTENTS (Con’T)

3.10 Interphase Data Storage 58

3.11 System Initialization 60

3.12 Phase Initialization 62

4.0 IMPLEMENTATION STANDARDS 64

4,1 Application Program Interfaces 64

4.2 Performance 65

4.3 Component Modularity 66

5.0 HAL/S SUPPORT 69
}
{

ii

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

o wmTmee

ey o

AEM Application Error Monitor
DEPI Dedicated Experiment Processor Interface
EC Experiment Computer
ECOS Experiment Computer Operating System
EM Event Monitor
ESP Error Signal Processor
GMT Greenwich Mean Time
IDS Interphase Data Storage
I/0 Input/Output
I0S Input/Output Scheduler
IPL Initial Program Load
ISR Interval State Recorder
IT Interval Timer
MET Mission Elapsed Time
l MSFC Marshall Space Flight Center
| NSSC-II NASA Standard Spacecraft Computer - II
l o/s Operating System
| PA Processor Allocation
: PCC Programmable Crate Controller
b PI Phase Initialization
| RTC Real Time Clock
scC System Clock
? SI System Initialization
| S0S/II Standard Operating System/II
TMI Time Interface
TS Task Scheduling
TSA Temporary Storage Allocation
TSC Task State Control
TSE Test Support Equipment
RAM Random Access Memory
. iid
> INTERMETRICS INGORPORATED + 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02188 « (617) 661-1840

LIST OF ACRONYMS AND ABBREVIATIONS

aey W e PN -

' oL oy L
IR w’_’ v W e e

LIST OF FIGURES

Page
Figure 2-l: Example A System Structure 7
Figure 2~2: FExample B System Structure
Figure 2-3: NSSC=II 0/S Process Flow 8.1
Figure 2-4: Basic Timing Interval 13
Figure 2-5: Program Organization 15
Figure 3-1: Task Scheduling Subsystems 32
Figure 3-2: Task State Diagram (Normal Conditions) 34
Figure 3-3: Task State Diagram (Anomalous Conditions) 35
Figure 3~4: Input/Output Subsystems Diagram 43
Figure 4.1: 1Initial Layering Hierarchy 68
LIST QF TABLES
Page

Table 3-1: Task Scheduling Commands 33
Table 3-2: SOS-II SPSME COMMANDS - DELAYED 47

)

}

{

: iv

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

-
o B * :
53 i 7 e é ¥ A 4 s ¢ bv g ” . - -
B D coooaEn L g

)

1,0 INTRODUCTION

1.1 Purpose
The purpose of this document is to define the design

requirements and establish the design principles for an
NSSC-II Operating System (SOS/II). The NSSC~II is, in
general, designed to support a variety of space applications
and s intended to provide experiment and subsystems

control during f£light. The defined Operating System (0/S)
provides a set of software modules which pexform super-
visory, control, and support functions. A potential user
can tailor, with a minimum 6f ease, the 0/S by selecting.
and adapting those modules which serve his particular needs.

1.2 Operating System Objectives

e Support Real Time Spacecraft applications

S0S-II is to be designed specifically for this type

of application. Such applications have the follow~-

ing typical characteristics:

- The Software interacts with an environment in which
several things may happen simultaneously at un-
predictable times.

- The Software must respond to the environment within
controllable and predictable time limits.

~ The Software performs a predictable number of con-
current functions.

~ For any particular application the system config-
uration is fixed.

e Provide a "flexible purpose" system

A general purpose system is one which aims to provide

all functions which a potential user may need. The

disadvantage of such a system is that it is relatively

.,

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

wa oo

il

large and complex. A flexible purpose is intended
to provide the most common functions which a user may
need, The intent is to let the user choose those
(and only those) functions which are of use to him
and enable him to perform any nceded adaptations
with relative ease.

Provide a modular operating system

A corollary of a flexible purpose system is that it
must be modular, by which is meant "easy to change."
Modularity by itself does not guarantee ecase of mod~
ification. The system must be defined with a clear
view of the potential changes which may affect the
system. The modularity is then designed to be, at
least, adaptable to those changes.

Operate with current support software

The applicable NSSC-II Support Software consists of
a Fortran Compiler, an HAL/S Compiler, an Assembler,
and a Link Editor. The Operating System must be
able to accept the output of this support software
and cannot impose any modifications upon this support
software.

Support an SPSME I/O configuration

The major characteristic of a real time system is
that it interacts with its environment. Therefore

a Real 'Yime Operating System must be able to perform
some level of Input/Output functions. On the other
hand, I/0 interfaces and devices vary considerably
among applications. To insure that the 0/S concepts
could be proven, it was decided to select one,
possibly standard, I/0 configuration - the MSFC/SPSME
configuration.

Use minimum practical amount of storage

The NSSC-II storage size is relatively limited.
Therefore programs for the NSSC-II generally should

-0

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

ettt gt

4

A

E

- -
o e —

p be designed to minimize core. This groundrule
shauld anly be broken for selected arcas, which
are critical to the real-time aspects of the system.

A sub~obhjective is that a useful 0/S version can be
fit into 25% of the minimum available main memoxy.
As the minimum available is 32K bytes, it is obvious
that the minimal subset must be very carefully
selected.

1.3 Document Organization

This introduction is followed by Section 2 ~ Overview.
That section contains a (fold-out) operating system diagram
showing the system as a whole, General system concepts,
approach, and terminology used are also introduced in
that. section. Section 3 -~ Subsystem Requirements ~ provides
the detailed design requirements for each identified sub-
system., Section 4 - Implementation Standards ~ is the
final section. This section describes the critical ground-
rules and techniques which must be applied during sub-

sequent phases to insure that the initial objectives are
met.

-3
| INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

2,0 OVERVIENW

2.)] Methodology

The approach used in organizing these design require-
ments differs slightly from the commonly used approach and
therefore regquires some explanation.

Commonly the requirements are provided in terms of the
functions to be performed and the algorithms to be used.
Functions and algorithms which are somewhat related are
grouped together under the same heading. This grouping is
usually somewhat arbitrary and primarily serves tutorial
purposes rathexr than reflect any sort of system organization.

As descyibed in the objectives, "modularity" is of
prime concexn to the NSSC-II 0/5. Therefore we have atctempted
to address the modularity strongly on the requirements level
rather than waiting for the design phase.

The term "modularity" is usually interpreted as re-~
ferring to the component structure of a system. In fact,
however, the component structure does not in the first
instance establish the modularity of the system,

A system is a dynamic entity, a process. It is more
than an assembly of components. When we break down a system
for analytical purposes we search for the processes which
interact to fulfill the purpose of the system. We break
down the system into "smaller systems" which are called
subsystems. The "modules" of a system are therefore sub-
systems. Note that a subsystem is not a physical entity,
it is identified by the process it performs. System
modularity is thus, in the first instance, not determined
by the physical component structure. System modularity

-

] : INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

- e e o T O WU

-) VR

is determined by the types of subsystems scelected and their
interaction., System modularity is recalized by the proper
component structure. In other words, the proper component
structure is driven by the sclected subsystem modularity.
A subsystem (i.e. the process it represents) is executed
by physical components. Especially in computer software,
a subsystem may use a single component and often gets
equated to the component it uscs. Therefore subsystems
and components are often confused.
A short example may illustrate the above flood of words.
Assume that we have to design a system which outputs a
series of numbers: 1,1,1,2,3,1,4,,.. Wercan decide to form this
syytem from three subsystems as illustrated in figure 2-1.:
Subsystem 1 outputs a steady strcam of l's. Subsystem 2
adds each numbexr it receives from subsystem 1 to ite previous
output value and outputs the new result. The outputs are |
combined to form the desired stream of numbers by subsystem 3.
Now assume that we want to change the system to output
a slightly different set of numbers: 2,1,2,2,2,3,2,4....
It is easy to see that there is no simple way to do this
without changing both subsystems irregardless of the
component structure used by the subsystems. On the other hand,
i1f we had designed the subsystems as illustrated in figure 2-2
the change would have been relatively minor.

It can be argued that the subsystems in this example
could just as well have been discussed as components. This
is true because of the simplicity of the example. It is
not difficult to visualize more complex subsystems however,
which for example share components. In such cases it becomes
exceedingly confusing to discuss subsystems in terms of
their components as the systems modularity is no longer
apparent in the component structure.

In this requirement specification we have attempted to
put the theory, described above, in practice. The goal is to
discuss the system in terms of these entities, the subsystems,

-5-

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 ¢ (617) 661-1840

g

e e

which determine its organization and characteristics and thus
determine its inherent modifiability. The assocliated functions
are grouped accordingly. Note that to realize the inherent

modifiability, an appropriate coumponent structure must be
selected.,

—f -

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRINDGE, MASSACHUSETTS 02138 + (617) 561-1840

.)
N 4

i

SRR A e ‘77'1\ e -

\‘v

1,111[2’.1,3;1'411(51000

SUBSYSTEM 3

l[l[l,..l

SUBSYSTEM 1 1,1,1...

.

u ' Figure 2-1: Example A System Structure

l;l,l(Zfl[B;li4]li5’-.o
A

llzl"'lgfl'---

SUBSYSTEM 2

Figure 2-2: Example B System Structure

- ...7....
B!

C

2.2 Notation

Iig. 2-3, a foldout chart, can he xe¢ad very much
like a flow chaxrt.

the flow of control and interaction anong subsystems,

It shows the subsystems breakdown and

where each subsystem is represented by one or more rectangles.

(Multiple rectangles in fact depict sub-subsystems).
are used in the following manner:

IR & b TTINIEGL e

AAA

T

R N s

Subsystem AAA performs an operation which affects the

process of BBB. It does not invoke BBE.

LR e BN R L e AT

R

MA Qe - oo p{ waBLE 1

i e T

Subsystem MAA accesses (can be read, write, or both) a
data area in common with other subsystems.

-8
INTERMETRICS INGORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138

A Ty v.

e L

Arrows

* (617) 661-1840

mreR/at
SEeN AL

1

LR S

THVERVAL

st P TIMER

READ

&)

L8 e

R el Wy 2 2 -

SET_ |

FA0H APPL
TASKS

REAL TEME
<cLoclk

CRT) I

SYSTE M
M cLoCWK
wEap o é‘q;cé ,

RECTA RS
PROCESSDR
AUDCATIDH

SAVE

QESTORE

INTERPHASE

DATA

STORAGE
e

haY

30l Al Wl sasms 0 e 1 b1 e vF UMY DT i

ADDITIONAL INPUT/ouTPuT DETAYLL,

| PROCESSO]
| ALtocATT ON
(

LR

1
)

_———d

INPUT ouTPUT
SCHEDULER O
(ros

NS

x/o

TABLES

!

INPUT/0UTRUT

OuanAGE R

(zowm)

4y

- FIGURE 2-3: SOST PROCESS FLO]

—y oy

P

o T 5, m&m«smmwm

S i

LT e R

7

SYsTEM
ERROR

(SEM

Moru:'v-? R

FROW 0O
SORGYETEMS 1
:
FROM '
TASKS,
|)
PL & ’
SIGNA L | %'2[35;
. |
INITIAL ,
] LNPUT/ “PHASE LOAD T
fgggﬂﬂ“ —P ouTeor ¢PL) T Trom
' I LY
|
IMTTIALZE naP CinITIALIzE | | 6
¥ — |
“wroLk -
ALLOCATE “yore ! ‘-‘—-2%”
e RLLoe | TEREoRARY
ALLOCATION
QRO
TRAP i
ERROR
rROM
&> "

[
[}

|
YPREDET.
ACTTONS

4

. o B) B o B o ""‘mtt';‘"'"""mw—'——_—"!

Lhn“ TR RISl

> R T Y S o T N - s ph VT R LA S e B dows AR B & WY 6
Fy

PROCKEY "
rrom "roig

: " |erocEBSeR READY THOK STATE
: O TGK LIST 0 contTROL

HO C
e e)

Y Yrom
TASKS
“toe"
-
Princewas | L TIME | e | EVENT TrugvAL armecation..
(PR [MONITOR | — " THONITOR, RECORDER SYSIBHMS TRSKS
i 1 lam M) A~ =) o
} |
3 | | v -
, PHASE RECORDING R gk
CINITIALIZE | | . TAGLE 3

S
] .

5 f C o
“soLe’ () | Sl PAGE 15
. ifaccees., ORIGINAL, PR vy

E2R0A 7
TRAP GEND SYANDARD INTER VAL TIM IMNG c
"
%Rou srcu:_
CESSO

esw) IMNTERVAL | 2‘,}:3{“‘_

T STrar ' BT

- " N '

= 1 148 ,

SysTEM [ApeLicaTIon 3,‘ “lalg | i

ReSIToR ERAOR o 4T ¢ |Bikg! |

n

(-sEMS) CRAEN) Elglg'dWQbPL‘Cﬂfxof‘ AN D .
| ElolZIdI™ " ayerems TaASKS w
] 1 hielzld r
|] Q' H'”' 2
; | “"’lz‘dl I8

PREDET, oPTTONAL 2|9 21 i

. ACTTONS pCTIONS %'t""“i' |

dll|UH) !

- . . - i . - -

-8 -

- B e
T S A

e e ¢ (2% oo WS R

AAA »ﬁ;&ﬁ@fﬂﬁwm,, BRB

Subsystem ARA invokes subsystem BBB under certain conditions.

BBB ccc

Subsystem AAA invokes BBB and CCC respectively, sequentially
in an order from left to right.

-9

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

L

A

Data Structure accessed by more than one subsystem.

Connector.

N .

Annotation.

~-10-
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDG

E, MASSACHUSETTS 02138 - (617) 661-1840

R

e

2.3 General Description

2.3.1 System Timing

All timing relations in the system revolve around a
basic Input/Output timing intexval., All Input/Output (all
communication between the NSSC-II application software and
the experiments or engineering subsystems) is performed on
the boundaries of a fixed (user specifiable) interval,

The highest rate at which periodic Input/Output
operations can be performed is determined by this fixed
interval. Any application subgsystem (Task) can be executed
only once during such interval. Therefore the maximum rate
at which cyclic tasks can be executed is also determined
by this interval.

Subsequent to executing the Input/Output subsystems,
any subsystems which may affect Task activation or deact-
ivation are performed. Consequently, all application tasks
to be activated during an interval are known before the
system begins executing the application Tasks for that interval.

This sequence of events is graphically depicted in
Figure 2-4. Note that the intent is to have all active
Tasks completed prior to the start of the following interval.
This scheme prohibits the use of demand interrupts and/ox
Task switching interrupts (some exceptions are noted later).
There is in fact no need for such intersupts. All potential
"demands" are interrogated at the start of the interval and
Task activation priorities are established. The Task
execution conditions therefore remain stable over an interval.

The disadvantage of this scheme is that Tasks with an
execution time which exceeds an interval need to be chopped
up in pieces which fit within an interval. Assuming that the
NSSC-II can execute 200K instructions/second (Standard Fixed
Point Instruction Mix) and that 15% idle time is allowed for
within an interval, then a total of 1700 instructions can be

-1}

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

P A e L s

5

ST e WO

Bt i el

* T

4

i .4 INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

executed per interval.

Note that this approach is theoretically less efficient
than a "free running” system. However the pay off in
testability and simplicity of design can be significant.

2.3.2 General Process Flow

The 0/S subsystems and their process interrelations are
shown in Figure 2-3.

Each of the subsystems shown is discussed in detail in
the following sections.

The system is driven by the System Clock, which in
turn is activated by an Interval Timer set to the minimum
desired interval. The System Clock maintains time in terms
of number of intervals elapsed and can be interrogated by
any subsystem. The System Clock further assures that
Processor Allocation is activated each interval. (The system
can therefore only "hang up" under highly exceptional condi-
tions). All other subsystems run under control of Processor
Allocation with the exception of the Real Time Clock Subsystem.

The subsystems which are directly activated by Processor
Allocation are called Tasks. We distinguish between 0/S Tasks
(subsystems provided as part of the Operating System),
Application Tasks (generally application dependent subsystems),
and Systems Tasks. The latter are subsystems which are
not an integral part of the control and supervisory functions
of the Operating System, but nevertheless provide support
for a class of applications.

Any Task execution is under control of the user. The
user can deactivate any 0/S Task, change the
execution sequernce, etc. This is true because Processor
Allocation works from a "Ready Task List" and makes no
distinction between the types of Tasks.

-12-~

-

.

Start of interval

<J e L ves T PO - >§<
l i
Input/ | Other . Application dependent
Output 0/s " subsystems
Sub~- lSub~

systems | systems

|

l
| '

>

!
l
|

ey v m——— om——

Figure 2~4: DBasic Timing Interval

~13-

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 6611840

e

Start of next interval

hON

Idle
time

4
#
»

5
L»—‘.A,‘—W N — h)ﬂm,&w—n—y

S

2.3.3 Application Program Organization

An Application Program Complex is a sot of related
Tasks as shown in Figure 2-5, A Task is pragmatically
defined as any program module which has been identified
as such to S08~IT. Communication between the Application
Programs and S0S~II is strictly through SVC's.

In addition to the Task an Application Program Complex
may contain common data areas and common subroutines (e.qg.
the run-time libzary). No linking is performed during the
loading process. Therefore all related Tasks and their
common environment must be contained within the same load
module. When different or additional Tasks are required
a complete reload of the system must occur.

e oAb it

~14~
INT: RMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

PROGRAM COMPLEX

Eaa it

¢) ; i
y APPT.TCATION APPLICATION SYSTEM SYSTEM
E_ TASK #1 TASK #W TASK #1 THASK EM

COMSUBS

60S-I1I

Figure 2-5: Program Organization

0v81-199 (219) « 86120 SLLISNHOVSSYI 'HQOIHBWVQé{;ﬂDNB/\V QHOONOD 104 ¢ Q3LYHOJHOONI SOIHLINGTLNI

!
]
]

o g T 2

- 3,0 SUBSYSTEM REQUIREMENTS

This section econtains a subsection for cach of the N5SC~IIX

0/8 subsystems. EBoch such subsceetion follows the standard

format described below.

Paragraph 1. Subsystem Diagram - This is simply that portion
of the overview diagram (provided in section 2,
FPigure 2-3) which is applicable to this sub-
system. In some cases it is slightly expanded
and/or contains additional annotation.

Paragraph 2. §Subsystem Activation - Describes what activates
this subsystem as well as the activation conditions.

Paragraph 3. Activated Subsystems ~ Other subsystems which are
to be activated by this subsystem and their act-
ivation conditions, if any, are summarized here.

paragraph 4. Functional Description - This is the key paragraph.

: It describes the purpose of the subsystems, its

functions, its logical relationship to other sub-

R ik A

systems, and spaecific algorithms to be used in the
design.

Paragraph 5. Parametexrs - These are certain values which are
key to the purpose or function ©f the sub-
systems, and axre changeable by a potential user.
The software must be implemented such that a
parameter identified under this heading can be
changed by changing one, clearly identified,
location in a program,

Paragraph 6. Task Commands - Subsystems are controlled by
commands executed during a Task process. Those
Task commands, and their effect on any sub-
system, including itself are described in this
paragraph,

Paragraph 7. Initialization - The actions which are required
to be performed during system initialization
to assure that this subsystem will have the
appropriate initial conditions are described
here.

-16-
INTLRMETRICS INCORPORATED » 701 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

7 '
b
L N PSS
"~ . P . - 3

-

Paragraph 8 Potential Modifications - To insure that the
component structure is designed such that the
subsystem is casily changed, the specific
modifications which must be accommodated are
listed hare.

Paragraph 9. JImplementation Notes = This paragraph f£ixst of
all describes a minimum useful version of this
subsystem. It lists the functions which may
not be useful to all users. Other imple~
mentation related items cxitical to the desired
subsystem process are also noted in this
paragraph.

Note: The term Task Process is used, in this document,
interchangebly with executing Task.

i ’ .-l?-d
©INTFRMETRICS INCORPORATED » 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

-y L

o

3.1 INTERVAL TIMER (IT)

3.1.)1 Subsystem Diagram

INTERVAL
SIGNAL
. A
START
SmOp ﬁINTERVAL) b SYSTEM
§ETKW‘B’TIMER CLOCK

3.1.2 gSubsystem Activation

The IT is activated by an interrupt signal at the end
of each interval. This signal can come from the NSSC-II
Interval Timexr or another external source.

3.1.3 Activated Subsystems
The IT in turn activates the System Clock.

3.1.4 ¥functional Description

The It is the basic driving mechanism for the system.
If the IT is deactivated, the system comes to a soft stop,
waiting for an external signal, On the other hand, the IT
serves (indirectly) as a watch dog timer. The intexrwval
signal is never to be inhibited. The system will therefore,

-18~

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

Y

Al

JECTORRTGRP: | FORCPIE A S

B

R

undegr most conditions, be interrupted out of a system hang-
up. As described later, Processor Allocation (Section 3.4) }
has the logical means to detect whether a system hang-up
occurres.

The IT can be started/stopped £rom any task, even though
it normally will only be affected during System or Phase
Initialization (Sections 3.1, 3.12).

The interval is dynamically changeable by any task.

When running, the interval change takes effect at completion
of the current interval.

When activated the IT sets up and starts the NSSC-~II

Interval Timer prior to transferring control to the System
Clock.

3.1.35 Parameters
None.

3.1.6 Task Commands

l. SET INTERVAL - Establishes or changes the interval
size.

2. START IT - This initially activates the IT,

3. STOP IT -~ This, in essence, stops the NSSC-II
Interval Timer.

3.1.7 ,Initialization

During System Initialization the interval must be set.
Initialization ends by starting the IT.

3.1.8 Potential Modifications

As described here the IT subsystem uses the NSSC-II
Interval Timer. This may be replaced by some other external
timer, which may or may not be controllable.

»

3.1.9 Implementation Notes

Current implementation plans call for an SPSME I1/0
Configuration. In this case most of the I/0 functions as

i : “‘19"‘
h ‘ ‘j INTERMETRICS INCORFIHATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSF” .2138 + (617) 661-1840

e 4 .

T

il

I S

o

bt
g

well as the interval timer are contained in the SPSME.
Thus the interval signal will come from the SPSME and will
be used to directly activate the System Clock. The system
will therefore be implemented to run either the NSSC~II
Interval Timer or a SPSME interval signal.

-20-
INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSAGHUSETTS 02138 - (617) 661-1840

3.2 BSYSTEM CLOCK (SC)

3.2.1 Subsystem Diagram

RESTARTS
PROCESSOR
R — ALLOCATION
SET N

I l
| tyvERvar L p| SYSmEM o
| rrMeR] CLOCK
l S N
Bty -y ecimine wrawaom i .J o e——
| OTHER 0/S
I SUBSYS5UEMS
)’ o - N y rin e v i
INTERVAL !
/.. ...COUNTER _. .. _\
FRAME <‘“y@.é) .

oo COUNTER

MAJTOR FRAME
COUNTER

3.2.2 Subsystem Activation

The SC is activated at the start of each interval by
the Interval Timer subsystem.

3.2.3 Activated Subsystems

The SC indirectly activates Processor Allocation by
allowing the system to proceed from the state it was in when
the interval interrupt occurred.

3.2.4 Functicnal Description

The SC keeps track of the number of intervals elapsed
(since an application determined start time). It does this
by incrementing up to three counters each time the SC is
activated: an interval counter; a frame counter; a major
frame counter.

e [N

T ~21-
ﬁ . INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02148 - (617) 6611840

ey

The Interval Counter is incremented by one (l) each
intexval. When a specified maximum count is reached, the
Interval Counter is reset to zero and the Frame Counter is
incremented by one. When the Frame Counter reaches a spec—
ified maximum count, it in turn is reset to zero and the
Major Frame Counter is incremented by one, ctc,

All counters are directly accessible by other 0/S
’ subsystems. Application tasks, however, are expected to
access the counters through an explicit command to the SC.
i The counters can be set to any desired value at any
time through the appropriate command.

3.2.5 Parameters

The maximum counts for each counter are "identified
constants" within the programs.
; The initial values of the counters can also be set
’ by setting constants in the code.

3.2.6 ?ask Commands

l. SET CLOCK - This command allows any of the counters
to be set to any desired value.

2. READ CLOCK -~ This command allows a Task to access
the values retained in the counters with one command.
Either two or three values are returned depending
on whether the Major Frame Counter is in use.

3.2.7 Initialization

System Initialization must set the desired (application
dependent) initial counter values.

3.2.8 Potential Modifications
It may be desirable in some cases to retain an accurate

synchronization between elapsed real time (GMT or MET) and
the interval counters. The simplest way to do this is to
drive the Real Time Clock from the Interval Timer.

. -22-
2 INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

T RN o g

iy

e g e

3.2.9 Implementation Notes

A nminimum useful version contains an interval counter
which resets after a preset maximum count.

The implementation version will be driven from an
SPSME signal. All three counters will be included.

-23-

- INTERMETRICS INCORPORATED - 701 CONGORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

S
ﬂ‘ . Al LS

iy gAY S A
T TIITETTRNES

e e A - s

3.3 REAL TIME CLOCK (RTC)

3.3.1 Subsystem Diagram

REAL
SEL 1/2.lp prmg

REAR-.1/2p crock

3.3.2 Subsystem Activation

The Real Time Clock is started when a SET command is
received and continues indefinitely.

3.3.3 Activated Subsystems

None.

3.3.4 Functional Description

This subsystem contains two clocks (1 and 2) which can
be used to maintain two different time bases (e.g., MET and
GMT). The time bases are selectable by the user and can be
set any time. Either one of the clocks can be accessed any
time by any other subsystem.

Ko tolh - i e

B

3.3.5 Parameters

None.

3.3.6 Task Commands
1. SET (l or 2) - Initializes the designated clock
to the desired value.
2. READ (1l or 2) = The contents of the clock are
provided to the requesting process.

3.3.7 Initialization
System Initialization should be able to SET either one
or both clocks as requested by the user.

3.3.8 Potential Modifications
It may be desirable that either one or both clocks be

synchronized with a similar clock external to the NSSC~TII.
This would require a clock to be SET to the external source
system during initialization and to be periodically corrected.
This subsystem may also be superfluous in configuration with
an external source. In such cases this subsystem is nothing
more than a device access routine.

It may also be desirable to drive the Read Time Clock
from the Interval Timer to insure that these stay internally
synchronized.

3.3.9 Implementation Notes

The implementation version will use the NSSC-II Real
Time Clock. The time format used will be identical to
Experiment Computer Operating System (ECOS).

Note that the configuration is anticipated to contain
an SPSME Interface (TMI) Module which also can be accessed
to obtain GMT.

-~25~

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

. P

3.4 PROCESSOR ALLOCATION (PA)

3.4.1 Subsystem Diagram

PROCEED
FROM "IDLE" o ”“}
] TASK
”*Wf”””] STATE |
l CONTROL |
B T ,v_..u—‘,,w.n«,nm Sy __“_jn--d R i g e
L T ;
//INTERVAL PROCESSOR /r READY
ASSIGNMENT -——0 O TASK
\\\?ABLE ALLOCATION LIST
A O, I
i . \\\\m\ ub%IDLE " R
A — A __I
TASK ' TASK I
PROCESS | proCESS |

3.4.2 Subsystem Activation

Processor Allocation is activated each interval by the
System Clock (also see Initialization). PA is also activated
g (through Task State Control) whenever a Task releases the
processor.

3.4.3 Activated Subsystem
PA activates Operating System Tasks, System Tasks, and

Application Tasks in accordance with the information in the
Ready Task List and Interval Assignment Table.

; ~26-
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

e . et e S e oW R = 3 A

f

e T

e

- INTERMETRICS INCORPORATED - 701 CONCORD AVEN

3.4.4 PFunctional Description

The purpose of Processor Allocation is to activate the
tasks, which are "ready", during their assigned intervals
in order of their assigned priorities.

3.4,4.1 Processor Allocation Method. The Ready Task List
always contains the addresses of the Tasks which are ready fox
execution. The Interval Assignment Table describes which

Tasks may be executed during a particular intexval. The
Interval Assignment Table is the means whereby the user dis-
tributes the potential execution of his tasks over the intervals
such that they can be executed in a timely manner without
exceeding the amount of time available in each interval.

Each Task can be assigned a simple priority number which
determines when it will be executed relative to other Tasks
executable within an interval. Processor Allocation does not
perform any "Task switching". Each Task is allowed to complete
its execution even if a higher priority task becomes ready for

execution. Basically the priority only determines the sequence
of Task executions during an interval.

PA thus determines from the Interval Assignment Table
which Tasks may be executed, determines from the Ready Task
List which of those Tasks must be executed, and uses the
priority numbers to determine the sequence in which the Tasks
are to be executed.

3.4.4.2 1Interval Overflow. The interval timer also serves as

a watch dog timer. When PA is activated by the System Clock
(each interval), it will check whether at the time of the
interval interrupt if it was in the appropriate idle condition.
If it was not, Task execution exceeded the interval time and
a system error is signalled.

To allow the amount of mandatory idle time to be minimized,
two exceptions are allowed: an "occasional" overflow; and
background processing.

-2

B T T i v W

UE - CAMBRIDGE, MASSACHUSETTS 02138 « (61V) 661-1840

)

3.4.4.3 Occasional Overflow. The total execution time of

a set of tasks to be executed during an interval must be sized |
such that a certain amount of idle time remains during an |
interval. The total execution time may vary within certain *
limits, thus the worst case condition (ever if it is exceptional) ?
must be accounted forx. This may result in an excessive

amount of idle time during normal conditions.

To allow such idle time to be minimized the PA will be
designed to accomodate an "occasional'" overflow. When PA
detects an interval time overflow condition, it will interrogate
the Task control information to determine if this was an
"interruptable" Task. If it is not, it will signal a system
error. If it is, it will allow resumption of the interrupted
(by the interval signal) task before executing any other task.

3.4.4.4 Background Processing. Certain applications may have
useful, but not time critical Tasks to perform in conjunction

with their real time control tasks (foreground tasks). The
system efficiency can be improved by allowing such Tasks to be
executed during the interval idle time (background tasks).
This implies that switching from "background to foreground"
Tasks must be allowed.

To accomodate this possibility, a two level priority
scheme is defined. 1In general, the tasks are assigned simple
priority numbers and the ready tasks with the smallest priority
number are put into execution when the processor becomes
available. The two-level priority scheme is used to be able
to identify tasks which may be interrupted. For example,
we can establish a range of 1 - 10 for the foreground tasks.
If a task with a priority number of 12 is interrupted by the

interval signal, Processor Allocation will recognize that

| . this was not a cycle overflow. In addition, all foreground
tasks which are ready will be executed before Task 12 is
allowed to resume execution.

PN -28~
! INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

w !
= e
- PSS - n - T S - ; [EROR——
o » A5 : N i el e . .
H PR " LY. P L gt A 4o
; - -

o i s, e b) SR

SR

s

. INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

The background Tasks may not directly activate any of
the 0/s subsystems, but they may set Events., They may also
communicate with real time tasks through a common data area.
Sharing of common data is totally under control of the appli-
cation program.

3.4.5 Parameters

The maximum number of consecutive cycle overflows
allowed and the foreground/background priority number
boundary must be modifiable by the user.

3,4.6 Commands
None,

3.4.7 Initialization

PA works directly from the Ready Task List and the
Interval Assignment Table. System initialization must insure
that the Ready Task List is initialized appropriately to the
application.

3.4.8 Potential Modifications
Processor Allocation is one of the subsystems which
establishes the most basic system concepts. No modifications

can be made to the basic operation without affecting other
subsystems. Modifications may be degired to omit unnecessary
features associated with cycle overflow and background
processing. The suggested incremental capabilities are as
noted in the following paragraph.

3.4.9 Implementation Notes

PA should be implemented such that the following incre-
mental capabilities can be selected:

- Foreground Processing, no interval overflow;

- Foreground/Background Processing, no interval overflow;

- Foreground Processing, interval overflow; or

- Full capabilities.

-29-~

| raiiie]

3.5 TASK SCHEDULING (TS)

Tagk Scheduling contains three subsystems (more
precisely subsubsystems): Task State Control, Time Monitor,
and Event Monitor (Figure 3-~1). Together they control the
state transitions (Figures 3-~2 and 3-3) for the Tasks. A
Task is pragmatically defined as any set of software modules
which are activated through Processoxr Allocation.

Task State transitions occur when Task Scheduling
commands (summarized in Table 3-1) are executed by a Task 4
process or when certain conditions internal to 0/S are detected,
Task Scheduling commands are indicated hy capital letters in
Figures 3-2 and 3~3. Detected 0/S conditions are indicated
by lower case letters.

Two READY states and two WAIT states are indicated on
the figures. READY 1l and WAIT 1 signify tasks which are i
ready or waiting for initial task execution. READY 2
and WAIT 2 indicate tasks ready or waiting to continue
execution. Under normal conditions these distinctions
have no significance, but they are important when the tasks
are abnormally terminated as shown in Figure 3-3.

Task Scheduling recognizes the existence of cyclic
tasks. These are tasks for which the initial WAIT conditions
are restored each time such a task exits normally. The
cyclic attribute of a task can be removed by execution of
a CANCEL command. This command does not affect the current
state of the task, it only affects subsequent state transi-
tions.

Task Scheduling supports a Forced End Concept. The
purpose of the Forced End Concept is to invoke a "clean up"
or "safing" procedure when a real time task is forced to

terminate prior to taking a normal exit. Such a Foxced ’
) . End procedure can be used to put the instruments/subsystems
r which the ‘task was controlling, into a harmless state.

As shown in Figure 3-3, a TERMINATE is used to designate
a forced abnormal ending of a process. If the

i€
)

i ~-30- .
2 3 INTERMETRICS INCORPORATED + 701 COMCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

"
|
@
&

&

4

t
G oo

process is in the Ready 1 orx Wait 1 state, it has never been
in execution and a clean-up procedure should not be necessary.
Therefore, such a process is simply put in the inactive state.
If the TERMINATE'd task is in any other state, the execution
(or continuation of execution) is forced to continue from the
Error Signal Processor. The error code to be transmitted to
the Exror Signal Processor is accessed from the control
information retained for each task.

Task State Control and the Event Monitor are discussed
in more detail in the subsequent functions. The Time Monitox,

which has a very simple function, is discussed under Task
State. Control.

~31~-

 INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

- i - .
N AT Vs ... 7 o L o o

al

RO

ALY

f REMOVE
EXIT
WALT

(OF CURRENT

TASK)
l\‘
r-wl Ay Lt lﬁx - o l e S e e
PROCESSOR TASK
&=t STATE |
ALLOCATION CONTROL 7
\/N “"'m i v
REQUEST N\ _
‘ "o, MONITORING |
) " 0
\ 4 A | -
PIME EVENT
» SEL{» ON
MONITOR MONITOR TERMINATE
N A\
\r - - - = ""l
v | ERROR l
SIGNAL
msC | PROCESSOR “‘“"“‘—‘
g [1

Figure 3~1: Task Scheduling Subsystems

INTERMETRICS INCNRPORATED + 701 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

A e

N SRR 1 o

-3~

PN Aty e o A Pt 8 R g et o v s o

LA

R,
5
A
S

* BE1¢0 SLIISNHOVSSYW "3DAIHENYD + INNIAY QHOONOD L0 » QILYHOJHOON! SOIHLIWHILNI |

0v8L-199 (£19)

{

TYPICAL BY TASK BY OTHER PARAMETERS

PMNEMONIC ITSELF TASK

1. LOAD —mm-- PHASE LOAD ONLY------ PHASE 1D, LOAD SOURCE

2. REMOVE YES YES TASK 1D

3. SCHEDULE He YES TASK ID, COMDITION (TIME, EVENT)
CYCLIC/NON-CYCLIC , PRIORITY

4, EXIT YES NO NONE

5. WAIT YES NO CONDITION (TIFE, EVENT)

6. TERMINATE YES YES TASK 1D

7. CANCEL YES YES TASK ID

8, CHANGE PRIORITY* YES YES TASK ID, PRIORITY

* DOES NOT AFFECT STATE

TABLE 3-1:

TASK SCHEDULING COMMANDS

OrgL-199 (£19) « 88120 SLLISNHOVSSYI FOAEWYD + NNIAY QHOONOD 10L + OILYHOJIHOONI SOILLIWY

“VE"‘

o
-

NON-RESIDENT

(e—

(by other Task)

(Cyclic Task)

NOILTANOD ™

WATT 2 WAIT 1

----- Transition not under *ask State Control

Figure 3-2: TASK STATE DIAGRAM
(NORMAL, CONDITIONS)

Eall
<%

Y
)

JNOD 104 + Q3LVHQIHOONI SOILLINHALNI

¢
N

SNNIAV QYO

- BEL20 SLIASNHOVSSVYIN 'IDAIMENVD -

ov8L-199 (£19)

_SE-

TERMINATE

(\A READY 2 }
-/

TERMINATE

TERMINATE

EXECUTING

Figure 3-3:

TASK STATE DIAGRAM
{ANOMAT,OUS CONDITIONS)

B UNUURDTNEIC S

3.5.1 TASK STATE CONTROL (TSC)

3.5.1.1 Subsystem Diagram. Reference Figure 3-1.

3.5.1.2 BSubsystem Activation. TS8C is activated when a
process executes one of the Task scheduling commands listed
in Table 3-1. It is also activated by the Time Monitor and

the Event Monitor when either one detects a condition which
affects the state of a Task.

3.5.1.3 Subgystems Activated. TSC activates Processor

Allocation when an executing task signals that it releases
the processor (REMOVE, EXIT, or WAIT).

The Time Monitor is activated when TSC needs the Time
Monitor to "wake up" TSC at a specific time.

The Error Signal Processor is activated after a
TERMINATE command has activated Task State Control.

3.5.1.4 Functional Description. TSC is responsible for
maintaining the appropriate states of the Task from the
inactive state through the ready state. All Task Scheuvling

commands (see Table 3-1) are handled in the first place by
TSc.

state.

TSC insures that a Task appears only once in the ready

Attempts to ready a Task which is already in the

ready state result in a system error. However no such

tests are performed for any of the other states.

TSC handles "wait for time" conditions in conjunction

with the Time Monitor. It insures that the Time Monitor

is always aware of the next wait time which conditions the
state of a Task.

TSC handles "wait for event" conditicens in conjunction
with the Event Monitor. The Event Monitor provides TSC,
at the start of an interval, with a list of events set
during the previous interval.

_.3/5__

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

Vet i

e e i

e e A~ e s

i L i it

TSC activates the Error Signal Processor when a
currently executing task signals a TERMINATE., The Errox
Signal Processor, when activated, runs as a subprocess of
the executing Task process. If the currently executing
Task process signals termination for another task, TSC
assures that execution will, eventually, resume at the
Error Signal Processor.

3.5.1.5 Parameters. None.

3.5.1.6 Task Commands. The Task commands affecting TSC
are summarized in Table 3-1, Task Scheduling Commands.

3.5,1.7 Initialization. System Initialization must initialize
the states of all Tasks loaded into the system to the appro-
priate state. The desired initial states of the Tasks are
somewhat application dependent, but at least one task must
initially be set to ready, or be waiting for a time cendition.

3.5.1.8 Potential Modifications. TFor specific applications

several possible simplifications (resulting in execution
time and core savings) can be visualized.

First of all, the Forced End concept, may not be used
or may be simplified. The Forced End logic is rather
cumbersome. Any application should carefully review the
real need for the Forced End Concept. A simplification
can be to make the state transitions from Ready 2/Wait 2
identical to that for the Ready 1l/Wait 1l states.

Furthermore, the Task Scheduling commands may not all

i be necessary or specific commands may not require all possible
parameters. For example, the REMOVE conmand may be super-
3 fluous or even the "time wait" condition may be unnecessary.

-~
+
§

e

1 "'37"
_ INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

¢
.‘ . e e PP, [e Se s i —— e i
O e R AR L . S . . ; RS

ey 7 ccadkibomm v . g Mk ol o ‘ . ity - oo SO T

D o R

3.5.1.9 Imptementation Notes. TSC is one of the most
commonly used O/S scxvices. It is therefore important to
optimize the appropriate components for time. As it is
also one of the most core consuming subsystems, some

difficult trade-offs must be anticipated during the imple-
mentation,

~38~
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 -

e T

(617) 661-1840

3 S ST e e s st

]

. TIPS
e e e e e e i

e g g 7 oo e

3.5.2 EVENT MONITOR(EM)

3.5.2.1 Subsystem Diagram., Sece Figure 3-1l.

3.5.2.2 Subsystem Activation. EM activates Task State Control
each interval to signal which events are set.

3.5.2.4 Functional Description. Events are used in a
SCHEDULE or WAIT command to indicate an activation condition.
Events can be set from any Task. The setting of Events is

totally under user control. There are currently no system
events defined.

Events stay set until an action results. That is until
they have been used as an execution condition. The Event
Monitor signals Task State Control which Events are set.

- If a Task process is waiting for any of these Events, the
process will be released and the event will be reset. If
no Task process was waiting the Event will remain set.

3.5.2.5 Parameters. The maximum number of events used must

be changeable by the user.

3.5.2.6 Task Commands. SET - is used to turn on the desired

Event.

b ‘ 3.5.2.7 1Initialization. System initialization must insure
| that all Events are reset.

: 3.5.2.8 Potential Modifications. This is a subsystem that

could be subject to expansion. The additional capabilities
described in the HAL/S Language specification may be desirable
for certain applications.

e ~39-
_ INTERMETRICS INCORPORATED - 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

I Sy e e e - et s s e

T T /2
Des - g Bt e }

3.5.2.9 Implementation Notes. This subsystem does not

strictly have to be handled as a Task. The reason for signalling
all Events set to Task State Control at one specific time is

that it may be more efficient than to invoke TSC each time an
Event is set. Also, it may enliance the testability of the
system. This approach may be changed during the design

phase if that turns out to be necessavy.

- -40-
I INTERMETRICS INCORPORATED - 701 CONGORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

o

;-

b

e

3.6 INPUT/OUTPUT

A basic knowledge of the SPSME modules, especially the
SPSME PCC is necessary to understand these I/0 subsystem
descriptions.

The Input/Output subsystem is one of the largest sub-~
systems. The requirements of the Input/Output are based on
an SPSME I/O0 configuration. The basic design approach as
reflected in Figure 3-4 is applicable to any I/0 configura-
tion. However, to be able to discuss the functions performed
by the subsystem as well as to describe the commands invoking
the functions a specific type of I/0 configuration must be
selected. For the NSSC~II Operating System the SPSME con- :
figuration was designated. :

The purpose of the Input/Output subsystem is to:

1, Simplify time related execution of Input/Output,

2, Simplify coordination between Input/Output and

related tasks,

3. Relieve the user of coding DEPI communication

sequences, and

4, Relieve the user of coding NSSC-II I/0 seqgquences,
The Input/OQutput subsystem does not perform any type
of data conversion. The user must be fully cognizant of
the contents of the PCC and the associated data formats.
When (eventually) standard equipment, such as a particular
type of mass storage or a particular type of display system,
is selected it will be possible to add "device managers"
to provide the user with a "higher level" of support. It
is also possible to provide more "symbolic" means for the
application programs to select the aprropriate PCC sequences.
However these are not now part of the requirements.

The Input/Output subsystem contains two major sub-sub-
i systems: The Input/Output Scheduler and the Input/Cutput

: Manager. The Input/Output Scheduler is fnvoked on

" " interval boundaries, and performs those operations which

R g ~41.
“;7 : .. INTERMETRICS INCORPORATED » 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

i oA

result in information transfer between some device and the
SPSME/NSSC-II. The I/0 Manager interfaces with the appli-~
cation programs. It transforms I/0 request into appropriate
commands to be executed by the I/0 scheduler (at the interval
boundaries) or to be executed immediately. These two sub-
gystems are discussed in more detail in the following sections.
There are two major types of commands: DELAYED
and IMMEDIATE DELAYED, DELAYED commands result in instruction
sequences which are executed on the timed, interval boundaries.
These are instruction sequences which result in communica-
tion between the PCC and the devices attached to the dataway.
IMMEDIATE commands are executed any time during the interval.
There is also an INVOKE comnmand. This command allows
user provided subroutines (called USER MONITORS in Figure 3-4)
to be activated, at specific¢’ intervals, by the INPUT/OUTPUT
Scheduler. They are activate. ny the INPUT/OUTPUT Scheduler
after it completes the apprepriate lists of Input/Output
instructions and before it exits.

These commands are described in further detail in the
following sections.

- 2

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

-

.

| arrocarron

/ [(—=—-- —- FROM TASKS/
PROCESSOR | OR DEVICE MGRS
) l

/
. ‘ = SO 3N A A T
INPUT/OUTPUT 1/0 <
—— O O..r,ar o]
/ErRaue)4 Oq 0 en TABLES
—<> —
rj/,u\\"\
. ";1 h‘b"

oo T T (= - 77 7
| USER | USER |
| MONITOR 1 == == HONITOR N j
[l
— v m— o wnt —— [o e piwe e oaem

Figure 3-4: INPUT/OUTPUT SUBSYSTEMS DIAGRAM
~43.-

b
k’wﬁp e coe e e b ege R e e i e s

!
v

INPUT/OUTRPUT
MANAGER

; INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

R A

o T et T e g TR T

3.6.1 INPUT/OUTPUT SCHEDULER (IOS)

3.4,1.1 Subsystem Diagram

e s o e ‘
¥

=
| PROCESSOR
!
I

ALLOCATION
- amy .j\t;,:r — -
INTERVAL INPUT/OUTPUT
/FRAME L o) (o] —

COUNTERS SCHENULER
S N\
NS
,,n»’ﬁl) N
2" - ‘\\;
& \;%
A A
USER - P e E Esy » USER
MONITOR 1 | ° CT MONITOR N

3.6.1.2 BActivation. The I/0 Scheduler is activated through

Processor Allocation, normally as the first task within an
interval.

3.6.1.3 Activates. User provided subroutines (User Mcnitors)

are activated by the Input/Output Scheduler if commanded
to do so.

3.6.1.4 Functional Description. The Input/Output Scheduler
executes the instruction sequences contained in the I/0 Tables
at interval times indicated in the I/0 Tables., The I/0

Tables contain instruction sequences which result in issuance of

device commands by the PCC and/or the transfer of data
between the PCC and NSSC-~II.

Y-

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

s e

st

Y
m -%,,iv ", i : N L

Affter the I/0 Table exccution has been completed fox a L
specific interval, the IOS may invoke one or moxe uscr provided W
routines if it has been commanded to do so. This capability |
is provided to have a quick and simple method for the user to f&

check for certain data conditions and react accoxdingly. The
usex routine can perform any function normally allowed to a
task, It may be used as an alternate Task scheduling method,

3.6.1.5 pPaxameters. The maximum number of user routines as)
well as the maximum size of the I/0 Tables activated must be /-
specifiable by the user.

3.6.1.6 Commands. The I/0 Scheduler works strictly from the
I/0 Tables. All commands are interpreted by the I/0 Manager

(reference Section 3.6.2). The DELAYED type commands affect

the I/0 Tables. These commands (almost) directly match the : |
available DEPI Service Task actions and are summarized in

Table 3-2,

The INVOKE command also affects the I/0 Tables and is
used to signal which user provided should be activated by
the 1I/0 Scheduler.

Any conmand can be subject to a time condition of the form
FROM....TO,...EVERY... to indicate the period of time over
which the command is executed at the specified cycle rate.

If no time condition is specified the command is executed one
time at the next interval boundarxy.

3.6.1.7 Initialization. System initialization needs to reset
the I/0 Tables.

3.6.1.8 Potential Modifications. Very obviously, different
"I/0 Boxes" may be used in various applications. This does not
need to affect the scheduling concept of the Input/Output
Scheduler. The format and dimensions of the I/O Tables may

~45-
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840 j

et i Y oo

such that it "does not care" which I/0 instructions are

executed, modifications could be limited to the I/0 Table |

access mechanism, l
Sooner or later it may become desirable to allow the

application programs to access the data from/to external

devices symbolically, e.g. by speecifying a measurement

number. This implies certain additional on-line and off~-

line supporting functions,

drastically change however. If the I/0 Scheduler is designed 1

3.6.1.9 Implementation Notes., The (to be designed) DEPI
may simplify the 1/0 software to some degrece. For example,
multiple word Read or Write logic may be handled in the
DEPI. Also the fixed PCC storage locations for pointer
blocks may be wired into the DEPI. However, no assumptions
have been made in these requirements in regard to any such
capabilities,

It must be possible to replace the Input/Output Scheduler
with an I/0O simulator module for debug purposes. This
module, which is part of the implementation version must be
able to scan the I/O Tables and provide simulated data for
these commands.

. ~46-
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

o¥g8L-199 (£19)

+ 82120 SLLASNHOVSSYW '3DAIHENYD - SﬂNBNVGHOONOOLOL'GBLVHOdHOONISOMLEWHSLNI}

...LV_

COMMAND

EXECUTE SEQUENCE (NO RAM)

EXECUTE SEQUENCE (W. RAM)

PUT TO RAM

GET FROM RAM

EXECUTE CMND (PCC)

EXECUTE CMND (NSSC-II)

GRADED L

EXECUTE USER MONITOR

S0S-ITI SPSME COMMANDS

PARAMETERS

1) SEQ. PTR. SELECT
2) ADDRESS TO STORE

PTR.
PTR.

SELECT
SELECT

3) ADDRESS TO STORE

1) SEQ.
2) RAM,
1) RAM.
2) RAM.
n) RaM.
1) RaM.
2) RAM.
n) RAM.
1) SEQ.

2) WRITE DATA ADDRESS OR READ DATA ADDRESS

PTR.
PTR.

PTR.

PTR.
PTR.

PTR.

PTR.

SELECT
INCR.,

INCK.,

SELECT
INCR.,

INCR.,

SELECT

VALUE ADDRESS
STATUS

VALUE ADDRESS
VALUE ADDRESS
(OR'D STATUE

VALUE ADDRESS
WRITE DATA ADDRESS
WRITE DATA ADDRESS
VALUE ADDRESS

READ DATA ADDRESS
READ DATA ADDRESS

VALUE ADDRESS

3) ADDRESS TO STORE STATUS

1) CNAF CODE ADDRESS

2) WRITE DATA ADDRESS OR READ DATA ADDRESS

3) ADDRESS TO STORE STATUS

NOTE: 1. ALL VALUES ARE IMMEDIATELY ACCESSED AND STORED IN I/0O TABLES
2, COMMANDS CAN BE TIMED: i.e. FROM...TO.,.EVERY

TABLE 3-2:

50S-II SPSME COMMANDS - DELAYED

4

s 33
S
R 3
-

gy T e -

3.6.2 INPUT/OUTPUT MANAGER

3.6.2:1 Subsystem Diagram

e e B]

TASK
PROCESS

D e BT UL T S -—-nmun7u\-u--—-.

{
|
! DEVICE
| MANAGER
|

i
|
|
|
l

I/0 \ INPUT/
TABLES /4 OUTPUT

MANAGER

3.6.2.2 Activation. The I/0 Manager is activated any time

during an interval by a Task process (which could be a Device
Manager) .

3.6.2.3 Activates. None.

3.6.2.4 Functional Description. The I/0 Manager handles all
I/0 commands. DELAYED type commands (described under the I/O
Scheduler) result in entries to the I/0 Tables. IMMEDIATE
commands are executed prior to returning control to the appli-
cation program.

Thus the main purpose of the I/0 Manager is to coordinate
the execution of I/0 commands and the conversion of I/0
commands to physical I/0 sequences.

3.6.2.5 Parameters. WNone.

—48~

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

o A e

O\

—

3.6.2.6 Commands. All I/0 commands, in fact, pass through
the I/0 Managex. The DELAYED type commands result in entries
to the I/0 Tables. All commands listed in Table 3~2, with
the exception of EXECUTE USER MONITOR, can be executed

immediately. Additionally there is a CAMAC INITIALIZE command

which is always executed immediately.
Note however that, to ... 'n the intended concept of the
0/S organization, the DELAYED commands should be normally

used, IMMEDIATE COMMANDS should be used only when absolutely
necessary.

3.6.2.7 Initialization. None.

3.6.2.8 Modifications. The I/O Manager is wholly affected
if other than an SPSME configuration is used. The I/0

commands from the task, their interpretation, etc. is likely
to be completely different. The subsystem, in such cases,
must be replaced in total.

3.6.2.9 Implementation Notes. The Input/Output System may
eventually include device managers for standard devices
attached to SPSME, Standard devices are defined to be

devices for which the functions and communication protocol
are known and identical across applications. These may
include displays, mass storage, and other processors.

For the initial implementation one device manager needs
to be dazveloped to proof the cuncept. We propose to imple-

ment a computer communication module in accordance with the
Spacelab EC protocol.

-49-

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

UL A

o

ol

3.7 INTERVAL STATE RECORDER (ISR)

3.7.1 Subsystem Diagram

|
i PROCESSOR ! ACCESSIBLE
! ALLOCATION FROM TASKS
| ! AND TSE
! | I :
l......._...‘....._...;,..___."! ’
\\ - ,
i
. I
] !
: I
INTERVAL POINTERS
STATE Ol OF DATA
RECORDER TO BE
; RECORDED
IOC

3.7.2 Subsystems Activation

The Intexrval State Recorder is considered.a System
Task. As such it is activated under the control of Processor
Allocation. This activation is subject to the standard TsC
commands.

3.7.3 Activated Subsystems

= None.

3.7.4 Functional Description

)
ks

The ISR is a diagnostic aid. The purpose is to record
the state of key tables, events, and cther items at that

I

y ~50-
1 INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - GAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

.

i A

- . o - et bt 3infoain y g oy S OeAt o op o

e
S— e —— N

i

i

point in an interval where the Task Process environment
has been determined and none of the Application Tasks
Procesaces have yet been started. Of course, other re-
cording points within an interval may be used by simply
changing the priority of the ISR.

The intexvals during which specific items need to be
recorded can be selected by a combination of two methods.
First of all, the execution conditions of the ISR can
be controlled through the Standard Task State Control
conmands. Therefore, the ISR can be activated at various
periodic rates or upon occurrence of certain events.
Secondly, the ISR contains internal logic to record
items for selected intervals within a frame.

Note that the amount of information to be recorded
mast be carefully selected. First of all, all tasks execut-
ing during an interval must be completed during an interval.
The information to be recorded during an interval is,
therefore, restricted by the amount of execution time
allocated to the ISR. 1In early stages of testing, the
System Clock may be slowed to allow the desired recording
to take place. For operational testing, however, the
amount of information to be recorded must be carefully
controlled. Secondly the total amount of information to
be recorded over a period of time cannot exceed the
recording rate of the device used to retain the recorded
data.

3.7.5 Parameters

None.

3.7.6 Task Commands
None.

3.7.7 Initialization

None.

-51~

I INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

! 3.7.8 Potential Modifications
None.

3.7.9 Implementation Notes

The ISR can be used in two versions: a ground version

u and a flight version. The implemented version will include
a component to allow access to the Data Pointers Table

J from the TSE keyboard. Also the recording component

should be easily replaceable.

st

g

. -52-
& INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 6611840

—

7

Lm i

Es 4
-

4

3.8 INTERNAL ERROR PROCESSING

3.8.1 Subsystem Diagram

ERROR

ERROR
SIGNAL
PROCESSOR

SYSTEM
ERROR
MONITOR

l

[
PREDET.
ACTIONS

3.8.2 Subsystem Activation

APPLICATION
ERROR <
MONITOR

_ON/QFF ERROR

|

(

\:OPTIONAL >
ACTIONS

The Error Signal Processor is invoked either through
an NSSC~II machine check interrupt, program check interrupt,

or a SEND ERROR command.

3.8.3 Activated Subsystems

None .

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

v

~53~

e

Y

3.8.4 Functional Description

The Exror Signal Processor (ESP) analyses the invoking
erroxr (identified by a number) and transfers control to
either the System Error Monitoxr (for fixed predetermined
action) or to the Application Error Monitor (for dynam-
ically assigned, user defined, actions).

The Systems Error Monitor handles those errors which,
in the context of the System, are considered irrecoverable.
The action taken is to gather pertinent diagnostic infor-
mation, whenever possible, and enter the NSSC-II Wait
State.

The Application Erroxr Monitor (AEM) transfers
control to the location specified (by the user) for the
particular erroxr received.

3.8.5 Parameters
None .

3.8.6 Task Commands
1. SEND ERROR -~ is used by the task to invoke the
ESP and to indicate (by the error number)
the reason for the invocation.
2. ON ERROR ~ is used by task to indicate to the
AEM where to transfer control for a specific

error number.
3. OFF ERROR ~ is used by a task to undo a previously
specified action.
Note: Each of these commands has as a parameter an
error number. The error number consists of two integers;

the first one indicates an error group, the second indicates

the error number within the group. If only one number is
given, the action pertains to all errors within the indi-

cated group.

¥

S

ON ERROR also has as an additional parameter the label
where control needs to be transferred.

3.8.7 Initialization
None.

’ , 3.8.8 Potential Modification
It is possible that a user may want to modify the pre~
determined system actions or add additional actions.
i ; The Application Error Monitor may be omitted in a case
» g where the desired actions are few and/or do not vary dynam-
ically. It may also be omitted where AEM is contained within
the task complex, as is the case for HAL compiled tasks.

3.8.9 Implementation Notes
The implementation version will assume that the AEM
is contained within the Task Complex.

- ~55_
B "I INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

.

e e g e o

N cncailadinh o S

3.9 TEMPORARY STORAGE ALLOCATION (TSA)

3.9.1 Subsystem Diagram

R S

STORAGE
MAP

TEMPORARY
ALLOCATE...p| amoRAGE
DEALLQCATE M| ALLOCATION

3.9.2 Subsystem Activation
TSA can be activated from any Task.

3.9.3 Activated Subsystems
None.

3.9.4 Functional Description

Upon request TSA searches the storage map for the
requested amount of storage, updates the storage map,
and provides the starting address of the assigned storage

block. For deallocation the storage map is merely
updated.

3.9.5 Parameters

None.

-56~
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE +« CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

»
P X

3.9.6 Task Commands
l. ALLOCATE - used to request assignment of a numbex
of storage blocks (block size TBD). Unavailability
results in a System Exrror.
2. DEALLOCATE -~ used to request release of a
previously allocated number of storage blocks.

v 3.9.7 1Initialization
The storage map must be initialized by System - a
Phase initialize.

3.9.8 Potential Modifications
None.

3.9.8 Implementation Notes

This subsystem is useful only for programs translated
from Assembly Language. The utility is therefore limited.
It can be omitted from the implementation version.

e "‘57“‘
4 INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

e g s N P . . .
Foririn « ’ SR Ty] a £

5 e b A S e
e

[

ol e S S S S

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 6611840

4
L T TR “
%y o\ : Cw

3.10 INTERPHASE DATA STORAGE (IDS)

3.10,1 Subsystem Diagram

' INTERPHASE
ROVE -—p| pama

RESIQRE | STORAGE

3.10,2 Subsystem Activation

IDS can be activated from any Task.

3.10.3 Activated Subsystems
None.

3.10.4 Functional Description

The purpose of IDS is to retain data in a set of
locations which are not part of the Task complex and
return this data to the Task complex upon request.

It is particularly useful, when Phase Loads are used,
to transfer data between phases.

3.10.5 Parameters

The amount of storage to bhe set aside within the 0/S
to store Interphase Data must be modifiable by the user.

-58~

- E Toea

.])
. Y PRI (7 e L o

|

3.10.6 Task Commands

L. SAVE is used to indicate a consecutive block
of data to be safeguarded,

2. RESTORE is used to return the data to TASK space.

3.10.7 Initialization
None.

3.10.8 Modifications
None.

3.10.9 Implementation Notes
None.

-59~
& INTERMETRICS INCORPORATED » 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

| A
f ‘

|
} 8
’ -
; J
' .

g |
s ¥

3.11 SYSTEM INITIALIZATION (SI)

3.11.1 Subsystem Diagram

USER
DEFINED
PARAMETERS

erem i S s

3.11.2 Activation

|
|
l
!
farlll ol) v

IPL
STGNAL

s

i

TR ;um!f'r T e T T TR Y

INITIAL
PROGRAM
LOAD

SYSTEM

] ,
INITIALIZE ©O7 P\ map

/// STORAG;w\\\

Ao s m o s

System Initialization occurs whenever the NSSC-II
IPL signal is detected.

3.11.3 Activates
System

None.

Initialization termi;ates in an

"Idle" state waiting for the first interval interrupt to

= filNTERMETmCS|NCORPOHATED-

ke

IR i & e T LS

gt

o ma a

701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

e

ey

~60~

o

5

% = occur, which in turn allows Processor Allocation to start.

é 3.11.4 Functional Description

The IPL signal invokes the (microprogrammed) NSSC~II
i IPL function, which loads the software from a specified
device. The load module must be structured such that
the first process to he executed, after Initial Program
Load, is the System Initialization.

i O

St

¥

‘ ; System Initialization performs the initialization
for all subsystems in accordance with user provided
direction, SI also generates a storage map which s

4 subsequently to be used for storage allocation and/or
phase loads.

3.11.5 Parameters

= {\:‘ i

e TR

R Non=.

3.11.6 Task Commands
None.

3.,11.,7 Potential Modifications
A user may want o add application dependent

initializations to this module.

3.11.8 ;nitialization

3.11.9 Implementation Notes

It is not currently clear how the IPL function operates
in conjunction with SPSME. f“That is, the DEPI for the
NSSC~II is not yet defined in detail.

For the implementation version the IPL can always be
performed from the TSE.

.

*

f ~61-
> 'IlNTERMETRICS INCORPORATED - 701 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

SN RN Vo SR N - T X N Y ; A . . o A
E{"* - P I PP 7o e L . Y . . . »

&

{
I
"

I INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

v

3.12 PHASE INITIALIZATION (PI)

3.12.1 Subsystem Diagram

r e Svcom——— ———r -
! |

I PROCESSOR J
| aLrocaTIioN |
|

l;.—.. e, \ = e B o ——

\y

e
PHASE
LOAD

STORAGE PHASE

MAP - {INITIALIZE

3.12.2 Subsystem Activation

Phase Initialization is treated as a system task,
Activation, therefore, is through Processor Allocation.

3.12.3 Activated Subsystems
None ,

3.12.4 ' Functional Description

“Idle" Phase Initialization is the equivalent
of a partial System Injitialization. Additional tasks are

~62-

w s 5w Totets
- - e v

Y loaded into storage through Phase Load which transfers
n control to Phase Tnitialization. Phase Initialization
g updates the Task State Control information pertinent to

the new Tasks, updates the storage map and exits.
Lo Note that PI will continue over a number of intervals.
" Prior to activation, therefore, other tasks need to he

; deactivated, otherwise resource access conflicts may

i occur. The first application task to be activated must

' : be specified to Phase Initialization and must, upon
o activation, reactivate the other Tasks appropriate to this
Phase.

3.12.5 Parameters

None.

; 3.12.6 Task Commands
" None ,

3.12.7 Initialization
None.

3.12.8 Potential Modifications

It is anticipated that most applications will not
utilize this subsystem.

' ' 3.12.9 Implementation Notes

The implementation version will not contain this
subsystem.

, -63-
i ; INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACIHUSETTS 02138 - {(617) 661-1840

it 7 msmeesuc et S R e L R S

it

g

4,0 IMPLEMENTATION STANDARDS

The implementation standards that we are concerned
with in this requirements document are those critical to
the objectives of the NSSC-II Operating System. General
standards concerned with project control, documentation,
coding, and testing are purposely not discussed here as a
wide variety of satisfactory approaches exist. Any
comprehensive approach compatible with NASA/MSFC gquide-
lines is therefore acreptable.

The standards discussed in this section are those
associated with Application Program Interfaces, Performance,
and Component Modularity.

4.1 Application Program Interfaces

The NSSC~II 0/5 must accept programs generated by
the 5/360 FORTRAN IV G/H Compiler, the HAL/S - NSSC-II
Compiler, and the S/360 Assembler in the format output
by the S§/360 Link Editor. All communications between
application programs and the 0/S will be through SVC's.

HAL/S and FORTRAN use significantly different call
sequence formats. It is generally more efficient to
convert a FORTRAN call format to HAL/S call format than
vice versa. Therefore the 0/S routines will be
implemented such that they can be called directly from
HAL/S compiled programs. FORTRAN calls are passed
through a FORTRAN call conversion routine prior to
entrance to the actual 0/S routine. Assembly language
routines can use either format.

Other interface standards are described in the
HAL/S Operating System Interface Specifications rsor the
NSSC~II. These are compatible, i.e. do not interfere
with, the proper operation of FORTRAN or Assembler
generated programs.

-64-

| INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

RS e e

i .

i el

Fomemcd

el

| wethimiiond.

2]

&

B Sl Gy

4.2 Pe:formance

Generally the 0/5 is to be implemented to minimize
core usage because of the limited amount of memory
available on the NSSC-II.

However this does not preclude the most frequently
used 0/S services from being optimized for time.
Specifically the following subsystems will have
components which must be implemented to minimize execution
time: Interval Timer, System Clock, Processor
Allocation, Task State Control and Input/Output..

The storage utilization goal is to be able to fit
a minimum useful set of 0/S services within 8K bytes
while the maximum should not exceed 16K bytes for the
complete operating system. This may result in some scaling
down of the requirements.

The time utilization goal cannot be so clearly
stated. That is the maximum amount of time which may be
taken up by the 0/S services is highly dependent on the
usage by the application programs. However there is a
fixed minimum amount of time which is absorbed by the
Interval Timer, the System Clock, Processor Allocation,
and those routines which are normally invoked at the
start of each interval. Therefore there is a minimum
loss of time which is incurred even if no 0/S services are
explicitly invoked by the application programs.

Although we have no rational basis to select a specific
number, it seems reasonable tc aim for a maximum time
loss of 1-1.5 msec per interval.

-655~

1 INTERMETRICS INCCRPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 66*-1840

[PNSPPUUU —

“ 4.3 Component Modularity
As discussed in Section 2.0 OVERVIEW the "sub-
system modularity" does not imply any specific component

modulerity. The subsystem regquirements specify that
\ there ave tn be groups of components which, when executed,
perform the specified processes and associated function.
To establish a desired component modularity, additional
v guidelines must be provided. It should be noted that
& : such standards may be formed to conflict with the per-

f formance goals during the implementation. Trade~offs

} which weaken somewhat these standards set may occur.

Q i It should also be noted that these "standards" are

} described in terms of our goals rather than in terms of
size, scope, and interaction constraints. The latter

; , are well documented in the literature and are to be

l f considered techniques available to meet our standards.

4.3.1 Subsets

The component modularity must be such that 0/S
subsets can be generated relatively straightforward
through selection of subsets of modules. The capabhilities
of such subsets are identified under Implementation
Notes for each subsystem.

The design rules closely related to this requirement
are:

) : 1. One function per module
2. Loop free "uses hierarchy"

= 4.3.2 Modifications

The component modularity must be such that possible
changes (as identified under Modifications in Section III)
can be demonstrated to be possible.
The design rules closely associalted with this
i standard are:

ry -66“‘
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

E{ o e g e Y 7. T e T e e . i T MR i 0

3 [[SO |

f e Ll

3

f ot

o

s

vl §

L S

oLy

Lol 3

4 INTERMETRICS INCORPORATED

1. Locate specialized components in separate
modules

2. Intermodule interfaces must be designed to be
insensitive to the potential changes

4.3.3 Testability

The major potential problem in a "flexible purpose"
system is the reverification of a specific, adapted,
implementation. If the modularity standards described

in the preceding paragraphs are indeed strictly followed,

testability is naturally facilitated. However as noted
before, practical compromises may be necessary during
implementation. The point is that the most important
design rule applicable to testability is the strict
control of the loop free "uses hierarchy", i.e. an
explicit layering of components.

Note that the hierarchy is strictly a component
hierarchy, not a subsystem hierarchy. The sequences of
components which are executed to accomplish a subsystem
process form the hierarchy to which we are referring
here. Generally the subsystems start executing a
component on some level of the hierarchy and progress
through to the lowest level. The currently visible

major levels of the hierarchy are illustrated in
Figure 4-1.

» 701 CONCORD AVENUE - EAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

s

1

‘,////”//' APPLICAT? "~ Tagks

SYSTEW TASKS

pra—

EXECUTION

SUPPORT SERVICES_

MINIMUM
MACHINF

BARE MACHINE

Figure 4-1. Initial Layering Hierarchy

‘) e ——c S —

o

ey

s T——
a2 == S

e

s

st

srsmr

TR

L8

| ot |

{

5,0 HAL/S SUPPORT

SOS-II must be designed to support programs compiled
by the HAL/S NSSC-II compiler. In simplified terms this
means that all SOS-II services can be accessed by HAL/S
compiled programs. It also neans that cexrtain useful HAL
provided functions contained within a HAL program complex
require cooperative interfaces with SOS-II.

The purpose of this section is to provide an overview
of which HAL/S Language constructs have a meaning within
the context of S0S-II and which ones have not. Furthermore,
it describes how S0S~II functions, which do not have a
counterpart within the language, are accessed. The HAL/S
Programmers Guide (IR-63~4) is to be used as the reference
for this section. HAL/S statements which interface with
an operating system, if available are contained in the
following sections of the referenced document.

Section 31 - Interfaces with non-HAL/S code

Section 12 - Inpuc/Qutput

Section 13 - Real Time Programming I

Section 22 - Additional Input/Output Features

Section 23 - Real Time Programming II

Section 24 - Real Time Programming III

Section 25 - Error Recovery and Simulation

Section 26 -~ Data Storage and Access

Section 27 - HAL/S and Reentrancy

Appendix B - Built in functions

—-69~

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

[o

g

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

Section 31 - Interfaces with non-HAL/S code
S0S~IT services which are not provided through HAL/S
statements are accessed through the 0/8 SVC macro.

Section 12/22 - Input/Output
The HAL/S Input/Output statements are to be used only
to address TSE devices (keyboard, printer, magnetic tape).

Section 13/23 - Real Time Programming I/II

Although the HAL/S Real Time statements are actively
used under S0OS-II, their interpretation is not identical to
that implied by the HAL/S real time concepts. Their factual
meaning is as described under S0S~II Task Scheduling.

Major Differences are as follows:

e All task processes are independent.

e Time is interpreted as a frame/interval count.

® Event expressions are not allowed. Only single
events are handled.

e All events are unlatched, i.e. they are reset when
interrogated.

® SET is used to turn an event on,

Section 25 - Error Recovery and Simulation

S0S-II distinguishes between system errors and application
errors. S0S-II receives control whenever an error occurs Or
is sent. The associated error number is analyzed by SOS-II.
If it is a system error, S0S-II handles it directly. If it
is an application error, control is transferred to the Error
Recovery Executive which is part of the HAL/S program complex.

Section 26 ~ Data Storage and Access

S0S-II does net support the Update Block concept.

Section 27 - HAL/S and Reentrancy

S0S-II does not protect non-reentrant routines.

~70~

| =]

b et el

el 3

3

| S

Fabagt

Appendix B - Built in functions

Functions which require operating system support are
listed under Miscellaneous Functions. Their applicability
is described below.

CLOCKTIME - returns GMT

ERRGRP =~ as specified

ERRNUM ~ as specified

PRIO - not provided

RANDOM -~ as specified

RANDOM G - as specified

RUNTIME - returns values of intexval counters

NEXTIME (a) - not supported

-7 1~
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (6177 661-1840

e [- . e
e g g ard o A _wf" s R A

	0001A02.jpg
	0001A02.tif
	0001A03.tif
	0001A04.tif
	0001A05.tif
	0001A06.tif
	0001A07.tif
	0001A08.tif
	0001A09.tif
	0001A10.tif
	0001A11.tif
	0001A12.tif
	0001A13.tif
	0001A14.tif
	0001B01.tif
	0001B02.tif
	0001B03.tif
	0001B04.tif
	0001B05.tif
	0001B06.tif
	0001B07.tif
	0001B08.tif
	0001B09.tif
	0001B10.tif
	0001B11.tif
	0001B12.tif
	0001B13.tif
	0001B14.tif
	0001C01.tif
	0001C02.tif
	0001C03.tif
	0001C04.tif
	0001C05.tif
	0001C06.tif
	0001C07.tif
	0001C08.tif
	0001C09.tif
	0001C10.tif
	0001C11.tif
	0001C12.tif
	0001C13.tif
	0001C14.tif
	0001D01.tif
	0001D02.tif
	0001D03.tif
	0001D04.tif
	0001D05.tif
	0001D06.tif
	0001D07.tif
	0001D08.tif
	0001D09.tif
	0001D10.tif
	0001D11.tif
	0001D12.tif
	0001D13.tif
	0001D14.tif
	0001E01.tif
	0001E02.tif
	0001E03.tif
	0001E04.tif
	0001E05.tif
	0001E06.tif
	0001E07.tif
	0001E08.tif
	0001E09.tif
	0001E10.tif
	0001E11.tif
	0001E12.tif
	0001E13.tif
	0001E14.tif
	0001F01.tif
	0001F02.tif
	0001F03.tif
	0001F04.tif
	0001F05.tif
	0001F06.tif
	0001F07.tif
	0001F08.tif
	0001F09.tif
	0001F10.tif
	0001F11.tif

