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STRUCTURAL TESTS ON A TILE/STRAIN ISOLATION PAD
THERMAL PROTECTION SYSTEM

Jerry G. Williams
National Aeronautics and Space Administration
Langley Research Center
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SUMMARY

The aluminum skin of the Space Shuttle is covered by a Thermal Protection
System (TPS) consisting of a low density ceramic tile bonded to a matted-felt
material called SIP (Strain Isolation Pad). The structural characteristics
of the TPS were studied experimentally under selected extreme load conditions.
Three basic types of loads were imposed: tension, eccentrically applied
tension, and combined in-plane force and transverse pressure. For some tests
transverse pressure was applied rapidly to simulate a transient shock wave
passing over the tile. The failure mode for all specimens involved separation
of the tile from the SIP at the silicone rubber bond interface. An eccentrical-
ly applied tension load caused the tile to separate from the SIP at loads
lower than experienced at failure for pure tension loading. Moderate in-plane
as well as shock loading did not cause a measurable reduction in the TPS
ultimate failure strength. A strong coupling, however, was exhibited between

in-plane and transverse loads and displacements.

INTRODUCTION

The Space Shuttle is protected against high temperature resulting from
aerodynamic heating by a surface covering of several thousand low density
Reusable Surface Insulation tiles (RSI). These tiles are relatively brittle
with a low coefficient of thermal expanaion and cannot be attached directly
to the aluminum skin of the Space Shuttle. The tile instead are bonded using
silicon rubber to a matted-felt material called SIP (Strain Isolation Pad).

The SIP is bonded tc the aluminum skin, also using silicon rubber adhesive,
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The structural characteristics of this RSI tile/SIP thermal protective system

were studied in a series of experiments which are reported upon herein.

The purposes of these experiments were (1) to determine the structural
performance of the Thermal Protective System (TPS) under selected extreme
load conditions and (2) to provide test data for later use in analysis valida-
tion. Three basic types of experiments were conducted: (1) tension tests,
(2) tension loads eccentrically applied, and (3) combined in-plane load and
transverse pressure. In some combined load tests, transverse pressure was
rapidly applied to simulate a transient shock wave passing over the tile.
Prior to conducting experiments, all specimens were required to pass a proof
test tension/compression load cycle involving acoustic emission acceptance
criteria identical to that used for accepting tile on the Space Shuttle.
This paper describes the test techniques and the structural response of the

TPS to the various test conditions.

SPECIMEN DESCRIPTION

Specimens used in this investigation were constructed using LI 900 tile
surface treated with boro-silicate and 0.41 cm (0.16-in.) thick SIP in
accordance with accepted fabrication methods approved for Space Shuttle.

RTV 560 silicone rubber was used to bond the tile to the SIP and the SIP to a
thick aluminum plate. All tiles were rectangular parallelepipeds, 15.2 cm

(6 in.) square, 3.56 cm (1.4 in.) thick, and had a density of 144 kg/m3

(9 1b/£t3). The SIP bonded surface dimensions were 12.7 cm (5-in.) by 12.7 cm
(5-in.). A 0.95 cm (0.38 in.) wide filler bar material of composition similar
to the SIP was bonded to the aluminum plate around the perimeter of the SIP.

Prior to bonding, the aluminum plate was primed with Koropon.

A specimen in sequential stages of fabrication is shown in figure 1. 1In
separate operations, the filler bar was bonded to the aluminum plate and the
SIP to the tile. Next, the tile/SIP assembly was bonded to the aluminum plate.
Two types of 2024 aluminum plates were used in the investigation: tension
specimen plates (illustrated in fig. 1) and combined load specimen plates.

The bonding surface of aluminum plates were machined to a measured flatness of

+0.0254 mm (+0.001 inch) for tension specimeu plates and *0.0508 mm (*0.002 in.)
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for combined load specimen plates. The tile was prepared for bonding by grinding
the surface to a flatness of +.0254 mm (+0.001 inch). Tension specimens success-
fully passing the proof test were prepared for testing by bonding a thick

aluminum load introduction plate to the coated surface of the tile.

The modulus of the tile is approximately three orders of magnitude higher
than the modulus of the SIP. The deformation response to loading, therefore,
occurs primarily in the SIP. In addition, the SIP stress-strain response is

highly nonlinear and exhibits hysteretic behavior.

TEST DESCRIPTION

Three types of loading were imposed on specimens in this investigation:
tension, eccentrically applied tension, and combined in-plane force and trans-
verse pressure. Schematic descriptions of these tests are shown in figure 2.
Descriptions of the test techniques, as well as details of the proof test

used to accept or reject specimens, are described below.

Proof Test

A proof test was conducted on each specimen prior to its acceptance for
structural testing in accordance with techniques approved for testing TPS on
the Space Shuttle. The test involved applying transverse tension loads to the
TPS sufficient to impose an average stress on the SIP of 41.4 kPa (6 psi).

The tension load was followed by unloading and the immediate application of
compression loading. The compression lecad removes the displacement set caused
by the tension load. Tension loading was at the rate of 13.8 kPa/minute

(2 psi/min) stress on the SIP. The tension load was held for 30 seconds at the
20.7 (3 psi), 27.6 (4 psi), and 34.5 (5 psi) stress levels and for 60 seconds
at the 41.4 kPa (6 psi) stress level. Acoustic emission data was monitored
and recorded during tension loading.

TPS specimens were accepted for structural testing if the acoustic counts
during the proof test did not exceed any of the following conditions.

1. 250 counts during the first 30 seconds of the 60-second proof
hold load.
2. 100 counts during the second 30 seconds of the 60-second proof

hold locad and shall be less than counts during first 30 seconds



when counts exceed 50 for either the first or second 30-second
hold.

3. 2000 counts from start of test at zero load to the midpoint of
proof load hold interval. 1If 2040 counts are exceeded then retest
is permitted. Total counts of first test less total counts of
second test must then be equal to or less than 2000.

following the proof test each tile was alcohol wiped and examined to identify
any cracks in the tile coating. Specimens failing the proof test were sub-

sequently loaded to failure in the proof test fixture.

A photograph of the equipment used in the proof test is shown in figure 3
and a closeup view of a tile specimen and the associated instrumentation is
shown in figure 4. A pneumatic jack was used to apply load and an automatic
pressure regulator system imposed the preprogrammed load/time profile.
Acoustic emission transducers were located at the four corners and displace-
ment gages were located at the midpoint of the four sides of the tile. A
load cell measured the force applied to the tile. Acoustic emission data and
load were monitored in real time during the test. Load, displacement and

acoustic emission data were recorded on magnetic tape for later data reduction.

Tension Tests

Constant Displacement Rate.- Three specimens were loaded to failure in

transverse tension in a constant displacement rate test machine. A displace-
ment rate of 0.13 em/min (0.05 inch/min) was used. The SIP displacement
response to loading was measured at the midpoint of the four sides of the tile.
A schematic of the test setup is presented in figure 5.

Pressure Applied Tension.- One specimen was loaded to failure in trans-

verse tension by imposing reduced pressure on the top surface of the tile.
The experimental setup is shown in figure 6. A narrow mylar bellows suspended
from a plexiglass plate and sealed to the tile with masking tape permitted
unstrained transverse displacement of the tile. The transverse displacements
of the tile at the midpoint of the four sides of the tile and the pressure

inside the bellows were recorded during the test.
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Eccentrically Applied Tension

Three specimens were loaded to failure by an eccentrically applied tension
load. The experimental setué is shown in figure 7. Loads were applied at a
constant displacement rate of 0.13 cm/min (0.05 inch/min). The aluminum plate
to which the top surface of the tile was bonded was rigidly constrained
against rotation. Loads were introduced into the aluminum plate to which the
SIP was bonded through a spherical bearing. This arrangement permitted the
line of reaction to remain unchanged during the process of loading yet did not
constrain the rotation of the tile and aluminum plate caused by the eccentric

loading.

Combined In-Plane Force and Transverse Pressure

Three tests were conducted in which in-plane loads and combinations of
in-plane and transverse loads were imposed on the tile. The apparatus for
conducting these tests is shown in the photograph of figure 8 and schematically
in figure 9. The foundation of the apparatus is the same as used in pressure
applied transverse tension tests with the added capability of in-plane loading.
As shown in figure 9, in-plane loads were applied along the tile diagonal.

The aluminum plate to which the SIP was attached was mounted on roller bearings
while the tile was rigidly constrained against in-plane displacemeut by a yoke
arrangement which butted up against two sides of the tile (see fig. 10). The
yoke reaction attachment was mounted on roller bearings in a slide constraint
permitting the reaction free transverse translation of the yoke in response to
any transverse displacement of the tile. The flexible bellows permitted
negative pressure loads to be imposed on either all or part of the tile top
surface. The flexible bellows thickness (i.e., dimension between the plexiglass
plate and the top surface of the tile) was initially 0.96 cm (0.38 in.). This
dimension permitted unrestrained transverse displacement capability of the

tile while minimizing in-plane reaction forces on the tile during tests
involving pressure applied to only a portion of the tile top surface.

In~plane loads were applied at the rate of 67 N/min (15 1bs/min) and
pressure was applied at the rate of 28 kPa/min (4 psi/min). For tests in

which the pressure was applied rapidly to simulate a shock, a pressurization
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rate of approximately 207 kPa/sec (30 psi/sec) was achieved. The technique
for applying pressure shock involved pumping down a large pressure bottle to
the desired pressure and releasing a solenoid value to rapidly reduce the
pressure in the desired chamber. Measurements obtained during tests included
the in-plane and transverse displacement of the tile, in-plane force and the
pressure in chambers P2 and P3. A high speed oscilloscope was used to obtain
the shock pressure versus time history. Data were monitored in real time and

recorded on magnetic tape for later data reduction.

RESULTS AND DISCUSSION

Proof Tests
Results of the proof test are summarized in Table I. A total of 26 speci-
mens were subjected to proof testing of which 19 passed the acoustic emission
criteria and 7 failed. Specimens failing the test were loaded to failure in
tension using the proof test fixture. Ultimate SIP stress at failure ranged
from 66 kPa (9.6 psi) to 83 kPa (12.1 psi). All failures were at the bond
surface between the SIP and the tile.

A typical plot for the SIP stress as a function of the tile displacement
for a specimen passing the proof test is presented in figure 11. The creep
behavior of the SIP is evident at the 28, 34, and 41 kPa (4, 5, and 6 psi)
stress 30- and 60-second hold levels. The magnitude of the compression
stress is calculated based on a 161 cm’ (25 inz) area disregarding the stiffness
contribution of the filler bar. The SIP stress versus displacement response

for other specimens deviated very little from the graph of figure 11.

The SIP stress versus displacement graph for a specimen which failed the
proof test (acoustic emission criteria 3) is presented in figure 12. The
initial loading c»rve is almost identical to that presented in figure 11 for
specimens passing the proof test. Also presented is the graph of the second
load cycle (permitted under criteria 3) and finally the response for the
specimen on the final load cycle to failure. The displacement origin for
these plots ignores any permanent set caused by previous loadings. A

photograph of the failure surface for this specimen is shown in figure 13.
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The failure was in the SIP/tile bond and looks similar to the failure
surface of specimens which passed the proof tests and failed during other

testing.

Tension Tests

The SIP failure stresses for the three specimens loaded in transverse
tension at a constant displacement rate were 63, 73, and 79 kPa (9.2, 10.6 and
11.4 psi), see Table II. The SIP stress versus tile displacement response for
these three speclmens was similar as seen in figure 14. The failure for these
specimens was in the bond between the tile and the SIP as shown for one of the
specimens in figure 15. Small particles of the tile became detached and were

distributed across the silicone rubber surface.

The tile loaded in tension by pressure failed at a SIP stress of 81 kPa
(11.8 psi). This specimen had been previously loaded to a SIP tension stress
of 30 kPa (4 psi). The SIP stress versus tile displacement curves for these
two load cycles are presented in figure 16. A permanent set of approximately
0.05 cm (0.02 in.) resulted from the 30 kPa (4 psi) tension load cycle.

Eccentrically Applied Tension

The displacement response for three specimens loaded in tension with a
3.18 cm (1.25 in.) eccentricity as a function of the applied force is pre-
sented in figure 17. The failure load for the three specimens was 519, 586,
and 694 N (117, 132, and 156 1b). The highest ultimate load vaiue from
the eccentrically applied tension tests is 32 percent lower than the lowest
ultimate strength measured in pure tension tests. The displacement response
for the three specimens is highly repeatable. The maximum displacement was
recorded by displacement gage 4 and reached a magnitude of around 0.38 cm
(0.15 in.). The opposite side of the tile (displacement gage 3) recorded

negative displacements during the entire load history.

The large rotation of the plate to which the SIP is attached causes the
failure to initiate in the region of maximum tensile stress (i.e., in the
vicinity of gage 4). A photograph showing the rotation of the plate and disbond
failure of the SIP to tile in this region is presented in figure 18 and a
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photograph of the SIP failure surface is presented in figure 19. No
distinguishing features were detected in the failure surface and the appearance

was similar to that for pure tension tests.

Combined In-Plane Force and Transverse Tension

In-Plane Load Plus Negative Pressure Applied to Tile Top Surface.- One

specimen was subjected to combinations of in-plane load and negative pressure
slowly applied to the entire top surface of the tile. The history of loading
and th2 corresponding displacement response of the specimen is summarized

in Table I1I. The sequence of loading for each load cycle involved applying
an in-plane load at one corner of the specimen of approximately 133 N

(30 1bs) followed by slowly reducing the pressure in the chamber enclosing the
top of the tile. Each load cycle was begun at zero load with a new reference
data zero. The displacement data, therefore, describes the response of the
specimen for a particular load cycle, ignoring any permanent displacement set
caused by previous loadings. The permanent set at the end of each load cycle,

however, is recorded in Table III.

On the first load cycle, an in-plane displacement of 0.274 cm (0.108 in.)
resulted corresponding to an in-plane load of 137 N (30.8 1b). The in-plane
load imposes a moment on the tile and causes it to rotate as evidenced by
the upward movement of 0.010 cm (0.004 in.) of the left side of the tile and
downward movement of 0.081 cm (0.032 in.) for the right side. As discussed
earlier, vertical displacements were recorded by displacement gages at the
midpoint of the tile sides. The superposition of the negative pressure
loading (transverse tension) to the in-plane load causes the tile to displace
upward and also causes a significant reduction in the in-plane displacement.
A strong coupling between in-plane and transverse loads and displacements was
observed for all tests involving combined loads. It is speculated that the
transverse fibers of the SIP align to react the shear and transverse tension

loads at an angle other than normal and perform like a string truss.

The displacement response of the tile to the pure in-plane loads (load
cycles 1 through 5, Table III) is presented in figure 20. The specimen failed
during load cycle 5 at an average tensile stress in the SIP of 112.4 kPa
(16.3 psi) while simultaneously loaded in-plane with 162 N (36.5 1b). The
8
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displacement response for this load cycle is presented in figure 21. The
displacement offset at zero load is caused by the in-plane load. Photographs
of the SIP and tile failure surfaces are presented in figure 22. No
distinguishing appearances were observed compared with failure surfaces

observed for other specimens.

In-Plane Load Plus Negative Pressure Shock Applied to the Tile Top

Surface.- One specimen was subjected to combinations of in-plane load and

transverse tension applied as a negative pressure shock to the top surface

of the tile. The sequence of loads imposed on the specimen and the correspond-
ing displacement response is summarized in Table IV. For each load cycle,

an in-plane load was first imposed followed by a transverse tension pressure
shock load and subsequent unloading. The specimen carried the loads without
failure for all test conditions. As for the combined load specimen described

above, a data zero reference was used to start each load cycle.

A typical plot of pressure versus time for the 14 kPa (2 psi) shock is
presented in figure 23, The pressurization rate for the first 7 kPa (1 psi)
reduction in pressure was approximately 180 kPa/sec (26 psi/sec). The
displacement response of the tile to pure in-plane loads (load cycles 1, 2,
and 3; Table IV) is presented in figure 24. In-plane displacements cause a
clockwise i1otal.ion and negative displacement of the tile. An in-plane dis-
placement of approximately 0.20 cm (0.08 in.) resulted from a 133 N (30 1b)

in-plane load.

In-Plane Load Plus Negative Pressure Shock Applied to a Portion of the

Tile Top Surface.- One specimen was subjected to combinations of in-plane

load and transverse tension applied as a negative pressure shock to a portion
of the tile top surface. The history of loading and the corresponding dis-
placement response of the tile are summarized in Table V. As above, each
load cycle was begun at zero load with a new reference data zero. The

permanent set at the end of each load cycle is recorded in Table III.

The negative pressure P, was applied to an area defined in the

following sketch.
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P2 = atmospheric area = 166 cm2 (25.8in?)

The negative pressure was rapidly imposed to simulate a transient aerodynamic
pressure shock. Plots of pressure versus time for 10 kPa (1.5 psi) and 17 kPa
(2.5 psi) shock conditions are shown in figure 23. The pressure versus time
trace was repeatable with minor variations. The pressurizatlon rate for the
first 7 kPa (1 psi) reduction in pressure was approximately 145 kPa/sec

(21 psi/sec) for the 10 kPa (1.5 psi) shock and 255 kPa/sec (37 psi/sec) for
the 16 kP: (2.5 psi) shock.

The displacement response of the specimen to a pure in-plane load (load
cycle 9) is plotted in figure 25. The response is similar to that recorded

in figure 24 for a specimen subjected to a different previous load history.

Following the load history defined in Table V, the specimen was loaded to
failure using the proof test fixture. The tile displacement response plotted
as a function of the average SIP stress is presented in figure 26. The creep
response shown in the graph was caused by holding the load for 30 sec at
7 kPa (1 psi) stress increments beginning at 28 kPa (4 psi). The stress in
the SIP at failure was 82 kPa (11.9 psi).

CONCLUDING REMARKS

A limited number of precisely executed tests on an LI 900 tile/0.1€¢ SIP

thermal protection system establish the following structural characteristic

trends.

1. Nineteen of 26 specimens tested (73 percent) passed the proof
test accustic emission criteria.

2. Specimens failing acoustic emission proof test criteria exhibited
ultimate tensile strength values on the same order as specimens
which passed the proof test criteria.

10
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The failure surface for all specimens tested in this investigation
was in the bond between the SIP and the tile. Examination showed
small particles of the tile became dislodged from the tile and
remained attached to the silicone rubber bonding material.

The ultimate tensile strength for four test specimens ranged from
63 kPa (9.2 psi) to B. kPa (11.8 psi). For specimens with tile
3.6 cm (1.4-in.) thick, no significant difference in test results
was observed whether loads were applied through a thick aluminum
plate bond to the tile coated surface or applied as a negative
pressure to this surface.

An eccentrically applied tension load caused the tile to separate
from the SIP in the region of combined stress (tension plus
bending) at loads lower than recorded at failure for pure tension
loading. The displacement response of the tile corresponding to

a 3.18 cm (1.25-un.) eccentricity was found to be very simiiar for
three test specimens.

Several test condition combinations of in-plane load and transverse
tengion indicate moderate in-plane loads do not reduce the TPS
transverse tensile strength.

Transverse tension applied as a representative pr .ssure shock to
"a portion of" or to "all of" the tile top surface did not result
in failure.

The low in-plane stiffness of the SIP permits significant in-plane
displacements to occur. For example, a first cycle in-plane

load of 137 N (30.8 1b) resulted in an in-plane displacement of
0.274 cm (0.108 in.).

A strong coupling was exhibited between in-plane and transverse
forces and displacements. A transverse tension load, for example,
reduces the magnitude of the in-plane displacement caused by an
in-plane force acting alone.

The previous history of loading is important if one is to predict

the displacement response to the current set of loads.

11
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Figure 5. - Tension test setup and instrumentation.
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Figure 9. - Schematic of equif .ent and instrumentation for imposi~g combined

in-plane and transverse pressure loads.
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Figure 11. - SIP average stress versus tile transverse displacement for
specimen passing proof test,
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Figure 12. - SIP average stress versus tile transverse displacement  or

specimen failing proof test (acoustic criteria 3).
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Figure 14, - SIP average stress versus tile displacement for three specimens
loaded to failure in transverse tension using constant displacement

rate load machine.
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Figure 16. - SIP average stress versue tile displacement for specimen loaded to

failure in transvers2 tension. Load applied by pressure,
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Figure 20. - Displacement response to in-plane loading only for load cycles
1 thru 5. Table III,
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Figure 21, - Tile displacement response to pressure loading while constant

in-plane load of 162N (36.5 pound) imposed on tile. Load cycle 5,
Table III.
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Figure 25. - Tile displacement response for in-plane loading only. Load cycle 9.

Table V.
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Figure 26, - SIP average stress versus tile transverse displacement for ultimate
failure load cycle of specimen previously loaded by selected
combinations of in-plane load and negative pressure shock (See Table V).
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