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SUMMARY 

The purpose of this program is to study direct modulation tech- 

niques applicable to integrated optics data preprocessors. Several 

methods of modulating a coherent optical: beam by interaction with an 

incoherent beam have been studied. It was decided to investigate photon 

induced conductivity changes in thin semiconductor cladding layers on 

optical waveguides. Preliminary calculations indicate significant 

changes can be produced in the phase shift in a propagating wave when 

the conductivity is changed by ten percent or more. Experimental de- 

vices to verify these predicted phase changes are currently being fabri- 

cated and experiments are being designed to prove the concept. 



I .  INTRODUCTION 

An integrated optics holographic comparator has been proposed (1) 

for use as a data preprocessor for airborne optical sensors. This de- 

vice, as presently proposed, requires the conversion of the sensor 

optical signal into an electrical signal which then modulates a coherent 

optical beam by means of a set of metal electrodes deposited on a li- 

thium niobate waveguide (Figure 1). This technique introduces noise and 

extra hardware because of the needed signal conversion from optical to 

electrical. 

The objective of this investigation is to determine the feasibility 

of direct modulation of a coherent optical beam by an incoherent optical 

source to eliminate some of the above problems. Several direct mod- 

ulation techniques have been investigated during the first half of this 

study. One technique investigated was the metal-barrier-metal, or more 

commonly metal-oxide-metal device (MOM), which makes use of tunneling 

effects through a barrier region. While the MOM device shows great 

promise for this application it is still in the early stages of research 

and its ability as an optical modulator in an integrated optical circuit 

has yet to be investigated. This device will be discussed in Section 2. 

Two other tecniques currently being developed are the Pockels- 

Readout-Optical-Modulator type memory and display devices (PROM) and a 

spatial light modulator being developed by M.I.T. These are also brief- 

ly discussed in Section 2. 

Another concept investigated is that of a photon induced change in 

conductivity in a semiconductor clad optical waveguide. This has been 

investigated theoretically in Section 3. It is shown that conductivity 



F I G U R E  1. SCHEMATIC OF ONE CONFIGURATION OF THE INTEGRATED 
O P T I C S  HOLOGRAPHIC COMPARATOR. (REF. 1) 



changes as small as f 10% can produce a significant change in both the 

attenuation and phase constants of an optical wave propagating in the 

waveguide. Closer investigation has shown that these effects can be 

maximized by proper choice of the thickness of the semiconductor. It is 

further shown that only certain semiconductors (CaAs and Si) produce the 

desired effect. 

Based on the predictions discussed in Section 3, an experimental 

device is proposed in Section 4 :cr verification of the predicted data. 

Should this experiment prove successful, an optical modulator would be 

built and such a device is also discussed in Section 4. 



11. INVESTIGATION OF MODULATION CONCEPTS 

Various modulation techniques have been investigated in a previous 

study by Battelle Colombus Laboratories. (2) This included a survey of 

the physical phenomena which might be utilized in a modulator, including 

photorefractive, photochromic, thenno-optic, photoconductive, and photo- 

voltaic effects. We have concentrated our studies principally in two 

areas, photoconductive and metal-barrier-metal devices, while keeping 

abreast of new developments in other areas such as photorefractive 

devices. 

During this study of direct modulation concepts we have not limited 

our scope by any particular type optical sensor which might be providing 

the modulation signal. In order to bound the problem somewhat we have 

assumed that such a modulation device would have to respond to a one- 

dimensional variation of intensity and that such variation would occur 

relatively slow in the time domain. Any device which could respond 

within a millisecond was considered feasible. It was also assumed the 

sensor had a 4 inch diameter optical system with a lo field-of-view 

observing the earth. Based on data in reference 3 we estimated an earth 

1 radiance between .02 and 200 u watts cm2 srl (rm at a wavelength of 1 

pm. This produced a photon flux of 1014 to 1019 photons/sec-l (rin-' on 

the modulating element. These numbers will be used as guidelines for 

calculation purposes until addtional data is supplied by NASA. 

The two concepts which initially seemed promising for use irl a 

modulator were the tunneling effect in a metal-barrier-metal device 

(MOM) and photoconductive effects produced in semiconductor-clad-optical 

waveguides. These two coricepts are discussed in detail below. Brief 



surveys of recent developments in photorefractive devices and also the 

new laicrocha~e~ spatial light modulator being developed by H.1.T. are 

also included in this rection. 

A. Photo Conductive Devicer 

Modulation effects can be produced. in an optical waveguide by 

changing the conductivity of the waveguide or changing the conductivity 

of a cladding layer. Configurations for these technique8 are shown in 

Figure 2. We have concentrated our investigations on the clad waveguide 

configuration since it seems to have a number of advantages. With this 

configuration the cladding material need not be transparent to the 

wavelength of light propagating in the waveguide. This allowr a greater 

range of materials which may be used. For example, silicon and german- 

ium are not transparent at 632.8 am but can still be used as a cladding 

layer over short distances. A second reason for using the clad wave- 

guide is that fabrication techniques would likely be much simpler since 

the waveguide material is not changed, only the cladding layer, 

In section 3 we will discuss the selection of materials for this 

cladding region and how the material affects the propagation in the 

waveguide. It will be shown that both silicon and gallium arsenide have 

potential for use as a modulator whereas germanium and similar materials 

do not appear as promising. Organic photoconductors have been receiving 

attention in the literature recently because of the ability to vary the 

conductivety from that of a scmiconductor to that of a conductor. 

Investigation of these materials for use in the cladding region has 

been initiated and will be discussed briefly. 
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1. Waveguide Solut ionr:  

We w i l l  begin our d i rcur r ion  of the  photoconductive modulator with 

a b r i e f  d i rcusr ion  of op t i ca l  wave8uido and the  methods we a r e  using t o  

determine the  c h a r a c t e r i r t i c s  of wave~uides of i n t e r e s t  here.  The 

p r inc ip l e  of operat ion of in teara ted  o p t i c a l  waveguide8 i r  bas i ca l l y  

rimple. I f  l i g h t  i r  introduced i n t o  t he  guiding r e l i on  (n2) a t  t h e  

cc r r ec t  angle (Figure 3) ,  it w i l l  t r a v e l  dowa the  waveguide u n t i l  it 

s t r i k e r  a boundary with one of the  surrounding layers  (nl o r  n3). 

Because t h e  index of r e f r ac t i on  of the  surrounding layer  is  less than 

t h a t  of t he  guiding region, the  l i g h t  is  t o t a l l y  r e f l ec t ed  ( S n t l l t  r LJW) 

and continues t r ave l ing  through the  guiding region u n t i l  it s t r i k e s  

another boundary producing a ttzig-tag" path a s  shown i n  Fig.  3. 

In  t r ave l ing  through the  waveguide t he  l i g h t  may follow one of many 

paths.  Each d i s c r e t e  path i s  ca l led  a mode and is c l a s s i f i e d  a s  e i t h e r  

TE ( t ransverse e l e c t r i c )  o r  Tn ( t ransverse magnetic). A TE mode has no 

component of e l e c t r i c a l  f i e l d  i n  the d i r ec t i on  of propagation while a TM 

mode has no component of magnetic f i e l d  i n  t he  d i r ec t i on  of propagation. 

The TE and TH modes a r c  fur ther  catrgorized a s  TEN and 3, where N is 

defined t o  be the  mode order .  

These propagading modes h ~ v c  r s e t  of f i e l d s  character ized by 

where y = a+ j@,  propagation constant  

w = radian frequency of propagating wave 

a = a t tenua t ion  constant ( n c p e r s / r t e r )  

= phase constant (radians/meter) 



Each mode is ~:haracterized by itr own propaartion constants alpha (a )  

and beta ($). 

In order to find alpha a ~ d  beta, a characteristic equation (dis- 

1 persion relation ) must be derived and solved (4). A F i .  2 indicates 

the modulator appears as r foitr layer waveauide. The photoconductive 

material can either be on top of the wave~uide 8s shown in Fig.2 or 

between the waveauide and the substrate as shown in Fia. 4. 

The dispersion relation for a four-layer semiconductor-clad optical 

waveguide has been derived") using Haxwell' s field equations. Rather 

than rtderivt the relation, a brief suarury of the procedure followed is 

presented. 

1. It is assumed that all mrterials except the 8elai- 
conductor are ayproximtely lossless and that 
propagation is in the z direction. 

2. The non-zero field components of the TE and TH modes 
are deterrained and substituted into the wave 
equr t ion. 

3. The wave function is obtained by solving the wave 
equation. By invoking the condition of continuity 
of the wave function and by dorcinq the field com- 
ponents to satisfy Haxwell'o boundary conditions, 
the dispersion relation is obtained: 

Px2 
'32 5 tanh Px2t2 - 1 '3bPx4 + Nn ( ,) + tan - 

' - '21 - tanh Px2t2 'x3 

Px2 

where K = 1 for TE modes 
i j 

'i j = t i l t .  for TH modes 
J 

N = 0,1,2, .... = mode order 

'A dispersion relation i s  any functional equation which relater the 
modal propagation constants Lo the frequency of the wave atid the 
waveguide parameters, such am thickness and pcmittivity. 
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KO = 2n/A 
Ei = cil - jeitt = complex p e r m i t t i v i t y  of region A. 

This is  no t  only  a t r anscenden ta l  equat ion b u t  it a l s o  involves  t h e  

complex arc tcngents  and t h e  complex hyberbol ic  tangents .  The on ly  

p r a c t i c a l  method of so lv ing  t h e  d i s p e r s i o n  r e l a t i o n  is  by use  of a 

computer. A computer program has evolved over  a per iod of e i g h t  y e a r s  

f o r  so lv ing  t h e  d i spers ion  r e l a t i o n .  This program employs t h e  razor  

search method developed by Bandler and ~ a c d o n a l d ' ~ )  f o r  op t imiza t ion  o f  

microwave networks. 

The razor  sea rch  method requ i res  t h e  opera to r  t o  s e l e c t  i n i t i a l  

values  of alpha and be ta .  The computer then  conducts p a t t e r n  sea rches  

around these  p o i n t s  u n t i l  a  combination o f  a lpha and be ta  s a t i s f y i n g  t h e  

d i spers ion  r e l a t i o n  i s  found. Use of t h e  program r e q u i r e s  such d a t a  

input  a s  l a y e r  th icknesses  and p e r m i t i v i t i e s ,  mode type and mode o r d e r ,  

wavelength, t h e  i n i t i a l  "guess" of alpha and b e t a ,  and var ious  conver- 

gence f a c t o r s  used i n  determining when a s u i t a b l e  alpha and b e t a  have 

been found. 

I n i t i a l l y  t h e  program s e t  up was such t h a t  t h e  th ickness  of t h e  

second l a y e r  ( t h e  semiconducti i  l a y e r )  remained cons tan t  while t h a t  of 

t h e  t h i r d  l a y e r  ( t h e  guiding region)  was allowed t o  vary.  In  o r d e r  t o  

ob ta in  a d d i t i o n a l  c h a r a c t e r i s t i c s  of waveguides t h e  program has been 

modified so  t h a t  t h e  th ickness  of t h e  guiding region remains cons tan t  

while t h a t  of the  metal cladding v a r i e s .  

A t  o p t i c a l  f requencies  the  complex permi t t ive ty  i s  r e l a t e d  t o  t h e  

conduct ivi ty  (a) a s  follows: 



This conductivity can be changed by incident photons in semicon- 

ductors and in certain inorganic materials. In a semiconductor the 

conductivity is given by 

0 = % + e An + lrn) 

uo = conductivity of sample without light. 
e = charge an electron. 

pp, 4, = mobility of holes and electrons. 
An, Ap = changes in concentration of free 

carriers due to incident light. 

To maximize the change in conductivity we need to keep a. as low as 

possible. This can be done using high resistivity semiconductors. 

Large changes in conductivity have been observed in silicon illuminated 

with a pulsed laser. (7 '899)  Conductance changes from loo4 (ohm cm)-' 

3 to 10 (ohm cm)-' were observed when illuminated with a 100 watt laser. 

This optically produced change in conductivity will affect the 

attenuation and phase constants of the propagating modes in the four- 

layer waveguide according to equation (1). It has been generally con- 

cluded") that this effect is small at the levels of incident radiation 

expected on the airborne receiver. In Section 3 we will show that under 

proper conditions the effect can be maximized to the point where it 

could be used in a direct modulator. 

2. Organic Conductors: 

Within the last two years several research organizations have been 

developing organic photo conductors (lop 13) for use in recording 

films and solar energy converters. Currently there are four materials 

which have been receiving attention: (SN)x, polyacetylene, polypara- 

phenylene and polyprrole. These electrically conducting polymers have 



been induced t o  show a range of conduct ivi t ies ,  from values of insula-  

t o r s ,  through those of semiconductors and almost a s  f a r  as the  quanti-  

t i e s  possessed by metals. 

The e l e c t r i c a l  conductivity can be varied over 10 t o  12 orders  of 

magnitude by doping i n  some cases o r  by copolymerizing with c lose ly  

re la ted  polymers. Present ly we have not found s u f f i c i e n t  published data  

on the  photconductivity of these mater ials  t o  evaluate  them f o r  use i n  

modulators. However, t he  f ee l ing  among some chemists i s  t h a t  t h e  quan- 

tum ef f ic iency  f o r  photon conversion w i l l  be high. 

B. MOM Devices - 
Metal-Oxide-Metal Devices (MOMs) exhib i t ing  an invar ian t  I-V charac- 

t e r i s t i c  extending from dc up t o  op t i ca l  frequencies have been 

fabricated and t e s t ed  a s  t he  University of Cal i fornia .  (16) Fabricated 

devices have demonstrated proper t ies  of amplif icat ion,  modulation and 

detect ion.  The geometrical s t ruc tu re  of the  device lends i t s e l f  t o  

integrated op t i c s ,  i n  t h a t  both u t i l i z e  t he  same f ab r i ca t ion  techniques 

and a r e  thin f i lm s t ruc tu re s .  However the  MOMs a r e  present ly  being 

fabricated on the  back of prisms t o  enable o p t i c a l  s igna l  coupling i n t o  

and out of the devices; therefore ,  a l l  operations a r e  r e s t r i c t e d  t o  f r e e  

space waves. 

The inherent device v e r s a t i l i t y  f o r  use a s  ac t ive  components, such 

a s  amplif iers ,  mixers and f a s t  de tec tors ,  makes it a t t r a c t i v e  f o r  use on 

a common integrated op t i ca l  subs t ra te .  I t  has a l so  been proposed t h a t  

an op t i ca l  t r a n s i s t o r  could be constructed which would then lead t o  the 

development of a new op t i ca l  o s c i l l a t o r  i f  successful coupling t o  a 

waveguide is  achieved. 



The metal-oxide-metal device (MOU) consists of approximately a 

one-to-two nanometers thick oxide placed between two metal films (Figure 

5)(16). When optical radiation is incident on the device, part of it is 

absorbed in the metal and part contributes to an electrical field in the 

oxide. Device operation is believed to be.from three mechanisms (16,17, 

18): Feni level modulation by the trapped electric field in the oxide, 

photon assisted electron tunneling through the oxide due to phonon 

creation by incident photons, and direct optical excitation of electron 

tunneling (Figure 5) .  In treating the device as a waveguide, it has 

been found that neither TE nor TM modes will propagate through the 

device, since the oxide is below the cutoff thickness for symetrical 

metal-clad waveguides(15) ; however, surf ace plasma modes are excited on 

each metal. The existence of these surface plasma modes at interfaces 

of metals and dielectrics has been studied (19,20.21,22,23,24). These 

surface plasms modes excite gap plasma modes in the MOM device. Either 

symnetric or antisynunetric modes are excited, depending on whether the 

two surface plasma modes are in phase or out of phase by IT radians. If 

the antisymetric mode is excited then fermi level modulation of tunnel- 

ing- electrons takes place. Since the oxide is so thin, transition times 

for tunneling electrons are on the order of 10-l6 se?, which allows for 

transition frequencies up to 1016 Hertz or light frequencies. Even 

though surface plasma wave amplification mechanisms are not completely 

understood at this time, the process has been theorized to exist and has 

recently been demonstrated. 

Presently, the devices are being fabricated on the back of prisms, 

and light is coupled into the device by excitation of the surface plasma 

mode on the metal film/prism interface, Figure 6A. (I8) An analysis of 
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this coupling procedure (I7 925,26,27) shows that coupling efficiencies 

of this method can exceed 90 percent if certain criteria are met. That 

is, the inclusion of a dielectric between the prism and the metal of 

such thickness and dielectric constant that the evanescent wave present 

in total reflection has the same phase velocity as that of the surface 

plasma wave to be excited. Gustafson indicates the losses of this 

coupling acheme originate from the losses in exciting the surface plasma 

mode due to absorption by the metal, and scattering losses at the onset 

of the MOM. 

The device is a section of a symmetric metal clad three layer 

waveguide (Figure 6B) where the oxide is extremely thin. Therefore, 

compatibility with integrated optics and waveguide technology may be 

realilized. It has been suggested that MOM'S can be placed on the same 

chip along with other integrated components and interconnecting plannar 

slab waveguides. The device geometry is readily adapted to use in 

integrated optics and a coupler would have to be developed to allow for 

this integration. The coupling structure studied here is a modification 

to a four layer waveguide, dielectric-dielectric-metal-dielectric (Fig- 

ure 6c). This structure already contains one electrode, and a second 

electrode, may be introduced by making it a symmetrical five-layer 

waveguide. In such a coupler, the basic guiding dielectric core wou1.d 

become thinner and thinner to couple TM (transvcrse magnetic) modes to 

surface plasma modes. A carefui analysis of waveguide tapering techno- 

logy for coupling into plasma waves would have to be performed and 

prototype tapering waveguides fabricated for this analysis. Tapered 

couplers have been analyzed for dielectric clad waveguides (28,291 and 

some analysis of coupling into metal-clad tapered waveguides has been 



done (30). Otto has b r i e f l y  i n v e s t i g a t e d  coupl ing i n t o  t h e  s u r f a c e  wave 

by a THO mode (35). The a n a l y s i s  has  shown M mode conversions occur ing 

i n  tapered metal regions  even wi th  a tapered b u f f e r  l a y e r  p laced between 

t h e  guiding core  and t h e  metal  f i lm. Fur the r  a n a l y s i s  o f  t h i s  s t r u c t u r e  

would be  necessary  i n  o r d e r  t o  a l low t h e  . i n c l u s i o n  of t h e  second e l e c -  

t r o d e  o f  t h e  MOM and maximize coupling t o  t h e  s u r f a c e  wave. 

An ex tens ive  a n a l y s i s  of t h e  asymmetric four - l ayer  waveguide (Fig- 

u r e  6C) and t h e i r  supported propagating modes has been done (15,309 

31*32*33*34).  Various metal  and semiconductor c l a d  waveguides have been 

analyzed and t h e  e f f e c t s  of varying waveguide parameters such a s  f i l m  

th ickness  and t h e  m a t e r i a l  p e r m i t i v i t i e s  on propagat ing modes have been 

e s t a b l i s h e d .  

A comparison of t h e  t h r e e - l a y e r - d i e l e c t r i c  guide and a four - l ayer  

guide wi th  a metal f i l m  i n s e r t e d  between t h e  s u b s t r a t e  and t h e  guiding 

d i e l e c t r i c  demonstrates t h a t  t h e  inc lus ion  of t h e  t h i n  met.11 f i l m  

changes t h e  mode p r o f i l e  f o r  TM modes apprec iab ly ,  y e t  t h e  e f f e c t  on t h e  

TE modes i s  only s l i g h t .  Figure 7 shows t h e  wave func t ion  p r o f i l e s  f o r  

t h e  TE and TE modes of a th ree - layer  waveguide. The TM mode p r o f i l e s  
0 1 

a re '  s i m i l a r  and have n o t  been shown. Figure  8 shows t h e  f i e l d  d i s t r i -  

bu t ion  a f t e r  a t h i n  metal  f i lm has been introduced between t h e  s u b s t r a t e  

and t h e  waveguide. The TEo p r o f i l e  is  only s l i g h t l y  changed by t h e  

s i l v e r  l a y e r ,  bu t  t h e  TMo mode has a high f i e l d  concen t ra t ion  i n  t h e  

metal f i lm.  Rashleigh '15) has hypothesized t h a t  t h i s  f i e l d  concentra- 

t i o n  i n  t h e  metal g ives  r i s e  t o  t h e  TM mode coupling t o  t h e  s u r f a c e  
0 

plasma mode. This hypothesis i s  supported by comparing t h e  s u r f a c e  wave 

f i e l d  d i s t r i b u t i o n ,  Figure  9 ,  t o  t h a t  of Figure  8 f o r  the  TMo mode. 
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The conclusion from this analysis in that TE modes do not couple to 

the surface plasma modes because there is no concentration of field 

strength at the metal-dielectric interface where the TM' mode (surface 

plasma) exists, The TH mode field concentration at this interface 

increases as mode order is reduced. The computer solution technique 

mapped out previously predicts the existence of the TM' mode, in that 

there is extreme attenuation found in the TM modes; this is much higher 

than expected. The rationale is that the TM modes are coupling into a 

highly attenuated surface plasma mode, and thus they are highly attenuat- 

ed. 

From this preliminary analysis it appears feasible to build a MOM 

device into an integrated optical waveguide such that it could be used 

as a modulator. There are several serious problems which need to be 

investigated to determine whether it can be used in the proprosed pre- 

processor. No such device has ever been constructed on lithitun niobate 

or similar materials. Also the device is in its early stages of devel- 

opment and its use as an optical modulator has not been explored in 

depth. While the MOM devices look promising in the future it would 

likely require several more years to develop a working device for the 

preprocessor application. We will continue to study this device and 

watch for new developments in the research program at the University of 

California. 

C. PROM and other devices --- 
PROM is the name given to a device being developed by ITEK (36) in 

which charges are trapped at an insulator-photoconductor interface. 

These trapped charges then affect the refractive index of a waveguide 

causing it to guide or become non-guiding. A similar device has been 



proposed for use as a multi channel waveguide ~witch(~'), Bat- 

telle(*)has reviewed these devices and concluded that while they hold 

some promise of being applicable, the disadvantages inherent in them 

make it doubtful that they could be effectively used. We are continuing 

to survey the field and will watch work currently in progress to deter- 

mine their potential for ure as a preprocessor modulator. 

Another device worth investigating is the micro channel spatial 

light modulator (MSLM) now being patented by Dr. C. Warde of Massachu- 

setts Institute of Technology. A brief discussion in reference 38 

implies that the device phase raodulater a coherent beam with an inco- 

herent beam. The MSLH is an extremely sensitive device which derives 

its sensitivity through a multiplication of the photon produced elec- 

trons. This would be an advantage for low light level modulation. A 

literature search has been initiated to gain more details on this con- 

cept. It will be reviewed again in the final report. 



111. SEMICONDUCTOR - CLAD OPTICAL WAVEGUIDES 
In this section we will present the rtrii~lts of our investigation 

into the effects on the attenuation and phase constants by induced 

photoconductiv ; ty in three comon semiconductor ma terlals . The computer 

program discussed in Section 2 has been used to solve the dispersion 

relation for the four-layer waveguide wllere the following parrtlcters 

were allowed to vary: luterial conductivity war varied to investigate 

photoconductivity; cladding thickness (t2) was varied to maximize chang- 

es in attenuation and phase; and the cladding material was varied to 

select a material producing the largest modulation effect. 

Before beginning work on thia grant we had observed changes in the 

attenuation of proagating modes in the four-layer waveguide as the 

cladding semiconductor material (Figure 4) was varied. For example, the 

real part ~f the complex permittivity is about the same for germarrium 

(17.4) and gallium sisenidc (14.3) but the conductivity is quite dif- 

2 ferent (Ge. = 3.21 x 10 (ohm cut)-' and GaAs, o = 25.4 (ohm an)-' . 
Figure 10 shows the observed variation in attenuation for these two 

materials when the cladding thickness was Laken as semi-infinite (t2 = 

m). Although this was not a large variation in attenuation for a given 

guide thickness, we felt that with proper choice of material and thick- 

ness parameters we could optinize the change to make it significant. 

A. Variation of Cortductivi ty - -- 
To begin our study of this modulator we assumed that we could vary 

the conductivity of a semiconductor rl~dding by +SOX and we also includ- 

ed a -10% variation in conductivity slthough a negative charge in conduc- 

tivity is not likely to occur. rill c~lculations arc bssecl on a yrop3ga- 

tion w;~vclerrgth of A = 632.8 nm. Figure 1 1  indicates that indeed the 
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attenuation did change by at least 2dB when the conductivity of GaAs was 

changed by 50%. Although this is not a large change, it is significant 

enough to be detected. From the standpoint of the modulator for use in 

the holographic data preprocessor we needed a phase change. Unfortu- 

nately, the phase change was less than 1 radianlmeter for this variation 

in conductivity. 

The next step was to allow t to vary to see if the waveguide 
3 

thickness had any effect on the amount of change in attenuation or phase 

constant produced by the variations in conductivity. Figures 12 and 13 

show the results of this investigation for the TE mode. The normalized 
0 

phase constant (mode index = p/k, k = 2n/A) is plotted in Figure 13 

instead of the phase constant since the variations will be the same. 

Similiar curves were produced for the other low order TE modes and the 

TM modes. We see that the change in conductivity simply shifted the 

characteristic attenuation curve up or down in proportion to the change 

in conductivity. At no point did we find a change in the mode index as 

the waveguide thickness (t ) was varied. 
3 

B. Selection - of Cladding Thickness 

Again our previous experience and published data (I4) indicated 

that the attenuation normally decreased as the cladding thickness (t2) 

was decreased. It thus seemed reasonable to vary the cladding thickness 

whi:e also varying the conductivity to see if this had any beneficial 

results. We were perplexed at the results obtained since they were 

entirely different than anything previously observed. Figures 14 and 15 

show the results for the GaAs clad waveguide as t is varied. Not only 2 

does the attenuation and phase vary with conductivity but it also seems 

to oscillate after the cladding thickness decreases past 1.0 pm. This 
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oscillation had never been observed before so it raised a number of 

questions about possible errors in the computer program. 

If the predicted results are correct, then this could be used as a 

phase modulator since the change is mode index (.0022) at t2 = $1 pm is 

large for a 50% change in conductivity. This mode index change would be 

equivalent to a 125 degree phase shift over a distance of O.lrmn, which 

is sufficient to make it applicable as a phase modulator. Addition 

calculations were run for the TM mode which exhibited similar character- 
0 

istics to that of the TEo mode. 

At first we felt that the oscillations in attenuation and phase 

constant might be produced by discontinuities in the tangent function. 

In some of our previous calculations we had observed a jump in a normal- 

ly smooth index curve. This was ultimately attributed to a discon- 

tinuity in the tangent function causing the computer program to calcu- 

late values of mode index and attenuation for a higher or lower order 

propagating mode. Our first step in verifying the results was then to 

fill in intermediate points between those we had calculated to make sure 

the curve was continuous. 

Figures 16 and 17 show the variation with t2 for a fixed conducti- 

vity (normal value) after additional points were calculated. Now the 

oscillation is even more pronounced and there seems to be a discontinu- 

ity in the mode index curve at 0.09 urn. At thicknesses greater than 0.1 

urn the curve appears to be continuous. There are several other interest- 

ing things to note about the curves in Figures 16 and 17. First we note 

that the period of oscillation is about 0.1 urn. Since there was no 

waveguide dimension equal to 0.1 pm and the wavelength (632.8 MI) does 

not appear to be related to the oscillation period, there was no ready 
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explanation for this observed oscillation. The second point to note is 

that the amplitude builds up almost exponentially as the thickness 

decreases. 

Again we were somewhat surprised by the results so we chose a new 

waveguide thickness (tg 0.8 tun) and we also moved the GaAs cladding to 

the top of the waveguide. It was felt that these changes would elimi- 

nate any possibility of having accidently chosen a set of waveguide 

parameters which presented computational problems to the program because 

of discontinuities or extremely small arguments. Figures 18 and 19 show 

that the change in tg and the location of the cladding did change the 

amplitude of the oscillation slightly, but in general the character- 

istics of the attenuation and mode index curves were the same as before. 

C. Material Selection 

The only parameter which remained to be varied was the cladding 

material. From previous experience with waveguides of this type, we 

knew that small changes in the refractive index of the substrate, the 

waveguide or the material in region 4 would produce very slight changes 

in the characteristics, so these three parameter were not varied. It 

was'decided to look at the three most common semiconductors and see what 

effect the material permittivity had on the results. Since GaAs had 

already been investigated, silicon and germanium were used as claddings. 

The complex permittivities and refractive indices are shown in Table I 

which follows. 
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Table I 
Semiconductor Parameters at A = 632.8 nm 

Refractive Index 

n k 

Ga As 14.3 1.21 3.79 0.16 

Silicon* 16.76 1.75 4 .1  0.213 

*values for amorphous thin films 

Note that the relative magnitudes of the real and imaginary parts 

of the complex permittivity of gallium arsenide and silicon axe the 

same. Germanium, however, has a considerably higher imaginary part 

(conductivity) than either rilicon of gallium arsenide. If material 

conductivity has any effect on the characteristics observed it should be 

evident in germanium. Figures 20, 21, 22 and 23 show the results for 

silicon and germanium. As might be expected, silicon exhibits character- 

istics nearly identical to those of GaAs. Germanium shows almost none 

of the oscillations which were characteristics of GaAo. 

These results are not as surprising as originally thought in light 

of similar predictions in reference 14. In Figure 6.15 (Ref. 14) the 

author calculates the expected phase change on reflection at an air-film 

surface. Tire surface considered by the author is a thin film of mat- 

erial with n = 2 and k varying. The v . i l u ~ *  of k at. A = 578 run varied 

from 0 to 2 and the thickness of the material was varied from O to 140 

nm. 'Chis material was on ;I glass substrate with refractive irrdtsx of 

1.5. for k very small the phase c h a n ~ e  was fo~lrid to oscillate while for 

k large (k = 2) the yhasc* changed very little until tire thickness ay- 

proached zero. Figure 24 is a sketch of the results obtair~ed for the 
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extreme values of k in reference 14. Note that for k = 0 the period of 

oscillation of the phase change curve is nearly one-tenth micrometer as 

we have observed in our calculated curves. Unfortunately the author 

does not discuss the oscillation between phase advance and retardation 

but goes into the problems of measuring such for experimental films. 

D. Conclusions 

In this section we have shown that by proper choice of the photo- 

conductive layer thickness we can maximize the induced phase chage in 

the wave propagating in the guided region for a given change in conduct- 

ivity. Figure 25 shows the total attenuation suffered by a wave propa- 

gating over a length of modulating semiconductor. For a 2mm length 

modulation region a 4  neper (34 .1  dB) change in attenuation occurs with 

a 50% change in conductivity. Unfortunately the overall attenuation of 

the device is large (100 dB). 

Table 2 illustrates the phase shift expected in GaAs if the modula- 

tor was used as a phase modulator and the modulation length was taken as 

1 mm. Obviously the modulator length could be reduced to 0.1 mm for 

phase modulation and still produce a detectable phase shift of 0.3 rad. 

for a 10% conductivity change in the worst case (TE t2 = 0.2 urn). For 
0 ' 

this length modulation region the device should have less than 20 dB 

attenuation. Further work will be needed to optimize the phase modula- 

tor to reduce this inherent attenuation. For example, use of the higher 

order modes in the waveguide which suffer less attenuations and also use 

of silicon will likely produce a lower loss modulator. 

Previous work (I5) has shown that the inclusion of a thin dielec- 

tric buffer layer between a dielectric waveguide and a thick metal 

cladding reduces the attenuation significantly while having very little 





TABLE 2 

Phase Shift at Points of Maximum B/K Variation 
(GaAs, t3 - 0.8 pm) 

Mode T2 C O ~ ~ U C ~ I V ~ ~ ~  0 (X lo7)  % A 4 
(a) difference (at 1 mn) 

.2pm u 1.53303 ----- ----- 
TEo 

a - 15% 1.53253 .033% 1.6 n 
0 + 10% 1.53332 ,019X 0.9 n 

+ 15% 1.53347 .029% 1.4 n 

a + 25% 1.53375 .047% 2.3 n 

. lpm u 1.52788 ----- ----- 
a - 15% 1.52645 .094% 4.6 n 

0 + 10% 1.52883 .062% 3.0 n 

0 + 15% 1.52928 .092% 4.5 n 

a + 25% 1.53014 .148% 7.2 n 

TMo 
.4pm a 1.51491 ----- ----- 

a + 10% 1.51565 ,0492 2.4 n 

a + 25% 1.51720 .151% 7.3 n 

0 + 50% 1.52264 .510% 24.6 n 

.5um a 1.52485 ----- ----- 
a + 10% 1.52630 .095% 4.6 a 

0 + 25% 1.52810 .213% 10.3 n 

a + 50% 1.53213 .477% 23.2 n 

TE1 
.2um a 1.39568 ----- ----- 

a + 10% 1.39617 .035% 1.6 n 

a + 25% 1.39702 .096% 4.3 n 

0 + 50% 1.39864 .212% 9.4 n 

m1 
. l u m  u 1.45774 ----- ----- 

a + 10% 1.45617 .108% 5.0 n 

a + 25% 1.45447 .224% 10.4 n 

a + 50% 1.4532 1 .311% 14.4 n 

.7um a 1.43428 ----- ----- 
a + 10% 1.43237 .133X 6.1 A 

a + 25% 1.42925 .351% 16.0 n 

0 + 50% 1.42253 .819% 37.4 n 

--- 



effect on the mode index of the TEo mode. Such techniques will require 

modification of the existing computer program and will be investigated 

during the next reporting period. 

One additional problem has yet to be addressed before evaluating 

the feasibility of the phase modulator. The assumed conductivity 

changes must be produced by the available incident photons; that is, the 

photon conversion to hole-electron pairs must be efficient enough to 

produce the desired conductivity changes. Referring to equation (3) , we 
see that the percent conductivity change will be a function of the dc 

conductivity (ao), the photon generated hole-electron pairs and the 

mobilities of holes and electrons. Values for these parameters must be 

found for thin films likely to used in a modulator. 

Silicon was chosen as a good candidate for a modulator film since 

it can be easily deposited as a thin amorphous film on a glass subs- 

trate. GaAs is much more difficult to deposit in thin layers on glass 

and the optical properties of such films are not known. 

Since the electrical characteristics of amorphous silicon vary 

widely with methods of desposition, temperature and pressures, it has 

also been necessary to estimate the needed parameters from published 

data and carry out a worst case calculation of percentage conductivity 

change. 

Mobilities are complicated functions of frequency, temperature and 

interatomic spacing; however, one source (39) has measured the mobili- 

- 1 ties to be less than 5 cm2 v-' sec . Steady state (dc) resistivity 

5 was found to vary from lo3 to 10 ohm - cm at 300 K and more recently 

resistivities as high as 10' ohm-cm were produced by silane deposited 

Cilms (40). The worst case :.pproximation for resistivity (lo3 ohm-cm) 



produces 1.5 x 1014 ano3 thermally generated electron-hole pairs at 

300K. For a small volume of material likely to be used in a modulator 

7 (2 x loo5 cm x cm x 1 a), there are 3 x 10 electron-hole pair. 

thermally generated in the steady-state. If we assume the number of 

14 incident photons is 10 /see and 75% are reflected at the surface (anti- 

reflection coating could decrease this reflectivity) as discussed be- 

fore, then the number electron-hole pairs can be calculated knowing the 

number of photons absorbed and the quantum efficiency. The attenuation 

coefficient of amorphous silicon was measured as cr = 4.23 (pn)-' at A = 

0.6328 pm giving 2 x 1013 photon/sec absorbed by the cladding material. 

With an estimated quantum efficiency of 10% and electron-hole lifetimes 

of lom6 sec (this varies from loo3 to 10.~ sec), (41) this produces a 

6 minimum of 2 x 10 electron-hole pairs which increases the conductivity 

by 6.7%. Thus variations of 50% in the light intensity would only 

produce 3.3% change in the conductivity. 

This worst case analysis simply indicates that the device is feasi- 

ble even under those conditions. Using measurements for better amorphous 

silicon films(4o) gives even more encouraging results. In this reference 

films of 1 pm thickness having resistivities of lo8 oh. - cm produced a 
7% change in conductivity for a 10% change in incident light level 

(light level was taken at loo2 Ml). Thus we see that it is likely that 

we can deposit films with better electrical characteristics than those 

used in the worst case analysis. 

Based on the above analysis and the measured data on amorphous 

semiconductors we conclude that the modulator is feasible and a set of 

experiments should be performed to verify the calculated feasibility. 

These experiments are described in the next section. 



IV. FABRICATION OF ION EXCHANGED WAVEGUIDES 

Since t he  s i l i c o n  fi lms forming t h e  modulator must be vacuum de- 

posi ted,  o f ten  a t  subs t r a t e  temperatures g rea t e r  than 200 OC, t h e  poly- 

s tyrene  waveguides previously used were unsa t i s fac tory  i n  t h i s  environ- 

ment. Ion exchanged waveguides were se lec ted  a s  t he  optimum type guide 

f o r  development of t h e  modulator. High q u a l i t y  waveguides can be d i f -  

fused i n t o  soda-lime microscope s l i d e s  quickly and e a s i l y  using t h e  

technique described i n  t h e  following paragraphs. 

Several authors  have reported on the  f ab r i ca t i on  and charac te r i -  

s t i c s  of ion exchanged o p t i c a l  waveguides (42-46). This technique 

involves the  d i f fu s ion  of s i l v e r  ions i n t o  soda-lime g l a s s  and the  

subsequent replacement of sodium ions which d i f fu se  out  of the  g l a s s .  

The index of r e f r ac t i on  of t he  g l a s s  i s  raised;  thereby forming a wave- 

guide on the  sur face  of the  g lass .  Guides supporting from one t o  t e n  

guided modes have been fabricated by varying d i f fu s ion  times from 30 

seconds up t o  30 minutes. 

Pure s i l v e r  n i t r a t e  was melted i n  a covered s t a i n l e s s  s t e e l  beaker 

and clean soda lime g l a s s  s l i d e s  were placed i n  a covered pyrex d ish  on 

the  hot p l a t e .  A s t a i n l e s s  s t e e l  bracket f o r  holdins  the  s l i d e s  and a 

thermocouple temperature probe were placed i n  t he  s i l v e r  n i t r a t e  melt 

and the system was allowed t o  thermally equi labra te  a t  2 4 7 ' ~ .  The 

bracket was removed from the  melt ,  a preheated s l i d e  was placed i n  it 

and the assembly returned t o  the melt fo r  30 minutes. The s l i d e  was 

removed, allowed t o  cool and rinsed i n  de-ionized water. A l l  the  guides 

formed with the preceeding procedure were lossy ,  had very high s c a t t e r -  

ing, were discolored and had a p r e c i p i t a t e  on the surface.  There were 

22 t o  27 supported propagating modes. I t  was noted tha t  the n i t r a t e  



melt had a l so  been contaminated by a  bras8 temperature probe used f o r  

measuring the  temperature of the  melt. 

A d i l u t e  melt of r a t i o  1 mole of the  s i l v e r  n i t r a t e  t o  20 moles of 
1 

sodium n i t r a t e  was t r i e d  next (43). The s t a i n l e s r  s t e e l  was pickled and 

guides were formed i n  the  new so lu t ion  a t  245'~  f o r  d i f fus ion  times of 

30 minutes. The guides were c l ea r ,  low-loss, had no surface deposi ts  

and supported t en  guided modes. The brass  temperature probe had been 

e lec t ropla ted  with gold t o  prevent contamination but  the  s i l v e r  n i t r a t e  

so lu t ion  t ransfer red  the  gold onto the  s t a i n l e s s  s t e e l  and plated the  

probe with s i l v e r .  On the next t r i a l  the probe was p la ted  with s i l v e r  

and it was found t h a t  the s i l v e r  n i t r a t e  s t i l l  etched the  probe. No 

solut ion t o  t h i s  e tching problem has been found a t  t h i s  time, 

The controlable  parameters i n  t h i s  f ab r i ca t ion  procedure a r e  tem- 

perature,  d i f fus ion  time and the  mole f r ac t ion  of the  s i l v e r  n i t r a t e  

melt. The melt mole f r ac t ion  was not changed i n  any of our t e s t s  s ince  

low-loss high qua l i t y  guides were formed with the 1 t o  20 r a t i o .  Diffu- 

sirit times were varied from 30 seconds t o  30 minutes and d i f fus ion  

temperatures of 21S0c, 24S0c, and 260 '~  were invest igated.  

The e f f e c t  of the  d i f fus ion  temperature was t o  increase the r a t e  of 

silver/sodium ion exchange with increased temperature. Since the  pur- 

pose of t h i s  inves t iga t ion  is  t o  f ab r i ca t e  qua l i t y  waveguides with 

repea tab i l i ty ,  the temperature was held j u s t  above the melting point  of 

the melt t o  keep the ion exchange process as  slow a s  possible  i n  order 

t o  determine d i f fus ion  times. 

'Pickling t o  clean the s t a i n l e s s  s t e e l .  The so lu t ion  used i s  1 
par t  HF, 8 pa r t s  n i t r i c  ac id ,  4 pa r t s  s u l f u r i c  ac id ,  and 51 pa r t s  water. 



Single mode o p t i c a l  waveguides were formed i n  30 recondr when t h e  

d i f fu s ion  temperature was held a t  215'~. The only s c a t t e r i n g  observed 

i n  t he re  guider is a t  t he  surface of t h e  g l a s s  s l i d e  and t h i s  can be 

eliminated by using pol i rhed,  o p t i c a l l y  f l a t  a i c r o ~ c o p e  s l i d e r .  Table 3 

i r  a  tabula t ion  of t he  number of proprgating modes t he  fabr ica ted  wave- 

guide supports with d i f fu s ion  time a s  a  parameter. 

Table 3 

number 
of modes 

d i f fu s ion  
time 

30 min. 
15 min. 
10 min. 
5 lain. 
2 min. 

45 sec.  
30 sec.  

The guides were a l l  fabr ica ted  wirh a  .05 mole f r a c t i o n  s i l v e r  n i t r a t e /  

aodium n i t r a t e  melt and a t  215'~ - + 4'~. 

This very simple fabr ica t ion  procedure produces repeatable wave- 

guides of very low l o s s ,  In  some of t he  references,  (42,43,44) t he  

authors reported t he  guides were buried i n t o  t he  g l a s s  s l i d e .  We ob- 

s e k e d  no burying of the  guide and ve r i f i ed  t h i s  by sc ra tch ing  the  sur-  

face of the  guide which stopped the  propagating wave. Over a period of 

four months, no n o t i c i b l c  brcakdow? of t he  guides has been observed. 

Although these  waveguides have not been completely character ized a t  

t h i s  time t o  r e l a t e  temperature t o  number of propagating modes, r c l i -  

ab le  guides with a t tenua t ions  C 1.0 dB/m have been repeatedly produced. 

Tire waveguides a r c  a l s o  s t a b l e  over a  period of four months with no 

change i n  a t tenua t ion  o r  number of propagating modes noted. The only 

problem we have cncourltercd tias been i n  accura te ly  measuring the  melt 

temperature without s ign i f i can t  contamination of the  melt .  



V . EXPERIMENTAL DEVICES 

Based on the calculations in section 3 several devices are cur- 

rently being constructed to verify the predicted attenuation variation 

with cladding thickness, Such devices will serve to verify the calcula- 

tions and prove that the magnitude of the effect is large enough for use 

as a modulator. 

Discussions with several people working with amorphous remiconduc- 

tors indicate potential variation in the optical properties of these 

amrphous filar with dcpositLrrn method and temperature. Thus valuer of 

refractive index and loss coefficients used in our calculations m y  not 

be accurate for real films. After initial investigation of the two 

principal methods of deposition of amorphous silicon ( C M  and e-beam 

evaporation) it was decided to use the e-beam technique because of 

better reproducibility in optical constant. Use ic being made of the 

e-beam system of Cornell University, Materials Science Department, for 

our initial films. 

Films thickness have been selected based on the predicted attcnu- 

ation and phase variations in section 3. Figure 26 shows the predicted 

percentage change in attenuation as a function of silicon thickness. 

Guides are being fabricated with a silicon thickness of 0.18 micrometers 

to attempt to achieve the m a x i m  percentage variation as predicted. 

Obviously, if the optical parameters of the films vary significantly 

from those used in our calculations, we may find the device is at a 

minimum change point rather than the maximtun. If this turns out to be 

the rase the clevicc will lhen be useful .IS a phase modu1;ltor since 

Figure 27 shows the minimum attenuation produces the maxim!ua p h d ~ e  

shift. 
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A wedge shaped film varying in thickness from 0.1 to 1 .O wicro- 

meters has been studied and an experimental film is being attempted. 

Such a film would allow measurement of all variations shown in Figure 26 

or 27. After the films have been deposited a number of experiments will 

be attempted as discussed below. 

A. Verification Experiments 

There are three experiments which can be used to verify the predic- 

tions and confirm that t-he magnitude of the effect is large enough for 

use in a modulator. Figure 28 shows the experimental device to be used 

in the first two experiments. A silicon wedge varying in thickness from 

O.1pm to i pm and 0.1 mm wide will be vacuum deposited on an optical 

waveguide. The use of the wedge shaped silicon layer should allow us to 

observe the variatioil in attenuation when a wide beam is coupled into 

the guide. If the propagating beam is wide enough it should cover 

several attenuation oscillations and appear as a sinusodial fluctuation 

in the intensity across the transverse waveguide direction. This would 

be easily visible and measureable with a detector. 

The second experiment will make use of the same waveguide and wedge 

as 'shown in Figure 28. The silicon wedge will be illuminated with an 

incoherent light source and the signal on the output side of the wedge 

will be measured as a function of the coherent light intensity. 

If both of these experiments are successful, the phase modulation 

experiment will be attempted. The waveguide for the phase modulation 

experiment is shown in Figure 29. For this test a thin film of silicon 

would be deposited half-way across the waveguide. A beam coupled into 

the waveguide would pass half under the silicon region and half in the 

normal waveguide. The energy coupled out should form an interference 
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pattern on the focal plane screen. Incident light on the silicon film 

should then produce a modulation of the fringe pattern an the screen 

thus verifying the phase modulation concept. 

These experiments will depend on the successful deposition of thin 

amorphous silicon films in the configurations described aoove. Preli- 

minary results with the Cornell e-beam evaporation system indicate the 

proposed films depositions are feasible so that experimental results 

should be forthcoming. We should note that while gallium arsenide was 

initially proposed for the modulator, vacuum deposition of thin films of 

GaAs is more difficult than silicon films, so all experiments will use 

silicon films. 

B. The Phase Modulator -- 
If the three experiments discussed above prove successful the next 

step will be to optimize the design of the modulator. This will involve 

decreasing the large attenuation predicted foL. the devices discussed 

above. Investigations of the effect of a buifer layer between the 

waveguide and the semiconductor are currently in progress. Waveguide, 

buffer layer and semiconductor materials and thicknesses will have to be 

seieced to optimize the modulation while minimizing the attenuation. 

New calculations will have to be made with this buffer layer on the ion 

exchanged waveguides rather than the polystyrene waveguides used in the 

current calculations. 

Development of the phase modulator to its ultimate potential will 

require considerably more time and support than has been available in 

this preliminary grant. Effort is continuing under the follow-on grant 

to verify the concept. 
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tract .  The f i r s t  paper appears i n  the Proceedings of Southeastcon '79 

and the second paper w i l l  appear i n  the Proceedings of Southeastcon '80. 
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Abatract 

We conaider the coupling of waveguide moder 
t o  surface wave8 on t h i n  metal f i l m  and then the 
coupling t o  tha r t a l - b a r r i e r - n m t a l  devicer. I t  
i r  rhom that  the TMo mode may couple t o  the rur- 
face wave using a four-layer waveguide where the 
r t o l  f i lm i r  more than 10 nanomterr .  H .mel l ' r  
Equations correct ly  predict  the c h a r a c t e r i r t i c r  of 
th in  film wavefluides when the  layer  thicknerses 
a r e  10 nanouatira o r  greater .  

. 

Metal-oxide-metal devices (MOMS) exhibi t ing 
an invariant  I-V c h a r a c t e r i r t i c  extending from DC 
up t o  o t i c a l  frequencies have been fabricated and P t e s ted(  1. Even though the  MOM devicer a r c  poten- 
t i a l l y  very v e r s a t i l e ,  t h e i r  appl icat ions a t  opt i -  
c a l  frequencier a r e  limited becaure of the pro- 
b l e m  of coupling i n t o  the o p t i c a l  sur face  placma 
wave. Curtafson ind ica te r  tha t  coupling lo rse r  
a re  due t o  losses  of exc i t ing  the  rurface plasma 
mode, f i n i t e  propagation dis tances of the rurface 
p l a s m  mode due t o  absorption by the metal and 
s c a t t e r i n g  l o r r e r  a t  the onset of the  MOM(^). Be- 
cause of coupling problems, the MOM devices a r e  
being fabricated on the back of p r i m ;  therefore. 
a11 applicat ionr  a r e  r e s t r i c t e d  t o  operations on 
f r e e  apace waves. The f u l l  po ten t ia l  of the MOM 
device i n  l i g h t  of present technology can be 
achieved only.through the use of coupling to thin- 
f i lm planar waveguider. The geometrical s t ruc ture  
of the  device lends i t s e l f  t o  integrated op t ics  i n  
that  both u t i l i z e  the r a w  fabricat ion technique 
and a r e  thin-film structures .  Devices have been 
fabricated and tested,  demonstrating propert ies  of 
amplification, modulatior,, and detection. The dc- 
vice ' r  u t i l i t y  w i l l  only be realized by develop- 
ment of integrated o p t i c a l  coupling techniquer. 

The MOM device conr i r t r  of approximately a 
one t o  two nanometers thick oxide placed between 
two metal films. When o p t i c a l  radiat ion i s  inc i -  
dent on the device, par t  of f t  is abu~rbcd  i n  th: 
metal and par t  contr lbuter  t o  an e l e c t r i c  f i e l d  i n  
the oxide. Device op a i is bclieved t o  be 
from three wchanismr : Fcrd level  modu1~- 
t ion by the  trapped e leccr ic  f i e l d  i n  the oxide, 
phonon a rs i s ted  electron tunneling through the ox- 
ide due t o  phonon creat ion by incident photon., 
and d i r e c t  op t ica l  ex i ta t ion  of e lectron tunneling. 
In t r e a t i n g  the device a8 a waveguide, it has been 
found that  nei ther  TE nor 'M modes w i l l  propagate 

through t h e  device r ince th. oxide i r  belov cut- 
off  ch ckners f o r  s y m e t r i c a l  metal-clad wave- 
guidest));  however. surface p l a s m  w d e s  a r e  ex- 
c i t ed  on each m t a l .  The existence of these rur- 
face p l a s m  modem a t  in te r faces  of metals n di- 
e l e c t r i c s  have been predicted and atudled(' ng) .  

There rurface moder lead to the formation of 
symmetric and a n t i r y a r u t r i c  gap p l a s m  aodes i n  
the device. I f  the  a n t i r y m e t r i c  mode is ex- 
c i t ed ,  then F e d  leve l  modulation o f  tunneling 
electrons taker  place. Since the oxide is s o  
thin,  t rans i t ion  t i m s  f g r  nnaling electronr  a r e  
on the order  of 10-l6 a e ~ . " ~  wptch allows f o r  
t r a n s i t i o n  frequencier up t o  10 Hertz o r  l i g h t  
frequencies. Even though surface plarma wave amp- 
l i f i c a t i o n  mechanirmr a r e  not completely under- 
atood a t  th in  time, the procerr has been th TPfized t o  e x i s t  and ha8 recently been demonstrated . 

The MOM device i r  a sect ion of a ryametric 
metal clad three layer  waveguide where the oxide 
i r  extremtly thin. I t  has been suggested tha t  
MOM'# can be placed on the same chip along with 
other  integrated components and interconnecting 
planar s lab  waveguider. The coupling s t ruc ture  i n  
t h i s  paper is o modification t o  a four layer  wave- 
guide s k c e  t h i r  s t ruc ture  already contains one 
electrode and a second electrode may be introduced 
by naking i t  a rymmetrical five-layer waveguide. 
In such r coupler the basic guiding d i e l e c t r i c  
core would become thinner and thinner  t o  couple M 
( t ranrverse magnetic) moder to  surface plasma 
moder. 

An extensive analysis  of the asymmetric four 
layer  waveguide and h 1 pported propag~t ing  
modcr has been done c t * 5 D f  *'Y. ,la procedure con- 
s i s ted  of solving !iamellls tpuat ionr  f o r  the dis-  
persion re la t ions  and then gcneratinC a computer 
program f o r  numerically solving the cransccndental 
relat ion.  Various metal and remiconductor clad 
waveguides have been analyzed and the e f f e c t  of 
varying waveguide parameters such a s  film thick- 
nesses and the material permi t iv i t i ec  on propo- 
sa t ing  modes have been established. 

A comp~riuon of the three layer  d i e l e c t r i c  
guide and a four layer  guide with a met31 f i l m  in- 
ser ted between the substrate  and the guiding di- 
e l e c t r i c  demonstrater that the inclur ion of the 
th in  metal f i lm changes t h e  mode prof i l e  for TM 
modes appreciably yet  t l ~ e  e f f e c t  on the TE moder 
is only s l i g h t .  Figure 1 r h w s  the f i e l d  d i s t r i -  
button a f t e r  a thin metal f i lm has heen introduced. 



~ r r h l e i ~ h ( ~ )  hu hypothrr i rrd t h r t  tho f i r l d  tea- 
c a t r a t i o n  i n  the  w e a l  8 i v r r  rirr t o  tha Trig .ode 
coupling t o  the  r u r f r a  p l u u  mode. Thir hypoth- 
rrir ir eupported by comparing tho rurface v a w  
f i r l d  d i r r r ibu t ion ,  Fig. 2, t o  tha t  of Fi8. 1 
f o r  tb Tkb mod.. 

The conclurion from t h i r  m a l y r i a  L t h a t  Tt 
.odes do not couple t o  the rurface p l a s m  wdrm 
b e u w a  there i s  no concentration of f i e l d  
r t ronr th  a t  the a rea l -d i r lec t r ic  in te r f rco  whrrr 
tha 6* mode exirtm. Thr Tn modr f i r l d  c o n c r n t r r  
tion a t  t h i r  inrerface i n c r r r r e r  a0 mode ordr r  i r  
reduced. The computer ro lu t  ion technique w t h o d  
u p p e d  out previourly p r r d i c t r  tho rximtencr of 
tb M' w d r  i n  t h r t  there i r  e x t n u  a t t r n u r t i o n  
found i n  the TM model; t h i r  i r  much higher chon 
especcrd. The r a t i o m l  Lo chat tho TM moden o n  
wupl ing  i n t o  r highly r t t e n w c r d  rur facr  p l u m  
mod. and thur they ore  highly attenuated. Am tho  
wncrncr r t ion  of tho f i e l d  i n  the  wtrl i a c r e u r r  
ro doer tho attenuation. 

TX w d r  coupling t o  the  rurface p l u n a  wave 
appearr fea r ib le  when the var ia t ion  or  mode index 
v i t h  metal thicknrrr  is compared f o r  tho IXO m d  
Tn* aoder. When the  Mg w d e  index is near the 
?X' mode index grea te r  coupling rhould occur ond 
thus the  Tkb modr w i l l  be attenuatzd accordingly, 
When the To mode index i r  close t o  the ?X' mode 
index, guide a t t m u a t i o n  i r  high. Ao t h e  met01 
thicknerr i r  reduced, the laode index drowr 
awry from the TM' mode index and t h e  a r t m u a t i o n  
ir reduced. A r i m i l ~ r  e f f e c t  would br t o  change 
the  core d i e l e c t r i c  t o  vary the mode index of the 
TM modes. Again at tenuat ion is expected t o  in- 
c re r re  a r  the n mode indices become c l o r e r  t o  the 
rurface plasma mode index. 

b r e d  on r qu m w c l e n i c a l  derivation of Y BY h m e l l ' r  Equations the l i m i t  a t  which there  
rquationr a r e  no longer va l id  a r e  f i lm thiclurerr 
of 10 nanometers. A quantum m c h u ~ i c a l  m a l y r i r  
of thinner f i l m  war deemed unnecearary mince 8Ur- 
f r c r  f luctuat ionr  of th in  f i l m  a r e  on the order 
of 7-8 nonometerr 4 t h  present technology. Thare 
a r e  sever81 papers which have s tretched hxwll 'r  
Cquetionr down below t h i r  theore t ica l  and 
p r r e t i c a l  l i m i t  is]. I l . a l l " r  Equationr a r e  v %?id  
down t o  the l imi t  of 10 nanomterr  and held t h i s  
thicknear, theore t ica l  analyrar t o  date  a re  not 
applicable. 

In conclurlon, c o u p l i n ~  t o  t h e  MOM device 
from o p t i c a l  wavcguidar must be real ized with 
f i l m s  of 10 nanomctcr* o r  greater .  Uo belleve 
that  tt~is can bc achieved with the coupling utruc- 
tu re  out linud. 
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ABSTRACT 

A c  a f r e e  apace wavelength of 633 nonometerr, 
remiconductor clod waveguider a r e  inver t iga tod.  
Calculations show t h a t  t he  waveguide a t t enua t ion  
coef f  i c  tent  (a) and the propagation coef f  l c i e n t  
(e) vrrs with remiconductor th ickncrr  r imi l a r  t o  
r donped harmonic of period 80 nanometerr. The 
conplex reniconductor index of r e f r ac t ion  r e l ega t e r  
curve dpmping and amplitude f ac to r s .  Three of the  
Inare common remiconductorr (Si ,  (;a, CeAs) have been 
inves t iga ted  o r  cladding mater ia ls  and r c s u l t r  a ro  
dimcuured. 

Pliinnr multi- layer d i c l c c t r i c  op t f ca l  wrvc- 
p,uidcr ltrvc bacn studifid extenuivcly uulnp, vnribus 
rnatcrlnls f a r  thu wnvcguldcr and cloddlnr, rc- 
l ions .  [ 1 ] Wc 11,tvc cxtcncled ~ ~ r c v l n u u  a~ra:ynIs t o  
includc t11c case of a buffer  r rg ion bcinn n th in  
ucniconductor film. Maxwell'n equation* and bound- 
a ry  c o t ~ d i t l ~ ~ n r  wtrrt! usrd t o  dcr ivu a t rn~~t iccndr t t ta l  
equation r c l a t i r t ~  t ho  prap,tp;~tlon conr tant  01 n 
1:uf Jcd mnda , t o  wovcp.uldc par;lmistcrn. Ovrr wt.vc.ral 
years,  o conpuLur pro::rarn 11.1~ i.vo1vc.d t o  numrr i- 
r a l l y  so lve  t l ~ l s  complcx trnttnccndcntnl cq11.tt1on 
l o r  tltc complex modc IlropJp,.tt iolr constant (11 + J P ) .  
In the  C J R C ~  01 t l t r c .~  o r  morc d lc- lcc t r lc  l.iycrti, the  
p c r n l t t i v l t l c u  (rc-fr.tctivc jndox) a r c  rc.11, .-. I s  
zcru and tl~uti t11i- fic.mlcontlucror c1;1ddl1~): 11.1h it  ~ 0 1 1 -  

1l11it l v l t y  .'I& upt lc:tl frcqut.tlc' 11-n wl1l1'11 ):lvt.:i r l  *c 
t o  .tn Im.t/:ln;lr:. ptrt nf tllc ~~c~rmlLLivil! ,  ( 4  ' I . '  + 
j '' ., -) , .tnd 11 I~ccc~tnc.~ lti,n-ztvrcj. 13 1 

rrr f o r  t h i s  wavelennth. The th ree  moat common 
remiconductorr, gall ium arranide .  a i l i c o n  and ger- 
manium were used 88 t h e  clnddlnn layer .  For r 
dircurnion of metal and remiconductor clad wave- 
guider see  references  3, I, 5,  6, ?, 8 and 9. 

A~Suming a11 ma te r i a l r  except the  remicon- 
ductor d re l o a a l e r r ,  the  waveguide is conr t rn t  i n  
the  y and z d i r e c t l o n r ,  and r e f r a c t i v e  indox 
v a r i e r  i n  a s t ep  function p r o f i l e  i n  t he  x d i rec-  
t l o n ,  we apply ZIaxwell'r f i e l d  equations t o  gcne- 
r o t e  a wave equation. The problem repa ra t e r  i n t o  
t r an rve r r e  e l e c t r i c  nnd t r an rve r r e  magnetic carer .  
By determining t h e  n tn- tcro  f i e l d  components, in- 
voking cont inui ty  a t  the  taave function and forcing 
the  f i e l d  component8 t o  n r t i r f y  Haxwell'r boundary 
condi t lonr ,  n dimperrion r e ln t ion  f o r  each propa- 
ga t ing  modc in  obtalncd t h a t  r e l a t e r  a a~ td  P, t h e  
a t t m u u t i o n  nnd plraac constants ,  r e rpec t iv r ly ,  t o  
t11e wavrgr~idu metcr ln l  and r t r u r t u r a l  pornmoterr;. 
l'hcsc dimpcrrioa r e l a t i o n s  a r c  complex transcen- 
dcntnl cqr~et lons  wltich must be rolvud i t e r a t i v e l y  
u r ine  a computcr program. 

At ol't 1t:el f r c q ~ ~ ~ ~ n c l e n ,  tllc r c t r a c t  lvc index 
of e rrrnicondt~ctor In complcx. I 'ernlt t l v l t y  bc- 
comes camplcx (r - c'  + j c " )  wlrcn t l w  c o n d ~ t r t i v l t v  
bccntncs uifin1lic;tnt. c" - I n c / w .  Thc coml~lvx 
pnr t  o f  tlrc pcrrn l r t iv l tp  l a  n I i n s a r  funcllon of 
tllc contlitct ivlLy wlticl~ r.ln be cxtrrct;tl I\* var icd. 
Tnhlc. I ),resents the  p r* rn i t t i v l t y  and ref r.trtlvr? 
index Cur t l~c .  t11rc.c m.!ln .ir*mlc~rt~dttctt~rb. 1110 rent  
p:trt o f  Lltr pc rmi l t l v l t l cn  f o r  a l l  t l ~ r c c  n r r  J I I -  

p rox lm~tc ly  t l ~ c  name ~ I I J  t l t t~  cnmplcx pnr t  fo r  ROC- 

a~njrtm i s  .III o rder  o f  rn:~l-nlt~~tlc }:rc.lt , - r  tI\.tn tltat 
of ~:111 111tn a r x ~ * t t i d ~ >  * I I I ~  ! : ~ ~ I I - ~ ) I I .  
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Si l i con  c lad  
p ropa r t i e r  of t he  8a11ium a r r m i d e  c l ad  wavo~uldcs.  
Fig. 3 a d  Pig. 4 preaent t he  computer predic t ion# 
baaed on a co re  t h i ckne r r  of 1 .0  mlcrometrrr. Tho 
c u w o r  a r e  near ly  id*nr ica l  with t he  curver gene- 
ra ted  ur ing  gall ium a r r m i d e  o r  t he  cladding. The 
o r c i l l a t t o n r  a r e  damped out  a t  a cladding thicknoas 
of 1.0 micrometerr. Var ia t ionr  on tho  cenduccivfty 
reproduced the  a f f e c t #  found fo r  the  p rev iwa  care.  

P r c d i c t d  Ch3racter is t  i c r  

Choosinp gallium orronida o r  t he  c laddins  
r ~ a i c o n d u c t o r ,  tho curver p r o r a t e d  i n  Pig. 1 and 
Fig. 2 were generated by r e p r t a t i v e  u r e  of t he  
previourly mantioned prcgrrm. The cladding thick- 
near war var ied  from . O l  t o  1 0  a ic tomrter r .  The 
oxpacted r r r u l t  war a r  t he  cladding th icknerr  t r  
reduced t o  ze to  the  a t t enu r t ion  would decrer ra  t o  
zoro i n  a wall-behaved monner. Hwrver  tho te-  
r u l t r  a r e  not  well-behaved whon tho  cladding 
th icknarr  f a l l r  b e l w  1.0 micrometer. The c u w r r  
a r o  r i m i l a r  to  uxponentially danped rSnuroidr. 
t h e  e x t r r n r  d/k v a r i r t i o n r  correrpond t o  median 
vr luor  i n  t h e  o-curve and extroma a va r i a t i on#  
corrorpond t o  median B/k valuer .  By inc re r r ing  
t h e  conduct iv i ty  of t ho  g a l f i u a  a rbmid*  cladding, 
t he  amplitude of the  curve o r c i l l a t i o n r  were re- 
duced and tho  a-curvo ahifred # l i g h t l y  tewardr A 
higher a t tenuat ion .  This r r r u l t  war expected 
s ince  a Braator conductivity incroarea mator ia l  
abaorbtion of energy and the re fo re  a higher nt- 
t m u a t i o n  i n  tha  propagating wave, yet a t  the  rax- 
imum po in t s  t he re  war ac tua l ly  a decrease in  t he  
attenuation.  

Fig. 1 - CJAH/AIR-CL\D WAVEC1III)C An'KStf,\TfoN 
vr  t 2  (TE,, MODE. ?IOCL\L COSOUUlVI l 'y ;  
t i  0.8 ua) w. 
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Tha clod din^ r rn i eondwto r  wrr changed t o  $or- 
r o ~ i v n  and tha  o w i l l a t i o n s  i n  t h e  * t t e n w t i o n  and 
n o ~ l i r e d  pharr curve6 dirappeared,  Fig. I and 
Fig. 6. There r e a u l t r  a r e  r t t r i b u t o d  t o  t h e  great-  
e r  conbuctivlty of rernaniwn. 

In  reference 2 ,  t he  author conrldered r t h i n  
f i lm  of n r t e r i a l  with n 2 an8 k (k aA/4+) 
varyin8 and he c r l c u l a t e l  t he  expected phone chrnge 
on r e f l ec t ion  of an  incident wave r t  m ai r - f i lm 
rurfoce.  For k ve ty  1~111, t h e  p b r e  change u r r  
found t o  o r c i l l r t e  while f o r  k l r r t e ,  t h e  phrra 
c h ~ f i e d  vety l l t t l e  r n ~ t l l  tha  tila th tcknerr  rp- 
proached taro .  Thir  behavior har  a l r o  k e n  pre- 
d i c t ed  by S t r a t t on  1121 and i m  l i k e  t h e  e f f e c t  ur 
have observed here.  

The propored explanr t ion  f o r  t h e  r e s u l t r  i r  
t h a t  t he re  i r  en in t e r f e rence  e f f e c t  a c r ~ s r  t h e  
w v ~ g u i d e  and vhrn conrcruct ive  in ter ference  occur, 
i n  t he  remiconductor cladding, t he  propagating wwt 
f i e l d  r t r r n ~ t h  in  t h e  c l rdding w i l l  be Breater and 
a higher a t t enua t ion  i r  expected. Likewire, de- 
r t r u c t i v o  in t e r f e rence  w i l l  c r u ~ o  o much lower st- 
t m w t i o n .  R o n e l i r e d  phrr r  r h i f t r  murt bo a t  o 
UII~WWI when t h e  i n t e r f e rence  e f i e c t d  a r e  a t  r 
m i n i m ,  r i ~ ) i l a r  t o  t h e  r e r u l t r  of tranrm1raLon 
c r l c u l r t i o n r  of waver throubh an abrorbing cnrdiua. 
I n c r a r r i n ~  t h e  ~ o n d u c t i v i t y  of the  remiconductor 
cladding increerea  the  f i e l d  s t r eng th  a t c e n u a t i ~ n  
i n  t he  cladding which dec re r r e r  the  o f f e c t  of t h e  
i n t e r f e r m c e .  A t  th. polnta whrre a Rrer ter  cm- 
duc t iv i ty  c r u r e r  r lower r t t m u a t i a n  the  Breater 
conduct iv i ty  i n c r e r r e r  t he  reflection rt the  
cladding-core i n t a r f a c e  rnd thur  t he re  i r  l en r  
f i e l d  r t r e n ~ t h  in  t h e  abrorbins  ~ d i u m  and iean 
a t renuat ion  i n  t he  propagating wave. 



A ~ l ~ l r i b l r  &vie r  u t i l i r i a &  t b o u  n r u l t a  
would k either r m w d  l i ~ t  varr r p l i t c a e  ad.*= 
lrtor oi p h r r  . d u l a t o r .  To a p l i t u d r  ~ u l r t a ,  
tha wricoadrcotor clmddinfi w ~ l d  be e l t h e r  r.rl1im 
araenido or n i l i eon  and of .tuck thiclrnrro that 
thora  mu vnlur -lit& change wi th  minLaua 
phnre c h m  OI t ha  c o a d ~ ~ t i v l t y  i r  varied. m y  of 
the rhimn )olnt r  en cbo a-euwor could k u- 
l a c e d  ad th, modulator thiatuwmr t lwr  do t r r r imd .  
To d u l a t o ,  tho memiconductor conductivity ur t  
k varied, which em k -a through m y  of r w- 

' 

r l a t y  of r a n ,  r w h  rr by M a t ,  r l e c t r l c  f i e l d r  
mnd imid4at ligllt. 

Thin f i l m  of  worphwr rillem hwo k.R 
f r b r i e a t e l  (10,111 and r r m u r e d  c d w t i v i t i e r  have 
boon a s  m c h  r a  rova r r l  or&rr  of wlp\it& lower 
than thn rondm:tivity wlo. r d  h Tabla 1 f o r  
t h i r  study. Ino conductiultv of a m r p h w r  r l l i c o n  
v a r i e r  g r e r t l y  d w  t o  d l t ferencer  Cn f rb r i ca t ion  
procedrrter aad r h m l  himtortor, 1t l a  expect*l 
that the  r t t m v r t i o n  c u w e  m a n  v a l w  w i l l  be l m r  
and th: o rc i l l ac lon r  o t  beth o .nd blk curve# wi l l  
ba i n e r e r ~ d  in  o r p i t d o  when m r p h o u a  f i l m  rrr 
fobr1crt.d. 

Thia rtudy 11 not c e w l e t e  a t  t h i r  time, 
Aaorpbua ri l icort  ham not hen coarplately i n w r t l -  
w:ed and f i e l d  p lota  of t he  propalatin$ wave i n  
tho vavegtlib. have yot t o  k developed. 

A device ha8 beon proporad and laboratory ex- 
porltzanta a r e  p r r r cn t ly  being c ~ ~ d u c t c d  t o  v r r l f y  
thu thca ra t l ca l  p r ~ d i c t l o n r .  A planar  wcrver.ttldo 
v l t h  a uedgad rhrpod r l l i r o n  sldddlng acre,, t h r  
width *!wulJ dcnanrcrarr t ha  damped onc i f f a r lons  In 
the attcnlc8tluo cuwca  and cmduc t lv l ty  var la t ionu 
o t  t h ~  nl l lcon vlwuld dcmtmmtrata eha modul~t iun 
coprbl l l t lua .  
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The following papers were published during the time of t h i s  con- 

tract .  The f i r s t  paper appears i n  the Proceedings o f  Southeastcon '79 

and the second paper w i l l  appear i n  the Proceedings o f  Southeastcon '80. 
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Abatract 

We conaider the coupling of waveguide moder 
t o  surface wave8 on t h i n  metal f i l m  and then the 
coupling t o  tha r t a l - b a r r i e r - n m t a l  devicer. I t  
i r  rhom that  the % mode may couple t o  the rur- 
face wave using a four-layer waveguide where the 
r t o l  f i lm i r  more than 10 nanomterr .  H .mel l ' r  
Equations correct ly  predict  the c h a r a c t e r i r t i c r  of 
th in  film wavefluides when the  layer  thicknerses 
a r e  10 nanouatira o r  greater .  

. 

Metal-oxide-metal devices (MOMS) exhibi t ing 
an invariant  I-V c h a r a c t e r i r t i c  extending from DC 
up t o  o t i c a l  frequencies have been fabricated and P t e s ted(  1. Even though the  MOM devicer a r c  poten- 
t i a l l y  very v e r s a t i l e ,  t h e i r  appl icat ions a t  opt i -  
c a l  frequencier a r e  limited becaure of the pro- 
b l e m  of coupling i n t o  the o p t i c a l  sur face  placma 
wave. Curtafson ind ica te r  tha t  coupling lo rse r  
a re  due t o  losses  of exc i t ing  the  rurface plasma 
mode, f i n i t e  propagation dis tances of the rurface 
p l a s m  mode due t o  absorption by the metal and 
s c a t t e r i n g  l o r r e r  a t  the onset of the  MOM(^). Be- 
cause of coupling problems, the MOM devices a r e  
being fabricated on the back of p r i m ;  therefore. 
a11 applicat ionr  a r e  r e s t r i c t e d  t o  operations on 
f r e e  apace waves. The f u l l  po ten t ia l  of the MOM 
device i n  l i g h t  of present technology can be 
achieved only.through the use of coupling to thin- 
f i lm planar waveguider. The geometrical s t ruc ture  
of the  device lends i t s e l f  t o  integrated op t ics  i n  
that  both u t i l i z e  the r a w  fabricat ion technique 
and a r e  thin-film structures .  Devices have been 
fabricated and tested,  demonstrating propert ies  of 
amplification, modulatior,, and detection. The dc- 
vice ' r  u t i l i t y  w i l l  only be realized by develop- 
ment of integrated o p t i c a l  coupling techniquer. 

The MOM device conr i r t r  of approximately a 
one t o  two nanometers thick oxide placed between 
two metal films. When o p t i c a l  radiat ion i s  inc i -  
dent on the device, par t  of f t  is abu~rbcd  i n  th: 
metal and par t  contr lbuter  t o  an e l e c t r i c  f i e l d  i n  
the oxide. Device op a i is bclieved t o  be 
from three wchanismr : Fcrd level  modu1~- 
t ion by the  trapped e leccr ic  f i e l d  i n  the oxide, 
phonon a rs i s ted  electron tunneling through the ox- 
ide due t o  phonon creat ion by incident photon., 
and d i r e c t  op t ica l  ex i ta t ion  of e lectron tunneling. 
In t r e a t i n g  the device a8 a waveguide, it has been 
found that  nei ther  TE nor 'M modes w i l l  propagate 

through t h e  device r ince th. oxide i r  belov cut- 
off  ch ckners f o r  s y m e t r i c a l  metal-clad wave- 
guidest));  however. surface p l a s m  w d e s  a r e  ex- 
c i t ed  on each m t a l .  The existence of these rur- 
face p l a s m  modem a t  in te r faces  of metals n di- 
e l e c t r i c s  have been predicted and atudled(' ng) .  

There rurface moder lead to the formation of 
symmetric and a n t i r y a r u t r i c  gap p l a s m  aodes i n  
the device. I f  the  a n t i r y m e t r i c  mode is ex- 
c i t ed ,  then F e d  leve l  modulation o f  tunneling 
electrons taker  place. Since the oxide is s o  
thin,  t rans i t ion  t i m s  f g r  nnaling electronr  a r e  
on the order  of 10-l6 a e ~ . " ~  wptch allows f o r  
t r a n s i t i o n  frequencier up t o  10 Hertz o r  l i g h t  
frequencies. Even though surface plarma wave amp- 
l i f i c a t i o n  mechanirmr a r e  not completely under- 
atood a t  th in  time, the procerr has been th TPfized t o  e x i s t  and ha8 recently been demonstrated . 

The MOM device i r  a sect ion of a ryametric 
metal clad three layer  waveguide where the oxide 
i r  extremtly thin. I t  has been suggested tha t  
MOM'# can be placed on the same chip along with 
other  integrated components and interconnecting 
planar s lab  waveguider. The coupling s t ruc ture  i n  
t h i s  paper is o modification t o  a four layer  wave- 
guide s k c e  t h i r  s t ruc ture  already contains one 
electrode and a second electrode may be introduced 
by naking i t  a rymmetrical five-layer waveguide. 
In such r coupler the basic guiding d i e l e c t r i c  
core would become thinner and thinner  t o  couple M 
( t ranrverse magnetic) moder to  surface plasma 
moder. 

An extensive analysis  of the asymmetric four 
layer  waveguide and h 1 pported propag~t ing  
modcr has been done c t * 5 D f  *'Y. ,la procedure con- 
s i s ted  of solving !iamellls tpuat ionr  f o r  the dis-  
persion re la t ions  and then gcneratinC a computer 
program f o r  numerically solving the cransccndental 
relat ion.  Various metal and remiconductor clad 
waveguides have been analyzed and the e f f e c t  of 
varying waveguide parameters such a s  film thick- 
nesses and the material permi t iv i t i ec  on propo- 
sa t ing  modes have been established. 

A comp~riuon of the three layer  d i e l e c t r i c  
guide and a four layer  guide with a met31 f i l m  in- 
ser ted between the substrate  and the guiding di- 
e l e c t r i c  demonstrater that the inclur ion of the 
th in  metal f i lm changes t h e  mode prof i l e  for TM 
modes appreciably yet  t l ~ e  e f f e c t  on the TE moder 
is only s l i g h t .  Figure 1 r h w s  the f i e l d  d i s t r i -  
button a f t e r  a thin metal f i lm has heen introduced. 



~ r r h l e i ~ h ( ~ )  hu hypothrr i rrd t h r t  tho f i r l d  tea- 
c a t r a t i o n  i n  the  w e a l  8 i v r r  rirr t o  tha Trig .ode 
coupling t o  the  r u r f r a  p l u u  mode. Thir hypoth- 
rrir ir eupported by comparing tho rurface v a w  
f i r l d  d i r r r ibu t ion ,  Fig. 2, t o  tha t  of Fi8. 1 
f o r  tb Tkb mod.. 

The conclurion from t h i r  m a l y r i a  L t h a t  Tt 
.odes do not couple t o  the rurface p l a s m  wdrm 
b e u w a  there i s  no concentration of f i e l d  
r t ronr th  a t  the a rea l -d i r lec t r ic  in te r f rco  whrrr 
tha 6* mode exirtm. Thr Tn modr f i r l d  c o n c r n t r r  
tion a t  t h i r  inrerface i n c r r r r e r  a0 mode ordr r  i r  
reduced. The computer ro lu t  ion technique w t h o d  
u p p e d  out previourly p r r d i c t r  tho rximtencr of 
tb M' w d r  i n  t h r t  there i r  e x t n u  a t t r n u r t i o n  
found i n  the TM model; t h i r  i r  much higher chon 
especcrd. The r a t i o m l  Lo chat tho TM moden o n  
wupl ing  i n t o  r highly r t t e n w c r d  rur facr  p l u m  
mod. and thur they ore  highly attenuated. Am tho  
wncrncr r t ion  of tho f i e l d  i n  the  wtrl i a c r e u r r  
ro doer tho attenuation. 

TX w d r  coupling t o  the  rurface p l u n a  wave 
appearr fea r ib le  when the var ia t ion  or  mode index 
v i t h  metal thicknrrr  is compared f o r  tho IXO m d  
Tn* aoder. When the  Mg w d e  index is near the 
?X' mode index grea te r  coupling rhould occur ond 
thus the  Tkb modr w i l l  be attenuatzd accordingly, 
When the To mode index i r  close t o  the ?X' mode 
index, guide a t t m u a t i o n  i r  high. Ao t h e  met01 
thicknerr i r  reduced, the laode index drowr 
awry from the TM' mode index and t h e  a r t m u a t i o n  
ir reduced. A r i m i l ~ r  e f f e c t  would br t o  change 
the  core d i e l e c t r i c  t o  vary the mode index of the 
TM modes. Again at tenuat ion is expected t o  in- 
c re r re  a r  the n mode indices become c l o r e r  t o  the 
rurface plasma mode index. 

b r e d  on r qu m w c l e n i c a l  derivation of Y BY h m e l l ' r  Equations the l i m i t  a t  which there  
rquationr a r e  no longer va l id  a r e  f i lm thiclurerr 
of 10 nanometers. A quantum m c h u ~ i c a l  m a l y r i r  
of thinner f i l m  war deemed unnecearary mince 8Ur- 
f r c r  f luctuat ionr  of th in  f i l m  a r e  on the order 
of 7-8 nonometerr 4 t h  present technology. Thare 
a r e  sever81 papers which have s tretched hxwll 'r  
Cquetionr down below t h i r  theore t ica l  and 
p r r e t i c a l  l i m i t  is]. I l . a l l " r  Equationr a r e  v %?id  
down t o  the l imi t  of 10 nanomterr  and held t h i s  
thicknear, theore t ica l  analyrar t o  date  a re  not 
applicable. 

In conclurlon, c o u p l i n ~  t o  t h e  MOM device 
from o p t i c a l  wavcguidar must be real ized with 
f i l m s  of 10 nanomctcr* o r  greater .  Uo belleve 
that  tt~is can bc achieved with the coupling utruc- 
tu re  out linud. 
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S r i c o n d u c t o r  Clad O p t i u l  Wavepidom 
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m i v e t s i c y  o f  v i r ~ i n i a  
U o c t r i c a l  t n g i n e m r i n ~  Dopartaunt 

C h . r l o t t e s v i l l e ,  VA 22901 

At A f r e e  space  n v e l m g t h  of  633 n a n m o t e r s ,  
sunlconductor c l o d  wwesuidea  a r e  i n v e r t i g o r e d .  
Calculations show t h a t  t h a  waveguide a t t e n u a t i o n  
coef f i c i e n t  ( 0 )  and t h e  propagot ion  coef f i c i e n t  
(e )  vary wi th  s m l c o n d u c t o r  th icknoas  a i m i l a r  t o  
a donped hatmonic of  period 80 nmometera. The 
conplex sen iconductor  index of  r e f r o c t i o n  r e l e g a t e s  
curve Jnmpinfi and ampli tude f a c t o r s .  Three of t h e  
more c-n a n i c o n d u c t o r a  (S i ,  Ce, CIA#) have bean 
i n v e s t i g a t e d  a r  c ladding  m a t e r i a l a  and r c s u l t a  o r s  
diacursed.  

Plnnnr n u l t l - l a y e r  d i c l c c t r i c  o p t i c a l  wavo- 
nu idas  ltavo born r t u d i c d  ~ x t c n s i v a l y  uainfi v n r i o u s  
m a t e r i a l s  f o r  t h o  vnvcguidca a d  claddinp. rc- 
~ i o n a .  11) Wo Iiavc a x t c n d d  prcvlnua ma:yrlr  t o  
include? tlic c a r e  of  n h u l l e r  r c ~ i o n  being a t h l n  
r ra iconductor  f i lm.  b x w c l l ' r  uquatlonn and bound- 
a r y  condt t l~ inw v a r o  urcd t o  d u r i v u  a t r n n ~ c s n d c t t t a l  
cqua t lon  r c l a t l l t ~  t h a  1 ) r a p a ~ n t l o n  cona tan t  of  n 
~ u l d o d  mndo, t o  uavahuldc pnrnnu.tcrn. 0vt.r ruv1.ra1 
ysnra,  n conpotur pror;rom ltau evolvnd t o  numori- 
r n l l y  s o l v e  t l t lu complex t rnlrnccndcntal oqct.lt lott 
f o r  tltc complex m d c  11ropafint tun cons tan t  (rn + 16). 
In thu  cans  of tltrr-u o r  m r c  d l r l c c t r i c  l a y ~ r r ,  t h e  
p c r n l t t  i v i t  l c r  (red r a c t l v c  Index) a r c  run1 , u l a  
xcru anal LI IUH t l i r  a~ ln lcnnc luc~or  claJdlttj: 11an II con- 
t l ~ r i t  l u l  t y  a t  o p t  l c a l  frc.qui~tce lvn vl t l~-I i  clv1.r r lwc 
l o  .tn Im?l;lnnrv p.rrt nf tlcr, ( ~ v r n l ~ t i v l t y  (I. c '  + 
J la.:; 1) , ,lnd 11 hvcc~mur nun-tvru. 1 3 1 

Tltu o p t  l z ; ~ l  vnvt*~:uldu u:111~ c t.lww1dcr.lt II'II Ilzrr 
I s  r I I ~ . I I I ; I ~ ,  l our  1;tvcr c;I.th w:tvc*:~rldr. I*rtt~*.ti;.~- 
t ion  , t i  111:Itl 111 .~nnum.d LI I  IIV In tl111 c-Jl :*.r~ 
;rtid n3tk.r !.I\ v.lrI;tt lt~nm atcctrr lit tit*! x-dirk-ct l i ~ t  
0111 y. T III. W.IV~~;;II  l J c  1.1 c.~)nl~,~:i~.ll 115 .I n m l -  irtl llt.ttr 
);I .I:$# !,ttI~?.tr.~ta*, ,I 1101 y!;t yrt3tw cor4- ti1 1 I~li.kcit~nn 
1.1) nlcra.artrr .  ., nI. n(~t111011i.ti~r I-l.i.ldlnc 415 0.111 
t o  IU ! i l ~ . r ~ v c ~ t ~ * r t t  111 I I I IC~I~V+S:I  .t~iJ .I I ~ I - ~ I I -  I I I ~  111.18 ** 

1 . 1  * I 1 .  O\ i t  ..,.-*l~.rrv u . ~ v ~ ~ l ~ ~ n ~ t l t  01 'I I1 n.tnn- 
r i~- t l+r% w.111 .8t...tt!11*fl . I I ~  thtt-i .I 11 :- .~t i-r i . l l  i~. lr . I~n~ta r s  

are f o r  t h i s  wrvelennth. The t h r e e  most cowrum 
s .miconductors r  ga l l ium a r r e n i d e  , s i l i c o n  and fie?- 
aunium were used na t h o  c lnddina  l a y e r .  For a 
dlacuamion of  meta l  and a m i c o n d u c t o r  c l a d  wave- 
g u i d e s  s e e  r e f e r e n c e s  3, d ,  5, 6, 7, 8 and 9. 

Asmuming a l l  materinlm except  t h e  s m i c o n -  
d u c t o r  n r o  l o s s l e s a ,  t h e  waveguide is  cons tan t  i n  
t h e  y and z d i r e c t i o n s ,  and r e f r a c t i v e  index 
v a r i a s  i n  a a t c p  f u n c t i o n  p r o f i l e  i n  t h e  x d l r e c -  
t i o n ,  we apply  ~ a l m l l ' a  f i e l d  e q u a t i o n s  t o  gena- 
r a t s  a wave equa t ion .  The problem a e p o r r t e s  i n t o  
t r o n r v e r s a  e l o c t r i c  and t ronaverae  magnetic cases .  
By de te rmin ing  t h e  non-zero f i e l d  conponcntm, in -  
v o k i n ~  c o n t i n u i t y  of t h e  wove f u n c t i o n  and f o r c i n s  
t h o  f i e l d  components t o  n r t i r f v  Haxwell 's  boundary 
c o n d i t i o n s ,  n dimporalon r e l a t i o n  f o r  each propa- 
go t inf f  mode i n  obtnlncd t h a t  r e l a t e r  a and PI  t h e  
a t t c n u n t i o n  and ptiarc c o n s t a n t s ,  r e r p c c t i v e l y ,  t o  
tlic v n v r ~ r ~ l d u  m ? t c r i a l  and a t r u r t u r o l  paromorerr. 
lhcmc dispersion relations a r c  complex t ranrcen-  
d c n t a l  c q u a t l a n r  wltlch must be aolvud i t e r a t i \ * c l y  
u r l n g  a computer program. 

At o r t l c n l  freqiccnc t e a ,  t h e  re f  race  l r c  index 
o f  n n m i c o n d ~ t c t o r  l r  complex. P r r n i t t l v l t y  bc- 
coma rnmplcx ( 1  = c '  + Jc")  vhcn t l ie  c o n d u c t l v i t v  
bceomcr r ly.nlCicant ,  c" - dwalw. Tltc complrx 
p n r t  of  t l ic  p c r m l t t i v l t y  is n l i n c n r  f u n c t i o n  o f  
tltc c a n d u c t l v t t y  vhlcli rnn be  r x t s r l i n l  l r  var ied .  
Tahlu I prcrrcntn t h o  p @ t n l t t I v l t y  a ' -0f r . t r t ive  
index f o r  tltc 1 1 1 r ~ c  malo r c m l r ~ * t ~ d ~ ~ c  .r. The r r n l  
p a r t  of Lltr p a r m i l t l v i t l a n  f o r  a l l  t h r e a  n r r  311- 
p r n x l n u t c l y  t l tc  rnfnn nrtil t l t ~  rcrmplcx p a r t  f o r  car -  
mlnltrm i n  ;in o r d e r  of  n n p n l t o ~ l c  f i r c a t r r  than  t l tnt  
o f  pa l l lnm arncctldr rind ::lllrns. 

Table 1 



Cboaim p r l l l w  rremida rr the cWIlng  
rrkonductor,  thr c u m 8  promtad i n  111. 1 rrd 
111. 2 w r a  gmratod by r.petrtivr ure of th. 
prrviwrly nntionod progrn. The cl.bdlna t h l e b  
MI# W I  V I C ~ I ~  f t ~ l l  * O l  t O  10 11~101).Cat#. th. 
aprctod remult war r r  th. cladding t h i c k ~ ~ r  i a  
r d u c d  to  taro the att.ncution would decrura to 
aero ia  r -11-khwd arnner. l b u m r  t h r  to- 
ur l t r  are not wl l -khavd  than the clddivg 
tblcberm fe l l8  k lw 1.0 a i c r o n t n .  th. cumem 
are r i a l l r r  t o  rponmtia l ly  dmpd  rlnuroidr. 
The ntr- 8/k variation8 c o r r e r p d  to adla 
valuur i a  tha H U W ~  and a t r r v  a v r r l c ioa r  
eorrerpond to amdim I / k  valuer. Dy incraarln# 
thr conductivity of thr ~ l l l u m  rI..Ride cladding, 
the aaplitude of tha curve orcillrtlona uerr re- 
ducad a d  tho o-cum r h i t t d  rllghtly towardr a 
hlgher rtt.nurtion, This rrault war apected 
mince a s tar ter  conductivity i r r e r a e s  noterial 
abrorbtioa of energy &ad therrloro a hieher at- 
tenuation in chm propasating wave, yet a t  the mart.. 
imm points there war actually r decrearr l a  tho 
attmurtioa. 

Sillc@n chd 
p m p r t i o r  o l  thr  mlllw -renldr c1.d m v r m i d r .  
ti#. 3 and t in .  4 prerent the computer predictlonr 
b a r d  on r core thicknrrr ot  1.0 microwtarr. * . -..- 

c u m r  are noarty idoaticrl with tha c a n e r  umr 
rated wring 6alllun arrmlda am tha claddin@. hr 
orcillationr or4 d m p d  out a t  a claddins th l che r r  
of 1.0 a le touterr .  Vrrlatlona on the cotduccivlty 
roproducrd th. r f t w t r  fwad lor tha prwiour c u r .  

tm. 3 - sruccm~nir C L A ~  mxm ~ m t t e i  
vn t z  (q MODE. notMr. cmut~cT1rxn) 



Tbm rlaUC~ ml#(rrur n a  chamnd em WT= 
an ln  rr( tho o ra t l l r t l on r  l m  elm mttmwtlocr cn( 

Ir rat- 2, eb.  Mh aru1k.d 4 th la  
f i l m  o f  u c e r l r l  wid 0 2 m( k (h ai/4r) 
*.ryln$ a d  h r  u l c u l r t d  tho . + ) . c c d  ?haw aluy. 
ma r r f lec t loa  o f  M lneldonr vrrr rt m a i r f l l m  
wr f r c r .  ror k vow mal l ,  tho p h n  chmw var 
tow4 t o  e r c l l l r t r  uhllr to? k lrr~r, tho p h r n  
ck.W wry llttlr v ~ t t l  th. f i l m  thlcknarr rp 
prcrchd a m .  Thia boh.rlor h m  r l r o  k m  pro- 
I l c tod  w I t ra t t on  I121 and L lib tho o f f re t  ur 
hrvo obnm.4 Mr.. 

tha wkurian Io? c l n  n r r l e m  18 
(bat thore 11 an &nt r r f r rm~r  ef foct  aurora tho 
-idr m 4  whm cmr t r rc t ivm l n t r r f r r m c r  ocrrn 
h tho mmleor luctn cfrbl lns, tho pro).wtlla urn 
t l r l d  s t r o n ~ t h  1n tha r l o d d l n ~  v l l l  k g t r r t r r  md 
4 hlghor rttonutloa lr oupoccd. L i k m l r r ,  d*.  
rtmtivm ln te r f r rmc r  v l l l  c row 4 ~h lorn &t- 
tmwt loa .  I o r u l l c d  phan r h l f t r  nurt  bo rt r 
u r i ~  uhea tho lnterfaroncr r t l e c t r  o n  a t  4 
miniuwm, rlmllrr t o  tk t ~ r ~ l t l  of t r r n m l ~ r l o ~  
c r lcu l r t ionr  o f  umr t h b h  n rbrorblna ..dl- 
incr r r r tnR tho ~ r c t l v l t y ~ o f  thr nmlcoductor  
olrdalnr lncr rwor  t?u f i e l d  r t r r n ~ t h  ~ c t r n w t i a  
l a  tho C1ad4inE Yhlah k c r e r u a  tho r f fwt  a t  tha 
ln t r r f r rmce.  At th. point8 a grortor L I T  
duct lv t ty  c rur r r  r lewrr a t t m w t l o n  tho grorter 
conluetlvlty lunrnr tha r r f l r c t l o n  a t  tho 
claddlnpeorn interface a d  chum t h o n  i r  lrrr 
f l r l d  r t r m ~ t h  i n  tho rbwrbinn m d l m  #la i e r r  
rtt.ntution I n  tho propr88tlng urw. 



A -Uk hum ucilt.1me t b m  m r i t a  
w d d  k o i t h r  r l i uh t  wrr . . ~ l l t r d o  rk 
h t @ T  OT ))ur d r l b t o t .  TO wlitr(. ~ h t m r  
el* m w t o t  c l m U 1 ~  m l d  k o i t h n  w l l iw  
r r m l d a  .t rillern md of much thtaknerr thrt 
&hot- wr mnlu mlitrlr c k r w  v l t h  d n t m  
Ik.n ebanrpt ar tbo d r t 1 v l t y  Lr v a t i d .  y of  
rho dnlw peintr  on tkr o-cuwor rorll k w- 
hat.( tb -1at.t thir.;m88 thYI h t 0 1 1 ~ .  
h r(.lr'.e, tho uml~II(uatot ~ c i v i t )  WI 
k vari.rd, th icb am k 4mo throb* m y  of l v r  
r i o t 7  b f  wm, n c b  rr by b u t ,  b;octrtc f l e l l r  
d iM1IIIt lifit. 

m f miam krrr baa  
fabHert.( (10,111 rd ~~ ~ t l w i t l o r  k.. 
boon rr mab rr mw.1 o r h r r  of mnnirS lonr 
r& rh8 e a n ~ t l v i t y  rrlw u u l  In t r b l o  I for 
tblm r t d y .  1M ~ a t l u l t v  o f  m h o r r  8 i l i . m  
v r r l r r  p e r t l y  du t o  dlffarrrcmr tn f a b r i ~ a t l o n  
procrdurrr a d  b b m r l  h i r t o r l r r .  I t  18 rrp.ttd 
c h t  tho a t c . n u t i m  crt*r mesa r r l r  wil l  k lorn 
a d  th: o rc l l l o t i on r  o f  both a and I/h c v m r  v l l l  
k i n c r r r n d  i n  v p l t v d r  rrhrn arrrphorr f i l m  .re 
f r h l c r t r d .  

m i 8  at- t o  not c ~ l r t o  a t  t h l r  Clam.  
-how ri l icm bar ror beon c ~ l r t o l y  iavwti- 
mtd  ml f i e l d  p lot8 of tho pmpawtlng urw i n  
thr ~ 8 ~ g r l b .  MVO pt to k h l o p ~ d .  

A k l a e  has krr propond and laboratory rrp 
p8r lwnr r  r r o  p n m t l y  b o l n ~  c d u c t e d  to  ver i fy  
thr t h m n t l c a l  prodictiona. A pl.mar uavop.ulda 
vlch o urdged shaped r l l l con  c ladl lnu .cress tha 
v ld th  ahoulJ dcmsnatmto tho o rc l l l r r l on r  11 
tho mtccntmt ion c v m r  and eenJuct l v l t  y varlat loan 
of  thr r l l l c o n  alwuld Llsannrtrsto tk modul&tlon 
capabil l t  ldr. 

t. t r w t e ,  t. llrly., r( n. 'Irrui, "Ehriaa- 
t r t i r tkC8 o f  Optical Uuid.6 H&r i n  kltllyn 
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