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'	 ABSTRACT

This paper describes the results of an initial on-orbit engineering assessment of the

performance achieved by the radar altimeter system flown on SEASAT-1. Additionally, the

general design characteristics o;' this system are discussed and illustrations of altimeter

data products are provided. The instrument consists of a 13.5 GHz monostatic radar system

that tracks in range only using a one meter parabolic antenna pointed at the satellite

nadir. Two of its unique features are a linear FM transmitter with 320 MHz bandwidth

which yields a 3.125 nanosecond time delay resoluti on, and microprocessor implemented

closed loop range tracking, automatic gain control (AGC), and real time estimation of

significant wave height (SWH). Results presented herein show that the altimeter generally

performed in accordance with its original performance requirements of measuring altitude

to a precision of less than 10 cm RMS, significant wave height to an accuracy of + 0.5 m

or 10%, whichever is greater, and ocean backscatter coefficient to an accuracy of ± 1 db,

all over an SWH range of 1 to 20 meters.

INTRODUCTION

The SEASAT-1 spacecraft was placed into earth orbit on June 27, 1978. A radar

altimeter, part of this ocean dedicated satellite instrumentation system, represented the

first attempt to achieve 10 cm altitude precision from orbit. Functionally, the altimeter

measures the spacecraft height above mean sea level (MSL), and the significant wave height

(SWH) and backscatter coefficient (a0) of the ocean surface beneath the spacecraft. It

contributes to the overall SEASAT objectives of demonstrating global monitoring of wave

height; detecting currents, tiias, storm surges, and tsunamis; and mapping the global

ocean geoid. The instrument consists of a 13.5 GHz monostatic radar system that tracks in

range only using a one meter parabolic antenna pointed at the satellite nadir. One of its



unique features is the microprocessor implementation of the closed loop range tracking,

automatic gain control (AGC), and real time estimation of SWH. Additionally, a linear FM

transmitter with 320 MHz bandwidth yields a 3.125 nanosecond time delay resolution. This

high resolution, coupled with a high transmitted pulse rate of 1020 Hz, permits the reali-

zation of the desired 10 cm altitude precision.

The altimeter was turned on for the first time on July 3, 1978, and declared opera-

tional on July 7, 1978. Subsequent to this, a detailed assessment/analysis of performance

was conducted. Additionally, the altimeter was operated in various modes to acquire sets

of data to determine the optimum configuration for future operations. Coupled with this

activity, various surface truth data collecting activities were conducted in an attempt to

evaluate/calibrate the real time wave height measurement. After this initial engineering

assessment period, global altimeter data continued to be collected until October 10, 1978,

when a massive short circuit in the spacecraft power system prematurely terminated the

SEASAT mission after only 99 days of sensor operations. Nonetheless, due to the on-board

recording capability, some 1684 hours of high quality altimeter data were collected. As a

point of comparison, this represents about 90% of the data collected by the GEOS-3 Radar

Altimeter during its 3-1/2 years of real-time operation.

This paper describes the altimeter and summarizes the results of the initial on-orbit

engineering performance assessment. A more in-depth treatment of the engineering perform-

ance assessment can be found in ref. 1, and to some extent, the information contained

herein represents summaries and/or extractions taken from that document.

Background

Satellite altimetry is devoted to the active remote sensing of the ocean surface and

thereby represents an important new source of measurements. These measurements are suffi-

cient to provide all-weather, independent observations of global topographic features thus

contributing to the accurate mapping of underwater features and the detection and measure-

ment of ocean currents, tides, and storm surges, as well as the monitoring of wave height

on a global basis.

The long-term objectives of satellite altimetry were stated in the 1969 Williamstown

study on Solid Earth and Ocean Physics (ref. 2). Basically, the development of a satel-

lite altimeter system having a topographic precision of ± 10 cm or less was called for.

It was felt that this level of precision would permit detection of global circulation

patterns and greatly augment the scientific significance of all other observations.

The SKYLAB S-193 Altimeter was the first in the series of satellite altimeters that

were planned to progressively achieve this goal. This altimeter was designed primarily

for obtaining the radar measurements necessary for designing improved altimeters. The
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GEOS-3 Altimeter, second in the series of satellite altimeters, was launched on April 9,

1975, and was the first globally applied alt'i'meter system. The AAFE Altimeter, an air-

craft system which first collected data in October 1975, was a developmental effort

directed at bridging the technology gap between the capabilities of the GEOS-3 Altimeter

and the rather stringent requirements imposed on the SEASAT-1 Altimeter as well as pro-

viding surface truth in support of SEASAT-1 Altimeter calibration activities. The SEASAT-1

Altimeter, third in the series of satellite altimeters, was part of an ocean dedicated

satellite instrumentation system and represented the first attempt to achieve 10 cm pre-

cision from orbit. It is conceptually identical to the AAFE Altimeter. A comparison of

these altimeter systems is shown in Table I.

Satellite Altimetry Concept

The basic idea behind altimetry is to utilize the highly stable platform provided by

a satellite as a moving reference system from which vertical measurements to the ocean

surface are made. Referring to Fig. 1, existing altimeter systems essentially provide

three measurements:

(1) Altitude - The elapsed time between the time of transmission of an RF pulse of

energy to its reception back at the altimeter, after having been scattered from

the ocean surface below, is essentially a measurement of the height of the

satellite above mean sea level. When merged with accurate orbital information,

the results can be related to changes in mean sea level due to such spatially

varying quantities as gravity anomalies and such time varying quantities as

tides, winds, and currents.

(2) Return Pulse Shape - The slope and time extent of the leading edge of the return

pulse can be relate; to the significant wave height of the ocean surface below.

Additionally, through it deconvolution process the surface height distribution

can be recovered including the skewness thereof. It has been shown (ref. 4)

that skewness can then be related to such additional oceanographic parameters as

dominant wavelength, swell/sea ratio, etc. Finally, the slope and time extent

of the trailing edge of the return pulse can be related to the attitude (angle

of the measurement axis with respect to the subsatellite point) of the satel-

lite.

(3) Return Pulse Amplitude - The amplitude of the return pulse, which is determined

from the AGC used to normalize the incoming waveform, can be related to the

backscatter coefficient (eo ) of the surface below, which in turn, can be related

to wind speed over the ocean as well as certain ice related parameters.
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Figure 1. Block diagram depicting satellite altimetry concept and

potential applications (ref. 3).

ALTIMETER DESCRIPTION

To provide the reader with a good, general understanding of the altimeter design,

particularly as it affects his interpretation of the results of the on-orbit engineering

performance assessment presented herein, pertinent design details have been summarized

and/or extracted from refs. 5-8 and are presented in the following sections,

Altimeter Performance Requirements

Based on geophysical measurement requirements specified by the general oceanographic

and geodetic user community (ref. 9), the following key altimeter performance requirements

were derived and used to arrive at a suitable design for the altimeter.
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(1) At an output rate of one height measurement data point per second, the noise

level of these data points shall be such that 68% of the data points lie within

± 10 cm of the fitted mean.

(2) At an output rate of one measurement per second, the altimeter shall provide a

measurement of the significant wave height (SWH) of-the ocean surface beneath

the spacecraft. The absolute accuracy of this measurement shall be at least

± 10% of SWH or 0.5 meter, whichever is greater.

(3) The altimeter shall provide information concerning the measurement of the back-

scatter coefficient (a0 ) of the ocean surface beneath the spacecraft, i.e.,

normal incidence. When subjected to appropriate ground processing, this infor-

mation shall result in the measurement of oo to an absolute accuracy of at least

± 1.0 dB.

It was a further requirement that (1), (2), and (3) be satisfied over an SWH range of 1 to

20 meters.

Resulting Altimeter Design

The Johns Hopkins University/Applied Physics Laboratory (APL), under the direction of

NASA Wallops Flight Center, designed, fabricated, and tested the radar altimeter system

flown on the SEASAT-1 spacecraft. The altimeter was physically divided into two packages,

an RF section with attached antenna and a signal processor section. The envelope dimen-

sions of the RF section, including the antenna, are 1.048 meters in diameter by 0.781

meters high. The signal processor section is 50.8 cm long by 34.2 cm wide by 25.3 cm
high. The two packages are electrically interconnected through a 2.13 meter set of

cables. The total weight of the altimeter is 93.8 KG. The total DC power required at the

nominal spacecraft bus voltage of 28 VDC i-sA 65 watts. A block diagram depicting the
major functional elements of the system is shown in Fig. 2. Each of these elements is

described in more detail below.

The Dispersive Delay Line (DDL) generates the basic linear FM (chirp) pulse. The

heart of the DDL is a surface acoustic wave (SAW) device fabricated on a lithium tantalate

substrate. At a pulse repetition frequency (PRF) of 1020 Hz, the associated electronics

applies a 12.5 nsec impulse at a 250 MHz center frequency to the SAW filter, which then

generates an expanded chirp pulse having the characteristic of linearly decreasing fre-

quency within a bandwidth of 80 MHz and a time interval of 3.2 usec. Subsequent X4 multi-

plication will increase the pulse bandwidth to 320 MHz.

Utilizing the spacecraft 5 MHz reference signal, the Up-Converter/Frequency Multi-

plier (UCFM) generates all RF signals required to convert the DDL output pulse to the

required transmit drive and local oscillator pulses. During the transmit mode, the chirp

6
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Figure 2. SEASAT-1 Radar Altimeter major functional elements (ref. 8).

pulse from the DDL at 250 MHz is converted to 3375 MHz, amplified to the one watt level,

and multiplied X4 to 13.5 GHz, thus achieving the desired 320 MHz chirp pulse bandwidth.

In the receive mode, the DDL chirp pulse is converted to 3250 MHz and amplified to about

100 mw before X4 multiplication to 13.0 GHz. Additionally, under control of an external

signal, the UCFM switches in a CW signal in place of the DDL chirp pulse as required for

the altimeter acquisition mode.

The Traveling Wave Tube Amplifier (TWTA) consists of a high voltage power supply/

modulator and an external TWT. The TWT is a Hughes 852H which was also used on the SKYLAB

S-193 and GEOS-3 altimeter missions. The TWTA amplifies the UCFM transmit drive pulse to

the 2 KW level. A pulse width of 3.2 usec and a PRF of 1020 Hz yields a duty cycle of

0.33% which corresponds to 6.5 watts of average radiated RF power.

The Microwave Transmission Unit (MTU) provides the waveguide interconnection between

the antenna, transmitter, and receiver. A key element is a five-port circulator that

provides for transmit/receive mode switching as well as calibrate mode switching. In the

transmit mode, the 2 KW TWTA output pals-, is switched directly to the antenna. In the

receive mode, the incoming return signal from the ocean surface is switched directly from

the antenna to the receiver. In the calibrate mode, the transmitter is switched to an

internal load and a controlled sample is coupled to the receiver via a digital step

attenuator. To minimize RF losses, the first mixer function of the receiV&P is also



accomplished in the MTU. Full deramping is achieved by mixing the 13.5 GHz incoming chirp

signal with a 13.0 GHz local oscillator chirp signal resulting in a 500 MHz intermediate

frequency (IF) for output to the receiver.

The Antenna is a one meter diameter, horn-fed parabolic dish yielding a nadir

directed gain of 40.8 db and a one way 3 db beamwidth of 1.59°. The beamwidth limited

footprint associated with this antenna is circular in shape, centered on the spacecraft

nadir, and has a diameter of 22.2 km from the nominal spacecraft altitude of 800 km. The

effective pulse width limited footprint of 1.6 km diameter for a smooth surface is con-

tained well within the beamwidth limited footprint.

Signals received at the 500 MHz IF from the MTU are mixed in the Receiver with a

500 MHz CW second local oscillator to form in-phase and quadrature (I and Q) video signals

for use in the digital filtering scheme. The 500 MHz IF signal is also detected prior to

the second mixer for use when CW (unchirped) pulses are transmitted in the acquisition

mode. Receiver gain control (AGC) is provided via a digital step attenuator over a

0-63 db range in 1 db steps under microprocessor control.

The I and Q video signals from the Receiver are A/D converted and stored for further

processing in the High Speed .Waveform Sampler (HSWS). Conversion takes place at 20 MHz

and precisely 64 samples of each video signal are taken over a 3.2 usec interval using a

five bit A/D converter. Readout of the stored samples to the Digital Filter Bank (DFB)

takes place at a 10 MHz rate.

The Digital Filter Bark (DFB) operates on the samples read out of the HSWS in the

interval between received pulses to form c bank of 60 contiguous filters by implementing a

phase rotation algorithm in conjunction with sine and cosine read-only memories. Each

filter has a bandwidth of 312.5 KHz which corresponds to the basic 3.125 nsec resolution

of the system. Square law detection is done in a read only memory which outputs the

square of the input.	 As each filter output is formed, it is read out serially to the

Adaptive Tracker Unit (ATU).

The Adaptive Tracker Unit (ATU) is a microcomputer built around an Intel 8080 micro-

processor. The read-only program memory consists of 4096 eight-bit bytes and the read-

write storage memory consists of 2048 eight-bit bytes. Dual buffers alternately accumu-

late waveform sample data from the DFB for 50 pulse returns and hold the data for proc-

essing by the microprocessor. Height tracking, automatic gain control, and wave height

estimation is then done at a 20/s rate based on the smoothed waveform samples. Telemetry

data formatting, interpretation of commands, and control of altimeter mode sequencing

between acquisition, track, and calibrate states are also accomplished within the ATU.

The Synchronizer/Acquisition/Calibrate Unit (SACU) combines several related functions

into a single unit. Basic timing waveforms are generated by counting down an 80 MHz

oscillator locked to the spacecraft 5 MHz reference. Based on inputs from the ATU, con-

trol signals a;'e passed to the RF section which -nt up the desired signal conditions and

8
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mode switching as a function of current acquisition, track, or calibrate states. A pre

vision digital delay generator counts down coarse height a;id initiates receive processing

including the retriggering of the DDL chirped pulse. ;"finally, the, SACU maintains a

threshold detector and range counter which is operative in tie acquisition mode and

reports the height of CW mode detections to the ATU.

The Interface and Control Unit (ICU) provides the electrical interface with the

spacecraft for all telemetry and data command signals. Latching relays for pulse commands

are located in the Low Voltage Power Supply (LVPS). Data commands are latched by an

instrument unique strobe pulse and transmitted via a serial interface to the ATU. TM

formatting for all science and engineering data is done in the ATU and then output to the

ICU for spacecraft interfacing.

The Low Voltage Power Supply (LVPS) supplies seven regulated voltages to RF section

and signal processor section circuits. Regulation over input bus variations from 24 to

32 V is 1%. The overall efficiency of the LVPS is 80%.

Microprocessor Implem ,$)tation of Key Measurement Functions

As noted previously, height tracking, automatic gain control (AGC), and wave height

estimation are all accomplished under ATU control. Further discussion of the algorithms

used follows.

1)	 For the purpose of maintaining a constant output level and to insure operation

within the linear region of all receiver stages, an automatic gain control (AGC) loop is

implemented in the altimeter. A digital attenuator in the receiver provides for a gain

variation of 0-63 db in 1 db steps. In the absence of signal, the overall gain is ad-

justed by fixed pads so that an AGC attenuator setting of 10 db is observed. This leaves

a range of 53 db above noise for signal variation. For a  between 10 and 15 db, the

corresponding AGC setting would be between 28 and 33 db. The remaining AGC range allows

for increases typical of near-specular returns from ice, lakes, very calm water, or other

smooth surfaces.

Implementation of the AGC is such that the average of all 60 waveform samples is

driven to a constant. The prime motivation for basing AGC control on the average of all

waveform samples was the desire to hold the rms level of the I and Q video signals to a

constant regardless of the shape of the return signal. This avoids saturation when near-

specular or overland returns 'alter the shape of the return signal. It should be noted

that the AGC gate formed in this way has an effective footprint diameter of 9.5 km;

signals from islands or nearby land falling within this circle will have an effect on AGC

and height error (described below) that is derived from the AGC gate.

9



AGC processing is shown in Fig. 3. Digital filter bank (waveform sample) out-

puts are averaged over 50 successive returns prior to AGC gate formation. The AGC gate is

scaled to account for the expoOritial antenna pattern fall-off so that itq amplitude

corresponds to the half-power point on the leading edge of the signal.

Selected Middle
Gale (MI)

%N-41 AHi

Compute
Digital Ant ^pRT'sHW AGC Gate	 Scale
Filter	 50	 AGC
Batik	 1	 Gate 60 Ant

201s

AGC Time Constant

AGC to Receiver 	 10201s	 Compute AGC	 AAGC6Bits 1
LSB = 1 dB	 AGC + aGAGC

Threshold

I IAGC I2

AGC at 101s
(10 Bits, MSB = 32 dB)

Figure 3. AGC processing flow (ref. 8).

The AGC gate is compared to a fixed constant and the difference, or error

signal, 'is scaled and added to the previous value to form an updated, smoothed AGC word.

The loop is closed via the digital attenuator in the receiver. While the LSB for gain

control is 1 db, finer bits are carried in the AGG word for smoothing and the result is an

interpolated value with an LSB of 1/16 db. The TM output at 10/s averages two consecutive

updated AGC words.

2)	 The height processing function is accomplished by operating on the waveform

sample outputs from the digital filter bank to implement a second order a-C tracking loop.

Waveform sample averaging over 50 consecutive returns precedes the development of a height

error signal; thus the loop is updated at a 20/s rate. This rate was chosen to minimize

the processing time required in the adaptive tracker and still allow tracking loop time

constants as low as a few tenths of a second.

Referring to Fig. 4, operating on the averaged waveform samples, the height

tracker forms a range error by subtracting the amplitude of a middle gate (chosen as a

1,0
Video
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Figure 4. Height processing flow (ref. 8).

result of the wave height estimation described subsequently) from the AGC gate formed by

averaging all 60 waveform samples. As previously stated, scaling on the AGC gate accounts

for the antenna pattern decay to give an amplitude to the halfpower point on the return

signal leading edge. For perfect height alignment the middle gate amplitude will also

equal the half-power signal amplitude; misalignment will result in a positive or negative

signal which can be related to the magnitude of the misalignment in time.

Based on waveform sample data averaged for 50 radar pulse time intervals (PRT),

the adaptive tracker processes the samples to form gates, estimates wave height, computes

a height error, and updates the previous height and height rate estira3tes in the following

50-PRT interval. Although loop updating takes place at a 20/s rate, the height word is

made to step smoothly in between updates by applying rate corrections each radar pulse.

At 50 m/s height rate, the height changes 2.5 m in 50 ms, thus the need for continuous

updating.

A 25-bit height word is output from the ATU to the SACU each radar pulse. The

eight fine bits are passed to'the DFB where they are used to locate the precise center

frequency of the filter bank. The 17 coarse bits are used to count down an 80 MHz clock

to derive a trigger'for regenerating the chirped local oscillator pulse. Tracking is

ambiguous in that the overall delay for an 800 km height is 5333 us. Signal return for a

given transmit pulse will fall between the 5th (4900 us) and 6th (5880 us) succeeding

11
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pulse. The height word output to the TM system at the 10 1s rate will be the result of

averaging two successive updated height words.

3)	 Estimation of significant wave height (SWH) begins with the formation of a set

of processing gates as suggested in Fig. 5. By combining the outputs from contiguous

3.125 ns waveform samples, gate triplets of successively increasing width are formed. The

early and late gates will enter into wave height processing;, the middle gate is used in

height tracking once a gate triplet has been selected.

- 1 1/2 0 +11/:	 Waveform
Samples

	

-30	 -1J L +1	 +30

A ^1
— ^ J

2	 Processing

--3	
Gate Triplets

4

5

I	 ,

i RIWS Wavehelght
0.511  I 0	 2	 4

I Average Ocean Return

I

	

-100	 -75	 -50	 -25	 0	 25	 50	 75	 100

Time ins)

Figure b. Formation of processing gates from waveform samples (ref. 8).

A signal formed by differencing the late and early gate amplitudes provides a

measure of the slope of the ocean return signal leading edge. Adaptive selection of the

operative gate pair matches the gate spacing (in X2 steps) to the signal slope to maximize

the sensitivity to wave height variation. This is further illustrated in Fig. 6.

Plotting the six gate-pair difference signals vs wave height results in the family of

curves shown. The dashed curve formed by multiplying (L 6 - E6 ) x 0.685 provides a refer-

ence to which the remaining five gate-pair difference amplitudes are compared. At any

given wave height, one pair will be closest in amplitude to the reference. The vertical

dashed lines denote boundaries at which two adjacent lairs will be equally close to the

reference. Within these boundaries the amplitude variation of the selected pair cic;est

12
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Figure 6. Wave height estimation (ref. 8).

to the reference provides a vernier indication of wave height. A table of 16 entries

spanning the operative region, plus some overlap, is provided for each of the five gate

selections or a total of 80 entries.

The signal flow for waveheight processing is further illustrated in Fig. 7.

Running averages are continuously maintained for all six gate-pair difference signals.

The wave height estimation process is based on the normalized ratio L i - Ei	L6 - E6

which avoids dependence on signal-to-noise ratio. The process results in very nearly

constant percentage increments in SWH,•which are never greater than 8%. Averaging SWH

readouts at 10/s over longer periods will further reduce this quantization noise.

Generation of the look-up table entries from the ocean return model is described in

ref. 10, and was in turn based on the derivations given in ref. 11.
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Figure 7. Wave height processing flow (ref. 8).

ALTIMETER ON-ORBIT PERFORMANCE

Our assessment/analysis of altimeter data to date has revealed that, with minor

exceptions, the altimeter performed nominally throughout the life of SEASAT. The altim-

eter is felt to generally have performed in accordance with the original specification and

certainly in accordance with pre-launch expectations. This is despite the fact that the

altimeter occasionally had to operate in the presence of random attitude disturbances,

outside its designed temperature range of operation, and at spacecraft bus voltages below

its designed minimum. The only known altimeter hardware anomaly was the "Transmitter

Power Dropout" problem which, while it certainly was a cause for concern, in no way

impacted the quality of the altimeter data collected, since the transmitter dropouts were

r	 always over land and for short durations (< 5 sec).

The following sections present selected results from our overall engineering assess-

-

	

	 ment activities. Generally, the data presented is representative of normal altimeter

performance. Additionally, as pertinent, specific features or capabilities of the altim-

eter and its data products are presented.
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Typical Global Performance

Presented below is a full rev, global set of altimeter data taken during rev #188 on

July 10, 1978. This rev was not chosen for any particular reason, but rather is felt to

represent typical, normal altimeter operations. Referring to the ground track shown in

Fig. 8, rev #188 starts over the middle of Africa and progresses westward. Continuous

altimeter data was collected during this period, selected parameters of which are plotted

in Figs. 9 and 10.

The top graph of Fig. 9 shows height rate (scale of t 50 m/sec) plotted over top of

altimeter measured height (scale of 780 to 810 km). Note the generally smooth sinusoidal

motion of the orbital height above the surface with apogee occurring at the poles and

perigee at the equator. Note also that zero altitude rate occurs at apogee and perigee as

would be expected. It can generally be said that the smooth data segments are over water,

while the noisy or perturbed data segments are over land. This is particularly evident in

the height data, in that, on this scale, the difference between the GSFC predicted orbital

height and the altimeter measured height are not discernible except over land.

If the GSFC predicted orbital height is subtracted from the altimeter measured

height, the remainder represents the height of the surface above the reference ellipsoid

which is plotted on the second graph (scale of -200 to +3200 m). Note that the surface

height associated with Antarctica and Greenland stand out. Those at Greenland have been

cross checked against available contour maps and appear quite reasonable.

If the land data is then edited out and the scale is expanded to ± 90 m, a plot of

sea surface height is obtained as shown on the third graph. The undulations shown repre-

sent the global geoid with departures therefrom representing tides, storm surges, currents,

baratropic effects, etc.
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Figure 8. Ground track for rev #188.
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Continuing with the same data set shown at the top of Fig. 10 is a plot of the noise

level of the height data over water. Note the 10 cm specification 'line shown. The noise

level was computed by doing a first order fit (to remove the rate) to a major frame of

data (-4.5  sec), and then computing the standard deviation of the individual 10/s data

points about the fit. This then represents a worst case approach to computing this

parameter. If the data were smoothed over one second intervals (more in keeping with the

specification), better results should be obtained and in fact, this is the case as will be

shown in the next section. Still, by and large, the raw, unsmoothed data appears to have

a noise level between 6 and 10 cm, with the higher values occurring at higher sea states

as would be expected.

Shown next is the real-time Significant Wave Height (SWH) measurement on a scale of

0-12 m SWH. It has been edited so that the data shown is over water only. As might be

expected global sea states are typically below 4 m SWH, with those excursions above

representing storms. In particular note the storm centered at 0516 GMT between Antarctica

and Africa and having a peak SWH of 11 m. Selected data obtained during this storm was

utilized extensively during our performance assessment.

The bottom plot shows the backscatter coefficient (c1o ) obtained over the full data

set, i.e., land, water, and ice. Note particularly the double peaked high amplitude

values of a  seen over Antarctica. These indicate the presence of sea ice surrounding

Antarctica, and data.of this sort could easily be used to construct ice boundary maps much

as was done with the GEOS-3 Altimeter (ref. 12). Note also the lower values of ao

obtained during the peak of the storm discussed above. This, too, is as expected.

Height Measurement Performance

Perhaps the most important performance specification placed on the altimeter design

was the requirement to provide height measurements over a range of SWH of 1 to 20 meters

having a noise level of 10 cm RMS or less based on one second averaging. This then sets

the basic precision, or ability to detect changes in sea surface height due to currents,l	

geoid, tides, etc., at the 10 cm level. How well the altimeter performed relative to this

requirement has been the subject of extensive analysis. For the purposes of this paper,

the storm shown in Fig. 10 centered at 0516 GMT on rev #188 on July 10, 1978 and occurring

over the South Atlantic between Antarctica and Africa has been selected for demonstrating

actual on-orbit performance since it covers a reasonably large range of SWH (2 -> 11 m),

the parameter to which height noise is most sensitive.

Fig. 11 is a plot of height noise versus RMS wave height during the storm. Note that

RMS wave height is related to SWH by; aw = SWH/4 (ref. 13). A power curve has been fit

to the data with good results. Note the tightness of the scatter. Also note that the

18
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altitude noise increases with SWH as expected. As can be seen it fails to meet the per-

formance specification for SWH > 5 m. But, statistically, 70% of the global sea states

are below 4 m, and therefore the performance achieved is considered quite adequate. This

is especially true when one considers that the method of computing a h is the same as noted

in the previous section and represents a worse case approach. In effect what is shown is

the noise level of the raw 10/s data, i.e. without the benefit of any smoothing. If this

same data set is smoothed (averaged) over a one second interval prior to computing the a

with respect to the fit, the result is as shown in Fig. 12. While an improvement of M

might be expected, the maximum improvement realized is a factor of 2.2 for low SWH thus

indicating that successive height measurements at the 10 /s rate are somewhat correlated.

As a point of comparison, the pre-launch test results using one second smoothing are also

shown.

.1	 .2	 .3 .4 .5 .8 .8 1.0	 2	 3	 4 5 8	 8 10

Real Time RMS Wavehelght, ww (Meters)

Figure 11. Height measurement performance (no smoothing).
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Figure 12. Height measurement performance (one second smoothing).

To demonstrate the utility of the height measurement as derived from SEASAT-1

Altimeter data, some examples follow:

(1) Fig. 13 shows a pass during rev #1260 on September 23, 1978, that traversed the

Puerto Rican Trench area clearly showing the sea surface height depression due

to the trench. The disturbance to the immediate right of the trench is due to

the island of Anguilla in the Virgin Island chain. Further to the right is a

second trench which is located near the southern edge of the Venezuelan Basin.

The geoidal rise associated with the continental shelf off the coast of Venezuela

can clearly be seen to the right of the second trench..

(2) Fig. 14, is taken from a pass that directly overflew Bermuda during rev #1246 on

September 22, 1978. The feature to the left of the sea surface height plot is

due to the Gregg sea mount in the New England sea mount chain. This sea mount

rises from a surrounding depth of some 5000 meters to within approximately 1400

meters of the ocean surface. The geoidal rise associated with the island of

Bermuda is shown to the right of the plot.

(3) Fig. 15 shows data from rev #1339 on September 28, 1978, that crossed the Gulf

Stream south of Cape Hatteras, NC. Plotted is the dynamic height which is the

sea surface height with the geoid taken out thus allowing direct observation of
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dynamic features such as those due to currents, eddies, storm surges, baratropic

effects, etc. The effect of the Gulf Stream as this pass approached the coast

of North Carolina is clearly evident. Data has been obtained from the U.S.

Naval Oceanographic Office (ref. 15) which places the West and East boundaries

of the Gulf Stream for the previous day (September 27, 1978) as shown. Agree-

ment, particularly for the Western boundary, is quite good. Note that the slope

of the dynamic height is steepest (thus indicating maximum current velocity)

near the Western boundary where the Gulf Stream is jammed up against the edge of

the Continental Shelf. Also note the almost noise free quality of the data on

this exaggerated scale of 0 to -2 meters. A one second smoothing time was used.

While there are numerous other examples, these should serve to demonstrate the basic

height measuring capability of the SEASAT-1 Radar Altimeter system. 	 With its sub 10 cm

precision capability, this system has clearly taken a step forward relative to remote

sensing of the ocean topography.
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Significant Wave Height (SWH) Measurement Performance

While the absolute calibration of the SWH measurement was not considered to be an

engineering assessment task, we did, nonetheless, acquire several sets of surface truth

data during the engineering assessment phase. This was done to obtain a quick look at the

reasonableness of the SWH measurement prior to the onset of the planned intensive surface

truth data collecting activities such as the Gulf of Alaska SEASAT Experiment (GOASEX).

Surface truth was collected by flying the Wallops C-54 aircraft with the AAFE Altimeter

onboard in the footprint of SEASAT off the East Coast of the United States. As noted

previously, the AAFE Altimett}jr development was essentially a breadboard activity leading

up to SEASAT. Since the SEASAT-1 Altimeter is conceptually identical to the AAFE system,

the measurements are quite comparable. The AAFE Altimeter was used for this same purpose

during the GEOS program and found to provide very accurate measurements of SWH (ref. 16).

Fig. 16 shows the results of comparing the SEASAT measured SWH with that measured by

the AAFE Altimeter during three of the aircraft underflights of SEASAT in the vicinity of

Bermuda, As can be seen the SWH measurement is within specification for SWH < 4 m which

was the highest SWH observed daring this quick look exercise. A more extensive SWH cali-

bration validation exercise is currently being conducted by the SEASAT-1 Radar Altimeter

Experiment Team (SRAET) and will be reported on at a later data. This activity involves

///////
9118078; Rev N 11A0-/ O

O 	 /̂ ---9113178; Rw N 1117
/
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9122178; Rev M 1248
I/
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0 1 	 1	 1	 1	 1
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AAFE Significant Wave Height r'Metare)

Figure 16. Significant wave height measurement performance at low SWH (< 4 m).

23



i;

utilizing data obtained during overflights of NOAA buoys, aircraft underflights, and

overflights of storms, hurricanes, etc., thus exercising the system in a more exhaustive

manner and over a wider range of SWH.

To provide some idea of what accuracy might be obtainable at higher SWH, Fig. 17

shows the SWH measurement accuracy based on data obtained during pre-launch testing using

the Return Signal Simulator (RSS). Note that the dashed line represents the original

performance specification. As can be seen the measured results gp slightly (5/ or so) out

of specification around 14 m SWH. Performance otherwise is within specification.

Furthermore, even this modest out-of-specification condition can be corrected on the in-

flight data by the application of a relatively simple correction factor.
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Figure 17. Significant wave height measurement performance (pre-launch).

Fig. 18 presents the noise level on the SWH measurement as obtained during the pre-

viously noted storm. A power curve has been fit to the data with good results. Note

that the noise level increases with sea state as would be expected. Note, also, that

the noise level is well below the 10 0110 level which was a design goal for the SEASAT-1

Altimeter.

24

r	 Y

18

18
a

14

3 12
c
cZ

c 
10

a
8

N 8

4

i



1.0
.8

.6

.5

.4

.3

e .2b

_i
° .1x

Q: 108
.06

3 .05
.04

.03

.02

OA

	s 	 . . •

	

/ .•• f	 • .

vPW = .0637 (ow)-M; r = .79

.01	 a	 _	 _
.1	 .2	 .3 .4 .5 .6 .8 1.0	 2	 3	 4 5 6	 8 10

RMS Wevehelpht, ww(Metere)

Figure 18. Significant wave height measurement noise level.

Fig. 19 shows typical return waveforms from which SWH measurements are made. The one

for a 2.4 m SWH was taken just after passage through the storm previously noted. Note the

steep slope of the leading edge. The droop associated with the trailing edge is due

primarily to receiver bandpass effects and can be calibrated out if desired. Also shown

in Fig. 19 is a return waveform corresponding to an 11 m SWH. It was taken from the peak

of the storm. Note that the major difference between this waveform and the previous one

for 2.4 m SWH is that the slope of the leading edge has significantly decreased as would

be expected. Note also, how smooth the data is in both cases based on a nine second

averaging time (two major '.Frames).

Fig. 20 shows SWH mea.urements obtained during rev #280 on July 16, 1978. This pass

(-came within 100 km of Hurricane Fico between the , West Coast of the United States and

Hawaii. As can be seen, the peak SWH observed was approximately 10 meters.
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Ocean Backscatter Coefficient (co o ) Measurement Performance

As previously noted, the SEASAT-1 Altimeter has an internal calibrate mode which

essentially diverts a calibrated portion of the transmit pulse into the receiver for the

purpose of AGC and height calibration and stability monitoring. Also, it has been deter-

mined that by incorporating internal calibrate mode AGC data into the computation of a0

from in-flight AGC data, the effects of transmit power changes and variation in receiver

gain due to temperature are eliminated. The algorithm for accomplishing this is shown

below:

(To = 39.93 - Cal a - A AGCa + 
Latt + 30 

1og
10 796.44 + Latm B

where: co	=	 Ocean backscatter coefficient, (db)

Cal 	 =	 The measured value of the calibrate mode attenuator for step, a;

there are 11 steps from 0 -> 60 db in 6 db steps.

A AGCa =	 AGCa - AGC; i.e., the difference between the calibrate mode AGC for

step, a, and the measured AGC of the ocean surface; a is chosen to

minimize to AGC al'

Latt	
Loss in antenna gain at the nadir due to off nadir pointing.

h	 =	 The measured altitude, (km).

Latm
	 The atmospheric loss, (db).

B	 =	 Bias determined from evaluating on-orbit data, (db).

The constant, 39.93 db, was determined on the basis of pre-launch Thermal-Vacuum data

(TV#6@APL) taken at seven temperatures (three cold, two ambient, and two hot), five h's,

six SWH 's and three 6o 's for a total of 630 different set-ups overall, over an approximate

four day period under vacuum conditions. This constant was determined for each setup and

then averaged with a resulting a of 0.29 db, thus indicating that it is truly a constant

and is stable over all expected operating conditions.

Using the above noted test data set, closure on the algorithm was achieved to within

-0.01 db with a a of 0.22 db, thus giving a high degree of confidence in the c o algorithm.

Latt requires knowledge of the antenna pointing angle, currently obtained from space-

craft data to an accuracy of no better than ± 0.2 0 . At an indicated pointing angle of

0.5 0 , this translates into a potential error in c o of + 1.5 db to -2.2 db. Pointing angle

data obtained from the altimeter return signal trailing edge slope may be used to improve

this.

Latin requires knowledge of local atmospheric conditions along the ground track which

could be provided by the SEASAT-1 Scanning Multichannel Microwave Radiometer (SMMR).

Failing this it should probably be set to zero.
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Based on a preliminary evaluation of data taken during GOASEX and on available GEOS/

SEASAT intersections a tentative value for B has been established as about -1.5 db (ref.

17). The source of this bias is not currently understood and is still being evaluated.

Utilizing this algorithm, Fig. 21 shows the relationship obtained between ocean

backscatter coefficient (a0 ) and SWH. Note that the estimated bias of -1.5 db has not

been applied since it is still under investigation. Again, this data is from the pre-

viously noted storm. This time a In curve has been fit to the data with good results.

Note that oo decreases with SWH as would be expected. The SEASAT data has been corrected

for measured altitude and pointing angle effects only and not for atmospheric effects.

Referring back to Fig. 20, the 6o as obtained during the Hurricane Fico pass is

shown. Note the inverse response to SWH as was seen in Fig. 21. As a point of interest,

altimeter measured Q0 at nadir has been demonstrated by GEOS to be highly dependent on

wind speed and can be routinely used to derive that parameter. In fact, wind speed

derived from the GEOS-III Altimeter measured cr0 has been shown to be accurate to ± 2 m/s

for wind speeds between 4 and 20 m/s (ref. 18). The ability of the SEASAT-1 Altimeter to

produce this measurement accurately will be subsequently reported on by the SRAET.
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Figure 21. Ocean backscatter coefficient (00 ) measurement performance.
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Measurement Stability

Measurement stability as monitored by the internal calibrate mode, which was run

approximately once per day for the full mission duration, is presented in Tables II

and III.

Table II presents data relative to the stability of the height measurement. Shown

are calibrate mode height readings for each of the last five steps of the Calibrate Mode I

sequence. Pre-launch testing has shown that the earlier steps were influenced to some

extent by direct leakage of the transmit pulse into the receiver ahead of the controlled

signal. Since leakage is not a problem in the normal operate mode (Track 1), the earlier

steps are omitted from this evaluation. 	 Four in-flight calibrate modes are presented and

compared against the pre-launch data base (col. 7). Calibrate modes shown in col. 2 and 3

were run early in the mission, approximately an hour apart, and show good short term

stability of the height measurement. The calibrate modes shown in col. 4 and 5 were run

approximately three months later and demonstrate good long term stability. It ,hould be

noted that the calibrate mode shown in col. 5 was run only 19 minutes after the occurrence

of the catastrophic short in the spacecraft power system and only 37 minutes prior to the

last data transmission from the spacecraft. At this point, even though the input bus

voltage was very low (24 V), the altimeter was still performing nominally. Comparison of

the mean of these four calibrate modes (col. 6) with the pre-launch data base is presented

in col.8. The overall mean difference of -0.7 cm is so small as to be insignificant

especially in view of the fact that the height noise observed on-orbit is typically

4 -> 10 cm.

Table III presents data relative to the stability of the AGC measurement taken from

the same calibrate modes as shown in Table II. Two additional calibrate mode steps are

included, since they were shown in pre-launch testing to not be sensitive to the pre-

viously noted leakage problem from an AGC point of view. A review of this table in the

same manner described for Table II reveals that the short and long term stability of the

AGC process is excellent. Again the overall difference of 0.08 db is so small as to be

insignificant.

One further item of note in this table is the apparent gradual degradation in trans-

mit power of 100 watts (-0.29 db) over the three month period. This is after a total TWTA

operating time of approximately 2194 hours (including 510 hours of pre-launch testing) and

is in keeping with the 5000 hour design life of the tube, i.e. from an output power

degradation point of view.

Fig. 22 shows waveform sample data taken during Calibrate Mode II. In this mode, the

transmitter is inhibited and the system looks at noise as an input. Data is averaged over

a 10 second period (equivalent to 10,200 pulses) to reduce the expected sampling varia-

bility due to noise to under 1%. This particular data was taken from the same calibrate

29



4.

J

S

W

LL
O

6-4 M M M 01 N
O IIU S O N O r rv d^ 1 1 1 1 4

U 0) J
C lA a

coRf 	 Od
• r	 l0

cc 41; 01 LO d 01 00O O N 4-)
G ~Gam.►-^ M CA M C1 010

LY
d
C{.

O +)
U .^. t

•cmQ
F- rOd _• 4- c N 1l r O OO

^^i'W
A

01 co O1 01 01

W +^F-- t['f
O O

m r r r 1. N to M N

J U O M N 01 r 00 01
r O M 00 01 co 00

J
Q

^ et
W r

Z
E
(7 r C11 Odl Cf tf'f t0 d'

O \ r
U O M r 01 O 00 r

L O 01 00 ON co 01
H cm

W S .-^
J Mco O
PCQ O_

^ ^ O m n t0O N

U \O1 N O r r M
O 01 01 01 01 ON

N
r rr

r^ C)l

 r O N to to
O r O •U \01 N O r r M

M M 0) 0) 01)

r

H
r

U
10, j

1- 00 01 O r

30



v
rn
N

CLU
CD ^-►

O O o`^ u; "a
LnO  O co

a
m O

Oct
'—1

t0)
m
m

r-

.^

¢¢

a^ O 0 0 0 0 0 0 If

^i
If

^ ^ 1 1 1 q a i i i

r
N

M rn
^" C	 d
1^ O b Q to 1^

^L7DUoZ

N
^ 1	 fIl t0

In^ OM 1^
t0

f
N̂

P
O

N Oo W W ^ MM
O N +^ ? Ln I[1 r.%1 Ln

1{p 1-ti
Q'

v IL O~ N to 01 e—
^

1 1
p!! Q m M cl' t}' in

O
V .1..1

Q

to

E G e-- r-i- C toM InN Lnr- 11%.— InLn 1*1 Ln tp
F t0 1	 to ' mWQ \-' N

. r
I

1
1

1
1

1
1

C Q
M M Ct Ch Ln UD

F O Ln

j- m ^ O O O1et toO In Ln to r t0
en N N m ch O O

D Ct ^ 1^ co NJ
Q

W

Z
F"'^ ^ 0101 to 'Ch N CY to Lin Ô'COQ
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Figure 22. Calibrate mode II waveform calibration data.

mode as shown in col. 2 of Tables II and III. Actually the Calibrate Mode II data has

been so stable that essentially no difference can be observed between the pre-launch data

base and any of the on-orbit calibrate modes. The droop at the edges of the waveform

sampler window is due to receiver bandpass effects. This, the filter to filter ripple,

and the slight amplitude slope across the window all will affect waveform sampler data

taken in the normal operate mode. However, a set of gain correction factors can be

derived from the Calibrate Mode II data and used to remove these effects from data taken

on-orbit.

Acquisition Time Performance

It was a requirement that the acquisition time, i.e., the time from transmission of

the first RF pulse to the time that the basic measurement performance requirements are

satisfied, be less than five seconds. This was primarily directed at insuring that

quality data was available as quickly as possible after passage from land to water.

Fig. 23 shows the acquisition time performance as a function of SWH based on data taken

during pre-launch testing. As can be seen, prior to launch, acquisition time was
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Figure 23. Acquisttion time performance (pre-launch).

generally around 3.5 to 4 seconds. A review of the data associated with in-flight acqui-

sition attempts has shown the acquisition time to be generally in agreement with the pre-

launch situation. It should be noted that approximately two weeks prior to the death of

SEASAT, a mode was implemented which essentially added 2.8 seconds to all acquisition

attempts. This came about as a result of using Track Mode 4 to modify the acquisition

offset parameter in an attempt to reduce the frequency of occurrence of the occasional

transmitter power dropouts over land that had been observed.

Hardware Anomalies

During the life of SEASAT, there were four hardware anomalies that affected altimeter

operation. Two of these were separate instances of altimeter internal temperatures

exceeding design limits due to a failure in the spacecraft thermostats controlling inter-

nal baseplate heater systems. The primary impact of this was a loss of approximately

eight days of data while work around plans were developed, tested, and implemented. A

third anomaly occurred when the altimeter transmitter tripped off, as designed, when the
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spacecraft bus voltage dropped below the design minimum. This was due to a greater than

realized drain on the spacecraft power system resulting in dangerously low spacecraft

battery voltages during the eclipse period of the orbit. The primary impact of this was

a loss of approximately 8.5 days of data while the spacecraft batteries were brought back

to a normal and better understood state of charge. The fourth anomaly, and the only true

altimeter hardware anomaly, was the problem of occasional transmitter power dropouts over

land for periods of approximately five seconds per occurrence after which altimeter opera-

tion returned to normal. This was due to improperly implemented acquisition logic that

did not allow for the situation where the percentage of valid returns from the surface was

extremely low (< 8%), as sometimes occurred over land. The primary impact of this was the

loss of approximately seven days of data while work around plans were developed, tested,

and implemented.

Data Anomalies

A number of so-called data anomalies have been observed on-orbit. Many of these have

been shown to be due to islands, peninsulas, the edge of land boundaries, etc. falling

within the altimeter footprint. In this case, the effect shows up first as a change in

return pulse shape, due to the higher elevation land in the footprint, which results

generally in an increase in AGC, followed by an apparent increase in SWH, and a change (up

or down) in height. If the island remains in the footprint for more than a few seconds,

this usually results in a loss of lock unless the terrain is relatively smooth and level.

This glitch in the data is not a true anomaly in that the altimeter was not designed to

handle this condition. Rather the altimeter is intended to acquire data over open ocean

where conditions change more gradually. The altimeter response is due to a bona fide

surface feature.

Another type of anomaly has been demonstrated, in at least one case (ref. 17), to be

due to passage over an intense raincell in open ocean. In this case, the effect is

evidenced by a decrease in AGC due to signal attenuation through the raincell, followed by

a change in height, and an increase in SWH. Typically these raincell crossings last < 5

seconds and no loss of lock occurs. Again, this represents altimeter response to a sur-

face feature.

A third type of anomaly occurring occasionally in open ocean, is thought to be due

to extremely smooth water resulting in near specular scattering. This type of anomaly

shows up as a change in return pulse shape to a narrow, high amplitude pulse resulting

in an extremely strong increase in AGC, followed by an increase in SWH, and a change

in height. tihether or not this effect is really due to extremely smooth water has not

currently been verified, but the response is analogous to that observed over the sea
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ice around Antarctica and Greenland, which is known to be due to near specular scattering.

A fourth type of anomaly has been demonstrated, in at least one case (ref. 19), to be

due to a spacecraft attitude control system anomoly. The SEASAT-1 spacecraft was plagued

with attitude control system problems throughout its life and although various work-around

plans were implemented, they were not 100% successful in that occasionally the spacecraft

attitude would roll or pitch out due to glint in the field of view of the attitude sensing

device. This was the case on August 8, 1978, when at approximately 0854 GMT the space-

craft attitude changed by more than 1 0 ultimately resulting in a loss of altimeter lock

for several minutes until the spacecraft attitude came back under control. This showed up

in the data as a gradual decrease in AGC with an increase in the trailing edge slope of

the return pulse, both due to off nadir pointing, followed by an apparent increase in SWH

to its maximum allowable value, and a change in height, all followed shortly thereafter by

a loss of lock when the return signal strength became too low to track. This condition

persisted for several minutes prior to a resumption of normal operation as the spacecraft

attitude reapproached the nadir.

As pointed out, the first three types of anomalies discussed are felt to be due to

surface features, and the fourth is due to a spacecraft problem. Fortunately, these types

of anomalies occurred infrequently and they were always brief enough such that the data

set was not really compromised. In most cases standard editing techniques can be utilized

to remove their effect with no regard for their cause. In those cases where this is not

practical or desirable, auxiliary data can possibly be used to evaluate their cause and

effect.

CONCLUSIONS

Based on the data presented herein it should now be apparent that this system pro-

vided high-quality data that contributed to the overall SEASAT objectives of demonstrating

global monitoring of wave height; detecting currents, tides, and storm surges; and mapping

the global ocean geoid. It should also be apparent that the altimeter performed reliably

and as designed throughout the three month life of SEASAT.

The long term objective of the 1969 Williamstown Study (ref. 2) calling for the

development of a 10 cm satellite altimeter system has been met, and the altimeter as a

concept has truly come into its own as a reliable oceanographic tool capable of rapidly

and remotely sensing the dynamic structure of the ocean surface.
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