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1. INTRODUCTION

This report gives a brief summary of the research accomplished under this

grant and a more detailed report on the activities during the last reporting

period, from July, 1979 to January, 1980. The major objective of this re-

search was to explore the application of singular perturbation theor y for

deriving algorithms suitable for on-board, real-time computation of optimal

aircraft trajectory control. Minimum time intercept in three dimensions was

selected as a p ilot problem formulation, and data for an early version F-4

aircraft was used to represent aircraft aerodynamic and propulsion character-

istics. The major products of this research are the derivation of nonlinear,

near-optimal feedback control laws that are readily implementable in an air-

craft flight computer, performance results for a variety of initial conditions

i	 (including optimal intercept at short ranges), and a point-mass three dimensional

simulation suitable for representing fighter aircraft under closed-loop optimal

control. a new grant has been initiated to utilize the results of this re-

search first in a piloted simulation at NASA Langley and later in an actual

fligh t_ test at the NASA Dryden research center.

2. SUMMARY OF RESULTS FOR 1978

the details of the research accomplished during the first 18 months are

documented in References [1] - [3]. At this stage it was felt that a raior

milestone had been reached and the results were published in [4]. Reference

[1] presents the problem formulation and singular perturbation analysis

t
of the position, energy and heading dynamics. altitude and flight path

angle dynamics were not optimized. Reference [2] demonstrates the feasibility

of on-board computation of the optimal control solution. During this perioa



the optimal control solution was implemented in a feedback form as a control

i

t
subroutine in a computer simulation of the F-4 aircraft. Since the altitude

Y	 j
I	 and flight path angle dynamics were not optimized, a simple proportional

controller was used to calculate the re q uired lift in the vertical plane

based on the optimal altitude derived from optimization of the instantaneous

energy,heading and relative position dynamics. Performance results were

obtained for a variety of intercept conditions and an estimate was obtained

of the CPU time and storage requirements for the control algorithm. In

addition, the anal ysis was extended to the case of intercept at short ranges.

This exhibits solutions that do not contain a constant altitude cruise leg.

3. SLIAMARY OF RESULTS FOR 1979

The research this past year has been concentrated in four Sin areas:

1	 1. Optimization of altitude and flight path angle dynamics

J	 2. Optimization for the short range case

J	 3. Implementation and evaluation of a proportional-plus-integral

(P-I) controller for vertical lift calculation when altitude and
1

flight path angle dynamics are not optimized.

4. Off-line, open loop optimization using a conjugate gradient

numerical optimization program.

Ihis section will detail the analysis for optimization of altitude and flight

path angle dynamics and then conclude with e::ample numerical results for the

four areas cited above.

3.1 Optimization of Altitude and Flight Path Angle Dynamics

The anal ysis in this section assumes familiarit y with the analysis in

11 	 The same notation is continued here. At this point t!u performance

-2-
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index was generalized from minimum time to include a term nenalizine laroe

flight path angles

J a	 1+ k sin  y dy	 (1)

and in addition a constraint was imposed on the maximum value for y

IYI ` Ymax < n/2	 (2)

The above modifications to the problem formulation do not alter the analysis

in [1] and (2].

Third 3oundary Laver

The Hamiltonian in the third (altitude) boundary layer is:

L 1 . W cos Y	 (3)

H 3 - H l (h,E,3,Y) - a E L2KV/ qsW + a 3 Lng/WV cos Y + a V sin Y
1	 2

+ V  
(Y 
max-Y2) + v

2 (L max- W` cos t Y - Ln} - 0	 (4)

where H l is the first boundary laver Hamiltonian evaluated at present values

of altitude (h), energy (E), heading (3) and flight path angle

H l 	(a x cos 3+.1v sin 9) V cos Y - av 
'^T 

cos YT
o	 •o	 •0

+ YF (T - Do ) V/W + 1 + k sin	 (5)

and

Do = g s C D + KW2 cos2Y/as
	

(6)
0

The parameters a x , l v , X 	 and a s are known from previous outer and boundary
o	 . 0	 1	 2

laver solutions. The controls are Y and the :.,jrizontal component of lift (L1).

-3-



l .
So t•7e have

M 3 /3Y - 0	 (7)

)H 3 /)Ln = 2^E L
nr.• /asV + 1 g Q/N17 cos Y - 2v 2 Ln	1	 (`^)

^	 1	 2

`cote that v - 0 off the constraint bound and L n can be determined as a

2

n
unction of Y from (7). On the constraint bound L 	 Lm̀ax - '. cos Y and v

can be determined as a function of Y. In either case, L and v can be
n

resarded as functions of v and other known parameters. hence, we need onl-.,

combine (7) with (4) to compute the ontimum flight nath ancle (v 
3) and

correspondinc costate (a ). To do this we follow the procedure used inV 
3

the first and second boundar y laver and write

Y 3	 arg {max ( H^sinE^^^Y)] }	 si gn {h2 - h}	 (^)

where H, is the second boundar? laver Hamiltonian

F,, = 11 1 - aE Ln KV/nsW + a^ Lg/^N cos Y	 (1^)
1	 2 

n

(	 Tae -iaximization in (9) is performed over the ran ge 0 < .( < v	 , where we

have used the fact that sign (a h 1 _ - sign {Y} -	 si m-n {h - h,1 and h I is

the onti-num altitude from the second boundar •r laver. Since it is -ossible

for H,, to chan ge sicn it ..,as decided to instead use the form

3 = ar q, {min (H, /sin Y]} • si gn 'h, - h 1	 (11)

Havin g determined v3 and Ln , )h can be comruted using (4)
3	 3

-Lul - ' E Ln riV /ps;v + X^ Ln c/^.11 cos %- 1/'' sin	 (12)
1	 ? 3

-4-
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Numerical results for Y 3 as a function of the altitude error for a

zero ;lad non-zero heading errors are shown in Fig. 1. The effect of

the weighting rarameter (k) in the performance index (1) is also shown.

)urth 3oundar,7 Laver

For solutions off the lift constraint bound we write the fourth boundary

laver Hamiltonian in the form

H , - H 3 (h,E,s,Y) - A E K(2 M 1W cos Y + 6Li + 2(6LnLn

1	 3

2

	

+ `Ln)V / q sw , + '% 81 Ln3/«' cos	 + XY : L1 1 /M - 0	 (13)

where :L 1 and iLn are •p erturbations in the controls frc •m the third boundary

laver solutions.

L1 - 'd cos v	 (14)

L	 L - L	 (15)
n	 n	 n,

Usin+z the conditions H V - 0, )114 /)6L l - 0 and ;P 4 /)ELn - 0 we obtain the

followin g solutions:

:L, ^,as/: _ KV2 cC3	 - L	 (15)
n,	 ,	 1	 n3

^L14	 Ea ^_H rls?•'/ k KV-6Ln J ` 	 sign (Y 3 - v)	 (17`
1	 4

The final lift and bank angle enuations are

191)
L - (( 'y cos ! + dL 14 )` + Ln J	 (19)

4
- Cali - ` (L /L14 )	 (19)

i
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If L in (13) exceeds L	 then .e set 1. - L	 and refo mulate the necessary
max	 max

condicion3 to find the optimum bank ancle. Letting

L 1 - L	 comax	 s u(20)

L  = Lmax sin u
	 (21)

nien from 3H4 /3u - 0 we obtain

tan u - (a
3., % a cos Y) • sign (m - m)

	

Y	 o

?:sin ,z (22) in F."	we can evaluate a Y as one of the roots of

AN + BX + C - 0	 (23)

where
IN	 n	 22

A - g` (L ` N - cos - Y)/V	(24)max

B - 20 cos YA/V	 (25)

C ' 0 L;/' t' cow Y) 2 - :2	 (26;
52 max

and

? - H1 - ),E (L^iar
	

W cos 2•+ 	 h) KV/asW + a	 s{n	 (27)

1 	 3

In appendix a it is shown that (23) will alwa ys have real roots with opposite sign.

Fo the root of (=3) is chosen such that

sign (N
Y

}	 -si¢n (Y 3 - ^)	 (2q)

''ith this value of *,, the o p timum bank anrle is computed using. (22), taking

care to place .. in the proner quadrant based _so on the sign of ;Y 3 - ,}

(22)

L



1	 3.2 Numeiical Results

1

	 This section documents the results of numerical tests made to verif y the

analytical results in this report. The aircraft simulation model used in this

study is the same as in [2]. The optimal control computation requirements,

including the third and fourth boundary laver optimization, were 0.07 seconds

for update and 30198 bytes of core space versus 0.03 seconds per update and

43724 bytes for the suboptimal control described in (2). The increase in com-

putation time is primarily due to the thud boundary laver computation, which

requires a numerical search over (11).

Two test cases were investigated in the -:evelopment of the fully optimized

control. The first test _ase in Case I from [2] s,arting at t - 87 seconds,

at which point heading error is near zero, with the aircraft moved to an altitude
1

of 40,000 teer while holding total initial energy constant, thus introducing

`	 a large initial altitude error. This case is hereafter referred to as Case I-A.

The second test case examined is Case III in [2). Case ITI was chosen for the

hard initial turn required of the aircraft for intercept, which resulted in a

commanded altitude above the climb path. The aircraft in this case is initially

close to the zero-heading-error optimum climb path. The. initial geometries in

i
the horizontal plane are displayed in Fig. 2. The trajectories were stop ped at

i
200 seconds for Case I-A and at 50 seconds for Case III, displaying initial trans-

ient phases only. This is sufficient to show the effect <_ the third and fourth

boundary layer optimization since the control solution converges to the second

boundary laver solution as the flight path angle and. altitude errors approach

cero. Figures 3 through 15 display :ctuhl and commanded flight path angle and

altitude histories and lift and bank angle histories for Cases I-A and III and

I
altitude versus :each number plots for Case III, both with full y op timized control.

and with proporticnal vertical lift control as in [2].

-8-'I



	

i	 ?n Case I-A the control failed M ce due to numerical difficulties encoun-

tered when the altitude error became small. This can be seen in Fig. 7 Where

the commanded flight path angle (GM) discontinuously jumps to its constrained

maximum at approximately 90 and 160 seconds. :Tote the altitude errors in Fig. 4

at these times. The computer implementation of the control algorithm called

for this when the first bracketed term of (11) became negative. The numerical

problem leading to the excursions can be traced to the fact that both the num-

erator and denominator in (11) asymptotically approach zero as the aircraft al-

titude approaches the second boundary layer commanded altitude (the optimal

flight path angle also approaches zero under these circumstances). It should

be noted that the calculation of X $ in [2] takes the form:

2

a a^ _ (a E V2 _KLn 2 /qsW - H1) mV 2 /Ln	(29)
1

and is prone to considerable inaccuracy when the heading error is very small,

since L  approaches 0. Doubtless, the carryover of second boundary layer in-

accuracies into the thirc. aggravated the numerical difficulties. It can be

shown, however, employing l'Hospital's rule, that (11) does in fact converge

to zero. W '- this encouragement, modifications are currently being made to

the algorithm to circumvent these problems.

No discontinuities are seen in the Case III trajectory (Figs. 9, 11, 13)

	

1	

since the third boundary layer control solution had not converged to that of

	

1	 the second at any point. It is of interest in this case to note the appreciable

	

1	

difference between the altitude versus mach plots for proportional and fully

optimized control, seen in Figs. 1 l̂  and 15.

although no test trajectories were run fully to intercept, it is es=imated,

based on use of the tabular 'irst boundary layer data in [2] over straight-line

'	 approximations for the intercept paths, that the time savings accrued in both

-9-
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I.	 Cases for full control optimization is on the order of 2 seconds. An exact

I
comparison will be made after modifications have been completed to avoid num-

erical difficulties, as cited above.

The development in [2) for range-matching to achieve optimal short range

intercept was tested with initial geometries similar to Cases I and III from

(2), placing the target at several values of initial range. The target altitude

was set at 20,000 feet for these tests. Horizontal plane plots of the resulting

trajectories are displayed in Figs. 16 to 21. The altitude histories and alti-

tude versus mach plots for these tests are exhibited in Figs. 22 to 26.

An attempt was made to improve the aircraft's suboptimal tracking of optimal

altitude commands through the implementation of a proportional-plus-integral

scheme for vertical lift. This was motivated by the inability of the suboptimal

1.
proportional controller to accurately follow the first boundary laver descent

path. For this aircraft, the optimal descent path lies along the maximum mach

number boundary illustrated by the dashed line in Fig. 24. For the suboptimal

	

1.	 control, this corresponds to a ramp in the commanded altitude requiring a type

one controller for nulling the steady-state error. It is obvious from this

figure that a proportional controller results in a steady-state altitude error

during descent.

Initially , a simple addition of an integrator on alt:=ude and error was

added to the proportional scheme already in use in the manner described in

	

1
	 appendix B. This controller was tested on Case I-A. Profiles of actual and

commanded altitude as functions of time are shown in Fig. 27 for the original

proportional controller, while Fig. 23 reflects the inclusion of the integrator.

The considerable instability exhibited in Fig. 23 was due to coupling between

flight path angle (y) and energy rate (E) dynamics described more fully in .Appendix

I

B. On the basis of this problem, the controller was reformulated with time

i



constants compensated as functions of energy in the manner described in Appendix

B. This formulation was tested in the same manner as the first, resulting in

the altitude profile displayed in Fig. 29. With the encouragement of enhanced

stability and greatly reduced error?, the controller was tested on Case I-A to

intercept. Unfortunately, the controller became completely unstable at cruise
	 l

due to large coupling between energy rate dynamics and lift in that region,

this being due to an extremely low energy rate. Weighing the difficulties antic-

ipated in solving this problem against the expected benefits, no further work

will be done in this area.
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APPENDLC A

This app endix proves that the roots of the quadratic exp ression for X

+	 obtained in (23) of section 3.1 are always real and. of opposite si gn. It

rill also be shown that the fourth boundary laver controls are asymptotic

to those of the third.

From section 3.1 we have that, on the lift constraint

AnY + Ba 2Y + C - 0 	 (A-1)

:.here

A = g`[L 
max- 

/ T%'ax` /t' - cos ` y
l/V_	

(A-2)

3 = 2@g cos Y/V	 (A-3)

C =2Lmax"Y Al' cos Yl 2 - Q -	 (A-4)

b = H1(h,E,°,Y,L = L 
max	 h

)  + a V sin Y	 (A-5)3

where H 1 has been defined in (5).

The roots of (A-1) are as follows:

_ [-B + 3B-AC 1/2A	 (A-6)
Y .,	 —
1,_

!:here the tern under the rad i cal is

17	 2

4AC	 (n L	 r /t^T )`
max	 max	 c., max`

+ (^, (L	 °/^'?^)-/ cos Y)`l	 (A-7)
max

''or the value of this expression to remain non-neeative it is necessar y-

that

I 

,1
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I

+ [1 - (L max N cos Y) 2 ] [\ e Cz/^'] 2 ?	 (A-R)

or

'	 [Lr - 
r.7

	

max 
	 cos- Y] [48 1%' /VT' cos Y]`	 (A-Q)

in the third boundary laver it can be seen that

L	 - L	 2 - t•;` cos 
2

y	 (A-10)
nmax	

max

Also, the third boundary laver Hamiltonian in (4), evaluated at the con-

ditions under consideration is

i

H 3 	^r + a Q n	 g/17 cos y > 0	 (A-11)
I	 `2 max

r

The product a s . L  is always negative, so (A-10) can be rewritten

	

2	 ;

	

> I x L	 (01.7 cos Y(A-12)
6 2 nmax	 I	 j

Combininz (A-10) and (A-12) gives us (A-9) assuring us that the roots of (A-1)

are real.	 1

AdressinQ the sisns of the roots (A-6), it is obvious that, in the

ii

quadratic formula, the term under the radical rust have a dominatino mam itude

f`	 for two different sim. s to occur. •'_'his is tantamount to requiring that

AC < 0	 (A-11)

Since it can be seen from (A-2) that A > q where Lmax > ", then we must have that
—	 —

C < 0	 (A-14)

From (A-4) and (A-12) it can be seen that this is indeed the case.

T_'inall ,,, to grove the as^mntotic behavior of the fourth boundary la,-er

-41-
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controls, we will show that SL 1 and :Ln both tend to zero as the current flight

path angle approaches its third boundar,! liver o p timal value (y 3 ). rrom the

IFourth boundary layer anal,!sis we have that, off the lift constraint

1'	cos y	 L.`L	 s (^ nsg/2.\ KV ` 	^	 (A-15)
n 4	E1	 n3

^

SL 
14= 

(-H 3gsfv/fi r Mr - S -Ln ]'	 (A-16)

1	 4

	We note from (8) that values of L	
n

n3 satisfying )H/)L ^ 0 off the lift

iconstraint are

t.

L	 ^3 csg1

	

/? E KV` cos !	 (A-17)n

3	 2	 1	

3

It is evident from the above that 6L 	 in (A-15), being continuous, will

asympoticall y approach zero as the current flight path angle (y) { y3.

Turning to SL 14in (A-16) it seen that 
3L  

and H 3 will both approach
4

fi

zero y -► y3

i

I

1

z

j
-M



APPENDIX B

This ap pendix documents the derivation of a nroportional-nlus-integral

tscheme for sub-optimally computing vertical lif t_ in the simulation.	 Figure B-1

I	 illustrates a straightforward addition of a term integrating (h	 - h)	 to the
c

proportional controller shown in Figure 6 of (2]. 	 This approach proved un-

satisfactory due to the interaction of vertical lift with aircraft_ energy

rate, which was not accounted for, and which resulted in unstable behavior.

The dashed line in Figure 1 models the effect of vertical lift 	 (L1 ) on

!	 energy rate	 (E), and is seen to act as an outer loop around the original

1	 model for the third order P-I controller.

On the basis of this the control gains K I , K 	 Kh , defined bv+

KT = 1 /TI	
(B-1)

KY = l/ T Y	 (B-2)

F, 	 1 /Th 	(B-3)

were redisiened to account for E d-,-namics.	 The tern. h (E)	 represents the
c

optimum climb	 (descent) altitude schedule as a function of energy level.

A linearized perturbation block diagram is shown in Figure B-2.	 The

linearization is about L - U, where

--	 KE = 3hc /3E	 (B-4)

KE = -3E/3E - 2KV/qs	 (B-5)

r

The characteristic equation for this system is given by

Th and T ., here corres pond to T i	 and T, in Figure 6 of (2'

_ -43-
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s + [K^ + aK YKh Js ` + KY [ Ktl + aK_]s + KYK I = 0	 (B-6)

where

a - mKBK^ cos Y	 (B-7)

If we arrange the poles of the s ystem according to

(s + K 1 ) (s 2 + K 
2 
s + K 3 ) . 0	 (B-8)

where

K1 ? 10 
W 
	 (B-9)

K, = 2&wn 	 (B-10)

K 3 = an	 (B-11)

then we can compute the gains equating the coefficients of li'.ce powers

of s in (B-6) and (B-8):

K„ = K1 + K2 - a(K1K2 + K 3 ) + a`K1K3
	

(B-12)

K;1 = (K 1K2+ K3 - aK1K 3 ) /KY 	(B-13)

K I = K1 K 3 /KY	(B-14)

Note that "a" fron (B-7) is ur)dated continuousl y durin g a tra^ectory and

re^resents a compensation term to account for E d,mamics. Setting a

reduces the solution to the form illustrated in Figure B-1.
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