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Abstract

The energy consumed in manufacturing silicon solar cell

modules was calculated for the current process, as well as

for 1982 and 1986 projected processes. In addition,

energy payback times for the above three sequences are

shown.

The module manufacturing energy was partitioned two

ways. In one way, the silicon reduction, silicon purification,

sheet formation, cell fabrication, and encapsulation energies

were found. In addition, the facility, equipment, processing

material and direct material lost-in-process energies were

appropriated in junction formation processes and full module

manufacturing sequences.

A brief methodology accounting for the energy of silicon

wafers lost-in-processing during cell manufacturing is described.
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1. Introduction

The manufacturing methods for photovoltaic solar

energy utilization systems consist, in complete aeneral.ity,

of a sequence of Individual processes. '"his process sequence

has been, for convenience, logically segmented into five

major "work areas": Reduction and purification of the semi-

conductor material, sheet or film generation, device genera-

tion, module assembly and encaFaulation, and system completion,

including installation of the array and the other subsystems.

For silicon solar arrays, each work area has been divided into

10 generalizaed "processes" in which certain required modifica-

tions of the work-in-process are performed. In general, more

than one method is known by which such modifications can be

carried out. The various methods for each individual pro-

cess are identified as process "options". This system of pro-

cesses and options forms a two-dimensional array, whicl, is

here called the "process matrix".

In the search to achieve im proved process sequences for

producing silicon solar cell modules, numerous options have

been proposed and/or developed, and will still he proposeA

and developed in the future. It is a near necessity to be

able to evaluate such proposals for the technical merits

relative to other known approaches, for their economic benefits,

and for other techno-economic attributes such as energy con-

sumption, generation and disposal of waste by-products, etc.

Such evaluations have to he as objective as possible in light

of the available information, or the lack thereof, and have

1



to be periodically updated as development progresses and

new information becomes available. Since each individual

process option has to fit into a process sequence, technical

interfaces between consecutive processes must be compatible.

This places emphasis on the specifications for the work-in-

process entering into and emanating from a particular process

option.

The objective of this project is to accumulate the necessary

information as input for such evaluations, to develop aparo-

priate methodologies for the performance of such techno-economic

analyses, and to perform such evaluations at various levels.

Energy consumption and co-responding payback times were

reviewed for the current Production process and for pro-

cesses which may be used on manufacturing lines in 1981

and 1986. For a proper assessment of the payhack times,

the entire manufacturing process se quence from tt,e mining of

the ore, in this case quartzite, and its reduction to Si, up

to the completion of the system, fully installed and ready for

operation, should be analyzed. So far, we have onlv accumulated

energy data up through module manufacture. Fven for this part of

the process sequence, we have so far Performed only detailed

energy analyses for those processes for which we have completed

thourough technology and cost studies. These processes in-

clude the SiO 2 reduction in the arc furnace, Cz crystal pulling,

slicing, junction formation, and the energy content of encap-

sulation materials. For the remaininq Parts of the process

sequence, we have inserted data from other studies, such as

Iles' 1974 compilation of the solar cell plant energy

2



consumption (l) and Bickler's design data for a $2.00/W(pk)(2)

and a $0.50/W(pk)(3) Strawman process

These energy consumption studies

two quantities of interest for energy

the total energy consumed in creating

2. the relation of this "invested" e

(1975$).
are s+immarized into

source systems: 1.

the energy source, and

nergy to the useful energy

output of the system which, for solar energy utilization sys-

tems, is often called the "payback time". while the former

is a reasonably well defined quantity, whicr depends primarily

on the methods used for creatinq the enerqy source, the pay-

back time depends also on the use of the system and is thus

less uniquely defined.

3
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2,	 Energy payback Times

To calculate payback times for photovoltaic system3,

the annual energy output of a unit module area must be known.

This power output, for photovoltaic systems, is

dependent upon the encapsulated cell efficiency, the module

packing factor, the solar insolation, the efficiency of

the power conditioning and storage subsystems and the mismatch

of the energy availability and demand statistics. This list of

dependencies makes it clear that the output of the module will vary

according to climate at the locality of installation, and to the indi-

vidual load to be satisfied. The factors of influence on the useful

system output, outside of the cell efficiency,are combined into

the "capacity factor". A:- a reasonably representative, not

too optimistic value for this capacity factor, the number 0.11

has been used, in consequence of the results of several system

studies. 
(4) 

The capacity factor is essentially independent

of the solar cell or module manufacturing process. Consequently,

the energy payback time is only partly a function

of the energy consumption for the solar module fabrication pro-

cess, since the other system parameters strongly influence

its absolute magnitude. In the calculations of energy pay-

back times, encapsulated cell efficiencie.: n of 11.5% and 15%

were employed for 1978 and 1982, res pectively, and for 1Q16,

assuminq the use of EFr, ribbons, of 11 0 . To obtain the enerqy

payback times, the unit area annual cell output was calculated
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as E n x 8766 x 0.11 x H pk , Hpk being the standardized peak

solar irradiance, used as 1 kw(nk)/m 2 . The factor 0.11 repre-

sents the "capacity factor". Thus, annual energy outputs from

a square meter of solar cells of 110.9, 144.6, and 115.7 kWh/m2y

are obtained for 1978, 1482, and 19A6, respectively.

It is also to be observed that, since the energy recovery

from solar cells is in the form of electrical energy, it is

appropriate to convert those energy expenditures which occur

in the form of heat of combustion, to equivalent electrical

energy by applying the average efficiency of 0.30 experienced

by the electric utilities in the conversion from heat of

combustion of fuels to electric power delivered to the con-

s
sumer ( ).

5



3. Energy Consumption in Photovoltaic Solar Array

Manufacturing Process Sequences

3.1 Data Sources.

The major sources of information for this energy analysis

were data accumulated from LSA project reports and industry .

interviews. The energy consumed through materials, both

direct and indirect materials, was obtained by converting

the material consumption to energy units through multi-

plication with the material energy contents shown in Table I.

Where speci.fic information to the contrary was not available, the materia'

energy values were assumed to be in the form of thermal energy. The

equipment posts, were converted to energy units expressed on the

basis of unit cell area of throughput, by assuming a lifetime

of seven years, and an energy content of the equipment which corres-

ponds in value to 2%•of the equipment cost. (6) This energy cost

has then been converted to a thermal energy using an energy

price of $0.003/kVh(th) (7) . Finally, the general energy

usage for operating the facility was derived from the machine floor

area by using the annual SAMICS utility cost of $3.74/ft 2(8) and assu-

ming that all of this "indirect" energy, since it i's used primarily for

lighting, air conditioning, and ventilating, in view of the

high heat load in the building, is in the form of electricity

at a cost of $0.0319/kWh (8) . The conversion factors for

the equipment and facility energies thus become 0.9523 kWh(th)/$y

and 1262 kWh/m2y, respectively.

6



Table I

EneraY Contents of Se lected Materials ORIG
OF POOR PAGE IS

C0nvcnient Units	 l
Material	 Original Units	 (Thermal kWh's) Reference

1. Acetic acid	 3.28 lb of hi-press. 3.18 kWh/R 	 1
steam plus
0.07 kWh(et)/lb

2. Aluminum (At) 520x106 kwh(th)/ton 0.17 k'dh/g 2

3. Ammonia gas (NH3) 8.05x103 btu/lb 0.00534 kWh/g 3

4. Ammonium Hydroxide - 1.32 kWh/t 4
302 (NH 40H)

S. Argon gas 1,100 Btu/lb 1.27x10 3 kWh/i S

6. Butyl acetate 4.32 lb of low-press. 3.21 kWh/g 6

f

steam plus
0.082 kWh(et)/lb

7. Copper (Cu) 16.2x106 Btu/ton

8. Energy . for exhausting; 0.46 kW/1000 ft3/air
waste fumes without
scrubbing.

9. Freon-14 Ras (CF 
4 ) -

10. Hydrogen gas 43,300 Btu/lb

11. HP (482) 7,000 Btu/lb

12. Nitrogen (liquid) 1.330 Btu/lb

13. Nitrogen (gas from -
liquid)

14. Nitric Acid 14,500 Btu/lb
(HNO3, 67%)

15. Oxygen gas (02 ) 830 Btu/lb

16. Phosphorus (solid) 23,790 btu/lb

17. Phosphine gas (PH 3) -

16. Phosphorous
exychloride (POC13) -

19. Plating resist 8,000 Btu/lb

20. Silver 1260x106 Btu/ton

21. Sodium Hydroxide by-product
(NOON)

22. Toluene 0.05 lb of low-press

23. Vacuum pump
all

24. Wax

steam plus
0.025 kWh(et)/lb

3,000 kwh(th)/
barrel

2,000 k1dh/barrel

5.23 kWh/R

2.56x10 
2 
kWh/

1000 ft3

240 
9 
kWh/t

2.51x10 3 kWh/t

5.22 kWh/t

0.69 RWh/1

1.4440-3 kWh/i

13.12 kWh/t

7.66 kWh/D,

1.5446
-2
 kWh/g

0.18 kWh/i

0.14 kWh/g

5.20 kWh/i

0.406 kWh/g

0

0.0349 kWh/ml

18.87 kWh/i

1.3x10 2 kwh/g

7

8

9

S

5

S

10

5

S

S

11

12

13

8

S

14

15

16
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References for Table V-I

1. Assumed to be the same as that of acetone, which was
taken from "Battelle Columbus Laboratories, Draft Target
and Support Document for Developing a Maximum Energy
Efficient Improvement Target for SIC 28, Federal Energy
Administration, Washington, DC (1976)."

2. J.T. Reding and B.P. Shepherd, "Energy Consumption",
Report EPA-G50/2-75-032b, US Environmental Protection
Agency, Washington, DC (4/75).

3. Federal Energy Administration, "Project Independence
Blueprint", Vol. 3, Federal Energy Administration,
Washington, DC (1974).

4. Calculated from the energy content for NH and using
a density of 0.824 g/mk for the NH 4OH solution.

5. Battelle Columbus Laboratories, Draft Target and Support
Document for Developing a Maximum Energy Efficient
Improvement Target for SIC 28, Federal Energy Administra-
tion, Washington, DC (1976).

6. Assumed to be the same as that of butyl alcohol. See Ref. 5.

7. H. W. Lownie, et al (Battell rolumbus Laboratories),
"Draft Target Report on Development and Establishment of
Energy Efficiency Improvement Targets for Primary Metal
Industries", Federal Energy Administration, Washington,
DC (9/76) .

8. M.G. Coleman, et al., Motorola Final Report, DOE/JPL-
954847-78/4, 183(11/78).

9. Estimated as approximately 50% more than the average
energy content of all gases.

]0. Calculated from the energy content for LN22 assuming
480 Q of gas can be obtained form 1Z of LP2.

]]. Estimated as twice the energy content for P(s) plus
3/2H2(g).

]2. Estimated as twice the energy content of P(s), plus 10-) (g),
plus 3c12 (g) . The energy content of C1 2 was taken 2from ref. 5.

13. Assumed to be the same as that of wood rosin , as given in
ref. 5.

14. Taken as that of benzene , as given in ref. 5.

8



15. Taken as approximately twice the energy content of mid-
dle oil distillates.

16. From M. Sittig,"Practical Techniques for Saving Energy
in the Chemical Petroleum and Metals Industries",
Noyes Data Corporation, Park Ridge, NJ (1977), and
using a density of 0.97 g/mk for the wax.
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3.2 Energy Consumption in Si reduction and purification.

This process group starts with the reduction of SiO2 in an arc

furnace. This is a quite efficient and cost-effective pro-

cess which is not very likely to be replaced by another

approach. In contrast, the following step of Si purification

is very inefficient and likely to be replaced by one of

several alternate methods under development. Furthest advanced

among these is the SiH4 purification process being prepared

for pilot line operations by Union Carbide Corp. It can be

expected to be a production process by 1986.

a) Theoretical Material Balance for the Arc Furnace
Process.

The chemical reaction of this process is:

	

SiO2 + 2C	 Si +	 2 CO

28 + 2 (16) + 2 (12) 	 28 + 2(12 +16)
Atomic Weights:	 60	 + 24	 28 +	 56

Msssep, normal-
ized to 1 kg Si	 2.14 kg + 0.86 kg -► 1 kg +	 2 kg
out:	 t

According to Dow-Corning ( 9 ) ; the industrially experienced

and actual conversion efficiency of SiO2 to Si is 80 %.

The required input is thus: 	 2.68 kg SiO 2 for 1 kg Si out

(Dow-Corning shows 2.71 kg SiO2).

It is assumed that half of the lost SiO 2 input, or 0.27 kg,

is used in the reaction:

SiO2 +	 C -► SiO	 + CO

Atomic Weights:	 60	 +	 12	 + 44	 + 28

0.27 kg + 0.05 kg + 0.2 kg + 0.12 kg

where the SiO is lost at the top of the furnace.

Thus, the total theoretical carbon input would be 0.91 kg C

per 1 kg MG-Si output.

10
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b) Theoretical Energy Balance.

The energy required from the electric arc for the reduction

of SiO2 to Si would firstly be expected to equal the heat of forma-

tion of SiO2 at the reduction temperature (OH22000-210kcal/mol), or

8.7 kWh for 1 kg of Si formed. However, the carbon charged into the

furnace also participates in the reaction, and, in its oxidation to

CO, supplies approximately 25% of the required energy. Thus, the

theoretical minimum energy required from the electric arc would be

6.6 kWh/kg Si.

In addition, energy is required to heat the furnace charge to

reaction temperature, an energy which is not recovered. Heating

the SiO charge (2.7kg) to the reaction temperature will require

approximately 1.2 kWh, plus 0.1 kWh heat of fusion, and heating the

carbon (0.9 kg) an additional 0.8 kWh, for a total minimum theoretical

energy requirement of 10.8 kWh/Si, outside of the heat loss of the

furnace.

c) Experienced Material/Energy Balances.

Table II compares the experienced material and energy balances

with the theoretical one. Experience data have been taken from ref.

9 which lists "data from a major manufacturer of MG-Si", ref. 10

which cites data from a not widely distributed Battelle report, and

ref. 11 which gives data on an experimental arc furnace run at Elkem.

Several observations have resulted from the study of these data:

i. The quality of the data does not justify better than 2-digit

precision.

ii. Mining and transportation energy expenditures for quartz and

coal are quite variable, depending on source, method, location

of user, etc., but are in all cases so small as to be negli-

gible. (It is good that the referenced authors, as well as these

investigators, have checked the data, so that this statement can

be made with confidence.)	 11
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iii. Energy expenditures for plant operation (lighting,

ventilation, crane operation, etc.) and energy con-

tent of equipment have evidently not yet been analyzed.

We added 1 kWh (el) per kg MG-Si produced as

an estimate for these energy expenditures (Tables IV A-C

Line 1).

iv. The electrical energy consumption in the industrial

processes seems only about a factor of 2 higher than

theoretically required.

V.	 The use of "fixed carbon" (F.C.) is also approximately

a factor of 2 higher than theoretically required.

vi.	 The use of thermal energy is an order of magnitude larger

than theoretical. The following reasons prevail:

1. The oxidation of carbon goes only to CO, with only

about 1/3 of the heat of combustion of C to CO2

utilized.

2. The carbon sources used contain also combustible

volatile components of high heat of oombustion

(hydrocarbons) which are not utilized.

vii. Both ref.'s 9 and 10 add a considerable energy expenditure

for the coking process. The petro coke is, however, a

byproduct of gasoline refining, obtained by coking the

heavy residues from the distillation process. This coking

process provides a higher yield of gasoline. It seems,

therefore, that the energy expenditure for the coking

process should be attributed to the gasoline production and

not to the "coke".

13



viii. For the conversion from heat of combustion to electri-

cal energy, the factor 0.33 has been used, corresponding

the average efficiency of electric power generation in

thermal plants. In this, the transmission/distribution

losses have been omitted since large power users,

such as arc furnace operators, are usually located

close to generating plants.

ix• The data given in ref. (9) and Table 13 of ref. (11)

do not seem to agree with the standard specifications

CM for "low volatile coal" shown in ref. (9).

x. The energy content of "wood chips" used in ref. (9)

is approximately a factor of 2 lower than that of

ref.'s 10 and 13, with credance given to the latter.

The energy content of the volatile component of

the woodchips on the unit mass bt, sis, was originally

assumed to equal that of metallurgical coal. However,

comparing the total heat of combustion for wood thus

obtained with that given in standard tables, after

adjustment for moisture content, showed that the

energy content of the volatiles of wood, as the only

unknown, had to be lower by approximately a factor

of 2 than that of the volatiles of coal. There

probably is better information on this subject

available in the literature, but it was not deemed

beneficial to the project to expend more effort on

this subject, particularly since this energy does

not participate in the reaction, but exits via the

14



off-gas. Thus, both input and output of the energy

balance are reduced by an equal amount.

xi. Ref. (9) lists the conversion efficiency of S1O2

to Si as 80 %, but ref. ( 10) uses only 66%. Never-

theless, ref .(10) arrives at approximately the same

total energy consumption.

xii. The July 1977 Dow-Corning quar. t ,^rly report (14)

contains very useful detailed data on this subject,

which have been augmented by additional information

obtained directly from Interlake. (15)

The final energy balance, which was capable of accounting

for 90% of the input energy (Table III contains the interesting

finding that nearly half of the energy input to the process

leaves the furnace as chemical energy in the off-gas.

About 60 % of this energy is contained in volatile gases, in

good part originating from the wood chips. The other 40% is con-

tained in the carbon monoxide which results from the fixed car-

bon used to reduce the S1O 2 . This off -gas is not utilized at

present, but is mostly burned off at the top of the furnace. A

utilization of this off-gas could reduce the net energy

consumption of the process to approximately one half its

current value, and such an improvement has been assumed

accomplished for the energy balance projections to 1982 and

15
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beyond.

For the purification of silicon by the standard

SiHC1 3 process and the generation of the "Polylog", pub-

lished data (16) and corroboration (17) were used. The

energy consumption data computed on this basis are shown in

Table iVA, lines 2, 3,, and 4. for the SiHC1 3 generation, the

SiHC1 3 distillation, and the SiHC1 3 reduction to purified

silicon, respectively # and correspondingly in Table IVS.

As an alternate purification process, which can be ex-

pected to have replaced the SiHC13 purification process by 1986,

the projected energy consumption data for the SiH 4 process under

development at Union Carbide Corp. (18) are detailed in lines

2 and 3 of Table IVC.
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3.3 Energy Consumption in Sheet Generation

The current process group for sheet generation contains

Czochralski crystal pulling followed by wafer slicing,

either by ID diamond blade sawing, multiblade or riulti-

wire slurry sawing.

The Czochralski process can be expected to be improved

both with respect to cost and energy consumption. Competing

are the heat exchanger method (HEM) of single crystal growth,

and semicrystal casting. All of these processes, however, re-

quire sawing, with very substantial kerf losses. Consequently,

the energy balance of the sawing processes is dominated by

the energy content of the silicon material lost in the kerf.

The primary possibility for energy savings lies therefore

in the replacement of the bulk crystal growing methods, with

subsequent sawing, by one of the ribbon growing methods under

development. In the projections, improved Czochralski

crystal growing and sawing methods are used for 1962, and

a ribbon growing method for 1986.

a) Czochralski crystal growth and slicing.

The analysis of the Czochralski crystal pulling process,

was based on a review of an earlier analysis 
(19) 

and the

addition of newer data from Texas Instruments 
(20)

and Dow

Corning
(21)

The projections contain primarily three

improvements of energy impact: a reduction of the crucible

usage, an increase in the furnace productivity, and additional

technology advances which include better furnace design for

reduced energy consumption.

The projected crucible usage reduction is based on

the assumption that crucibles can be used for the equivalent
21



of 10 individual crystal pulls, either with re-seeding or

(quasi-) continuous pulling, rather than the currently

practiced usage for one crystal only.

The second projected reduction of energy consumption

is connected with a projected furnace productivity

increase. Approximately half of this productivity increase

is expected to result from an increase in crystal diameter

from the presently common, nominally 75 mm (3") diameter

to nominally 100 mm (4") by 1982 and to 150 mm (6") by 1986.

The other half of the productivity increase, however, is

expected to come from a higher linear pull rate, thus more

closely approximating the thermodynamically computed theoreti-

cal maximum pull rate. This prediction of a .linear pull

rate increase is more risky as two currently not adequately

explored effects are involved. The first concerns crystal

perfection which may decrease with increasing pulling speed

and may possibly prevent attainment of the expected pull rates.

The second unknown is based on an analysis by Rea (22)

who found that the radiative energy transfer from the melt

surface and the heater environment to the grown crystal

prevents any close approach to the limit growth rates com-

puted in the earlier thermodynamic analyses (23)	This

spurious radiative heat transfer could, in principle, be

reduced by introduction of appropriate heat shields. To

what degree this can be achieved in practice, without inter-

fering with other aspects of the crystal growing process,

needs to be explored.

Some of the possible reduction in energy consumption

is not just related to the productivity increase

22
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through a reduction of the time for unit mass crystal growth,

during which heat losses occur at a constant rate, but is

directly connected with the dependence of the heat losses

nn the system geometry. The estimates are based on the -

only conditionally valid - assumption that the heat losses

I
in unit time are- directly related to the crystal

geometry change, and thus would increase proportionately to

the crystal radius. The increased mass pull rate, which

results from the radius increase, however, leads to a reduc-

tion of the energy losses inversely proportional to the radius.

Finally, the required decrease of the linear pull rate results

in a reduction of the energy losses inversely proportional

to the square root of the crystal radius.

Twice as large a reduction in energy consumption than

by the geometry change is, however, expected to result from

technology improvements, consis #.ing in the use of better heat

shielding and insulation in future furnace designs. Another

technology advance has been assumed in the substantial decrease.

in usage of replacement parts for the crystal pulling furnace,

which reflects itself in reduced energy content of the replace-

ment parts used per unit mass of crystal pulled.

Prior to slicing, the ingots are brought to constant

diameter in a grinding process, which, by current production

experience, costs 8% of the mass of the crystals grown. With

the use of larger diameter crystals, projected for 1982, this

grinding loss has been assumed to be reduced to 6%.

A similar analysis has been carried out for the slicing

process, both as currently practiced and with projected tech-

nology improvements. Data on the current production processes

include the multi-blade slurry sawing process (24) and the in-

side diameter diamond blade sawing process (2 ' ,26) . Also, ex-
23



perimental and projected data on advanced slicing methods were

examined for the multi-blade slurry saw 
(27,28) 

for the

ID diamond blade saw (29) , and for the Yasunaga and Cry,.;tal

Systems multiwire slurry sawing processes. (30,31) The

slurry and the blade packs used in the multi-blade process

constitute a substantial indirect materials consumption with

significant energy content, as do the diamond saw blades in

the ID sawing process.

The slicing technology improvements projected for the

1982 production lines as far as they concern the energy

balance, are the results of current experimental runs. For

the multi-blade saw, the primary advancement will be a 25%

blade thickness reduction, in combination with	 37.5% wafer

thickness decrease,to 250 pm wafer thickness and 200 um

kerf, while maintaining the present practical wafer yield of

95%. This results in a 50% increase in the mass to area

conversion, to 0.9 m 2 per kg silicon crystal. A similar

reduction in wafer thickness is anticipated in the ID

sawing process, but without reduction of the kerf. The

slurry multi-wire saw, which also could be on the 1982

production lines, can yield wafers with similar thickeess

and kerf as the multi-blade slurry saw.

For the 1986 projections, energy consumption data given

for the EFG ribbon growing process (32) , but not yet

reviewed by us, were used.

In consequence of the discussed process improvements,

the energy content of the wafers or ribbons of silicon is

expected to fall from the 1.978 value of 1537 kWh(el)/m2

to 880 kWh(el)/m2 in 1982 and 165 kWh(el)/m 2 in 1986 (Tables

IVA to C ) .
24
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3.4 Enerqy Consumption in the Solar Cell and Module

Fabrication Process Sequenco

The energy analysis of the solar cell fabrication pro-

cess sequence is, in some respects, simpler than that for

I

the sequence up through sheet generation, and more compli-

cated in others.	 It is simpler, because one is dealing only

with areas of silicon wafers or ribbons, no longer converting

from one material form to another, or from mass units

to area units. It is more complicated, however, because there

exist many more process o ptions and potential sequences.

In any such sequence, the accumulation of yields from

the individual process steps is as important for the energy

consumption as it is for the costs. In fact, for the entire

process from Si0 2 to finished cells, the energy content of

the silicon lost in the various conversions and due to

yields of the process steps far exceeds the energy going in

direct line into the finished product.

Consequently, the total energy expended for producing

a unit of work-in-process (or finished product) leaving

a given process step n is described by E n-lA
 
A

n 
+ AEn,

where En- 1 is the total energy expended for producing a unit

of work-in-process entering the respective steps 	 DEn is

the total energy needed to process a unit of work-in-process

through the step, and a n is the yield of the process step.

The total energy ET,N 
expended in a process sequence up to

step N (inclusive) is then:

N	 n
E DEEo + n=1 n k=l ^k

ET ^ N 
_	

N

n X 
j	 k-1

(1)
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where E  is the energy content of a unit of work-in-process

or direct material (e.g. wafer or ribbon) entering into step

1 of the sequence. ET,N is, for instance, the energy shown

in the right hand columns headed "Total Energy" in Tables IV A

to C and VIIIA to C, or "Subtotal" and Total" in Table VI.

These total energies cannot be summed, but can be used for

entry as En-1 to another step or sub-sequence. Thus, the

data in the left-hand columns headed "Direct Material Energy"

or "Input Material" in Table VI, and in Tables IVA to C and

VIIIA to C, represent the values of En-l/Xn'

The total energy "content" of the input work-in-process required

to produce a unit of good output from step n is En-1 , su that
Xn

the energy content E
L,Z 

of the material lost in the step n is

given by:

EL,n = (n - l) En-1	
(2)

This quantity includes the energy content of all material lost

in the preceding steps. The energy given by eq. (2) is an important

ingredient of the "add-on-energy" EA,n for a unit of good work-in-procesa

leaving process step n:

EA,n = EL,n + AEn ; (3)

Data generated by use of eq. (3) are included, e.g.,	 in

the right-hand column headed, "Total Add-On Energy" of

Table V , while the left-hand column headed "Energy Content

of Lost Silicon" includes data obtained by use of eq. 	 (2) ,

26



i

with:

En-1 0 
En-2 + EA,n-1	

(4)

Neither the add-on energies, nor the energy values for

material lost in a process step, can be summed directly to

obtain the total energy expenditures in a process sequence

up to step N inclusively, because of the yields of the ;process

steps subsequent to a given step n. Thus, for a unit area of

product to leave step N, the total energy content EL,N,n

of the material lost in step n is:

EL N n	

EL^n	
(5)

' '	 N

TI
	 kk

k-n+l

and the total add-on-energy for the sequence from step 1 to

step N, inclusive is given by:

	

N	 EL/n + AEn

	

EAST a ^	 ^	 (6)

n= 1	 N+ 1

P	 A 
k-n+l

4I

with AN+1=1.

Eq. ( 5 )	 has been applied

"Energy of Lost Silicon" i;

relationship for the other

farthest right-hand column

resulting .`.rom application

of the total material lost

to obtain the "Totals" for the

n Table VII , and an equivalent

energy component totals. The

of Table vII represents data

of eq. (6)	 The energy content

is then simply:

27



N

EL,T w EA,T - F. 	 -	 (7)

n -

The quantities EL,n and EAjn , and correspondingly EL N n

and EA,T , include in the energy content that of all material

lost in processing the good, remaining work - in-process.

They are therefore not suitable for the determination of the

total energy content of the material lost in a sequence of

process steps, or of the "total net energy content" of

the good work-in-process leaving such a sequence. This

total net energy content does not include the energy content

of the lost material. Thus its computation has to be based

on the net energy contents of the input work-in-process,

including consideration of the yields of the su; :sequent process

steps. In analogy to eq.	 (2), the net energy lost in

step n for a unit of - good work-in-process leaving this step is:

1
EL,n,n = ^ - 1 En,n-1	 (8)

An

where:	 n-1

E	 = E + S AE
n,n-1	 o L k

k-1

is the net energy content of the input work-in-process.

Similarly, the total net energy lost in step n for a unit

of good work-in-process to leave a process sequence after

step N is given by:

EL,n,n
EL,n,N,n N —	 (10)

IT 
A 

kan+1

(9)
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and the total lost energy in all process steps by:

N

EL,n,T - L
n-1

EL'n'n	
=	 (11)

N+,

n Ak
k-n+l

with AN+l - "

Corresponding to eq.	 (9), the total net energy content of

the good work-in-process, or finished product, leaving

step N is:
N

E
n,T - Eo +
	 AEk	

(12)

k=1

This total is represented in the farthest right hand column labeled

"Total" in Tables IXA to C, while the entries in the columns labeled

"Energy content in lost Si" of those tables represent

data according to eq. (10) , and the totals of those columns

correspond to eq.	 (11) as well as eq. 	 (7).

In the solar cell processing sequence, we have accu-

mulated the energy consumption data for the texture etching

and the junction formation processes, and we have examined

the direct material content of the encapsulation materials.

The metallization and antireflection coating processes are

presently being analyzed, and their energy data will be

presented in a later report. In addition to these detailed

analyses, we have accumulated the energy data for the 1982

$2.00/W(pk) and the 1986 $0.50 /W(pk) JPL Strawman process

sequences. From our detail analyses for the individual

29



prose-,y ses and the available data for the remainder of the

ser-Y,ince, such as the Strawman data, we have synthesized

overall process sequence energy consumption and payback

time data.

a.	 Energy Consumption of Junction Formation Processes

The energy consumption of the various present and projected

Junction formation processes was studied in detail in

connection with the analysis of their cost-effectiveness.

In the evaluations, SAMICS overhead energy standards were	 j

used throughout, except for the 1974 and 1977 experience data

shown in Table V, lines 1 and 2.

The wafers or ribbons resulting from the Cz slicing (1978 and

1982), or EFG ribbon (1986) processes were tentatively assumed

to be subjected to the same texture etching process, with

the same yield, independent of the junction formation pro-

cesses used or the time frame. This unified wafer pre-

paration consists of a 3-step process sub-sequence (33?, which

includes the application of an etch-stop (wax) to the ;pack

surface of the cell, texturing of the front surface by

a hot NaOH etch, and removal of the etch-stop (Table VI).

The wafers resulting from this process sub-sequence are

assumed to form the input material for the various junction

formation processes.

The add-on energies for the junction formation processes

are summarized in Table V. These processes have been

grouped into present (Table V,	 lines 2-3), near-term (Table
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of stab atop
" back

4. TexturlaS front 0.992 932.93 1276.48 - 0.00 0.13 0.069 941.12 1274.42
surface

5 . Rsnoval of age 0.996 943.05 1179.19 0.001 0.11 0.24 0.065 961.32 1279.36
atop ea back UU

.w
1. input Vorh-ls-

pfaeese.Cawaters
(table Iw .Llea 1

2. Application of
etch sap an back 	 0.99	 547.31

3. temturinS treat
surface	 0.992	 $52.11

A. Removal of tech-
step on bast	 0.995	 553.71

341.3 717.3

726.75 0.01 0.3 0.83 0.11 148.07 723.25

731.21 -• 0.00 0.13 0.064 $52.64 731.36

732.62 0.001 0.11 0.24 0.065 314.01 733.00

ME
I.Imput (lark-la-
Precess:t9C - - 59.4 137.8
Atbbene
(TAle IYC.ti*o

S. Application 0.99 90.30 139.19 0.05 0.3 0.43 0.11 91.0 1)9.8
of etch stop
ea back

3. Texturing front 0.992 91.73 140.73 - 0.06 0.15 0.064 91.43 160.86
wffacs

4. Removal of etc 0.996 92.01 141.76 0.001 0.11 0.26 0.065 92.34 761.55
stop on back

I
}„

Data ter Application of etch step. Teaturising. and Removal at Etch Step were detived from Motorola (re(. (36)).

(a) Included to facility energy
(MA) Not Applicable
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V , line 4) and long range projected junction formation

processes.(Table V , lines 5-13). For comparison purposes,

the 1974 data (1 ) for the direct energy consumed in a

diffusion process have been included in Table V , line 1.

Since the data of this reference include indirect energy

consumption only for the entire plant, including wafer

generation, cell processing, and environmental testing which

is probably more connected with the space power cells pro-

duced predominantly in 1974, the indirect energy consumption

was, for the purposes of this report, allocated to the various

process areas in proportion to their direct energy consumption.

The 1978 Spectrolab phosphine diffusion process (Table V ,

line 3), for which detailed experience data had been made

available 
(34) 

shows approximately an order of magnitude lower

total equivalent electrical energy consumption than Iles'

numbers. This energy consumption is, in many respects,

comparable to that for the POC1 3 diffusion process contained

in tha JPL 1982 Strawman process (Table V , line 5) (35) . It is

noteworthy that the "equipment energy," derived from the

equipment price as outlined on p. 6 of this report, is the

item of highest energy consumption in the .Spectrolab prt,Less

(Table V , line 3) .

Motorola's diffusion process data (36), also for phosphine

diffusion, are used as a projection to 1986, with the much

lower energy content, per m 2 , of the silicon ribuon expect

to be used then. This difference expresses itself in the

energy consumption for lost silicon. Essentially counter-

balancing this chance, however, is Motorola's assumption of

i_
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a lower yield. Another significant difference is in the

material energy consumption, which is based on Spectrolab's

substantial use of acids for qua-tzware cleaning, an item

which is not 4ncluded in Motorola's data.

Also included in Table V , line 7, is a 5-step process

sub-sequence (Motorola) for the formation of both the pn junc-

tion and the BSF layer. This 5-step process includes the

phosphine diffusion _step just discussed. Its five process

steps and their energy --unsumption are detailed in Table VII.

Besides diffusion, ion implantation is presently used

forunction formation. But in its 	 (37)j	 present practice	 ,	 I

ion implantation is much more energy intensive than the diffu-

sion process (Table V , line 4). The process energy of	 ion	 '.

implantation is, however, projected to decrease significantly

through improvements in equipment design. These designs

stress higher projected throughput rates relative to material

usage, and capital equipment and facility requirements. In

contrast, for the diffusion process, the add-on energy is not

expected to change substantially since significant future in-

creases in furnace efficienc y are not anticinated.

It is also necessary to consider associated processes

in the sequence, and the yields in such se quences. Thus,

the ion implantation process should never be considered

without adding the needed	 annealing step (Table V ,

line 13). Consequently, the 5-step pn junction and BSF

layer diffusion process and the 2-sided ion implantation

process with annealing ( Table V , lines 2 and 9, respectively)

34



H
H

r-I

b
H

Y
*

M O ^•1 ^
Y w- aa	 ^

de

r ^ 
fn

y	

Y M
^p
^ O

d0
N
O O N

Al
J Nl •p O ^

'O

^^:
^ N ap N a O J

N
yy

T..-1 o-i

1w
^'-' a P a 1 aN Ku ^`U O O O O O

a	 ^
•1	 M

O w cW u W	 ,^ N fq ^ n

V 
F	

v 1♦+ ^ w) ml

.Yj p N OO N cz O
W	 y

e uv u^
n a .^I n .r

N YW9 n
^^ ~ O P1w

V
0Y
M Yv N 0 N m O

O w W N

a o

~
o7p

c

t.0.1 Obi a^0 p el 1040 Ow
p
<

O
7w

N i•d N .-1 O m
W

Q ^
y

OI tl i+ ^ J O^
.^i ^ ^ 0 0vu17 ^^ d n

^ wWe 0 0 0 0 0 rl
M
W
w r.
N p+ h .^ O

O 7 d r C O O h

O
Y

07 407	 `'' "•1 O .•1 O O N1
y

^ C

vW
be 91

Y M 
^

^O N ^D ^O O M
N Y
A	

,Y,, O .D O ^D O
M
M
6
W
w y M l ^np n n Al

1

O 1 O O N

GW
v

O O O O

M
a

c
1 H n O^ ^-1

^
O

b •,+ N ♦ P1
C4
N OD

9 ^+	 Y ♦ J vl v1 P1 fry

< r a .^ .r .r .•I o ^o
0
w w
01	 0c
W :! N h wl

- 0%
u L N N
G
U v

O O O .^ O O

V aD aD

d 01 a ^D
14 K O^ O^ P O^ O+ 0%
^. v

ro e

w•r1	 7. O Y c ^..	 Owl W
0 c ro 10 O•..	 w 7	 1 w

w
v 0 wL."	 ve+ 10. .wi Ju

cr. +++ u 2a o'o
C Iw.
••	 o0 0 0.w n . w w- t	 c a w

C X .O. U
IV

N n -̂ .
v.77

w
w

Ol
Ci V W m

%.
C fJ .+ -^

+4 C
Y CL Gro ro++^ 1+	 • 1 t a 7
O 1/1 0w a0 'O 	 :1

0	 w
a .O i h W v w V1 A i F

Y
W N N f^ J J1

35



constitute comparable processes. Differing yields, or assump-

tions of yields, can have significant influence on the energy

consumption. Thus, the lower overall yield (96.4%) of the

5-step Motorola sequence compared to that of the competing ion

implantation process (98.4%) accounts for nearly 50% of the

difference seen in the energy consumption of the 2 processes.

This difference is in favor of the ion implantation for

this particular example. Because of the importance of high

yields for achieving processes with low energy consumption,

most of the 1986 solar module fabrication sequence has been

projected to be composed of individual processes of very high

yields. Modifying the projected Motorola PH 3 diffusion

process to be consistent with Spectrolab's experience of 99.9%

yield and, in addition, a 17.5% "capacity factor" for the

furnace energy consumption, would reduce its payback time

from 24 to 9 days, and that of the 5-step sequence to

33 days. This would then be slightly less than the energy

payback time of the competing 2-sided ion implantation

process with annealing.

The data of Table V are illustrated in Figure 	 1.

It shows the projected ion implantation processes to require

less add-on process energies than the projected diffusion

processes. However, after adding the process energy for

activation annealing to that of the implantation process leads

to comparable energy expenditures and payback times for

the future ion implantation processes and the diffusion processes.

I
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It may also be noted that the energy payback times for the

projected diffusion processes are more "firm" than those for

ion implantation, since the latter are based on equipment which

has not yet been built. In contrast, the projected diffusion

processes represent relatively small extrapolations from current

production equipment and practices, primarily modifying

throughputs to meet the LSA-JPL output goals.

b. Module assembly (encapsulation)

The major energy contributions in the module assembly

step seem to come from the energy content of the encapsulation

materials. Consequently, time has not yet been spent on determining

the direct energy consumption in the encapsulation process

(interconnect attachment, matrix connection, encapsulation

material layup, potting material curing, junction box assembly),

and the facility energy consumption for the respective part

of the plant.

For the 1978 module assembly process, the encapsula-

tion materials chosen were two 3 mm (1/8" thick) glass plates,

along with a lmm thick .layer of potting material. The cell

packing density of 80% requires 1.25 m2 of encapsulation

material for each square meter of cell area. Cell yield in

this area was tentatively taken as 100%. With a glass energy

content of 46. 1 kWh/m2 
(38) 

and  a potting material energy content of

about 12 kWh/kg, both assumed to be predominantly thermal

energy, the energy content of the encapsulation materials

.lone is about 130 kWh(th)/m 2 of cell area. For the present
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process, Il.es ( ' ) gave no energy consumption data for the encapsu-

lation sequence, but Solarex presented data ( 39) which are

tentatively used in Table VIIIA.

For 1982, an 85% packing factor has been used for the

solar cells in the module, reducing the encapsulation area

to 1.18 m2/m2 of cells, and the energy content of the

encapsulation materials to 120 kWh(th)/m 2 of cells. At

the same time, the energy consumption data from the JPL

$2/W(pk) Strawman process have been used for the direct

energy use and for the facility energy.(35)

For 1986, the packing factor has been assumed to be

further improved to 95$, and the back glass layer replaced with

a 0.25 mm thick Alylar film, or another material of similar energy

content. Use of the improved packing factor alone without back

glass replacement, results in an enca psulation material energy content

of 107 kWh (th) /m2 of cells, while use of the Mylar film backing

leads to 62 kWh/m` of cells. In addition, the relatively

small direct and indirect energy consumption data of the

1982 Strawman process for the encapsulation process group have

also been used for 1986.

c. Full solar module process sequences.

Using the energy content of the input work-in-process

to the solar module fabrication process sequence which was

summarized in Tables IVA to C for the current silicon wafers

as well as projected wafers (1982) and ribbons (1986), the
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energy content of the completed modules was estimated or

projected, based on available data. It turned out that the

differences in these data for current processes are so

large that they cannot be significantly improved by intro-

ducing the data resulting from our texturizing and junction

formation process analysis into these other sequences.

A first analysis of the electrical power requirements

of a solar cell production plant had been performed by Iles(11.

Iles estimated the contemporary (1974) solar cell fabrication

plant energy consumption from the installed equipment

power ratings, and extrapolated the plant's productive

capacity by assuming that a five times larger solar cell

area could be handled annually in the same plant,

with approximately the same energy consumption, by going

from the then-prevalent 2x2 cm space power cells to 2"

diameter cells. Deducting Iles' direct energy consumption

values for crystal growing and slicing leaves a direct

electrical energy consumption of 120 kWh/m 2 of cell area pro-

duced. Allocating the indirect energy consumption in pro-

portion to the direct energy,leads to 125 kWn/m 2 of cell area

for the solar cell process plant, These data contain, e.g.,

a direct energy consumption for diffusion which is an order

of magnitude larger than Spectrolab's experience data (see

Table V	 , lines 1 and 2). On the other hand, Iles' data

do not contain the energy content of the indirect materials

i
	 consumed, nor that of the equipment installed (see Table VIIIA).
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The Solarex data (39) amount to about half the energy

consumption found by Iles, but include the energy contents

of the indirect materials consumed and the equipment. Com-

paring these data with those resulting from the analysis of

texturizing and junction formation shows the Solarex energy

consumption to be much higher than that given by Motorola for

the texturizing process group,and by Spectrolab for diffusion.

In contrast, the indirect energy consumption of Solarex (plant

lighting etc.) amounts to only 1.7 kWh/m2 of cells processed

and is much lower than any other data given for this item.

We consequently increased this consumption to 50kWh/m2 of cells,

or nearly 100% of the direct energy consumption, about in line

with the other available data. One reason for this change

is also the apparent omission by Solarex of the indirect

energy consumption for the common areas, offices, etc.

In the encapsulation area, we used the energy content of

the direct -materials from section	 3.4b of this report, amounting

to 130 kWh/m2 of cells, for 2 sheets of glass and potting mater-

ial. This number omits the energy content of the interconnectors,

a junction box, or a frame possibly applied. Considering

these facts, as well as a possibly lower packing factor for

Solarex, Solarex's value of 205 kWh/m2

item appears quite compatible. For the

energy consumption in this process step

have been used as the only ones so far

also be noted that 100% cell yield has

of cells for this

direct and the indirect

p, the Solarex data

available. It mAy

been assumed for this
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encapsulation process group, which may be slightly optimistic.

The consequence of these entries is a total energy

consumption of 2179 kWh equivalent electrical energy consumed

in the production of 1 m 2 of encapsulated cell area. At

80% cell yield from wafers to finished modules, it turns

out that 1920 kWh, or 88% of the total module energy content,

was already contained in the wafers entering the solar cell

processing line. Of the 259 kWh added in the solar cell/

module process line, over one quarter is attributable to

module assembly and encapsulation.

For the 1982 projections, the summary numbers given for

the JPL-Task IV Strawman process (35) have been reviewed.

These data include a 93% overall cell processing yield, and

an 85% module packing factor. The energy data for the diffusion

step in this Strawman process sequence agree quite well

with those of the current Spectrolab diffusion process,

except for the equipment and facility energy values, which

are considerably lower in the Strawman process because of

higher assumed throughput rates. This comparison on one

significant process step gives a degree of credibility to the

remainder of the data. Again, we used our energy content data

for the double glass encapsulation. As Table VIIIB shows,

the energy content of the completed module has been reduced to

about half of that of the 197E module, but the energy content

of the input wafers now constitutes 93% of the module energy

content. Also, module assembly and encapsulation now :7onsuines

'
	

59% of the cell and module process energy. These shifts arc
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due primarily to the considerable reduction in energy con-

sumption on the solar cell process line, and are rein-

xorced by the yield improvement on this line from 80%

to 90%.

The projections to 1986 were similarly based on the JPL

"Candidate Process" data (3) , which lead to a $0.50/W(pk)

encapsulated module price. The input material is assumed

to be silane purified, EFG grown ribbon, according to Table

I-VC.	 Use of the "Candidate Process" leads to a total energy

consumption of 206 kWh/m2 of equivalent electrical energy

(Table VIIIC), of which 173 kWh/m 2 , or 848, is represented

in the input ribbon material. Also, 57% of the solar cell

and module process energy is added in module assembly,

predominantly in the energy content of the encapsulation

material.

Tables IXA to C present additional data to augment those

of Tables VIIIA to C. They give the mass flow of silicon to

the unit of finished encapsulated cell area, the net energy

content per unit mass of the work-in-process at the key pro-

cess stages, as well as the energy content of the silicon

lost in the major process groups, and the net process energy

of the material appearing in the good finished product, as

contributed by these process groups. Again, these data

are provided for the contemporary processes and for the

projections to 1982 and 1986.
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4. Conclusions

The results of the energy consumption analysis are

summarized in pictorial form in Fig.	 2. This figure

clearly demonstrates three points:

a. most of the current high energy content is associated

with the losses incurred in material conversion and

in process yields.

b. the biggest reductions in the energy consumption

will be connected with the introduction of new

processes for silicon purification and sheet

generation.

c. much of the reduction in cell processing energy comes

from higher throughput rates; this effect is already

observable now.

The numbers on energy consumption are to be considered

as rough approximations, since the data for the current

process practice show a large spread, and since the future

data represent projections. But in toto, the energy payback

times can be expected to decrease rapidly from their recent

value near 20 years to below 10 years by 1982 and to less

than 2 years by 1986. This last prediction is somewhat obvious

since the modules are expected to be close to cost-effective

by then as replacement supplies for energy generally available

from other sources.
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5. NEW TWHNOLOGY STATEME3dT

No new technology was developed during this quarter.
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