1

JUIIETITI | Mz 779-50/% 7

NASA Technical Memorandum 80144

NASA-TM-80144 19800012559

ISIS USERS MANUAL

- R *‘T\,.:Y‘}CE
}‘O?\- LLets et
S -

CAROLYN GRANTHAM

LANGLEY RESEARLA LeNIER
LIBRARY, NASA
HAMPTON, VIRGINIA

MARCH 1980

NASA

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665






ABSTRACT

The Interactive Software Invocation System (ISIS) is an interactive data
management system. ISIS is being developed.to act as a buffer between the
user and host computing system. ISIS provides the user with a powerful system
for developing software systems in an interactive environment. ISIS
protects the user from the idiosyncracies of the host computing system by
providing such a complete range of capabilities that the user should have no
need for direct access to the host computing system. These capabilities include

a data editor, a file manager, and a tool invoker, all under the control of a

PASCAL-like Interactive Programming Language (iPL).

#
N90-2104-3



II.

TABLE OF CONTENTS

Introduction . . . . . . . . . . . . ... ..
Interactive Programming Language (IPL) Syntax
A. Writeup Conventions . . . . . . . . « « . .
B. Break Key . . . . . .+ ¢ ¢ . ..
C. Errors o e e e e e e s s e e e e e e ae e
D. Programming Statements . . . . . . . . . . .
1. IPL/PASCAL Differences . . . . . . . .
2. System Variables .
3. Comments . . . . v v .l e e e e e e e e

4, Declarative Statements

a, ABBREV ,
b. TYPE
c. VAR

d. ERASE . . . ... ... ...
5. Action Statements
a, Assignment . . . . . . . . . . .

b. EXITIF o e et e e e e e e e e e

c. IF e e e e e e e e e e e e e e s
d. FOR .

e. LOOP e e e e e e e e e e e e e e
f. WHILE

g. REPEAT

he FOREACH . . . . . .. ... ... ...
i. XEQ
jo SETTAG . . . .. ... ... ...

ke CLEARTAG . . . . ... ..o

10

11

12

12

. 14

16

18

19

. 20

21

. 22

. 23

24

25

26

. 27

. 28

29

. 31

. 31




1. SET TRACE .
m, CLEAR TRACE .
n..- ASK “ e e s e
o. PRINT,PRINTLN .

p. CLEAR RUN . .

6. Programming Operators

Library Statements . .

1. SETNAME . . . ..

2. USE « e e e
3. SAVE « e e o
4. PURGE e e s o
5. VOID e s e e e
6. STORE o e s o e

7. RESTORE e e o s s
Text Editing Statements
1. FRAME Concept . .
2. RANGE Concept . .
3. Edit Statements . .
a. FRAME « e o e
b. ACTIVE ., . ..
c. ERASE o« e v s
d. LIST o e s
e. INSERT o & o e
£. READ o o e
g. WRITE o« o . e
h. DELETE o« s e e
i. REPLACE . . . .

j. CHANGE ., . . .

e s e e
« e e s
e e o s
e s e e
e e e o

Functions
c e e o @
« e e o
e e s e e
e e e e e
« e o s
o o o o o
e e o s
« e e e o
c e e s e
e e e o o
e e o s
e e o o @
e e e e .
e e o o
e s s e o
e o e s
e e o s @
e s s s
e o o e

33

33

34

36

383

39

40

42

43

44

45

46

47

48

49

49

51

56

56

57

58

59

61

63

65

67

69

71



H.

kl ADD L]

1. MODIFY .

m. COPY .

n. MOVE .

0. REKEY .

p. COUNT .

4. EXEC o

Tool Invocation Statements

1.

BATCH Tools

a. RUN

b. SEND

INTERACTIVE Tools

a.

STOP :SEND

o

Interrogation Statements

10.

11.

12,

13.

SHOW

SHOW

SHOW

SHOW

SHOW

SHOW

SHOW

SHOW

SHOW

SHOW

SHOW

SHOW

SHOW

SHOWS

RESERVED

STATEMENTS

AVAIL

ABBREVS

TYPES

VARS

ID

SETS

CLEARS

NAME

PAGES

OPTIONS

°

74

76

78

80

82

83

84

86

87

89

90

91

92

94
95
96
97
98
99
100
101
102
103

105




14, SHOW COLUMNS . . . & & ¢ v o v 6 4 v e o o o o o o o o « o . 106

15, SHOW RUN o 4 o ¢ ¢ 4 6 4 4 o o o0 o o o o o o o o o « o o o o 107
Appendix A.- Statement Summary She€t « v v« v v o 4 o o« o o « o o« « o o o« « o 108
Appendix B.- Alphabetical Statement Summary Sheet . « ¢ ¢« ¢« ¢« « o « o « « . 109
Appendix C.- ISIS Local FIleS . o v v o 4 v o o o o o o o o o o o o o o o o 111
Appendix D.- IPL Error MeSSageSc « ¢ o « ¢ o o o o « o o o o o o o o o o o o 112
References o o v v v c v i i i it o b e e e e e e o e e e e e e e e e .. 114

Index © e e e e o o e © e ® o©o e o e e e e e o e e 0 e 0o ® & e * o & o e o 115



INTRODUCTION

This document covers the latest version of the Interactive Software
Invocation System (ISIS) (12/20/79) discussing the syntax and operation of
the Interactive Program Language, IPL. IPL is based on the higher order
language PASCAL and anyone wishing to use ISIS should have a working knowledge
of PASCAL or have access to a PASCAL Manual (see ref. 1). PASCAL was chosen
as the base language because of its simplicity and its wide range of capabilities.
IPL and PASCAL differences are discussed on page 12. IPL contains most of
the arithmetic operations, functions, and control statements of a traditional
programming language. This language has been extended to include statements
for data and text editing, file management, and tool invocation. The editor
manipulates pages of text or data, The IPL statements allow insertion,
deletion, replacement, and modification of lines of text or data. The file
manager allows the user to save, access, and purge pages within a S5-level
hierarchical file system. The tool invoker allows the user to communicate
with the host computer system.,

ISIS is being developed by Dr. W. Joseph Berman on contract for Langley
Research Center (LaRC). ISIS was originally developed under the CDC NOS-BE
operating system at the University of Virginia and is currently running under
the CDC NOS 1.3 operating system at LaRC. The transportability of ISIS is
being tested by efforts to rehost it to an IBM 370 system and to a PDP-11
machine. Anyone having an application for ISIS is welcome to use it with
the understanding that ISIS is not a production system, but a developing system.,

On the LaRC system, ISIS is stored on a direct access permanent file under



the user number 961300N. The control statements to access and execute ISIS are:

- Retrieve the ISIS file,
- Executes ISIS

-~ Acceptable ISIS statements.

- Terminate ISIS session.




INTERACTIVE PROGRAMMING LANGUAGE (IPL) SYNTAX

The IPL descriptions provided in subsequent sections have the following
format: The IPL statement syntax at the top of the page. The words appearing
in caps must be typed as shown, whereas, the words in small letters can be
replaced with appropriate information. A discussion of the statement, what
it does, and how to use it is fbllowed by examples illustrating how the
statement can be used. See example page 18.

.The statements are discussed in groups according to capabilities. The
first group, Interactive Programming Statements, contains statements of a
traditional programming language. The second group, File Management Statements,
allows the user to save, replace, access, and purge information which is
contained within a 5-level hierarchical file system. The third group,

Text Editing Statements, contains statements which allows editing (Insertion,
Deletion, Replacing, and Modification) of lines of text or data which is
contained in the file system. The fourth group, Tool Invocation Statements,
allows the user to communicate with the host computer system. The fifth,

and last group, Interrogation Statements, allows the user to make inquiries

of ISIS, relating to statements in any of the above groups.




SYNTAX

Syntax Conventions

These conventions will be used in the IPL statements or in the discussions

of the statements.

id
id(s)
Zn

ng

col

inc

ISIS prompt - informs the user that ISIS is ready

ISIS indication that the current statement is not
yet complete and more input is required

Identifier
One or more identifiers separated by commas
Line number

A specific number of lines

Optional information for command

Command choices are enclosed in brackets separated
by vertical slashes ([)

Column number

Line increment

ISIS acknowledgement to the key
Separators in DATA BASE library page name

List separator

o



BREAK Key

Key

The |BREAK| key has two functions. It enables the user to discard a

partially typed line and reenter it.

BKSP [key. It also allows the user to terminate a command.
be reentered may be a command statement (statement verb) or a line in the

This is in.addition to the normal
The line to

ACTIVE page the user is in the process of editing. A good example would

be if he made a typographical error

in the text being inserted. The user

hits the BREAK key, ISIS acknowledges this by printing 3 dots (...),
reprompts with the line number for reentry of the line, and then the user

retypes the information.

To terminate commands using the |BREAK| key, the user simply depresses

the ]BREAKI key after he receives the prompt for the next line number.

No other information may appear on the line preceeding the {BREAK

key.
EXAMPLES:
[HEEET
3.
o
__hmf._~§rb~~
Wi gy COF THE BRER HEY
19, FlR Disc ﬂFl!TJu rd T HE
12, SUEREHTLY au_ BR)
12, RREHTLY EBEI m}‘(
14. *

User

- Mistake here in spelling.
depressed the k.key.. SIS Lo
responded with 3 dots and prompted
the user for reentry of the line.

o - Another mistake in spelling -

YRET

- User depressed the BREAK key to

terninate the command.

4. E - List the ACTIVE page to check
. : i TIHEG THE correctness,
. THE EEERK KEY :
168, SCARDING AL THE
12, —LULnEH LY BETHG TYFED
PURPTY l&. E, .N-}fi. 4..,.*» PR SR . IR O

* < BREAK key () is typed but

does not echo back to-terminal.

10




BREAK KEY
ERRORS

ERRORS

Error indications in ISIS are similar to those in PASCAL. Syntax errors
are denoted by an error message line printed directly below the statement
containing faulty code. Like PASCAL, this message consists of an up arrow (A)
under the statement column where the ISIS parser bécame confused. A short
message describing the problem follows rather than the error code numbers as
in PASCAL; These messages are intended to be self-explanatory. Several typical

examples of errors are shown below. A complete list of all possible error messages

is located in Appendix D,

FERAYT 1. .21 OF REALS

- Parentheses were used for
arrays instead of square
brackets ([])

- Al frame has not been
declared.

- The TYPE (:STRING) is
rissing on the FRAME
declaration.

VAR Eate STREAL s=l0F Yead oo - The statement terminator
L ‘ (;) is missing after
the VAR declaration.

FRIMT 2.

Jol:

P OFRIHT
THC

-~ Incompatible types
(INT=REAL*INT)

11



Programming Statements
IPL/PASCAL Differences

IPL contains the PASCAL variable types, REAL, INTEGER, and BOOLEAN in
abbreviated forms: REAL, INT, BOOL. ISIS has two data types not in PASCAL:
STRING and KEY. ISIS deviates from PASCAL in not allowing CHARS and ALFA's
but instead includes a type called STRING. This STRING type is similar to
the PASCAL ALFA except that there is no set length on the STRING. A STRING
contains alphanumeric information enclosed by quotation marks and may be
assigned to a variable.

The other data type not in PASCAL is the KEY type. KEY is defined as a
linc number that is assigned to each line of code in the work frame. The KEY
type allows the user to define a variable which may be used in the range of
the edit commands of ISIS. KEY values are between 0.0000 and 599.9999.

In IPL a semicolon (;) placed at the end of a statement is optional
if it is not followed by another statement on that line. If there is more
than one statement on a line, then the semicolon (;) must be used to separate
the two statements.

In IPL, each simple statement must be completed on a single line, unless
explicitly continued to the next line by having a $ as the last nonblank character on
the line. The maximum number of characters permitted on a line is limited
to 133 characters.

Another IPL/PASCAL difference is in the assignment statement. IPL allows
either = or := for assignments, whereas, PASCAL requires a :=,

Another difference of IPL is it does not use BEGIN aﬁd END's to surround
compound statements. All that is required is an END to terminate a compound

statement,

12




IPL/PASCAL
DIFFERENCES

Comments are similar to those of PASCAL in that they begin with a (*;
however, unlike PASCAL, IPL comments are automatically ended with the end of
the line. This means the user doesn't have to close comments. It also means

that comments may not be followed by code nore are they automatically continued

on the next line.

Records cannot have CASE variants. IPL does not presently allow underscores
to be used as part of the variable name. IPL does not allow packing, does not

have a CASE statement, and does not allow sub range types.

13



System Variables Used in Programming Statements

There are several ISIS system variables which have been made available

to the user. These variables are contained in a record (ref. 1, p. 42) named

SYSTEM. The SYSTEM record field identifiers are as follows:

Identifier Type
.VERBOSE - BOOL
-DELTA - KEY
«ALARM - INT
.CLOCK - INT

. TIME -~ STRING
-DATE - STRING
.F - KEY

.L - KEY

.C - KEY

K - KEY
.COUNT - INT
.USERNUM -~ STRING

To obtain the information in

DescriEtion

- If TRUE, SET, and CLEAR statements print
acknowledgement, If FALSE, no such acknowledgement
is printed.

- The default range increment (inc) on the Text
Editing Statement, INSERT (default value is 1)

- Twenty-four hour clock alarm - when ALARM
(clock time) is 0, then a message is printed to
the user on the CRT- ***ALARM***_, This may be
useful to a person with a very tight schedule
and a poor memory,

- Is the number of elapsed milliseconds in the current
terminal session (read only variable)

- Current day time (read only variable)
- Current date (read only variable)
- The first line number in a frame.

- The last line number in a frame.
- The current line number in a frame.

- Current line number in a FOREACE loop only,
otherwise it is zero.

- Number of items in the range of the last
editing command (other than FOREACH).

- Current seven character user number.

this record, the user may inquire with SHOW ID

SYSTEM, or PRINT SYSTEM. The SHOW ID SYSTEM will print out the field identifier

names and types.

field identifiers.

The PRINT SYSTEM will print out the current values of these

14



SYSTEM
VARIABLES

EXAMPLE:

- Set .ALARM for 11:56

- Print SYSTEM.CLOCK
= Print SYSTEM.TIME
- Print SYSTEM.DATE

- Display SYSTEM record

- Print SYSTEM record
variables and values

~Alarm message is
typed when the alarm
went off at 11:56_

15



Programming Statements

Comments

[line of code] [ (*comment ]

User comments may be added to program code. A left parenthesis followed
by an asterisk, (*, indicates the beginning of the comment. The end of the
comment is denoted by the end of the line. This means that comments cannot

be embedded in IPL statements. Comments are not automatically continued

on the next 1line.

16



Programming Statements

These have been divided into two groups: the Declarative statements
which describe program variables, and the Action statement which are the
executable statements. It should be noted here that the IPL compiler
collects all declarations first, allocates space for them and then puts
them into a symbol table, This ig done without regard to the program logic
or the order in which they appear. An illustration of this is shown in the
example below:

IF X >Y THEN VAR Z:STRING;
ELSE VAR Z:REAL;

END;

You would expect only one of the declarations to be declared based on the
program logic, but in actuality both declarations will be collected for
allocating space and since a variable may be declared only once, the IPL
compiler will consider this an error., IPL, being an interactive language,

allows the user to make declarations at any time or anywhere in the program,

17

COMMENTS



‘SHOW STATEMENTS for list of verbs that may abbreviated.

Programming Statements

ABBREV ~ abbrev-id(s) : statement - verb

The ABBREV statement allows the us

er to abbreviate ISIS statement verbs,
More than one abbreviation ma

y be given to a single statement verb, See
ABBREVS are cleared

by the ERASE statement., ABBREV can only be used in the ACTIVE frame at present

EXAMPLE :

- Set P, PR, and W as abbreviation for
PRINT

- Show abbreviations

- Use abbreviations in place of PRINT

18



ABBREV
TYPE

Programming Statements
TYPE type-id(s) {=|:} type-specification

The TYPE statement is similar to the TYPE section of a PASCAL program. It
allows the user to specify a new TYPE for subsequent use in variable declaration
statements. The type specification consists of combining any of the system-
provided types (INT,BOOL,REAL,STRING,KEY,ARRAY,RECORD) into RECORDS and ARRAYS,
etc. to obtain a user-defined type. Subsequent type specifications may involve
previous user—-defined types in addition to system-provided types. Types are
disposed of by the ERASE statement. As each TYPE statement is processed, the
types are immediately entered into tables. No code is generated by this statement.
This means that pages which contain TYPE statements are EXEC'ed repeatedly or
those which have compilation errors and are re-executed will fail on the second
execution because their types have been previously declared. This may be overcome
by preceding all TYPE statements with an ERASE statement for that type.

EXAMPLE:

250}

SR SETTYFE F‘"‘?:":I‘IHE:iE:EHL§ - Declare types
B VIPTYPE MESS * ARRAYLL..S] OF BOOL: : : :
A EPTYFE RECL @ RECORD HUM: IMTS FLAG:EOOL: HAM:ZTREINGS EMI
BB 24TTYRE RECM *OARREAYLL. .21 OF RECI :
3 HeT
e SHOW TYFES ,
*MESS YIORREAY D1..57 OF BOOLS - Display TYPE symbol table
*PERSOHS "1 FEALS ’ y =
YRECHM i AREARY [1..37 0OF
FECOET
MUfe IHTS
FLAG: BOOLS
HEM: STRIMGE
EHDS
*REECL "1 RECORD

HIIM: THT

FLRG: BOOLS

HAM: STRIMGS
S HE

%]
[xx]

1V

-
P
[}

19



Programming Statements

VAR var-id(s): type-specification

The VAR statement is similar to the VAR section of a PASCAL program. It
allows the user to assign a prespecified type (REAL, INT,BOOL,STRING,KEY
and user defined types) to program variables. All program variables must be
declared in this manner. If the user fails to declare all variables being
used, the ISIS system interrogates the user for the type of the undeclared
variable instead of aborting the command. Variables are eliminated using
the ERASE statement, .

Declared variables are assigned default values by the ISIS system.
Integers and real nimbers are set equal to zero, Booleans are set FALSE
and strings are empty (zero length). As each VAR statement is processed,
the varidbles are immediately entered into tables. No code is generated
by this statement. This means that pages which contain VAR statements are
EXEC'd repeatedly as those which have compilation errors and are re-executed
will fail on the second execution because the variables have been previously
declared. This may be overcome by preceding all VAR statements with an ERASE
statement for that variable.

EXAMPLE:
14, GETIHOM VARS
-~ H P
a ITTVER Ma Y. T REAL! . = Declare variables
5} 41TWAR Ds 0 IHT
& SEPVAR BLTr BOGLS
5 BV HRE

HAM: STRINGS

EYTYFE RECHM: ARRAYIL.. 21 OF BOOLS - Define types

| XS

i 3
N
g e

bade ods podi frde pude e pede jode she
[P
LI R

B.Z20427VAR O IHFTY RECNME
.20, 219TYFE LOCK:S RECORD UN:EOOLS SHUTISTEIMGY EMHDS
B35, 937YAR BTHE: LOCE:
19,37, 1192HON YRRS ~ Display variables in
'ETHE i RECORD ' symbol table to show
M 2000 the new declared
SHUT: STRIMGE Variables have been
EHT: included in the symbol
‘B ooBooLs table
i Y1 BOOLE '
*HAM *1OSTRIMG:
VIMRT Y:ORREAY Di..31 0F BOOLS
‘I 1 IMTs
vl i IMTH
T i RERL:
Iy I EEALY
'z i RERLS

3, 48, 45TSRY
&= :

tERL]

T;—;

' A
System prompt L— yger response

20

= Equation to be calculated contains
the undefined variable, A. The system
interrogates users for type. The user
responds with type and execution continues.

.



VAR
Programming Statements ERASE

ERASE {abbrev-id(s)Itype—id(s)|var-id(s)|frame-id(s)}

The ERASE statement removes the specified types, variable-ids or frame name from the
identifier tables. More than one id may be erased at one time with ids separated
by a comma. Caution should be exercised when using ERASE. Erasure of a TYPE
will not affect already defined variables of that type, but it will prevent
the user from defining new variables of that type. Also, note that erasure of the
ACTIVE frame is not allowed.

EXAMPLE:

- Display existing types

- Display existing wvariables

Sa e

- Erase types and variables from tables

JOOF BOGL s
— Display types and variables again to show

that the erased variables and types were
removed from the identifier table

21




Programming Statements

var-id {=|:=} arithmetic expression

The assignment statement consists of a program variable, an = sign and
an expression, The resultant value of the expression is assigned to the variable
on the left hand side of the equal sign.

Types must be comnatible as there is not implicit conversion in IPL,

EXAMPLES:
A=X+Y

B :=Z * (A-1)

22



ASSIGNMENTS
EXITIF

Programming Statements

EXITIF conditional

The EXITIF statement allows the user to exit from the middle of a loop
statement (IF, WHILE, REPEAT, LOOP, AND FOR) when a specified condition becomes
true. The EXITIF may appear anywhere in the loop. A single loop may contain
any number of EXITIFs.

EXAMPLE:

4

LY

- A WHILE loop
e containing an
Hpiagd ey P my? g EXITIF statement
(residing in ACTIVE
page)

et ek ek g

- Execute ACTIVE page

bl

D BLE o
g7 T T

i L

] =

[a]

171 171 1A 179
EETEE:

j

i

'<&nghé output shows

the WHILE loop was
exited via the
EXITIF (x becomes
< 0)

23



Programming Statements

IF condition  THEN {statement(s) [ ELSE statement(s)]} E¥D
[EXITIF condition]

The IF statement allows for conditional execution of . statements.
The condition must evaluats to a BOOL value. If the condition is TRUE,
the statements following the THEN are executed and those following the ELSE
(if present) are skipped. If the condition is FALSE, the statements following
the THEN are skipped and those following the ELSE (if present) are executed.

It should be noted that ISIS deviates from PASCAL by not requiring
BEGIN . . . END's zround the THEN and ELSE sections of the IF statement when
multiple statements are coatained in them.

EXITIF in either the THEN or ELSE clause transfers to the END of the entire
IF statement.

EXAMPLE:
15,98, S92L00R
15,8%, 16 IF B<A THEM FRINTLH Ef E=B+ls i N
15,839,395 ELSE IF E=R THEH FRIMTLH *OHE MORE STEF !
15,18, 88 ELSE FRIMTLH Y RERDY TO STOF'S
15,108,329 EHTI
153,18, % E=E+1
1 4 - EHD )
13, = EXITIF B:le
"""" QORGEGLE+ID]

"""" AARQBE+GRR

2EMAAAARESAEAE + 33
R
IDAGRAREERRAE+OE
CdHE MORE ZTEF
FEADY T STOF

=,
=
-
puued
MR
=
s
o
.
=
1
) |
Y
MR
AR
R
MR
g
v
e
2
<+
o
o
)

bbb ek pord et

puony

!

24

——— o e P -




Programming Statements .

FOR  var-id = initial-value {TO[DOWNTO} final-value DO statement(s) END
[EXITIF condition]

The FOR statement is another form of loop statement which allows the
user to perform a sequence of-.statements repeatedly while the variable-id
takes on a progression of values between an initial and final value. This
progression may go either upward or downward in value. The initial-value
and final-value may be INT variables, literals, or expressions. -

EXAMPLE:

~ For statement with downward
progression (10 to I

[

(O AN

g

25 *

IF
FOR




Programming Statements

LOOP  [statement(s)] . EXITIF condition [statement(s)] END

The LOOP statement is a generalization of the WHILE and REPEAT statements.
A set of statements are executed repetitively until the condition of the EXITIF
becomes true. This EXITIF becomes part of the loop statement. EXITIF may
appear anywhere in the loop and when the condition becomes true, the loop is
exited at that point in the code. If the EXITIF is left out, the LOOP will
be executed infinitely, If this occurs, the user can abort the command by
depressing the key. : ‘

EXAMPLE:

TYFE THRUT Exp &0

-
THEN

Loop of statements is executed until
the user types an input of S = 0.

=T

—



Loop

Programming Statements S

-1

WHILE condition DO statement (s) END
[EXITIF condition]

The WHILE statement is a type of LOOP statement. The statements contained
in the loop will be executed WHILE a certain conditions exists. The WHILE
statement evaluates a condition, which must reduce to a BOOL result. If the
condition is FALSE, the statements are skipped. If the condition is TRUE, the
statements are executed and the condition is then re-evaluated. If the condition
is again TRUE, the statements are re-executed and the condition is then re-evaluated.
This process continues until the condition is FALSE. When this happens, the
statements are skipped and execution continues with the next statement.

EXAMPLE:

27



Programming Statements

REPEAT statement (s) UNTIL  condition
[EXITIF condition]

The REPEAT statement is a type of LOOP statement. The statements contained
in the loop will be repeated UNTIL a condition occurs. The REPEAT statement
is similar to the WHILE statement. The differences are that the REPEAT statement
first executes the statements it controls and then evaluates and checks the
condition, and that the statements are re-executed as long as the condition is
FALSE, i.e., the statements will always be executed at least once.

EXAMPLE:

28



REPEAT

T

NMEACH

Programming Statements

} END;

FOREACH allows the user to execute a set of statements for each line

statement(s)
contained in the active frame or specified frame.

[EXITIF condition]

|

string-var DO

[frame-id/]FOREACH

EXAMPLE

-

I a

[ L

U

Y IUIHE,

-
o
ot}
=
=

g~

'l e 01

J i

=



Programming Statements

sirinpg-expression

i

’
£

The XEQ statement allows the user to specify that the contents of
a string-expression zre to be interpreted as a command to the system.

7

g

i

4 Ea
i
Ry )
4=
-
H
4

e - PRINTLN is concatenated (CAT) with "
S contents of S (1+2+3) and then executed '
(XEQ) ,~ PRINTLN 1+4+2+3 evaluates

expression and prints the value (6).

-~ PRINTLN S is executed, printing value of
S,which is 1+2+3

t D =~ Redefine S

- PRINTLN. is concatenated with contents
of S (ABC) then executed (XEQ). PRINTLN
ABC evaluates ABC and prints the value
of the variable (10).

-

oY crpt: =~ User can  assign a number of statements
FREIMTILH T EMDL®: :

'~ to a string variable and then execute
these statements by executing that string
variable (XEQ S) )

R

"

]

i
-
[
-
&
c
b

30




XEQ

) SET TAG
Programming Statements CLEAR TAG

SET TAG tag-id

CLEAR TAG

SET TAG allows the user to assign an identifier to a line of code.
This gives the user a way to keep track of the program modifications
made during an editing session. After setting a tag, all lines of code
modified or added will bear the tag-id. This tag-id could be the date
the modifications are made, or the name of the person making the modifi-
cations. All lines modified will continue to contain this tag-id until
the user gets rid of it. The tag may be changed at any time by executing another
SET TAG command and from there on the new tag-id is appended to the
modified code. The CLEAR TAG command clears the tag-id and no more tags
will be placed on modified lines of code. The modified frames with
the tag-ids may be viewed by listing the code with the tag option on

(LIST {range} :T). The tag-id is limited to seven characters. There is
also a limit of 63 different tags in any one frame.

EXAMPLE:
=T PEROGRRH
AE WORE
- List existing text
e - SET TAG
Sie EE ~ INSERT new code
.i :‘t 1
1.4z
Toalz
1 bt
.. - List with T option.
ot Modifications have been

tagged.

31



Programming Statements

SET TAG continued

TG R
TAGGED A5t RLM - Change the TAG

POWAGT TO "RMM TODAY® IM 1.43 - Modify code
ITH RWHH TODsY T H

fi—
i
i

- List with TAG option.

a Modifications have been
tagged. Previous tags
are retained,

it3
Budds e e fds peds pede

32



SET TRACE

Programming Statcaeuts

SET TRACE var-id(s)

CLEAR TRACE var-id(s)

The SET TRACE statement is used to trace variables. Each time the
variable's value is assigned, the variable-id and the new value are printed.
A TRACE applies to entire program. Once a variable is traced, it will be

traced wherever it is used. Records and array variables can be traced but
no values are printed.

The CLEAR TRACE command releases a.TRACE>on a variable,
EXAMPLE:

.

Rrkn

Vot ot et gt § ot pe
]
U
atw

Vomb Jomt qoe |2 % fomn L

-~ Set trace on J

- Set trace on X

.‘I -t v'v -

Jok fonb fouk fudd fenb Jamt feeb

. [P VT I SRR SN

—~ TRACE output is printed each
time the value of the variable
is changed.

—
[N

-~ Cle~r Trace on J _

forte
[N

-~ Change values being traced
- Trace output *




Programming Statements

ASK response, prompt

The ASK statement allows the user to interrupt program processing and
.accept input from the terminal. The ASK statement has two parameters. The
first is the name of the variable which receives the users input. It can
be any simple variable type (STRING,BOOL,REAL,INT,KEY). The second parameter
is an expression which is typed to the user as a "prompt" for input. This
expression may be an actual string expression enclosed in quotes or a string
variable or function which has been previously defined. 1ISIS does not supply
a separator between the printed output (prompt) and the users typed input
(response); therefore, the user should supply his own separation character(s)
within the prompt definition if he desires to be able to discriminate between
the prompt and his response. 1If, in typing the input, (response) to ASK, the
user makes a typographical error, he may hit the BREAK key in which case
ISIS will disregard what has been typed, indicate this action by typing 3
dots (...) and then reprompt the user for correct input.

EXAMPLE:

14,321 FOSAMZD STRIHG

ia,31 rmOIAMSSINT

14.@1 F EAHSIREAL .

14.§§ F BAMS:BOOL

l%.ff m PROMPT: STRING

s d T ﬁﬁﬁFEDHFﬁ¥=’IHPUT=s - Define users PROMPT variable.

ASE SAMS PROMPT N .
THRUT=THIZ IS A STRING IMFUT!
a."Tl :‘I:l -'_.;
ASe ITAHS: FPROMPT

IHPUT=1254

14,335,257 e . . = Interrupt program, PRINT prompt and
ET o n.l:;:‘i. ﬁ :‘;!gs_:i:'j:-'l-ll' ERL HO, ! wait for user to type response.
1::.': ] . F?l;l: Mid. 1.8438722E+2 (STRING, INT, REAL & BOOL)

L e LY .
i © ATEBAMIS. Y IHFUT BOOL YALUE®
IHFPUT EODL YELUETRUE .

14,234,577 ]
o i EJIHT SHMS.? Y2 IRNS,? YA RAMS,? ' BRNS

IS IS R STRIMG IHPUT! 1254 1.456T?:BHBBBGHE+ 51505 . - TRUE -

14.§E.E5?HS} SHHZY Y INPUT o0
IMFUT % HMOTICE BLAME AFTER THE *7* - A blank is added by NOS system when you

have odd  number of characters. This
is due to the way the CYBER pr1nts

11.;4f;33q- . characters. 7 :
ASH SAME. Y TYFE HOW - User '
Ay e S M s - made error then hit
T - O] AL T g ol Y Y ] ’ the BREAK
TYPE HDU AN TYPLIG ZRERFR... key. ISIS prints .o bag oo r-_
TYEE HOM -WRS TYPING ERROR prompts

user for input,

34 | .



ASK continued

- Examples of expressi.ons as
input .

JER FORRYIARRAYILLLZT OF REAL
ZR,547VAR O IRAYIARRAYL L. .21 OF IHT )
29, i9TVAR SERYIARRAYLL.. ST OF STRING
Tqodm
RSk OIRAYLZ2 3. EHF‘UT oML ELEMEMT %' - Array elements can be
IR AR B used in ASK statement

ASK prompt ‘—User response

8%, 36,557 |
FRINTLH IRAY |

[ 13 = @

[ 21-= 535

ASK




Programming Statements

PRINT expression [ :FORMAT1[ : FORMAT2] ]
PRINTLN  expression [ :FORMAT1[:FORMAT2]]

. The PRINT or PRINTLN statement evaluates each expression and prints
its value. After printing the output, PRINT leaves the cursor at its current
position, whereas PRINTLN advances the cursor to the beginning of the next
line. The optional FORMAT is similar to that of PASCAL in that each
expression may have its own format. The format may specify total field
width, scaling factors or base conversions. Default formats are as follows:

REAL numbers - an E format type with field width of 22

INT numbers - a field width of 10 with all digits right
v ‘ justified

STRING - the field width is equal to the length of the complete
string and string is left justified

BOOL - a field width of 10 -and’ right justified

Variables that have been declared but not defined are assigned default values
by the ISIS system. Integers and real variables are set equal to zero,

Booleans are set to FALSE and strings are of zero length. Discussion of
optional formats is supplied below. All formats are ignored for ARRAY and RECORD outputs.

Format options — :FORMAT1 - is the total field width. The expression is
printed in the E Eormat for real variables (PRINT x:10,

y:15). 1t can be used with integer, real, and string
variables. Where FORMAT1 is smaller than the number of
characters in a string the field width is ignored and the !
complete string is printed. If FORMAT is greater than the :
string length, blanks are added until the string length

" specified by the format is printed.

:FORMAT1:FORMAT2 - sets up total field width (FORMATL1)

(as described above) and defines the number of significant
digits to the right of the decimal point. This means

the variable is printed in a fixed format. This_format )
applies only to real expressions.

EXAMPLE: (see next page)

XN
[o]
]
A
-t
—
ey

— Print an array of numbers.

FYRRINT 2

o

g |

ot ol b
et e L P

e B W
.
e
Ty 5

36

-




Programming Statements

PRINT continued

£59, 20018
D5 35 18TVAR W IHT .
0%, 20, ZEPVAR Y RIEERLS
09,26, 427VAR SISTRING
B9, 38, 227VAR BIBOOL
8%, ZT.0IVAR YRECIREC
B2, 3T, 107

FRINTLH S2'=S%sHs ? =By ' =E
=3 B=H FALSE=E
9. 2E 127 ’

FRINTLH YREC

I e
Dt
-
==
|
M

H

ON SR |

=
I

[ ID

FRINT Rsnizi
1% 15
89,48, 3%7 FREINT ¥
2, SR40ZANARNANAE+aRz
3%, 41, 407 FRINT Yiz2o
2. o452 eanEREE+RE2
22,41,.55% . FRINT Y:z@:ia
250, 4520380000
39,42, 187 PRINT Y:i2@:d

1% 1 A
s ate it

AF 3. IHT
12,0401 CEOLHTIL-OUT?
12,15, 95YEEF
12,85, 3% FEINT 1
12.15.51 FRINTLH SUB(SsIs17:2#]
iZ.16, 185 I=1+1
12,16, 27 UHTIL I=1a -
1 o
@ K
3 R}
2 H
£ T
7 1
& L
9‘ .

37

HoZx16-4

AGASAGRRBARAE +0a]

e w——

PRINT
PRINTLN

85TYFE REC=RECORD HUM:INT: FLAG:SOOLS HAM: STRIHGF EHDS

Declarative
statements

- Uninitialized variables
printed to show their
default values

- Print undefined record
variables

(Please note default

strings are of zero s

length (NULL))
- Print expressions

- Print INT (with
and without format)-

- Print REALS (with
and without format)

- Prints I (default format)
- Prints a subset (I) of
length 1. from the string
S with a format of
(2 * I), which increases
as the value of I
increase




Programming Statements

CLEAR RUN

The CLEAR RUN statement is used to clear the contents of the RUN (input) file.

EXAMPLE: \

38

e




CLEAR RUN

OPERATGRS &
FUNCTICNS

Programming Statements

Operators and Funttions

Shown below are the operators and functions available to the user in
programming 'desk top type calculations,
- RESULT TYPE -~ :
STRING: .

Functions: CAT(i,Y...A): Concatenation of as many strings as you like.
° SUB(X,Y,Z): Substring of X' (string) starting at character
number Y (Integer) for Z (Integer) number of

characters. Y and Z can be variables, constants,
or expressions.

INT

Operators: +,-,DIV,MOD

Functions: ABS(x): Absolute value of integer x
LEN(x): Length of string x .
ORD(x): Ordinal number of the first character of the

string x (ORD('C') = 3) [Implenentation dependent]

ROUND (%) ¢ Rounded value of real x - -
SQR(x): Square of integer x
TRUNC(x): Truncated value of real x

L0OC(S1,S2): 1Is S2 a substring of S1?
If S2 is an undefined string variable (zero length
string) then LOC(S1,S2) = -1
If S2 is not a substring of S1 then LOC(S1,S2) = 0
If S2 is a substring of S1 then LOC(S1,S2) = the
character position (index) within S1 at which
the lst occurrence of.S2 begins

REAL

Operators: +,-,/,%

Functions: ABS(x): Absolute value of real x
ARCTAN(x): Arc~-tangent of x radians
COS(x): Cosine of x radians
EXP(x): e raised to the power x
IN(x): Natural logarithm of x
SIN(x): Sine of x radians
- SQR(x): Square of real x
SQRT(x): Square root of real or integer x
- BOOL

Operators: <,>,<=,>=s,<>,=,AND,OR,NOT
Functions: ODD(x): x must be integer. The result is BOOL -

If x 1is odd then ODD(x) = TRUE
IF x 1is even then 0DD(x) = FALSE

KEY
Operators: +,- 39



Library Statements

The ISIS library is a 5-level hierarchical file structure. The library
is where the user save, accesses, and purges pages of information. These .
pages of information might be programs, data, control cards, or combinations
of these. Each page of information is assigned a pagename and is written in
the form: v -

library.shelf.book.chapter.page

These levels allow the user to easily describe and identify the information
contained on a page. Each level of the page name is separated by a dot (.).
Library pages are transferred by page name to frames for editing. The page
name will remain associated with a frame until the user changes the name
(SET NAME) or transfers another page into the frame. Further discussion on
the association between the library page and the frame is discussed on page 49. !
All five levels of the page name must be specified if the frame being used |
for editing has not previously been assigned a page name. Otherwise, the page
name may be specified by typing only those levels of the name that change.
However, when the user changes one level of a page name, then all lower levels,
if not being changed, must be replaced by the dot separator and a blank space.
For example, if the page name is ISIS.CKCASES.SOURCE.PG1.SUB and the user
wishes to change it to ISIS.CKCASE.BINARY.PG1.SUB then he may abbreviate
as follows: BINARY. . (all lower levels must be specified or abbreviated
with dot and blank). For the users convenience, default names have been
.provided for the first four levels of all new frames. The default names are |
of the forms

ISISLIB.S.B.C. (user supplied page level)

Where the user only has to assign the page level part of the name. Before
trying to store anything in a library, the library file must be created on
the host computer. This is done using one of the interface programs, ISISGEN.

The interface between the ISIS library environment and the NOS operating
system is handled by 3 utility programs, ISISGEN, ISISPUT, and ISISGET. ISISGEN
sets up an NOS file in the format required by ISIS for its library systen.
ISISPUT handles the transfer of information from the NOS system to the ISIS
library. ISISGET handles the transfer of ISIS library information to the NOS i
file system. Detailed writeups of these utility programs appear on the next page. i

NOTE: The user should try and keep the number of shelves and books less then ;
40 in order to allow ISIS to run fast. Also, each level of the page §
name is limited to seven characters.

40



ISISGEN
ISISPUT
ISTSGET

LIBRARY STATEMENTS

ISIS/NOS Interface

ISISGEN

ISISGEN is a program which allows the user tocreate a library for use by
ISIS. A library must be created before any pages may be stored. To do this
an NOS direct access file must first be created. This file is where the users
library is saved on the NOS system, Then ISISGEN will convert the file to the
format required by the ISIS library. The control cards necessary to do this
are shown below,

ATTACH, ISISGEN/UN=961300N.
DEFINE, LIBRARY=isislib/M=W,
ISISGEN,

RETURN, LIBRARY, ISISGEN.

ISISPUT

ISISPUT is a program which allows the user to take an NOS local
file (Nfn) and put it into the ISIS library system, The NOS file is rewound
before it is stored. The full ISIS page name must be typed. This means that
any NOS file can now be edited by ISIS. The control cards for using ISISPUT
are as follows:

ATTACH, ISISPUT/UN=961300N,
ISISPUT,Nfn. library.shelf.book.chapter.page (see writeup on page 40)

NOTE: ISISPUT uses the smallest possible increment (.001) for the line number
assignment. This means the user must REKEY the page before he may make
any editing INSERTS.

ISISGET
ISISGET is a program which allows the user to get an ISIS 11brary page and
write it into an NOS "local file. The NOS file is NOT rewound

after it is retrieved. The full ISIS page name must be typed. Control cards
necessary to use ISISGET are shown below.

ATTACH, ISISGET/UN=961300N.,
ISISGET,Nfn.  library.shelf.book.chapter.page (see writeup on page 40)

41



Library Statements
[frame-id/] SET NAME [library].[shelf].[book]. [chapter]. [page]

The SET NAME statement assigns a library page name to the contents of the ACTIVE
frame or specified frame. This allows the user to assign a new name or change the
library page name associated with that frame. The page name contains 5 levels for
identification purposes. If the frame has not been previously assigned a page name
(SET NAME or USE), then each level of the name must be specified (SET NAME library.
shelf . book . chapter . page). Otherwise, the pagename may be abbreviated

’ as discussed in the library statement writeup on the
previous page. When the contents of a frame are saved, they will be saved under the
library name assigned to it with this statement.

When the user changes the pagename associated with a frame and wishes to avoid
retyping lower level parts of the name which do not change, he must type the DOT
separator followed by a blank to replace the next lower level name. See 2nd, 3rd,
and 5th examples.

EXAMPLE:

~ The initial SET NAME
W statement must include all
levels of names (NO DEFAULT)

S
LA

HEME

T i e Rename' ACTIVE frame changing

FL DB MuET s THE HAaMZ OF HOEEK . the 2nd level (chapter) o
) " r.ame only g
ihomE o . . = Rename ACTIVE frame

BLTE. MISE, HEWPON I% THE HAME OF WORK-  changing the SHELF and

BOOK level of name

- Rename ACTIVE frame
LL TS5 THE HAME OF WOREE |, changing only lower level
of name

"= Rename ACTIVE frame !

1% THE H&aME OF HOBEE changing SHELF level 6f
' : name

‘= Declare frames

FL CKCASES. IMFL.MOVE IS THE MAME 0F W1
W1/SET HANE EXPL. - Rename W1 frame changing

chapter level of name.
HLTE. HEWYER. CECAZES . EXFLOMOVE TS5 THE HAME OF W1

42



'SET’ NAME

Library Statements ~ USE

[frame-id/] USE [library].[shelf].[book].[chapter].[page]

To
The USE statement is usedaread the contents of a specified page into the
ACTIVE or specified frame, The library page name associated with that frame
becomes what was specified in the USE statement and the contents become what
was extracted from the page in the library., To specify a frame other than the
ACTIVE frame the user must precede the statement with the frame~id and a slash.

SHOR H
FLTE . HEMYER. CRE

= ACTIVE frame name

= Put new page into
ACTIVE frame

L, 35, 529FRANE Al A2 STRINGE . - Declare frame-ids

Pdoza, 290AL Uz ALTE.HEWYER ., CROH TEET L PREOGERE - Put page into Al

working frame

S CRCASES, TEST.. PROGEAR WEED A

Tef oz, d

AL TE. HE

ALALEE SHOWS - Put new page into
Al frame

FILTE. HEHVER CECASES TESTEHOME URED R fl

43




Library Statements

[frame-id/] SAVE [*]

The SAVE statement is used to create a new page in the library or to
replace an already existing page. SAVE places the contents of the ACTIVE frame
into the library under the same library name now associated with the ACTIVE
frame. The SAVE statement followed by an * will replace a page in the
library of the same name as the ACTIVE frame. At the present time, the user
may replace a page (SAVE*) even if the page does not already exist. The user
should be cautious in saving or replacing a page to make sure the library page
name is correct. The page name may be changed using the SET NAME statement
before saving or replacing it.

EXAMPLE:

’LSR;&HGEQ

iE OF WORK .

- Save the ACTIVE frameby storing
it in the library under this name.
i WORK . . .
~ Save the contents of the ACTIVE
frame under this page name in the
library o
WE SEYETD, - Replace the contents on the
already existing page of the .
library §
| |
T, B49FRAME HIsSTRINGS - Declare frame ;
T, de IV PHLSUSE ALTE. HEMVER, CHORSES . ESFPL . COFY - Put a page into W1 frame ;
FALTE.HEWYER., CECASES, EXPL. COPY USED RS W1 I
Tdoam. 217 - |
W1<SET MAME ESFIMP. - Reset the page name of W1 frame
. _ . .
ALTE. HEWMYER., CECASES, ExPINF. COPY IS THE HAME OF W1 ' ‘
T ,oam, 257
Wi SAYE - SAVE contents of W1 frame
ALTEHEMYER. CECASES, EXPTREP, COPY SAVED.
44




SAVE [*]
PURGE

Library Statements
[frame-id/] PURGE [library]. [shelf].[book]. [chapter]. [page]

The specified page is eliminated from the library. If the specified page
is the only page in its chapter, the chapter is eliminated from the library.
If this chapter is the only chapter in its book, then that book is eliminated
from the library. Finally, if the book is the only book in its shelf, then
that shelf is eliminated from the library. If the page name is incompletely
specified, its library, shelf, book, chapter, page parts will be taken from
the name currently associated with the ACTIVE frame (or the specified frame).

EXAMPLE:

T2, LEANT.EO0K. CHOF,PGE - Set the ACTIVE frame name

[

11.21013%5ET- HAME A
HLIB:QEHHT.BDDE.tHUP

11,322,327

t
—
.

F33 IS MAME OF  WORK

SHOW PAGES ALIR. . . . . = Display the library ALIB
HALIE SERANT L EBOOE OHOR L PGEALL .

. " .- LLOH
. . F13l
. . " S AP
JIHELF LEE oH D
Lata e
. Do « CHAP . FRIGE
11,244,247

FURGE  Fi2 ' * " - Purge PG2
ALIE. SRAHT. B0, CHOF, 932 FURGED.
11,25, 327

FIIRGE SHELF. L CHAF.FHGE - Purge PAGE (resides on

H&i 2. SHELF . BOCK . CHAF, FAGE FURGED. different shelf and chapter)
LEELBET -

SHOK PRGES ‘r'u_Igi.l_: <. ' - Display the library to show
ALIE CaRAHT L BOGE « CHOF o FCHLL there.are 2 less pages in

. e . G
SHELF LB L .CE
. s - - » ::': :': :":
P ey B ?FRAME WissTRIMNGS : ~ Declare frame

ol dn 1L SUEE ALTE. HEWVYER. CECRSES, EXPINFP, COPy - Put a page into W1 frame

OECASES. ESFIMPLCORY USED AS 1Y

HLIE . HEWVER
1,53, 18

W1CFURGE EXPIME. - Purge a page in W1 frame

HLIEHEWVER. CEORSES, EXFINP. COFY FURGED,

45




Library Statements

[frame-id/] VOID

This command disposes of the contents of the ACTIVE frame or the specified
frame but it retains the library page name assigned to the frame. To void
other frames the user must precede the command with the frame name and a slash.

EXAMPLE:
68,52, 417056 ALIE. NEWYER. CKCRSES. TEST.FROGRM - The page to be,edited is read
AL IE, HEWVER, CKCASES. TEST. FROGRM USED AS HORK from the data base library.
a5.53. 189
55.55.377L15T 1.3 | :
.1  =FROGRAM MATH{SFILE:DFILE,QUTFUT+3; - List first few lines of page.
8.2 . =PROGRAM MAIN{SEILEsDFILEsQUTEUT+Y}"
5.3 = . ‘
G5, 54, B30
85.54. 1379010 = VOID the active frame

88.55.257 contents™

LIST ALL 1 ' . :
NO ITEMS IN SPECIFIED RRANGE. ~ Contents have been voided.

B88.355.377

SHOMW HAME . .
ALIB. NEWYER.CKCASES. TEST.PROGRM IS HNAME OF WORK = Name remains in tact.

o o A=
88.55.477

.1 4,30 VIPFRAME ALsAZ:STRINGS Declare frames

14,568, 59A1-USE ALIER.HEMYER. CKCASES. TEST. FROGRAM - Put a pagé into Al frame
Fl. I'E: HMEWYVER, CECASES, TEST .. PEOGEAN USED A5 Al
14057 347R1 G010 - VOID Al frame contents

14,57, 59701 <5HOM HARE

Al frame still retains
the pagename ’

HLIB.HEMWER.CHDHBES.TEST.PRDGRHN I HHME HF Al

46




VOID

oranm
[ N 2 )

Library Statements

STORE  1library.shelf,book.chapter.page

The STORE statement allows the user to save the current environment
on a specified page in the library. The current environment includes
TYPES, VARS, ABBREVS and FRAMES.

EXAMPLE:
B3.5L.0LITVRL DIRL: REALI
HY,21, it FI:5:%+Z2s REALS
39,51, 489ABEREY F1 PRINTLMI .
59,52, EREY It IMSERT; - (Current environment.
43,52, AHE FLaF2: STRIMGS
99,52, 155 Y=EGF  FI=3.14
3,52,

- ) .STEEE ALIB. TEST.FROGRAM.ENYIR. AUGY - Store the above
ALIE. TEST.PROGRAM. ENYIR. AUGE SAVED. environment in a
library page. -

47



Library Statements

RESTORE  library,shelf.book.chapter.page .E
The RESTORE statement retrieves an environment previously stored i
in a page. This means that all current VARS, TYPES, ABBREVS, and ;
FRAMES will be replaced with the environment previously stored on a |
library page. If RESTORE is contained within a group of statements i
being executed, the statements following the RESTORE are not executed. f
At present, values of VARS and contents of FRAMES are not being restored. : !
|
1
} - This environment was 5
‘ stored on a library ;
page. 3
N C RPN } |
%
< ?
B 1 IHSER |
' e PRIHT » - This is current
EL I B i WEES environment, ?
g YrREALS 3
B i REAL: ;
" o RERLS {
VBT "+ REALS |
L i RERL r
5 " EE@LE J §
5 i REALS I . .
e, 55, fETRESTORE ALIE, Hillz3 - Restore the environment !
COMTERT RESTORED:D ALIE. i .AUGE  to the one saved on this
Be, 56, 657 , .. hase. -
SHOM ABBREYSE SHOMN YWARD: PoX (R |
: i ERT :
3 5 PIHTLH :
mL€ p - These statements
-:Lg show the saved !
;Lf environment has !
HLE been restored. ?
AAE +RE s |
|



RESTORE
FRAME CONCEPT
TEXT EDITING STATEMENT

Frame Concept

A working frame is used for temporary storage during editing. It may be
a copy of a library page which is being modified or may be entered entirely
by the user. There are 10 working frames available to the user. A default
frame named WORK is provided and 9 other frames which must be named by the
user before they can be used. The frames are named using the declarative
statement, FRAME (FRAME W1,W2,W3:STRING;). The user can select a page from
the 1ibrary, put a copy in a working frame where the code may then be modified
using any of the Edit Statement verbs. The working frames are also used for
temporary sforage of code for examination or for use with read only statement
verbs such as LIST, RUN, EXEC, and COUNT. Any of these working pages may at
any time become the current ACTIVE frame by designating a particular frame
using the statement verb, ACTIVE frame. The ACTIVE frame does not require
the frame name as a prefix to the statement verb. In other words, the
statement ACTIVE acts like a pointer. If a frame name is not specified in
the command, then editing automatically takes place in the ACTIVE page. The
default ACTIVE frame is the same as the defaultworking frame, WORK. The example

below may help explain the frame concept better.

FRAME W1,W2,W3:STRING; - user declares working frames

ACTIVE { ACTIVE
frame £
. rame
pointer v
WORK Wl W2 W3

w e
default user defined
frame frames

49



LIST - list the ACTIVE frame which is WORK

W2/LIST - list the W2 frame (W2 is not ACTIVE and must prefix
the LIST statement)

ACTIVE Wl - the W1 frame is declared to be the new ACTIVE frame

ACTIVE
frame
v
WORK Wl w2 w3
SO now
LIST - list ACTIVE frame which is now Wl - W1 was declared

the ACTIVE frame in the above statement.
WORK/LIST - list the default frame WORK (inactive now) by preceding
command with the frame name.

Since the editor must retrieve pages from the library to be modified and
store information in the library, an interface between the editor and library
is required. Associated with each editor frame is the name of a library page
into which that frame will be SAVEd or from which library information will
be retrieved by a USE command. This page name is specified and changed by
the SET NAME or USE statements. The specification of this page name via
SET NAME or USE follows the format and abbreviation procedure discussed in

the library statement writeup on page 40.

50



RANGE COMTEPT

TEXT EDITING
RANGE Concept
The ISIS text editor differs from other editing systems available on the

CDC Cyber system such as the CDC text editor (EDIT) and the XEDIT system,

These systems are pointer oriented, in that the text to be edited is accessed

by sliding a pointer up and down the page. Any line'that the pointer is
pointing to is the line which is operated on by the editing command. In

contrast, the ISIS text editor is.line oriented. It does not reference text

with respect to the position of a pointer.i Instead, the text is referenced
in an "absolute" sense by designating, within each command, the text to be
modified. This means that each line of text must be capable of being uniquely
identified. The ISIS editor does this by assigning a number to each line of
text. The line numbers run in ascending order and represent reference
points for th¢ specification of the text be acéesséd by the editing commands.
Those lines affected by a particular edit command are referred to as the RANGE
of that command. |

The use of explicif line numbers, as in thé context "from line 1 to
line 5," bermit the user to operate on everything within a certain area of
the page. This range specification is referred to as an explicit range.
A secdnd means of designating text to be operated on consists of specifying
a search for all lines having a particulaf chafacteristic , such as all
those containing the string "ABC." This is the familiar search-for-string
facility available in most text editors, énd will be referred to as an
implicit range. Explicit and implicit qualifiers can be combined, as
in "all lines containing 'ABC' between line 1 and ‘line 5.'"

The explicit range, as mentioned earlier allows the user to look

at a certain area of a page, which can be as small as

51



_ be a simple string enclosed in quotes, a STRING

one line or as large as the complete page. Figure 1 shows all of the
possibilities for the explicit range. The explicit range can consist
of one line number (fn). When the range consists of more than one line,
the first line number and the last line number to be considered are
separated by a slash (lnlllnz). It is also possible to put a ligit on
the total mumber of lines to be considered within this.particular area,
In this case, thé total number of lines allowed would appear in bafentheses
and follow the line numbers specifying the particular area (£nl/£n2(n2)).
The first nf lines will be operated on. When the range includes the
whole page the range would be specified by the word ALL. Also available
are multiple ranges separated by commas. This means that more than one
range may appear in an edit statement and they do not have to be in any
order. Line numbers ;sed in the explicit range specifications are
referred to as KEYS and must be KEY type variables. Hence, line numbers (2n)
can be any type of KEY operand, a simple number, a KEY variable or a KEY
expression. Operators in KEY expressions are addition (+) and subtraction (<)
only. The limit put on the number of lines (n%) must be an INT operand such
as a simple number, an INT variable, an INT expression, or.an INT function.
Following are some examples of explicit ranges used with the different
edit statements:

LIST Kv2

INSERT  KV2=,5/KV3/.01(IV3-2)

REPLACE 2.9,SV1/10,9/KV3~-.8(IV2)
CHANGE 'CH' to CAT (SV5,'1') IN KV2/KV3-1(2)

The implicit range allows the user to look at all lines containiugz a

particular characteristic. Tﬁg3characteri§§iéwi§”ﬁédé up'Bfﬂgrgﬁiiﬁg‘Sf“f;

- - ‘o mme em—- -

- om

52

~ ' characters and must be @ STRING operand. The STRING (string-id) can

e o e e



variable or a STRING function. The string of characters may be specified

to begin in 2 specific column (col) or begin some where between two

columns (coll,colz).‘ This part of the range will be enclosed in parenthesis
and follow the string characteristic ('DECLARE'(2,8)). The column number

(col) must be an INT type operand, a simple number, a variable, an expression,

or an INT function. It is also possible to look at all lines NOT

containing a spécific characteristic.. This is accomplished by placing a
NOT in the range in front of the string of characters ENOT 'DECLARE' (4)).
. Lines containing two or more characteristics may be specified as follows:
The first string characteristic is followed by an AND ;r OR which iﬁ.turn
is followed by the second characteéistiq ("DECLARE' (2,8) AND ‘PARTI').

Following are some examples of the implicit ranges used with some of the

edit statements:

LIST !'CH!

REPLACE SV2(34,1IV3)

CHANGE SV1 to 'XX' 1IN 'CH' (29,36):M
ADD "' AT SV1 1IN '777B!

The implicit and explicit ranges can be used together. This allows the

common character string search to be restricted to a particular area
of the page. This implicit part of the range is stated first followed

by the word IN which is followed by the explicit range as shown  ~

figure 1. ﬁxamples of this range combination are shown below:

LIST SV1 AND NOT ('IN') 1IN 15.4/20
REPLACE 'CHQUO' IN SV1/SV2+5(4)

CHANGE 'MAX' to 'MIN' 1IN 'BITS' 1IN 3/4
ADD '#' AT 20 1IN 'LB' 1IN .5, KV2-KV1

53

- r————————




The INSERT command, since it does not deal with existing text, differs

- radically from the other edit commands in its permissible range specifications,

Obvidusly, the implicit range (string search) has no meaning since the text
does not exist. For the same reason the explicit range, ALL,.F,.L, and .C,
are not applicable to INSERT either. The explicit range for the INSERT
statement differs slightly by allowing the user to specify an incremental
option (inc) separated from the line numbers by a slash (Rnl/znz/inc). This
is the increment between line numbers that ISIS uses when assigning line
numbers to the text being insérted. The incremental value (inc) must also

be a KEY operand, but may also include an integer function.

54




IMPLICIT Range

Vs

.

Range =

EXPLICIT ran

©  EXPLICIT Range Syntax IMPLICIT Range Syntax
vt
& \
7~ LY : (Ot !
(1) )
:{> Iﬂl—l:ftf:jl*l}“\k
ta} string-1d
[ St |
¢ _ | ‘orae/ J = =
O =
Shered
Viere: string.jém E@ Ve * STRINS overend
tae 1‘:\«&:!' ll wwee & (LY Operand Sikﬁzt;r—u‘_-:e
KLY variadle f—— STAIRG functoon
mr fw_mfon col» Ll '_-:r_} { - 107 epcrend
st e * 16T poeranc Lli;”:‘h._lf.l .J
-f]kl varnable " .—If—m’—lﬂ
Wi esqeesticn
Range Options: string-id - edit 11 lines ccntaining
this string characteriu-
fn -~ edit line number &n tic
fn (n2) - beginning with line string~id (col) - edit all lices containing
number fn, edit nf this string in the coluan
nunber of lines numbex col
2n1/£n2 - edit all lines between §string-id (coll,colv) -~ edit all lines containing
and including in & ﬁnz = this string and appearing
lnlllnz(nk) - edit lines between and between the columns, °°11
including n; & fn, and col,
without éxceeding ol NOT string--id - edit all lines not con-
number of lines . -
taining the string-id
Qn/2n2,1n3,2n4 - edit multiple ranges. where it may be any of
They do not have to be the above options
in any order. Any of string-id {ANDI
the above ranges may be - OR § - edit all lines containing
used. string-id string-id {AND OR}
All - edit all lines in the string-id where the
frame string~ids wmay be any of
: - the above options
.F - edit the first line in
the frame.
.L - edit the last line in
. the frame.
.C ~ edit the current line
in the frame.

Figure 1.- Range concept for text editing commands.

55



Text Editing Statements

FRAME  frame-id(s) : STRING

The FRAME statement allows the user to declare the working frames. There
is one default frame-id, WORK, but the remaining available frames (9) must be
declared by the user with this statement before they can be used.

EXAMPLE:

56




FRAME

Text Editing Statements : ACTIVE

ACTIVE frame-id

This command allows the user to activate any working frame. This
means that the statement verbs referring to a particular frame will not
have to be preceded by the frame-id now.

EXAMPLE:

57



Text Editing Statements

ERASE {abbrev-id(s)ltype-id(s)|var-id(s)|frame-id(s)}

The ERASE statement removes the specified types, variable-ids or frame
name from the identifier tables. Morc than one id may be erased at one time
with ids separated by a comma. Caution should be exercised when using ERASE.
Erasure of the ACTIVE frame is not allowed.

EXAMPLE:

Declare frames

i g - Show frames
"F1 a0l H
TR® il :
a1 I 1) H
A W
13, %
- Erase frames, F1,X1
13, - Frames F1,X1 now erased
Fe S TR THGS
YHEE W m TR THGS
13,35, 5397
13,7 AETIVE e - Make X2 the ACTIVE frame
RCT e de R
SHOW F
YED PR : G
LT LR AN VOomTRIMGS
U | 'EEHEdE e - User cannot erase the ACTIVE frame

TOMAY HOT BE ERASED .

58




Text Editing Statement

[frame-id/] LIST = [range] [:[ {NIINK}], [V], [T]]

Thé LIST statement is used to view all or part of the ACTIVE frame or
specified frame. The range is optional and if not specified, the entire page
is listed. The range may consist of the implicit and/or explicit range

discussed on page 55. In addition to this range are two range options:
.L which lists the last line

.F which lists the first line of the frame and
of the frame. The display option follows the range specification and is described
below:

- do not display the contents of the line,

NI (NO ITEM)
only the line number,

Display Option:

- do not display the line number (key)
only the contents of the line.

NK (NO KEY)

- user may VETO or Verify Listing by
responding to 'OK?' with:
Y - YES continue listing
N - NO do not 1list
K - KILL terminate listing and
abort command

V (VETO)

(3]

1

(TAG) - Display tag-ids

INFLICIT

EXAMPLES:

12,45, 239USE ALIE
GLIB.HEWYER. CKCASE

12.45,247

- -

.NEH?EE.CKCESES.TEST.PEDhm
S.TEST.PROGRNM USED RS HORK

1 =~ The page to be edited is read
from the data base library
into the ACTIVE frame,

VAR EY1sSVZISTRING:
13,48, 537VAR 1YL IV2: INT:
13.47. 182 -
SWI=*CH?: Sye=*LEH’:
12,498,082 Ivi=14;
13.42,23%
LIST CRT(SYI*HOT ' » = List all lines containing the concatination
1.2 = CHHOT = *#°3 of '"CH' (SV1) and 'NOT' - CHNOT -
12,49, 059%
dwe o 0w
LIST svwZigx - List all lines containing 'LEN' (SV2) in
1.5 = IDLEN = 1&: column number 6.
1.6 = HMLEH = 73 | -
1.7 = IHLEH = 523
Be - = YHLEH = T3
13,949,437
LIST 9777 CIV1sIY1+2y - List all lines containing '777' in columns
2.2 = ELEMBXY = z77vE: 14(IV1) thru 16 (IV1+2),
2.5 = EYDMAR = FFPVTTTE:
3.3 = LEUMRY = FFFFrvE:
.58, 207
LIST S¥1 ArD HOT *IH' - List all lines containing 'CH' (SV1) and
A.7 = CHELEHK = * @3 not the string 'IN'.
A, = CHRUOTE = *:99 ‘
6.9 = CHIZERQ = *@*;
1. = CHEOQL = *393
1.1 = CHSEMI = *3°;
1.2 = CHHOT = *&+3 59




09,231,460 7JSE RLIE, HELY "-'E.l JWCHEES, TEST.F=0OGEM - Read the page to be edite
FLIE: HENYER. CECAZES. TEST.FROGREM USED A5 WORK from the data base library
T ED.22 3T into the ACTIVE frame-

"F.E' 141, Jus >y WS, Kuas KEYS )
@2.33. 17%YAR IV2: INT

G9.33. Z97¥AR 1¥3: INT

89,.33.49% Iwz2=25 1vY3=5;

§9.34.867  K¥1=28 Kv¥2=.2j KV¥3=2} K¥4=6;

5%.34.457

LIST KY2 - List line .2 (KV2).

_ @8.2  =FROGRAM MARIH{SFILEsDFILE,OUTPUT+)
49.35.58%
LIST EYZ+1(3) e - List lines starting at 1.2
i.2 = CHHOT = '2%; ' (RV2+1) with a limit of 3
1.3 = HIOELANKES = °* . lines.
1.4 =
g9, 35,307

- List lines beginning with

LIST .3/KY3-. 63
8.2 = CHZERD = '@°; .9 through 1.2 (RV3-.8)
i. = CHEOL = *#*3
~3.0, = CHSEMI = *35*3 .
1.2 = CHHOT = *&°*3 : :
C‘EE" E‘sn 54‘?
LIST 2.S5/K¥1-15¢SaRCIVaYY R ] . -'List lines 3.5 through 5.
2.5 = EYDLEN = 25&35 (KV1-15) with a limit of
3.6 = EBYDMAY = 7PT7eTES 4 (Kv2**2) total lines.
3.7 = ‘BYDSYH = -13
3.8 = BYDFIRST = 23
39.58.26%7
LIST K¥2, S.1/7KM4-EwziIve KY¥3+.,1-KYS+.25!' - List 3 separate
8.2 =FROGREHAM HHIH‘.:\FILE:JFILE uLITFUT-!-\' ranges. .
=
;.%' : THTH = 13 1) line .2 (KV2)
:’,"'i' - ELI""' hd ,,;._.. ! ' 2) 1line 5.1 through
- p '_‘::ff-’li‘. -7 5.8 with a limit
..-.:‘.:;': .-".“: EL} LE'4 - .’-s'd’ . of 2 lines
Ule il oDt ! . . 3) line 2.1 (KV3+.1)
through line 2.2
(RKV3+.2).

- -Declare frame

- Put a page into the W1
frame.

- LIST a few lines of the
W1 frame.

GLOBAL COMSTANTS #3

I ) w. 8 om 3%
LA Sl B |

60




INSERT

Text Editing Statement

[frame-id/] INSERT range

The INSERT statement is used to add new lines to the ACTIVE frame or specified
frame., INSERT differs from the other edit statements because it adds new lines to
a frame instead of operating on existing lines., Since INSERT is not working with
an already existing line, an implicit range for INSERT does not make sense.

The explicit ranges, ALL, .F, .L, and .C are not applicable to this command either.

The explicit range differs slightly by allowing the user to specify an
incremental option (inc) separated from the line numbers by a slash (&n./%n,/inc).
This is the increment ISIS uses when assigning line numbers to the inserted text.
The incremental value (inc) must be a key operand (see below). If inc is not
specified in the range, then it will assume the current value of the system
variable, SYSTEM.DCLTA (see page 14). The user is prompted for successive lines
to fill the range. Inscrtion may be halted by depressing the BREAK key. A
range must be specified and may be taken from the table below.

Range = | for} }

wm

= KEY operand

(e

KEY expression

iNT function

LY

« INT operand

0T variable

"11NT erpressien }'*
14T function
)l

- 1
KEY variable

KEY expression

inc = = KEY operand

Range with inc: in/lnz/inc - insert lines between and including in and 2n2
incrementing the line number by inc,

n//inc - insert lines beginning with 2n, incrementing the
line number by inc, until the user halts insertion
by depressing the BREAK key.

NOTE: The user should take care and not insert lines overlapping already existing
line numbers. Insertion must be made between two existing line numbers.

61



16.57. 427128
iLIE. HEWYER,
1,352, 287

ALIE.NEWVER, CKCASES, TEST,
CHCRSES. TEST.PROGRN LSED RS
YRR KV KYEY Y3 kY REY

EXAMPLES: -
S4PYAR IV1sTYZ, V2, Iva: THT:
117

INSERT KM2-,5/7KYZ

1T Oy Ny 0T
L ] - L ]

'.'.ﬂ NN

=4
DA

DN Y

T':'-'x
el

“MIH

-
)
m
)
-4

-{
m
et |

| .

| 17,14, 887 IMSERT H?ifﬁ?1+.85f.a1{zw3-zw33
| 1.41 = :

% e

; ;I‘r; -

| 1T 14,577

IMSERT K¥1+.85-1.485-K05+KY3
1.46 =
1,462 =
1,464 =
1.46€ =
1,465 =
g, =
17,23, 447

PPFREARE AL HZSTREIMGS

HAME AL TE. GLDVER, CHOASES

[ P S8 R |

THE HAHE

C OTECRLES . TEST. PROCESM 1o
HLTE, OLTVER, CROASES, TEST, PROGEAM 14

15,63, 487YAR KIMCIEEYS KIHD=. 53

L5, 87, 247A 1 THZERT

EAZS8, S IHE

vy —
f
el

e

{ o
o =
b

The page to be edited is read
from the data base library
into the ACTIVE frame,

- Insert line number .41,

= INSERT beginning with line 6.5
and an increment of .(Q01.
Insertion may continue until
user depresses the BREAK key
which will then abort the
command., :

- Insert beginning with ligpe 1.4:
through line 1.46 with an
increment of .01, but with a
limit of 2 lines.

Insert using different ranges.
(1) Insert beginning with line
1.46 going through 1.469
with an increment of .002.
(2) Insert a line at 8.

-~ Declare frames

CELTEST, PREOGRAM - Set pagename of Al frame

GF [

- Declare variables

- Insert information on the
residing in the Al frame

page




READ

Text Editing Statements

[frame-id]/READ string-var {Al,} &n

The READ statement is used to read a single line of code from the
ACTIVE or designated frame into a string variable. A frame option will
allow the user to read a line from any of the working frames. The
variable where the code is to be stored must be a predefined STRING-
variable. The variable name is separated with a blank or a comma from
the line number (n) where the code is read from. The line number (%n)

is a KEY operand and may be simply the line number, a KEY variable, or a
KEY expression as shown below.

n = - , Number

KEY variable

KEY expression

If the linc number (£n) specified does not exist, the STRING variable is
set to a null string and no indication is given.

EXAMPLE:

l"' B ety

' sEFiT - The page to be edited
R WORE is read from the data
base library.

TRTHT Ha - Read the contents of line
.5, 3tore it in the
string variable X and
PRINT it to check for
correctness.

63



continued

READ

- Declare frame

- Put a page into the W1

frame.

LIST lines

W1l frame.

in

- Read a line

64



el
e

e ]

faub boob ot jooh jeeb femt
cfeninananon

iy
n
1 e
B

e

WRITE

Text Editing Statements
[frame-id/] WRITE string-id {AI,} n

The WRITE statement is used to add a single line of code to the ACTIVE
working frame. This command is a simple and quick version of the INSERT or REPLACE
statement (since there is no prompt). A frame option will allow the user
to add code to any of the working frames. The code to be inserted (string-id)

.may be in the form of a simple string, a predefined variable or a string

function as shown in the diagram below. The code is separated with a blank

or a comma from the line number (%n) where it will be inserted. The line number
is a KEY operand and may be simply the line number, a KEY variable or a KIY
expression as shown below. Please note that this command assumes that you

know what you are doing - for example, if the line already exists, then it will
be replaced without notifying the user.

in' = string-id =
K=Y variable i string variabie
KEY expression string function i
EXAMPLES:
12: SRR LIE. HEWYER ..L.}1 sEL:.TE T FREOGRN ‘= The page to be edited is.read
.HEWVER, CKDASES, TEST. PROGRI USED AZ MORK from the data base library.
16,487
1.L|_| » ED Z':
e, 19y SY1= SR =50RCRI 28!
ZACEIYHRITE *HLPHMASR=1.847 .45 .
;?HE%@CEQ%E 4ELP-* 1.84 43 - Insert line number. .45 with the code,
45 =ALPHAN=1,847 ALFMER = 1.047.
JETTE S, wye oy
. QQGE?;%E Py 1+, 08 - Insert line number .47 with the code,
JA7 =SO1=SORCR1D: SQL = SQR(RL).
MEITE CRATOZYIs " PEIMTLH SEET D KWL
o 4{1.;.1-1%-[. 41 ., - Insert line number .41 with the
c41 =SRi=SORCRL1NE PRIMTLH SOR code AAA PRINTLN SQR.

65



continued

WRITE

- Declare frame

T

IR

-
i
{

mEN
|

- Put a page into the W1

frame.

(.32)

INSERT a new line

- LIST new line

66



DELETE
Text Editing Statement

[frame-id/] DELETE range [:BNL|NK|NI}],[V]]

The DELETL: statement is used to remove lines from the ACTIVE frame or specified
frame. The range must be specified and may consist of the implicit and/or explicit
range discussed on page 55. Upon deletion, the deleted lines and their line
numbers will be displayed for the user's convenience unless the user has selccted
a display option. The display option follows the range specification and is described
below.

Display Option: NL (NO LIST)

do not display line number or the contents
of the line being replaced

NI (NO ITEM)

do not display the contents of the line,
only the line number

NK (NO KEY) - do not display the line number (KEY)
only the contents of the linec.
V (VETO) - user may VETO or verify deletion by

responding to 'OK?' with:

Y - YES - delete
N - NO - do not delete
K - KILL -« do not delete and abort the

command.
EXAMPLES: IMPLICIT
89,108,297
A%, 18, S17WYARRE ML EY
B, 18, 592VYAR IVl I” Jomy e N Ry ]
69.11.64%7 KV2=,24 hqﬁ Was2s RCCE

ﬁ?. 11,897

8%9,11.137% USE HLIE:.HEU"EF CKCASES. TEST.FROGRM - Put a library page into the

ALIB.MENVER. CKCASES, TEST.FROGEM USED AS WORK ACTIVE frame for editing.
3% 387
ga: H.:S’DELETE *CHEOL® - Delete all lines containing
1. = CHEQL = *#%; . CHEOL
- 89,128,237

DELETE *CH'<.4 - Delete all lines containing

3
8.5 = CHFIRST = *3%s CH beginning in column 4
8.6 = CHLAST = *3%:
8.7 = CHELAHK = ¥ *3
8.8 = CHQUOTE = ****;
8.9 = CHZERO = *B°*y -
1.1 = CHSEMI = *3*s
1.2 = CHHOT = *#*%;
E'go 13- 81? :
' DELETE *INH"%44,45)HL - Delete all lines containing IN
1" ITEMS IN SFECIFIED F’FlNlaE. and beginning between columms
©5.13.557 4 and 45. -
YAR SVI1:STRINGS SYI='MAA®S
@9.18.557 DELETE S¥1 AND NOT “IN® :HL ~ Delete all lines containing
37 ITEﬂ° IN SFECIFIED RANGE. MAX (SV1) and not IN. Do not
09.19.27? want a print out (NL option).

ISIS informs the user of the
- number of lines deleted (37)
67



EXPLICIT

BN ENZ s ENZ EVYATEEYS

G35, ZEPVAR TV11VEs 1v2) Tvet INT3
09,00, 227 KWE=,23 KY¥3=2i Kv4s€i 1v2=2j
B9, 01,057

8%,62.447 USE HLIE.HEHT:R.CVCHcEq.TEuT PROGRM
ALIB.MEWYER.CKCASES. TEST.PROGRM USED AZ WORK
§9,83.26%
89,83, 3STDELETE kW2
8.2 =PROGRAN MAINCSFILEs DFILEs OUTPUT+):

G:‘u B\.‘urp”-

cACINV2)

DELETE
8.4 =CONST (% GLOBAL COMSTANTS #3
8.5 = CHFIRST = *:i's

as, 64,247

DELETE 1.1-KEV2-sKEM3=.2¢HL
IN SPECIFIED RANGE.

97

)

—
L
LA |

v
2
o0

o
i

(‘N

DELETE EMZ-2.S(IVE-IV2D
BUFLEH = 73
ELESZ = 236

ELKLEH =

n

&
2503

S
ot

DA OO
= nn

Lyl
S
XA

IY3=5s

- Delete line .2 (KV2)

- Delete beginning with
line .4 and delete up to
2 (IV2) 1lines.

- Delete lines beginning
at .9 through 1.8.

-~ Delete lines beginning
. at 2 (Kv3) through 2.5
with a limit of 3 lines.

DELETE KV2+2y S.1/KV4- I””’(I”’“nh?°+1 q/KN G- F'C'HI - Delete 3 differe:

e BWWWWLL WU
o0 00 =] Ty U] fa D -

Ve = o & o o » = =

B9, B8, 147
1aul
15,

ML TE. HEMVER,

S 19, 202WM2-TELETE J&80IWan
@.C = CHLAST = Y384
.7 = CHELAME = ® 2

68

5T FEUGRAR

ranges with the option t
print only the line num-
ber. NOTE: The first’
range (line 2.2) has
already been deleted in
the above example.

= Declare frame

- Put a library page into the
W2 frame

- Delete lines residing in W2
frame
>




REPLACE

Text Editing Statement

[frame-id/] REPLACE range [: NL ]

The REPLACE statement is used to rcplace existing lines in the ACTIVE frame
~or specified frame. The range must be specified and may consist of the implicit
and/or explicit range discussed on page 55. The user is prompted for successive
lines to replace the lines in the specified range. The prompt is a display of
the line to be replaced. Following the range specification is the display
specification which is optional and described below.
If you don't want to replace the line, hit the BREAK key and the command

is aborted.

Display Options: NL (NO LIST) - do not list line numbers or
contents of the line being
replaced.
EXAMPLES: IMPLICIT
FOGR - The page to be edited is read from

USE ALIB.MEWYER.CKCRSES. TEST.FROGRM ]
AL1B.MEWYER.CKCASES. TEST. PROGEM USED AS WORK the data base library into the
ACTIVE frame.

2?7 YAR SW1s35Y2s SV3: 8VWE.8VE: uTRIHF

? VAR IW3,IV4: INTS
? S?l"BLV’i SY2='CH*§ &V 4"LE}" SWo=*BLOY S
g IV3=3863 I¥d=4; SYS3 f’LENfTH"

Replace all lines containing 'CHQUO'.
REPLACE prompts the user with line number(s)
and the user types the replacement line(s).

SR - Replace all lines containing the concati-
nation of 'CH' (SV2) and 'ZERO'

« Replace all lines containing 'CH' (SV2) in
columns 34 thru 36 (IV3).. REPLACE continually
prompts the~“user with line numbers until all
lines have been replaced.

. 41144 - Replace all lines containing the concatination
of 'DIR' and 'LEN' (SV4) with a limit of 4
lines. - ‘

POROT OtLERNY = Replace all lines containing 'BLK' (SV1). and
NOT 'LEN' . .

LR el i el



EXPLICIT

| - Read the page to be editec ;
from the data base library -
into the ACTIVE frame

- Replace line .2 (KV2)

- Replace lines 2.9 through and including
4(RV4-2) with a limit of 2 lines g8 total.

Kid-,1-k%¥4 - Replace 3 separate

ranges. ;
1) line .2(RV2) . ;
2) linme 5.1 through 5

5.8 (KV4-KV2) with !

a limit of 2 (IV2)
lines.

3) line 5.9 (RV4-.1l)
through 6 (RV4).

- Declare frames ;

ST. FRUOGERM - Put a litrary page into the @

bl W2 frame :

L5, 1% CHEOIYED ' - Replace lines in the W2 frame .

B, = LEEEN- I

kL |

1. P03 ]
1.

70 , |



CHANGE
Text Editing Statement

[frame-id/] CHANGE string-id [(col1 [,colz])] TO string-id2

1

IN range [:[nLinzink][E],[v] ,[v]1

The CHANGE statement is used to modify existing lines on the ACTIVE framec or
specified frame. An item to be changed (string—idl) and the change (string-id,) are string

operands. They can be a literal string enclosed in quotes, 'ABC,' a string
variable or a STRING expression. The string to be changed (string-id) may be

required to begin in a specific column (col) or begin between two columns (col ,c012).

1
The column specification is optional and if used must be enclosed in parenthesis
following string-id. The column number must be an INT operand. It can be a simple
number, INT variable or an INT expression. The range may consist of implicit and/or
explicit ranges discussed on page 55. It should be noted that only the first
occurrence of the string on a line is changed, unless the M or multiple cccurrence
option is sclected. The display option follows the range specification and is
described below.

Display Option: NL (NO LIST) - do not display the line number or contents
of the line being changed.

NI (NO ITEM) do not display the contents of thellne, only

the number.

NK (NO KEY)

do not display the linc number (keyv) only the
contents of the line.

E (ECHO) - display the old version of the line and the
new version after the change has been made.
V (VETO) - uscr may veto or verify CHANGE by responding to:
'OK?' with: Y - YES - make the change
N - NO - don't make the change
K - KILL - don't makc the change
. and abort the commond.
Multiple
Occurrence M - change all occurrences of the string-id appearing
Option on a single line.

EXAMPLES: IMPLICIT

.FPROCEM - Page to be edited is read from

4,48, 58705E ALIBLHEWYER.CKCRZES.TEST
IE.HEWYER.CHCAZSES, TEST.FROGREM USED RS WORK the data base library.
4.91,28%
VHR SVM1.SVEISTRINGS .
14,42, 147 SWI=TCH'S  SYESTEVD'S
14.42.48% .
CHRHGE S%1 TO CATCSY1s*1@'> IM 'CH® AMI *IH'- Change CH to CH1O
3.3 = E’HlfF;EiT = :=’§ ' in all lines containi:
g, 5 = CHIGLRST = “37%; CH and IN.

71




15,43, 327CHR
8.5

B.7 =
14,44, 27

%)
X

D | -
et -
oS- -
el -
D= -
De T -
4= al )
1 4 - ":’\Jl 1& H
14.45.43%7CHA
] 2 -
S -
- -—
e 5 -
o= -
S ¥ -
2.9 =
-—a
;51 1 :
o= -
- e -
A P -
S =
s 9 3 FO T Y o
4 4 e 1 =14 ;u::‘:'

14,21, 34%YAR
14.322.5607%

2104
}'s s

&4. \w.'. 411'.'\”1
i4.24,857

CHAR

a,1 =FrQ
A,z =FRO
14,335,197
CHA
2.5 =
@, & =
14,258,107

ANGE
BYDSZ =

HGE 3?1
=;u ’jLH

.‘i.”E.LHHI’

11

B DHFAY
EYD3YH

HGE *LEN
BLEKLLL =

TELELLL
HTHDLLL
LFNDLLL
HASHLLL
gvIoLLL

HGE 35

HaEAM
Jff.Pul
HEE &V
CHY = ¢
CHLRST

-’ LY
R
L]

e |
[N B & Wl

s

TO *LLL®

IH *LEN®

(X
n
"
R T

¢

joull
L

Wuwnn

D N GOl SN (X

LU I I A
i

cam caw T T

[ o

TEST.PROGRM USED #s
sKY 30 K4 KEYS

CIVZe VS IVS L INT

EST* IH Ev102)

L.E' L‘FI:.E'

t29sTEY TO CHCHY IH
oK
= 1393

72

IH *CHY (23,3

CHANGE

£2:M ~ Change CH to XX in all lines

AMD

HORE

E-uFIL:sﬂHTFH,+ i
AUTFUT =+

KYE-10351 -

containing a CH beginning in line
29 through 36. Also if more than
one occurence of CH appears in a
line change them all (opt = M).

-~ Change 1 to 150 in all lines
containing BVD.

Caak

* = Change LEN to LLL in all

lines containing LEN and 250

- The page to be edited is read
from the data base library.

- Change MAIN to TEST in line .1

for 2 lines.

.

Change CH beginning in

" G

line 29 through 36 to XCH
in lines .2 through 1 wit!

a limit of 2 lines.



A

CHAHGE TO IMIN®
2.- = EBUFLEN = 7;
2.2 = BLEMIH = 2777E:
5.2 = LRUMIH = 777FP7E
S.4 =  HOLDWIN = 7Ei
TMPLICIT AL EXPLICIT
14,56, GSPUSE ALIE. HEWVER, CKEAS
LIB. HEWYER, CHOASES, TEST. PROGRM USED AS WOPK
14,58, 157
VAR SV1:SY21STRINGS
14,958,287 SY¥1="CH'S S¥2=7BYD':
COUNT *HANS
£ ITEMS IM SPECIFIED RAHGE.
14,58, 5470HANGE *HAXT TO 'MIN® I "EITS' IH 2~
3.6 = DHIH = FPTTTES
14.51.,23%

73

4—

CHANGE

IH E¥3+2.329KW4-, 7 KY4{Z23: 1 -~ Change MAX

MIN in 3 ranges. Also cham
all occurences of the string

- appearing in one line (M).

(1) line 2

(2).line 2.3

(3) line 5.3 through 6 with a
limit of 2 lines.

‘85ES, TE T.PEOGRM - The page t:o be edited is read

from the data base library.

. e
A

- Count all lines containing MAX.

Change MAX to MIN in all
lines containing BITS within
the line numbers 3 through 4

- Declare frame

- Put a page into the W1
frane.

- LIST a line

- Change a line in W1
frame.



Text Editing Statement

[frame-id/] ADD  string-id [AT col] 1IN range [:[NL|NK|NI] JLE] L[V] ]

The ADD statement is used to alter existing lines on the ACTIVE frame or specified
frame. The item to be added must be any type of STRING operand. It can be a simple
string enclosed in quotes, a STRING variable, or a STRING function. The string-id
may be required to be added AT a particular column (col). This AT col specification is
optional and if not specified, the string-id will be appended to the end of the line.
The column number must be an INT operand such as a simple number, an INT variable,
an INT expression or an INT function. The range must be included and may consist of
implicit and/or explicit ranges discussed on page 55. The altered line contents and
line number are listed unless a display option has been specified. The display options
are described below. '

Display Option: NL (NO LIST) = do not display the line number or the
contents of the line being added.

NI (NO ITEM) - do not display the contents, only the
number.

NK (NO KEY) - do not display the line number (key) ozly
the contents of the line.

ECHO -~ display the old version of the line, and the
altered version.
V (VETO) = user may veto or verify the additions by responding
to 'OK?' with: Y - YES - make addition
N - NO - don't make addition

K - KILL - don't make addition and
abort the command.

EXAMPLES: iMF

18,85, 127USE F R.CKOASES. TEST.FROGREM - The page to be edited is read

19,15, 21%R.CECHS . PEOGEM USED RS WOREK from the data base library.

1,153,287

AR SV L SV SRy SVS I STRINGS

10,15, 20979AF EVL BV KYRLEEYS

I 15.297YAR VML IY2L IHTS

16,15,4327 :

15,15, 4675y =2 FRIMTLMS 'S SWE='{#ADD-MO COL OFT=3':

1S 15,5878 3E="s EVWi=1,3  KYE=1.TS IVi=20;

12.15.547

1 15, 389800 *#Y AT IY! IN T in column 20 in-.all linescontaining 777B.
243 = BELEMAY = 27PTTBY =+ HUM OF BLOCKS-PRSE: 11 BITS =3
2.8 = EYIMAKY = TYrrrross . HE HUM OF BLOCKS-LIERARYS 12 BITS =
5.3 = LEUMRH = FFFT7TTE=: % MAR VALUE OF LRUS 12 BITS =3

s, 15,457

ROT =¥2 AT ¢ IM *LEM®(S3- Add an X in column 9 in all lines containing LEN

1.3 = IDLEHY = 1as % LZHGTH OF AM IDEHTIFIER #: in column 6.
1.5 = HMLEM® = 73 v# LEMGTH OF A DIRECTORY HEAME #3
1.7 = IHLEH® = 223 v# LEHGTH 0OF AM IHFUT EUFFER =3
Lo = VYHLEME = T3 i% ZTORED YERSIOMS ALLOWMED FER PRGE #°

74



ADD

...;r‘p.-t

PLICIT
r’:'-.iZ-S.I-'.U".‘_ ALIE.HEKVER. CECHSES. TEST. FEQGRM - The page to be edited is read from
IB.HEWVYER. CKCASES, TEST, PROGEM !" ED RS WORK data base library.
E.35, 287 _
VAR SW1sSYZa5Y2:5V4: STRIHNG:

18,87, 13%YAFR EVi. KY2sKVIIKEYS

16,87, 2TYYAR IVi. I?”'INTu

15,87,.82% )

16,87, 57951 = PR MTLMI s syo=: CERDD-MO CoL CPTx23

15,83, ﬁﬁ’° 3=PEYE O OKVI=t.s V”°-1.T= IVi=2m;

1,89, 487 )

15,69, .'-‘“HIITJ ' FRINTLHE? AT IY1+9 IN ,2¢2) - Add PRINTLN; at column 29 in lines
f.2 = C Hn”n,g ="313 '3 ;:pmn_u; beginning with .8 for 2 lines.
a,9 = CHEZERD = '@ . PRIMTLHM:

. 18,2327

ic. 13, 397

BoD =wi IH Ev2-.2 - -~ Add PRINTLN; to line 1.4
1.4 = FRIMTLHS '
12,183,597 .
DD SWE IM KWl KWi+, 2 - Add (*ADD-NO COL OPT#*) in lines 1.
1. = CHEGL = *$7§ (%[00~ =Ml COL QPT#x through 1.2
1.1 = CHSEMI = *§'i¢#ADD-HO COL OPT#3
1.2 = CHNOT = 3 C# ONLY USE OF THIS CHARACTER =%¢#ALD-HO oL
-1
ig.11,.297
ADD "#' AT 28 IH ,S.KY3-pyy - Add # at column 20 im 2 ranges -
8.5 = CHFIRST = *:s0; & t# FIRST CHARACTER IM CHAR =5 (1) line .5
A, 7 = LHELAHK = * *§ & C® lnHFHlTEF ITEMTIFIERS =3 (2) line .7
15. 14! BS‘-

- Declare frames

LR - Put a library page into the
W2 frame

- Add lines in the W2 frame

75



Text Editing Statement

MODIFY range [:S]

The MODIFY statement allows the user to make changes in a line of code
without retyping the entire line. Modify displays the line and then asks the
user for alterations to the line with the prompt, "Alters?'", The user then types
in the alterations using the following modify commands:_

.

space bar - This leaves the character unchanged.

!

B B will delete the character appearing directly

above it and replace it with a blank Space.

|-
I

D will delete the character appearing directly
above it and the rest of the text on the line
is shifted to the left one character.

I - I will insert a string of characters before
the character that appears directly above it.
The characters being inserted must be enclosed
in quotes and directly follow the I commangd.
NOTE that the characters appearing above this
inserted string cannot now be modified. All
commands apply to the character that appear
directly above it. The multiple pass option
can be used to solve this problem.

R = R will replace any number of characters with
a8 new string beginning with the character
appearing directly above the R. The string must
be enclosed in quotes and follow the R command.
NOTE ‘that the characters appearing above the
replacement string cannot be modified., All
commands apply to the characters that appears
directly above it, The multiple pass option
can be used to solve this problem.

- s a -

The range must be specified and may consist of implicit and/or explicit range

discussed on page 5], Modify provides multiple prompts to the user for a single

line, as many times as the user sees necessary to complete the modifications.

A carriage return  with no modifications preceding it will discontinue
prompts for the current line and go onto the next line in the range. The BREAK
key will abort the command with no modification made.

A single modification option (:S) is available which provides the user with
only one prompt for modifying line.

76



MODIFY

EXAMPLE:
12,37 2VTUSE ALIE, HEWVER, CKCASES. TEST. PEOCRANM
RLIE.MEWVER, CKCASES. TEST.FROGRAM USED RS WORE

13,38, 17"MODI NS P
8.1 —FFDGFPH1 MAIHCSFILEsOFILEs DUTPIT+ 53 - Modify lines 1 through 3
ALTERZ® DL R*SUEP I'PH? with multiple modes per line.
8.1 =RROG SUBRCSFILE.PAIFILE QUTFUT+ 53
ALTERS? E I'UB®
8.1 =FROG SUE (SUBFILE,FPADFILE«OUTPUT+:
ALTERS? - Yo more mods. Hit CR
a3, 2 "‘:'Fl"GFHM MAINCSFILE-DFILE s OUTPUT+03 - Modify line .2
ALT - No mods. Hit CR
B.3 - Modify line .3
H f - % mods.

]

Hit CR to abort command.

- Declare frame

- Put a page into the Wl
frame,

- LIST a line of W1 frame,

- Modify a single line in
W1 frame. [:S]

More Modifications required '
to line .2,

77



Text Editing Statements

[frame-id/] COPY range TO {zn[//inc]}

The COPY command allows the user to copy an existing line or lines of code to
another location within the ACTIVE frame or from a specified frame to the ACTIVE
frame.
copied remains unchanged and will now appear in both locations. A range must be
specified and may consist of implicit and/or explicit ranges discussed on page 55.
The new location ( &n) must be specified. The increment (inc) is optional and has
a default value of SYSTEM.DELTA, The new line location and increment are both KEY
operands and can be any of the following.

2n and inc = number

The frame copied to is always the ACTIVE frame. The line or lines being

KEY variable

KEY expression

Upon execution of COPY, ISIS displays the number of lines copied in the last
line number.

AMPLE IMPLICIT
15,684,337 YAR I’ INT,
16,855,467 YRR bTFT IMC1s THCZ: KEYS
o B, B84 YAR SY1ySYSySYStSTRINGS
15,88 23?
USE ALIE.HEWYER.CKCASES, TEST. FROGRN - Put a library page

ALIB.MNEWVYER. CECHZES. TEST. FROGREM USED RS WORK ' into the ACTIVE

15,88, 547 working frame for
THT=TST Sui=tELke * A e N R S N editing.
15,882, @°“1N|1=.ﬁUls INCZ=, Y
12.89,287 : :
COPY *CHEOL® TO 7.. STHCZ ’ - Copy all lines con-

1 LINES IHMSERTED. LAST LIHE IH ERTED IM MWOREK : 7. taining CHEOL to line
15.0%,539 7 with an inc of ,002
18,18, 99%2C0PY LHT-“&-.’ZERD’W TO STRT~~.061 - Copy all 1lines con-

1 LINES IHZERTED. LAST LIME IMSERTED IN WORK ¢ 7.4 taining CHZERO string
1,148,347 function to line 7.4

_ with .001 increment

) COPY SY2(34,IV3: TO STRT+.002--IHC1+INCE - Copy all lines

2 EIHES !HEEETED. LAST LIME IMSERTED IM WORK : V.48%  containing CH be-
le,11,25% o ginning in col 34

thru 36 to line 7.402
with a .003 increment.
COPY CATLPHASH? +SW4s AMD CATCSY1.S¥4) TO 7.9 - - Copy all lines con-

! LIMES IHSERTED. LAST LIME IMSERTED IHM HUFF : 7+9 taining HASHLEN and

18,12, 237LIST 7.9 BLKLEN to line 7.9
7. = HASHLEH = 235093 % BELELEH~HASH:SZ #3 with a 1 increment
15,122,437 ' (default)

78




COPY

EXPLICIT

9%.51.5€7 USE ALIE.HEWYER. CKOASES, TEST. SROGRM - Put a library page into the
Fil IVER. CHOASES. TEST. PROGRM USED AS HORK page for editing.
T 45
7% 2T VAR S1:%1sY2sIMCZILNLsLN2sSTRIIKEYS
a3 2% VAR HL: IHT
a3 30 Yis=, 13  S1=.82% Yo=2.i IMC2=. 881
A3, 54,520 WS=5.F HL=3i LHi=1.1} LM2=1.23
.';;i ﬁ i:-: 2 : }:: E '.l.'
43,55, 529 STRT=7. 4}
YRR STRT . KEY
55,56, 229 | -
83,56, 459C0PY 1 TO STRT+S1 - Copy line 1 to line
{ LIHES INSERTED. LAST LIHE IMSERTED IH WORK : 7.4z 7.42
59,57, 109LIST 7,42 : ‘
7.42 = CHEOL = *5°;
H5.59, 13TLIST LHLC2%5 CORY LHI'-! TO WE+.Bloo.881F LIST 2.01-2.62
1.1 =. CHIEMI = *i’3 S |
1.2 = CHHOT = r#t; ¢+ OMLY. USE OF.-THIS CHARACTER #3
G LINES INSERTED. LAST LIHE INSERTED IN WORK ;2,811
Z.81 = CHSEMI = *:i°3
L2011 = CHNOT = v47s ¢+ OHLY USE OF THIS CHARFCTER &9
i, 8o, '.l‘q :
LIZT 1.1:1.2
1.1 = CHSEMT = 7i°;
LLiE = CHHOT = e (+ ONLY USE OF THIS CHRRACTSR #°
JRL L T
COPY LHZ-Y1 2, +¥1CS0RCNL=13) TO YS+. 83 081F LIST S.02-5. 04
4 LINES THSERTED. LAST LIME INZERTED 1N anpr P 5. a3E
S.82 = CHSEMI = *3°%
S.831 = CHHOT = 413 (# OHLY USE OF THIS CHARACTER 9
S.922 =  WDBLAMKS = ° '
S.833 = -

Declare frame name
Put a library page into the
W2 frame

e G R R

- Copy lines from W2

Sasd T 1By

LARST ITEM ITHSER

frame
, - List the list lines copied to
T GLOBAL COMSTAMTES 0 the Active page

LI D N P - List the lines in W2 which were
B, H = copied

79



t

Text Editing Statements

[frame-id/] MOVE range TO {.zn[//inc]}

The MOVE command allows the user to move an existing line or lines of code
from one location with the ACTIVE frame or from a specified frame to the ACTIVE
frame. (The frame moved to is always the ACTIVE frame,) The line(s) being copied
in the old location will no longer exist. A range must be specified and may
consist of implicit and/or explicit ranges discussed on page 55. The new line
location ( 2n) and the incremental value (inc) are KEY operands. The increment

(inc) is optional but must be specified when moving more than one line. They
can be in the following form:

fn & inc = ' number

KEY variable

KEY expression

Upon execution of MOVE, IS
number,

EXAMPLES:  IMPLICIT MOVE

IS displays the number of lines moved and the last.line

' T

13,167 YAR SVl SWIISTRINGS
13,587 YRR IW4yHUM: IHT:

16,087 VAR THCLESTRTHIEEYS

15,247 SWI='ELEYS  SW3='CHE':  IWa=d% INC1=.351;
o1

o1

) -
=

DURREI Il 4

18
15
15
16
16.17.857  HUN=S2i STRT=F. 4§

16.17.257

USE ALIE.MEWYER.CKLASES, TEST. PROGRM = Pur &

1 - library page into the ACTIVE

ALIB.HEWYER. CKCASES. TEST. FROGRM LSED RS WOREK frame for editing.

16,17.5%°?

° MOYE S%3 TO F.1--IMCY - Move all lines con-
1 LIHES IMZERTED. LAST LIME IMSERTED IN MHORK 7.1 taining CHS to line

ig, 13,287 - 7.1 with a ,001
. LIST s¥3 increment

7.1 =  CHSEMI = *j*; = This listing shows the line has
16,12, 4¢7 been deleted from its original

: location.
MOYE CRTOSY1.9MAR >0 Iv4r TO STRET+.1-7IHC1 - Move all lines con-¢
1 LINES IMSERTED. LRST LIME IHSERTED IH WORK : 7«3 taining BLKMAX in
15.19.317 col 4 to line 7.5
¢ Wwith a .001 increment
MOYE PUSE* ¢HUM DIV 2 TO STET+.3-7,881 . _ = Move all lines con-

< LINES IMSERTED. LAST LIME IMSERTED I WORE - : 7+ f91 taining USE beginning

15,208,127 ¥ in col 29 to line 7.7

LIST 2usE? with a .001 increment
1.2 = CHHOT = *493 “% OHLY USE OF THIS CHRRACTER 3
Tev = THLIMIT = 2a: C# USEFUL LEMGTH OF IHMFPUT EBUFFER &
T.7A1 = ELKLEH = 255: : (# USEFUL CELLS PER EBLOCK *2
15,208,347

'This LIST shows the lines

containing USE in col 29 have
80 been deleted from their original




MOYE SY1 HHD HOT °LEH’ TO 2--. 04 MOVE

LIHE" IHZEFTED. LAST LIME IHSERTED IH HORK

LOQ—LI"U Ldo we 7

-

.e
l‘l\

SISk

8. = EBLKSZ = 2563 f% SIZE 0OF ELOCKREC IH CTELLT #°

g.¢ 9?1 = STATUZELE = 1} (% STATUS BLOCK HHHEEP= MUST EE =

BZJUS = ELEMAH = 3IP7TES (% MAX HUM OF ELOCES<FAGED {1 Brvo -
16.22.157

USE ALIB.HEWYER.CKCHSES.TEST.PROGREN - The page to bc edited is read
BLIS.HEWYER.CKCASES,. TEST.FROGRM USED RS 4{ORK from the data base library.
30,31, 487
D320 82T VYRR VMIHVS.LNISTRT INCZIEEY
S.38, VYRR ML INT
Q.25.18% VMEZ=3y 0 WE=SY LHi=tiL i S TRT=7V. a1
%.35.597 IHCE=.802F  HL=3 ; .
15, 35, 367
2 435 R IST 7.4 :
Sy ,"'; ;;{_’;élwlﬁ*:‘; R . = . - Move linc 1.1
e : smzemizll |l R AR ' P ¢o linc 7.4
. - ) with .001
e, s : : increment
MOVE WI= 3dHLeNLY T3 Fo23-0IMCZY LIST 7,508, - Move lines begin-
¢ LIMES IMIERTED, LAZT LIME IMIERTED IH wORK : T.21 ning with 2.5 for
T.5 = TELFLEM = 253; ‘ 6 lines to lines
T.ER o= MTHDZZ = 134 beginning at 7.9
7.4 = HTHZLEM = 2543 with an increment
TeSHS = LFHDZZ = 13 of .00z
T.3R2 = LFHILEH = 2263
21 = HASHZZ = 13 )
MOVE §.5-W8-,4 T _IST 2,249 - Move lines het-
Z LIME ~-=:*E“ LAZT LINE HORE : 2,283 ween 4.5 and 4.6
5.2 HD®IYH = <53 to line 7.9 with
S HD”, IRST = 7 .002 increnent
HR.3
1I”E VSANSE 3 CMLY TO STRETH+LLZ--IMCZ2: LIST 2.7<% - Move lines at
T LIHES INSERTED. LAST LIME IHZERTED IM WORK : 2.784% 5 through 5.4 wit
ST = FOXFIRST = &3 limit of 3 lines
s.TEDT = to line 8.7 with
S.7Rd = STATUSEBLE = 13 an increment of
0F. A%, 457 -002.
LIST VWSS +,3(HL .
= LEUHMAY = FFV7rTE:
= HOLIMAY = 7o .

Declare frame
- Put a page into the W1
frame.

/ -~ Move lines from
W2 frame to the
Active frame

LIST new lines of the WORK

frame,

AORE

Lines no longer appear in W2
frame.

81



Text Editing Statement

[frame-id/] REKEY range TO { £n//inc}

The REKEY statement allows the user to change the line number (KEYS)
assigned to a single line of code or a group of lines in the ACTIVE
frame. It should be noted that when rekeying, the line numbers must remain
in ascending progression order. The range for REKEY is limited. The implicit
part of range does not apply and the explicit range is limited, i.e., multiple
ranges are not allowed and the nf total line designator is not permitted.
nfn is the beginning line number for the range being REKEYed and inc is the
new increment for line numbers.

EXAMPLE:
SRLIZLITT VAR IHCEYWEtEEYS .
39,135,887 IMHCZ2=.40ai: Va=43
B9, 18, 137 :
AY. 19, 1ITUEE ALIE, HEWYER. CKCRSES. TEST. FROSFEM - The page to be edited is read
RLIEHEWYER, CHOASES. TEST. FROGRN USED AS WORK from the data base library.
B ITOETTREREY Md-L 1% 2 T We- 1o 8318 LIST ZLeed - Rekey from line 3.9
< ITEME IM SPECIFIED RAMGE. LAZT KEY: 2. 583 through 4.2 to 3.9 with a .00
P = DIRSZ = 43 increment this time. The new
S.58L 0= DIRLEN = &2} lines are listed to show the
S.382 = LIRFGSYH = =53 new line numbers.
3.582 = DINFIRST = 33
SR, E9,187
LIZT JFsLIST L3 REEEY ALL TQ .1-/,81% LIST .F§ LIST .L:
d.1 =FROGEAM MAIMCSFILE: DEILE QUTPUT+53 In this example, the first
S, =  VMHLEH = T3 o B and last lines of a page were
£& ITEMS IM SPECIFIED RRMGE. LAST KEY: 3,63 listed; then the entire page
8.1 =PROGEAM MAIM(SFILE.DFILE s QUTFUT+): .. was rekeyed then the first
d.e% = WYHLEH = 73 : : and last lines listed again
g2, 25,157 ' show the entire page was

rekeyed using the new line
increment of .01.
-~ Declare frame name
P.PROGERAM - Put a library page into the
mWE W2 frame

- List the first and last lines of
FLLE s OUTRUET 03 the W2 frame

4

- REKEY the complete page. New line
number should begin with 10 and
increase by .1
o b - List the first and last line

BFITLEs DUTRUT 23 numbers after rekeying

P g, 4 g

Sl

IH HWE

4

82



Text Editing Statements

[frame-id/] COUNT

[range] [:NC]

REKEY

The COUNT statement allows the user to count the number of lines in the

ACTIVE specified frame within a range.

specified, the default is ALL.

display option NC,s cescribed below.

Display Option:

The range is optional and,

if not

A message indicating the number of items in the
specified range is autowmatically printed unless otherwise indicated by the

NC (No Confirmation)

EXAMPLES:
19.1:.1T'LI:T
4. =ISISTO N s T200 M1 A
. =LUSER 3O 20aH,
S. -lHHFbE~]U14?1 LR,
14, =GETs HALEO,
12, =EET«LETS=ATONALZ,
14. =FACKsLETS.
-1&. =CORPYEFs IMPUT THFIL.
1<, =REMIHD IHFIL,
A, =RFL I 60O,
22, =REDICE s —.
24, =HOEXIT.
ZE. =HRLGO,
28, =)

12,12, 317C0UNHT
13 ITEMS IH SPECIFIETL F:AMGE.
12,12, 157
gt 9o 1
4 ITENS IH SPECIFIED FANGE.
12,12, 34700UHT S-i8 2728
13 ITEMS 1H ZFPECIFIED RRHGE.

- Avoids printing the COULT
ressage,

"x itens in snecified
range"

- List the ACTIVE frame contents, a
typical HAL/S applications program

text

-~ EOR éeparator

~ Count number of lines in ACTIVE frame’

- Count number of lines between line
number 4 and line number 10

- Count total number of lines
2 ranges.

df

.uHTFH‘TH

83

B
Il
]
]

- Declare frame name

.FROGEAM - Put a library page into

the W3 frame

- Count the number of lines ,
containing 'PROGRAM' in W3 frame

- Now list all lines containing
'PROGRAM! in W3 frame



Text Editing Statements

[frame-id/] EXEC [range][:E ]

The EXEC statement allows the user to execute the contents of the ACTIVE or

specified frame. Any portion of the frame may be executed by using the range option.
It should be noted that declarative statements (VAR, TYPE, etc) can only be

executed once. An error message is given if an identifier is declared twice.

Display Option: E (ECHO) - displays a line of code as it is executed.

,.....
Lo

D I A RN e
< e w5

g

"

n

- List ACTIVE frame

"

~ Execute the ACTIVE frameand pfint out each
line of code as it is executed.

HUUURUAEOEE+OE] 3, Z0000Q00G0000E+0R] 4, *E0RG0AR

—t

T
-
B}
po
!

84

-



S8

Text Editing Statements
EXEC continued

iﬁ.‘jrl.U LIII!‘LA I!.L?Fim ._TQ.E%‘”‘::

'U_E ALIE, ISI5, JOB. COMTROL.EUILD:>
] IDNTFUL BUILDZ UZED AS WORK
157

.J
l,.e

e

iﬁ" e
Ai.

UZED HZ Al

hLIB. IS Ix.JuE EUHTFUL COFY
10044, 3RTALALIET
1. =ATTACH ISTECI0-M=H.
=REHIHD, ISISCIO.
. ~3DP ‘EI» IHFUT, ISISCIO.

109, 44 457
EXEC
FLIB.ISIS. Joe. CONTROL. HERDER USED AS H3
% ITEMS IH SFECIFIED RAMGE.
FLIB.ISIS. JUE.CONTROL. COPY USED RS A3
¢ ITEMS IH SFECIFIED RAMGE.
< ELIE. IS5, SOURCE.PASIHTF.SEFT1S USED AS H3
A ITE"u IH SFECIFIED RAHGE..
V3.46, 2 '
qEHD
‘rdVYIBEF? SEHT TO BATCH EXECUTION.

Define working frames

Read a library page into the ACTIVE
frame

List ACTIVE frame

Read a library page into the Al
working frame
List the Al frame contents

Execute the ACTIVE -frame
USE statement executed
RUN statement executed
Second line

Third line

INPUT file (generated by RUN) is sent
to the CDC 6600 computer

J4X4



Tool Invocation Statements
RUN FILE (RFILE)

The RUN file is a file set up by the user as an input file for submission
to the NOS internal reader. Records making up the RUN file are separated using
a right parenthesis [)] in column 1 as the EOR mark. The RUN file is created
using the RUN statement and is executed (submitted to NOS) using the SEND
statement. See Tool Invocation Statements for examples. At present the

last line in the file must be a right parenthesis [)] in column 1.

86



RUN

Tool Invocation Statements
[frame-id/] RUN [range] [:[E]}, [NK]]

The RUN statement allows the user to create an INPUT file (control cards,
program source and/or data) for submission to the NOS internal reader. This
file, referred to as RUN file in ISIS, has the NOS name RFILE. A right
parenthesis [)] in the first column is used as an EOR mark for separating
records such as the control cards, program source, and data on the RUN (input)
file. If control cards are stored on one frame, program source on another,
and data on still another, the user simply executes the RUN statement threc
times in succession. RUN will concatenate the indicated frames to the RUN
(input) file for each time it is executcd. The range is optional and if not
‘specified, will be the entire frame. The linc numbers (KEYS) will be stored
in columns 81-98 if the NK option (described below) is not used.

Display Option: E (ECHO) - Displays the frame contents as it is
being added to the RUN file (RFILE)
NK (NO KEY) - The line numbers are deleted as the lines

are transferred to the RUN file.

EXAMPLES:

FRAME Al,A3:STRING; - Define working frames
i N -_._’ ML TE; Iziz, e, COHTEOL.EUILLY - Copy page from library into ACTIVE
AL OOHTROLLEDILDZ USED AHS WORK working page.
i2 ww;
pa o -~ List the ACTIVE frame
1. 45' E ALIBE. 15935 'Ht.-nHTrHL HERLEFR ; : A3/ R HE
2. 43/ IZE AL IE. 215, 0E LCOMTROL. COPYE; R/ RUHHE
3 2B nELIE, 1415 Hl"& FH?IHIF.:EFTIE; . i /RLH
E, 13,227
o A JVISE CoRy - Read a library page into Al working
RLIE. TSI, J0B, COHTROL., OOy UZED 8% AL frame
12,19, 5400 1ET . .
] A;;élff:f HE b i UTIHT ROL . HE"‘IDE‘F HE /L A HE
2o gFgMEE HLLE, S1u. b CARTROL L COETD M JRuns HE
T _ZH.E NBELLE 1EIS BOURCE . FRSINTF. SEFT 143 , M/ RUN
1a, 19, 537 ) ..
e ExELD o -~ Execute ACTIVE frame 1st 14
@L{th 1215, JgE vORTEOL L HERDER USED HE A2 ~ Execution of USE statement :t ne
3 ITENMS DN SPECIT IED RANGE. - Execution of RUN statement f °° A°TTVE
RLIB. ISTS, JOB. CONTROL. COPYS USED AS A2} 2pg 14 rame 1S
S ITEMS IM SFPECIFISD LANHGE. } § ue beingt d
JOIELIE. IS1E, SOURCE, PASINTFLSERFTIS USED AS A3} 3pd 14 execute
239 ITEMS TH SFECIFIED RAMGE. } F ne
1@, 20,377

87



RUN continued.

EXAMPLE:

Hﬂfé:&éﬁﬂT.éQDi LHHF.LLH HSET 95‘H1

18,39, 98¢ ALJLIET - List working frame Al
4. 'I ISTSTTE200, CHIEG@RG, FEM11Se GRAHTHAM
B =USER 251 200H, \\ ,
. =CHARGEs 181421 LRLC.
14. =GET s HALGO,
i4 _FEI; ':EI.}’_'HT“”-% - Al contains -
1€, =COFYEFs IMPUTs INFIL. ? NOS control cards
1g. =REWIHDY INFIL., .
za. =FFLs 160500,
2z, =REDUCEy -,
24, =HOEXIT.
26, =HALGO. // :
28, = - EOR separator
18,54, 217
LSE FiG1
ALIE. L:FHHT B0 LCHOF.FG1 USED AS ACTIVE = Puf another library page into ACTIVE
1U.u4 PLIST - List ACTIVE frame
Ze = GOFREDOC: PROGEAMS .
4. =C HALMAT TEST CASE ARRAYS
G =C FsSsT BEIMG INTEGER ARRRYS OF 18
- 8 = W EBEING A S®S IMTEGER HAREARY
18. = DECLARE F RREAY:1Q) INTEGER:
12. = DECLARE 5 ARRAYC18» INTEGER:
14. = DECLARE T ARRAY{1G@:» IWNTEGER:
15, = DECLARE U RERAY (14> INTEGERS
13. = DECLARE U RARREAYCS:S» INTEGER:S
z4a. = DECLARE IHTEGERsHAsEsCD8 .
a2, = A=283 - User's source program
24, = E=185 . (HAL/S) -
26, = C=1g3
28, = FEcSy=103
34, = REEi7r=123
2. = LEC3ad4 =153
4, = D=iR+E+CH ,
2E. = I=A+ B+0C03 \
2E. = A=RF(S0 .
4@, = SECZI=RFCTIN )
42, = = H.?I"-‘q44,
44 = UFid. 3=
& = CLOSE GﬂFFHC§
i3 =) ~ - EOR_separator i
18, 50,527 .
HI/FIHl ' -~ Create RUN (input) file (control cards)
12 ITEMS IM SPECIFIED RAHGE. . ' »
1@,57.1370s -
FUH

24 ITEMS
18,57,

-
-

42':"

LINES
547

18,37,

- I'

R
¢

I

=
ey

IH SFECIFIED RAMGE.

SHOW RLUH
IH EUH.

ZEND

* ZENT TO BARTCH EXECUTIOM.

Tan

Tool Invocation Statements

Pl Put iibrary page into working frame Al

~ Add ACTIVE frame to RUN(]_nput) file
(program source)

- Display the number of lines on the
RUN(input) file.

= Send RUN(input) file to NOS internal reader

- NOS job identzficatlon is AWVIKXZ

88 -



SEND

Tool Invocation Statements

SEND

The SEND command allows the user to submit the RUN(input) file to the NOS

internal reader.
code for the job.

is typed indicating this.

EXAMPLE:
14,57, IHTEEND .
YEMVIOVA' SENT TO BATCH EXECUTION.
1457599
15, 48, 557SEND

NOTHING TO SEHD,
COMMAMD ABORTED.

89

(AODRESS: . €) «

NOS will respond by printing the 7 character identification
If the RUN(input) file happened to be empty, then a meseage

- NOS accepts job and returms
the job ID name 'AWVIOYA'

. = Empty RUN file



TOOL INVOCATION STATEMENTS

STOP:SEND

The STOP:SEND command allows the user to submit the contents of the RUN
(INPUT) file to the NOS internal reader in an interactive mode, ISIS auto-
matically performs a STORE operation (page 47) to preserve the current
environment and transfers control to the control sequence defined by the RUN
file. Upon completion of this sequence, control is returned to ISIS and
the current environment is automatically RESTORED (page 48).

EXAMPLE:
Interactive Commands

USE  MYLIB. INTACT.TOOL.CONTROL.CARDS

RUN
STOP:SEND

Contents of  MYLIB. INTACT.TOOL,.CONTROL.CARDS:
- PROC name
GET, INTERACTIVE TOOL.
ISISGET, INFILE.,.  MYLIB.INTACT.TOOL,INPUT.DATA
INTERACTIVE_TOOL, INFILE,OQUTFILE.
REWIND,OUTFILE.
ISISPUT,OUTFILE. MYLIB,INTACT,TOOL.QUTPUT, INFO

This control card sequence gets the interactive tool and then calls
ISISGET to retrieve the tool's input data from the ISIS library page names
MYLIB.INTACT.TOOL.INPUT.DATA and put it on an NOS file named INFILE.
After tool execution (in the interactive mode), ISISPUT is called to
store the tools output, OUTFILE, on an ISIS library page named MYLIB. INTACT.
TOOL.OUTPUT.INFO, Completion of the control card sequence returns control
to ISIS.

90



STOP : SEND
SHCWN FILE

Interrogation Statements

SHOWN FILE

The SHOWN file will contain the output of the last SHOW statement which
was executed using the KEEP option. The information is saved here for the
user in case he wishes to refer to it later on. A message is displayed
giving the total number of lines inserted and the line number of the last

item on the file.

EXAMPLE:

total number last line number

of lines

91



"Interrogation Statements

SHOW SHOWS [:KEEP]

A self-help type of command. The SHOW SHOWS command prints a list
of all statements which the user may SHOW, or the words he may select to
follow the SHOW command verb. The KEEP option will store the command output
on the SHOWN file. . :

EXAMPLE:

*Not available at present.
+Not available to user

92



SHOW SHOWS

Interrogation Statements SHOW RESERVED

SHOW RESERVED [:KEEP]

The SHOW RESERVED statement is used to determine what words have been
reserved for ISIS and cannot be used as identifier names in user programs.
The KEEP option will store the command output on the SHOWN file.

EXAMPLE:

P
Fulre 11

L L

COMFHEE
DT
EXED
FEQM
LI=T
CF
FROC
EEFEAT
SET
TEUE
YOI

£
FLURGE
REFLACE
SHOE
TVRE
HHILE

AT

E: ‘.‘.'
Oy
TAME
FRLSE
iF
MOTLFY

LR

RERD

FESTORE

STOR
LHHIOH

CHRITE

93

ALL
CRALL
COUHT
ELSE
FORERACH
THSERT
MO
nYER
RECORT
RN
STORE
UHTIL
HED

FHI
CHAMGE
IELETE
EMHT
Fg:
ITHYDEE
MOYE
FRIMTLH
REEEY
SHYE
THEH
HeE

HAREREAY
CLEAR
I] I Ix"l
ERAZE .
FEAME
IH

HOT
FEINT
FREMOYE
SEHD
T

WHE



Interrogation Statements

SHOW STATEMENTS [:KEEP].

The SHOW STATEMENTS statement is used to display all available statement

verbs in the ISIS system.
SHOWN file.

EXAMPLE:

I:g r: E' i l“' :'

REY RCTIVE
CLERR COMFPARE
LLIHF ERAS
FLNE IF
MODIFY
FERT
FUH SFAVE
STORE T

HEITE HwED

*Not implemented at present

18,24, BEYEH0N STATEMEHTS

ADD
COMPILE
EWED

THEERT

PRINTLH

REMOVE
SEHT
II5E

94

HER
COFY
FORERCH
THYOEE
PEIHT
FEFERAT
SET

WHE

CALL
CrLMT
FE:
LIST
FROC
FEFLACE
HM
WMOT D

The KEEP option will store the command output on the

CHAHGE
IELETE
FRAME
LOF

WHILE



SHOW AVAIL [:KEEP]

SHOW STATEMENTS
SHOW AVATL
Interrogation Statements

This statement allows the user to obtain an estimate of program resources which
are still available.

given in internal units. Program resources listed are

STRING
TYPE
ID

PF

The resource space already in use and remaining available are

string variable space
program TYPES

program identifiers
procedures and function/names

STACK,CORE,§ XEQ - system information (not directly controllable by the user)

STACK
CORE
XEQ

- values of all nonstring variables (temporarily during execution)
- generated code(internmediate language)
- nesting of XEQ, EXEC, and ASK

The KEEP option will store the command output on the SHOWN file.

EXAMPLE:

HYFIL
FWVAILABLE

1is
wl
e
15

95



Interrogation Statements

SHOW ABBREVS [:KEEP]

The SHOW ABBREVS statement is used to determine which statement verbs have
been abbreviated by the user and their abbreviation(s). The KEEP option will
store the command output on the SHOWN file.

EXAMPLE:

96



SHOW ABBREVS

SHOW TYPES
Interrogation Statements

SHOW TYPES [:KEEP]

The SHOW TYPES statement is used to allow the user to display all types which
he has placed in the type-id table (systems declared TYPES are.not bresented).
If the user wishes to inquire about one specific type, he should use the SHOW ID

statement. The KEEP option will store the command output on the SHOWN file.

EXAMPLE:

- No initial data types

- Declare data types
MUFS THTS MAM: STRIMGY EMDY )

- New data types have
been added

97



Interrogation Statements

SHOW VARS [ :KEEP]

The SHOW VARS statement is used to determine which variables have been
placed in the identifier table. All declared variables are printed. 1If
the user wishes to inquire about one specific variable he should use the
SHOW ID statement, The KEEP option will store the command output on the shown
file.

EXAMPLE:

14,08,4775HON VARS
## MNOWE %

4,82, 45%TYPE PERSOMS: REAL
14,82, 827TYPE MESS @ ARRAYLL..S1 OF EOOL = Define new data types
14,83, 487TYFE RECL @ RECORD MUM:IMTS FLAG:ROAL: HAM: STRIMG: EMIG
14,24, 287TYPE RECH @ ARRAY[1..21 OF RECYS
14,858,187
YRR ST1sSTZ:STRING
14,85, 327YAR ABCIREAL
14,95, 447VAR BL-B21EOOL :
4. 83, SETVAR KIMEATE: PERSOMS = Declare new variables

1

14,86, 127YAR AREC: RECI
14,85, Z37YAR EREC: RECH
14,88, 370

FHOM VYARS
c i REALS
"AREC 'i RECORD
: HUM: IHT:
FLAS: BoOLS
HAM: STRIMGH

D
(2]

EHIIS :
*ERELC i HF.'F.'H"{'\{:_}_..EJ F - = Shows addition of new
FECORD variables in the symbol
MM IHTS _ table
FLAG: BOOL:
HAM: STRIHGS
EHID
‘Bl Y BOOLS
‘B2 *I_BOGLS
*EATE 't REAL:
EIM * REHALS
Y271 !OSTRINGS
272 POSTRINGS

98



Interrogation Statements

SHOW ID {abbrev-id|var-id|system-id[frame-id} [ :KEEP]

SHOW VARS
SHOW ID

The SHOW ID statement allows the user to obtain a description of program or system

identifiers. The identifier name, type, and usage is displayed.

store the command output on the SHOWN file.
EXAMPLE:

SRR W REHLS
SERE Bl BOOLS
ER Tadakr THTS
THIG STRIMGS

URR RAT: ARKEAYD L. 31 OF REALS

“rYRE PERSOMS=REAL
L4, 30,597

AREC. HUM=2E)

14,31, 187.0=1 L
14, 21,327 RAYE 2 1=125, 353
14,31,

:SHUH I e B s BAY . ARECy PERGOME

P i RERLS
WARIAELE

*E *i BOOLA
YARTAELE

i '“J 4
YHRTHRELE
YEAY !
WHRTABLE
*HREL !

ve

THT:

ARREAY [1..31 OF REALS

RECORD
L THT:
FLG: BOOL:
BT

TYFE
VPERSOME 75 REALS

99

AREC: RECORD MUM: IHTS FLGEEOOLS BT

The KEEP option will



Interrogation Statements

SHOW SETS [:KEEP]

The SHOW SETS statement displays all items the user may SET. Most SET
statements may be reversed by a corresponding CLEAR statement. The KEEP
option stores the command output on the SHOWN file.

EXAMPLE:

TrG TEAGE > TERF

*Not available at present
»Not available to user

100



e ; SHOW SETS
Interrogétion Statements- SHOW CI.LARS

SHOW CLEARS [:KEEP]

The SHOW CLEARS statement is used to determine which items can be cleared.
CLEAR is used to reverse the effect of a SET command. The KEEP option stores
the command output on the SHOWN file.

EXAMPLE:

FLIH THG TEACE

*Not available at present
+Not available to user

101



Interrogation Statements

[frame-id/] SHOW NAME

The SHOW NAME displays the current name of the ACTIVE or specified frame.
The user also has the option of displaying the library names of frames which
are not ACTIVE by preceding the command with the frame name and a slash.

EXAMPLE:

- The library page associated
with the ACTIVE frame has not
yet been named.

FBOE, CHAFTER . FAGE - Set name of the page

- THE HA®ME OF WHORE associated with the

ACTIVE frame.

) - Show the library page

L HAME OF WORE associated with the

ACTIVE frame.

£, TEST, PROGRAN
SRS M

IS MAME OF Wi

102



SHOW NAME
SHOW PAGES

Interrogation Statements
SHOW PAGES {[1ibrary].[shelf].[book].[chapter].[page]} [ :KEEP]

The SHOW PAGES statement is used to display the structure of a complete
library or a portion of a library. To display a complete library the user
need only type the top level of the library name followed by 4 dots separated
by hlanks (SHOW PAGES ALIB . . . .). All pages for all levels of the library
will be displayed. If the library name is not included in the statement
(SHOW PAGES . . . .), it will use the library name of the ACTIVE frame. Also,
for the users convenience, this command may be shortened by not typing the
last 3 dots (SHOW PAGES .). This is the only level at which an assumption
is made. If other level names are not included in the statement, then the library
is searched for the specific combination of these levels which are specified
and all combinations are listed., The SHOW PAGES may also be used to search
for certain page names. For example, to find all page names in a specific
chapter, the user would type the following: SHOW PAGES LIB.SHL.BK.CHAPTER. .
To find all pages named SAM on a particular shelf, the user would type:

SHOW PAGES .SHL. . .SAM., A1l books and chapters on that shelf would be searched
for pages named SAM. The name specified in SHOW PAGES can thus be used to
define an area of search for all pages or for specifically named pages within

a desired region. The KEEP option will store the command output in the

SHOWN file, .

Note that this command (SHOW PAGES) does not in any way affect the name
of any frame. This command only displays the names of pages of a library that
have previously been saved.

'EXAMPLE:
EEto BT - Set library page
HAME OF MWOREE - name associated
with ACTIVE frame
- Display the entire library.
(uses library name of ACTIVE frame.)

cARRR ].it:f Coe e — Display the entire library.
CEUTT o HHFL TS (specifying the library name.)
AT

CHAMELST

e JEOOK . CHENCE R
n , u . HOFRREH
= , , . FRREH

103



SHOW PAGES

23HIN PAGES SOURCE

14 1*._ﬁ 'HHH PHEE5

Hnu'ﬁHGE
e

Interrogation Statements

continued

22YSHOW PAGES ALIE. GRAMT. . .

E00K < CHOP G2

. . .PFHLL
. . . CCA
. PG1

.I:IS LEDITOR . SOURCE
« IATBASE., SOURCE
HEHPUUP DATERSE. S0URCE

. . SPECSE
. . .SDUREE
 CHDLET

. .IZ1S. .5PECS.
- JEDITGR .SPERS
. DATBASE ., SPECS

I

104

RLIE.MUST, IZ1S, DATERASE.
IZI8 . IATBAZE. “;EPD”P

Show all pages contained in

ALIB on the GRANT shelf

Show where the SOURCE pages
are located _

Show all pages in the DATBASE
chapter

Show all chapters containing
SPECS residing in the ISIS
book



SHOW OPTINNS

Interrogation Statements

SHOW OPTIONS [:KEEP]

The SHOW OPTIONS statement is used to determine the print options which
are available for some editor commands. These options allow the user to
modify the printed output resulting from the editor statements. The KEEP
option will store the command output in the SHOWN file. Most options are
discussed on page . (CHANGE statement)

EXAMPLE:

105



Interrogation Statecments

SHOW COLUMNS [:KEEP]

The SHOW COLUMNS statement is used to show position of code in a line.
A line of 59 characters is printed. This line is formed by repeating the
character sequence '"123456789." The KEEP option will store the command
output in the SHOWN file.

EXAMPLE:

BE, LEEAEETEY

BEAMTHAM-TETS

L'I'h:i.s is column 40 in
this line of code

106



SHOW COLUMNS

Interrogation Statements SHOW RUN
SHOW RUN [:KEEP]
The SHOW RUN statement determines the number of lines of code in the
INPUT file and then prints the number. The KEEP option will Store the command
output on the SHOWN file.
EXAMPLE:
PR EE. AT LIST
4, =ISISTST»T208,: CH1GERGA, EM1158 GRANTHAM
E. =USER 95 130846H,
2. =CHARGE» 181481sLRC, .
1a, =GETsHALGO. ' LaRC/Control card file for
12. =GET:LSTS=ATOM912, - compiling and executing a
14, =PACKsLETS. typical HAL/S program.
15, =COPYEF s IHNPUT IMFIL.
12, =REMIND: IHFIL.
28, =RFLy 166006,
22, =REDUCEs -,
24, =NOEXIT.
25, =HRLGC, :
28 =) - EOR separator
28, = GOPROCHPREOGRAMS
2Z. = DECLARRE R ARRAY 1@ IHTEGER-
34, = DECLARE & ARRAY:18)> IMTEGER;
38, = DECLARE T ARRAY(18> INTEGER:
34, = DECLARE U ARRAY(S5:53 INTEGEFR:
4z, = DECLARE IMTEGERsA:BsCsD}
44, = A=283 EB=18F C=183 -~ Typical HAL/S.application
e, = EE(S)=143 program text
48, = RE(THr=12%
4. = UE(Zad0= 15-
oz, = D=y RA+BI+}
54, = II=A+{B+Cxs
SE. = H=R${S>:
ST, = CLOSE GOPROCS
S0, = ~ EOR separator
62, =
13,48, 129CLERR RUN -
Kl CLEARED. = €lear INPUT file
13.41,89%RUN g.-2:
11 ITEMS IH SPECIFIED FANGE. - Put lines 4 through 24 on the RUN file.
13,41, 367RUH 28780 ’
1";' II';H;.;.I;-I_{ |:ﬁEg IFIED FANGE. ~ Add lines 28 through 60 to RUN file
i l..IHE I e I — Display the total number of lines

in the RUN f11e

107 'Y



Appendix A

Showing Equivalence Between Statement Verbs

and Interrogation Statement

: Page Interrogation Page
Programring Statements No, -.Statcments No.
Declarative Stﬂtcmcngg
ABBREV abbreviation(s): statement-verb 18 SHOW ABBREVS Q6
TYPE type-id(s): type specification 19 SHOW TYPES =Tl 97
VAR var-id(s): type-id 20 SHOW VARS 98
ERASE {abbrev-id(s)|type-id(s)|var-id(s)} 21 SHOW ID 99
Action Statements _
EXITIF condition 23
IF condition THEN |statement(s) [ELSE statcment]{ENIj 24
[EXITIF condition]}
FOR var-id = initial value TO DOWNTO final-valuc vy 92
DO statement(s) END 25 SID“ S”OLS 03
{EXITIF condition] o gﬁ%‘;g"% o4
LOOP [statcment(s)] EXITIF condition [statcment(s)]) | 26 e 95
END SHOW AVAIL
WHILE condition DO statement (s) END 27
[EXITIF condition]
REPEAT statement(s) * {UNTIL condition 28
[EXITIF condition]
[frame-id/]JFOREACH string-var DO statement (s) END [ 29 e e e -
o [EXITIF condition] F
N XEQ string-expression : 30
SET TAG tag-id 31
CLEAR TAG 31 ) 100
SET TRACE var-id(s) 33 SHOW SETS 01
CLEAR TRACE var-id(s) 33 SHOW CLEARS 1
ASK response, prompt 34
PRINT, PRINTLN exp [:Formatl[:Format2}] 36
CLEAR RUN 38
Library Statements
[frame-id/]SET KAHE [library].[shelf].[book]).[chapter].[page] | 42 SHOW NAME 102
[frame-id/JUSE [1library]}.[snelf].[book].[chapter]. [page] 43 {SHOW PAGES) 103
[frame-id/])SAVE [*] ) 44
{frame-id/]JPURGE  [library].[shelf].[book].[chapter].{page] 45
[frame-id/]VOID 46
STORE  {libraryv].[shelf].[book]}. [chapter].[page] 47
RESTORE [library].[shelf].[book].[chapter].[page] 48
Text Editing Statements
FRAME frame-id(s) : STRING 56
ACTIVE frame-id 57
ERASE frame-id(s) 58
[frame-id/]LIST [range} [:{{N1|NK}], [vI, [T] ) 59
[frame-id/]INSERT range 61
[frame-id/}READ string-var {AI,} in 63
[frame-id/JWRITE string-id {a[,} #n 65
[frame-id/]DELETE range [:[{KL|NI|Nk}1, [v] ] 67
[frame-id/]REPLACE range [:NL] 69
[frame-id/]JCIANGE string-id TO string-id IN range 71
_ Lfnefa e}y, (3, (v, (M) 1( '
[frame-id/]ADD Strl?éi]d[$?T]C°1umn] IN range [:] ALINI|NR}], 74 <§HOW 0PTIONS> 105
»
[frame-id/JMODIFY range [:S] 76 SHOW COLUMNS, 106
[frame-id/]coPY range T9 £n[//inc] 78
[frame-id/JHOVE range TO fn[//inc) 80
{frame-id/)REKEY range 0 ¢n[//inc) 82
[frame-id/]JCOUNT [ranrsc) 83
[frame-id/}EXEC  [range] [:E] 84
Tool Invocation -
[framc-id/}JRUN [range] [:[E], [NK] }° 87 SHOW RUN 107
SEND 89
STOP:SEND 90

NOTE: { ) - no corresponding statement

108




APPENDIX B

Alphabetical Listing of Statement Verbs

ABBREV abbreviation(s): statement verb

ACTIVE frame-id

[frame-id/]JADD string-id [AT column] IN range [:[{NLINI[NK}], [E]l, [V]]

ASK response, prompt

[frame-id/]CHANGE string-id TO string-id IN [:[{NL|NI|NK}], [E], [V], [M]]

CLEAR RUN
CLEAR TAG
CLEAR TRACE var-id(s)
[frame-id/]COPY range TO 2n{//inc]
[frame-id/]COUNT [range]
[frame-id/]DELETE range [:[{nL|NT|NK}], [Vv] ]
ERASE {abbrev-id(s) |type-id(s) |var-id(s) |frame-id(s)}
[frame-id/]EXEC [range] [:E]
EXITIF condition
FOR var-id = initial-value {TO|DOWNTO} final value DO

[frame-id/]FOREACH string-var DO statement(s) END

_ [EXITIF condition]

FRAME frame-id(s) - :STRING

IF condition THEN
[frame-id/]INSERT range
[frame—id/]LIST

LOOP [statement(s)] EXITIF condition [statement(s)] END
[frame-id/]MODIFY range [:S]
[frame-id/]MOVE range TO &n[//inc]

PRINT,PRINTLN exp [:formatl [:format2]]
[frame-id/]PURGE [1ibrary]. [shelf]. [book]. [chapter]. [page]
[frame-id/]READ string-var {AL} fn

[frame-id/]REKEY range TO n[//inc]

REPEAT statement{s) UNTIL condition
[EXITIF condition]

[frame-id/]REPLACE range  [:NL]

RESTORE [library].[shelf].[book].[chapter].[page]
[frame-id/]RUN [range][:E], [NK] ]
[frame-id/]SAVE [*]

SEND

statement(s) [ELSE statement(s)]{ END
[EXITIF condition]

109

statement (s)
[EXITIF condition]

APPENDIE A
APPENDIX B

[P S I B2
— 0D = B

[$3]
(3

78
83
67
21,58
84
23

END 25

29

56
24
61
59
26
76
80
36
45
63
82
28
69
48
87
44
89



APPENDIX B (cont'd)

[frame-id/] SET NAME [library].[shelf].[book].[chapter].[page] 42
SET TAG  tag-id 31
SET TRACE var-id(s) _ 33
SHOW ABBREVS [:KEEP] _ 96
SHOW AVAIL [:KEEP] 95
SHOW CLEARS [:KEEP] 101
SHOW COLUMNS [:KEEP] 106
SHOW ID {abbrev-id|var-id|system-id|frame-id} [:KEEP] 99
SHOW NAME 102
SHOW OPTIONS [:KEEP] 105
SHOW PAGES {[library].[shelf].[book].[chapter].[pagel} [:KEEP] 103
SHOW RESERVED 93
SHOW RUN [:KEEP] 107
SHOW SETS [:KEEP] . 100
SHOW SHOWS [:KEEP] 92
SHOW STATEMENTS [:KEEP] 94
SHOW TYPES [:KEEP] . 97
SHOW VARS [:KEEP] 98
STOP
STORE [library].[shelf].[book].[chapter].[page] ' 47
STOP: SEND , 90
TYPE type-id(s) : type specification 19
USE [library].[shelf].[book].[chapter].[pagel 43
VAR var-id(s) : type-id 20

[frame-id/] VOID 46
WHILE condition DO statement (s) END . 27

[EXITIF condition]

[frame-id/] WRITE string-id {a|,} 2n 65

XEQ string-expression 30

110



Appendix C

APPENDIX C

Local Files Used by ISIS

INPUT* - A system file

ISIS - Binary of ISIS

RFILE - RUN file created by the ISIS RUN command
SFILE - Used internally by SHOW and EXEC commands
INPUT - Terminal input file

OUTPUT - Terminal output file

-WORK ~ ISIS WORK frame

SHOWN - ISIS SHOWN frame

WORK1-WORK10 I1S1S user defined frames

RFILE is the only file in NOS format that can be looked at outside of ISIS,

111



APPENDIX D

IPL Error Messages

EXPECTED

" Ilt“

CTED
ECTED

1GE rern1rh
=4 BRNGE ESFECTED

UMDECLARED TDEMTIFIER
TDEHTIFIER ALEEADY IH LSE

FARSE STACK OVERFLOW

LOCATION COUMTER STRACKE OVERFLOWM
COMSTAMT TRELE OVERFLOM

I TRELE UﬁTEEFleﬂ

SLIMF TRELE OVERFLOM

FROCS I:HIL TAELE OMERFLO

T ‘FE THELE OYVE
FEAME TRELE OVE
STREIMG BUFFER DVERFLOUW




APPENDIX D (cont'd)

TEMFOREARY STRING BUFFER OVERFLOM

MAY HOT BE ERASED

MOT EHOUGH ROOHM FOR TYPE

FAGE DOES MOT COMTAIM CODE
UHDECLARED RECORD FIELD

UMIOECLARED AREEAY FIELD

MISMATOHED OFERATOR

CORE ToOO sMALL

ERROE IH TYPE

LOW BOUHD EWCEEDS HIGH BOUMD

EEYS IH BAD ORDER

EAD KEY

LIMIT COUMT REQUIRED

ERROR IM SUBROUTIME FHRAMETER
ERROE I FRCTOR

EAD BLOCE HUWMEEER

THCOMFATIBLE TYPFES

HOT A SYSTEM VARIABLE

VERSION HUMBER HMUST BE IMTEZER
FEAD-OHLY YAREIRBLE

SER STREIHG HOT COMPLETE COMMAMD
BAD IMCREMEHT WALUE

MISSIHG OF BAD MAME

MISSING STRTEMEMT WERE
WHIMPLMEMTED STRTEMEMT

MISSIHG CLOSIHG DUOTE FOR STRIHG
TOO MAMY DIGITS IM IMTEGER
EXFPOHEHT QUT-0OF-REAHGE

UHRECOGHIZED STRTEMEHT

LWEE *SHOW TERAPSE

HESE *SHOW SETS?

LZE P SHOM CLERRS®

LSE P SHDE SHOMS® .

OHLY OME EEY EAMGE ALLOWED HERE
IMPREOFER USE OF RESEREVED WORD

MUST FRINT AT LEAST OHE ESFRESSION
TOO MAHY DOTS IH HAME

OO MAMY CHAREACTERS IH MAME

USE YSHOM OPTIOHS?®

OPTION MUST FOLLOM *:°

TLISTSHLY TS5 HOHSEMSICRL

FHLY IHPROFPER WITH WETO.
IMAPFROPREIATE USE OF LSIHG
ITMHAFFEORPRIATE DATASET :
MY AHD *OWERY O HOT ALLOMED AS IMDEXES
STATEMENT CHMHOT BEGIH MITH OFERATOR
WHRECOGHIZED ASE EXPRESSTION

ASk ESFRESSION OF IHCOMPATIELE TYPE
IMCOREECT SYHMTRH FOR COPY-MOVE

113

Appendix D



References

1. Jensen, Kathleen; and Wirth, Kiklaus: PASCAL User Manual and Report.
2nd edition, Sprunger-Verlag, New York, NY, 1976.

114



INDEX

ABBREV command, 18
abbreviations, IPL, 7
ABBREVS, SHOW, 96

ABS function, 39
ACTIVE frame, 57

ADD, 74

.ALARM, 14

ALL, 55

ALTERS prompt, 76
AND, 39

ARCTAN function, 39
ARRAY type, 19

AVAIL, SHOW, 95 .
ASK, 34

ASSIGNMENT, 22

BOOLEAN (BOOL) type, 12
BREAK key, 10

CAT function, 3¢

CHANGE, 71

CLEAR RUN, 38

CLEAR TAG, 31

CLEAR TRACE, 33

.CLOCK, 14

col, IPL abbreviation, 8
COLUMNS, SHOW, 1n6

COMMENTS, 16

Continuation character,(§),12
CONTROL CARDS, ISIS ACCESS, 7
CONVENTIONS, WRITEUP, 8

copy, 78-

COS function, 39

COUNT, 83

.DATE, 14

DECLARATIVE STATEMENTS, 17
Default library name, 40
DELETE, 67

.DELTA, 14

DIV operator, 39

DOWNTO, 25

ECHO, 71

ELSE, 24

EOR, end of record, 36, 88

ERASE, 21

ERASE frame, 58

ERROR messages, 13

EXEC, 84

EXITIF, 23

EXP function, 39 115
EXPLICIT range, 55

INDEX

F, 14

functions, IPL, 39
FOR, 25

FOREACH, 29

FORMAT1, FORMAT2, 36
FRAME CONCEPT, 49
FRAME STATEMENT, 56

id, IPL abbreviation, 3

ID, SHOW, 99

IF, 24

IMPLICIT RANGE, 55

inc, IPL abbreviation, 8
INSERT, 61

INTEGER (INT) type, 12
Interrogation Statements, 91
IPL, 17

IPL/PASCAL Differences, 12
IPL Statement Summary, 108
ISIS Access Control Cards, 6
ISISGEN, 41

ISISGET, 41

ISISPUT, 41

K, 14
KEEP option, 91
KEY type, 12

L, 14 .

LEN function, 39
library, 40

Library creation, 41
Library name, defaults, 40
Library Statements, 40
2im, IPL abbreviation, 8
LIST, 59

LN function, 39

fn, IPL abbreviation, 8
LOC function, 39 -

LOOP, 26

loop statements, 25-28

M option, 71

MOD operator, 39

MODIFY, .76

HMOVE, 80

Multiple occurrence option, 71



INDEX

- NAME, SHOW, 102

nf, IPL abbreviation, 8
NL,NK,NI options, 59
NOT, 39

oDD function, 39
Operators, 39
Options, list, 59
OPTIONS, SHOW, 105
OR, 39

ORD function, 39

PAGES, SHOW, 103

PASCAL differences, 12
PRINT, 36 '

PRINT SYSTEM , 14
PRINTLN, 36 .
PROGRAMMING STATEMENTS, 12
prompt) 8

PURGE | 45

range, 51

READ , 63

REAL type, 12
record, IPL, 19
record, SYSTEM, 14
RECORD type, 19
REKEY, 82

REPEAT, 28
REPLACE , 69
RESERVED, SHOW, 93
Reserved words, 93
RESTORE , 48

RFILE , 86

ROUND function, 39
RUN command, 87
RUN, SHOW , 107

SAVE , 44

SEND , 89

SET NAME, 42

SET TAG , .31

SET TRACE, 33
SETS, SHOW, 100
SHOW ABBREVS, 96
SHOW AVAIL, 95
SHOW CLEARS, 101
SHOW COLUMNS, 106
SHOW ID, 99

INDEX (cont'd)

SHOW NAME, 102
SHOW OPTIONS, 105
SHOW PAGES, 103
SHOW RESERVED, 93
SHOW RUN, 107
SHOW SETS , 100
SHOW SHOWS, 92

SHOW STATEMENTS, 94

SHOW TYPES, 97
SHOW VARS, 98
SHOWN FILE, 91
SHOWS, SHOW » 92
SIN function, 39
SQRT function, 39
SQR function, 39

Statement Summary, 108

STATEMENTS, SHOW,
STOP:SEND, 90
stop, 7

STORE, 47

STRING type, 12
SUB function, 39

SUMMARY, STATEMENTS, 9

Syntax, IPL, 9

System-id, 14

SYSTEM.
SYSTEM.ALARM , 14
SYSTEM.CLOCK , 14
SYSTEM.DATE , 14
SYSTEM.DELTA, 14
SYSTEM.F, 14
SYSTEM.K, 14
SYSTEM.L, 14
SYSTEM.TIME, 14

SYSTEM.VERBOSE, 14
System variables, 14,15

T option, 59
Tags, 31

Text Editing Statements, 49

Text Editor, 6
.TIME, 14

Tool Invocation Statements, 86

TRUNC function, 39
TYPE, 19

TYPES, SHOW, 97
type-id, 19, 21

USE, 43

Utilities, ISIS, 41

116

V option, 59
VAR, 20

Variable-id, 20,21,25,33

VARS, SHOW, 98
.VERBOSE, 14
VOID, 46

WHILE, 27
Working frames, 49
WRITE, 65

XEQ, 30

»



| NASA TM-8014

1. Report No. . 2. Government Accession No.

3. Recipient’s Catalog No.

4. Title and Subtitle

ISIS Users Manual

5. Report Date
March 1980

6. Performing Organization Code

7. Author(s}
Carolyn Grantham

8. Performing Organization Report No.

9. Performing Organization Name and Address

NASA Langley Research Center
Hampton, VA 23665

10. Work Unit No.
520-72-03-02

11. Contract or Grant No.

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546 '

13. Type of Report and Period Covered
Technical Memorandum

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

The Interactive Software Invocation System (ISIS) is an interactive data
management system. ISIS is being developed to provide the user with a powerful
system for developing software in an interactive environment. ISIS will protect

the user from the idiosyncracies of the host computer system by providing a
complete range of capabilities including desk top calculator, data and text
editor, file manager, and tool invoker. The user should have no need for direct
access to the host computing system. This documentation covers the operational
concepts and syntax of the Interactive Programming Language, IPL, for ISIS.

17. Key Words {Suggested by Author(s}) 18. Distribution Statement
Software development
Interactive software Unclassified - Unlimited
Text Editor .
File management Subject Category 61
19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22, Price®
Unclassified Unclassified 116 $6.50

* For sale by the National Technical Information Service, Springfield, Virginia 22161







-



R Tiawey



