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1. SUMMARY

This report is a statement of progress on NASA Grant NSG-3048 during

the six month period from September 1, 1979 to February 29, 1980. During

this perio4, the researches at the University of Notre Dame were directed

by Professor Michael K. Sain; and the funded research assistant was Mr.

Stephen Yurkovich. Mr. R. Michael Schafer continued studies developing

out of researches under this grant; his support, however, was drawn from

fellowship funds made available by the University of Notre Dame. Over-

seeing technical aspects of the grant at Lewis Research Center was Dr.

Kurt Seldner.

The major emphasis of this status report lies in the continuation of

nonlinear modeling researches involving the use of tensor analysis. Pro-

tgress has been achieved by extending the studies to the controlled equa-

tion

x - f (x,u)

and by considering more complex situations. Included herein are calcula-

tions illustrating the modeling methodology for cases in which x and u

take values in real spaces of dimension up to three, and in which the de-

gree of tensor term retention is as high as three. The quality of the

controlled tensor models has been most encouraging; and preparations are

now under way to begin applications to the QCSEE digital simulation.

Though not funded by Grant NSG-3048 during this period, certain lin-

ear multivariable studies growing out of earlier grant work are described

briefly, for completeness.
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2. STATUS OF CURRENT RESEARCH

e,
This section reviews the status of grant researches carried out during

the six-month period from September 1, 1979 to February 29, 1980.

In the previous Semi-Annual Status Report, for the period from March

1, 1979 to August 31, 1979, the initial studies on nonlinear modeling by

means of tensor ideas were presented. Basically, those results were con-

cerned with homogeneous systems of the form

x - f(x),

for x a member of some finite dimensional real vector space X. If

f(0) # 0,

then the equilibrium point x  satisfying

f (xe) - 0

can be translated to the origin. Without loss then, it is assumed that

f(0) - 0.

Then f(x) is to be understood in terms of its power series expansion

j	 about the origin, with each real component

d	 f  : X - R
1

1
of the function

f : X 

Y

leading to series terms of the form

xRl xR2 	 x 
p .

Such terms, though nonlinear, are nonetheless p-linear functions

RP -o-

which by basic tensor theory can be expressed in terms of linear functions
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on the tensor product (p times) of R with itself. In the aggregate, the

collection of such linear functions can be understood in terms of a matrix

operator on the tensor product (p times) of X with itself. This matrix

operator can be derived, if f is known, or determined empirically if f

is not. The preceding Semi-Annual Status Report considered both viewpoints.

For control problems, of course, interest would center on an equation

of the form

x - f(::.u),

where u is a member of another finite dimensional real vector space U.

The pair

(x,u)

is then an element of the product space

X x U,

which is sometimes denoted

X(DU.

The focus of this report is on this case, and the details are presented in

Section 2.1 following.
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.	 2.1 Higher Order Linearizations of Nonhomogeneous Systems (S. Yurkovich)

All d4scussion and examples to this point have concerned systems with

homogeneous nonlinear vector differential equation representations. While

emphasis has been centered around the linearization of nonlinear systems

based on identification of the total operator L, the real thrust of the

concept has been on identification of the individual linear operators as-

sociated with each tensor product term. It is this vein that the discus-

sion will now pursue, with the inclusion of control (or input) variables in

the system. Certainly the individual linear operators can be obtained from

the partitions of the large matrix operator if so desired. Let it suffice

to say that either could be considered a "by-product" of the other.

The initial venture of this chapter is to establish the notation and

basic structure of the necessary tensor algebra for inclusion of forcing

functions in the system. With this framework secured, the existing tech-

nique is adapted to accommodate nonhomogeneous multivariable systems; here

a concept of basis ordering is introduced. To exhibit the application of

the ideas developed, several examples are treated and resulting simulations

plotted. First, two second-order systems are examined--that is, with two

states and two controls. Progressing from these, a three state, three

control example is inspected. Throughout, the choices for the forcing func-

rions are sine wave inputs, with amplitude and frequency varied for each

input. Again, intuition fails in these nonlinear equations as to the
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choice of initial conditions; therefore, sull initial conditions

are chosen to ensure compliance with the feasible operating region of each

system.

To distinguish between the concepts in this chapter and those developed

previously, the usual symbols for the state vector and control vector will

be employed: x and u, respectively.

2.1.1 Formulation: Forcing Functions Included

The aim of this section is to extend the concepts treated thus far

(the multilinearity of the higher degree nonlinear terms, for example) to

functions of two variables, namely states and controls. With the notation

convention established here, the software adaptation and representative ex-

amples can be discussed in the sequel.

Consider the general set of nonlinear vector differential equations

x - f N. u)

where the state vector x is an element of Rn and the input vector u

is an element of Rm. Define the Jacobian matrices

of	 s afi
[a Iij axi

of

^au^ ij	au  •

the Hessian matrices

a2fi
3x 

}.	
as	

a2f ia2f[_;_72 1 
x 	

axjaxk

jk

rrr^	 i
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f

and the cross derivative matrices

a2fi

axau	
1 0 1,29....n

by

a2fi	 a2fi
^axau ) 'k	axjauk

With a fixed operating point (x0 ,u0), the general equation may be written

as

f (x,u) - f (xo,u0)

+ ax	 (x-x0)
(xo,u0)

+ au	 (u-uo)
(xo,u0)

n	 a 
2 
f

+ 1/2 
i^l 

ei(x-xo)' 
ax2	

(x-x0)

I(xO9u0)

n	 a 2 f
+ 1/2 

i`1 
ei(u-u0)' 

au 	
(u-u0)

(x0,u0)

	

n	 a 2 f
+ I ei(x—x0)

I axau	 (u -u0)

	

inl	 (xo,u0)

where (') denotes transposition and e  is the real vector of zeros

except for the i-th entry which is unity.

Suppose now than

dx0

dt	 f(x0,u0).

so that by the substitutions

i

r

t
i
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i

Z(t) - x(t) - x0(t)

W(t) - u(t) - u0(t)

it follows that

dzIt
	 0 0

Therefore, the original differential equation is now converted to the fol-

lowing simplified form:

z- 2f	 z+af	 w
ax (x0 ^ u0)	 au 

(

,

0.u0)

n	 a 
2 
f

	+ 1/2 1 ei z'	 i	 zJai	
ax (x0'u0)

n	 a 
2 
f
i
2

	+ 1/2 1 e w'	 w
Jai i	

au (x0.u0)

n	 a2fI	 ,	 i
+ Jai ei 

z 
;Xau x u w

To introduce the notions of the tensor algebra, consider for instance

the term

a2f
ei z' —	 z

i-1	
ax (x0'u0)

and regard it as a bilinear function

na2f
ei () '	 2	 ( )

i-1	 ax 
(x 0'u0)

Because of the bilinearity, this function can be expressed in terms of

7
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is tensor product as a linear function operating on z a z. Call this

articular linear operator L20 so that

a	 a 
2 
f

1/2 
cc 

ai	 20z' — 2
	

z 0 1/ 2 L (z a z).
i:Z	

ax (x ,u )
•

NO VU

The notation for the linear operator is such that the first subscript cor-

responds to the first vector, a, and the second subscript corresponds to

w. Thus, by this convention,

2

L ei z  axau	
w L11 ( z a w).

ill	
(x0Iu0)

Now define

L	 of
10	

axI(x0'uO)

L	 of
01	

au (x0'`'0)

as the usual "A" and "B" matrices of a standard linearization

i - Az+Bw.

With this established, the differential equation can now be expressed as

z•L10' +LOlw

+ 1/2 L20 (z a z) + 1/2 L02 (w • w)

+L11 ( z ® w) + . . .

The general term in such an expansion can be represented as

JIM Ljk (zaza...mzaw0wa...aw) .
^^^^Y^.ter

j times	 k times

-	 8
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to that, finally,

i	 l L	 (-.v...0z®w®...0w) .
j . 3 k.0 JI M  j k =^—yam ^.r...^

j times	 k times

Again # the motivation for such a derivation is the fact that all of

the Ljk are linear operators. The number of these operators for a given

expansion depends, of course, on the desired accuracy of the approximation.

Consider, for example, the table presented in Figure 2.1 for the typical

system ccusisting of the state vector x and the control vector u.

i

linear operators

L10 L01

L20 L11 L02

L30 L21 L12 L03

L40 L31 L22 L13 L04

LSO L41 L32 L23 L14 L05

terms retained in approximation

standard linearization

second degree

third degree

fourth degree

fifth degree

Figure 2.1

Accordingly, for an approximation retaining up to and including all

third degree tensor terms, nine individual Ljk need be identified; for

fourth degree terms, the number would be fourteen, and so on.

In the remaining sections of this chapter the identification scheme

is described and illustrated. However, a minor point should be mentioned

here before proceeding further. When the L jk are identified, the pre-

9
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ceding constant term associated with each--that is, 1/j1k1 --is suppressed

into the operator itself. This obviously will cause no loss of generality,

since any one of the constants may be extracted (if so desired) from the

corresponding operator by a simple matrix scaling operation. Furthermore,

as will be seen in the next sectioa, the operators that are identified

are of reduced size as compared to those used in the discussion to this

point.

2.1.2 Software Adaptation

The major difference between the algorithm here and the one employed
r

in the first and second order linearizations of the previous two chapters

is, cf course, the necessary addition of control variables. However, a

change more fundamental to the basic techni que is the need now for a

greater number of time points in the sampling process. This is basically

due to the behavior of the input forcing function, taken to be sinusoid

for the examples treated in following sections. Obviously, the sampling

period must be somewhat smaller than the period of oscillation of the in-

put. For ease in programming, a constant sampling rate is used. Another

major adaptation in the boftware is the development of a scheme for logical

ordering of the terms which arise from the tensor products.

Consider again a series expansion, given now in terms of the vectors

x and u,

x-L10x+L01 u

+L
20 
x0x

+L11 x0u
+L02 u 0 u

+L30x0x0x+...

10



Since the task is to identify the parameters of the Ljk only, the new vector

equation

x = [ L10 : L01: L20: 
L11 L02: L

30 ... )	
... x.....

U

x 4x

.........

x®u
...........

U ® u

x®x

would be constructed.

Recall that for the case of the homogeneous system several redundant

terms appeared in the vector stacked with tensor product terms. 	 In such a

case it was argued that those terms, with the corresponding columns of the

identified	 be	 for	 of the identification.operator, could	 eliminated	 purposes

Such is the case here; for instance, consider the product term

x®x®u

which corresponds to the	 L21	 operator.	 For three states and two inputs,
a

this product can be constructed according to the previous scheme:

x ®x ® u = x ® (x ® u)
x1

= x ® x2
[u1 u2)

_.
x3

x1u1	x1u2
= x ®

x u	 x u
2 1	 2 2

x3u1	x 
3 
u

^, 11



Again, the term (x ® u) can be considered as a six-dimensional object, and

stacked in one (row) vector. Thus,

xl 
[xlul	

xlu2	 x2u1	 x2u2	 x3ul	 x3u2]

x®x®u x2

' x3

2	 2
xlul	xlu2	 xlx2 .u1	 xlx2u2	 xlx3ul	 xlx3u2

2	 2
x2xlul x2xlu2 x 

2 
u 
1	

x 
2 
u 
2
	 x2x3u1	 xlx3u2

2	 2
x3xlul x3xlu2 x 3 x 2 u 1 	 x3x2u2	 x3u1
	

x 
3 
u 
2

an 18-dimensional object. Therefore, the linear operator L 21 associated

with this product term would have dimension 3 x 18. But notice that there

are six identical terms in the product:

x1x2ul = x2xlul,

xlx2u2 = x2xlu2,

xlx3ul = x3xlul,

xlx3u2 = x3xlu2,

x2x 3u 1 = x3x2ul,

x2x3u2 x3x2u2.

Eliminating the redundant terms of x ® x ® u would leave a vector of length

12. Likewise, the corresponding operator would have dimension 3 x 12; de-

ti
note this matrix as L21'

Now a problem of reduced size can be formulated. The equation

ti ti ti ti ti ti

x = [L10^ L01 L20;L11•,L02 L
30 ...] xL

is constructed, where the Ljk correspond to the reduced number of tensor

12



product terms stacked in x L. It will not always be the case that 1%j
product0

Ljk ; in fact, Lti 
10 0 L10 

and 101 - L01' But the new notation will be em-

ployed for consistency. The bracketed term in the above equation has dimen-

sion n x p, with n being the number of independent state variables and

p being dependent upon the number of tensor terms retained in the approxi-

mation. Therefore, x has dimension n x 1 and x L had dimension p x 1.

The composition of the vector xL is a crucial consideration in the equation;

v	 a logical scheme is necessary for consistency, presented in the following.

Let S be the space of states so that the n-vector x is an element

of S. Let U be the space of inputs so that the m-vector u is an ele-

ment of U. Furthermore, let {al ,a2 , ... ,an } be a basis for the space S

and {bl,b2,...,bm} be a basis for the space U. The space

S ® S ® ... ® S

q times

would have a basis of q-vectors, n  in number, of the form

a  ® ai ® ... ® ai I
	1 	 2	 q

where il,i2'...,1q are integers between 1 and n. Such a space would have

linear combinations of products,

	

l	 2® x ® ... ® xqx 

of q n-vectors, each comprising a nq-dimensional object. But, as seen in

the discussion above, this number can be reduced if redundant terms within

the product are eliminated. The number of distinct elements in the product

is given by

^n +q-1^

q

13
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that is, "The combination of (n + q - 1) items taken q at a time." Like-

wise, to span the space

U®U® ... ®U

r times

m  r-vectors of the form

b 0 b ® ... ®b	 ,
j l	 j 2	 jr

where jl9j2,...,jr are integers between 1 and m, would be necessary. But

the number of distinct elements in a product

u1 ® u2 ® ... ® 
U 

would be given by

(m+r - 1).
r

The extension of this to product spaces of the form

S ®s® ... ®s ®U ®Ua ... aU

q times	 r times

follows naturally. The number of (q+r)-vectors of the form

a1 ®... ® a  
® bj ® ... ® b j

1	 q	 1	 r

in the basis is given by the product of nq and mr . Here, the number of

distinct elements in a product

x1 ® ... ® x  ® ul ® ... ® u 

is calculated according to

	

(n+q-1)	(m+r-1)
q	 r

Knowing the number of elements in x  is half the problem; some or-

dering convention need be established. To settle this issue, consider a

simple illustration with n - 3 and m - 2; thus, (al ,a29 a3 1 forms a

14



i
basis for S and {b l ,b 2 } forms a basis for U. Then, for the product space

S ® S ® U ,

a legitimate basis would be

{ al ®al®bl. al ® al ® b2 . al ® a2 0 bl , al®a2®b2•

^.	 al•® a3 40 	
al ® 

a3 ® b2 ' a2 ® a
l ® 

bl ' a2 S a
l ® 

b2'

a2 ® a2 ® bl . a2 ® a2 ® b 2 . a2 ® a3 ® bl . a2 O a3 ® b2.

.	 a3 ® al ® bl , a3 ® al ® b2 , a3 ® a2 ® bl , a3 m a2 ® b2.

1	 a3 ® a3 ® bl. a3 V 
a3 ® b2} .

'r

consisting of 18, or ( 3 2 )	 (2 1), members. The space consi - LS of linear com-

binations of products of the form

x®x®u

•	 which would also consist of 18 elements; it is the ordering of these ele-

ments which is the primary concern here.
i

Note the manner in which the members of the above-mentioned basis are

listed. By this convention, the index of each item in the general form

a  ® ai ®bj
12	 1

is incremented through, beginning at the right. For instance, with i t	1,

i2 - 1 initially, j l is incremented from 1 to r, at which time the in-

dex i2 is incremented by one and j 	 is incremented from 1 to r again.

This process is continued for i 2 - 1,2,...,q, at which time it incre-

ments by one and the previous steps are repeated. Thus, with it = 1,2,...,q,

the last basis element in the list will always be a  ® a  ® br . The
(nq )	 (mr) elements of the tensor product x ® x ® u can be listed in a

similar fashion, the obvious difference being that these elements are or-

dinary products of the members of x and u. To eliminate redundant terms

15
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S	 I

in the tensor products for identification of the corresponding ^jk requires

a slight modification of this scheme.

The algorithm for ordering the non-redundant terms from the tensor pro-
6
a

ducts will now be presented via a flow diagram, represented in Figure 2.2.

Variable names for this flow chart are detailed in the following:

j	 X and U: arrays of N states and M inputs, respectively.
INDX: array of indexes for elements of x, ordered.
INDU: array of indexes for elements of u, ordered.
NXTR(i): (marker) cumulative number of elements in INDX

t

	

	 for tensor products of x up to the i-th degree.
NUTR(i): (marker) cumulative number of elements in INDU

for tensor products of u up to the i-th degree.
XPROD: array of products of combinations of elements of x.
UPROD: array of products of combinations of elements of u.
XPR(i): (marker) cumulative number of elements in XPROD

for tensor products of x up to the i-th degree.
UPR(i): (marker) cumulative number of elements in UPROD

'	 for tensor products of u up to the i-th degree.
XL: array containing all non-redundant product terms of

states with inputs, ordered.

Three basic divisions comprise the algorithm. The first, represented

in Figure 2.2a, establishes the order of the indexes or subscripts of x and

u to be used in forming products. This first stage is shown in a long form

for clarity, since a general, condensed version would be less illustrative;

certainly one set of nested loops would serve the general purpose as op-

posed to a set for each degree of tensor products as shown. To exemplify

the ordering of these indexes, consider the previous case of the 3-vector

x. For an approximation including third degree tensor product terms the

array of indexes for x, ordered according to the left branch of Figure

2.2a, would be given by

INDX - (1 , 2	 3; 1 1, 1 2	 1 3	 2 2, 2 3, 3 3	 1 1 1,

1 1 2	 1 1 3, 1 2 2	 1 2 3, 1 3 3, 2 2 2, 2 2 3,

16

71

mood



233,333).
In the above, the notation is such that a semi-colon separates groups of in-

dexes corresponding to the different degree of tensor product, and a comma

separates those indexes which are to be used in ordering product combinations

of xis x2 , • and x3 . Thus, stage two (Figure 2.2b) uses these indexes to

compute combinatorial product terms; the result for this case would be

7PROD	 (x 1. 
x2 , x3 ; xlxl , xlx2 , xlx3 , x2x2 , x2x3 , x3x3;

x1x1x1 1 xlxlx2' xlxlx3' 
xIx2x2 , x1x2x3,

x1x3x3 , x2x2x2 , x2x2x3 , x2x3x
39
 x3x3x3 ) .

Similar calculations are performed for the m-vector u (as presented, the

algorithm assumes m > 0), so that in the final stage, Figure 2.2c, the

product terms are combined and ordered in the vector x L, corresponding to

the Ljk order chosen.

These final two stages of the algorithm, as represented in the flow-

chart, are given for the general case (arbitrary degree of approximation).

The construction is such that the number of multiplications performed is

held to a minimum. Furthermore, the division of the algorithm into three

stages offers some conceptual convenience as well. It is not difficult to

see from this a method for implementation on a digital computer.

The heart of the identification scheme, then, is embodied in the

const!::^tion of the p-vector xL. The following example will serve to

summarize the principle.

17
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Consider the nonhomogeneous vector differential equation

	

x	 f(x,u),
3	 I

with some initial condition x(0) x 0 . Let the state and input vectors be

given by
^.	 x1

u1

	

x • x2 	u•
u2

•	
x3

Suppose that in the approximation up to (and including) third degree tensor

terms are kept. Thus, the expansion, with tensor notation applied, is

given by

f(x,u) 1 L10 x + L01 u

y	
+L20x ® x+L11x0u

+L02 u0u + L30xax®x

+L21 x ® x®u+L12
x0uo 11

+L03 u®u4011 .

Putting this into the form discussed above gives

x	
[L10 L01 L20 L11 L02 L30 L21 L12 L03 1 x 

The number of elements in xL is calculated according to

P 	 Pi
.	 i•1

where each p i corresponds to one of the linear operators. Then,

P	
( 3+1-1 ) + (2+1-1 ) + (3+2-1)

1	 1	 2

21



d.

+ ( 3+1-1^ ^2+1-1^ + (2+2-1?
1 1 2

• + ^3+3-1^ + ^3+2-1 ) 	,
2

f2+1-1^
3 1

+ 
	 3+1-1^ ^2+2-1

)
 + (2+3-1^

1 2 3

^3+2+6

+3a+3

+10+6.2

+ 3	 3 + 4

SS.

Rather than list all of the SS members here, consider just a few of the

partitions to be stacked in the vector XL:

x1x1 x1ul

x 1 x 2 x 1 
u 
2

from	 x 1 x 3
from x 

2 
u 
1

x 2 x 2 x 
2 
u 
2

1 x2x3 x 
3 
u 
1

.. x3x3
x3°2

xlxlul
xlxlul

xlxlul xuu2l i

xlxlul xlu2u2

wxlx2u2
x2°1°1

from	 xlxlul from x2ulu2
a	 •	 xlx3u2 O	 O

x2°2°2
x 2 x 2 u 1 x3ulu1

x 
2 
x 

2 
u 
2

x3ulu2

x2x3u1
x3ulu2

.

x2x3u2

x 
3 
x 

3 
u 
1

•
x3x3u2

._ 22
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This illustration should further establish the ordering convention.

3
With the construction of the equation complete, the business of iden-

tification of the ^jk may be undertaken. The n simultaneous nonlinear

•	 differential equations are integrated and the resulting data is sampled at

the selected h time points. These sam*le 4 values are loaded into the

i matrix !L, which is now pxh in size. Note that the first n+m rows

of XL are determined from the sampled values of x and u; the re-

maining p-(n+m) rows are multiples and combinations of those first n+m

rows. Finally, the X matrix, dimension nxh, is formed by loading der-

ivative estimates for icl ,x29
... , zn at the h time points.

With this, the matrix equation assumes the form

	

x	
10 101 120 111 102 130 121 112 103 1 XL

	nxh	 nxp	 pxh

with matrix dimensions as shown. The least squares minimization algorithm

is again used in identifying the nxp partitioned matrix containing the

desired Ijk . The matrix returned will have five partitions if only

second degree terms are kept, nine partitions if third degree terms are

added, and so on. The sorting of the partitions is merely a numerical

bookkeeping job, since their sizes are known in advance.

As noted at the beginning of this section, more time points are re-

quired for sampling in the identification now, due to the behavior Ot the

forcing functions. Whereas previously 15 sampling times were used, not

all evenly spaced, now h-40 points are used with a constant sampling

rate. The number of points and the rate may be varied according to the
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demands of the problem.

The next section illustrates the application of the software on several

rapresentative samples, each one progressing in complexity. In choosing

the nonhomogeneous vector differential equation for an example, two con-

ditions must be met:

1) L10 must be stable at the origin, that is, have

eigenvalues with negative real parts;

2) The origin oust be an equilibrium point;

that is,

f1(0,0) • 0

for i M 1,2, ... on.

Choice of an initial condition is not intuitively obvious in these nonlinear

examples, so in all cases small pertubations from the origin are chosen

as initial conditions.

2.1.3 Second Order Examples

This section treats two examples, each of which involves a state vec-

tor of two elements and an input vector of two elements. Keeping up to

third degree tensor terms, the nonhomogen _ous, nonlinear vector differential

equation

i - f(x.u)

is approximated by

i^L10x+L01u

+LY0x0x +
L11 x®u+L02 u 0 u

24
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V

+L30x ®x®x +L21xa

+L12 xau0u +L03 u®

In each case, for a given operating point

linear operators are identified, and then us

tion system to be integrated for comparison

iginal equation.

d

For the first example, consider the sys

differentia]. equations

f1 (x,u)	 xl
i

= xiul + u2 -

f(x,u)2 	 x2
i.	

2
= xlx2 + uu2 -

where the state vector is

x = (xVx2)

and the input vector

The initial conditions to be used in the ide

given by

x1(0)	 0.2

x2 (0) = 0.4 .

Notice that the condition of stability is met, that is
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af
i 	8f1

^,	 axi	 8x2

L10 3f  af2

azi ax2

xl=0,x2-0

	

``	 u1	 0, u2 - 0
f

	

-1	 0

	

0	 -2

has eigenvalues with negative real parts. Furthermore,

f1 (0, 0) = 0

for 1 = 1,2, that is, the origin is an equilibrium point.

The input forcing functions chosen are sinusoidal in nature, and are

given by

ul(t) - sin(27rf1t)

u2 (t) _ (0 . 5) sin (27rf20

for f1 = 5 hertz and f2 = 10 hertz.

A fourth-order Runge-Kutca routine is employed to integrate the vec-

tor differential equation; the same routine (and integration stepsize)

is employed later to integrate the system as embodied in the identified

model. Thus, a block of data---the " true solution"---is established and

stored in arrays corresponding to the x1 and x2 solutions. The

stepsize in the integration is taken to be 0.005 so as to comprise

 ample information of function behavior for the derivative estimation.

	

I`	 Note that for a frequency of 10 hertz 	 for u2 , corresponding to a period
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of 0.10, each cycle is visited 20 times in the integration.

With the data tabulated, the sampling operation ensues. The true so-

lution is sampled at 40 points in time at a constant sampling rate of 40

samples per second, corresponding to a sample period of 0.025.

Thus, for the matrix equation

8 ' [L10 t01 t20 t11 t02 ^30 t21 12 t03) XL

the matrix XL has 34 rows and 40 columns. As explained in the previous

section, the number of tensor product terms (rows of X L) is calculated

using the general formula

n+q-1	 m+r-1

	

Pi = (	 )	 (	 )
q	 r

for the q occurrences of x and r occurrences of u in the i-th

product. Then the total number of rows of X L is found according to

I
i 

LP '	 Pi
=1

and, for this particular example,

p 2+ 2+ 3+ 4+ 3+ 4+ 6+ 6+ 4

= 34.

The 40 columns of k and XL correspond, of course, to the number of

time points used in the sampling.

The data for the X matrix (dimension 2 x 40) is obtained directly

from the (stored) true solution, where the derivatives are estimated ac-

cording to

xi(tj+0.005) - xi(tJ-0.005)

	

^^ij '	 2(0.005)

for i = 1,2 and j = 1,2,...,40, where the t 	 are the points in time
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1.
chosen for sampling and [X] ij represents the ij -th element of 1C.

r

	

	
Having completed the sampling, derivative estimation, and loading, the

least squares minimization algorithm (routine SIMEQUAT) is executed on the

+	 matrix equation. Knowing the sizes (2xp i) of the individual linear op-

erators facilitates a partitioning of the 2x34 matrix returned in the

identification scheme. In Figure 2.3 these operators are shown with the

corresponding partition of thex
I.	 10

vector. The eigenvalues of L 	 are

both negative and real. It is interesting to attach some meaning to a

few of these numbers in relation to the original equations. For example,

note the relative size of the (2,2) element of L20 , corresponding to

the presence of term x 
1 
x 
2 

in the second equation; the relative magnitude

of the (1,3) element of L02 indicates the occurrence of the u2 term
of the first equation; the relative magnitude of the (2,2) element of

L03 represents the occurrence of the term u1u 2 in the second equation.

The next step is to integrate the system with the coefficients as

identified in the third degree approximation. To do this, the equation

x s	 L[L10 L01 L20 L11 02 L30 L21 L12 L03 ] x 

is reconstructed so that the system of two differential equations, each

with 34 terms in the sum, may be solved yielding x. In the first analy-

sis, the same initial conditions used in the identification of the Ljk

t	 are employed to simulate the original system, with the same forcing func-

tions as used in the identification. The results of this test are de-

picted in Figures 2.4 and 2.5. As will be the case in all plots to fol-

low, curve A represents the "true solution" of the original system as

i	 given by the fourth-order Runge-Kutta algorithm; curve B represents the
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LINEAR OPERATOR PARTITION OF
x 

,^10 1-
0.947
0.255

 -0.234
-2.490 (xl' x2)

1-
0.007 -0.026

,O1 0.041 0.071 (Ulf u2)

20
0.406

-3.468
2.688
8.144

-0.298 2	 2
(x
	

x1x2' x2)-0.965 l

s
ll

0.122
-0.547

0.352
-06.26

0.000 -0.052
0.107 (xlul' xlu2' x2ul , x2u2)0.097

X 0.000 0.000 0.935
-0.004

2	 2
02 0.001 0.001 (u

	
ulu2 , u2)^l'

^30 .
2.635 -7.562 1.737 -0.093

-0.4661 (x3, x2x	 x x23)11.79 -25.92 6.767 1 2	 1 29 x2

_ 0.505 -1.203 0.041 0.351	 -0.003 -0.025
21 1.831 2.117 -0.640 -0.715	 0.049 0.055

(xlul , xlu2 , xlx2ul , xlx2u2,

x2ul , x2u2)'

L
0.000 -0.003 0.001 -0.000	 0.001 -0.000

12 -0.005 -0.005 0.018 0.001	 0.001 -0.0031

2
(xlUl f xlulu2 , xlu2 ,2

x2Ulf
2

x2u1u29 x2u2) ,

to s
-0.000
F0.000

0.000	 -0.000	 -0.000
0.002

3	 2	 2
(Ulf ulu2' ulu2 ,

3
0.935	 -0.001 - u2)

Figure 2.3
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simulated solution which again employs the Runge-Kutta routine to integrate

the system as embodied in the identified Ljk . Figure 2.4 shows the tran-

sient region of solution x1 ; the effects of the input functions are evi-

denced by the oscillations. The simulated solution tracks the true solu-

tion quite -well in this region. Figure 2.5 shows a plot of x2 from time

0.0 to time 0.5. Again, curve B overlays curve A. Since the model sys-

tem was identified from samples taken out to one second (i.e., 40 time

points spaced at 0.025), an obvious question would concern the performance

of the model system for simulations beyond the transient region, out to

four seconds. The plots for these simulations are given in Figures 2.6

and 2.7 for x  and x2 , respectively. These plots indicate that the

model system simulates the original system well, far beyond the interval
r

in which samples were taken in the identification procedure. As might be

expected by inspection of the original equations, after transients have

settled the forcing functions tend to dominate the solution; this is de-

picted by the oscillatory motion about the origin for x 2 in Figure 2.7.

At this point it is interesting to discuss the concept of an "oper-

ating region", or feasibility region for initial conditions of the states

of the system. For instance, the initial conditions chosen for this ex-

ample were

x1(0) - 0.2,

x2 (0) - 0.4,

and the nine linear operators for the series expansion were identified ac-

cordingly. But suppose that the model system as identified for the above-

"	 mentioned initial condition were used to simulate the original system at a

different initial condition, namely
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x1 (0)	 (1.3,

x2(0) r, .,.3.

These initial conditions represent a change in magnitude of 50 and 25 per-

cent, respectively, over the original initial conditions. The results of

this test are given in Figures 2.8 and 2.9 for x  and x2 . A comparison

of Figure 2.6 with Figure 2.8 shows a slight decline in tracking accuracy

in the latter for the increased initial condition. But the plot for x2

exhibits essentially identical accuracy as the simulation for the system

as identified, since the initial condition was decreased in magnitude.

Before proceeding to discussion of the next example, an observation

concerning model size is in order. Since there are only two terms of do-

gree higher than two in the system, x 2ul in the first question and uiu2

in the second, one would suspect that an approximation keeping second de-

gree tensor terms would suffice. Simulations for that identified system

proved to be as accurate as the former approximation which kept up to

third degree terms. Since a second degree approximation involves con-

siderably less calculation (five partitions, 14 members in Y. one

might wish to consider using it in this case.

The second example in this section is more complex than the first in

the sense that the nonhomogeneous system of differential equations is not

exact, but a combination of hyperbolic functions. Again, intuition fails

somewhat as to the behavior of the nonlinear functions, particularly in

regard to choice of initial conditions.

Consider the following system:

xl ' f1(x,u)
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u
• u1u2 cosh(x1x2) - e 1 sinh(2x1) - S sinhx2;

x2 - f2(x,u)

- eu1u2 sinh(xl) - u2 coah(x1x2 ) + sinh(x2).
Initial conditions used in the identification will be

x1 (0) • 0.05,

x2 (0) - 0.075.

The forcing functions used in the initial integration are given by

u1 (t) - 0.2 sin(2irf1t),

u2 (t) - 0.3 sin(2nf2t).

where f1 - 5 hertz and f 2 - 8 hertz. Note that the two conditions de-

manded of the example are satisfied;

f(0' 0) - 0

and

aft	afl

axl	axe

L10 - af2	aft

ax 1
	

ax 2

x0

U 0

	

-2	 -5

	

1	 1

has eigenvalues in the left half complex plane, thus satisfying the sta-

bility requirement.

To begin the identification scheme, the original system is first in-
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tegrated, with a stepsize of 0.005 again, given the above-mentioned operating

point and input specifications. From this block of data, 40 samples are

taken at 0.025 intervals, and third degree tensor terms are retained. In

this case, the 110 partition returned by the least-squares identification,

ti _1.526	 -8.210
L10	 1.005	 1.262

is similar to the anFlvtical result derived above, and has eigenvalues with
9

negative real parts. Ghen the identified system is sir: ?.1ted (again, it con-
4

sists of two equations with 34 terms each in the sum), the results are very

good for the region up to one second, as depicted in Figure 2.10 for xl

a
and Figure 2.11 for x 2 . This behavior is expected since the true solution

was sampled on exactly this interval. But an extended look at these solu-

tions shows an unacceptable tracking error beyond the transient region.

In fact, for this system (as compared to the first example) the transient

behavior takes longer to settle out due to the relative size of the eigen-

ti
values of L10'

The next step in the overall identification, then, is to increase the

interval over which samples are taken so as to encompass complete informa-

tion of the transient region. This can be done in one of two ways: either

the sampling rate may be decreased (sampling period increased); or, the

number of samples taken may be increased. Accuracy might suffer with the

former, while the latter choice could increase computational complexity.

When the number of sample points is increased to 80 with the same

sampling period of 0.025, the region of the true solution to be observed

is from t - 0 to t - 2 seconds. Thu-a a larger portion, if not all,

of the transient region would be samples'.. Using the same initial condi-
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tions and the same specifications for the control inputs, the first parti-

tion of the identified system

L-2.023	 -5.093
0.94110	 1.009

shows much •ber.-er agreement with the analytical expression for 	 L10 .	 Fur-

thermore, the tracking is greatly improved, as illustrated in Figures 2.12-

2.13 for	
x 
	 and	 x2 ,	 respectively.	 Note that in each solution curve 	 B

overlays curve	 A	 exactly for the region up to two seconds. 	 But there is

a slight tracking error beyond this point which remains approximately con-

stant in time after three seconds.	 This constant steady-state error would

be acceptable in many applications, although more accuracy is possible.

. A sensitivity analysis on this system as identified for	 x1 (0) - 0.05

4

and	 x2 (0) - 0.075	 shows good results when the initial conditions are

varied in magnitude, that is,

x1 (0) - 0.10,

x2 (0) - 0.03.

` The results using this initial condition (with the model system identified

for the original initial condition) to simulate a corresponding true solu-

tion are given in Figures 2.14-2.17. 	 For the variable	 xi,	 Figure 2.14

t shows a good overlay of curve 	 B	 onto curve	 A,	 with a small error

arising around the peak in the solution.	 Figure 2.16 shows a plot over

a wider range of time, and reveals that the simulated solution (for 	 xl

again) actually improves past four seconds. 	 Solution	 x
29
	 represented

in Figures 2.15 and 2.17, does not exhibit quite as good results, but still
E

maintains an acceptable curve fit with constant error.

The accuracy of these simulations can be improved upon even more by

1
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sampling the original system over a yet wider region. So consider a sam-

pling scheme which again uses 80 sample points, but which now takes sam-

ples at a rate of 25 per second as opposed to 40 per second. This cor-

responds to a sampling period of 0.040 seconds so that for 80 samples the

region from t - 0.0 to t - 3.2 seconds is sampled. Figures 2.18 and

2.19 show solutions x  and x2 out to four seconds for the model system

using those initial conditions as used in the identification (again taken

to be x1 (0) - 0.05 and x 2 (0) - 0.075). The tracking is very good for

this system now, as in each solution curve B overlays curve A through-

out. Now a sensitivity analysis is performed by simulating with the system

r^.
model using x1 (0) - 0.10 and x2 (0) - 0.03. A comparison of Figure 2.16

to Figure 2.20 for solution x  reveals that for the latter plot, which

corresponds to the model system identified from samples taken to 3.2 sec-

onds, the match of the simulated solution to the true solution is much better.

? J	This is particularly noticeable in Figure 2.21 for x 2 , upon comparison

a°
	 to Figure 2.17 for the previous identification. It would seem that even

more accuracy could be achieved, although this last pair of plots indicates

"	 that a good system model has been achieved without suffering any additional

ill effects in computational complexity. In fact, it is evident that the

decrease in sampling rate in the last identification caused no noticeable

error; to the crntrary, it led to more accurate results.

These two second order examples presented in this section were dis-

cussed in detail to illustrate the flexibility of the method. The first,

an exact vector differential equation, was chosen to give some meaning to

the elements of the individual^
jk
 operators and to illustrate that the

degree of the approximation is in general problem intensive. The second
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example showed that even a very unattractive nonlinear, nonhomogeneous

system can be adequately handled by this technique.

2.1.4 Third Order Example

This gection treats an example given by a system of three nonhomo-

geneous differential equations. The state vector,

x = (xl* x2 . x3)':

consists of three elements, as does

UM _ (u1 (t), u2 (t). u3(0)',

the input vector of forcing functions. Obviously, the size of the problem

will be increased compared to that of the second order systems of two states

and two inputs. Whereas for n = m = 2 in the previous examples the length

of the tensor term vector xL was 34, now the length of 
XL 

will be p = 83

for an approximation keeping up to third degree terms. Again, this number

is calculated according to

9

P	
9 [(n+q-1 )	(m+r-1)^

Jul	 q	
r	 i

for the i partitions. Expanding this for n 3 (three states) and

m = 3 (three inputs), the result is

p = 3 + 3 + 6 + 9 + 6 + 10 + 18 + 18 + 10

83.

Thus, the matrix equation to be constructed takes the following form with

matrix dimensions as indicated:

10 Ol 20 11 02 30 21 12 03 1 \

3xh	 3x83	 83xh

Here, h is the number of sample points used in the loading scheme for

54



estimation of derivatives and construction of XL.

!	 The third order system of this example is of the same nature as thei	 y	 p 

previous example in that exponential and hyperbolic terms comprise the non-

linear system. Consider the following equations,

I	 fl(x'u)	
xl

U eu2 cosh(xlx ) - eu3 sinh(3x );

	

1	 3	 1

1	
f2(x.u) - X2

- ui cosh(x2 - 2 sinh(x2 ) + ulu3 cosh(x3);

f3 (x,u) - x3

- ul sinh(xlx2) - sinh(x3).

To identify the model system, the initial conditions chosen are given by

x1 (0) - 0.05,

x2 (0) - -0.05,

x3 (0) - 0.08.

Choices for forcing function inputs are sinusoids with the specifications

u1 (t) - sin(2rrf1t),

u2 (t) - (0.5) sin(2nf20,

u3 (t) - (0.5) sin(2irf30,

where the frequencies for each input are given by

fl - 1 ,

f2 - 5

f3 - 10,

in hertz.
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This system is constructed such that the following conditions are

easily verified:

f(0, 0) = 0

and for stability

afi
L10	 = ^axJ]

x=0

U 0

r

	

-3	 0	 0
	= 0	 -2	 0

	

0	 0	 -1

With the problem thus formulated the technique is applied. Using an

integration stepsize of 0.005, the system is integrated and the true solu-

tion stored. This data is sampled at 40 time points evenly spaced at in-

tervals of 0.025 for loading of the tensor term matrix and for derivative

^.

	

	 estimation. Thus, the sampling takes place over the first one second in-

terval of the solution. The first partition returned by routine SIMEQUAT

i	 in the least-squares minimization is given by

	

-3.072	 -0.112	 0,440

10	
0.009	 -1.948	 0.003

	

-0.001	 0.005	 -0.936

which has eigenvalues with negative real parts. Note the similarity to

the analytical expression for L 10 given above.

Simulations using this model system consist of an integration of the

three equations which have 83 terms each in the sum. Over the interval in

which the 40 samples were taken, the simulated solution matches the true

t .

	

	 solution very well when the initial conditions are those as used in the

identification. These results are shown in Figures 2.22-2.24 for xl,x2,

i'
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I

I
l

and x3 , respectively. Figures 2.25-2.27 depict the same simulations

M	

over a wider range of time. The most error occurs at the peaks of the so-

lution curves, especially noticeable in the variable x  (Figure 2.25).

l	
Consider now a sensitivity analysis on this model system for the

l	 following changes in the initial state conditions:

I	 x1(0) - 0.101

i	
x2(0) - -0.10

x
3 
(0) - 0.16 .

Using the same forcing function as in the identification, the original sys-

tem is integrated with these new initial conditions to form the true solu-

tion. Then the model system is employed with these Initial conditions to

simulate the true solution. These results are shown in Figures 2.28-2.30
r

over an eight second interval of time, well beyond the transient region of

each solution. Very little error results between the simulated solution

and true solution.

A conclusion of the final three plots is that for this particular ex-

ample an ample number of sample points for system identification is 40;

perhaps even fewer would produce equally acceptable results. In the final

analysis the initial condition of each variable is double that which was

used to identify the model system, indicating (by the accuracy of the

tracking in the simulations) that an even greater variance in the initial

conditions would produce acceptable results. Thus, this model system seems

to have a larger feasible operating region than that of the examples treated

in the previous section.
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Ĵ
O I q 1 I O

W OO 1t O= I± I±
r

o .: :, on

w	 i jp OI O I 10
I q. 1 I

q	 . M 1 f
0011

I q
 q

I
1

I
10

+ so

^i. A w r^M
O I q•O

qq
I I O

e?i:. ••q.
I q I I

of 04 i io
...I

ei

q

i

..

i

., ..

io

qq
I O 1 I

'	 I
I

•
q

1
I

-	 1
I

Q M M M F I M F 1 1• I M I• I F I F O M M I• I M f r Y 1 r I M r 1 1• I M M g M M M M M M M F I M M M M M I i V M A 1 M M M M F I P I r I M Mi 1 M P 1 ►^ 1 1^ O
•	 I	 I«wwwwwswww^wwwwwwwAw^wwwwo

i
ewwAwwwww^wwwwwAwww^wwwwwwwww

NN
N
d
H

Q1^^

I	 k

58



N
k

a i

t ^^

w
° Wr

t

r

c ai

rrrrbr^srr	 wrwrw»wwrwwri^rrMwwwwwrrrrwwwwwwwrrrwrwwrww

I	 a I I
I

w M

g m
O 1	 . I I O

°. 1
1	 a 1 1

a . 1
w	 ^ M w P

OI °a i 10
1 a 1 I

°a . +

1
U

^	 ^ 1 I
a M 'O

O^ Aa iO

*
1

a°
a 1 1

0on M a s w is

01 =° 1 10

+ a° +
o

fM a w wf
O O1 a 1 1

1 a I I
I o a

I 1

Mrw °a w wM
•	 1
01

a as I
+

1
10

1 ° •	 1 1

°a w i^NNw
•	 1
^

aim
1

t	 •
i o11

a
1	 a i

t ♦ 	 i1 1	 a t
e

MM ° ^I wOIw	 a

O 1	 a 1 01

i	 e
I	 O1 1OwMMwMM M MMMM MMM ww^lwwwwMMMwwwwlr MMMw MwM-M Mw • Iw w1•IM www awwwwMO

ewrrrwrwwwrrwwrwrwwwwwwrrrrwwwwwwrrwr»rrwrrwwwrwwwwrwMow	 • w r	 •

59



^ ^rsws^rwwwww*wwwwwww^wwrwrwrwwwwwwwwrrwwrrMwrrrwrr^w^	 ++ .

1	 e	 1

1
i	 o

O

1 .m
1	 O	 I

Oi	
:m

Ol	 .0

O ^ OO^	 : N
O

7J tl!

W i	 :	 + N,. tlf

! ^ ^
do

.^ I^
•• •	 Fb

nM	 M IA

O t	 0 0	 1 0 ^

1
V I	

: •	 f
O	

0I	 O	 1
t	 .O	 +
1	 O

m	
r• IQqh w

:OI	 .	 10
I	 O
1	 i	 I

It	 .	 1

Oi	 .O	 i0
N ••	 •	 w N
• t	 .	 1
Oi	 =	 t0

I	 .
w I	 •	 I

1	 .	 I
I	 .	 I

0w w .	 •r
O^	

-w.	
0

1	 .

a

I	 i

1	 O	 I

1	 OQM M.M AM ••MINMMY•M ••••••M V V M••MPI F•••••Y•MM V M MMM NMMMM MM HFIMM•• MMM F 3 Y•w. 1•I Q
d

1	 tww^wwrwwwrrw^wwwwwwwww;rrrrrrrrr^swrwrrrrr«rrrrrrrrww0

0	 0	 0	 0	 0
i C^1

K

Y

60



^wwwrw'wwwwwwwwwwwwwwwwwswwwwwMwwwwwrrwwMwwrwwwwwwwrwrw^
w	 M	 A

1
1 1

1

1
I

g
1

I
j

M

I
1

,•	 1^

fYl 1	 < n 1 f
1	 g n

go 420
i

QQ I

`

• I

1
1

<	 n 	 <r +

I
1n

.CA
I CA

j
I

P! I _	 r
1

11q
1 < n

CA ego 1w Ica I

Fj Yy
1

M

t
N 1 e i 1 t N

can
`• CA a < n

e1
n

i4

1 1	 < n
±	 sr n 6O

1

^CA
1

M` »
1 1

w I 6 n

n ; 1 w
I

I mam	
<i

f. 1 < n < n

g , 10

1I
n 	 • I

p
1

,

I

e

• 1 ^O

i i n t I

YOM MM rMM Mw

1

M MMMMMMw M w FOM MMM MMw

I
1Mww Yy wY/MOOM M MM

OI
MMMMM MMYOM M M wYrww

11 ,O
1 1

1
I I 1
t1

M
1	 .1

M
^
IM

wwrwwwwwwwrwrwwwwwrwwwrwrwwr`wwrrwrrwr^wrwwrwrrrMrrrwo
o •	 w ,

e

1	 61

LAN
N
41



W

M•
. 

Wr

Is

wwwwwwwww^wwwww^wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww^

	

^	 1 I

.lee
. w w -

I

S
.	

p

O 	 1	 ' 8.=	 I	 !

	

1	 ^ I
I 1

	

I	 1	 I

	

Lr;	 .^^0	 1
I	 I N

I	 j

C IAas
+

	

1	 O

	

N j 	 .: •	 i	 i N
I	 1

w .	 .

	

1	 i
1

I	 I •

+	 +

	

1	 O ^	 ;	 1

	

I	 1

	

8 '	 ^	 1	 Ig

	

^	 Q	 M	 ••
A ; as Q 1	 1 ••

I
I

	

1	 .

	

1	 41	 I

	

~	 . . •	 •y	 M fl

	

Q j	 ^^	 ^	 1 0

	

1	 ^	 ^	 I	 I+

	

1	 '

	

1	 1	 .	 m

	

1	 iQ M M •• M •• H •• •r •• M A Y• M M M M V •y •• M M M M WWI M M M• YI Y• A 1.0 YI F• M Y• Y M M IV M M •• •M Y• M• •y M A F• M Q •• Q

	

Q ^	 I	 1 0

	

^	 I	 1

	

+	 !	 1

i	 1

	

1	 1	 1

	

1	 '

M
4wMwwwwwwsw»wwwwww^ww=wwwwwwwww»w+ ► wwwwwww^wwwwwwwww^wwo

N

N
N
d
w
a
00
M

w

62



N'1
k

OAA*AAAA*AA AAA AAAAiAMAA^AA
Mf w AArAAAAAA ^ AAMA AAAwAAAAiAAAAAO
f I	 ^

;
,11

w 
n

Ify
; y

1

I 1 I f

1 w
I
^^

I
s

1 ♦ Iy
I • 1 j

N I • 1

wI •
1

r
I
1rN i • ; ;N

1 y ♦

w^l r
i

1 p
I N•tS•L
~\1 • 1 i

g
•

I
1

!r
1 ^

1
~

r V
w 1 • I I	 .1
y1

•
••

1
1y

1	 ..
1♦

all"

1 • ••• 1« Ir Q•

O I •• 1O

y	 • iY C
I

I	 •
1	 •	 • •

♦
t

y
j

1	 •prrrrrr.r•rrrrrrrrwrrrrr. I	 I
lww.rwr..rrrrrrrrrrwwwrrrrr:.rrrr^.p

O 1 I
I 1 j O

♦
1

1
y

I
y

I
1
1
r

1
1

,

OAMMAAAM=A•AAMAMAAAAMAMAAAMMA

A

•AAAAAAAAAAAAAAAAAAAAAAA•p
r	 r

O	 s A	 A A i

•
W

r
M ^W

r

t•

1%

N
N

1.1

63



s

i

a

4=
i"

I

1

i

1

oswu+^^^:*ww^s+wwwww*^^r^w*^► *^iww^.aana^s:aa^wa.ww+w.w ► aw_	 +^

I

f
i

♦I T
I,O

i t	 C i!aT
f C a _

I eta

Ca +O !a

I
+

I
I

`i
a s

its	 a	 a ..
a a

o aaa

_ < Ca Ca CA
s Cs•. CA	 -

r' CA	 asea

CA Ca
O C	 a

f ^, Caa! m
I c	 a

c^	 ^i
111111 u+
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2.1.5 Conclusion

An important arpect of the identification scheme as put forth in this

chapter concerns the capabilities of routine SIMEQUAT and the least squares

technique in general. A question of conditioning arises as the size of the

problem increases. Three factors contribute to problem size: the length of

the state and input vectors; the degree of the approximation; and the number

of sample puints used in observing the system. For larger problems it is

j	 this last factor which in some sense limits the actual identification algorithm.

Some comments concerning actual computer time are in order. As an ex-

ample, the identification for the third order example presented earlier was

carried out using interactive software on a terminal over a time-sharing net-

work, IBM system 370. The entire identification process took approximately

ten minutes terminal time, corresponding to about five seconds of CPU time.

The veriFying simulations took almost as long, due to the size of the re-

constructed equations. Smaller examples are even faster, although the

above-mentioned times are certainly reasonable.

As a final note, it is interesting to consider use of other sampling

techniques in the identification procedure. For instance, suppose that

variable sample periods were used in an attempt to better observe the sys-

tem. In fact, an apriori knowledge of particular behavior of the observed

data could lead ij clever cho :es for sample periods. The time between

samples could even be generated randomly.

Results of the discussion and examples of this chapter indicate that

the technique can be utilized in a number of applications. Given a block

of observed data from a nonlinear system, and given knowledge of the num-

ber of states and inputs, several model systems (for different operating
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regions) in the form of a collection of individual linear operators can be

identified.

i
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2.2 Report on CARDIAD Progress (R.M. Schafer)

a'ioug'i funded work on the CARDIAD method was discontinued more than

six months ego, its progress has continued steadily by means of fellowship

support extended by the University of Notre Dame. During this period, the

emphasis has been placed upon developing the method to be helpful with di-

agonal dominance designs in cases having four or more inputs and outputs.

Appendix B contains the preprint of an especially challenging design

on such a model.

2.3 Report on Feedback Loop Closures (V. Seshadri)

Also mentioned in the last Semi-Annual Status Report was a recent ex-

tension of early grant work in the general area of pole and zero assign-

ment and the exterior algebra. This work received support from Grant 3048

in its early stages, but in later years received assistance from different

i
sources.

During the period of this report, another presentation has been made

on this subject. The preprint is contained in Appendix C.

i

I
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One of the features of present day research on
arline aultiveriable systems has 

been 
a renewed inter-

est In Nygnist aatbods. lased upon the determinant of
return difference, these astbods must develop proce-
dures which interface with skew symmetric, multiLin ar
forms. A well known interface bas been made by Room-
brock. webs used a concept callad diagonal dominance.
This paper reports of a graphical, Interactive way to
achieve the concept.

Introduction

In mant years, increased attention has been
paid to the use of frequency domain techniques for the
design of multivarlable control systems. Most of
these techniques are based Upon the equation

PC (a)- IM(s)I POW	 (1)

which relates thn zaroe of the open loop characteris-
tic polynomial pppzeros(a) sad the z 	 of the closed
loop ebaraetarlatie polynomial pc (s) through the do-
terainsat of the return difference matrix M(s). Given
that the zeros of the open loop characteristic polyaom-
W are known, stability of the closed loop character-
istic polToomlial can be determined by Nyquist analysis
of 1M(s)1. Unfortunately, direct NyquIst analysis of
JM(s)j yields little design Inaighi. Therefore. al-
tesaste means of studying JM(s)I have been devised.

In the Inverse Nyquist Array approach due to
Rosanbroek. the systan is first Compensated to achieve
diagonal dominance. An n z n matrix Z(s) is said to

sbe diagonally cola dominant if for all s on the
Nyquist contour D, and i - 1,2.... ,n.

n
12u (s) l 3. 1 1a'i (a) 1	 (2)

J.
J01

If this condition Is satisfied, the usual net sneircle-
aents aada by he Nyquist plot of jx(s)I are aqua to
the nom of the not sucirelssasaU mode by the diagonal
entries of M(s). Sias, stability Can be determined by
Nyquiet analysis of the diagonal entries of M(s).

She CARDIAD (,Campl x Acceptability sion for DIA-
gonal Doainsoce) mstbod L a graphical te

le
chnique for

achieving this dominance condition.

CARDIAD Method

Consider the system of Figure 1. For the purposes
of this paper, G(s) represents a 4-input, 4-output
modal of a turbofan jet engine. It is desired to de-
sign the Compensator L(s) such that G(s) L(s) Is
column dominant. The compensator is normalised to
having 1's on the assn diagonal, so that ns+-.-.e is
achieved In a given colwan of G(s) [(s) by appropriate

*This work has been supported in part by the National
Aeroameiea and Space Administration under Grant NSG-
300.

choice of the off-diagonal aetrias is the rorraspon-
dia$ column of [(s).

At a frequency. a sufficient condition for doat-
namca can be aaagresaaaad in a quadratic inequality of the
foe

f(3f) - ztAx + A + c > 0. 	 (3)

where A. b. and c era respectively a astriz, a
vector, and a scalar formed by evaluation of the plant
transfer !unction matrix at the frequency bait$ studied,
where z L a vector of the real and imaginary parts
of the off-diagonal entries of a col es of the coupon-
Bator, and where superscript t denotes transpose.
Dominance L achieved by choosing z such that f(z)
L positive.

Several approaches are Used to choose z such
that f(z) > 0. Since it Is desirable to achieve domi-
nance with as simple a eompauestor u possibla, the
gradient of f(z) is taken with respect to each antsy

y
sam—a all other entries are zero, Rare, ziu

 be understood as a pair (ri,ii) consisting of the
real and Imaginary parts of some off -diagonal compse-
Bator antsy. This approach, referred to as type 1 an-
alysis, attempts to achieve dominance in a colama by
using only one nonzero, off-dlagomal antsy for the
colUm of the compensator. In the event that it is
impossible to achieve dominance with only one nonsaro,
off-diagonal entry, the gradient of f(z) with re-
spect to 

all 
variables L taken. This approach L re-

ferred to as type 2 analysis Bad Utilizes all off-diag-
oual entries of the compensator to achieve dominance In
a cola ms. A third means of choosing the vector z is
used In the @want that the hessian in the type 2 anal-
ysis approach Is indefiaita. It is known that cast so-
lation to making G(s) dominant L to compensate with
the lmverse system. Thos. a solution for the vector
Z L to choose the values of the inverse system at
that frequency. normalised to 1 on the diagonal so as
to fit the fora of the Compensator [(s). In the Casa
where the hessian is negative definite, this Inverse
system analysis. known as type 4 analysis, predicts
the same solution as the type 2 analysis plots.

The CARDIAD plot is a graphical representation of
the results of the gradient analysis. Consider type 1
analysis of a given cola m. f ( 0 .... 0,zi 3O..) is a
paraboloid In 3-space, and the value found by the gra-
dient analysis can be a positive sazInue, a negative
mmichu s, a positive uWasm, or a nagativo minimum. In
the positive mizleas case, nay value of zi which lice
inside the intsreantlen of f(z) and the complex plane
zi will asks f(. . O,z1,0,..) positive; and dominance
will be achieved at the frequency being studied. In
the CARDIAD plot, this is represented by a solid circle
which Is the solution of f(..0,zi3O..) - 0. and a '+'
at the value of 5z^	 vanishes,the gradient vanisl, which
L at the Center of the circle. In the case of a neg-
ative Minimum, all values ofzzii lying outside the
Circle f( ... 0.zi 3 O..) - 0 will make f(..O.zi3O...)
positive. In this case, an 'z' L drawn at the value
where the gradient vwnisbee and a dashed chafe at
f( ... 0.zi3 O..) - 0. In the negative maximmt case, to
value of zi will achieve dominance; and a 'A' L
drawn. to the positive alulan case, any value Of z3
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rill &chime 441MIaMe06= In the column at this frequem-
@y, and a '13'  is drawn.

In types 2 and 4 smalyses, the center symbols are
drawn at the gradient values, but the cemtar type and
circle type are decided by making a worst case dmL-
tin from the gradient values of all but one of the on-
trim of s; and 

than 
the remstaiag entry is analysed

in a fashion analogous to type i analysis.

A CWXAD plot results when this graphical ien-
diat information is plotted ever a rsaga of fregues-
else. Figures 2 and 3 are typical CAIDIAD plots end
will be used to describe coepmmostur design.

74ar6 2 Is a type 1 analysis plot which eostains
only solid aisles. In this ease, there alt aonetaat
real values (ri 3O) for % which lie inside all o!
the solid Circles. Hansa, to achieve dominance in this
column at all frequencies, any such choice of xi will
suffice, mince f(.. O,sI,O..) will them be positive at
all frequencies. In Figure 3, there =late so such
Com taut real value, but a simple f irst order entry
which es a inaction of frequency Me" the centers of
the circles am be used. Thus, if the C4010 plot In-
dicates that w constant real value will &chime doai-
nance. the shape of the plot guides the designer In do-
terming a frequency dependent entry.

Desien tx mole

The modal used in the following design example is
taken from (i). It is a sixth order, 4-input, 4-mt-
pat description of a turbofan engine.

Am a first step In the design procedure, the modal
was compensated with the 1werse system evaluated at
a - 0. Figures 4-8 are the type 1 analysis plots of
the 4,2 entry, the 3,4 entry, and the entire first col-
-m. Type 1 analysis of the first column indicates
_het dominance cannot be a@h1wed using only one man-
sera, off-dtagooal entry. The some was true for the
third column. Figures 9-11 are the type 4 analysis
plots for the first column; mad Figures 12-14 are the
type 2 analysis plots for the third column.

In both the second Column and the fourth column,
dominance 106 achievable using type 1 analysis and con-
stant comompensatiom as described is the discussion of
Figure 2. Dominance me achieved In column 2 by
choosing tin 4,2 entry to be -380.3. Note that this
value lies within all solid circles and outside all
dambed eircles. is lib moaner, the fourth column ms
made dominant by choosing the 3 , 4 entry to be -.39.

Is the first and third cobs, it was swassery
to fit all three off-diagonal entries of the coupon-
aster to the sbspe of the @motors of the type 4 and 2
plots, respectively. In each ease, se@ood order aae-
poosation was seeeseary , to fit adequately the obapes.
The three entries chosen for the first column wera

k2 1(a) - 
-.189E-322  - .0129&

'	 .227Z-2s+ .2336 + 1

1(s) - 
-.04402 - 2.30@

'	 .2271-2s + .2380 + 1

k4"1(s) ..1460
2 ' . •6^ .

.2271-2s + 2336 + I

The third column was made dominant with the following
three off-diagonal entries

3(a) - -.1731-b2 + .263E-2s

'	 .1983-2• + .0637s + 1

kj.3(s) - .73.2741-3s._,
.1983-2s + .0837• + 1

2

k4,3 (s) - -	 -
Olus

.1983-2s + .08374 + 1

It should berated that, In each case, the domme-
Imator polynomial of the column is the saga, thereby
hoping the order of the resulting compensator small.

With compensation as described above, type 1 so-
alysis was repented to verify that dominance bas beam
achieved. Figures 13-13 are a typo 1 analysis plot
from each column. Note that In every "as, the plot
predicts that an acceptable solution Is the origin.
two typo 1 analysis is draw amsalag all other off-

diagonal entries are swo, this Implies that tin col-
vow era am dominant, $lace the plots predict that
Identity compensation will &chime dominance.

Discussion

The tools associated with Wygulst analysis of (1)
are often helpful in the analysis and design of multi-
variable smomsis the frsqueoe domain. One of the
ways to approach the design of ^M(s)j in (1) is by
mesas of the dominants Ida" of 9osembrock (2). This
popes describes a grapulcal, interactive procedure for
attaining dominews. For other examples, sea (3).
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ABSTRACT

In this paper we establish the connection between linear multivariable
feedback Poop closures and the induced exterior map, the latter being the
by-product of exterior algebras over the input and output vector spaces.
This suggests the concept of a sequence of multivariable zeros which should
enhance the designer's ability to shape multi-output transients.

Introduction

Much interest has been evinced in recent years about the exterior al-
gebra, a structure especially suited for addressing questions related to
matrix determinants and inverses. It has been shown that this structure
can be used to solve problems in pole assignment [1,2], in individual zero
placement [3] and indeed in a host of areas related to systems and informa-
tion theory [4]. The present paper may roughly be divided into three parts.
The first part introduces the exterior algebra. The presentation is ex-
tremely brief due to limitations of space; for more details the reader is
referred to Greub [5]. The second part of the paper considers multivari-
able feedback lnop closures, the loops being closed one by one, and studies
their relation to certain entities called numerators of the kth kind, the
latter arising rom a frequency design method used in industr,! [6]. The
last t--ar= of the paper establishes the connection between numerators of the
kth kind and the kth induced exterior map, the latter being a by-product
of exterior algebras over the input and output vector spaces [7]. In this
way we will see that when considering multivariable feedback loop closures
it would be helpful to view them in the context of the appropriate induced
exterior morphism.

The Exterior Algebra

Consider an F-vector space V. We can construct an exterior algebra
[5] AV over V. The bilinear operator introduced by this construction
is commonly :alled the exterior product or the "wedge" product 	 and
operates as

(al al + a 2 a 2) „ a3 - a l al ^ a3 4- 	
a 2	 A3

al „ (a3 a3 + a4 a4 )	 a3 a1	a3 + a4 al	a4,

where al , a29 a30 a4 belong to the algebra AV, and a l , a2 , a31 a4 are

field eleme7ts from F. Furthermore, the operator ^ is skew-symmetric.
Now consider a map f : V + W. If we construct the exterior algebras

AV and AW over the vector spaces V and W respectively, the map r
induces a morphism f" over the algebras [7], which is just a se quence of

*This work has been supported in part by the National Aeronautics and Space
Administration under Grant NSG-3048 and in part by the Office of Naval

t

	 Research under contract ;100014-79-C-0475.
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maps fk over the kth exterior spaces, as shown in Figure 1.

AV	 F	 V	 A3V	 A 
k 
V . . .

I	 I

o	
Zf	

ifkI 
'1	 'f

AW	 F	 W	 A 
2 
W	 . . .	 A 

k 
W	 . . .

Figure 1. The Induced Exterior Morphism, f

A reasonable question that could be asked at this juncture is what
relevance the induced exterior morphism f" has to multivariable feedback
control design. The answer is that there already exists a feedback control
design method in industry [6] that makes partial use of the induced exter-
ior morphism structure. It is noc clear, however, that the originators of
the method are aware of the stru•--ture and it appears that the design method
could be extended by making fuller use of the sequence of exterior maps.
In order to address these ism_, ?s, let us first consider a problem suggested
by Hofmann, et al. [6] and study the connection between feedback loop clo-
sures and certain entities --ailed numerators of various kinds, the latter
arising when the following problem is solved.

Problem: Obtain expressions for the arbitrary closed-loop transfer func-
tion yc/rd after feeding back one or more outputs (measurements) to one

or more inputs (controls), for the plant shown in Figure 2.

r l (s)	 uI(s)
	

Yl(s)

r,(s)	 U, (S)	 N(s)	 Y2(s)
A(s)

rp (s)	 up (S)	 Ym(s)

Figure 2. A Feedback Loop Closure Problem.

Comments: Figure 2 shows a multi-input multi-output plant; it has p in-
puts and m outputs. The reference, input and output may be compactly
called r, u and y, and considered as elements of R(s)-vector spaces R,
U and Y respectively, R(s) being the field of ratios of polynomials in
s with real coefficients, the denominator being non-zero. The plant is
nth order, linear and stationary. The expression for the plant in Figure
2, that is N(s)/a(s), is considered to have been derived, with the usual
assumption of zero initial conditions, from an input-output plant descrip-
tion in the s--domain written as

A(s) y(s) a B(s) u(s),

where y belongs to the R(s)-vector space of dimension m, [R(s)] m , and
u belongs to [R(s)] p . In the following discussion we shall drop the ex-
plicit dependence of the variables on s, for notational convenience.

The outputs y may be expressed explicitly in terms of th., inputs u
as
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N
' 0 u

where A is the nth degree characteristic polynomial for the plant. If
A and B are left coprime,

A n det A.

N is represented in numerical calculations by an mxp matrix whose ele-
ments belong to R(s], that is, they are polynomials in s with real co-
eff icients.; N is the adjusted plant transfer function numerator matrix.

Solution: In the following treatment lat the polynomial matrices A and
B be expressed in terms of m-length column vectors as

	

A 
0 

(al a2 ... m	 la]	 B 
a
 (b b2 ... bp].

Consider the case of a single feedback loop, that is, one output yi
is fed back to the jth comparison point through a feedback gain g ji , as
shown in Figure 3.

r l	u 	 yl
oil

r.	 uj-1	 yi-

r +	 u	 N	 yi

r +1 -	 u'+1	 yi+l

r 	 1	 uP	 ym

Figure 3. The Feedback Problem With One Loop Closure.

The relationship between the output y and the reference r may be ex-
pressed as

(A + BG)y - Br,

where y and u are given by

Y - ( yl ... ym) 1	r - (r1 ... rp)T.

G is a pxm matrix of zeros except for a single non-zero element g ji s

R(s), and is expressed in terms of p-length vectors in the same fashion as
A and B above by

G = (0 ... 0 g  0 ... 01

where

gi M (0 .. 0 gji 0 .. 011 T.
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Note that g j i is the j th element in 
K 

g i ,^ and that g i is the ith

column of G. We can then express the equation

Ay - Bu
as

alyl +..+ acyc +..+ ai-lyi-1 + (ai + bj gji)yi + ai+lyi+1 +..+ amym

- b 
1 
r 1 +..+ b 

d 
r d +..+ bprp.

Note that in the above equation a k , k - 1,.. ,m and bk, k - 1, ... ,p are

vectors whereas yk, k - 1,...,m and rk, k - 1,...,p are scalars, the

field being R(s) .

We wish to isolate the closed-loop transfer function yc/rd ; this may

be achieved by taking the exterior product of both sides of the above equa-
tion with the (m-1)-exterior term

al ^  1 ac-1 " ac+l	 ai-1 " (ai + b
j gji) " ai+l	

am,

which is the exterior product of all the vectors on the LHS of the equation
except for ac, whose coefficient yc is the output of interest in our
current discussion. Because of the multilinearity and skew-symmetry of the
exterior product, all the terms on the LHS of the equation will become zero
except for one term which includes acyc. If, at the same time, all the
references except the one of interest, r d , are held zero, the equation be-
comes

al "	 ac-1 
a
c+l	 ai-1 ^ (a i + b

j gji) " ai+l ^ ^ am " acyc

- al " " a
c-1 

a
c+l	 ai-1 " (a i + b

j gji) ^ a i+l "	
am " bdrd.

Both sides of this equation contain m-exterior products of m-vectors; the
products, therefore, are determinants and hence just field elements. also,
the products are skew-symmetric so that a c on the LHS and b  on the RHS

of the equation may be moved into position between a c-1 and ac+1 while

retaining the validity of the equation. Thus we can get the arbitrary
closed-loop transfer function y c/rd with a single loop closure from the

output y  to the input u  through cane feedback element g ji , as

yc - 
al	 ac-1 ^ b  ^ ac+l " " ai-1 ^ (a i + b

i
g
ji

) ^ ai+l	 am
r1 al	 ac-1 ^ ac ^ ac+l " " ai-1 ^ (a

i + bj gji) " a
i+l "	 am

or

(al	 ac-1 ^ b  ^ a
c+l ^	 am

yc + al	 ^ ac-1 b  ^ 
a
c+l	 ai-1 ^ b^ " 

a i+l	
amgji)

rd	 ( a1 ^ . ^ am + al	
ai-1 ^ 

b  ^ a i+l ^	
amgj i)

In order to interpret the above expression `or the closed-loop trans-
fer function yc/rd observe that, in terms of numerical calculations, each

of the two terms in the numerator and in the denominator of the above equa-
tion is simply a determinant; thus a total of four determinantal calcula-
tions is involved here. Determinants of this sort recur in transfer func-
tion expressions with one or more loops closed; they are called numerators
of various kinds [6]. The kind of the numerator is dependent on the nature
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of the mix between the columns of A and the columns of B in the parti-
cular daterminantal expression. For instance, the above equation contains
two numerators of the first kind, that is, two determinants resulting from
the m-exterior product of (m-1) columns of A with one column of B,
namely

yc

Nud a1
	

ac-1 bd ac+l ^ " am

and
yi

Nuj	
al	 ai-1 " 

bj ^ ai+l	
am.

Similarly, the equation has one numerator of the second kind, that is, the
m-exterior product of (m-2) columns of A with two columns of B, namely

ycyi

N	
aI "	

a c-1." b  ^ ac+1	 ai-1	 j	 ai+1	
am.

uduj 

Then, under the condition that det A = 6, we can express the closed-loop
transfer function yc/rd compactly as

yc	 ycyi
yc Nud + gji NudU.
rd	

A + g N iji uy
j

Thus, in the one-loop case, that is, with exactly one feedback loop
(from y  to nj through gji as shown in Figure 3), the expression for

the arbitrary closed-loop transfer function involves numerators of the
first and second kinds. It has been found [8] by using a similar exterior
algebraic mechanism for manipulating the closed-loop transfer function ex-
pression that in the k-loop case, that is, with feedback loops from k
different outputs to k different comparison points, numerators up to the
(k+l)th kind are involved. Or, the highest kind of numerator in the ar-
bitrary closed-loop transfer function expression is intimately connected
with the number of loop closures.

The Numerator of the kth Kind and the kth Exterior Map

The arbitrary numerator of the kth kind is formed, is an extension
of the definition of numerators of the first and second kind, by taking the
m-exterior product of (m-k) columns of A with k columns of B, as

yi	 yi,
Nu	 u	 a1 ^ ^ ail 1 ^ bjl ^ ail+1	 aik 1 " bjk " a.,am.
J1.. Jk

We will show in the following that numerators of the kth kind may be
understood in the context of the induced kth exterior map for the input
R(s)-vector space U to the output R(s)-vector space Y. That, and the
fact that numerators of different kinds are intimately related to the num-
ber of loop closures, would lead to the conclusion that there exists a
strong association between the induced exterior map and loop closures.

Consider the equation relating the output y to the input u, ex-
pressed as

y=A1Bu.

The vectors u and y belong to R(s)-vector spaces U and Y of dimen-
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lion p and m respectively. Thus we have the morphism of vector spaces

A-1  B . U - Y.

We have seen earlier that such a morphism of vector spaces induces a mor-
phism of algebras	

11^
(A -B) " : AU + AY

as shown below

	

AU	 R(s)	 U	
A 

2 
U	 A k U

	

^	 I	 1

A 1B)"	 1	 A 1B	 (A-1 B)j	 i(A-1B)k . . .

	

AY
	

R(s)	 Y	 A Y	 Aj

Figure 4. The Exterior Morphism Induced By A--B.

Of particular interest is the map

(a -B) : AkU - AkY
k

because we intend to show how this map is related to numerators of the kth
kind. In order to try and compute this map, we express [8]

-1
adj A

_	 1
A;

(A
 ^) k = (A ) Ok̂  

(Ak) B
k = det A, 

B x

Let us assume for the moment that we can find a matrix T such that

T A, = I det A.

The reason for this assumption will become clear in the following; but for
the moment, let us rewrite the above expression as

T I.
det A Ak

Comparing the above with the definition of adj Ak as

• adj Ak
Ak = Idet Ak	 '

and because Ak is invertible, we have

adj Ak	
T

det Ai det A

Thus wewe can replace adj A.k/det Ak by T/det A in order to rewrite

(A B) k as

	

	 T B"

(A 1B) k = det A*

The Nature of the Matrix T

We now investigate the nature of the matrix T; to understand T is
to understand the nature of the kth exterior map (A- 1B),, because
(A-lB)k is just TBk/det A. Recall that T has been defined in terms of
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its action on the image of Ai, as

T Ai - I det A.

Nov Aj is calculated by forming all possible lack minors from the matrix

A, and is thus

Al. .1c,1..k	 '' Al..k,il ..ik 	.. A1..k,m-Tc+f..m

Ati

mt:i l..m,l..k ..	 ..m,il..ik ..	 ..m,3-k+l..m

where the overlinse indicate grouping of terms, and the first and second
set of subscripts of each element indicate the k rows and k columns,
respectively, selected from the matrix A in order to form that particular
ksk minor element. Expressing the matrix A as

A - (al .. 
ail-1 ail^ail+l .. aik-1 a I, aik+l .. aMI

the arbitrary ith column of .4, k̂ has been formed by selecting the k m-

length columns a il , ail "" ik from A and forming all possible kxk

minors from these k columns by choosing k rows at a time according to
some predetermined convention. Thus the arbitrar y ith column of Ai is

of length (k), the number of combinations of k items chosen at a time
from m.

Based on Laplace ' s Theorem [ 9], a possible construction for T would

be to make the ith row of T consist of cofactors corresponding to the
kxk minor elements in the arbitrary ith column of Ak. Thus the ele-

ments of the ith row of T are formed from the (m-k) complementary

columns al'"'ai 1-1, ai +1'"' a 1' a +1'",am of A. The (m-k) rows
1	 ilc	 i'k

selected from these columns to form each element of the ith row T are
complementary to the k rows selected from a,..,a	 to form the cor-

al	 1k

responding element in the ith column of A. Hence the order in which
the (m-k) rows of A are selected in forming the elements of T may be
said to follow a complementary convention to that used in selecting k
roses when forming Ai. Hence the matrix T may be represented as

ti	 v

clw	

_

l..m;k+l..m	 ' ' ' Am
Tti	

. 
^'k+l..m,l..il-1 	 A]...m—k,l..i1-1

ik-1 ik+l..m	 ik-1 ik+l..a

A,..m-k,l..m-k

the "tilde" symbol denoting that the minors are appropriately signed.
Recall that we are interested in the product T B k . The matrix B^

is formed from the columns of the matrix B in the same manner as A^ was

from the columns of A. B consists of p columns of length m, as

B - [b1 .. bjl-1 bjl bjl+1 .. bjk 1 
bjk 

bjk+l .. bpi

9

W
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and Bk is given as

Bl..k,l..k	 .. BL.k,jl..jk	 .. Bl..k,p-k+l..p

B"
k

Bm-k+l..m,l..k .. Bm k+l..m,j l ..j k .. m-k+l..m,p-k+l..p

Here the arbitrary jth column of Bk is formed by picking the columns

bill-
',b from B and forming kxk minors using the same convention for
 jb

the order in which k rows are chosen from m as before. Now consider a
hybrid matrix

	

Xi
j 

= (al .. a  1_1
	l

-1 b
	 a l

 
+l ., 

a ic-	 j k
l b	

a ic
+l .. aml

i	i

and assume that we want to compute its determinant by invoking Laplace's
Theorem. We may well select the k columns b j ,..bj	from Xij and

1	 k
from kxk minors to be multiplied by the corresponding (m-k) x (m-k) co-
factors from the remaining columns al,..,ail-h ail

+l' ..,a ik-1' a ik+l' " 'am

of Xij . But the former kxk minors are identical to the elements in the

arbitrary jth column of Bk, and the latter (m-k) x (m-k) cofactors

are identical to the elements in the arbitrary ith row of T. The order
of selection of k rows to form the former elements and of the (m-k)
rows to form the latter elements are precisely complementary by convention,
and thus the product of the ith row of T with the jth column of Bk,

that is, the ij th element of T B,, is just det X i j , that is,

al	. „ ail-1 . b j l , ail+l .... aik 1 . b
j 
k , a k+l .... am.

But the above is precisely the arbitrary numerator of the kth kind

Nyil..yik

ujl,.ujk

so that we have

	

NY1..yk	
.. 

Nyl.. yk	 .. NYl..yk

	

ul.. uk	 ujl..ujk
	 1-1

p-k+l..up

T B"	 'yi	 y	 'yi	 y i	 'yi	 yi
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Hence the kth exterior map, represented in matrix form, has the
numerators of the kth kind as its elements.

Conclusion

Whereas numerators of di I ferent kinds are used in closed-loop feed-
back design methods in industry via well-tested software packages, aot
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much is available in the literature about their nature other than that they
are determinants involving columns of A and B; we have seen in the a-
bove section, however, that they are, in fact, the elements of the appro-
priate induced exterior map. In earlier sections we saw the connection be-
tween feedback loop closures and numerators of different kinds; thus, as
the feedback loops are closed one by one, the different induced exterior
maps come into play. Current multivariable feedback design methods attempt
to shape multioutput responses based only on the last exterior map and, con-
sistent with this, present definitions of multivariable zeros involving only
minors of the largest order in the transfer matrix. However, because the
intermediate exterior maps are also involved when we close loops, it would
seem that "we would be making better use of the available information in
shaping multi-output responses if we defined intermediate zeros from all
the maps when we try to set up a valid multivariable counterpart of the
familiar SISO zeros.
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