NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE
COLD SHIVERING ACTIVITY AFTER UNILATERAL DESTRUCTION OF THE VESTIBULAR APPARATUS

G. I. Kuz'mina

COLD SHIVERING ACTIVITY AFTER UNILATERAL DESTRUCTION OF THE VESTIBULAR APPARATUS

G. I. Kuz'mina
Laboratory of the Neurophysiology of Thermoreception and Heat Exchange (Chief: O. P. Minut-Sorokhtina) of the Kuusinen State University, Petrozavodsk

Cold shivering is the principal source of regulated heat formation in the organism affected by cold. Central control of cold shivering is carried out by the hypothalamus with participation of stem structures that create muscle tone [5]. As we know, the part played by the vestibular apparatus in muscle tone regulation is expressed especially by increased extensor activity and depression of the flexor type [4, 7, 10]. It would seem, that the influence of the vestibular system might have a distinct importance in the formation of cold shivering as well. In this context one must keep in mind, that cold shivering in the extremities arises in the flexor muscles, but not in the extensors [2, 3]. It might be suggested, that exclusion of the vestibular apparatus would have a definite effect on cold shivering in the flexor extremities.

In the present work there has been a study of bioelectric activity in the muscles of the forelimbs and hindlimbs during cold shivering after unilateral destruction of the vestibular apparatus.

Method

The study was done on 45 cats anesthetized with a chloralose-urethane mixture (50+500 mg/kg) with methacine premedication (2.5 mg/kg). Cold shivering was induced by chilling the entire animal in a thermal chamber kept at 18-20°. The animals, in a free position on its side, was placed on a grill 10 cm above the floor of the chamber in order to insure even cooling. Under these conditions the body temperature of the anesthetized animals dropped and muscular shivering set in. Unilateral destruction of the vestibular apparatus was done through the round window of a previously opened vesicle with subsequent administration of 1 drop 1% dicaine solution. Due to

*Numbers in the margin indicate pagination in the foreign text.
the possible asymmetrical effect of the vestibular apparatus on spinal activity [9].
the right labyrinth was destroyed in 21 animals and the left in the others. For
clarification of total labyrinth destruction created by the present method the oper-
ation was carried out under sterile conditions with subsequent observation of the
animal's behavior. Following emergence from anesthesia typical symptoms were ob-
served: turning of the head and drooping towards the delabynithed side, ocular
nystagmus on the healthy labyrinth side. In addition, following the acute experim-
ent there was a histological check showing complete destruction of the laybrnth.

Muscular bioelectric activity was induced by intramuscular bipolar electrodes
[1] and recorded with a Medicor M-21 electromyograph. For quantitative assessment
of muscular bioelectric activity a Medicor MI-1 myointegrator was used that recorded muscle
activity over 30 sec at intervals of 5, 10, 15 and 20 min following delabyrinthisa-
tion. A study was made of the activity of flexor muscles (humeral biceps, sartori-
us) and extensors (humeral triceps, gastrocnemius). Destruction of the vestibular
apparatus was carried out while maintaining a relatively stable level of bioelectric
activity in each muscle studied. Processing of experiment results took as 100% the
initial level of electromyographic activity (integrator impulses over 30 sec) and mu-
scle activity following destruction of the labyrinth was calculated in percent of
the initial value.

During the entire experiment rectal and subcutaneous temperature, following pre-
liminary intensification, was recorded on an N-3020-3 automatic recorder.

The Student method was used for analyzing the results of each experiment.

Results of the Study

Before the experiment began the warm animal (rectal temperature 38-39°, subcu-
taneous above 35°) showed no bioelectric activity in the muscles under study — the
flexors and extensors of the extremities. Chilling of the animal in the thermal
chamber caused a drop in rectal and subcutaneous temperature and the appearance of
cold shivering in the flexors. At this point not one of the extensor muscles showed
bioelectric activity in any experiment. The results of our observations indicated,
that the sartorius evinced bioelectric activity when the rectal temperature dropped
to 37.9+0.12° and the subcutaneous down to 30.1+0.54°. The activity of the humeral
CHANGE IN BIOELECTRIC ACTIVITY OF FLEXOR FORELIMBS AND HINDLIMBS DURING COLD SHIVERING FOLLOWING UNILATERAL DELABYRINTHIZATION

<table>
<thead>
<tr>
<th>Type of muscle reaction</th>
<th>Number of experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sartorius</td>
</tr>
<tr>
<td></td>
<td>side of vestibular destruction</td>
</tr>
<tr>
<td>Appearance or increase of activity</td>
<td>38</td>
</tr>
<tr>
<td>Average percent increased activity</td>
<td>131.9±5.6</td>
</tr>
<tr>
<td>No activity changes</td>
<td>7</td>
</tr>
<tr>
<td>No noticeable activity</td>
<td>0</td>
</tr>
<tr>
<td>Decrease in activity</td>
<td>0</td>
</tr>
<tr>
<td>Total experiments</td>
<td>45</td>
</tr>
</tbody>
</table>

biceps usually appeared later at a lower rectal and subcutaneous temperature of 37.4±0.16 and 27.8±0.62° respectively. We executed unilateral destruction of the vestibular apparatus following further decrease in temperature, rectal to 35.7±0.31° and subcutaneous to 26.4±0.84° during a period of stable bioelectric muscle activity. It should be noted, however, that in standardizing the temperature conditions at which delabyrinthing was done we were compelled in some of the experiments to destroy the labyrinthine structures of animals that were cold but not shivering. Thus in 13 out of 45 experiments at the moment of delabyrinthing there was an absence of cold shivering in the sartorius and in 19 experiments in the humeral biceps.

Unilateral destruction of the vestibular apparatus carried out under the conditions described did not produce in a single experiment any bioelectric activity phenomena for extensor muscles.

The results of our observations in respect to change in the bioelectric activity of extremity flexor muscles during cold shivering under conditions of unilateral delabyrinthing are presented in the Table.
Activity of the sartorius located on the side of the destroyed vestibular apparatus increased in 38 of 45 animals. Intensified activity showed itself both through its increase in 25 shivering animals and by its appearance in all 13 non-shivering animals previous to the cats' delabyrinthization (fig. 2, 3). Increase of bioelectric activity (p < 0.05) of the sartorius muscle on the ipsilateral side averaged 131.9 ± 5.6% as compared with the initial value and was fairly constant over the entire recording period (Fig. 1a). In only 7 animals was there no change in the activity of the sartorius muscle on the ipsilateral side following delabyrinthization.

Bioelectric activity of the sartorius on the contralateral side also increased in most (30 out of 45) experiments; in 13 unilateral delabyrinthization resulted in the appearance of bioelectric activity of the sartorius in cold but not shivering animals and in 17 experiments it led to the increase of initial bioelectric activity (Fig. 2, 3). Increased activity of the sartorius on the contralateral side was less than on the ipsilateral and averaged 120.8 ± 3.8% compared with the initial level (Fig. 1a). In the remaining experiments the initial bioelectric activity of the sartorius following delabyrinthization either did not basically change (13 animals) or went down slightly (2 animals).

Observation of the bioelectric activity of the humeral biceps on the ipsilateral side indicated, that activity changes occurred in 29 experiments out of 45, whether they appeared as intensified in the case of the shivering animals or in the display of biopotentials in the animals that were cold but not shivering. Thus, in animals in which unilateral delabyrinthization was done against a background of cold shiver-
Fig. 2. Change of bioelectric activity in hindlimb muscles following unilateral delabryrinthization during cold shivering. a - initial activity, b - activity 10 minutes after delabryrinthization. EMG: 1 - sartorius muscle on ipsilateral side, 2 - sartorius on contralateral side, 3 - gastrocnemius on ipsilateral side, 4 - gastrocnemius on contralateral side.

Fig. 3. Effect of delabryrinthization on EMG of muscles of flexor extremities in cold non-shivering animals. a - sartorius, b - humeral biceps, 1 - initial record, 2 - record 10 minutes after delabryrinthization.

ing of the humeral biceps (21 experiments), there was a substantial increase in shivering ($p < 0.05$). At the 10 min point following delabryrinthization muscular activity was $150.4 \pm 9.1\%$ and at the end of the observation period $155.2 \pm 12.0\%$ as compared with
Fig. 4. Change of bioelectric activity of forelimb muscles following unilateral delabyrinthization during cold shivering. a - initial activity, b - activity 10 minutes after delabyrinthization. EMG: 1 - humeral biceps on the ipsilateral side, 2 - same on the contralateral side, 3 - triceps on the ipsilateral side, 4 - same on the contralateral side.

the initial level (Fig. 1b, 4). In fact unilateral destruction of the labyrinth in 9 cold animals in the absence of biceps activity resulted in the appearance and stable maintenance of such activity in 8 experiments (Fig. 3b). In 5 delabyrinthized animals the biceps activity was the same as at the start.

Increase in humeral biceps activity on the contralateral side following unilateral destruction of the vestibular apparatus was observed in 22 experiments. In 14 of these increased activity took the form of growing activity in shivering animals, although the increase was less than in the biceps on the ipsilateral side that by the end of the observation period amounted to 128.0±8.7% as compared with the initial (Fig. 1b, 4). Unilateral delabyrinthization carried out in the absence of bio-potentials recorded for the humeral biceps on the contralateral side in the same 19 chilled animals resulted in their appearance only in 8 experiments. In 12 experiments activity either was not really different from that in the beginning (8 animals) or even went down slightly (4 animals).
Evaluation of Results

Results of the experiments conducted indicated, that unilateral dropout of ves-/1659 vestibular impulsion in anesthetized animals favors facilitation of cold shivering manifested both in its intensification and in its appearance in animals that are cold but not shivering. The results obtained may be explained on the basis of literature data on the inhibiting effect of the vestibular apparatus on activity of the flexor extremities [4, 7, 10]. It may be supposed, that removal of the downward effect of the vestibular apparatus on spinal activity facilitates the functioning of flexor motoneurons participating in cold shivering. The effect of facilitation of cold shivering following unilateral delabyrinthization was most clearly expressed in muscles located on the side where the vestibular apparatus had been destroyed. This is evidenced by the number of experiments where facilitation of cold shivering in muscles on the ipsilateral side (Table) was observed as well as a greater increase in their bioelectric activity (Fig. 1).

Changes in the bioelectric activity of the sartorius muscles differed from activity changes in the humeral biceps. Thus, the increase of activity in flexor muscles of the forelimbs was larger than that of flexor muscles of hindlimbs both on the ipsilateral and contralateral side. At the same time unilateral delabyrinthization done on cold but not shivering animals usually resulted in the appearance of cold shivering in the sartorius muscles, while this happened to the humeral biceps in only some of the experiments. There may be two explanations for this effect. First of all, the absence in some of the experiments of bioelectric activity in the humeral biceps following delabyrinthization may be associated with later involvement of these muscles in cold shivering. Probably the removal of the inhibiting effects of the vestibular apparatus on motoneurons of the flexor forelimbs was in some of the experiments insufficient to cause the appearance of cold shivering. Secondly, the reason for some differences in the reactions of the sartorius and humeral biceps to delabyrinthization may possibly be connected with the well known difference in the organization of vestibular control of the activity of motoneurons in the forelimbs and hindlimbs. In accordance with the data in the literature these motoneurons in the cat are connected in various ways with nuclei of the vestibular complex. The motoneurons of the lumbar regions are connected with the Deiter nucleus through the homolateral vestibulospinal tract. Vestibular influences on the motoneurons of the forelimbs are not limited to the Deiter tract; fibers from the medial vestibular
nucleus included in the makeup of the medial vestibular longitudinal fasciculus and connected with the motoneurons of the forelimbs but not of the hindlimbs [11, 12].

In about half the experiments the facilitation of cold shivering following unilateral delabynirthization had a dual character that may be explained in terms of literature data on the bilateral effect of the vestibular apparatus on spinal activity [6, 8].

The demonstrated effects of the vestibular apparatus on the course of cold shivering should be regarded as participation in the supersegmentary mechanism of the facilitation and inhibition of motoneuron activity.
REFERENCES

3. idem, Suvnital'naya kharakteristika kholodovogo i likhoradochnogo tremora [Comparative Characteristics of Cold and Fever Tremor], Byull. eksper. biol. i med. 85/1, 14-16 (1978).

12. idem and T. Mascitti, Sites and Modes of Termination of Fibers of the Vestibulospinal Tract in the Cat. An Experimental Study with Silver Impregnation Methods, ibid, pp 369-388.