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1. SUMMARY

This report is a statement of progress on NASA Grant NSG-3048 during
the six month period from September 1, 1979 to February 29, 1980. During
this period, the researches at the University of Notre Dame were directed
by Professor Michael K. Sain; and the funded research assistant was Mr.
Stephen Yurkovich. Mr. R. Michael Schafer continued studies developing
out of researches under this grant; his support, however, was drawn from
fellowship funds made available by the University of Notre Dame. Over-
seeing technical aspects of the grant at Lewis Research Center was Dr.

Kurt Seldner.

The major emphasis of this status report lies in the continuation of
nonlinear modeling researzhes involving the use of tensor analysis. Pro-
gress has been achieved by extending the studies to the controlled equa-
tion

x = £(x,u)

and by considering more complex situations. Included herein are calcula-
tions illustrating the modeling methodology for cases in which x and u
take values in real spaces of dimension up to three, and in which the de-
gree of tensor term retention is as high as three. The quality of the

controlled tensor models has been most encouraging; and preparations are

now under way to begin applications to the QCSEE digital simulation.

Though not funded by Grant NSG-3048 during this period, certain lin-
ear multivariable studies growing out of earlier grant work are described

briefly, for completeness.
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2. STATUS OF CURRENT RESEARCH

This section reviews the status of grant researches carried out during

the six-month period from September 1, 1979 to February 29, 1980.

In the previous Semi-Annual Status Report, for the period from March
1, 1979 to August 31, 1979, the initial studies on nonlinear modeling by
means of tensor ideas were presented. Basically, those results were con-
cerned with homogeneous systems of the form
x = f(x),
for x a member of some finite dimensional real vector space X. If
£(0) # 0,
then the equilibrium point Xg satisfying
f(xe) =0
can be translated to the origin. Without loss then, it is assumed that
£(0) = 0.
Then f(x) 1s to be understood in terms of its power series expansion

about the origin, with each real component

of the function

leading to series terms of the form

x * e x *
"kl k, kp

Such terms, though nonlinear, are nonetheless p-linear functions
Rp + R,

which by basic tensor theory can be expressed in terms of linear functions
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on the tensor product (p times) of R with itself. In the aggregate, the
collection of such linear functions can be understood in terms of a matrix
operator on the tensor product (p times) of X with itself. This matrix
operator can be derived, 1if f 1is known, or determined empirically 1f £

is not. Tﬁe preceding Semi-Annual Status Report considered both viewpoints.

For control problems, of course, interest would center on an equation

of the form

where u is a member of another finite dimensional real vector space U.
The pair
(x,u)

is then an element of the product space

Xx U,
which is sometimes denoted

Xeu.
The focus of this report is on this case, and the details are presented in

Section 2.1 following.
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2.1 Higher Order Linearizations of Nonhomogeneous Systems (S. Yurkovich)

All discussion and examples to this point have concerned systems with
homogeneous nonlinear vector differential equation representations. While
emphasis has been centered around the linearization of nonlinear systems
based on identification of the total operator L, the real thrust of the
concept has been on identification of the individual linear operators as-
sociated with each tensor product term. It is this vein that the discus-
sion will now pursue, with the inclusion of control (or input) variables in
the system. Certainly the individual linear operators can be obtained from
the partitions of the large matrix operator if so desired. Let it suffice

to say that either could be considered a "by-product" of the other.

The initial venture of this chapter is to establish the notation and
basic structure of the necessary tensor algebra for inclusion of forcing
functions in the system. With this framework secured, the existing tech-
nique is adapted to accommodate nonhomogeneous multivariable systems; here
a concept of basis ordering is introduced. To exhibit the application of
the ideas developed, several examples are treated and resulting simulations
plotted. First, two second-order systems are examined--that is, with two
states and two controls. Progressing from these, a three state, three
control example is inspected. Throughout, the choices for the forcing func-
tions are sine wave inputs, with amplitude and frequency varied for each

input. Again, intuition fails in these nonlinear equations as to the
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choice of initial conditions; therefore, small initial conditions
are chosen to ensure compliance with the feasible operating region of each

system.

To distinguish between the concepts in this chapter and those developed
previously, the usual symbols for the state vector and control vector will

be employed: x and u, respectively.

2.1.1 Formulation: Forcing Functions Included

The aim of this section is to extend the concepts treated thus far
(the multilinearity of the higher degree nonlinear terms, for example) to
functions of two variables, namely states and controls. With the notation
convention established here, the software adaptation and representative ex-

amples can be discussed in the sequel.

Consider the general set of nonlinear vector differential equations

x = £(x,un)

where the state vector x is an element of R and the input vector u

is an element of Rm. Define the Jacobian matrices

2t
»
ox 13 axj
2f .2
F) ? ’
E S I
the Hessian matrices
azfi
7 i=1,2,...,n
ax
as 22¢ 22¢
[ ;1 "3 ai ;
X, 9%
ax ik 3 7k




and the cross derivative matrices

L 13 2
? f1

( m » 1'1,2,..-,0

by
- . 22¢ a2¢
[ 1] - ai .
w- axdu % axj uk

I' With a fixed operating point (xo,uo). the general equation may be written
as

H f(x,u) = f(xo,uo)

af

+ Ix

(x~x,)
0
(xoouo)

Imu."

- + - (u-uo)
(xoouo)

[ ]

n 3 f
+1/2 ] e, (x-x,)’ 3 (x=x4)

i=]1 ax
(xoouo)

*

B owwa

1
N

: § 3£
: +1/2 e, (u~u,)’ (u-u,)
1=1 i 0 auz s}

(xo.uo)

n azf1
- ' ———————— -
. + 1 oeg(xxp)' 5= (u-up)
1-1 (xoluo)

+ ...

where (') denotes transposition and e, is the real vector of zeros

except for the i-th entry which is unity.

Suppose now thai

dxo
Tt = f(xgeug)s

so that by the substitutions




z(t) = x(t) - x4(t) ,

w(t) = u(t) - ug(t) ,

it follows that

Therefore, the original differential equation is now converted to the fol-

dz .-y =
. a't' X f(XOouo) .

lowing simplified form:

To introduce the notions of the tensor algebra, consider for instance

z = %5 z + %& w
(xoluo) (xoiuo)
n azfi
+1/2 ] e z' 3 z
i=] ax (x u )
0°°0
n azfi
+1/2 ] e, v 3 w
i=] u (x.,u.)
0’0
n azfi
+ ) e 2 w

i 7x9u
i=1 (xo.uo)

+ ..

the term
n azfi
) e, ! —3 z
i=] ax (x.,u.)
0’0
and regard it as a bilinear functiom
2
n 3 fi
e () —3 ).
i=]1 ax (x.,u.)
0’0

Because of

the bilinearity, this function can be expressed in terms of

T T T T R
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the tensor product as a linear function operating on z @ z. Call this

particular linear operator L20 so that

xzx azti
1/2 e, 2' —=—x z=1/2 L, (z2® 2).
1e1 i axz 20

(xo.uo)

The notation for the linear operator is such that the first subscript cor-

responds to the first vector, 2, and the second subscript corresponds to

w. Thus, by this convention,

; azfi
' -
qa1 ¢ % v v I'11 (zo®w).
("0'“0)
Now define
of
L " —
10 3x '
- 3f
L oy
0’0

as the usual "A" and "B" matrices of a standard linearization

z = Az + Bw.
With this established, the differential equation can now be expressed as
oLt v

+1/2 Ly (z® 2z) +1/2 L02 (vw@w

+Lu (z@w) +. ..
The general term in such ar expansicn can be represented as

j!i! ij (iOZO...OzQ::HQ eoe Q_w) .

~"

3§ times k times




80 that, finally,

"jf) hoﬁT‘Tl’Jk (3°’°‘.°ﬁ°f°"'°l) .
J times k ;;ﬁos

Again; the motivation for such a derivation is the fact that all of
the ij are linear operators. The number of these operators for a given
sxpansion depends, of course, on the desired accuracy of the approximation.
Consider, for example, the table presented in Figure 2.1 for the typical

system ccnsisting of the state vector x and the control vactor u.

linear operators terms retained in approximation
LlO Lo1 standard linearization
L20 Lll LOZ second degree
LJO Lz1 le LOB third degree
LAO L31 L22 L13 L04 fourth degree
LSO L41 L32 L23 Llé LOS fifcth degree
Figure 2.1

Accordingly. for an approximation retaining up to and including all
third degree tensor terms, nine individual ij need be identified; for

fourth degree terms, the number would be fourteen, and so on.

In the remaining sections of this chapter the identification scheme
is described and illustrated. However, a minor point should be mentioned

here before proceeding further. When the ij are identified, the pre-~
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ceding constant term associated with each--that is, 1/j!kl-=1s suppressed

into the operator itself. This obviously will cause no loss of generality,

since any one of the constants may be extracted (if so desired) from the
corresponding operator by a simple matrix scaling operation., Furthermore,
as will be’accn in the next sectica, the opsrators that are identified
are of reduced size as compared to those used in the discussion to this

point.

2.1.2 Software Adaptation

The major difference between the algorithm here and the one employed
in the first and second order linearizations of the previous two chapters
is, cf course, the necessary addition of control variables. However, a
change more fundamental to the basic technicue is the need now for a
greater number of time points in the sampling process. This is basically
due to the behavior of the input forcing function, taken to be sinusoid
for the examples treated in following sections. Obviously, the sampling
period must be somewhat smaller than the period of oscillation of the in-

put. For ease in programming, a constant sampling rate is used. Another

major adaptation in the Software is the development of a scheme for logical

ordering of the terms which arise from the tensor products.

Consider again a series expansion, given now in terms of the vectors
x and u,
X - LIO x + LO1 u
+L20xgx+Luxou+Lozuou

+ L30 X@Px@Px+ . ..

10
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Since the task is to identify the parameters of the L m only, the new vector

equation
% = [Lygiloyilygilyyilogilygi-++]

X@®x

IO RN N}

xX@u

be s st s e

u®u

b e iiinna,

X®X®X

poeoace s v

would be constructed.

Recall that for the case of the homogeneous system several redundant
terms appeared in the vector stacked with tensor product terms. In such a
case it was argued that those terms, with the corresponding columns of the
identified operator, could be eliminated for purposes of thz identification.
Such is the case here; for instance, consider the product term

x@xQu

which corresponds to the L2 operator. For three states and two inputs,

1

this product can be constructed according to the previous scheme:
xX@xQu=x@ x®u)

["1

=xQ® X, [ul u2]

=xQ xzul x2u2 .

11
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Again, the term (x @ u) can be considered as a six-dimensional object, and

stacked in one (row) vector. Thus,

s

3 [xlu1 x,u, X,uy X,u, Xauy x3u2]
X@xQu= Xy

hx3

2 2 u X.X,u X, u u

1% X% 4N 1% XY %1%

2 2
= | Xp%{U; XX Uy Xouy X u, Xy XUy X,XqU, ,
2 2

;x3x1ul XaX Uy XXy X X,U, X34y Xqu,

an 18-dimensional object. Therefore, the linear operator L21 associated

with this product term would have dimension 3 x 18. But notice that there
are six identical terms in the product:

X XUy ® XpXgUp,
XyXpUy = XpX Uy,

xlxsu1 = XaX, U,

x1x3u2 = x3xluz,

x2x3u1 - x3x2ul ’

x2x3u2 = x3x2u2 .

Eliminating the redundant terms of x @ x @ u would leave a vector of length

12, Likewise, the corresponding operator would have dimension 3 x 12; de-

note this matrix as tzl'

Now a problem of reduced size can be formulated. The equation

"SR L ANNS AUNS URL AUET AR SIS
x = hyoiloyibaoilinito2ilpi o+ ! ¥y

Y
is constructed, where the L correspond to the reduced number of tensor

jk

12

o
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product terms stacked in x It will not always be the case that % ¥

L jk
ij; 10 10 and 201 = LOl' But the new notation will be em=-

ployed for consistency. The bracketed term in the above equation has dimen-

WY
in fact, L., =L

sion n x p, with n being the number of independent state variables and
p being dependent upon the number of fensor terms retained in the approxi-
mation. Therefore, x has dimension n x 1 and X had dimension p x 1.

The composition of the vector X is a crucial consideration in the equation;

a logical scheme is necessary for consistency, presented in the following.

Let S be the space of states so that the n-vector x 1is an element
of S. Let U be the space of inputs so that the m-vector u 1s an ele-

ment of U. Furthermore, let {a ,...,an} be a basis for the space S

1°%2
and {bl’bZ""’bm} be a basis for the space U. The space

2 L St B S B e I e I e

é@so... @i

~
q times
;. would have a basis of gq-vectors, nd in number, of the form
E ailaaizo @aiq,
; where 11,12,...,iq are integers between 1 and n. Such a space would have
; E' linear combinations of products,
:" #@ngoﬁ,
! : of q n-vectors, cach comprising a n9-dimensional object. But, as seen in
- the discussion above, this number can be reduced if redundant terms within
v the product are eliminated. The number of distinct elements in the product
i is given by
. +q-1

(“q ),

13
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that is, "The combination of (n + q - 1) items taken q at a time." Like=-
wise, to span the space
IeUe® ... QU
r times

mr r-vectors of the form

where jl,jz,...,jr are integers between 1 and m, would be necessary. But
the number of distinct elements in a product

ulauze...our
would be given by

(m+r-l).

r

The extension of this to product spaces of the form

LI ) S U U L U
S®S® G["db‘\j? (-] o
q times r times

follows naturally. The number of (gq+r)-vectors of the form

a, ®..-©a2, ®b, ® ... ®Db
1 A 3

r
in the basis is given by the product of n? and m'. Here, the number of
distinct elements in a product

xlg...exqoule...a ur

is calculated according to

n+q-l).(m+r-l)

¢y r

Knowing the number of elements in x is half the problem; some or-

L
dering convention need be established. To settle this issue, consider a

simple illustration with n =3 and m = 2; thus, (al,az,a3} forms a

14
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basis for S and {bl,bz} forms a basis for U. Then, for the product space
Ss@setlU,
a legitimate basis would be
{aloalabl, 3,03, ®b,, 3,8, ®b;, 2, ®3,0 b,
al‘@ a, ® bl’ a, ® a, ® b2’ 2, Q8 @ bl’ a, @ a; ® b2,
azaazabl, azoazebz, azga3gbl, aZQaBQbZ,
a3°a10b1’ a3@algb2, a3Qa20bl, 33032@b2,
3;03;0 b, 28303, 0b,)},
consisting of 18, or (32) . (21), members. The srace consi-ts of linear com-
binations of products of the form
X@xQu
which would also consist of 18 elements; it is the ordering of these ele-

ments which is the primary concern here.

Note the manner in which the members of the above-mentioned basis are
listed. By this convention, the index of each item in the general form

a, @a, @b
LT LT,

is incremented through, beginning at the right. For instance, with il = 1,
12 = 1 initially, jl is incremented from 1 to r, at which time the in-

dex i2 is incremented by one and jl is incremented from 1 to r again.

This process is continued for 12 =1,2,...,9, at which time il incre-~
ments by one and the previous steps are repeated. Thus, with 11 = 1,2,..4,9,
the last basis element in the list will always be aq ® aq ® br' The

(nq) . (mr) elements of the tensor product x @ x @ u can be listed in a

similar fashion, the obvious difference being that these elements are or-

dinary products of the members of x and u. To eliminate redundant terms

15




in the tensor products for identification of the corresponding %gk requires

a slight modification of this scheme.

The algorithm for ordering the non-redundant terms from the tensor pro-
ducts will now be presented via a flow diagram, represented in Figure 2.2,

Variable names for this flow chart are detailed in the following:

X and U: arrays of N states and M inputs, respectively.

INDX: array of indexes for elements of x, ordered.

INDU: array of indexes for elements of u, ordered.

NXTR(1): (marker) cumulative number of elements in INDX
for tensor products of x up to the i-th degree.

NUTR(i): (marker) cumulative number of elements in INDU
for tensor products of u up to the i-th degree.

XPROD: array of products of combinations of elements of x.

UPROD: array of products of combinations of elements of u.

XPR(1i): (marker) cumulative number of elements in XPROD
for tensor products of x up to the i-th degree.

UPR(1): (marker) cumulative number of elements in UPROD
for tensor products of u up to the i-th degree.

XL: array containing all non-redundant product terms of
states with inputs, ordered.

Three basic divisions comprise the algorithm. The first, represented
in Figure 2.2a, establishes the order of the indexes or subscripts of x and
u to be used in forming products. This first stage is shown in a long form
for clarity, since a general, condensed version would be less illustrative;
certainly one set of nested loops would serve the general purpose as op-
posed to a set for each degree of tensor products as shown. To exemplify
the ordering of these indexes, consider the previous case of the 3-vector
x. For an approximation including third degree tensor product terms the
array of indexes for x, ordered according to the left branch of Figure
2.2a, would be given by

INDX=(,2,3;11,12,13,22,23,33;111,
li12,113,122,123,133,222,223,

16
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233,333 .

In the above, the notation is such that a semi-colon separates groups of in-

dexes corresponding to the different degree of tensor product, and a comma

separates those indexes which are to be used in ordering product combinations

of X1s Xgs and Xy Thus, stage two (Figure 2.2b) uses these indexes to
compute combinatorial product terms; the result for this case would be
XPROD = (xl, Xys Xq3 XpXqs X X, X Xqs XgXgy XpXg, XgXg)

X X X15 X X X5, X)X Xgp XX Xp, X XoXg,

X1XqXqs XgXyXos XoXoXg, XoXaXa, x3x3x3) .
Similar calculations are performed for the m-vector u (as presented, the
algorithm assumes m > 0), so that in the final stage, Figure 2.2c, the
product terms are combined and ordered in the vector X1 corresponding to

")
the ij order chosen.

These final two stages of the algorithm, as represented in the flow-
chart, are given for the general case (arbitrary degree of approximation).
The construction is such that the number of multiplications performed is
held to a minimum. Furthermore, the division of the algorithm into three
stages offers some conceptual convenience as well. It is not difficult to

see from this a method for implementation on a digital computer.

The heart of the identification scheme, then, is embodied in the
constiu~tion of the p-vector Xy The following example will serve to

summarize the principle.

17
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Consider the nonhomogeneous vector differential equation

x = £f(x,u),

.

[T

with some initial condition x(0) = Xq Let the state and input vectors be

E ' given by
x ;
3 X = X » u= 1 .
i 2 u
. x 2
3

Suppose that in the approximation up to (and including) third degree tensor
terms are kept. Thus, the expansion, with tensor notation applied, is
given by

- £(x,u) L. x+L.. u

10 0l
+L20x0x+l.ux0u

+L02u0u+L3oxox0x
+L21xgxou+L12xQuou

i
| . +L03ugu0u.

Putting this into the form discussed above gives

= (2, Ty Lo Ty Ty Tag Ty Tap 1
x 10 “o1 L20 11 Lo2 L30 L21 L2 Loal % -

The number of elements in X is calculated according to

p= Py »
=1 1

where each pi corresponds to one of the linear operators. Then,

i o (3H1-1 2+1-1 3+2-1
p=C NN+, +CL,

21
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the 55 members here, consider just a few of zhe

partitions to be stacked in the vector X

EXA [ x,u, ]
1*1 ™1

\x, X142

x.X from XaU
%1% ¥
: Xoy:

X% X4

XXy X34

.8383‘ Lx3u2-
xlxlulw xlulul
xlxluz xluluz
X1 %% X142%2
xlxzuz xzulul
xlxsul " ;r;'n. . xzulu2
X1%¥34, Xau4;
szzul 330101
X2%242 X3u142
X2%*3% L*a“z“zJ
8213‘.\2
X3%XqY)
13!302

L,
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This 1llustration should further establish the ordering convention.

with the construction of the equation complete, the business of iden-

tification of the tjk

diffcrcntiel equations are intesgrated and the resulting data is sampled at

may be undertaken. The n simultaneous nonlinear

the selected h time points. These samrlcd values are losded into the
macrix XL. which is now pxh in size. Note that the first n+m rows
of xL are determined from the sampled values of x and u; the re-
maining p-(n+m) rows are multiples and combinations of thosa first n+m
rows. Finally, the X matrix, dimension nxh, 1is formed by loading der-

ivative estimates for *1' iz,....in at the h time points.

With this, the matrix equation assumes the form

X = Ty Ty Lyg Ly Loy Lyg Ty Typ Lol X

| | l

axh nxp pxh

with matrix dimensions as shown. The least squares minimization algorithm
is again used in identifying the nxp partitioned matrix containing the
desired tjk‘ The matrix returned will have five partitions i{f only
second degree terms a2:e kept, nine partitions if third degree terms are

added, and s0 on. The sorting of the partitions is merely a numerical

bookkeeping job, since their sizes are known in advance.

As noted at the beginning of this section, more time points are re-
quired for sampling in the identification now, due to the behavior of the
forcing functions. Whereas previously 15 sampling times were used, not
all evenly spaced, now h=40 points are used with a constant sampling

rate. The number of points and the rate may be varied according to the
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demands of the problem.

The next section {llustrates the application of the software on several
rapresentative examples, each one progressing in complexity. In choosing
the nonhonegcncoun vector differential equation for an example, two con-
ditions must be met:

1) LIO oust be stable at the origin, that is, have

eigenvalues with negative real parts;

2) The origin must be an equilibrium point;
that is,

fi(0,0) =0
for 1= 1,2,...,n.

Choice of an initial condition is not intuitively obvious ir these nonlinear
examples, 80 in all cases small pertubations from the origin are chosen

as initial conditions.

2.1.3 Second Order Examples

This section treats two axamples, each of which involves a state vec-
tor of two elements and an input vector of two elements. Keeping up to
third degree tensor terms, the nonhomogenzous, nonlinear vector differential
equation

x = f(x.u)

is approximated by

. A
x L10x+L°1u

+L20xox+!.nxgu+l.02uou

24




+L30xoxcx+L21xgxeu

+L12xoueu+Lo3uou@u .
In each case, for a given operating point (xo,uo), the nine individual
linear oper.ators are identified, and then used to reformulate the two equa-
tion system to be integrated for comparison to the true solution of the or-

iginal equation.

For the first example, consider the system of two exact nonhomogeneous
differential equat.ons

fl(x,u) = x

N

2
u, +u, - x

S R B

1 ’
fz(x,u) = iz
2
X X, + uu, - sz ’
where the state vector is
- '
X (xl,xz)
and the input vector
- t
u (ul,uz) .
o
The initial conditions to be used in the identification of the L are

jk
given by

xl(O) = 0.2,

xZ(O) = 0.4 .

Notice that the condition of stability is met, that is

25
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L . 8x1 axz
10

axl ax2

e o~

x, = 0, x, * 0
u, = (0, u, =0

0 -2

has eigenvalues with negative real parts. Furthermore,

fi(O, 0) =0
for 1 = 1,2, that is, the origin is an equilibrium point.

The input forcing functions chosen are sinusoidal in nature, and are

given by
ul(t) = sin(anlt) .
uz(t) = (0.5) sin(2wf2t) ,
for f

1 = 5 hertz and f2 = 10 hertz.

A fourth-order Runge-Kutta routine is employed to integrate the vec-
tor differential equation; the same routine (and integration stepsize)
is employed later to integrate the system as embodied in the identified
model. Thus, a block of data--~the ''true solution'---~is established and
stored in arrays corresponding to the Xy and X, solutions. The
stepsize in the integration is taken to be 0,005 so as to comprise

ample information of function behavior for the derivative estimation.

Note that for a frequency of 10 hertz for Uy corresponding to a period

26
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of 0.10, each cvcle is vigited 20 times in the integration.

With the data tabulated, the sampling operation ensues. The true so-
lution is sampled at 40 points in time at a constant sampling rate of 40

samples per second, corresponding to a sample period of 0.025.

Thus, for the matrix equation

ko= (L, oy Yo Ty Yop Tag Bog Ty Lol X

10 701 "20 "11 702 T30 "21 "12 "03
the matrix xL has 34 rows and 40 columms. As explained in the previous
section, the number of tensor product terms (rows of XL) is calculated
using the general formula
n+q-1 m+r-~-1
Py = ( ) )
q r

for the q occurrences of x and r occurrences of u in the i-th

product. Then the total number of rows of XL is found according to
9
p= 1 p >

and, for this particular example,
p=2+2+3+4+3+4+6+6+4
= 34.
The 40 columns of X and XL correspond, of course, to the number of

time points used in the sampling.

The data for the X matrix (dimension 2 x 40) is obtained directly
from the (stored) true solution, where the derivatives are estimated ac-
cording to

xi(tj+0.005) - xi(tj-0.00S)

(X1, = 3(0.005)

for {=1,2 and j =1,2,...,40, where the tj are the points 1in time
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chosen for sampling and [}'(]ij represents the ij-th element of X.

Having completed the sampling, derivative estimation, and loading, the
least squares minimization algorithm (routine SIMEQUAT) is executed on tha
matrix equﬁtion. Knowing the sizes (szi) of the individual linear op-
erators facilitates a partitioning of the 2x34 matrix returned in the
identification scheme. 1In Figure 2.3 these operators are shown with the
corresponding partition of the Xy vector. The eigenvalues of %10 are
both negative and real. It is interesting to attach some meaning to a
few of these numbers in relation to the original equations. For example,
note the relative size of the (2,2) element of %20, corresponding to
the presence of term XX, in the second equation; the relative magnitude
of the (1,3) element of %02 indicates the occurrence of the u§ term
of the first equation; the relative magnitude of the (2,2) element of

f03 represents the oécurrence of the term uiuz in the second equation.

The next step is to integrate the system with the coefficients as

identified in the third degree approximation. To do this, the equation

. N n, n, n, n, L") n, N, n,
x = [L5 Loy Ly L1y Lo L3g Lpg Lyp Logl X

is reconstructed so that the system of two differential equations, each
with 34 terms in the sum, may be solved yielding x. In the first analy-
sis, the same initial conditions used in the identification of the %jk
are employed to simulate the original system, with the same forcing func-
tions as used in the identification. The results of this test are de-
picted in Figures 2.4 and 2.5. As will be the case in all plots to fol-
low, curve A represents the "true solution” of the original system as

given by the fourth-order Runge-Kutta algorithm; curve B represents the
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simulated solution which again employs the Runge-Kutta routine to integrate

the system as embodied in the identified f Figure 2.4 shows the tran-

3k’

sient region of solution x the effects of the input functions are evi-

1}
denced by the oscillations. The simulated solution tracks the true solu-
tion quite‘well in this region. Figure 2.5 shows a plot of X, from time
0.0 to time 0.5. Again, curve B overlays curve A. Since the model sys-
tem was identified from samples taken out to one second (i.e., 40 time
points spaced at 0.025), an obvious question would concern the performance
of the model system for simulations beyond the transient region, out to
four seconds. The plots for these simulations are given in Figures 2.6

and 2.7 for x; and Xys respectively. These plots indicate that the
model system simulates the original system well, far beyond the interval

in which samples were taken in the identification procedure. As might be
expected by inspection of the original equations, after transients have

settled the forcing functions tend to dominate the solution; this is de-

picted by the oscillatory motion about the origin for Xy in Figure 2.7.

At this point it is interesting to discuss the concept of an "oper-
ating region", or feasibility region for initial conditions of the states
of the system. For instance, the initial conditions chosen for this ex-
ample were

xl(O) = 0,2,

x2(0) = 0.4,

and the nine linear operators for the series expansion were identified ac-
cordingly. But suppose that the model system as identified for the above-
mentioned iuitial condition were used to simulate the original system at a

different initial condition, namely

30

i i o AR .-h-‘.ah—uﬂ




.

'z 2and1yg

3
ose 0 oot 0 0LE 0 00y ' 0 0%e 0 000 R 001°0 ¢G0°0 0o
- L ECr T TR THSES SR (Y FEEP R SRS i RS EETIEY TRESY SEEEY S SREESE TS B
* 12
s I
* gy T s
ITUR U T s
. q av 1
x 9d 4 [
] i aaqd  4av | ]
. Ay 4 4 av I s
* 4 4 av 1%
s a9 1 1 4% 0091°0
) v 1x
[ q 4y Is
* i q 1%
] 4 daq 1 1
* v 4 gd4 I s
s av v I s
: * qvaav 1s
: * qv g 1s
* ' v I
! 28 q T %% 0041°0
* addq 1%
* v 4 I
s q qua T s
. av 4 f4dq 1
s av v 1e
, s -q I
] 4 99y HE ]
. q I x I
. v s
] . q I %% 00BI°0 x -
¢ & q4dqv Is
. a 3
3 . 4 agv Ie
3 s dgq au s
' 4 49y Is
. s av av T %
1 & ] I
1 * a4 I
* v Ia
T . . q I %% 0061°0
. & v I
3 & q I s
’ * a9 1x
. q 1s
. v 1x
3 ® 3 v Ix
: s ad 4
L 2 a4 avl » .
* ! a9 A1 % .
- 0 , d 23 000Z°0
L . I
: e B B e o e e et L B B B Gk Aatat CE L il GEEEE BESEY SEEEY B &8 |
1 oSy o oov'0 0SE*0 00£°0 0szZ*0 00Z°0 osr'o 001°0 050°'0 00
Y ‘
b1 NOILANOS GILV WIS **d 3A4N) ;
i NOLIMI0S .31 Y 303100
5
3 NOLAINTIOS DLV WIS *SA NOTLNIOS L 40 10714
:
. ¢ * L 3 L& i ; } é .
2 ] " ;. Tai\‘ v i pi«.« ¥ “ s m...f....‘ .. td 4 "( ¥ w..i * "4 Rl 1 .U%A




RS Cheh cw
-

G°Z 2andy4
3
. 0Sv*0 - 00%°v UsE e 09£'0 0se’ 00:°0 05100 0010 050°0 0°0
. P A U S S Sy B B it St RN Shbabt SRR Ml il bt O LR T P 3
s 1 s
. 18
] PGP S SR SRR g G S B SRR EEESTESEE EESS S RS Sl Nt S 0°0
3 s 1 s
] s 1%
w . 12
m., . 18
. ] ) S
: oo s
] ¢ dud  Ada s
- N a4 H4av I
1 & Adgdddadas ' I
M . gy 1 %8 01°0
m . CCCCCCECTY 1.
- . a9y 1
. . dgddaaay s
w s a3y Is
A [ 4 ddag4v I s
i L asaq 1 s
. x s av Is
! . a4 1 &
-, ] qddad 1s
L 'Y EL] I 3% 02°0
w s av (3
. . agday 12
. ® qqq 1x
w H L4 ad 13
H a I
! . ey I
." . aqqy )
: 3 . aav 14
] . . ad Is
| s q I %% 0£°0
s . aa 1
. qav 1
s aav I
« a4 s
'] 1 I s
. ] . .4 s
] av 1s
.8 CUT
* avl s
Y a1 %% OV'0
* I
« 1
. 1
« 1.
’. ~ ‘
s 1%
. 1
3 ) 1
: DONNPUNIE SNSRI SHIP ORI, sy y— SS SRS SRR Cet S CESa el SRt At U it 4
oSy o . oov°0 0sE'o 00£°0 05Z°0 00Z'0 - 0S1'0 001°0 050°0 0°0

NOLLA0S GIIYIRIS® * °d 3038ND
NOTANTWOS L. * Y 3AD

NOLANTI0S JIIVNMIS *SA NOILNIOS 3NN 3G 1074

-

32



X
- 9°Z 2andyrg
3
e ¥ 3 [T TR [Py | vt e oty 050 N
. (Y EEEEEY SRS IR T - 4 ' t BT TR T | \ R -+ I o1 .
S 4 1 *
: * 1 I o
. 1 I
E i N - M
L T T
3 ] i : n‘u. M .
2 . I . =)
; ) 49 Udd wid WA 1 * a S
3 ' Hd  HA ARV Gdddd dag 1 I M
] CCE Ut 1 s M @
. a3  Adma 43 1 s
g s Ad 4 ua 1 s < m
: ] a1 4 v 1 * 1T
= * aguna 1 . =
| . wadd 1 S8 Ov1'O o) “
b [ q | 4
. [ EEET 1 1]
s " 1 »
P dadn 1 %
s q I 'Y
: 'y LET 1 .
] ) 1 ’
3 3 L} 1 »
. s 294 1 . 1
'Y 8 1 % 091°0 x
. 4 1 .
£ s 4 1 .
& ay 1 . «
} s ] 1 s -
! . q 1 s |
. 1 s
* aa I s
Lo & av I *
¢ [ L] 1 3
R [ 1] ] 1 33 001°0 .
¢ . 1 Py |
N . q4 1 *
% a1 * |
: . 8 1 N |
; ] 1 Y
: . 1 v
* a1 3
® a1 .
. N Wit '}
't v 48 0070
s 1 s
s . 1 .
L L J T [
: . 1 »
s I . .
Y : 1 s
- T Lt ST D e D B et B B e S St D Gt TP IRl et £
a5 a0’y 0S°'E 00°'f 0s°¢ 00°'C 053§ 00°1 05°0 0°0 05°0-
. . NOINS A3V UMITS® ° °d 3ANND
i . MITAINWS .3N81.° Y 30800
« NOLIO WIS A3V NWIES *SA NOLLAIOS WML ) 101
LY
; N + ” 1 “ + " 2 I3 ¢ B ’ : [} ; + . . N
M el » P r———y s P B i N ey u w—— w e ] }

R L




SRR

HAd AR AND gD A
(R SR CEC R R U T C A B B R R RN L B R SR R I T
IR ]

»

»
YR X AN R R Y X XN XN E RN NN N RN E LSRR NS N

-

”»
X X X XN XN WA N I N N
-

Sk -t EEEIN B Sy EERN SRR EETI BRETY
oste 00w 0s'g 00°fF 05

e Aatn. 4 and

L7 2andyy

NOITLA IS BFIV RIS * °3 3AM1D

NaTIN S .

HOT L0 WS IV UMIS *So HOT IS N 30 10

IYL YR CRLINR § e g W, 'o [T o e
1 H ¥ 4- ] H ] -t I t ¥
] 3
1 ]
] s
t ]
1 4
E I | o ] - - o - o -+ - 10t vo
wshanid o 1 ]
i3 Mg 94 t ]
4 dd 9 1 ]
CE S| | ¢ 4
LR L] 1 L]
Hy 1 L}
LL) I *
] i ]
LD] [ .
L] 1 43 010
4 I s
1 L
443 1 :
I 4
L L] T *
I 3
q I 4
q [} s
vd i 3
1 8 020
4 1 *
4 1 »
1 ,
1 *
1 ¥
| | 1 ]
|} s
L | 1 3
[ { 3
I 34 OF°0
4 1 ]
a1 s
1 3
1 ]
1
1 4
) | E
a1 3
) § ]
4 8 0%°'0
I L
1  J
i )
I ]
1 L
el EEREREY LS B EERIED bl SIS bl RE Il RIS B -1
o' [\ 23 | o001 0C'o 00 040
E L TP s 1} (]
Y . 5 - 3 . a .
Laand [t ] = . booree # 3 - * [ » L] .

34




E R S A - G S St A S o e A Shalai e S i kb SEy TR S TR TR e T SRR T ek L = il Tl i b
e e e em Wy bete RERESREE WSS T R PD s m e . : . :
8 . E

xl(O) = 0,3,
xz(O) - '.'031

These initial conditions represent a change in magnitude of 50 and 25 per-
cent, rcsptctivcly, over the original initial conditions. The results of
this test are given in Figures 2.8 and 2.9 for X and Xy A comparison
of Figure 2.6 with Figure 2.8 shows a slight decline in tracking accuracy
in the latter for the increased initial condition. But the plot for X,

exhibits essentially identical accuracy as the simulation for the system

BT T T o P U (. VT LT SR ST T T . W

as identified, since the initial condition was decreased in magnitude.

Before proceeding to discussion of the next example, an observation

concerning model size is in order. Since there are only two terms of de-

B i W P L

2 2
X 4y in the first question and uju,

in the second, one would suspect that an approximation keeping second de-

gree higher than two in the system,

gree tensor terms would suffice. Simulations for that identified system
proved to be as accurate as the former approximation which kept up to
third degree terms. Since a second degree approximation involves con-

siderably less calculation (five partitions, 14 members in xL). one

\ might wish to consider using it in this case.

’ .. The second example in this section is more complex than the first in
} " the sense that the nonhomogeneous system of differential equations is not
exact, but a combination of hyperbolic functions. Again, intuition fails
somewvhat as to the behavior of the nonlinear functions, particularly in

regard to choice of initial conditions.

L 4

.. Consider the following system:

x, = fl(x,u)
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u
- uyu, cosh(xlxg) -e 1 ainh(le) -5 sinhxz;

X, = fz(x.u)

Yy¥2 2
- q ninh(xl) - u, conh(xlxz) + ainh(xz).

Initial conditions used in the identification will be
x,(0) = 0.05,
x,(0) = 0.073.

The forcing functions used in the initial integration are given by
ul(t) = 0.2 lin(walt),
uz(t) = 0.3 lin(zwfzt).

vhere fl = 5 hertz and fz = 8§ hertz. Note that the two conditions de-

manded of the example are satisfied;

£¢0, 0) = 9,
and
Y
L . axl 3x2
10 ¢ 2
b T )
ax ax
1 2
i Jx.O
u=0
-2 -5
1 1

has eigenvalues in the left half complex plane, thus satisfying the sta-

bility requirement.

To begin the identification scheme, the original system is first in-
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tegrated, with a stepsize of 0.005 again, given the above-mentioned operating
point and input specifications. From this block of data, 40 samples are
taken at 0.025 intervals, and third degree tensor terms are retained. In
this case, the Elo partition returned by che least-gquares identificationm,

[-1.526 -8.210

")
L 1.005  1.262)

10
is similar to the an:ivtical result derived above, and has eigenvalues with
negative real parts. VWhen the identified system is sir.ilited (again, it con-
sists of two equations with 34 terms each in the sum), the results are very
good for the region up to one second, as depicted in Figure 2.10 for Xy

and Figure 2.11 for x This behavior is expected since the true solution

2l
was sampled on exactly this interval. But an extended look at these solu-
tions shows an unacceptable tracking error beyond the transient regiom.

In fact, for this system (as compared to the first example) the transient

behavior takes longer to settle out due to the relative size of the eigen-

("]
values of LlO'

The next step in the overall identification, then, is to increase the
interval over which samples are taken so as to encompass complete informa-
tion of the transient region. This can be done in one of two ways: either
the sampling rate may be decreased (sampling period increased); or, the
number of samples taken may be increased. Accuracy might suffer with the

former, while the latter choice could increase computational complexity.

When the number of sample points is increased to 80 with the same
sampling period of 0.025, the region of thz true solution to be observed
is from t =0 to t =2 gseconds. Thus a larger portion, if not all,

of the transient region would be samplec. Using the same initial condi-

39




tions and the same specifications for the control inputs, the first parti-
tion of the identified system

10 1.009 0.941

shows much -better agreement with the analytical expression for Lo Fur-
thermore, the tracking is greatly improved, as illustrated in Figures 2.12-
2.13 for Xy and Xp» respectively. Note that in each solution curve B
overlays curve A exactly for the region up to two seconds. But there is
a slight tracking error beyond this point which remains approximately con-

stant in time after three seconds. This constant steady-state error would

be acceptable in many applications, although more accuracy is possible.

A sensitivity analysis on this system as identified for xl(O) = 0,05
and x2(0) = 0,075 shows good results when the initial conditions are
varied in magnitude, that is,

xl(O) = 0.10,

x2(0) = 0,03.

The results using this initial condition (with the model system identified
for the original initial condition) to simulate a corresponding true solu-
tion are given in Figures 2.14-2.17. For the variable Xq» Figure 2.14
shows a good overlay of curve B onto curve A, with a small error
arising around the peak in the solution. Figure 2.16 shows a plot over

a wider range of time, and reveals that the simulated solution (for X

again) actually improves past four seconds. Solution x represented

2)
in Figures 2.15 and 2.17, does not exhibit quite as good results, but still

maintains an acceptable curve fit with constant error.

The accuracy of these simulations can be improved upon even more by
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sampling the original system over a yet wider region. So consider a sam-
pling scheme which again uses 80 sample points, but which now takes sam-
ples at a rate of 25 per second as opposed to 40 per second. This cor-
responds to a sampling period of 0.040 seconds so that for 80 samples the
region frog' t=0.0 to t= 3.2 seconds is sampled. Figures 2.18 and
2.19 show solutions Xy and x, out to four seconds for the model system
using those initial conditions as used in the identification (again taken
to be xl(O) = (0.05 and xz(O) = (,075). The tracking is very good for
this system now, as in each solution curve B overlays curve A through-
out. Now a sensitivity analysis is performed by simulating with the system
model using xl(O) = (0,10 and x2(0) = 0.03. A comparison of Figure 2.16
to Figure 2.20 for solution x reveals that for the latter plot, which
corresponds to the model system identified from samples taken to 3.2 sec-
onds, the match of the simulated solution to the true solution is much better.
This is particularly noticeable in Figure 2.21 for X,, upon comparison

to Figure 2.17 for the previous identification. It would seem that even
more accuracy could be achieved, although this last pair of plots indicates
that a good csystem model has been achieved without suffering any additional
111 effects in computational complexity. In_fact, it is evident that the
decrease in sampling rate in the last identification caused no noticeable

error; to the centrary, it led tO more accurate results.

These two second order examples presented in this section were dis-
cussed in detail to illustrate the flexibility of the method. The first,
an exact vector differential equation, was chosen to give some meaning to
the elements of the individual tjk operators and to illustrate that the

degree of the approximation is in general problem intensive. The second
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example showed that even a very unattractive nonlinear, nonhomogeneous

system can be adequately handled by this technique. i

2.1.4 Third Order Example
This gection treats an example given by a syetem of three nonhomo-
geneous differential equations. The state vector,
X = (xlb x29 x3)'=
consists of three elements, as does

u(t) = (u, (), u, (), u3(t))',

the input vector of forcing functions. Obviously, the size of the problem
will be increased compared to that of the second order systems of two states
and two inputs. Whereas for n = m = 2 in the previous examples the length

of the tensor term vector X, was 34, now the length of x, will be p = 83

L

_ for an approximation keeping up to third degree terms. Again, this number

is calculated according to
9

o= 1 [ - Ty
for the 1 partitions. Expanding this for n = 3 (three states) and
m =3 (three inputs), the result is
p=3+3+6+9+6+10+ 18 +18 + 10
= 83,

Thus, the matrix equation to be constructed takes the following form with

matrix dimensions as indicated:

xs~@. .t ¢t t._ t T L. T SRS
\

' 10 “01 “20 “11 02 30 “21 12 -0
|

3xh 3x83 83xh

Here, h 1is the number of sample points used in the loading scheme for
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estimation of derivatives and construction of XL.

The third order system of this example is of the same nature as the
previous example in that exponential and hyperbolic terms comprise the non-

linear system. Consider the following equatioms,

fl(x,u) =%,

42 Y3
= ue cosh(x1x3) -e sinh(3xl);

fz(x,u) = X,
= u2 cosh(x2) - 2 sinh(x,) + osh(x.,);
u, cosh(x; sinh(x, uju, cosh(x,);
f3(x,u) = Xy
=y sinh(xlxz) - sinh(x3).

To identify the model system, the initial conditions chosen are given by
xl(O) = 0,05,
x2(0) = -0.05,

x3(0) = 0.08.

Choices for forcing function inputs are sinusoids with the specifications
ul(t) = sin(walt),
uz(t) = (0.5) sin(2ﬂf2t),

u3(t) = (0.5) sin(2wf3t),

where the frequencies for each input are given by

in hertz.
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This system is constructed such that the following conditions are
easily verified:
£(0, 0) = 0 ;

and for stability
. of
10 ax

wWith the problem thus formulated the technique is applied. Using an
integration stepsize of 0.005, the system is integrated and the true solu-
tion stored. This data is sampled at 40 time points evenly spaced at in-
tervals of 0.025 for loading of the tensor term matrix and for derivative
estimation. Thus, the sampling takes place over the first one second in-
terval of the solution. The first partition returned by routine SIMEQUAT
in the least-squares minimization is given by

-3.072  -0.112 0.440
Em =| 0.009 -1.948 0.003
-0.001 0.005  =0.936

which has eigenvalues with negative real parts. Note the similarity to

the analytical expression for LlO glven above.

Simulations using this model system consist of an integration of the
three equations which have 83 terms each in the sum. Over the interval in

which the 40 samples were taken, the simulated solution matches the true

solution very well when the initial conditions are those as used in the

identification. These results are shown in Figures 2.22-2.24 for X;9%Xys
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and X4» respectively. Figures 2.25-2,27 depict the same simulations
over a wider range of time. The most error occurs at the peaks of the so-

lution curves, especially noticeable in the variable Xy (Figure 2.25).

Consider now a sensitivity analysis on this model system for the
following changes in the initial state conditions:
xl(O) = 0.10 ,

x3(0) = 0.16 .

Using the same forcing function as in the identification, the original sys-
tem is integrated with these new initial conditions to form the true solu-
tion. Then the model system is employed with these ‘nitial conditions to
simulate the true solution. These results are shown in Figures 2.28-2.30
over an eight second interval of time, well beyond the transient region of
each solution. Very little error results between the simulated solution

and true solutiom.

A conclusion of the final three plots is that for this particular ex-
ample an ample number of sample points for system identification is 40;
perhaps even fewer would produce equally acceptable results. In the final
analysis the initial condition of each variable is double that which was
used to identify the model system, indicating (by the accuracy of the
tracking in the simulations) that an even greater variance in the initial
conditions would produce acceptable results. Thus, this model system seems
to have a larger feasible operating region than that of the examples treated

in the previous section.
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2.1,5 Comclusion
An important aspect of the identification scheme as put forth in this
3‘i chapter coucerns the capabilities of routine SIMEQUAT and the least squares

technique in general. A question of conditioning arises as the size of the

R o it

problem inéreases. Three factors contribute to problem size: the length of

the state and input vectors; the degree of the approximation; and the number

of sample puints used in observing the system. For larger problems it is

this last factor which in some sense limits tiie actual identificatiocn algorithm.

———

i Some comments concerning actual computer time are in order. As an ex-

ample, the identification for the third order example presented earlier was

JV carried out using interactive software on a terminal over a time-sharing net-
work, IBM system 370. The entire identification process took approximately

/ ten minutes terminal time, corresponding to about five seconds of CPU time.
The verifying simulations took almost as long, due to the size of the re-
constructed equations. Smaller examples are even faster, although the

above-wentioned times are certainly reasonable.

As a final note, it is interesting to consider use of other sampling

techniques in the identification procedure. For instance, suppose that
variable sample periods were used in an attempt to better observe the sys- ;
tem. In fact, an apriori knowledge of particular behavior of the observed ﬁ
data could lead iv clever cho 2es for sample periods. The time between i

samples could even be generated randomly.

- i Results of the discussion and examples of this chapter indicate that j
H the technique can be utilized in a number of applications. Given a block :
of observed data from a nonlinear system, and given knowledge of the num=-

i ber of states and inputs, several model systems (for different operating

9 P 67 [
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regions) in the form of a collection of individual linear operators can be

identified.
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2.2 Report on CARDIAD Progress (R.M. Schafer)

1ough funded work on the CARDIAD method was discontinued more than

six months c¢g3o, its progress has continued steadily by means of fellowship

support extended by the University of Notre Dame. During this period, the

emphasis hés been placed upon developing the method to be helpful with di-

J agonal dominance designs in cases having four or more inputs and outputs.

b Appendix B contains the preprint of an especilally challenging design

on such a model.

|
’ 2.3 Report on Feedback Loop Closures (V. Seshadri)
} Also mentioned in the last Semi-Annual Status Report was a recent ex-
» % tension of early grant work in the general area of pole and zero assign-
- | ment and the exterior algebra. This work received support from Grant 3048
} 2 in its early stages, but in later years received assistance from different
. § sources.
> i

During the period of this report, another presentation has been made

on this subject. The preprint is contained in Appendix C.
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Sumsary

One of tha featurss of presant day research om
linear multivariable systems has been a renawed inter-
est in Nyquist methods. Based upon the determinant of
return difference, these methods must davelop proce-
dures which intarface with skev symmetric, sultilinear
forms. A well kmown intarface has bean made by Rosen-
brock, wbo used a concept called diagonal dominance.
This psper reports oa & graphical, intaractive way to
achisve ths concept.

Introduction

In recent years, incressed atteationm has been
paid to the use ¢f frequancy domsin techniques for the
design of multivarisble control systems. Most of
these techniques are based upon the equation

Pe(9) = o) | py(o) w

which relates the zaros of the opemn loop charscteris-
tic polynomial p.(s) and the zeros of the closed
loop chnnctuuzgc polynomial p.(s) through the de-
terninant of the return difference matzix M(s). Civen
that the szerve of the open loop characteristic polynom-
ial aze known, stadbility of the closed loop character-
istic pol can be determined by Nyquist snalysis
of |M(s)|. Unfortunately, direct Myquist analysis of
|M(s) | ylelds 1little design inaight. Tharsfore, al-
ternste masns of studying |M(s)| have been devised.

In the Inverse Nygquist Array approach dus to
Rosenbrock, the systam is first compensated to achieve
diagonal dominance. An o x n matrix Z(s) 1s said %o
be diagonally column dominant if for all s on the
Nyquist coutour D, and 1 = 1,2,...,8,

a
Is“(o)l > le {x“(c)l. (2)

12

1f this condition is satisfied, the usual net encircle-
ments mads by s Nyquist plot of |[M(s)| are equal to
tha sum of the net encirclements msde by the disgonsl
entriss of M(s). Tima, stability can be detarmined by
Nyquist analysis of the diagonal emtrias of M(s).

The CABDIAD (Complex Acceptability Regiom for DIA-
gonal Domingnce) method is s graphical techmique for
schisving this dominance condition.

CARDIAD Mathod

Cousider the system of Pigure 1. Yor the purposes
of this paper, G(s) represents a é-input, 4~cutput
sodel of a turbofan jet engine. It is desired to de~
sign the compensator K(s) such that G(s) K(s) 4s
column dominsnt. The compensator is normaliszed to
having 1's on the sain diagonal, sc that dominance is
achisved {n a given columm of G(s) K(s) by appropriate

“This work bas been supportad in part by tha National
Asronautics and Space Administration under Gramt NSG-
3048,
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choics of the off-diagonal entrias in the corraspon-
ding columm of K(s).

AT & frequency, a sufficient condition for domi-
nance can be expressed in a quadratic inaquality of tha
form ¢

£(x) = xAx + xd + ¢ > 0, 3

wvhere A, b, and ¢ are respectively a matrix, a
vector, and a scalar formed by evaluation of the plant
transfer function matrix at the frequency being studied,
vhare x 1s a vector of ths raal and imeginary parts
of the off-disgonal entries of a columm of tha compen-
sator, and wheve superscript t denotas trauspose.
Dominance is achisved by choosing x such that £(x)

is positive.

Seversl approaches are used 2o choose x such
that £(x) > 0. Since it is desirable to achieve domi-~
nsace with as simple a compensator se possibla, tha
gradient of f£(x) 41s taken with respect to each entry

ssmming all othar satries are zaro. Hers, x¢
may ba understood as a pair (ry,i;) consisting of the
real and imaginary parts of some off-diagonal compem-
sator entry. This approach, raferred to as type 1 an-
alysis, attampts to achieve dominance in a colusm by
using only one nonsero, off-disgonsl entry for the
column of the compensstor. In the event that it ia
impossible to achieve dominance with cnly one nonszero,
off-disgonal entry, the gradient of £(x) with re-
spect to all variables is taken. This approach is re-
fexTred to as typs 2 analysls snd utilises all off-diag-
onal entries of tha compensator to achieve dominance in
a column, A third means of choosing the vector x 4e
used in the evant that the hassian in the type 2 anal-
yois approach is indefinita. It is known that one so-
lution to making G(s) dominsnt is to compensste with
the inverse systam. Thus, & solution for the vector
x 4s to choose tha values of tha inverse system at
that frequency, normelised to 1 on the diagonal so as
to £it tha form of the compensator K(s). In the case
wvbare the hassisn is negative definits, this invarse
system analysis, \nown as typs 4 analysis, predicts
the same solution as the type 2 analysis plots.

The CARDIAD plot is a graphical representation of
the results of the gradient analysis. Cousider type 1
analysis of a givem columm. £(0,...0,x¢,0..) 1is s
paraboloid in 3-space, and the value found by the gra-
dient analysis can be & positive maxisum, a negative
saxisum, & positive minimm, or a pegative minimus. Ia
the positive maximm case, any value of which liae
inside the intarsectiom of f(x) and the complex plans
x; will make £(..0,x4,0,..) positive; and dominance
will be achieved at the frequency being studied. In
tha CARDIAD plot, this is represented by a solid cirele
which 1s the solution of £(..0,2(,0..) = 0, and & '+'
at the valus of where the gradisnt vanishes, vhich
is at the center of the circle. In tha case of a neg-
ative sinimm, all values of lying outside the
eircle £(...0,%4,0..) = 0 sake £(..0,24,0...)
positive. In this case, as 'x' is drawn at the value
vhaze the gradient vanishes and a dashed circle at
£(...0,x4,0..) = 0. In the negative maximum csse, 00
valus of will schieve dominsnce; and a 'A' is

drawm. 1In the positive minimus case, any value of x,




wvill achieve domimance; in tha columm at this frequen~
ey, and a '[]' 1s dxrawm.

In typas 2 sad 4 analywes, the center symbols are
drawa st the gradiemt valucs, but the cemter type and
circle type are decided by making & worst case devia-
tion from the gradieat values of all dut one of the en-
tries of X; and then the remaining entry is snalysed
40 & fashion soalogous to type 1 analysis.

A CARDIAD plot results vhen this graphical gra-
dient information is plotted over s range of fraquen-
cles. Tigures 2 and 3 are typical CARDIAD plots and
will be used to describe compensatior design.

Figure 2 is a type 1 analysis plot which contains
only solid eircles. Ia this csse, there exist constant
raal values (ry,0) for which l1ia insida all of
the solid circles. Hemncs, to achieve dominance in this
column at all frequenciaes, any such choice of =y will
suffice, since £(..0,%,0..) will then bde positive at
all fraquencies. In Pigure 3, there exists mo such
congtant real value, but & simple first order emtry
which as a function of frequency trsces the cantars of
the circles can be usad. Thus, 4f the CARDIAD plot in-
dicatas that oo comstant resl valua will achieve domi-
nance, the shape of the plot guides tha designar in de-
teraing a frequency dependemt entry.

Design Example

" The modal used in the following design example 1is
taken from [1]. It is a sixcth order, é-input, é=cut-
put description of a turbofan engine.

As a first step in the design procedure, the modal
was compensated with the inverse system eveluated st
s = 0. Pigures &=8 ars the type 1 amalysis plots of
the 4,2 entry, the 1,4 entry, and the satire first col-
-48. Type 1 amalysis of the first columm indicatas
:hat dominance camnot be schisved using only ona non-
sero, off-diagoual entry. The same was trus for the
third column. Piguras 911 are the type 4 sualysis
plots for the first colusm; snd Pigures 12-14 are the
type 2 analysis plots for the third columnm,

In both the second columm snd the fourth column,
dominance was achisvable using type 1 analysis and con-
stant compensation as dascribed in the discussion of
Figure 2. Dominance was achisved in columm 2 by
choosing tha 4,2 entry to be =880.8. Note that this
value lies within all solid circles and outside all
dashad circles. In like manner, the fourth column was
sade dominsnt dy choosing the 3,6 entry to be -.59.

In the first and third columms, it was necessary
to f1it all thres off-diagoual entries of the compen-
sator to the shmpe of the centers of the type 4 and 2
plots, respectively. In each case, second order com-
pensation was nacessary to fit adequataly the shapes.
The three antriss chosea for the first coluan were

-.1891-3¢% - .0129¢
kz 1(.) - 2 »
* «2270-28" + 2388 + 1

-.0bbs> - 2,308
5 1(.) - .
’ .2272-28% + L2388 ¢ 1

2
146e° + 3.%6s
‘6,1(') '—_i}_‘_

L227-26% + 2380 + 1

The third colusm was made dominsat with the following
thres off~disgonal entriss

K (s = =:1750-40% + .2632-26
3 .1968-2¢% + 08370 + 1

2
k(o) = 13338=3¢% - ,2743-3¢

’
«1988=2° + 08370 + 1
2

by = ity o il

1908-2e% ¢ 08378 + 1

It should be noted that, in each case, the dence-
inator polynomisl of the columm is the sama, thareby
keaping the ovder of the resulting compensator small.

With compensation as described above, typs 1 an-
alysis was repasted to verify that dominsnce has demn
achieved. JFigures 15-13 are a type 1 ssalyeis plot
from esch columm. UNote that in every case, the plot
predicts that an acceptable sulution is the origia.
S$ince type 1 sasalysis is drawm asmming all other off-
diagonal entrias are zero, this implies that tha col-
unns are nov dominant, since the plots predict that
{dentity compensation will achisve dominsnce.

Discuseise

The tools associsted with Nyyuist asalysis of (1)
sre often halpful in the amalysis and design of multi-
variabie systems in the frequeancy domain. Oma of the
ways to approach the design of |[M(s)| 4a (1) &s by
weans of the dominance ideas of Rosembrock [2]. This
paper describes a graspuical, imteractive proceduras for
attaining domingnce. For other examples, see [J3].
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Dept. Electrical Engineering Dept. Electrical Engineering
General Motors Institute University of Notre Dame
Flint, Michigan Notre Dame, Indiana
USA 48502 USA 46556

ABSTRACT

In this paper we establish the connection between linear multivariable
feedback loop closures and the induced exterior map, the latter being the
by-product of exterior algebras over the input and output vector spaces.
This suggests the concept of a sequence of multivariable zeros which should
enhance the designer's ability to shape multi-output transients.

Introduction

Much interest has been evinced in recent years about the exterior al-
gebra, a structure especially suited for addressing questions related to
natrix determinants and inverses. It has been shown that this structure
can be used to solve problems in pole assigmment [1,2], in individual zero
placement [3] and indeed in a host of areas ralated to systems and informa-
tion theory [4]. The present paper may roughly be divided into three parts.
The first part introduces the exterior algebra. The presentation is ex-
tremely brief due to limitations of space; for more details the reader is
referred to Greub [5]. The second part of the paper considers multivari-
ahle feedtack laop closures, the loops being closed one by one, and studies
their relation =o certain entities called numerators of the kth kind, the
latter arising ‘rom a frequency design method used in industry [6]. The
last paret of the paper establishes the connection between numerators of the
¥*th kind and the %th induced exterior map, the latter being a bv-product
of exterior algebras over the input and output vector spaces [7]. In this
way we will see that when considering multivariable feedback loop closures
it would be helpful to view them in the context of the appropriate induced
exterior morpaism.

The Exterior Algebra

Consider an F-vector space V. We can construct an exterior algebra
[5] AV over V. The bilinear operator introduced by this construction
is commonly :alled the exterior product or the "wedge" product -, and
operates as
+ - = A + -
(al a, a, az) ag 2, a; .a a a

3 2 2 3

a1 . (a

where al, a,, 35, 3, belong to the algebra AV, and «

+ = a, . + a, .

3339 8) ma38 -3yt .,

1* %p» @, 3, are

field elemeats from F. Furthermore, the operator -~ 1is skew-symmetric.
Now consider amap f : V = W, £ we counstruct the exterior algebras

AV and AW over the vector spaces V and W respectively, the map ¢

-

induces a morphism {" over the algebras [7], which is just a sequence of

*This work has been supported in part by the National Aeronautics and Space
Administration under Grant NSG-3048 and in part by the Office of Naval
Research under contract NO00l4-79-C-0475.
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maps £ over the kth exterior spaces, as shown in Figure 1.

v
AV 7 v ALV AN
{ | I
~ -~ - -~ ~ I ~
fe~ £] £] | £ lfk
' al af l
Y ¥
AW F W [V AW

+ Figure 1. The Induced Exterior Morphism, f".

A reasonable question that could be asked at this juncture is what
relevance the induced exterior morphism f° has to multivariable feedback
control design. The answer is that there already exists a feedback control
design method :ia industry [6] that makes partial use of the induced exter-
ior morphism structure. It is noc clear, however, that the originators of
the method are aware of the stru:ture and it appears that the design method
could be extended by making fuller use of the sequence of exterior maps.

In order to address these issums, let us first consider a problem suggested
by Hofmann, et al. (6] and sctudy the connection between feedback loop clo-
sures and certain entities :alled numerators of various kinds, the latter
arising when the following problem is solved.

Problem: Obtain expressions for the arbitrary closed~loop transfer func-
tion yc/rd after feeding back one or more ocutputs (measurements) to one

or more inputs (controls), for the plant shown in Figure 2,

r. (s) u, (s) y,(s)
1 1 1 :
r,(s) u, (s) N(s) vo(s)
* A(s)
rp(s) . up(s) . ¥q(s)
‘ L
i
J
7 Figure 2. A Feedback Loop Closure Problem.
P Comments: Figure 2 shows a multi-input multi-output plant; it has p in-

puts and m outputs. The reference, input and output may be compactly

called r, u and y, and considered as elements of R(s)-vector spaces R,
) U and Y respectively, R(s) being the field of ratios of polynmomials in
s with real coefficients, the denominator teing non-zero. The plant is
nth order, linear and stationary. The expression for the plant in Figure
2, that is N(s)/4(s), 1s considered to have been derived, with the usual
assumption of zero initial conditions, from an input-output plant descrip-
tion in the s-domain writtem as

; A(s) y(s) = B(s) u(s),

where y belongs to the R(s)-vector space of dimension m, [R(s)]m, and
u belongs to ([R(s)]P. In the following discussion we shall drop the ex-
plicit dependence of the variables on s, for notational converience.

The outputs y may be expressed explicitly in terms of the inputs u
as
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where A is the ath degree characteristic polynomial for the plant. If
A and B are left coprime,

A = det A.

N 1is represented in numerical calculatioms by an mxp wmatrix whose ele-
ments belong to R(s], that is, they are polynomials in s with real co-
efficients; N 1is the adjusted plant transfer function numerator matrix.

Solution: 1In the following treatment let the polynomial matrices A and
B be expressed in terms of m-length column vectors as
a A
A [al.a2 . am] » B=1Ib by ..o bp].
Consider the case of a single feedback loop, that is, one output yy

is fed back to the jth comparison point through a feedback gain g as

|
shown in Figure 3. i1
r u y
1 _ 1 .
Fi-1 e N RA TS N
N V.
r u pub
r _ u, Y.
', j+l j+1 i+l >
> T u y
| P ° 2 :
|
|
gji -

' Figure 3. The Feedback Problem With One Loop Glosure.

The relationship between the output y and the reference r may be ex-
pressed as

(A + BG)y = Br,

where y and u are given by
T
v (yl ces ym) , T = (rl - .p) .

G is a pxm matrix of zeros except for a single non-zero element

8., ¢
ji
R(s), and is expressed in terms of p-length vectors in the same fashion as
A and B above by

G=(0...0 - 0 ... 0]
where

T
l ) gy (0 .. 0 gji 0..0®

v

; et ) |
_ T —— " - . —— o ) AT N . i
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Note that 841 is the jth element in 8y .;ﬁd that 84 is the ith
column of G. We can then express the equation

. Ay = Bu
as
+..+ acyc +..+a

+ (ai + b +..tay

371 1-171-1 1840074 * 3V

= blr1 +..+ bdrd +..+ bprp.

Note that in the above equation a, k=1,..,m and bk’ k=1,...,p are
vectors whereas Vie? k=1,...,m and r,, k=1,...,p are scalars, the

k’
field being R(s).
We wish to isolate the closed-loop transfer functionm yc/rd; this may

be achieved by taking the extarior product of both sides of the above equa-
tion with the (m-1)-exterior term

By aeen @ g 4 Bgg acea 3y g - (ai + bjsji) A8y aeea dn,
which is the exterior product of all the vectors on the LHS of the equation
except for ac, whose coefiicient y. 1is the output of interest in our
current discussion. Because of the multilinearity and skew-symmetry of the
exterior product, all the terms on the LHS of the equation will become zero
except for one term which includes a.y.. If, at the same time, all the
references except the one of interest, Ty, are held zero, the equation be-
comes

31 aeen B 1 n B gy acea 3 g . (ai + bjgji) SE FTEESTINL S % A

= 3 a

a bdrd.

Both sides of this equation contain m-exterior products of m-vectors; the
products, therefore, are determinants and hence just field elements. Also,
the products are skew-symmetric so that a, on the LHS and bd on the RHS
-l and 3.1 while
retaining the validity of the equation. Thus we can get the arbitrary
closed-loop transfer function yC/rd with a single loop closure from the

1 netm Bl ~ Beqy ~tca 3y g - (ai + bjgji) SE FIR R

of the equation may be moved into position between a

output vy to the input uj through tne feedback element gji’ as

D Tt N Bl Bk 5 Sl S L2 T Ul 2 Skl
L R L e TR (ai + bjgji) A By aeea @)
or
(al N bd S L IR am
ZS ) + 3y aeen 3.1 A bd A B area By - bj S PR amsii)
T (a b,

aesa da + a
m

1~ Bgal s By s 3ggp oeen 385y)

In order to interpret the above expression for the closed-loop trans-
fer function yc/:d observe that, in terms of numerical calculations, each

d 1

of the two terms in the numerator and in the denominator of the above equa-
tion is simply a determinant; thus a total of four determinantal calcula-
tions is involved here. Determinants of this sort recur in transfer func-
tion expressions with one or more loops closed; they are called numerators
of various kinds [6]. The kind of the numerator is dependent on the nature

85




of the mix between the columms of A and the columns of B in the parti-
cular determinancal expression. For instance, the above equation contains
two numerators of the first kind, that 1s, two determinants resulting from
the m-exterior product of (m-1) columns of A with one colummn of 3B,
namely

€ a b a eea @
e B e

N

and
7y

°1
Similarly, the equation has cne numerator of the second kind, that is, the
m-exterior product of (m-2) columns of A with two columns of B, namely

y.y
N © i

N = a1 neean @ b

S S Bl S N

= a b

g ~eea B0y - bd S R TR 3 a,41 ~v0- A

uduj
Then, under the condition that det A = A, we can express the closed-loop
transfer function yC/rd compactly as

y y.y
Nuc te i Nucui
Je o4 3T R4
r ¥ *
d i
A+ gji Nuj

Thus, in the one-loop case, that is, with exactly one feedback loop
(from v, to uj through gji as shown in Figure 3), the expression for

the arbitrary closed-loop transfer function involves numerators of the
first and second kinds. It has been found [8] by using a similar exterior
algebraic mechanism for manipulating the closed-loop transfer function ex-
pression that in the k-loop case, that is, with feedback loops from %k
different outputs to k different comparison points, numerators up to the
(k+1)th kind are involved. Or, the highest kind of numerator in the ar-
bitrary closed-loop transfer function expression is intimately connected
with the number of loop closures.

The Numerator of the kth Kind and the kth Exterior Map

The arbitrary numerator of the kth kind is formed, as an extension
of the definition of numerators of the first and second kind, by taking the
m-exterior product of (m-k) columns of A with k columus of B, as

yil' RES
N “aa neea @ . b . a neea @ 1 - b, . a 1 Ao~ g
SIS 1 S R P L= S P 3

We will show in the following that numerators of the kth kind may be
understood in the context of the induced k%th exterior map for the input
R(s)-vector space U to the output R(s)-vector space Y. That, and the
fact that numerators of different kinds are intimately related to the num-
ber of loop closures, would lead to the conclusion that there exists a
strong association between the induced exterior map and loop closures.

Consider the equation velating the output y to the input u, ex-
pressed as

y = A-l B u.

The vectors u and y belong to R(s)-vector spaces U and Y of dimen-




sion p and m respectively. Thus we have the morphism of vector spaces

AtB Uy,

We have seen earlier that such a morphism of vector spaces induces a mor-
phism of algebras

(A-lB)“ : AU ~ AY

as shown below

AF R(s) U AEU .o ATU
"=1n, -1 ba-1gs - R TN
A : A 7B A B A "B .
:( B : |1 (O @ty
Y \ Y
AY R(s) Y AZY AkY

Figure 4. The Exterior Morphism Induced By a”ls.

Of particular interest is the map

(A ls); : AkU - AkY

because we intend to show how this map is related to numerators of the kth
kind. In order to try and compute this map, we express (8]

adj A7
- ~ - -l ~ ~ = -~ -l ~ --——-———‘( ~
P )iy = ()7L = =%
Let us assume for the moment that we can find a matrix T such that
T Ak = T det A.
The reason for this assumption will become clear in the following; but for
the moment, let us rewrite the above expression as

____T S =
det A ° Ak L.

Comparing the above with the definition of adj Ai as
adj A7
e YV
det Ak

and because Ai is invertible, we have

adj Ay T

det A * det & °

~

Thus we can replace adj Ai/det AL by T/det A in order to rewrite

(A lB)i as 7 Bi

det A°

..1“
(A B)k

The Nature of the Matrix T

We now investigate the nature of the matrix T; to understand T is
to understand the nature of the kth exterior map (A~lB)”, because
(A‘lB); is just TBk/det A. Recall that T has been defined in terms of
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its action on the image of Ai, as
T Ai = I det A.

Now Ai is calculated by forming 211 possible kxk mipors from the matrix
A, and is thus

ALk lk . “‘1..1&,11..11< R U= = g
i - : ; :

e l..m,1..k " “m-k-c-l..m,il..:.k - ATeT..n, 3~ L.

where the overlinss indicate grouping of terms, and the first and sacond
set of subscripts of each element indicate the k rows and k columns,
respectively, salected from the matrix A in order to form that particular
kxk wminor element. Expressing the matrix A as

A= [al . il -1 i ~a, vo aik-l ik a, !
the arbitrary ith column of Ak has been formed by selecting the k m-
length columns a from A and forming all possible Ikxk

.o am] ,

» @, ,..,3
Lo 4
minors from these k columns by choosing k rows at a time according to

some predetermined convention. Thus the arbitrary ith column of Ai is

of length ( ), the number of combinations of k items chosen at a time
from wm.

Based on Laplace's Theorem [9], a possible construction for T would
be to make the ith row of T consist of cofactors corresponding to the
kxk minor elements in the arbitrary ith columm of Ai. Thus the ele~-

ments of the ith row of T are formed from the (m-k) complementary
columns a.,..,a sd of A. The (m-k) rows

? -’ e 9a y*
1 il 1 i +1 ik -1 ik+l
selected from these columns to form each element of the ith row T are
complementary to the k rows selected from ai ,..,ai to form the cor-
1 k

responding element in the ith column of A. Hence the order in which
the (m-k) rows of A are selected in forming the elements of T may be
said to follow a complementary convention to that used in selecting k
rows when fosping Ai. Hence the matrix T may be represented as

N, Y
M. . L. . - &, Tk, L..m
Al Nt

T = e m— ——— P * T ]
A';<+1..m,1..11--1 1. Al..m-k,l..:.l-l L.

:Lk-l Lk+1..m :Lk-l ik-l-l..m

LV _ Nl - __
L“ﬁi..m,l..m-k coeoe A TTRLL Bk

the "tilde" symbol denoting that the minors are appropriately signed.
Recall that we are interested in the product T Bi. The matrix Bi

is formed from the columns of the matrix B in the same manner as Ai was
from the columns of A. B consists of p columns of length m, as

B=[b b, b, b, .. b1,

+
3y 1 P

-1 Jk Jk

ceby ;b bl
R R PR P!

R
R O qmmj
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! and By 1is given as

Bk l..k e NI o By ok, poRel..p

Ik

w
>
[ ]

sk M

m-k+l..m,1..k °° m—k+l..m,jl..jk oo m-k+l..m,p=k+l..p

— el

Here the arbitrary jth column of Bi is formed by picking the columns

i b ’.l’b

; I

' the order in which k rows are chosen from =a as before. Now consider a
hybrid matrix

X

from B and forming kxk minors using the same convention for 3

1 = [al .o ail-l bjl ail+l .. aLk-l bjk aik"'l e am]

and assume that we want to compute its determinant by invoking Laplace's

Theorem. We may well select the k columns b, ,..b from X and
SR 13

from kxk minors to be multiplied by the corresponding (m-k) x (m-k) co-
factors from the remaining columns al""ail-l’ail+l’"’aik-l’aik+l’"’am

of xij. But the former Ikxk wminors are identical to the elements in the

arbitrary jth column of 387, and the latter (m-k) x (m-k) cofactors

are identical to the elements in the arbitrary ith row of T. The order 2
of selection of k rows to form the former elements and of the (m-k) g
rows to form the latter elements are precisely complementary by convention, ;
and thus the product of the 1ith row of T with the jth column of Bi, |

E

that is, the ijth element of T Bi, is just det xij' that is, |
A, aesa @ b, .a neea @ . b . a, aiea @ |
1 il—l 31 il+l 1k-l Iy 1k+1 m
But the above is precisely the arbitrary numerator of the kth kind
y ¥
i...74
Nu ' ] ¢
Ik
so that we have (= vy vy y. v -
Nul..uk . Nul.. E . Nul..'k .
. 10. k . jluc jk . p"k+l-0 p
- 54 y 4 y R 4
1. T Bk il.. ik il.. ik i-- ik
(A B)k - det A = Nu u . Nu u .o Nu u /det A.
1.0 k j . j p-k+l.n P
. "1 k .
ya-k+l.. 7 g a-k+l.. 7 okl a
“1..% 1,78, Sp-k+l..%

Hence the kth exterior map, represanted in matrix form, has the
numerators of the kth kind as {ts elements.

Conclusion

Whereas numerators of diiferent kinds are used in closed-loop feed-
o back design methods in industry via well-tested software packages, aot
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much is available in the literature about their nature other than that they
are determinants involving columns of A and B; we have seen in the a-
bove section, however, that they arse, in fact, the elements of the appro-
priate induced exterior map. In earlier sections we saw the connection be-
tween feedback loop closures and numerators of different kinds; thus, as
the feedback loops are closed one by one, the different induced exterior
maps come into play. Current multivariable feedback design methods attempt
to shape multioutput responses based only on the last exterior map and, con-
sistent with this, present definitions of multivariable zeros involving only
minors of the largest order in the transfer matrix. However, because the
intermediate exterior maps are also involved when we close loops, it would
seem that ‘we would be making better use of the available information in
shaping multi-output responses if we defined intermediate zeros from all
the maps when we try to set up a valid multivariable counterpart of the
familiar SISO zeros.
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