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Vector potentlial of the viscosity wave

Flber radius

Adlabatlc speed of sound

Fiber separation (in the model of a
regular absorber)

Amplitudes of wave types 1in
alr

Amplitude of temperature wave insilde
the fiber

Internal wave conductance of the absorber

Hankel functilons of n-th order,
second type

Poroslty of the absorber

Fil1ll factor

Wave numbers of wave types

Fiber denslty (number of fibers per
surface uni‘)

Statlonary pressure fraction

Alternating pressure

Radius of an elementary cell (fiber
in the tube)

Cylinder coordinates

See equation (151) /sic/

Stationary temperature of the air

Alternating temperature of air

Stationary temperature of the fiber

Alternating temperature of the filber

Speed of sound

Internal wave resistance of the
absorber

Surface impedance (with ¥: standardized
to  gato)

General cyliinder function of
n-th order

Temperature conductance coefficlent of alr

- Temperature conductance coefficient of the

fiber material
Propagation constant (with ¥: standardized
to mfey), )
Adiabatic exponent
Dynamic viscosity
Scalar potential
Scalar pccential of the compressional wave
Scalar potential of the temperature wave
Thermal conductance of ailr
Thermal conductance of the fibre material
Kinematic viscosity
Angular frecuency
Stationary density of air
Alternating density of air
Specific flow resistance
Flow resistance
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A MODEL THEORY FOR THE FIRRCUS ABSORBER,
PART 1: REGULAR FIBRE ARRANGEMENTS

F. P. Mechel
University of the Saarland Acoustics Laboratory, Saarbrucxken

1, Introduction

Most sound absorbers are fiber absorbers: the absorption materi-
als consist of loosely interconnected fibers. The fibres themselves
are usually glass or mineral fibers, but also organic fibers and--for
speclal applications--metal fibers are used.

To describe sound propagation in these fiber materials, at present
there are practically two theorles. The first, which we will call the
theory of quasi-homogeneous absorber, describes the absorber as a homo-
geneous, isotroplc medlum and considers the losses in sound energy in the
absorber by a flow resistance and tries to describe the structure by a
"structure factor" in the force equation. The second theory replaces
the absorber by a model of a bundle of parallel tubes (Raylelgh model)
with sound resistant, infinite heat conducting -walls. Both theoriles
have thelr obvious and known deficlencies.

In an earlier study /1/ 1t was found which of the two theoriles
was best sulted for further development. It turned out that the theory
of the quasi-homogeneous abscrber leads to internal contradictions in
addition to the disadvantage of frequency dependent material constants
which cannot be eliminated by a simple change in the theory. Conversely,
the theory of the tube model appears to correctly reproduce the physical
processes of sound propagation in the fiber absorber, but suffers by
having excessive deviation between model and sftructure and real absorber

structure.

Therefore it was suggested to apply the principles of the theory
of the Rayleigh model, namely the solution of the most exact and com- /54
plete differential equations to a model better adapted to the real

absorber structure.

¥Numbers in the margin indicate pagination in the foreign text.
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The model used here consists of parallel flbers of the same
material Just lilke the real absorber. The solutlons of the complete
differential equations @.e. under conslideration of air viscosity be-
tween the fibers and thermal conductance of both the alr and fibers)
are glven. The sound wave should propagate in the direction of the
fibers.

Initlially omitted propertles of a real abosrber are:

1) scattering of fiber radii about an average value
2) melt beads and adhesive globs
3) statistic orilentation of the fibers in a plane.

While work with thils theory was underway, the excellent papers
by Attenborough et al. /27, /37 appeared. There, the theory of multiple
scattering from cylinders was applied to the flber absorber. This is
a method tallored specifically to the absorher attacked perpendicular
to the fiber direction.

Since we are assuming a sound propagation parallel to the fiber
orientation, the model described here represents a supplement to the
work of Attenborough. In addition, the calculation presented here

represents a logical continuance of the Raylelgh model. In the Rayleigh

model the sound propagates axis-parallel in the tube. We eliminate the
main error of this model, namely the tube, whose wall consists of ribre
material, and study instead the axis-parallel acoustic propagation in

a fiber bundle.

In an initial equation for this model we assume a regular arrange-
ment of fibers in a quadratic grid. This is certainly a flaw in the
model by comparison to a real absorber. Its effect is even more omi-
nous since we frequently had to use symmetry properties of this ar-
rangement in the course of the calculation. The method of calculation

shows which changes occur in the result if instead of quadratic symmetry,

a symmetry of higher order is postulated.
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On the basis of these results a simplified model 1s discussed
in a subsequent part of this work (part II). Here, each filber 1s
surrounded by a imaginary cylindrical symmetry surface, l.e. we use
a symmetry of infinite order. As with the Rayleigh model, we only
need to find the solutions 1in this type of cylinder with one filber
on the axis.

2. Basic Equations

The scalar quantitiles of state of the sound field, namely, pres-
sure g , density ¢ , temperature T are split apart into stationary
fractions with the index zero and into chronologically variable frac-
tions having the index one in accordance with exp (jwt). For the
sound field quantities the usual linearization assumptions are made
that thelr squares are negligible compared to linear terms. We then
have:
the equation of force (Navier-Stokes):

— Yygraddive == 0, {1

the continuity equation:

Oop

~

& +pgdive -0, (2)

the equation of thermal energy:

o .
o Tw=DTedive —a A7 0, (3)

the equation of state:

F /IF
™ N [ o 0 4)
J Ty

and the equation of thermal conductance in the fiber:

o,

o FTAVATIR I @ (5)
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In equation 1 we neglect convective acceleration and in equation
3, thermal transport by radiatilon.

3. Potential Functions and Wave Equations

The standard potential functions for the acoustic field are de-
fined by:

v Surad D | vt A (6)

with the secondard condition

divd 0. Q)

After substituting into equation 1 under consideration of the time
law exp (Jwt) and the identity:

A graddiv - rotrot

rot = red

we obtailn:

. \
—uradfjemd . n. S PAD |
(n 3

Frotfjod - vAAl 0, (8)

Since both summands are independent of each other, they must disappear
individually and we have:

1
jow - UL A 0, )

go

jmd—vAA 0, (10)

Equétion 10 comprises the first wave equation, namely for the viscosity
wave:

(ALE)A 0 tHh

with:
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Substituting equation 6 into equation 2 gives:

o A (12)
©o jom |

and substituting equatlon 6 into equation 3 gilves:

jw Ty - (y - Y ToAD - 2ATy 0, (1)

In order to obtaln a wave equation for @ , we must eliminate the middle
term 1n equation 9. Substituting equation 12 into equation 4 gives:

m /m(A‘/' "I"). (14)

o oo\jm ~ To
Substituting equation 14 into equation 9 gives:

' ( A ,,'l

jm Ty

) iyAm 0, (15)

jond -
(]

Substituting A¢ from equation 14 into equation 9:

2 H Vi »eon
jorAD - I A ) ; jw T Y [ A'I)\—-—
oo \ jo a Ty % /
4
_— A2 0, (16)

3

Equation 16 minus equation 15 multiplied by jwea results in:

N
(o))

2 4 "2 ) ¢4 . _ '
{ja(yl:'” -} 3 jv) A -w l”‘: 4 (OL } 3 1')] A - } h 0 (17)

(!3 ==y pufon . .

with

According to Lord Rayleigh, equation 17 can be written as a product
of two wave equations

. )
A KA D 0. (1)
Here, k: s ki are the negative solutions of the guadratic equation by

4, obtained by equating the brackets in equation 17 with zero. From
this we have:

l”ﬁl'( B I VA LT | DT (L A
A"“: o ._J o .: 1 -t l '"*J m: 1 [ m( .-: Y
C " ] 0 3 yao 3 ‘ (20)

ks o +
o« 20:( 0 ‘1' ) j1')
Y2l 3
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Equation 19 1s solved if we set:

o (/:0 | o, ,
(A ! A';',!) '/'0 0,
(A LK), -0,

(21)
(22)

(23)

If we conslder the order of magnlitude of the constants, we see
that by approximation we only need to consider the first term in
parenthesls 1n front of 4 and A’

ié ) .jym( i II/‘ 4 ou::) >
%

20. y(!;;

in equation 17. From this we have:

and 1f we extract the root:

W . .
/;?Z; R (mfey)e, /.‘,‘i & jymla. (24)

K, 1s the wave number of the standarized sound wave 1n air, that is,
a compressional wave; ka, 1s the wave number of a temperature wave.

Accordingly, three wave types appear in the absorber: the normal
compresslion wave defined byqb » & temperature wave described by ¢azmﬂd
a viscosity wave with vector potential W« .

4, Quantities of State

It 1s our objective to find solutions for the potential functions.
In order to describe the acoustic fleld the acoustic field quantities
must be expressed by these potential functions.

The speed of sound is obtained from equation 6 and 21:
o grad (D) | ool A (25)

The relative change in density 1s obtained from equation 12 with equation
22 and 23 as:

¢1 .. j _ e 2(8
00 T w M ¢ ‘I'U ] I‘rz 'I'O(J i ("(')
From equation 9 we obtain the relative sound pressure as:

;: Ll Dy 1 iy 27)
10
with the coefficents:

v (. 4+
I/g,a, w (.._5 o “l" 3 1',35# , (28)
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As in equation 28, expressions with the indicesx @ wlll appear below. We
intend to use these as abbreviatlons for two eguations, each of which
would otherwlse have only one index. Therefore, equation 28 stands
for:

v 4+ ) and
1, :-: (j o b, k;,)

it 3

' 4
Iy - ,:(j w4, 1'l.‘:;').
“ih 3

From equation 4 we then obtain the relative temperature change as:

A g Do -1+ 0, Py . (29)

wlth the coefficients :

4 yy ) R ’
Dova-=,, *, k&¢4v1<m'ﬁ --;“). (30)

, .ll
0y 0

The following discussion where the explicit dependence on the kinematic
viscoslity p 1s eliminated also pertains to the coefficlents /yx and f,, :

. ‘" ) ‘.:
ikia Yoo jaky,
o N 0 *
m o=k,

, (31)

iy - Dhia

; o 32
Opya < —jakt, (32)

5. Boundary Conditions

~N
U1

The emission conditions and certain symmetry conditions, depending
on the model, must be met. The following conditions must be met at the
fiker surfaces by the resulting mathmatical descriptions of the poten-
tlals: disappearance of the speed with all components, equality of
temperatures of air and fibers, equality of radial thermal flux density
in air and fiber at the fiber surface, i.e.:

Vpy Vg, Uz =2 0 ' (33)

Ty =T (34) ¥ for
- i ey a

1 0 ™ = A 2 Vi 35

/ or 1 == 21y or 11 (35)
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As a simplified thermal boundary condition we studled the dlsappearance
of alternating temperatur- at the fiber surface, 1l.e.:

Tgr a) 0,

Although the boundary conditions to be met by the individual fibers
are always the same, wlth the individual model there result varilous
descriptions of the potentlals (e.g. due to different symmetry pro-
perties) which are to meet the above boundary conditions.

6. Individual Fiber

We first consider an 1solated fiber. Let 1t be embedded 1in a
eylindrical coordinate system (r,y ,2), with the z-axls coinciding
with the fiber axis. Let us call the flber radilus a. As the time
function we select exp (Jwt), as the z-function exp (-rz). From
the geometry of the arrangement, we have lmmediate axial symmetry,

i.e. ¢/op 0, From equations 22 and 23 we have:
02 ‘ a ™m .
oty mlhl'4‘ﬂa)¢ma 0. (36)
If we set:
\
A= (AMAV‘,-"Z)) (37)

Then because of

ofoy 0

we have: ) 0 )
vy = robg A o Ap— o Adg 0 (38)

and because of divd 0

0 [ 0 "
At rOwA”+DzA""' (34)
Applying , 9f to equation 38 and ;1’ to equation 39 gives:

oz
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And wlth equation 11 there results:
e 0. 4€ 4, 0.
From equation 38 and 39 we have:
a

or

/'g N ()
and

A "': N 0.
that 1s

Therefore, of the vector potential there remains only the component A,
for which the wave equation appliles:

2 ]
(“ b ' 1o |<A".‘.'>r'qr 0. (10)

o r oo '

As solutions of equation 36 or 40 , Hankel functions of zero or filrst
order are used. Because of the emission conditions only the second

type of Hankel function come into consideration if we choose the imaginary
fraction of the cross-propagation constant to be negative:

|lll(l') <), (4[)
Thus we have:

hy(r,zy By U (e,0), (42)
ho(riz) - By "HE (eqr), (43)
Aglrnz) Hye " 19 (eyr) (44)

with fﬁ.m.v -1 ! ""g,d.»" (45)

With these equations the boundary conditions are met at the fiber sur-

face.

As a result of axlal symmetry, ,,¢- «) © is also true. From
the other conditions there result the following equations:

p(reza)--
Dl eg 1y (ruay 4 By 1 (rpa) 0. (16)
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The sumoﬁ'in equation 46 1s an abbreviation for the sum of two terms.
The first summand 1s the one behind the summation sign, the second 1s

obtained from the flrst 1f we replace the index @ by the index

From the conditicen v,

(r = 2) = 0 we obtain:

v

}: ,'l(i Illl“(l"p"} ’ I’:r 'y Ilo(l""vll) 0, (“7)

s

a.

From the equality of the internal and external temperature at the

fiber surface we obtaln:

and from the equality of the radlal heat flux 1t follows:

. A
D lglprg Iy (rga) - 1y ,"l-'l'/n(lful)

¢

ZI’JL.I)(. Hotega) - Iy do(pia) - O (48)

"1

0. (49)

From equatis:: 5 we have the followlng expression for the wave equation:

(At ATy -0 (A0)
‘with:

b s jonfa (1)
We obtain the solution equatlon:

P2 e e (52)

'y

with: L

R A (53

To determine the propagation corstants I the determinant of the equa-~

tion system (46) to (49) is eliminated for the amplitudes Ep , E
This aystem of equations can now be written for the sake of clarity as

follows:

Zlb'(.p‘,lll(k(,ﬂ) By Uy (rpa) -0,

[

2: /"‘(’ /‘”ll("'o uy { Kyey //()(I",vll) 0,
¢
D By Hy(rgu)

4

Fido(eia) 0

ML

s s ARt ot B A i B i b

o R llll '
2 loy wplli(eoa) I L Ji(za)y 0,
g
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The numerical equation shows that for fiber radll as used in real
absorbers, the propagation constant of an indlvidual filber 1s not
affected. But in order to obtaln calcuable deviations 1in propagation
constant from the free fleld wave number, flber radii of at least
20 em must be assumed.

The calculation performed here permlts us in future models to
| separate the fileld of an Iindividual filber from the total field 1n the
; absorber,

7. Quadratic Arrangement of the Fibers )
i 7.1 Geometry -

| The geometric conditions are 1llustrated in Filgure 1. We call
the fiber radius a, the distance of the axes of two neighboring fibers
1s 4.

X N

T AR

In the cartesian coordinate system(x, y) the fiber axes have
coordinates (md, nd), whereby m, n are whole numbers. The individual
fibers are ldentifled by the indices m, n. In the cylinder coordinate

system (r, 9 ), the fiber (m, n) has coodinate (Rmn, Von)

s e TRV T e e
S il s B

Figure 1: Coordinates of the fibkers and rlotted point P.

PR e e

The potentials are periodic in , by /2

i (l)(", T, z) - (I)(r_ ok Tt/g. 2).
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The potentlals are symmetric at ¢ o, =,
In the treatment of thils model we assume that the field about a

flbre 1s composed of a fraction as would be generated by the individual
fiber (emitted field) and a fraction composed of the sum of the emitted

fields of all other fibers (scattering fleld). The emltting fleld is

assumed to be axlal symmetric, the scattering fleld 1s dependent on
the angle.

From the shape of the emitting part of a fiber (see equation 42 to 44)

there results that thils fleld is inconstant on the axis of this fiber.
The scattering field caused by the other fibers 1s naturally constant
and therefore Instead of the concept "emitting field" and "scattering
field" we also use the expressions "inconstant field" and "constant
fieid".

7.2 Determination of the Scalar Potential

For the scalar potential we use the wave equation:

b oo
-+ | I kg 7
roor\ o ré Pyt st "'"‘]

P (54)

As solution set we select:

Dyu ¢ "“'l
{

b2 By i(eg,ar) cos(iq)] .

’ "
I"'u.'z ”&“("0.0&") I
t

This equation already considers the symmetry about ¢ o .
Because of the perlodicity all terms where i 1s not divisible by
four are eliminated in the sum, l.e.:

Poo- o I'zl/dt:.« lll(»a)("‘c;,a)') |
+ ,2;.)"‘{:«.&:",-1/ (Po,ar)cos(4/ g . (55)
Here, the amplitudes of the emltting field have a single prime, those

of the scattering field a double prime. Equation 55 meets the wave
equation

Lo/ o . N
r o r ai‘) ! “"5-1 1) - » Dyo 0

N
A9}
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with

Yy X "
TP

and

Im (Fo, q) <0,

It also meets the condltions of axial symmetric excltation of the
emitting fleld, emlssion condition, the periodiclty propertles of
the scattering fleld.

Now fthe scattering field should be described as the sum of the
emitting fields of other fibers, i.e., we should have:

DG dyleryeosdiq) (57)
in

AN T I TP 2 . 2

== I 2_//0 ()b B 2R reos(Pun - q).
My
10,0

Here we have:

Ryy - dfm? }on?,
! 4] [}
cospmp == mfl mE | ond, (h8)

. . .
sinymn m": AEETEN

according to the Gegenbauer addition theorem, the right side of equa-
tion 57 is:

B {Joler) Ho(e Buy) -+

m.on

+ 0,0
-+ 2KZ|Jk(1-r P Hi (e Byy) cosk(pn — )| =
= J()(F I’) Z "()(l’ Il’m,,) i (59)
Vi
B RE Y () D (e Ry
ko o0
L0

>(eosk oy coskg bosin ko sink gy
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In equation 59 we know: o
Z Ui (e Rypu) sinkpyy sinkg 0
Yo
r since: ‘
l . :
; Sk yn - SI0 gy | Polynom in cos g, S
| l.e. after summation, the terms wilth + n and - n cancel out.
F In addition:
| 2 Hile Ryyn) cos ko y cos k g =0
Vi
fOI‘ k' 1,3,5,0--,
| ) 2y
since cos (21 — 1) ¥Ymn = cos 'Wmn /Polynom in sin mn/
; l.e. terms with + m and -m cancel.
We have :
cosi(2a) -= 28 Teont 2 —
‘ ) 08 oot 29 i fi—3
: - (i—3) COS € - 9 { X
% B Beost 12— 00 ,
¢
i
‘ where: '
Cos 2 = o — sindx = (02 - 02)[(m24 n2),
If 1 is odd, i1i.e. 21 is not divisible by four, the terms cos i2x
reverse slign upon exchange of m and n, then the sum 1s equal to zero.
| If 1 is even, the signs are retained. So from eqguatlon 57:
i
l
3 2 . o . ,
' 2 Byidai(er) cosdiqp = B Jo(er) D Hole Rypn) +
i 0 ’:’1'),,’0
b2k 2 Jag(er) 2_ Hag(e Ryy) cosd by, cosd kg
ko ol )
10,0 (60) ;
; ;
‘ and we immediately have, by coefficient comparison: $
r » O %
: b
E. iy o ' “
| Lo By Z HE (eg,0 Run) s (61) *
: . Vi
- I"‘o./x.~li 2 ]'/'g.a 2, ”‘(t‘.:')(“'o.a Ryn) cosd i Poun - (62)
win
. 140,00

T e S

The coefficients from equation 61 and 62 are substituted into eguation
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55 and we obtain:

SR T AR AR BETAT TR T e e

Do,a(r,q sy e 1% By ([P (eg,00) |

'i“ vl"(“'e'a r) Z Il‘(;'!)(l""'u Il"”") ‘*"' (“3)
o
[-] tIL)
A+ 2 > ai(eg,ar) cosdiqp D HE k0,0 Roun) X
[ oo
100

< eosd iyl

Thus, the two scalar potentials are determined, except for one amplitude

and propagation constant.

7.3 Determination of the Vector Potential

We set the emitting fraction of the vector

of the individual fiber:

with

A (0, o)

Ay BB ey o 17 (64)

This equation 1s axial symmetric.
For the constant field the wave equations apply:

19/ 0 1o LI |
22 G

’ o T oA
o\ or r2 Qg k 0z2
2 al",’r il
X o) - "0, (65)

T o

o/ 0 a2 o2 1 o
r R IR ol IR
ror\ or 2 op? Rt

o2 "
AT, (66)
re Qg
') a l 02 02 o "
) r ’ [ o 'l* o “I /'.; Az =1
o\ o 1t gt T 022
(67)

potential equal to that
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Since according to our assumption, the scattering field is ;

1llustrated as a super-position of the emitting field, 1t follows

that A . since 1t cannot be excited by Af

(By vector addition of all emitting terms, only components in the r, ¢

plane can exist and no z- component).

As a general solution we select.

A (o, 2) e e fsind gl Ay ey (enr)
i

SR IR

(68)

|- cosi gl Ifg' Jiy 1 (epr) - bi Ji (es))}
Aoy z) e 1 Y feosigpld Fdi (o) —
7
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(64

sind g | B e o) = b e (el

AL ryp,2) 20,

v

For the generated speeds of sound (only the
field) we have:
v, = roby A" == I"A,;,',

" 17
v == robp A e - ITA

124 7 a 7
o mroly A - L - A, -
‘ ro or Y

The field period is periodic in ¢ by m/2:

Aty i) A ).

The field is symmetric at ¢
at 7 onw2 ).
Therefore we must have:

) vp(p-0) .9
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fraction of the constant

(71)
(72)

(70)

0 (and because of the periodicity, also
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and thus

[

Ay 0) 0,

and from this we obtain: ¥

I";I"lll | ";"’( 1 0,

from which follows:

Ifq’)"‘:b('»’» ”;,' b0 far 1= 1,2,3,... (78
2) Because of the periodlcity, all terms where i 1s not divisible by
four drop out.

So as an equatlion meeting the conditions of symmetry and periodicity
we have:

t

Ao 'z Zsi|\4iq-[:|,l,’;./,“.. 1{ewr) -

¢ 7 g
4+ ayidaeir(enr)),  (70)

A,",' = e ") cos diglAyiTag-1(enr) —
i ’ . "
-— (l“,'cl,'] ‘.|.],(l')" )')l y (7(')
Ay 0, (717)
Equations 75 and 76 must still meet the divergence condition:
7" 0 144 o e ]
div A" = ; Ay A o O + r O Ay =0, . i
{ ’”" 0 A T
) ("r A 2 /l,,) o=
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from thils follows:

divA’ - ¢ g, Zsin dipdar(epr) X

'
(ol b)) =2 0

and from this we obtain:

A ,",' " l"; ' (78)
3o as a solution we obtain the followlng expression which meets the
condition of symmetry, perilodlcity and divergence:

Al (;}v :z Ri Ay sindigpdar(enr), (79)
' /61
,l;' e 1D .'I',‘, cosd i g Jyilenr) (80) -
A0, ¢ (81)
Now the constant field 79, 80 should originate as the superposition
of the emitting field 64 of all individual fibers. These fibers are
added vectorally. i
The emitting field of the fiber with the indlces m, n generates
the component & at the plotted point P, This is split apart in the N
coordinate system (r, ¢ )of the fiber with coordinates (0,0) into a 'g
radial component ﬁ; and an azimuth component ﬁ; . -S
£
From Figure 2 we can see: %
o= fi - wf2, “‘Z
xi;' c A cosg - A cos{ff — w[2) = A sinff, %;g
Ay = Al sing - - A sin(p - wf2) - A'eosp, ;f.
sinf <. (Ryfu) sin(pmu - q) (Sinussatz) i
w2 | R 2 Ry eos(Ymn — ¢) )
2(Cosinussatz) . ’
Key: 1l-sine law 2-cosine law
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Thus we have:

Byen sin (s - )
s
-2 I{"”] CON (1/)"”; - ’,‘)

(82)
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o I
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A

y ¢ Ry cos(pmn — o)

= s ¢ E ‘

¢ [ 24 RS, = 20 Ry cos(pmn — )
{83)

thus:
A e TR ' (84)

W (e |0 Ry = 2 By oS (Pon = 7).

Now we should have:
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Flgure 2: The addition of vector potentlals of the fibers (m, n) at
plotted point P.
From this follows:
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or for the radlal component:

Vo e

o D 8iALwIn(Eig) Sy (eyr) = (85)
vV g

BTAN ”nmﬁi"('/’mn = q)
b 2, e 1

. 1
it mn —2r Wy (“’“(V’mn - 'I')
L8

r ' SO e ) 2 BE, — 20 Ry COS (Pmn ~ 7).

and for the azlmuth component:

2> Af,}uns4iq- Jiepr) - {86)
i
‘k " re—= Ry Cos{ytmn — o) .
' B2 ke e CON (Y — 1)
;'u"n" nn mn COS(Yyp —1f

N ) ey | re | /n,,,,, — 20 By COS (Y == ) .

According to the Gegenbauer addition theorem, from the right side of
equation 85 we have:

HIJ' *®

2(‘ + l)t’[;.k(l-p')\ II ‘(hv Rm") X
Fpt 0 W,
[N]X1)
{ wosinl(l 4 kY (pon — g} =
| 92 oo
b St k) dneler) 2 % (87)
L ) ni

(R X))
: ~ ”l ll("" Ryn) 150 (1 - &) g cos (1 - kyo—
— cos(t - k) pasin(t - k)l

Like the scalar potentials (see equation 59ff) the terms with

sin(l + k) Yun and terms with cos(l + k) ¢mn, cancel where (1 + k)
is not divisible by four.
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With (1 + k) = 41 from equation 87 we have:
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And the coefflclent comparison between equation 88 and left side
of equation 85 immedlately yields:

A= B S D 6y Ry cos(ipn) (D)
(N
10,0

t= 0,20

g ooy 1Dy 4

Ag 1s not yet determined since the terms for 1 = 0 disappear on both sides.

From the right site of equation 86 according to the addltion
theorem we have:

28, @ N~
o 2 (01 &) dyalenr) }_, I ey Bnn) <
ol = I

L0

P Rweos(puy  y)
4 sin(b | M)y ,
B sitt (s 4) sin(l | B)Y (pwn )

(90)

A rearrangement which permits a direct coefficlent comparison
of r and ¢ 1is not possilble. Since Ag is a term lndependent of angle,
for Ag a coefflclient comparison identical 1n r is sufficlent for the
angle lndependent fraction of equation 90 and the left side of egyua-
tion 86. For this, only the term for k= 0 or 1 = 0 1s taken from
equation 90 and the left side of equation 86. Then we obtain:

o

b
I3 - 3 . N
e 2y Sy () D) DO HP e Ry 2
il non
[RIRL]
R [ cos(ypy - ‘/)

, /"mu
20,
< e, .
. Jy(enr) D (e Byyn) -
n.H
(N1X1}

S By = cosyppy cos g |- singy,, sin 7l.

The terms with cos wﬁn disappear in the sum due to alternation of n

with —n. We then have:
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From equations 64, 79, 80, 81, 89 and 91 we obtain for the vector
potential A= A' 4 A":

Y M
A v
Aty g, 2)

Pot

o0
ke 2‘{4 Esindigdy(epr) (92)
i
TN HE ey By eond i Ywu) s
nt
Vi
Aglroquz)  Bee "HHS @) | 204 (ryr) <
P Ry) oo
\ I y mn 0 \‘ . N ’ .
Iﬁ' ey I.’,,,,, -" '(Uh(*' Il/)ol‘,‘(l')")

[RIAL}

N ey f
’ﬁ\_,"”li (o By eos 4 Yl (¢3)
L

Thus the vector potential 1s determined, except for one amplitude
quantity.

7.4 Comments

For the constant fleld we have permitted an angle dependence, the
emitting field of a fiber has been assumed to be axial symmetric. This
is not entirely correct because the fields affect each other and an
angle-dependent scattering field will always result in an angle-de-
pendent emitting field. The solution presented can be considered to
be an apprvximate solution. As a next step, we would have to proceed
from an emitting fileld described by equation 63, 92, 93 and to perform
perturbation calculations with equations 79 and 80. This is not pos-
sible eilther analytically or numerlcally. Within the framework of
the achieved accuracy, we must assume that at least in the viclnity of
the fibers an angle independent field exists. This 1s achleved by
neglecting the last (angle dependent) sum in equations 63 and 93 and set-
ting equation 92 equal to zero. Thils procedure 1s Jjustified by con-
sideration of the order of magnitude of the individual summands.

In equation 92 Ar disappears for r -3 O on the order of O(r3),
likewise the last sum in equation 93, whereas the first sun in equa-
tion 93 increases with 1/r.
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To formulate the boundary condltions at the fiber surface we
therefore use the following descriptions of the potential:

'I’@,g(r. V) 2) - ligae I'.!l”ﬁ-‘-)('_.o'i,-) -
1 odoleo,ar) Z ”:;")(Fa,u Bundls ()

.
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a’l qy(". " N :) I’/‘;r" "tl Il‘lz){f"' ") ;‘

P R .
2y y T ) (95)
Vi

flr N :"g ".

ey By

The boundary conditions to be met are the same as for the individual
fiber,

8. Integration Method

In the last section we illustrated the scattering fleld as the
discreet sum of the emltting fields. We expressly used the regular ar-
rangement of fibers. But in a real absorber this regularity does not
exlist. We could account for this by Ilntroducing an average flber
density and illustrating the scattering field as an integral over the
emitting terms of the fibers distributed uniformly about an average.

LLet N be the number of fibers per surface unit. Then g 1s the
amount for one fiber and NgdF is the contribution of the surface element ?
dF.

In Flgure 3 we determine the contributlon of the source regilon /6
about Q at the plotted peint P. We again use equations U2 to 44
for the individual fibers as the emitting field of the fibers:
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Figure 3: Integration relatilonships

The surface element becomes
dF = RAR dy.

From thils results the contribution of the source region about Q at
the plotted point P for the scalar potential:

di, = ¢ TEN RidRdy

Wy G (Fo,a oz b R 2 Reos(q-y)

and from this:

(I)” o ::‘nl °°. I'lN R I{,I II(._!) ,
e+ |y .f“ Vi Ty S
1] o

% (£g,a 7 1 B2 - 20 Reos(p — ) dR . (96)

According to the additlon theorem:

U (#g,a Pre g B2 220 R Cos (g — ) =
Jo(eg,0r) HE (e, 5 1) |

2 20 I tour) Ui .0 B) cosln - )]
" -

Upon integration over Y the terms of the sum over n cancel because of

the cosine. Therefore from equation 96 we have:
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and from this:
’" . - o ,[(2)“")'» (I
Poo =~ 2o P2l N2 "__(' :(I‘ ) Jolto,ar),
(07)
For the vector potentlal we must perform vector addition. From
the discussion on radial or azimuth components in equations 82, 83 and
84, we can immediately write the constant fraction:
A, z) o
Yo TR REsin(y - )
e g
o« b A,: '(,:lv’,;‘ Vreg Be—2r Reos(p -~ q)
S e )2 L RE 20 Reos(p = q)) AR, (98)
Ay (rogaz)
, yim oo r— Revs(p — q)
e 7B fr ! w
o h, A: "‘,:lw,;’ ! 2 RE—2r Reos(y — ) A
AP (e ) e 4 RE— 20 Reos(y — ¢)) dRr, (%) "
4
The integration limits wlth regard to y are varlable as long as
integration proceeds over a full circle. The selected shape permits a
simple transformation: o -y . Thus from equations 98 and 99
we have:
, T2 RZsing
X 7 . . 1"z J‘ )
Apoe BB N ‘,’,doir" [r2 - B2 =20 R coso x
LU (e r2 4 RE— 20 Reosa) AR, (100)
,y Xoo® r— Reosa -
e i p » o
Ay e ZI,,N;!(IOL:! I Vit 4 B2 — 27 R cosa ;
2P ey 02 - R2 —2rReosa)dR. (101) i}
§
1
3
In equation 100 the integrand with respect to @ is an odd function, i.e., %
A" = O. §
r IS
1,
In equation 101 the integrand with respect to a 1s an even function. i
25
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According to the addltlon theorem we have:
e, l/'*’ o+ R 27 Reosa) =

9 [

T ear 2R ke ) k(e )
And thus from equation 101:

O ey Reosa (102)
sina

"EELN 2w
an e l"N”(r—ln-,usa)x (103)

Y Epr a i

o, ., sinko
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In equation 103, 1if Jer| €l , then ()| very qulckly goes
to zero with ilncreasing k. In addition, the term “sinko/sina,
osclllates wlith increasing k more and more so that upon integration,
only a slight contribution 1s provided. Of the sum appearins in the
integrands we therefore consider only the term with k= 1. We then
have:
v e TN on

e [ (r — Reosa) %
! Eptt I'I‘ (‘l“

b r’] (t‘,-i') [l(‘ﬁ)(!‘.“ I{) (la(l .

/A

Upon integration over a the first term of r - R cos & yields
the factor m, the second term disappears. It becomes:
144 . ’ Ji(epr 00
A"/ VA“’TC(' I;q(;"N lf:l’) .‘ II('B)(("»II,)(II{
v d
or:

3 (epd
y( n"’ ) Jilenr).
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(104)

Thus we obtaln a description of the potentials:
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With these descriptions the boundary conditions at the fiber surface
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are agaln fulfilled. They correspond to ecuations 94 and 95 for the
model with quadratic, regular flber arrangement and are comparable
with these equations.

We have now described the fields of the compressional, temperature
and viscoslty waves in the environment of a fiber. Both 1n the complete
field equations 63, 92, 93 as well as in the simplified equations 94,
95 for a regular quadratic fiber arrangement and in equations 105, 106
for a homogeneous flber distribution, the amplitudes Ep,a,» ' 2nd the
axial propagation constant I" are unknown. These are, as already shown
in Section 6 for the individual fibers, determined through the boundary
conditions of equations 33, 34, 35 at the surface of the reference

| fiber (m, n)= (0, 0), i.e., at r= a.

From a comparison of the equations 105 and 106 by the integration
method wilth the results of the summation for regular fiber arrangement
- we now know that the component Ag (r,9. , z) of the scattering field
qulte disappears. This provides an additional argument for the simplifi-
cation performed in Section 7.4, mainly, instead of using eguation 92,
to simply set Ar(r,v', z) = 0. We also find a relation between equa-
: tions 94, 95 and equations 105, 106:
" S HE (6,0 Run) 2 — 27 N 2 H§ (e, )

ni M o, 'l
1N

U Ban) g T D
#y Bn (#pel)?

w,n
10

L : In the complete field equations 63, 92, 93 we see in the last terms
the influence of the spacial arrangement of neighboring fibers on the
i total field in the vicinity of a reference fiber. From the derivation
‘ of these terms as well as by its form, the influence of the order of

symmetry 1s seen. If this increases, then in accordance with the factor
in front of the summation index i, 1.e., the order, of the first cylinder
function increases in the terms and the interval between the orders

becomes 1larger. The sums in the terms converge more quickly.

27
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At thls point we can account for the microstructure of the real
absorber by introducing the statistically most frequent order of
symmetry and by performing the summation of scattering filelds of
neighboring fibers only up to a certain interval and by applying the
integration method to more distant filbers.

In part 2 of this work we will utilize the randomness of symmetry
selection to derive a more simplified model.

10. Conclusions

One objective of absorber theory is the obtainment of a calcu-
lation method for the propagatlon constants and for the wave resistance
of the absorber. Another objective 1s to galn knowledge about the
influences of the individual structural parameters and material data
on these values. Both objectives will be pursued in part 2.

Thanks are due the German Research Soclety at thils point for
financial support for the work.
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