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1. INTRODUCTION

This report gives a brief summary of the research accomplished under this
grant and a more detailed report on the activities during the last reporting
period, from July, 1979 to January, 1980. The major objective of this re-
search was to explore the application of singular perturbation theory for
deriving algorithms suitable for on-board, real-time computation of optimal
aircraft trajectory control. Minimum time intercept in three dimensions was
selected as a pilot problem formulation, and data for an early version F-4
aircraft was used to represent aircraft aerodynamic and propulsion character-
istics. The major products of this research are the derivation of nonlinear,
near-optimal feedback control laws that are readily implementable in an air-
craft flight computer, performance results for a variety of initial conditioms
(including optimal intercept at short ranges), and a point-mass three dimensional
simulation suitable for representing fighter aircraft under closed-loop optimal
control. A new grant has been initiated to utilize the results of this re-
search first in a piloted simulation at NASA Langley and later in an actual

flight test at the NASA Dryden research center.

2. SUMMARY OF RESULTS FOR 1978
The details of the research accomplished during the first 18 months are
documented in References [1] - [2]. At this stage it was felt that a major
milestone had been reached and the results were published in [4]. Reference
[1] presents the problem formulation and singular perturbation analvsis
of the position, energy and heading dynamics. Altitude and flight path

angle dynamics were not optimized. Reference [2] demonstrates the feasibilitv

of on-board computation of the optimal control solution. During this period



oot

-

the optimal control solution was implemented in a feedback form as a cuntrol
subroutine in a computer simulation of the F-4 aircraft. Since the altitude
and flight path angle dynamics were not optimized, a simple proportional
controller was used to calculate the required lift in the vertical plane
based on the optimal altitude derived from optimization of the instantaneous
energy, heading and relative position dynamics. Performance results were
obtained for a variety of intercept conditions and an estimate was obtained
of the CPU time and storage requirements for the control algorithm. 1In
addition, the analysis was extended to the case of intercept at short ranges.

This exhibits solutions that do not contain a constant altitude cruise leg.

3. SUMMARY OF RESULTS FOR 1979
The research this past year has been concentrated in four ain areas:
1. Optimization of altitude and flight path angle dynamics
2. Optimization for the short range case
3. Implementation and evaluation of a proportional-plus-integral
(P-I) controller for vertical lift calculation when altitude and
flight path angle dynamics are not optimized.
4. Off-line, open loop optimization using a conjugate gradient
numerical optimization program.
This section will detail the analysis for optimization of altitude and flight
path angle dynamics and then conclude with example numerical results for the

four areas cited above.

3.1 Optimization of Altitude and Flight Path Angle Dynamics

The analysis in this section assumes familiarity with the analysis in

(1. and [2]. The same notation is continued here. At this point the performance
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index was generalized from minimum time to include a term penalizing larce

flight path angles
2
J = 1+ ksin™ vy dy (1)
and in addition a constraint was imposed on the maximum value for y

Iy < /2 (2)

<
' —Ymax

The above modifications to the problem formulation do not alter the analysis
in [1] and [2].

Third Boundary Laver

The Hamiltonian in the third (altitude) boundary layer is:

Ll = W cos Yy (3)
2
H3 Hl (h,E,8,Y) - AEILRKV/qsw + ASZLng/WV cos Y + )hv sin Y
3
+ Vv (Y2 -Yz) 4+ v {LZ - W c032 Y-1Lt=0 (4)
1 " max 2 “max n

where Hl is the first boundary layer Hamiltonian evaluated at present values

of altitude (h), energy (E), heading (8) and flight path angle

= - 7
H (Xx cos s-rxy sin 8) V cos ¥y x- V_ cos Yo

1 o (o] VOT
2
+ vy (T=-D) V/W+ 1+ k sin"v (5)
El o
and
2 2
D° = quDO + KW~ cos Y/as (6)

The parameters Xx y A g A and A are known from previous outer and boundarv

v E 8
o |0 1 2

layer solutions. The controls are y and the hurizontal component of 1lift (Lﬁ).




So we have

3H3/3v = () (7)

@

3H,/

= 2 V W+ )\ ! Y - = () ]
5/ 3L Ag LnK‘/asl Sog/JV cos Y szLn l (8)

1 2

Note that v = 0 off the constraint bound and Ln can be determined as a

%
function of vy from (7). On the constraint bound Li = L;ax - '?cos“y and v

can be determined as a function of y. In either case, Ln and v can be
regarded as functions of y and other known parameters. Hence, we need onlv
combine (7) with (4) to compute the ontimum flight path angle (y3) and

corresponding costate (XV ). To do this we follow the procedure used in
3
the first and second boundarv laver and write

sin v

= { L S
s e e

where H, is the second boundary layer Hamiltonian

2
! = - + wv ,
h2 Hl AEILn KV/asW xaang/cx cos ¥ (10)

The maximization in (9) is performed over the range 0 < vy < Ymax' Where we
N

have used the fact that sign {Xh} = - gign {y} = siem {(h - h,} and h2 is

the optimum altitude from the second boundary laver. Since it is nossible

for H, to change sign it was decided to instead use the form

vy = arg {m%n (H,/sin v]} * sign {hz - h} (11)

Having determined Yq and Ln > lh can be computed usine (4)

3 3

)
) = -[H. =) “ KV/asW + ) wv s v A v 2
h, (¥ By *san3“/ cok ¥ }/¥ #la (12)




e L e Alaa che i o

FLIGHT-PATH ANGLE (DEG)

i -

T B

90 1

_ CA3E - I _

E = 43630 ft.
VT = 1200 ft/sec

3 = Bo = 16.1 deg

A = 43.0 deg
R = 887684 ft.

0 A B L3
42 40 38 36 34 32 30 28 26 24 22
ALTITUDE (FT. X 1000)

FIGURE 1. OPTIMUM FLIGHT-PATH ANGLE FROM THIRD BOUNDARY LAYER ANALYSIS




P W AT e ——

rT———T ————

Numerical results for y3 as a function of the altitude error for a
zero and non-zero heading errors are shown in Fig. 1. The effect of

the weighting parameter (k) in the performance index (1) is also shown.

Tourth Boundarv Laver

’ For solutions off the lift constraint bound we write the fourth boundary

| layer Hamiltonian in the form

2
- - R
Hé HJ(h,E,S.Y) XElK(.VLIW cos y + 6L1 + Z(GLnLn3
2
SLTYV g '-'1 =
+ an)\/qsw, + kaouLng/wV cos v + xysLiz/ V=0 (13)

-

where 5L1 and SLn are perturbations in the controls from the third boundarv

laver solutions.

£ = -
‘Ll Ll W cos ¥y (14)
s oLn = Ln - Ln1 (15)
-
Using the conditions H, = Qls 3H5/36L1 = (0 and 8H4/36Ln = 0 we obtain the
following solutions:
-
5L = 1, 2a8/2 . KV" cos v - L (16)
n, g, I n |
\ 4 2 1 3 |
[} 2 ?
3 = [-H W/ T=& x - 7 |
b le [ F3qs /«EIKX Ln,] sign (*f3 ) {17) |
4 |
|

The final 1lift and bank angle equations are

” 2 1
L = ([(Wecos v+ &L ,)" +L° ]° (18)
14 n
4
y = cau-l(L /L, ,) (19)
n, 14

-




If L in (13) exceeds L then we set L = L and reformulate the necessarv
max max

conditions to find the optimum bank angle. Letting

i, = L cos u (20)
i § max

L = Lmax sin u (21)

n

Then from 3H4/5u = () we obtain

tan u = (ASZIXY cos Y) * sign (¢° - 9) (22)

Using (22) in HL = () we can evaluate XY as one of the roots of

ol

AR; + BAY +C=20 (23)
where
2,2 2 2 2
- v - ”
A=g [Lmax/“ cos” v]/V (24)
B = 2% cos yg/V (25)
C s (. L /WU cos Y)2 -92 (26;
'S2 max> " = e
and
2 2 2 .
= H -2, (L ~ Wcos v) KV/asW + A, V gin v (27)
1 El max h3

In Appendix A it is shown that (23) will always have real roots with opposite sign.

So the root of (23) is chosen such that

sign {1 } = -sign {13 -v) (28)

Yith this value of ’v the optimum bank angle is computed using (22), taking

care to place u in the proper quadrant based :.so on the sign of {7] - v}




3.2 Numerical Results

This section documents the results of numerical tests made to verify the
analytical results in this report. The aircraft simulation model used ia this
study is the same as in [2]. The optimal control computation requirements,
including the third and fourth boundary layer optimization, were 0.07 seconds
for update and 50198 bytes of core space versus 0.03 seconds per update and
43724 bytes for the suboptimal control described in [2]. The increase in com-
putation time is primarily due to the third boundary layer computation, which

requires a numerical search over (l1).

Two test cases were investigated in the development of the fully optimized
control. The first test :ase in Case I from [2] starting at t = 87 seconds,
at which point heading error is near zero, with the aircraft moved to an altitude
of 40,000 feer while holding total initial energy constant, thus introducing
a large initial altitude error. This case is hereafter referred to as Case I-A.
The second test case examined is Case IIT in [2]. Case ITI was chosen for the
hard initial turn required of the aircraft for intercept, which resulted in a
commanded altitude above the climb path. The aircraft in this case is initially
close to the zero-heading-error optimum climb path. The inictial geometries in
the horizontal plane are displayed in Fig. 2. The trajectories were stopped at
200 seconds for Case I-A and at 60 seconds for Case III, displaying initial trans-
ient phases only. This is sufficient to show the effect (. the third and fourth
boundary layer optimization since the control solution converges to the second
boundary layer solution as the flight path angle =2nd altitude errors approach
zero. Figures 3 through 15 display actual and commanded flight path angle and
altitude histories and lift and bank angle histories for Cases I-A and III and

altitude versus mach number plots for Case III, both with fully optimized control.

and with proporticnal vertical lift control as in [2].
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In Case I-A the control failed twice due to numerical difficulties encoun-
tered when the altitude error became small. This can be seen in Fig. 7 where
the commanded flight path angle (GMD) discontinuously jumps to its constrained
maximum at approximitely 90 and 160 seconds. Note the altitude errors in Fig. 4
at these times. The computer implementation of the control algorithm called
for this when the first bracketed term of (11) became negative. The numerical
problem leading to the excursions can be traced to the fact that both the num-
erator and denominator in (11) asymptotically approach zero as the aircraft al-
titude approaches the second boundary layer commanded altitude (the optimal
flight path angle also approaches zero under these circumstances). It should

be noted that the calculation of AB in [2] takes the form:
2

2
ABZ (xElv KL /qsW - Hl) mVZ/Ln (29)

and is prone to considerable inaccuracy when the heading error is very small,

2

S iepav e S

since Ln approaches 0. Doubtless, the carryover of second boundary layer in-
accuracies into the thirc aggravated the numerical difficulties. It can be

shown, however, employing l'Hospital's rule, that (1l1) does in fact converge

to zero. W’ " this encouragement, modifications are currently being made to

the algorithm to circumvent these problems.

No discontinuities are seen in the Case III trajectory (Figs. 9, 11, 13)
since the third boundary layer control solution had not converged to that of
the second at any point. It is of interest in this case to note the appreciable
difference between the altitude versus mach plots for proportional and fully

optimized control, seen in Figs. 14 and 15.

Alchough no test trajectories were run fully to intercept, it is estimated,

based on use of the tabular first boundary layer data in [2] over straight-line

approximations for the intercept paths, that the time savings accrued in both
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Cases for full control optimization is on the order of 2 seconds. An exact

comparison will be made after modifications have been completed to avoid num-

erical difficulties, as cited above.

The development in [2] for range-matching to achieve optimal short range
intercept was tested with initial geometries similar to Cases I and III from
[2], placing the target at several values of initial range. The target altitude
was set at 20,000 feet for these tests. Horizontal plane plots of the resulting
trajectories are displayed in Figs. 16 to 21. The altitude histories and alti-

tude versus mach plots for these tests are exhibited in Figs. 22 to 26.

An attempt was made to improve the aircraft's suboptimal tracking of optimal
altitude commands through the implementation of a proportional-plus-integral
scheme for vertical lift. This was motivated by the inability of the suboptimal
proportional controller to accurately follow the first boundary layer descent
path. For this aircraft, the optimal descent path lies along the maximum mach
number boundary illustrated by the dashed line in Fig. 24. For the suboptimal
control, this corresponds to a ramp in the commanded altitude requiring a type
one controller for nulling the steady-state error. It is obvious from this

figure that a proportional controller results in a steady-state altitude error

during descent.

Initially, a simple addition of an integrator on altitude and error was
added to the proportional scheme already in use in the manner described in
Appendix B. This controller was tested on Case I-A. Profiles of actual and
commanded altitude as functions of time are shown in Fig. 27 for the original
proportional controller, while Fig. 28 reflects the inclusion of the integrator.
The considerable instability exhibited in Fig. 28 was due to coupling between

flight path angle (y) and energy rate (ﬁ) dynamics described more fullv in Appendix

B. On the basis of this problem, the controller was reformulated with time

PR Y LT Ve




constants compensated as functions of energy in the manner described in Appendix
B. This formulation was tested in the same manner as the first, resulting in

the altitude profile displayed in Fig. 29. With the encouragement of enhanced
stability and greatly reduced errore, the controller was tested on Case I-A to
intercept. Unfortunately, the controller became completely unstable at cruise
due to large coupling between energy rate dynamics and lift in that regionm,

this being due to an extremely low energy rate. Weighing the difficulties antic-
ipated in solving this problem against the expected benefits, no further work

will be done in this area.

=28
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APPENDIX A

This arpendix proves that the roots of the aquadratic exnression for XY
cbtained in (23) of section 3.1 are alwavs real and of oprosite sign. It
will also be shown that the fourth boundarvy layer controls arz asvmptotic

to those of the third.

From section 3.1 we have that, on the lift constraint
2 2

A\ + BA* +C=0 (A-1)
iy Y
where
7 9. 9 0] 2
A=g[L /W = cos” v]/V° (A-2)
max
B = 2¢g cos Y/V (A-3)
C= (A, L e/V cos Y]Z - ¢2 (A-4)
3, max”
= Q = -
% Hl(h,s,.,y,L Lmax) + thV sin v (A-5)

where Hl has been defined in (5).

The roots of (A-1) are as follows:

[ ——

S —
\ = [-B+ /B> - 4aC ]/2a (A=)

-

where the term under the radical is

e o L e o D ot o b

2 / 41 2 "/ 2.2 3
- = [ TWy© - og/T) = (X VAC 4D X ;
B 4AC (oL xz/. ) (oLmaxy/x ) (AsoL g” /wve) t

max
2 2
+ (A, (L axg/VW) / cos y¥)7] (A-7)

) m

For the value of this exnression to remain non-necative it is necessarv

that
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2

9 2
"+ [1 - (L ax/‘»‘ cos v)°] [\, a/V]" >N (A-R)

m g,

or

2

2
%" > [L

) ) 2
- = MAdd = -Q
e cos” v] [Aeog/ cos v] (A-9)

In the third boundarv laver it can be seen that
) 9

L =L a2 W™ cos” vy (A-10)
- max

[ =2 ]

Also, the third boundary layer Hamiltonian in (4), evaluated at the con-

ditions under consideration is

Hy= 0+, L, 2/WWcosy29 (A-11)
2 max

The product AS . Ln is always negative, so (A-10) can be rewritten
2

$> |2, L e/VV¥ cos v| (A-12)
- fp " nax

Combining (A-10) and (A-12) gives us (A-9) assuring us that the roots of (A-1l)
are real.
Adressing the signs of the roots (A-6), it is obvious that, in the
quadratic formula, the term under the radical must have a dominating maenitude
for two different siens to occur. This is tantamount to requiring that
AC <0 (A-13)
Since it can be seen from (A-2) that A > 0 where Lmax > 17, then we must have that
c<0 (A=14)

From (A-4) and (A-12) it can be seen that this is indeed the case.

Finallv, to nrove the asvmptotic behavior of the fourth boundarv laver
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controls, we will show that 6Ll and SLn both tend to zero as the current flight
path angle approaches its third boundary laver optimal value (73). From the

fourth boundary laver analvsis we have that, off the 1ift constraint

9
ana = [x; qsg/ZAleV cos v - Ln3] (A-15)

2 1.
5L14 = [-H3qSW/XGIKV -3 Ln4] (A-16)

We note from (8) that values of Ln satisfying BH/BLn = () off the lift

3
constraint are

5
= ) 2 = =
Ln3 s"qsg/ AEIKV cos v, (A-17)

It is evident from the above that 6Ln in (A-15), being continuous, will
4
asympotically approach zero as the current flight path angle (y) - Yqe

Turning to SL., in (A-16) it seen that SL_ and H, will both approach
14 n 3

4
zero y - 73
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APPENDIX B

This appendix documents the derivation of a proportional-plus-integral
scheme for sub-optimally computing vertical 1lift in the simulation. Figure B-l
illustrates a straightforward addition of a term integrating (hc - h) to the
provortional controller shown in Figure 6 of [2]. This approach proved un-
satisfactory due to the interaction of vertical 1lift with aircraft energy
rate, which was not accounted for, and which resulted in unstable behavior.

The dashed line in Figure 1 models the effect of vertical 1ift (Ll) on
energy rate (ﬁ), and is seen to act as an outer loop around the original
model for the third order P-I controller.

On the basis of this the control gains K KY and Kh, defined by+

I’

KI = 1/1'I (B-1)
KY = l/rY (B=2)
K.h = l/rh (B=3)

were redisigned to account for E dvnamics. The term hc(E) represents the
optimum climb (descent) altitude schedule as a function of energy level.
A linearized perturbation block diagram is shown in Figure B-2. The

linearization is about L = W, where

xE = 3hc/3E (B=4)

K: = -3E/3E = 2KV/qs (B-5)

The characteristic equation for this svstem is given bv

+

and 1, in Figure 6 of [2].

T, and T, here correspond to 1]

- h
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3 2
< ak + aK + . = 0 =
g™ + [1\Y + YKh]s + KY[Kh I]s KYkI 0 (B=6)

where

as= mKEKﬁ cos y (B=7)

If we arrange the poles of the svstem according to

2
(s + xl) (s” + Kzs + x3) = 0 (B-8)
where
Kl > 10 wn (B-9)
KZ = Zsmn (B-10)
. 2 B-11
1\3 W (B-11)

then we can compute the gains equating the coefficients of like powers

of s in (B-6) and (B-8):

2
K, = K + Ky - a(xlx2 + Ks) + a'K K, (B-12)
= o - -1
K (xlk2 K, ax1K3)/1<Y (B-13)
XK = K1K3/AY (B-14)

Note that "a" from (B-7) is upndated continuously during a trajectorv and
represents a compensation term to account for E dvnamics. Setting a =10

reduces the solution to the form illustrated in Figure B-l.
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