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A	 Vector potential of the viscosity wave
U	 Fiber radius

Adiabatic speed of sound
rl	 Fiber separation (in the model of a

regular absorber)
1041 «,,	 Amplitudes of wave types in

air
F	 Amplitude of temperature wave inside

the fiber
Internal wave conductance of the absorber
Hankel functions of n-th order,

second type
Porosity of the absorber

h* _= I It Fill factor
kO, I	 Wave numbers of wave types
N	 Fiber density (number of fibers per

surface uni" )
1^n	 Stationary pressure fraction
r^	 Alternating pressure

Radius of an elementary cell (fiber
in the tube)

Cylinder coordinates
81 (/1)	 See equation (151) /sic,7
TO 	 Stationary temperature of the air
711
	 Alternating temperature of air

Pol	 Stationary temperature of the fiber
11 1 1	 Alternating temperature of the fiber
V	 Speed of sound
II'	 Internal wave resistance of the

absorber
Surface impedance (with *: standardized

to	 tlo(%o).

General cylinder function of
n-th order

« - A /(@o rs , ,) Temperature conductance coefficient of air
n^	 Temperature conductance coefficient of the

fiber material
1,1	 Propagation constant (with*: standardized

to	 (r0-1)),	 )
Adiabatic exponent

'I	 Dynamic viscosity
`1' 00 1 01/. Scalar potential
(he	 Scalar pctential of the compressional wave
(1)«	Scalar potential of the temperature wave
11	 Thermal conductance of air
' I,	 Thermal conductance of the fibre material

Kinematic viscosity
Angular frequency

C),,	 Stationary density of air
Q ,	 Alternating density of air

Specific flow resistance
o"	 Flow resistance
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Indices :

«	 Temperature wave in air
i	 Temperature wave of the fiber,
V	 Viscosity wave

Compressional wave
(prime) : emitting; field

• (double prime): scattering field, constant field
(circumflex): amplitudes determined by model geometry
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A MODEL THEORY FOR THE FIBROUS ABSORBER,
PAR'S 1: REGULAR FIBRE ARRANGEMENTS

F. P. Mechel

University of the Saarland Acoustics Laboratory, Saarbr,.ic.,,cen

1. Introduction	 /53*

Most sound absorbers are fiber absorbers: the absorption materi-

als consist of loosely interconnected fibers. The fibres themselves

are usually glass or mineral fibers, but also organic fibers and--for

special applications--metal fibers are used.

To describe sound propagation in these fiber materials, at present

there are practically two theories. The first, which we will call the

theory of quasi-homogeneous absorber, describes the absorber as a homo-

geneous, isotropic medium and considers the losses in sound energy in the

absorber by a flow resistance and tries to describe the structure by a

"structure factor" in the force equation. The second theory replaces

the absorber by a model of a bundle of parallel tubes (Rayleigh model)

with sound resistant, infinite heat conducting -,calls. Both theories

have their obvious and known deficiencies.

In an earlier study ,11J it was found which of the two theories

was best suited for further development. It turned out that the theory

of the quasi-homogeneous absorber leads to internal contradictions in

addition to the disadvantage of frequency dependent material constants

which cannot be eliminated by a simple change in the theory. Conversely,

the theory of the tube model appears to correctly reproduce the physical

processes of sound propagation in the fiber absorber, but suffers by

having excessive deviation between model and structure and real absorber

structure.

Therefore it was suggested to apply the principles of the theory

of the Rayleigh model, namely the solution of the most exact and com-

plete differential equations to a model better adapted to the real

absorber structure.

*Numbers in the margin indicate pagination in the foreign text.

/54
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The model used here consists of parallel fibers of the sarnt

material gust like the real absorber. The solutions of the complete

differential equations (i.e. under consideration of air viscosity be-

tween the fibers and thermal conductance of both the air and fibers)

are given. The sound wave should propagate in the direction of the

fibers.

Initially omitted properties of a real aboorber are:

1) scattering of fiber radii about an average value

2) melt beads and adhesive globs

3) statistic orientation of the fibers in a plane.

While work with this theory was underway, the excellent papers

by Attenborough et al. 22,7, 4,'V appeared. There,the theory of multiple
scattering from cylinders was applied to the fiber absorber. This is

a method tailored specifically to the absorber attacked perpendicular

to the fiber direction.

Since we are assuming a sound propagation parallel to t1je fiber

orientation, the model described here represents a supplement to the

work of Attenborough. In addition, the calculation presented here

represents a logical continuance of the Rayleigh model. In the Rayleigh

model the sound propagates axis-parallel in the tube. We eliminate the

main error of this model, namely the tube, whose wall consists of fibre

material, and study instead the axis-parallel acoustic propagation in

a fiber bundle.

`

	

	 In an initial equation for this model we assume a regular arrange-

ment of fibers in a quadratic grid. This is certainly a flaw in the

model by comparison to a real absorber. Its effect is even more omi-.

noun since we frequently had to use symmetry properties of this ar-

rangement in the course of the calculation. The method of calculation

shows which changes occur in the result if instead of quadratic symmetry,

a symmetry of higher order is postulated.
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On the basis of these results a simplified model is discussed

in a subsequent part of this work (part II). Here, each fiber is

surrounded by a imaginary cylindrical symmetry surface, i.e. we use
'r

a symmetry of infinite order. As with the Rayleigh model, we only

need to find the solutions in this type of cylinder with one fiber

on the axis.

2. Basic Equations	 /55

The scalar quantities of state of the sound, field, namely, pres-

sure P , density e, temperature T are split apart into stationary
fractions with the index zero and into chronologically variable frac-

tions having the index one in accordance with exp Q w t). For the

sound field quantities the usual linearization assumptions are made

that their squares are negligible compared to linear terms. We then

have:

the equation of force (Navier-Stokes):

PI

the continuity equation:

it	
^^ocliva	 11,	 (2)

the equation of thermal energy:

c(I7'I
0 'f (y — 1) To(Iiv a	 T,	 0,	 (:;)

the equation of state:

^>> _ `^	 '^ c	
11	

(4)

7)1)	 Coo	 '/'o

and the equation of thermal conductance in the fiber:
a

it •— ai:^7'n	 11.	 ,^'	 O	
a

t

_	 j
f-

...	

_	 -	
^ T	 -+mac,



In equation 1 we neglect convective acceleration and in equation

3, thermal transport by radiation.

3. Potential Functions and Wave Equations

The standard potential functions for the acoustic field are de-
fined by:

with the secondard condition

jliv 11	 0,	 (7)

After substituting into equation 1 under consideration of the time

law exp Q w t) and the identity:

,^	 ^rn^l ^li^'	 rut. rut.

rot = red

we obtain:

	

toll	 .t	 J

rot I j	-- ), "AA	 U,	 (H)

Since both summands are independent of each other, they must disappear

individually and we have:

pi	 +	
(• )

C40	 3

A — 7 AA	 0	 (I(1)

Equation 10 comprises the first wave equation, namely for the viscosity
wave:

( A +k")A	 0	 (II)

with:
^a	 _.. j
	

•
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Substituting equation 6 into equation 2 gives:

L,rr	 j u►

and substituting equation 6 into equation 3 gives:

In order to obtain a wave equation for 0 , we must eliminate the middle
term in equation 9. Substituting equation 12 into equation 4 gives:

nrr	 i,ri	 j r,► 	 / o	
.

Substituting equation 14 into equation 9 gives:

	

j ru r/►
 .. ^^u \ j r^	 %'rr	 ;3 " ^r/,	 11 . (I i)

Substituting Ar/► from equation 14 into equation 9:

jm[1rh-. 
NnrL1'`4' I ,jru %; I _ Y`- { ^

r/► 1 —

	

Nr, t ,j n,	 a. 'To	 a

Equation 16 minus equation 15 multip:'.ied by j'Q1, /ct results in:	 /56

v	 4 .	 A1Ot	 j	 j

( Y(f)
A 2 1 n

►

r^r;	 3. I ' a (a	
} 	 V)IC

l	
,A .I. (,)2	 0 U (i7)

3

//

a,	 `

111111with

According to Lord Rayleigh, equation 17 can be written as a product

of two wave equations

Here, kQ	 , k;	 are the negative solutions of the quadratic equation by

Q, obtained by equating the brackets in equation 17 with zero.	 From

this we have:

-I	 1	 jlv.	 I
.2

t^l	 1 1-j^a.	 I	
3 

n^l
cii	 3

—4joc	 1-	 jn)
^'t I	 ru	 \ :3	 j	 rn :3

4

\ y n,	 :3
(ZU)

La	
yrn I	 :3	

J

5
r
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Equation lg is solved if we set:

0 Ov I ol. ,	 (21)

If we consider the order of magnitude of the constants, we see

that by approximation we only need to consider the first term in

parenthesis in front of d and Q2 in equation 17. From this we have:

l's;	 y(t)	 a(1)

and if we extract the root:

K. is the wave number of the standarized sound wave in air, that is,

a compressional wave; k., is the wave number of a temperature wave.

Accordingly, three wave types appear in the absorber: the normal

compression wave defined by Of , a temperature wave described by 0. and
a viscosity wave with victor potential it .

4. Quantities of State

It is our objective to find solutions for the potential functions.

In order to describe the acoustic field the acoustic field quantities

must be expressed by these potential functions.

The speed of sound is obtained from equation 6 and 21:

u	 gr;rr) ( OC, I' (/Pn) I rot, A .	 (25)

The relative change in density is obtained from equation 12 with equation

22 and 23 as:

From equation g we obtain the relative sound pressure as:

y^ r

Po
^^,.I 	 (27)

with the coefficents:

y	 ,^	 1

 
(28)

i.	 Cr,
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As in equation 28, expressions with the indicePl #; cy will appear below. We
intend to. use these as abbreviations for two egt atior s, each of which
would otherwise have only one index. Therefore, equation 28 stands

for:

(j f. 4 	 and

Hot

From equation 4 we then obtain the relative temperature change as:

f/1i1	 Oc, hc, + 0« U«

with the coefficients :

r'n	 ` Cr	 a►

The following discussion where the explicit dependence on the kinematic

viscosity y is eliminated also pertains to the coefficients // tyx and 0,,,«

«	
J ^'e.« 3' ru 	 j v ^'„.x14,	 ,	 (Sl)

m	 rn — jot

c' Gt 	 u ► — j a lai, a

5. Boundary Conditions	 /57

The emission conditions and certain symmetry conditions,depending

on the model, must be met. The following conditions must be met at the

fibc,r surfaces by the resulting mathmatical descriptions of the poten-

tials: disappearance of the speed with all components, equality of

temperatures of air and fibers, equality of radial thermal flux density

in air and fiber at the fiber surface, i.e.:

?fir, ?1q,, vz =' 0

t

Pi TJ i	 for
 I'iir ^.	 rc .

Dr

7

,_....^ •.u.n.r`	i r.:.	 ..c^Y.n:_^._&..:..__^.	 .....^_.v.. r^__.	 ^,.mx.....__.	 _.._.. s._.. ,.	 ...__..-v..	 w	 Y	 ^.... /



As a simplified thermal boundary condition we studied the disappearance

of alternating temperatur , at the fiber surface, i.e.:

PI (r	 11)	 1),

Although the boundary conditions to be met by the individual fibers

are always the same, with the individual model there result various

descriptions of the potentials (e.g. due to different symmetry pro-

perties) which are to meet the above boundary conditions.

6. Individual Fiber

We first consider an isolated fiber. Let it be embedded in a

cylindrical coordinate system (r,,p ,z), with the z-axis coinciding

with the fiber axis. Let us call the fiber radius a. As the time

function we select- exp (,j wt),  as the z-function exp (-r z) . From
the geometry of the arrangement, we have immediate axial symmetry,

i . e. 0/41q , u,	 From equations 22 and 23 we have:

	

\ ,^,	 1	 1

	

u!	 I' Pr	 J

If we set:

A = (A,., A q,, A,) ,

Then because of

D/61' . Il

we have:	 ,1

1

(37)

(:Is)

and because of divA

1	
I	 I	

,^ A
	 D .1,	 0.	 d!1

Nij	 oz 

Applying	 to equation 38 and 0 to equation 39 gives:

1'.'	 I	 ,(	 I

8
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And with equation 11 there results:

1'Y ' Ir'	 11 ' ^.	 Ir	 11,

From equation 38 and 39 we have:

(I
r̂ r fI z : Q

and
r^

r.
	 o,

that is
AZ o.

Therefore, of the vector potential there remains only the component A,,,

for which the wave equation applies:

1^1'= 	T fir'	 11;-

As solutions of equation 36 or 40 , Hankel functions of zero or first,

order are used. Because of the emission conditions only the second

type of Hankel function come into consideration if we choose the imaginary

fraction of the cross-propagation constant to be negative:

Thus we have:

rho, (r'„)	 1;^, r' r ` ll;^'^ (rr, r) ,	 (42)

:I,r,(r,:)	 l:, a r ” ll^ ^(r,, I') 	(`i'!)

with	 s	 (! ^)

With these equations the boundary conditions are met at the fiber sur-

face.

	

As a result of axial symmetry, ,,^(,•. _,r) 0	 is also true. From

the other conditions there result the following equations:

0'	 n) :.. 11:

l%r,r^, ll i (rr,rr) -)- l+l,, l'll i (r• ,,n)	 fl .	 (•!(i)
C'. x

9



The sum ^'in equation 46 is an abbreviation for the sum of two terms.
V*"

The first summand is the one behind the summation sign, the second is

obtained from the first if we replace the index P by the index at.

	

From the condition v= (r c z) = 0 we obtain:	 /58

l.'^, l'l/o(r•^,rr) 	l;,,r, llo(r;,rr)	 11,	 (.47)

From the equality of the internal and external temperature at the

fiber surface we'obtain:

and from the equal.,Lty of the radial heat flux it follows:

ZEL, OvIv/IIVf,(1) -/'I	 F I J I (PI a)	 11.(49)

From equat'i^', 5 we have the following expression for the wa e equation:

with:	
2) pII

We obtain the solution equation:

Ple

with:

To determine the propagation constants T the determinant of the equa-
tion sycbem (46) to (49) is eliminated for the amplitudes Ep , E a , E,V , F;.

This .system of equations can now be written for the sake of clarity as

follows

G Ke PC, // I (r'r, a)
e. x

)
^. l. G, l l/o(r'nn

I- /4',, /'//r (F,,u)

Q. a

	

Kt, Ot,r,// 1 r',rr	 /'' Alic	 (c	 )	 r	 r^i,/ 	 fl

10
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Y^

The numerical equation shows

absorbers, the propagation consta

affected. But in order to obtain

constant from the free field wave

20 cm must be assumed.

that for fiber radii as used in real

at of an individual fiber is not

caleuable deviations in propagation

number, fiber radii of at least

The calculation performed here permits us in future models to

separate the field of an individual fiber from the total field in the

absorber.

7. Quadratic Arrangement of the Fibers

7.1 Geometry

The geometric conditions are illustrated in Figure 1. We call

the fiber radius a, the distance of the axes of two neighboring fibers

is d.

In the cartesian coordinate system(x, y) the fiber axes have

coordinates (md, nd), whereby m, n are whole numbers. The individual

fibers are identified by the indices m, n. In the cylinder coordinate

system (r, '/), the fiber (m, n) has coodinate (Rmn , Omn ) '

y nd

0	 0	 0	 0	 0	 (m,n)
2a°

0 --U— 0	 F 
0 Q m°Q 0

P

0 0 L•0..-	 0 0 0
{__ d _

n 0 0	 0 0 0

Figure 1: Coordinates of the fibers and plotted point P.

The potentials are periodic in y by 7r/2

11
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The potentials are symmetric at

	

In the treatment of this model we assume that the field	 about a

fibre is composed of a fraction as would be generated by the individual

fiber (emitted field) and a fraction composed of the sum of the emitted

fields of all other fibers (scattering field). The emitting field is

assumed to be axial symmetric, the scattering field is dependent on

the angle.

From the shape of the emitting part of a fiber (see equation 42 to 44)

there results that this field is inconstant on the axis of this fiber.

The scattering field caused by the other fibers is naturally constant

and therefore instead of the concept "emitting field" and "scattering

field" we also use the expressions "inconstant field" and "constant

field".

7.2 Determination of the Scalar Potential

For the scalar potential we use the wave equation:

I d (r^	 I	 ^^	 ^s
J	 k I^

r' it	 car 
	 r;^ r-, rr ,^ ^ r̂ ^^	 I	 c,,^

is rl^t^, r^,	 11 ,	 Od)

As solution set we select:

r

L liv.a.i ^r ( r"n, a r) cos ( i rJ)

This equation already considers the symmetry about q u. 	 /59
Because of the periodicity all terms where i is not divisible by

four are eliminated in the sum, i.e.:

v r,r I /4r,.n //II ( f Ch ! r)

1; •!u ( r t), u. r) cos (d i ^)	 ( ► ^)

Here, the amplitudes of the emitting field have a single prime, those

of the scattering field a double prime. Equation 55 meets the wave

equation

i

12



with

and

ni (Ft" x) e.- (),

It also meets the conditions of axial symmetric excitation of the

emitting field, emission condition, the periodicity properties of

the scattering field.

Now the scattering field should be described as the sum of the

emitting fields of other fibers, i.e., we should have:

! n
-- /:' L//^^sl(r^' ►•'s.^_ //;n,,,	 •:: li ll,n ► ' w t̂i ly r rnlr .. rl))

Here we have:

it 11111 - , 1 1 1, 1112	 1 . 11 2 ,

COSIP In 1 = I!1" / 111'1 	,12 ,	 ON)

Sill ) ptn	 11./1 / 11 12	 11'2
A

according to the Gegenbauer addition theorem, the right side of equa-

tion 57 is:

J' :^ I /(I (V 0 // II 1 1 11 lNll) .^.
111, II
1 11,11

+ 2 ^: ,/kl r' 1 ') //kl!' /lmn) tvhk. lyl nla.` (P)l:,
A ,	 I

E'.1 11 V I • ) ` //n(r ll')Irll) I °	 (^`^)
N,, II

m

2h'L Ilk VOL Il k (! ' llnlrr)
k	 I	 Ur, p

i 11,11

?,, (VOSklit","cos q . I "illk?/)IIIU Mill 1:fl'),

a

3

x
^t

13



In equation 59 we know:

since:

G Ilk (r• llrnrr) 8iIIkillrurrsiI10/1	 I),
u+, rr
111,11

sin klp„III 	 rill y/rnrl 11'ol'olooll ill cos I)IIIIII,

i.e. after summation, the terms with + n and - n cancel out.

In addition:

L 1/k(1•' 11rr1rr) coAky)urr, cos l, (1 ,	 11
Ito ,11

 n,o

for k — 1,3,5,...,

since cos (21 — 1) Omn	 cos lPmn (Polynom in sin  'OmriJ

i.e. terms with + m and -m cancel.

We have
cos i (2x) -= 2 1 1 cos 1 2 x —

(
I	 r ^ ► l ,t^

i---a)21.;
► cull_ '-`lx-i-	 Xr 

X '2 1 ' 5 CoS 1 42 x—+...,

where:

cos 2x =- (st)s 2 X — s111 2 ,L'	 (111 2 --- 112)/(1112-F 112).

If i is odd, i.e. 21 is not divisible by four, the terms cos i2x.

reverse sign upon exchange of m and n, then the sum is equal to zero.

If i is even, the signs are retained. So from equation 57:

L1:,I1 J I1,(F1) cos4i.lr -/:' ./11(F r) } 1 /o(t' 1i'ru,r)-(-I
	 o	 ur,,.

a,n

{ 2 he'A.1,) k (t' 	 11 4k (1',' /j,n N) cos4	 cos 4k(p

r 11, 1 )	 (,	 )

and we immediately have, by coefficient comparison:

ItIt
t 4.I1

l'o,a,li	 2' 1:t,,a ^
 //(2)

 (r c,a ltvrn)cos4'i /, rrrra . (62)
e., rr

i 11,11

The coefficients from equation 61 and 62 are substituted into equation

14

t



55 and we obtain:

"fe.a(+.,,/ :) ... a r '° /$", ,x ll^^-^ (rr^, ar) P
^- ,b1( +'e,a+')	 // il ^(+`e,a 11rnn)

ur, n
00	 r 11,11

-1 . 2	 t(r'(,,ar)eoi;4i(It ( r e,a .Il rrrn) X
i	 1	 e., n

r n,o
COS •i i yr nr rr .

Thus, the two scalar potentials are determined ,, except for one amplitude
and propagation constant.

7.3 Determination of the Vector Potential

We set the emitting fraction of thr vector potential equal to that

of the individual fiber:

with	 ;I .. Il;,lli'- 1 (F,,r)r r 'r .	 (li4)

This equation is axial symmetric.

For the constant field the wave equations apply:

I

I 	 1! (I) 1	 (1'2 i1'2	 _	
I'

X .I^' _._	 L'
1'

 
II' 	

ll, (li5)

1	 1

,•	 1r

1

1r

I	 1'2

r'a	 1r/,z

1 2̀	1

1,-,2	 r-z 
-,_k2^X

2 1;1 "
X ,I ,r +

r^ 1q

1 1 I	 12 8'^

((i7)

15
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k

rL

 R

Since according to our assumption, the scattering field is

illustrated as a super-position of the emitting field, it follows

that ^I^" u,	 since it cannot be excited by A'  f	 ,

(By vector addition of all emitting terms, only components in the r,q,

plane can exist and no z- component).

As a general solution we select.

-^- roti i- q,l ltt^ ^l t i ^ ( r'r^•) -^- lir'.l t -t (+''r^')l} ,

	

+	 (lilt)
r,	 u	 1

-I'^ina,r/ , ^ltt ,/: i i(a ,, ► • ) _. 1i^. ^lr :(r'^^')I^,

A ' (r, ,, z) : 0.	 (70)

,

For the generated speeds of sound (only the fraction of the constant

field) we have:

V,'	 I'Otr A"	 l'^I ^,' ,	 (71)

V" -. ruts A"	 _ _ /'rl,:' ,	 (72)

1	 0
1 ),	 , rot., A,	

^ , I'	 ^	 i ^ il'i	 cry, A
	 .

(73)

The field period is periodic in /, by Tr/2:

A" ( (I + 7z/2) - A" (q) .

The field is symmetric at T = 0 (and because of the periodicity, also

at	 71 ..,, 7r/2	 ) .

Therefore we must have:

I )	 ?,q,((p : - o) - 0

I

j

I

r

_. _ .



and thus

and from this we obtain:

/;;',/t r l I j"J, I	 O ,

from which follows:

13;; 6;;, B"-:b', ' ,o	 for i= 1,2,3,.. . (74)

2) Because of the periodicity, all terms where i is not divisible by

four drop out.

So as an equation meeting the conditions of symmetry and periodicity

we have:

-4-11" do 111 ( 1,r r)] ,	 (75)

o 1 'z ^cos 4i, LA., .1,1i I(Fr7') —

—11"i .1A 1+1 ( r? r Y)}, (76)

A	 = 0.	 (77)

Equations 75 and 76 must still meet the divergence condition:

is
_.,	 .i;' I-	 sir' -^_	 ^f^	 0,

div it" ,.	 iv 7• D1P

1 (^I r

=c 1 ` I '>' iit4i(1,},its;-h(--IVr)')0 — 4i)+

8 +1$ Gti11141 it , }lf,I;Fpr^li•1(F),1)
I'	 r

-4— 11 4 ;Fr.1, f 1 (F1'7)^

thus we have:

clivff" =c 1 'ZN, (sin ai.li4r:,,^^at(^i; .t (W)

_	 LIi 1( r'i' 1')) { rr1!•li(^dir-1(Fv1')^)
F,,1'	

tt

f'

Y

v:

a
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because

from this follows:

(IivA" ... o r'z t. r ^ y indiq^/nt(rrr) Y.
i

r: (	 .hli ^' fLli)

and from this we obtain:

	

.I li	 uj; .	 (78)

So as a solution we obtain the following expression which meets the

condition of symmetry, periodicity and divergence:
r:

8i'Ia0i11 11iq'J,It (rr t ' ) ,	 (79)
r

	

I^	 ,,	 r''!;i^,rrr,•Iiry./ii l r'i,r),	 (litt)

	

sl;	 11.	 (KI)

Now the constant field 79, 80 should originate as the superposition

of the emitting field 64 of all individual fibers. These fibers are

added vectorally.

The emitting field of the fiber with the indices m, n generates

the component A' at the plotted point P. This is split apart in the

coordinate system (r,(/ )of the fiber with coordinates (0,0) into a

radial component A	 and an azimuth component AW

From Figure 2 we can see:

r1 r -	 coso,	 :I'	 sinf3,

J,"	 rl' SI n a.-	 ;I'Sin (11	 7t/«2).-^I' POS 11

n^3 - ( l^^rnr,f rt ) sin(yyrrrr	 /)'Si	 (ShIlls"' ► tz),

112	 i.z	
li^rrrr - 2t' /!nr„ crrti(yrnrn/')

2((1()siiul,,4s;ltz) .

Key: 1-sine law 2-cosine law

/61
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r

A7	 L'ir
ur , rr

ur • n	 ^ ll,u
i 11,11

	

(0,0)	 "

Figure 2: The addition of vector potentials of the fibers (m, n) at

plotted point P.

From this follows:

cll. ft	 I I	 .i011
i
N 

11• -	 161111 !418 ( 11'lll 11	 q)1

Thus we have:

ll' pis u.iII (Ipnr)r - 4')

	

')	 cos (iprrru — (1)

(8'2)

	

J"	 J, 1' --- A'nee VOK ( 1/4n)? ° 11')

^r

	

v	 ! ^'^ -}- limn •_. 2)r/rrwll ►'<1.(1l11111f — (/')

(8:3)

thus

	

f 1 1;
V L

I I L _I` ll lnlr ^_ 2 r	 Pl1. (1`)1/1.n -._ !l,))

Now we should have:
w
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or for the radial. component:

	

^8if1411,in(4i(I,).JIl(F't,I-) 	 (K► )

Al" L r I /I•L + llrrr 11 —' ^^ t' /tr In 11 t'UK(y1r/Ut "^ !/^) X

, I1,ir

(V, 111-2 -I.. llnrn — 2r It'rnn t•oF (y) lrlrt —' t/ ))

and for the azimuth component:

:G A 1i cos 4 i r/,.l at (+^'r, ►^) -	 (Kli)

/,, ^,	 ! — /Iola COS (VI",

nlu L ^:1 ,4. 
I/inn — 'l a' /larncorc(ylrnrt

 II,11

//^'=^(F I, (';d .^ Minn — 2l` llarn eos(ylatn

According to the Gegenbauer addition theorem, from the right side of
equation 85 we have:

2 A'. -	 te)
^. (I {•' k)'11 +k(F'r^') L // I I A.(F " U nill) X

E l . t'	 A'	 11	 ur,rr
i 11,11

Killl(I '^' k) ( ti r rnn	 r/))

/r'M

: (	 01/11k(rg7') ^ X	 (87)

pp' A 0	 mJr
I 11,11

	

x //i`iA.(F•l,//r111,) sin(I +k)Vrrnrrcos 	 { k)ryr-

-cos	 -I k)t/rrearvin(I+ k) fl , f

Like the scalar potentials (see equation 59ff) the terms with
sin(1 + k) lkmn and terms with cos(1 + k) Omn, cancel where (1 + k)
is not divisible by four.

With (1 + k) = 41 from equation 87 we have:

-2K'
4 i./.lt(F'l, t • ) sin 4 i, rp	 //^^ >!

F'p'I'	 J	 11 uq rr
1 t1,11

(F'r, /lnrn) t 'tl^' I i y'nrn	 (Ng)



i

And the coefficient comparison between equation 88 and left side

of equation 85 immediately yields:

U^'1 (ar 11 ►tttt) eos (4 b y) ntn) 	 (HO)
HI it

t o.o

i.	 1, L, 3,,...

Ao is not yet determined since the terms for i = 0 disappear on both sides.

From the right ire rf equation 86 according to the addition
	

/62

theorem we have:

" ^ (1 I ^')'ll,k(r,,l')	 (Fr ll,Htt)
Cr ►' k"n	 w n

, n,n
r'	 NH,H^+n^(tpnn,	

7) ^iu(1 I ^')ty^,nH	 q)•
ll„I it  ̀tt(yr N,N	 11)

(!10)

A rearrangement which permits a direct coefficient comparison

of r and q is not possible. Since A llo is a ter.-ire independent of angle,

for Ao a coefficient comparison identical in r is sufficient for the

angle independent fraction of equation 90 and the left side of equa-

tion 86. For this, only the term for k = 0 or i = 0 is taken from

equation 90 and the left side of equation 86. Then we obtain:

,,K
_._ '3 tl p .l t (r, r • )	 ^^ ,l, (F', t') ^ l l^'^ t (r'^, lino,)

 n,n
COS

l rr, H

o.n
cvtS y' Ht „ COS I'll L. Fitt yrnu, yin

The terms with cos Omn disappear in the sum due to alternation of n

with -n. We then have:

K,I 1
. MI" )(r',, lemn) (!11)

o,	 r'r /r ,n n
o,n
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From equations 64, 79, 80 2 81 2 89 and 91 we obtain for the vector

potential A = A t + All:

/4'. ► +

;r

11 ^^;^ (t^, 11 ^n a) ► '0" 4 i ►i'rrr rr

rn,1

C,

u r	 Vol ll lg r!	 i	 1
i 11,11

^, lli•j (+, /inrn)IV6v 1 i y'nrrri	 (l^:4)

n,n

Thus the vector potential is determined, except for one amplitude

quantity.

7,4 Comments
r

For the constant field we have permitted an angle dependence, the

emitting field of a fiber has been assumed to be axial symmetric. This

is not entirely correct because the fields affect each other and an

angle-dependent scattering field will always result in an angle-de-

pendent emitting field. The solution presented can be considered to

be an approximate solution. As a next step, we would have to proceed

from an emitting field described by equation 63, 92, 93 and to perform

perturbation calculations with equations 79 and 80. This is not pos-

sible either analytically or numerically. Within the framework of

the achieved accuracy, we must assume that at least in the vicinity of

the fibers an angle independent field exists. This is achieved by

neglecting the last (angle dependent) sum in equations 63 and 93 andset-

ting equation 92 equal to zero. This procedure is ,justified by con-
sideration of the order of magnitude of the individual summands.

In equation 92 A  disappears for r_4 0 on the order of 0(r3),

likewise the last sum in equation 93, whereas the first sum in equa-

tion 93 increases with 1/r.
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To formulate the boundary conditions at the fiber surface we

therefore use the following descriptions of the potential:

1t)	 //	 )^	 (14)

rot. n

//(^1 (^^1' 11 N171)

	

2.11 (r'M, ►') \	 r	 I +	 (!1:► )

	

Hs,),	 I'p /r NlJl	 '

.•Ir	 ^I,	 11 ,

The boundary conditions to be met are the same as for the individual

fiber.

8. Integration Method

In the last section we illustrated the scattering field as the

discreet sum of the emitting fields. We expressly used the regular ar-

rangement of fibers. But in a real absorber this regularity does not

exist. We could account for this by introducing an average fiber

density and illustrating the scattering field as an integral over the

emitting terms of the fibers distributed uniformly about an average.

Let N be the number of fibers per surface unit. Then g is the

amount for one fiber and NgdF is the contribution of the surface element

dF.

In Figure 3 we determine the contribution of the source region
	

/63

about Q at the plotted point P. We again use equations 42 to 44

for the individual fibers as the emitting field of the fibers:

l̂^n, 
a ..- 

/,+^+.x /
/i r J ( f'C x t► ) a 

1/-Z,

j +
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(0,0)	 x

Figure 3:	 Integration relationships

The surface element becomes
d F -- R d /l d 1p .

From this results the contribution of the source region about Q at

the plotted point P for the scalar potential:

/?2 --	 '2r le, etis(r/,	 VO)

and from this:
sro

o	 it

( F'e,« ^'rl'^	
-f_ 1/s	 _.	 2!` /?	 dll R.	 (!)fi)

According to the addition theorem:

+ 2+'^I /! (!'^, x!'^ ll (1 ^(t'B,a /,'^ IYltil11 (r/	 ^/^.^ '

Upon integration over tji the terms of the sum over n cancel because of

the cosine.	 Therefore from equation 96 we have:

'	 fl̀le,:_ e	`^E('.'X	 (r,ar	 rlvl //
0	 ,t



i

and from this:

2	 , rz	 11 1 (r'@, I d)

For the vector potential we must perform vector addition. From

the discussion on radial or azimuth components in equations 82, 83 and

84, we can immediately write the constant fraction:

A ; , 0,,,/ ,. --) - '

	

c+ ► '^ IJ;, N .f IV► 
t^ 

/ ►; 	 fl 2 — 2 ►' It cos (V ► -» ►1,) X

I n 	 Cos	 T)

	

,'!!i''k(t^,, ^^r'^_^ l,^a.. ',^, ►'/leos(Ip— 7))cUl, 	 (!)H)

o ► 'x 1:,, N f ^lV►//! 1! `w'
2 }- /!'- — 2 r 1! cos (V) -- v') f

! 1/ i(r,. )ir'2 J. !! 'a	 2r/l Cos (V)—q'))clll. 	 (!^!!)

The integration limits with regard to 0 are variable as long as

integration proceeds over a full circle. The selected shape permits a

simple transformation:	 a ►p - 1̂	 Thus from equations 98 and 99

we have:
n	 °°	 1!2 ;in a

r	
. n ,t' (/ ►•s -} R2 -- 2 r 11 Cos a

11r ,.1.2+/!'2- 2 ►•ll Cos a)dll,	 (100)

	

n 00
	 ► - I! cos a

rz 11 	 da.,N^f1!	 X
' n	 ;► 	 112— 2 r 1B, Cosa

(r• ,,)1r'12 +J12-2rIlcosa)III 	 (101)

(

In equation 100 the integrand with respect to ce is an odd function, i.e.,

Ar a 0.

In equation 101 the integrand with respect to c1t'is an even function.
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r
.i

2,

1

According to the addition theorem we have:

co	 Sill( 1 +^t)a
I' 1! k

^,(f .^_R)-111k(f'rr')1/^ Ik (Fr 11)	 :f 	)'r'2 i . /!a -2rI? cos ot (102)r,.	 n	 A n a
And thus from equation 101:

. I ,	 ,} a r'z 1,,+, N ^ n

	

r ((r — I? Cos 	 X (103)

	

rr ►'	 it n
00

	

	 Si I)

r;ina

	

In equation 103, if	 `rr,,rl 1, , then	 I Ilk (6,r •)1 very quickly goes
to zero with increasing k. In addition, the term 'sinks./sins.,
oscillates with increasing k more and more so that upon integration,

only a slight contribution is provided. Of the sum appearin7 in the

integrands we therefore consider only the term with k = 1. We then

have:

4
A' 	

i,. - r • E ,N,	 °° n
((r— It cos a)

^'•'r'

Upon integration over of the first term of r — R cos of yields

the factor 7f, the second term disappears. It becomes:

f	
1; 	 4rcr 	 r'

^,'^ N /)(r^,,r) 	 /
1^=)(F,•/!)rll!

or:

(10.1)

I. Thus we obtain a description of the potentials:

j^/^ e tt (r•, F ) - /.'c, n. o ' 'z 1 // (9j ) ( ee, « 1') —
F

— 27rNd-'	 r. r, arl	
,1„(rr,,ar')^,	 (105)

	

4z[N(i'2 11„`)(F,'d) .1
1 (e '. 	 ,	 (IOIi)

Ar_A, 0.

C

h	 ;

With these descriptions the boundary conditions at the fiber surface

/64

Fp
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are again fulfilled. They correspond to ecuations 94 and 95 for the

model with quadratic, regular fiber arrangement and are comparable

with these equations.

We have now described the fields of the compressional, temperature

and viscosity wavesin the environment of a fiber. Both in the complete

field equations 63, 92, 93 as well as in the simplified equations 94,

95 for a regular quadratic fiber arrangement and in equations 105 106

for a homogeneous fiber distribution, the amplitudes Ep,d.v 'and the

axial propagation constant r are unknown. These are, as already shown

in Section 6 for the individual fibers, determined through the boundary

conditions of equations 33, 34, 35 at the surface of the reference

fiber (m, n)= (0, 0), i.e., at r— a.

From a comparison of the equations 105 and 106 by the integration

method with the results of the summation for regular fiber arrangement

we now know that the component Ar (r,q,, z) of the scattering field
quite disappears. This ,provides an additional argument for the simplifi-

cation performed in Section 7.4, mainly, instead of using equation 92,

to simply set Ar (r, ,i , , z) = 0. We also find a relation between equa-

tions 94, 95 and equations 105, 106:
11^,^ r'. 

a. R 	 )^	 2nNd2 1/
o^^^r'p.arl)

o (c 	 rn ro ,"

	

ru, n	 1'^r x I!

111.0

\ lA'O v,, li rurr) , a>nNrl2

	

G 	 '
uh u
i tl,ll

In the complete field equations 63, 92, 93 we see in the last terms

the influence of the spacial arrangement of neighboring fibers on the

total field in the vicinity of a reference fiber. From the derivation

of these terms as well as by its form, the influence of the order of

symmetry is seen. If this increases, then in accordance with the factor

in front of the summation index i, i.e., the order, of the first cylinder

function increases in the terms and the interval between the orders

becomeslarger. The sums in the terms converge more quickly.
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At this point we can account for the microstructure of the real

absorber by introducing the statistically most frequent order of

symmetry and by performing the summation of scattering fields of

neighboring fibers only up to a certain interval and by applying the

integration method to more distant fibers.

In part 2 of this work we will utilize the randomness of symmetry

selection to derive a more simplified model.

10. Conclusions

One objective of absorber theory is the obtainment of a calcu-

lation method for the propagation constants and for the wave resistance

of the absorber. Another objective is to gain knowledge about the

influences of the individual structural parameters and material data

on these values. Both objectives will be pursued in part 2.

Thanks are due the German Research Society at this point for

financial support for the work.
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