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INTRO UCTION 

The rap d develop en of x- ray astronomy made poss ble / 1 * 

that th s f eld reached w th n three decades the level wh ch opt -

cal astronomy ach eved when Galle 0 po nted a telescopp. for the 

first ime at the sky : The sof X- ray reg on (0 . 2 to 2 ,0 keV) 
has obta ned by now the first imag ng systems for the observa on 
of extrasolar X- ray sources . By the end of the year 1978 , HEAO- B 
w 11 car ry he first x- ray telescope for satel1 te- based observa­
t i ons of extrasolar sources . 

After the f rst 0 serva ons of cosm c X~ray sources (1949 : 

first observat on of the sun in the X- ray range from V2- rockets , 
1962 : discovery of the first extrasolar source , Sco X- l) an 
astronomical observational program got started resulting in an 

extensive catalogue of cosm c X- ray sources (UHURU satellite) 
and surpris ng observations of individual sources (A S, Ariel- 5 

SAS- 3 , )S) - 8)0 At present , we know of about 300 cosmic X- ray 

sources , among them the novel types of Cyg X- 3 or Her X- l w th 
their short- period fluctuations in brightness that have given 
heoreticians new deas (neutron s ars black holes) . These 

interest ng results were obta ned with the aid of instruments 
of small energy and angle resolution such as mechan cally col­
imated proport onal counters with an angular resolut on of some 

arcmi n and an energy resolution of about E/A E = 5 . A second /2 
generation of X- ray satellites (HEAO- B, EXOSAT) will make use of 
focuss ng maging systems and use their advantages to improve 
the angular as well as the energy resolut on (the latter by a 
combination w th transm ssion grat ings) by factors of order 10-

50 . The focussing sy terns have the added advantage of suppres ­
sing the background noise : The signal to no se ratio is improv­
ed cc_responding to the large r at io of collector surface and de ­

tector surface . For nstance , HEAO- B will have a sensitivity 

which is a out 10 4 times that of the UHURU satelli es . 

* Numbers in marg ns indicate fore gn pag nat on 
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The MPE (Max- Planck Ins tu fur Extraterrestr sche Phys k 

arching FRG) s currently nvolve n the develop ent of an 

x- ray telescope h ch s supposed to e flow n hree vers ons 

~o ~ard the end of the year 1978 in rockets . The concep of his 

telescope s no so much ~d at a h gh resolution ( he des gn 

pos ulates asked for a resolu on of a out 20 arcsee and a 

F HM width of less than 5 arcsec as reached ' by compar son the 

HEAO- B has a po nt resolut on of 3 . 5 arcsec FWHM) , instead the errphasis 

is on a low level of scatter ng background . The elescope is 

mean 0 be used for the study of extended X- ray sources such 

as the supernova remnants n Vela , Puppis , and Cygnus , and for 

measuring the dust scattering halos of the type expected n the 

case of the br ght sources such as Cyg X- I due to scattering by 

interstellar dust . This ask requires a high contrast , both w th 

respect to the detector and the reflect ng system proper : Wh Ie 

Rayleigh ' s cr ter on 

is in the opt cal range reasonably sat sfied even for perpend cu­
o 

lar incidence and a roughness of' ~ = 50 A The value of g is 
o 

unity for the same roughness a wavelength of 10 A and a typ cal 
graz ng angle of 1 degree . As a consequence there s always 

significant scattering rad at ion in the case of soft X- rays de ­

creasing the contrast of the image of an X- ray telescope . 

The present paper s concerned with the imaging properties of X- ray tele­

scopes and s closely related to the development of this part cular one . Spec al 

emphas s s placed on the analysis of the nfluence of the mirror microroughnesss 

on the po nt imaging funct on. 

A corrputer code was developed to determine the geometr cal-opt cs imaging 

propert es of a parobolo d-hyperboloid telescope of the type described by H. 
Wolter [51J . Th s code allows to follow the ray path through the telescope and to 

determine n this fashion imaging errors effect ve surfaces, and the influence 

of d aphrams . The influence of micro- roughness on the scattering behavior of 
X-rays under reflection by pol shed surfaces is corrputed for the telescope on 

the basis of the stat-
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ist cal su face sca ering heory [lJ ' he influence of volume /4 

scattering is estima ed . The scatter ng exper ment prov des mea­

surements of he dependence of he ntegral sca ering contribu­

tion an 0 the scattering d stribution on the wavelength the 
grazing angle , and the roughness of the plane m rros . T e results 

are then compared w th the results provided by theory . Sca ter­
ing measuremen s are also used n checking the optim z ng of the 
reflecting material and the polish ng techni ' ues and also in 

s udying novel methods or m rror product I n (repl cas) . The 
roughness obtained from scatter ng measurements y means of scat­
tering theory are compared w th other measurement techn ques for 
surface roughness . 

While th s work as go ng on the discovery of cylcotro 1 ne 
emission from HerX- l brought up he Question as to the reflection 
of x- rays from the surface of a neu ron tar with ts extreme 
phys cal conditions . The computations e have carried out n 
this respect were added in Section 3 . 2b to this report. 

A final section discusses the use of transmission gratings 
together wi X- ray telescopes . We po nt out the poss lity of 

increaSing the spectral resolution through grat ng corrections . 
We also study the question as to the optimum position of the 

grating behind the telescope for a given wavelength and grazing 
• angle range . 

2 . THE - PAY TELESCOPE OF THE TYPE WOLTER I 

2 . 1. pIes of the telescope 

The refract ve index of all materials under normal cond ~ 

tons is fo r X~rays less than unity , ith the departures from 

/5 

( ) - 4 un ty n the soft x- ray reg on 0 . 2 0 2 veV be ng of order 10 
to 10- 2 n the case of gold ' c . f . Section 3 . 2 . Thus total re ­

flection occurs in this energy range of electromagnet c radiat on 
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belo an angle of nc ence which s obta ned fro he rela on 

If the angle " c are small , e then have c.: lr;:;-g S nce the 

1 m ting angles for total reflect on in the reg on of soft X- rays 
are etween 0. 5 an 8 degrees , mirror telescopes for X- rays a e 

run u er con 1 ons of graz ng ncidence . 

H. Wolte [51 , 52J suggested the des gn for such a telescope 
in 1951 for a plications with soft X- rays . It s easy to show 
that m rror systems 1 h an 0 d num er of re lec ons under graz-

ng ncidence violate Abbe s s ne cond tons in an extre e fash­
ion . Consequently olter ' s telescope cons sts of two m rrors , 
tha s , a parabo loid and a confocal coaxial hyperboloid . The 
MPE developed in colla oration with he Ze ss Company (Oberkochen) 

a 32 em telescope of the Wolter type 1 (Fig . 1) . The rad at on /6 
which arrives at the paraboloid parallel to the optical axis is 

focus ed toward the lhs focus and then impinges on the hy erbol­
oid mirror wh ch deflects it to he second (rhs) focus . Thus , 

radia ion arr v ng parallel to the axis is focussed n ideal fas ­

hion as would be the case for a s ngle para oloid . The dif­
ference to this case , ho ever is the fact that a source Which 

s not si utated on the optical ax s (at infin ty) s imaged in 
a diff~action pattern in the focal plane w th the center situated 
near the Gauss an image point and w th the size of the d ffrac -

t on pat e ~n small by comparison w th the d splace nt from the 
axis . The image erro~s of such a telescope and the r measurab 1-
ity in the optical range of wavelengths are discussed in Sect on 

2. 5 . S nce the effective surface of a Wolter telescope is a r ng 
surface diaphragms are needed to prevent rad ation to reach the 
detect or without reflection . Additional d aphragms are used 0 

pro ect the detecto~ from singly reflecte ~adiation . The effect 

these d aph~agms have on the de endence of the collector surface 

0f the te escope on the off- axis angle, hat is the angle be-
'-
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ee the d rection of he ncom ng rad at on i h respect 0 he 
opt cal ax s , s scusse n Sect on 2 . 3 . e f rs n Ser 

2.2 , determ ne the parame ers of the m rror surfaces and he d -

mens on of the 32 cm telescope. /7 
I 

~ LH -~--- Lp - --'--! 

I 
I 
I 
I 

Q -----'~>-I 
I 

B----""" 
PARABOLOID : ~:: A ( X + 

HYPERBOLOID: ~(Cl_ H2}(X + Q)2; 2_1) 
H 

. ¢-

Fi gure 1 . Schema ic drawing of the Wolter telescope Type! 

2 . 2 . Dimension ng and effect ve surface of the telescope 

The determ nation of the rela ive posit on of the ' two m r ­
rors with respect to each other (coaxially and confocally) res-

t~ ct the freedom in the definition of the form to a total of 

three parameters . Together w th the length of the individual mir­
rors the system is determ_ned by five parameters . If the length 

of the hype~boloid mirror is chosen at least such hat all the 

rad at on reaching t ~,....! para oloid parallel to the ax s h ts the 
hy erbolo d as well after the f rst reflect on then the geome ­
tri cal collector surface for parax al rays depends only on two 
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para eter : F = At . here A is half of eom p he distance be een /8 
ocus an the d ectr x surface of 

length 0 he parabolo d m r 0 • 

the elescope rea s 

he paraboloi , tp s he ax. s 
The max mum nter or rad US of 

,.----- \ 
B) 

If th s rad us s chosen for the r epresen a ion of he paraboloid 
(it sImi ed by t e s ze of he carrier rocket) 0 e her th 
he angle of inc dence n the case of re lection of parax al rays 

a he pos t on x = 0, then we find for the geome rical collec or 
surface 

(1) 

The e fective collector surface is obtained by mutliply ng the 
geometrical surface with he reflecti v ties R (a p) and R(oll4) . 

For sl m Wol ter ... type telescopes we find that the sum of ~ r and 
t>l ,I is nearly constant . If c<po:- ot- L } O< ,f: t:>( + E.. then we have for 

the product of the two ref1ectivit es /9 

In the range of energ es of X- rays for wh ch the telescope was 

op imized (1 to 1 . 5 KeV) the second der vat ve of the angle of 
inc dence is negative (that is for angles less than 20) . Then 

the product of the two reflectiv ties s a maximum , f o!.i>o= o{t1o- c<.. 

If OC :: 1. S" () , the computed effective surface shows a max mum f or 
o 

1 . 5 KeV or about 8. 3 A. Thus we have chosen an angle of inci -
dence of 105 0 at the posit on of x = 0 for the 32 cm telescope . 

Th i s completely determines the paraboloid together w th the max-
mum rad US of 160 . 9 mm and the axial length restricted to 430 

for design reasons . The remaining two paramete~s of the hyper­

bolo d were determined in such a as ion that on one hand the 
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slope of the hyperboloid for x = 0 equals tan( 3~ ) (so that for 
p 

x = 0 we have "l1 - ct 1 wh 1e on the other hand at the position 
x = 0 the radii of paraboloid and hyperboloid are the same . In 

th s manner ~ we find the fOllowing parameters according to Fig . 
1 : 

rv (I,,", ) l_cX._--+I_ r_I _(mrn_ )-f-I_L.::;.p_{_mm--j) It-L_H_(_mm_) 

160.9 1.5° I 715. 5 1130.0 1380 .0 

The remaining radii and angles of incidence and the focal length 
are then obtained as follows : 

r (mm ) 11\ (mm ) ! 13 (mm ) Ie (rnm ) ~ Q ( ffil ) ! r ii (nun ) 1 ~ I oI'"y f (mm) 
-_'?_ ...... - .. -.. -- . -' .-----.. -- ........ _-. : ..... .. _ ... - _.-: ... --- --.... ---- -0" ---'--0 · ;----
150. 0 ! 7. 8 ' 2 8 6 4 .1 : 71 7 . 5 : 2 144.7 i 11 9 .7 1 1.83 i 1. 40 j 1 42 7. 2 

Here , % is the grazing angle at which a paraxially incoming /10 
ray is reflected at the hyperboloid if it hits the telescope at 
the front edge of the parabo10 d . 
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2.3 . aphragms 

In order to co pute the ef ect ve area for off- axis incidence 

and the amount of mage errors or the telescope a ray- trac ng pro­

gram as developed which permits to folIo the rad ation incident 
from an arb trary d rect on through he elesco e n the manner of 
geome r cal opt cs unt 1 t sether absorbed by one of the d a­

phragms in the telescope or n he de ector plane . The la ter s 
not necessar ly i entical w th the focal pane . We have computed 
the graz ng angle on reach ng the parabolo d and the hyperbolo d 

and eighted the res ec ve poin s of ncidence w th the reflec -
iv ies . The program als~ computes thr influence of the d a ­
phragms on the geometr cal collector surface . Three diaphragms /11 
were requ red to remove radiat on that had not been reflec ed or 
had been reflected only once (fig . 3) . The d aphragms were de -
s gned n such a manner that the geometr cal collector area s 
not mpa red out to 20 arcsec off axis . The fOllowing Table sum­

mar zes the data for the three d aphragms : 
Rad us rladius tolerance 

- 380 107 . 8 0. 5 
3 630 162 . 6 0. 5 

The nfluence of the various d aphragms on the collector surface /12 
is shown in F g . 4 for ob ects off ax s : While the collector 
area without the d aphragms decreases with increas ng off- ax s 

angle so slowly that at 1.50 st 11 half of the area is ava lable , 

the comb nat on of the three d aphragms limits the~ field of view 
for all practical purposes to about 30 arcmin. 

1-- _ _ 

F gure 

8 
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F gure 4 . Dependence of the geometrical collectOJ' area on 
the off- ax s angle collector area on the off- axis angle for 
various comb nat ons of d aphragms . 

2 . 4 . Des gn- related mage errors 

One of the aims of the development of the 32 cm telescope 

is the d scovery and measurement of astrophysical halos that is 
the intens ty dis:ribution of X- rays scattered by nterstellar 
dust [40]. In order to measure such dust - scattering halos the 
follow ng requirements must be met y the telescope : First the 
exper mental scatter ng halo produced by reflect on at the tele­
scope m rrors must ' have an energy flux density below that of the 
astrophys cal halo . In the case of nterstellar dust at 1 keV 
an integral scattering contr bution of about 30- 50% s expected 
(Cyg X- l Crab) depending on the grain size and dens ty of the 

dust . This then places severe requirements on the pol sh ng 113 

technology . Second in order to be able to measure the behavior 

of the astrophysical halo as a function of the scattering angle 

the half width of the po nt image function of the telescope must 
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be small w th espec 0 he half w th of the astro hys cal 

scatter ng halo . The current d scuss on favors average grain 

s zes of the in ers ellar dust bet een 0 . 15 and 0 . 051 m. This 
type of dust results in a sca ter ng halo w dth of 4 to 10 arcmin . 

As a consequence , astrophysical halos can only e measured ith 
the ai of elescopes hose resolu on s clearly better han 4 
arcm n . F0r the 32 cm telescope an on- axis point rna e resolu­
tion of 20 arcsec s aimed at . 

We shall compute in this sect on the theoret cal resolution 

of the 32 cm telescope as a function of the off- axis angle ' this 
yields the requ rements for the pol sh ng accuracy . We snaIl also 
investigate possibilities to test the on- axis resolution optically . 

Aside from the violation of the sine condit on and the re ­
sulting coma the olter telescope has all known mage errors 
of the th ' rd order [50 2lJ ; the construction of strictly aplan­

ar X- ray telescopes s discussed n [52J . An mprovement of the 
resolut on w~s obta ned by W, Werner [49] by means of represen­
ting the mirror surface by a polynomial . The 32 cm telescope is 

s r ctly a Wolter Type I telescope . L. P . Van Spreybroeck and 
R, C. Chace have published [39J approximate formulas for the re ­
solution (rms blur c rcle) of such a paraboloid - hyperboloid 
system : 

(2)/14 

Here Up s the rms radius of the point image function in the 

case of opt~mum curvature of the detector surface ~ is the off­

axis angle , f the focal length of the telescope that is the dis­

tance of the focal plane fr0m the oin ng surface . x and Lp 

respectivel~ are as before the grazing angle and the length of 

the para oloid . This empirical formula descr bes the off- axis 

behav or of the po nt resolution for a curved detector surface . 
However there is currently no spatially resolving X- ray detec -

10 



2 mm 

o 5 10 15 
off~ax sang e n arcm n 

Figure 5 . Resolution of the 32 cm telescope as a function of 
the off- axis angle . Dashed curve : approx mation accord ng to 
Van Sprey roeck . 

tor with a curved sensitive surface available . Thus we have 
computed w th the aid of the computer program for ray tracing 

mentioned in Section 2 . 3 the ehav or of the off- ax s resolu-
t on for a plane image surface (F gure 5) . The parameters " 0 mm" 
to 2 mm" show the distance of the detector plane from the focal /15 

pOint. While the mage plane goes through the focus the rms 

blur circle depends about quadratically on t..: () ~ A£. + .n 2 
w th l~ = 8 . S0 10- 3Rnd B = 1. 4 10- 3 arcmin- 1 The approximation 

formula by Van Sprevhroeck yields for A and B the values : A' = 
. -3 4 1 2.74 10 , B' = 6 .6 9 10- arcmin- The resolution may be im-

prove by a curvature of the detector surface ( x/mm = 0.04 3 ( / rnnl ) 2) 
by ypically a factor of 2 . This optimum resolution for the 32 

cm telescope s shown in Fig . 5 by the dashed curve . If the 
detector plane s moved toward the telescope the resolution for 

large off- axis angles s mproved however at the expense of 

11 



he resolution for he on- ax s s tua ion . The ependence of the 

n ens ty distr but on of he point picture on he off- ax s an­

gle and the posit on of he mage plane s shown n Fig . 6 . In 

he case of parax al nc dence and for displacing the detector 
lane , the ~-shaped point image funct on changes nto an ever 

w der r ng sha e . By con rast , the distr but on is even without 

d splacement smeare out for values such as t = 10 arcsec . If 
the image lane is moved toward the elescope the d ffractio 
attern becomes narrower . The optimum of the resolut on s ob­

tained for S values between 0 . 5 and 1 . 0 mm . If the d splace­
ment s further ncreased the in ensity n he center of the 
d ffract on pat ern decreases w th the result hat he point mage 
again is transformed into a ring pattern . As we see from F g. 7 , /17 
ecreasing the half w dth doe s not improve the po nt mage ; n­

stead , d s lacing the image plane results in a d sappearance of 
the w de base of he ntens ty d s r but on . 

As de from he theoret cal errors of importance for the off­

ax s behavior of the telescope the manufac ur ng faults resul in 

a decrease of the resolution even in the case of ncidence paral-
lel to the ax s . In order to avoid the sign ficant effort requ r - /18 

ed to test the image errors of the telescope and i s nd v dual 
m rrors n the x- ray range, we try to f nd out to what extent 
optical tes s allow the determ nation of mage errors and to 

hat l ' miting resolution ' in this manner e do not expect results 
with respect to microroughness of the m rrors from optical scat ­
tering measurements s nce the scattering as shown in Section 3, 
depends on )~ 2 so that in the opt cal range only a scattering 
contrib t on of about 0 . 01% is to e expected . 

The half w dth of the point mage function s ndependent of 

the wavelength so long as the diffraction by the r ng aperture of 
the telescope can be neglected . Thus we calculate in the fOl l ow­

ing the diffraction by the paraboloid mirror , start n from Helm­

holtz ' s integral : 

12 
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and the well-known Kirchoff boundary conditions for r eflect on : 

E = 

Refe~ring to F gure 11 we have 
~ 

~~ 

E (1 '-R) (k ~). e -~r 
11 . 

-" 

(4) 

}-
1 for the wave vector of 

he incident wave k2 for tha 0 

the vector from the po nt of reflect 
of the electr 

the reflecte 

on to the 

wave . 

of point 
of the 

is 

observa-
ion El the amplitude 

R is F ' ~snei ' s reflect 

of he oint of reflec 

14 

on coeffic ent 
on . Introduc 

c field c den wave . 

r the coordinate ve c or 

ng e boun ary conditions 



F gure 8 . Summary of d ffract on at the parabolo d . 

[4J nto .Eq . (3) . y elds for R = l ' 

U(p ) 
.5.: rr I· r~( s · r ) 

( i. /.: 1- ) ( 5 i':.) d. A 
(5 ) - -rrJJ -S . -

o nt 

Thus 

If we lace the or g n of the reference frame nto the focal /19 

then the equat on of the parabolo dreads y2 +z 2: 2 x + 2 

Neglect ng lis aga nst k 

U ( - ~ k [1 PJ! i~ ( 5 -T ) c1 I 
2.. 11" L 'f C.U ( 

-r 

F 2 (-' ~ 2 2 2 h c:/ rom s - :>+ 0) _ _ ,~ we ave s ~ r-y O r w th 0 = ( ,h,o) 

From all th s we obta n from Eq. (6) 
x .. 3 

U ( p) = i k 1 f.!! 0 ( ~ ) dx = 
SI. ~ 

i kE f () J ( ll ) c1(> 1 -)- 0 -r ) 
X. T S\ 

This integral has been numer cally evaluated for p = 3. 927 
and 'A= 0 . 5 P (F g . 9) . The ffract on pattern s s milar to 

that of a r ng d aphragm [45J the f rst m n mum at 3 e corres -

, ponds to d ffract oh at a circular a er ure w th a radius of 16 cm . 
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u erposed on th 
s another funct 
he nfl ence of 

s funct on h 
on w h a muc 
the r ng w dth 

10 
of 

s h gh osc llatio 
e~ frequency wh ch 
the aperture If 

frequency 
represents 
he d s ance 

on pattern 
such hat the ampl tude s decreased on he average (envelope) 

from the axis s chosen as the w th 01 the diffrac 

o e- l then Fig . 9 shows a w th of 10 ) m. At a ocal width of 
he parabol0 d of 2862 . 1 mm this corresponds 0 a d ffract on /20 

w dth of 0 . 7 arcsec . The f rs m nimum of the envelope is at 130 
/u. m or 9 arc sec . 

• 

.. 
w 
o -
::) 
1-

~ . 
> .. 

« 
-.l 0 

W a: 
• 

.. 

F gure 9 . 
telescope . 

. , , , , , , , I . , . , . , , • I , 

f\ n f\ II 
\ 

I~~'I~ ,; ,: IIII 
H~ : ' I' ,::I, ! 

r " 'i\ : ~ i ' 
iii · I .I, Ot"t, 

Ii! ~ , I I • 
I 
: II Ii I " 

I 

:" f , . I • , 

/! :' , 

Ii· " 
II'" . II!::' ;,' li!l 'I'i;' , 

't • . OJ 1 l I ~ D splacement from the 0 t cal axis n ~Q Diffraction pattern of the para 010 d of the 32 A= 0 .,5 P , 

, 

cm 

These cRlculat ons show that the requ red resolution of 20 
arcsec can be eas l~ tested y opt cal means with the 32 cm tele­
,scope . 
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up cal measuremen s th the pro 0 ype 0 he 32 cm eles-

copa resul e n a FWH 0 5 arcsec h ch clea ly sa s es the /21 

esolu ion of 20 arcsec . 

In addit on 0 the mage errors of he eo etrical- opt cs 

type hich are d e 0 the t ype of telescope an manufacturing n­
accu ac es , the scatter ng u on r eflect on deter ora es he poin 

mage unction . Thus n the f ol10 ng we inves gate the reflec ­

tion of x- rays on deally l ane as well as r ough oundary layers 
oth theoret cally and experimentally . 

3 . REFLECTION OF X- RAYS : RFFL~CTIVITY A D ATTERING 

3 . 1 . Survey 

If a plane electromagnet c ave is nc den on a plane boun -
ary layer be ween a material body part of the lave enters a vac ­

uum and a mater al body , part of the energy en ers n the form of 

a plane wave the second medium hile another portion is reflected 
in the form of a plane wave . The complex refractive index n des - /22 

cribes he opt cal behavior he mate r al . The reflectiv ty is 

obtained from Fresnel ' s formulas . Sect on 3 . 2 treats the reflec ­
tion problem at an ideal boundary surface for "normal " material 

as ell as for a h ghly magnetized plasma of h gh density (neutron 
star surface) . By contrast , if the boundary layer is not an deal 
plane , but rough in some manner then both the wave front of the 
reflected a d of the refracted wave are perturbed and the two 

aves are not any longer plane . Energy s scattered nto angles out ­
side of the specular direction and even outside of the plane of 
ineidence . So long as the s tuation can be descr bed y means of 
geometrical 0 tics the scatter n s innependent of he size of 

the roughness - caus ng agent (Section 3. 3) . Tf the prob ·em is 
reated in the frame ork of Fresnel optics t hen the s cattering /23 

behavi0r (in the far field) is constan , if the rat 0 of t e wave ­

length and the roughness s constant (Section 3. 4) . 
17 
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Figu e 10 . Schematics of reflection at a rough surface , 

Figure 11 . The choice of a reference frame and the def n t on 
of angles . 

X 1 -The wave vector and the electr c field vector E, des -
cri e the nc dent wave . A Cartes an coord nate system s def ned 
in such a manner that the xz - plane coincides w th he plane of n­

cidence . The xy- plane is the major plane of the m rror , that s 

if hex y) descr es the surface then 

If h( x , y )dxdy - ( h> = 0 
F 

where ~ is t he angle of nc dence , J t he angle etween the plane 

18 



0 inc ence an the plane n h ch the ou going wave is s tuated . 

cJ.+'f s then he an le n his plane for th s outgoing ave . Ho -

ever , for the me be n e assume '.p - t = 0 , ha s e cons er 

reflec on a an eal surface , a d we neglec he f rac on a 

the edges 0 he m rror . 

3 . 2 . Reflection Theory 

a) Re lect on y rna te under no mal cond tons 

Outs de 0 a sor tion edges the refrac ve ndex n he en-
ergy range of so t X ray s determined y he plasma frequency 

with 

For matter under normal cond tons we have for the electron den-
2~ 3 16 sity n ~ 10 l ern resulting n a plasma frequency (.) - 5" 10 I s c c P 

an the correspond ng quantum energy 1'1 (.)p ';'. 30 V The energy 
of the X- rays s large compared to that energy . Th s means that/24 

Total reflection occurs for 
~ ( P 

A uantitative study ust 

take i nto account he shell structure of atoms : The simplest ap­
prox ' mation s prov ded by the Kramers - Kallman- Mark theory of an­

omal d spersion which results for S in 

o ::::: 2. 7 K 1 0 1 0 ( ~ ) i\ 2 [z -I g ( ?- ) 2 log I ); - I \, 11 
n . ~q, 'A-

Here M is t he molecular weight , Z the nuclear charge ~ and gq 
wavelength and osc l lator s rength of the energy level q res ec ­

tively . All quantit ' es are g ven n c s uni s [lOJ . The followin 
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t 0 ab~es con a n e 0 cal cons ants ; t e 

com ar son measu emen s th go an 

w 11 e used or 
cke1 (B . Aschenbac 

ersonal commun cation) 

Gold -

1 

1 

4 

A 
5. 4 

B. 3 

9. 9 

3.3 

7.6 

4.8 

d 

1. 4 

9 .0 

1.2 

2 4 

3.7 

2. 1 

~ 
10-4 1.1 10- 4 

1 - 2. 2 - 4 10 

10-3 3.4 10-4 

10 - 3 1.1 10 - 3 

10 -3 2. -1 10 - 3 

-
10 -2 

9.9 10 
-3 

Ni c .. e l 

eX. p c 

0. 96 o 3.6 10 -4 . 6 10 5 1. 5 

2 . 3 7.8 - ~ -10 3.4 10 2 . 26 o 

2 . 80 o 

3 . 96 
. - 4 - 3 

9 ~3 10 1. 5 10 2.47 o 

4.9 2 o 1. 8 10 -3 5 . 9 10 3 
3. 3 

11 . 6 1 o 1.5 10 -2 1.5 10 
- 2 

9.8 3 

If the complex refractive ndex s known then the reflect vity 

' s obta ned from Fresnel ' s formulas to read 

= I"l ·SI r'\(I{ - s""-~ 
(t . I -+ S I ' \ ~ 

where sin> = ~ 'Vn2 - co ?O( 

5'.1 . - n · 51'n ~ 
s,n.u....+n. · S' I\. ) 

o 

o 

o 

o 

o 

Tf the rad ation is not polarized so that I E"III = \ E ~L\' 
we have for he reflectivity 

then/25 

and w t h 

I 1 R :::: - ,,-Xo , . 

0<,. ?G S in _I , ' . (' (" fi. 
'" • -.:t. S n) I 0« 1 I 1' :: 0 

for 

;fo 

The !reflectivity is constant up to cI.... :: ole. (un ty) ' then it 

(8) 

suddenly ~ecreases (half widt h : : 3:?",_1 ).o{.(..) ) with inc!reasing graz-

ing angle . !en the case of ~ of 0 the intens y decreases even 
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l> 40 

Q) 

Q) ZO 

o ~~~rr~~~~~~~~~rr~~1 

t. 1. .8 

17.6 
133 

9.9A 

8 3A 

0. 0 O.S 1. 0 J. S 2. 0 2.5 '.0 

graz ng ang e n egrees 

Figure 12 . Dependence of the ref1ec iv ty on the grazing angle 
and he wavelength n he case of gold . 

before the cr t cal angle ~i s reached ' nevertheless the graz­

ng angle s st 11 a measure for the width of the reflect v ty 

curve . F g . 12 sho s for the op ical cons ants of the above table 

the correspond ng reflect vity curves . For ~ ~ we have the /26 
r 

reflect v y 

I -

Since ~ s of he order i n the case of soft ~-rays we have the 

follow ng rule of humb ; The reflect v ty for 0(. - c(c amounts to 

about 20% . Tn Sect on 4. 9 e shall compare these theoret cal 

curves th measured values , R ght now , we would 1 ke to take a 

l ittle etour into astrophys cs. 

b . Reflect on by the surface of a neutron star 

While in the case of solids on earth the electron density s 
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0 he or e 1024 
e ... 3 t e cu n mo e1s [33 17J of the sur-

ace of ne on s ar lead to 'V lues 0 or er 1028 - 3 em . The plas-
rna f eque cy e equency of ree electron osc llat ons s 
the efore h gher factor of a ou 100 f com a ed th mater-
ial un er ormal con tons . Ex ernal otal re lec on Should 
occ I' for 1 ke ra a ion u 1 nearly per en eular inc ence 
an t should occur a graz ng angles 0 1 to 2° for ra 
up o 100 ke The e s a secon 1fference n the reflect on 
behav or of the surface 0 a neu ron s ar y compar son w h nor­
mal cond t 0 S : eu ron stars have h gh magnet c f . elds (order 
1012 auss) . This makes the elec ron plasma an otrop c so that 

e electrons are free to move in the d rect on of the magne ic 
f eld hile heir mot on perpend cular to the f eld is quan zed . 
Thus the me um is b refringen and the refract ve ndex depends 
on d rect on . 

n= 1 1 

F gure 13 . Reflect on at the surface of a neut~on star 

The elec ron ensity at the surface of a neutron star [17J is 

n 

Tf the surface consists 
y elds 1'1 Wr = 1. <15 B

1
/) . ( ~eV ) 

. el3.L 12 
wah = me.- r1 :: 11 . 6 (I' eV ) 
22 t 12 

/27 

of iron then the plasma frequency 
wh Ie the cyclotron frequency s 

The nd ng energies of the elec-

, . 



trons are negl g ble s nce mo t ave ener es elow 2 keY ( . H 1-

le andt pr vate comm . ) . 

e res r ct n he follo ing our cons derat ons 0 the ne gh­
borhoo of he magne c poles of the neutron star . Th s leads to /28 

the s uat on ep cted n Fig . 13 . The dependence of the electr -
of 1 ... 

cal f eld strengths ~1 and E3 "..) on ' l' 1 and the graz ng 
angle 4 s ob a ned trom he cont nu ty cond tons for the elec­

tr c field at ~he surface an he refract ve nd ces nl and n2 
h ch n turn depend on he refract on angles r l and r 2 . We ne ­

glect the effects of b refr gency that appear at h gh f eld 
strengths n the vacuum [31] s nce the departure of n from un ty 

s only 10- 5. We place the xy- plane into the surface of the s ar . 
Then the dispers on relationsh p for the electron plasma reads 

s - nrnco s2rm 

1 
2 -n s1 rm cos r m m 

w th 

- 1D 2 -n mS n r cos 

- n 0 m 
2 , 2 

0 - n s ~n r m 

R = 1 -( ~pf w 
w- w -tic.) 

L = 1 - ( !:!.pf w 
w w-+ w~ 

p = 1 ( I.J )'" W 
- W W.,. tWo 

S = R L 
-y-

, - L 
D = 2"-

E~xl r m 

Ed 
= 0 • 

(10) 

(11) 

(See for nstance reference [41]) . Wo s a colI sion 

frequency or some general damping frequency . m = 1 and 2 respec­
tively descr e the ord nary and he extraord nary mode of propa­

gation . Th s dispersion relation y elds the ampl tude ratios : 

(12) 

- i. Dc" .... 
I 

.;., .:3 .... 
23 
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Since he e e m nant n Eq . (10) must van_sh we have 

ld n (n ) 2 C - 0 mi ' : 

1\ = s 2 n r m + 0 
2 r (13) 

D RL in 2 
S (1 2 = r + + 5 r m 

C - PRL 

Snell ' s l aw s val d for both modes of propagat on that s , 

nm = ~ her e nm depends expl ' citly on rm ' The de erm nation COl I't .,-", 

of t he electr cal field components requires , n addi ion , the boun-

dar y cond tons for B , , B and 11 at the surface 

(14) 
= 0 

= 0 

where z s the un t vector ' n the direction normal to the sur-0 

face . Introducing Eqs . C12) into (14) we find 

r E,~ 
~ , ~L - 1 0 n 

n « ("os f'. P, 
1 

2. 

S 1"'- 0 En 
-::: (15) c<. ~ I ~II 5, " Cl( ., I h. . .... 0 1 ELi. 

! 

I J- - p-L ' ~ IC t.<:> <>{ . ( O J 0<-
0 -1 E2. 11 

.... ~ 

We were a Ie to split E1 and 2 nto the transverse c omp-
-" 

onents parallel and perpendicular to the plane of ncidence ' 
3 

however has also a component in the long tudinal d rect on . In-

verting he matr x yi elds the dependence of the field strengths 
~n\ ..... 

and E3 on E" 01. and w .. The correspond ng reflect vit es 
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. ' 
I -d -

11 = ~: \l 
I t:' 1 

and 
,;. ,l­
i -

R .. - ...-;:; 
I ~J,. I 

a a funct on of the photon ener gy are shown in F gs . 14 to 16 
taking the follow ng values of wp: /.Jl: and c.,..:. ,, : n [,,) = 4 K V, ~ = 

58 K , hc:..b = 0.1 These values for wp and wn are /31 
o a ned for a magnetic f e1d of 5x1012 Gauss as is was measured 
s ec roseop cally n the case of Her X- l [44J. The value (..) for 

the damp g frequency an upper 1 est mated n reference [47J . 

10 

10 '0 

Figure 14 . Ref1ectiv ty as a function of the photon energy . 

eo 

.. . 

!o _ 

10 20 

Figure 15 . Reflee ivity as a function of photon energy . 
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\ 0 

Figure 16 . Reflectivity as a function of graz ng angle . 

Figs . 14 and 15 sho that for x- ray radiation tha is polar-

zed parallel to the plane of incidence the reflectivity s close 
to unity up to a cut - off energy wh ch depen s on the graz ng angle . 
In the case of polarization perpendicular to the plane of incidence 

we find total reflection above he cyclotron frequency . A ai . 
the width of the energy band for which we have total reflection 
depends on the grazing angle . If the grazing angle is small , the 
r eflect vity ncreases markedly between plasma and cyclotron fre ­

quency for this mode of polarization . 

If we plot the reflectivity vs . grazing angle with the pho­

ton energy as parameter (Fig . 16) , then we f nd the typ cal behav­
ior of total reflection : For ~ 0 the reflectivity tends to unity . 

If the graz ng angle is ncreased the reflectivity slowly decreas ­

es and then , at a cri t cal angle~c. = cos -1 ('/1 - ( ~ ) 2 ') rapidly goes 

to ze ro . This behavior in the case of polarization parallel to 
the plane of inc dence corresponds to total reflection in the 

case of normal material wi h little absorpt on ~ In the case /32 
that the polarization is perpendicular to the lane of inc dence , 
th i s analogy is not valid s nce here the graz ' ng angle for total 

reflect on at 60 keY is larger than for 10 keV due to he fact that 
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to al reflec on a t a ove he cyc~ot~on fre ~ency . 

The re ul o Sect on 3 2 have been u li he n ;reference 

24 . 

3. 3. Scattering Models 

ccor ng to the Rayle gh criterion a mirror may be cons d ­

ere deal f !:0!';::do <.<1 where Ii' represents the mean departure 
2. '-from the ideal pane : " _< ~ )- . If 6' = 50 hat :: ,o and 

A == 1 0 the ra 0 on the Ihs s ust e ual to 1 . The Rayle gh 

cr i terion s not really sat sfied n the X- ray range , except for 

ve r y small grazing a ngle (less or a ou 1 arcmin ) . Thus , we 

ha ll d cuss n t he follow ng the t heory of sca er ng under re ­

flect on . 

The f rst type of theory known as Lambert ' s Law which /33 
treats he angular 'str ut · on of scattered electromagnetic rad-

i at on assumes that he rad at on is so often scattered at the 

surface or n he nter or of the mirror that has " forgotten " 

where it came from . The outgo ng direction is then random and 

the energy flux prOduced by a surface elemen s proport onal to 

the cos ne of the outgoing angle an ndepen ent of t he angle of 

nc dence : roC c o s C::l2 If ds s a surface element that is nor-

mal 0 he outgoing direction then the energy f ux per ds s 

constant . Ther e are very few scatterin materials which satisfy 

t hi law even 0 some approximation and for grazing nc ence 

am ert ' s La s never fulfilled. 

F gure 17a . Scat ering accord ng to ambert . 
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The f rs heory that allowed 0 ex lain he depar ures found 
in exper men from Lam e ' s La . wh le st 11 ak n only s ngle 

sca terings 0 accoun is due to Bouguer [7 8J . The surface is 

describe as an assembly of small bevels each of hich reflects 
as an deal mirror . The d rect ons of he be~els are randomly 
oriented (for instance accord ng 0 a normal d str bution) w h 

t h result that the scattered radiation , too shows a random d s 
tr ut on . D ffract on and , the e ges of the evels are neglected. 
A s ' milar model has been described y T. S Tro bridge and K. P . /34 
Rei z [43J . He ever n this case no ~nly the be - el d rections 
have a normal d ' s r but on , but also their rad ' i of curvature , 
Since a curved surface can be approximate by plane bevels , the 
results of this theory can be com are with those of a plane- bevel 
theory . 

Figure 17 . Bevel model , 

These theo~ies on the basis of geometrical optics have the 

advantage of be ng simple ; even shadowing effects and mult ple 
scat er n can e include without much difficulty , Agreemen 
w th e periment how ver , can only be expected if he surface can 
actually' be descri ed y bevels that are large by compar son with 
the ratio of wavelength and gazing angle ~ and if the relation 
'i'T'r'6'" si c{ >'? 1 s 'valid . c:. . 'X 

!i:nteresting s the attempt b:y V. Twersky [46J who treats the 
reflect ' on by rough surface on the basis of diffract on optics . 

The model escribes the mirror surface as an ideal surface wh ch 
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is sub ect to defects by ind vi ual scat ering cen evs (for ns ance , 

of hem spher c form) , The scatter ng by such a surface can be 

trea ed in the frame ork of d ffraction optics. The remarkable 

featu e of th s theory, ho ever , is he possibility 0 treat the 

nfluence of polar zat ' on : Xf the radii of he sca ter ng cen ers , 
4 0. 2 

a , are small then he ra a on is proport onal to ( CI. ) an (r-) 

for horizontal and vert cal polar zat on respect vel, . If on 

he 0 her han , the surfac.? shows large unevenness the correspond-

i ng depen e cies read (~) and 0 ( ~ ) However , s nce t s 

assumed that he distance of the sca ter ng centers from each other 

is large by comparison w th the r rad i , this ty e of surface is 

no very s milar to the roughness of pol hed surfaces . A better 

approach n th s case is the eseription by means of a stat stical 

mo del w ch w 11 be developed n the folloW ng . 

Figure 17c . Scattering model accord ng to TwerSky . 

3 . 4 . Scattering heory for statistically rough surfaces 

H. Dav s [12J published n 1953 a treatment of rough surfaces 

hich con a ns t he basic features of a 

istically rough surfaces . The surface 

two statistical functions namely the 

and the autocorrelation funct on c (' .) 

face in the reference frame of Sec ion 

autocorrelation function 

... (1; ) = 
<11( 1- . , ';1)' h( )( l. ,'j L » 

. <"h.\.( ~, , )',») 
ith 

scattering theory for stat ­

is de sc!' bed by means of /36 

he ght distri ut on w(z) 

Let hex y) be the sur-

3 . 1 . We then have for the 

(16) 
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here here and n what follows the s mbol( ) represen s ave rag ng 
over the mirror su face . The func ion (z) 's the robab 1 y that 
here is a he gh z on he surface. The ransi on from he geo­

me r aI- opt cs case ( () >'~ ~ ) to the case 0 iffrac ion opt cs ( u-<,<. ;:. 
is no discussed in th s paper ~ and the scatter ng p 0 ab 1 ty s 
only ated n the a ove 0 ex reme cases . P . Beckmann [lJ des -
cr es he co nuous ransi on e een he two cases . e folIo 
in our rea ment his bas c assump ions and terminology . 

If an electromagnetic ave h ts a boundary layer h(x y) then 
he ampl tude of the electr cal f el strength at the surface equals 
he sum of the ampl tudes 0 ncoming an outgoing wave ~ that s 

(E)s - (1 +RF ) E" where RF s Fresnel ' s reflect on coeff cent ; the 
latter' allows to introduce a phase jump where necessary . The change 
o amplitude in the direct on of the normal direction to the sur-

(dE ) ~ ~ face reads () n s = E1 (1 -RF ) (k,n) Th s formula s Kirchhoff ' s ap-
rox mat on f~r the boundary cond tons in the case of reflection . 

If we make u&e of these boundary cond tions we impl citly assume 
hat the surface is sufficiently smooth : The rad us of cur.vature 

of uneven pOints s large w th respect to the wavelength , shadow-
ng effects and multiple scattering events are neglected . On the 

basis of th s set of oundary cond tions we solve Helmholtz ' s in- /37 
tegral [3J with 

(see Figure 17d) . By replacement we have : 

• : kr. 1f 
E 2 = I~I~-~y-·r;-o - r 

....... 
( 

j -,, ) ... ivr dS HFV-P ne 

Figure 17 . Statist cal model 
30 
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If e neglect the correla on etween RF and h(x y) and he 
e vat ves of th s f~nc on w th respect to x and y , hen we can 

r e for the expectation value of IE \ 2 
2 

<I E2 (R ( h '), oL , ~ )\2.> ~ <\I~F I 2>< 1 E2 (I~ - 1 , 0{ , f ) It> 

Here , (I RF I 2> ~R ( Oq, where R is the reflec iv ty (see Sec ion 3 . 21) . 

Thus , withou restr ction to generality , we can set R = 1 

and find from Eq . (17) 

where 

where 

and 

)(v 

E 2 = ..:;<-.;1<-:2.<;.::;..1'_:._"-;' _ _ [j t 0. 0 ~ + c ~ - b ) e,";} r d.)( d 'j 

a = 2 co 5 ( ol... + 'f ) co s '{ 

b = 2sin( c<..+ 'f ) 

c = 2cos ( 0( + 'f ) s in 'If 

Partial integration results in 

For small gr azing angles we haves ' - 0' ... , in « + l ) - -{- l , 

.1-

'7"+ 2 'fC;:-

/38 

(20) 

In addition the ntegral [19J disappears already for very 
small angles (f , and we can 'vJr1 te w' th good accuracy 

\f 
= 1 + ~ (21) 
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Comparing the resu1 of Eq . (19) w th that obta ned from [16J , 

that s E E2 ( = 0), we have , 20 

with A I::: AXY . (22) 

Tn the case of a statist cally rough surface we are n eres -

ed n the average of the square of the absolute value of ~: 
1 t ' 

<I~r ) = A < xp( i.\I.. ( hex, . • ) - h( 't LI~ )» 
)()('( I (23) 

J J J J exp (('I/' ( ,- )(z, ) • (' v" (~' Yd d)(,d )(Ldy'c1y 
,x~x.Y -'( I 

hile the square or tne absolute value of the average of ! reads : 
'2. f lo X v 

I( ~ > I = I~ .I< exp ( ~v. h ( XI '1 »)' _IJ ClC PUV. ~ .. ' v:, 'i) cl ).' d ~ 1'-
F • 1. (24) 

c A S'I1.c.(~Y)sj n ( v.,Y)·I< ex r(iVe "" » I . 

Since 
(25) 

we f i nd that Eq . (24) represents the specularly reflected contr -

ution to Eq . (23) . Tn order to further develop the theory from 
Eqs . (23) and (24) , we need assumpt ons as to the form of the 

surface . F rst we assume that h(x , y) fOllows a normal d stri u­

ton : 

Th s assumption is reasonable as is shown by many direct measure­

ments of the roughness of s urfaces ; c . f . for instance reference 

[3J . An add tional argument s the agreement of the results obta n- /39 
ed on the bas s of the assumption ith the measurements d scussed 

in Sect on 4 . 3 . The simple assumption of normal d str but on al­

lows already to derive an impor ant result from Eq . (24) : The 

expectat on value n Eq . (24) reads in the case of a normal distri ­

but on : 

< ex p ( ; " r. » ";. 6' \ 1'( J ex r ( i II 
.no 
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2 ~ 
e e g :: () V S nce F u '! n he specular d rect;ton z 

e find that n the case of a rough surface e contr u on Isp 

ch is reflected specularly is decrease y a factor 

e - (2 ~S ' ct , (;)1.= e -go by compar son th an eal rror . Since 

we s arted h unity reflect v ty , the scat ering contr t on 
s herefore I~ = 1 - I sp . The n egral sca ter1ng con r but on 
e ends only on the height d str ut on and reads for a normal 

d s r bution 1 - -~ This dependence of he in egral scatter-
ng contr but on on avelength , graz ng angle and the average 

roughness allo s to determine the roughness from scattering mea­
surements w thou knowledge of the la eral d str but on tha s 
of he autocorrelation function , The indirect determ nation of 
the roughness from sca ter ng measurements has the advantage of 

the strong ~- dependence of the scatter ng ; for small go the de ­
pendence is quadratic . The largest sca ter n ncrease s obta n­
ed as a function of 0' , if 0( and A are chosen such that go d 1 • 

If we assume an exponential dis ribution of he ghts 
1 I z. I 

W (z) t:: l:5- efF then we have for he specularly reflected contri-
ution I =(~ and for the scattering contr ution I t et( ~ + ;: ) 

sp " '::1.1 5 1 -+ go 
In general e find that the (symmetr c) height d stribution is 

proportional to the Fourier transform of the square root of the 

integral sea ttering com onent :\ (z ) '" ~-( VI
Sh 

( v~ )', Due to the depen­
dence of the ntegral scatter ng component on graz ng angle and /40 
the ratio of wavelength and roughness we are able to de ermine the 
height distribution . 

We have already men ioned that the statistics of the surface 

are not completely determine by the hei ht d stribution ' the re ­
qui ed add tonal nformation is a measure for the lateral dis ­
tances of mounta ns and valleys . The proba lity to find at a point 

( Xl '11) a he ght zl and a pOint (x2 '12) a heigh z2 does not e ­
qual he produc of the two ndiv dual pro a lities w ( z 1 ) 'IJ (z 2) , 
instead t e values are correlated : 
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>tp ( - (27) 

if w( z) s a no mal d s r ut on . 

One can eas ly ver fy that 

.c .... 

<. h (x , I' Y 1 ) h (x ? ' y? ) > := J [, z , z 2 "l( z 1 ' z 2 ) d z 1 d z 2 

C - < h ... hl.'> T f that is - <:. h;> - . hus C s the au ocorrelat on unction as 
def ne n Eq . (16) for sotrop cally rough surfaces . If we corn­

u e the expectation value needed in Eq . (23) , viz . 

( exp (iv z (h (x"y 1) - h (x 2 ' Y2 ) » = 

and introduce Eq . (28) nto (23) then 

(-g ( 1 - C ) ) 
(28) 

<ISll>_I <'P'It. -:. O(~) = t:Fljd" ('t' V v,,,- +v.,l ') [e <){1-C.)_ e 9 ]'Lcl"" (29) 
" 

where >:, -x2 - 't'cos tr and Y 1-Y 2 - 't'sin 'f . At this po n we have 

reduced the quadruple ntegral of Eq . (23) to a single n egral . 
Eq . (29) already shows that the scatter ng d str bution n the 
~-d rect on is redu~ed bv the factor s n ~ with respect to the ~ -

direct on that is v~ + v~ ~ )Y\lcJ.."+ ){1.. If 'f = 0 and ~ = ?fr) /41 
hen we f nd for D( ~ ) the same value at g = 0 and at =;: 

This statement w 11 be verified n a quant tat ve form in Sect on 
4 . 6. All 0 her measurements requ re for the compar son an inte ­
gra ion of 0 ( ~ ) over 't" : 

The f rst curved bracket under the integral reduces to 

with 

from where 
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JDcn 
f DC ~ ) J.~ 

If n part cula 
af er the f rst term 

so tha 

hen he d str 

he ser es can e term na ed 

on of he ncohe ent1y 

reflecte ra a on a 
the Four er trans orm of 

he sl age unct on s proport ona1 to 

he autocorrelation func on (exce t for 

the weak angular ependence of g on ) : 

1. . 00 

'1 F -9 J I-() = g Ak e cos ('t'"c.!tt )C( ?: ) d1:-
o 

n the case of a Gauss an autocorrelation funct on C ( 1:') = e - f.}-t 
the scatter ng halo is proportional to 

w th o .2.\fm 
- ,.,'1. ::: Tk 0< 

Opt cal measurements [13J suggest an exponential autocorrela­
I I 

ion function ~ C ('t') = e-"T 

proportional to 

00 ~I'Y\ " 

I oC 2-;.-1 1 - - +-(-=--)1-
str 1"1'1 '" eM. 

This results in a scattering halo 

w th 

We shall compare in Section 4. 4 these results wi h measure ­

ments . 

3 . 5 . on by Thomson Scatter~ /42 

Aside from surface scatter ngs processes n deeper 1ayer5 of 

the mirror mater a1 contribute to the total scattering intens ty . 

In 0 der to 0 ta n estimates G;f th ' s contr bution 'Y 'volume scat ­

ter ng we;f rst need the penetration depth of an e1ec roma net c 
wa.ve . 
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U 0 re lec on a bo nary layer be een the vacuum an 

a rna e al 

a e h 

fo mula 

urn an elec ro agne cave sp eads t rough he 

he am 1 u e decreasing with epth z accor ng 0 he 

(37) 
c.f ., for ' nstance reference (6] . The same s true n the case of 

e ernal 0 al reflec on e cept that here ( for ~ = 0 ) no ener-

en ers the med urn s , t e wave says a the surface , Eq . 

(37) y elds for perpe dicular incidence : A = A e - i knz The 
o 

pene ra on epth T here the energy has decreased to lie is found 

fro 2 (i nT) - 1 , 0 hat T = _1 __ 1 here 't" s the ell-
'Lk{J - F 

kno absorp on coeff c en . !n the case of graz ng nCidence , 

ho ever , the pene ration depth s no only determ ned by absorp­

t;ion . Tn pa(l" cular in the case that 01- = 0 we have 

1 
= T 

(38) 
The enetrat on e th does no vanish for ~ 0' the behavior of 

th s depth as a function of the graz ng angle s shown in Fig . 18 . 

The penetrat;ion depth is nearly the same for different energies 

in he case of grazing inc denee . This is explained by the fact 

that d s propor onal 0 A? except for the influence of the a ­

tomic shell structure (see Sect on 3 . 2 . ) . If one neglects n Eq /44 

(38) the a sorpt on , he T is ndependent of A 

In order to obta n est mates of the volume scattering con­

tribution e assume a total (that s coherently and ncoherently 

scattered) cross section of typ cally 4 . 0 barn/atom ' this value is 

based on gold and 1 keV according to reference [55] . The corres-
-1 

pond ng scatter ng ~oeff c en is p = 0.2 4 em . If the penetra­
o 

t on depth is only 20 A, then the scattering contribut on w thout 

a sorption at the point of leav ng 

work of our current work th s level 

- 8 s about 5 x 10 . Tn he frame -

s much below measurability . 

Abnormal re flect ion known as Yoneda effect s not expected n 

36 



, "' I 
10 .1 

90 

graz ng angle n degrees 

• I.t 
.. . 4 ., 
. I'.' 
V 17. 

(A) I'CT OEl.T 

.m·04 0." [-!) 
o.nr ·e 

.t· -0 
O.I(;r-~2 

O.ISt- I 

/43 

Figure 18a . Penetration epth as a funct on of wavelength and 
graz. ng an~le . rror mater al : nickel • 
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Figure 100 . ~ene ration depth as a funct on of wavelength and 
graz ng angle . Mirror aterial : gold . 
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he angular ange below the 1 m t ng angle for total reflect on ' 

n a di ion it can be excluded on he bas s of measurements s nce 
no max mum of he s a e ing in ens y was 0 served ou s e the 

specular di ec ion . 

As a consequence , we feel ha scatter ng und r reflect on 
sell descr ed by s mple surface sca ering in he case of soft 

X- rays . 

3. 6. The Influence of Scatter ng on the Image Qual ty of the Tele-

scope /45 

There are t 0 points in which the scatter ng by plane mirrors 
as we have treated it so far differs from t he case of scattering 
in the actual telescope : for one the mirrors are curved , so that 
a tran~lation onto rota onal symmetry is required although local­
ly the scattering events ean be descri ed by the results of the 
theory in the framework of plane mirrors. Second there is double 
scatter ng . The distribution into specularly reflected and nto 
scat ered components in the case of double reflection is shown n 
Fig . 19 . Here , the q ' s are the scattered components as computed 

in Section 3. 4: q. = 1 - e -~; Ri are the reflectivitie s for the 
1 ' 

grazing angle ~l. The total specularly reflected contribution then 
read (normalized to the total of incoming energy) : 

I !p = (1 - q ) (1 - q "} ) 
I n (39) 

for the total scattered contr bution and we have 

f} r - = q + q - CJ C] (40) It' 1 2 1 2 

Tn the case of very weak catter ng at the surface CJi« 1 we 

find hat the integral scattering contri uuion n the case of 

double reflect on is about twice the amount of single reflect on . 

We now compute the angular distribution for the case of a /46 
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Figure 19 . Schematics of double reflection with scatter ng . 

Gauss an autocorrelat on function : If the d Tection of nc dence 
s n the xy~plane (hat s the x - ax s corresponds to he op cal 

ax s) , then the n ens ty distribut on reads according to the above 
discussion: 

'h [ _ ( ~ )7. _ (_ )1 1 > '0.. ' ~t 0 . LGlc:(' 1) 
where we .:ave taken into account the fact that the integral scat ­
tering contribution as well as the width of the halo , 0~ , depend 
on the grazing angle . If we set x, = f + s , x ~ = f - s, c£, 
= ~ - ~ f ~ =0(0+ 6 and if we compute I(y , z) in first approximation 
for sma.ll s (s« f ) and for S<.< 0<.0 then we obta n recall ng that 
r:J.. Q. - c o nst J", G. c c. • Lo!\,.o 0 

~ y 2 I(y, z ) = const . '): p (-( - ) -t 6 0 

here 

2 £> s "'- 2 s = 2 ( f ~o ) . ( 0(0 + T) + (e olo of ) T· 

(42) 

If n addit on e recall that qi s roportional to CL~ (see Sec ­
ion 3. 4 then we ca apply an e pansion and f nd ha he curved 

bracket is indepen ent 0 he oint of incidence : 
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I (y , z ) = cons t . )( exp (_ ( '1 ) 2 _ ( ) 2) :re:, f eo d.o • (43) 

He ce e see hat the d fferent graz ng angles and distances 

o the focal po nt at he points of reflect on do no chang~ the 
scat er ng in ensity tr bu ion y compar son with the case of 
single reflec ion . The only effect s a dou I ng of the scat er­
ing amplitude . If one also takes in 0 accoun the fact tha he 
ra iat on that had been scattere at he f rst mirror does no 
encounter dur ng the second (specular) reflection a plane m rror , 
then one f nds a small widen ng and flattening of he scattering 
d stribution /47 
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Figure 20 . Rotationally symme ric scattering distr ution : 

h 

In order to change to the rotationally 3ymmetr c situation we 

introduce in the focal plane the coord nates If and .:J : 
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'" 

~ = J"cos'f 
1}. q... 
f =vsl. n~ • The quant y de = 211' dJ- then 

r epresen s an nf nites mal r ng element . The Gauss an sca ter­
i g d str bution transforme~~ 0 rotat ona1 symmetry , reads n 
t hese coord nates : I. dQoC ( f exp(-x2 - (~ ) 2) iJ d i')dG The 
scatter ng width as se"C equal to 1 arcm1n without loss of gen·· 
eral ty ; s is the sine of he grazing angle . In egration r es 1 s 

n ~l 

Ie dec(. e··~ {1 -iL ) do(~ J 2 ( 1 - ~L) ) J.Q 

F gure 20 shows these funct ons for il~ = I~o .1 , IE[O , 10] 
The curves are normal zed in such a fashion that the integral over 
aG is constant . If a tends to zero he Gaussian form is re­
tained; up to sin = 0 .1 the depar tures from the Gauss an shape 
a r e small and .cestricted to the range () ~ 0 . 2 ', . S nce the 
grazing angles for the 32 cm telescope are in the neigh orhood 
of 1 .5 0 we expect behind the telescope a scattering distri ution 
in de similar to the one in d~ for the case of single scatter-
ng. F g . 20a shows the transformation to constant surface ele­

ments dF in t he focal plane . 

The image contrast can be obtained from these data in the 
fo llowing fashion . If 

1 (0 ) (46) 

is he point image function of the telescope , q = q1 + q2 the 
integral scattering contri ution B the half w dth of the po nt 
image funct on , an H t he ha l f width of the scattering d str -
but on , then he image contrast : 

f a a point source reads 

-1 
1 

2-'1 
K (S ~ - '\ -, II = (47) '\ + '4.'1 

1-'1 "IT 
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If on he 0 her hand , an extende source s he 0 ec hen 

he central port on of he po n a e unc 0 s more s rong1y 

w dened than the halo , an the resu1 ng con ras s re uce . Le 
u s , for example cons der a Gauss an source intens y prof 1e : 

Q (0) =; F i ( ~ r Tn this case we obtain a con ras 

K = (1-+ 1 ~'\ (48) 

This funct on is plotted n Figure 21 aga st the mage wid h/49 

.F . The scatter ng com onen was assumed as q = 0 . 1 B = 15 arcsec, 
and H = 10 arcm n . So long as the ex ent of the source s small 
with respect to the resolution of the elesco e the con rast fol ­
lows E . (47) . If the mage w d h equals the wid h of the scat­
tering halo v ded by / V3 , the contrast s reduced to 1- q . In 
the caSe of very extended sources the contrast does no go to zero ; 

nstead for F -.00 it tends to the 1 m ting value K - ..!.- 't 
1 ... '" 

Th value reads for the above values of B, Hand q about 0 . 822 . 
Thus , the image contrast can not only be improved by decreas ng 
the integral scattering contI' bu on but also y increas ng the 
resolution and y widen ng the scattering halo . In terms of po1-

sh ng this means that one should attempt to have very small and 

high:i.b equency rC2~$!i-s~ . -, ___ ...--..,--.,--,-.-.-<,.-.,----.---.---.--. 
I---,,-~- - - - - - - - - - - r: - .... 0 

0.98 

0.90 

o,9!,i -
09 

090 

0.88 

B 15p.RC SEC 

H = 10 RC MIN 

q = 10 % 

0.85 

F - 00- - - - - - - - - - - -:=-"=---~--I 

ru 1D 1n 1m 
Figure 21 . Image contrast as a func ion of source exten -
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4 . SCATT~RING MEASUREMENTS /50 

4 ,1 . Exper mental Setup 

The measurements of the scattering d str but on ere carried 
out th the aid of three differen exper mental setups h ch in 
heir bas c principles are qu te s milar (Fig. 22) : An X- ray tube 

produces a characteristic X- ray s ectrum , a col1 mator cons sting 

of two slits or circular iaphragms forms a ray of some arcm n /51 
(10- 8 sterad) which s reflected at the mirror tha is supposed 

to be tested . The intensity distribut on is measured in the Plane 
of the detector w th the aid of a propor onal coun er with slit 

or c rcular diaphragm in front , The follow ng table summar zes 
the dimensions of the apparatus : 

A (mm ) 

r 500 
--

II 8 70 

I II 1 300 

I 

B (mm ) 

2 370 

3000 

11580 

C (mm ) D(mm ) 

510 2100 

9 45 2990 

190 0 3224 

B ---.-/.0- C 
I 
I 

slit (p) .sl t .~ sl t t.3 (;l 

100 / 50 100/ 50 300/ 50 

100/600¢ 100/ 600¢ 100 / 600¢ 

300 300 

o 
30 o 

------<>-1 
1 

I 

I 
1 

I J 
@ . _ ._ . _ . _ . _.- ~~.'~_ I 

~9'T-'--: 
f 

sovr e 

Figure 22 . 

. _ .- . 
~ I 

\.. ~----~v~------~) 

Icol motor 

_ C'.+!. ~J- : 
ror_ . ~ m 

L. 
Setup of the scattering measuring equipment ector -

With all three setups it is poss ble to remove the mirror so 
that a compar son w th he in ens ty distribution of the direct ray 

isossible . All measurements were made at a pressure of less or 
- 4 or about 10 mbar , Apparatus I was made n Tub ngen , TT and III in 
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a ching an eur ed near unich es ect ve1y . 

4 . 2 . Survey of he Invest gated Samples and of the Measu ed 

Rouglmess 

F gure 23 p ovides a first or en ation of the nf1uence of 

the m c oroughness on the scattering behav or in the x- ray range : 

p10 ted are the scattering distribut ons for three more or less 

ell pol she sa p1e on top of each other , wi h the normal zat on /52 

one for equal total intensi y . The cloth- polished kan ge sarn -
o 

1e shows at a graz ng angle of 1 . 50 and a wave1eng h of 8 . 3 A 

a1rea y so much scattering that t is :i.rrpossib1e to separate the spec­

ular1y reflected portion from the scatter ng halo ' the half width/53 

i s clearly enlarge . Cloth polishing echn ques are used for mir­

rors where the focuss ng s demanded but not a h gh mage qual ty 

in the pr oper sense , tha is , n part cu1ar h gh contrast ; tha 

s , for i nstance t e case with ASTRO- 8 a rocket experiment done 

y the MPE tha was flown successfully in January 1977 . It con-

s RtS of 12 connected parabo10 ds each with 120 cm2 geometr cal 

collector ~ urface . The second example is the well pol shed kani ­

gen sample #23 . The specu1ar1y reflected port on s clearly sepa­

rated from the scattering halo . The integral scattering component 

amounts to about 30 Which according to Section 3 . 4 ind cates 
o 

a r oughness of about 15 A. The th rd measurement refers to one 

of he best sa p1es #27 . Here the roughness der ved from the 
o 

mea surementss only about 4 A. I a qua1ita ive fas ion the 

difference between samples 23 and 27 could be ver f ed y means 

of the m cro- test ng techniques w th the a d of a Perthometer 

(see Section 4 . 10) . 

The ta le e10w shows a summary of the i nvestiga ed sam 1es . 

The samples €re polished by he Zeis Company in 0 er? or hen , except 

for samples 11 to 15 which are arts of he Baez te1esc o e of the 

Har var College Observatory)SAO Cambr dge , Mass . and hich were 

measured after t he f1 ght [18J . Column 1 g YeS a br ef de script on 
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0 he sam le columns 2 and 3 sate e g az ng angle and the 

waveleng h . 

ith he re 
spec e 

olumn 

ul 
he ap 

I 
Z 
• 

u 

• 0 

n 
ara 

4 con a ns he 

ough e s g ve 

us ith wh ch 

n egral sca er ng components 

n column 5; column 6 f nally 

the measureme t as done 

A = 80 3 A 
= 1. 0 

• clo h- po shing 

ASTRO -8 
o samp e , 23 

X sam . 27 

I 
... ~ 

..-- I-f 

Figure 23 . 
samples . 
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... 

Probe Grazing Wave- o Sea ter- G- Appar-
angle len h(A) ng ( % ) a us 

1 Re 1 ca on ze 0 -
dur , gold s rface 

2 Repl ca on zerodur , 1. 5 1 3 . 3 2 6 I 
old surface 

3 Repl ca on Al e ched 1. 5° 1 3 . 3 6 10 I 
gold surface 

4 Zerodur 1. 5° 1 3 3 110 28'. 7 I 

5 Origi a for 1 and 2 , 1. 50 8 . 3 5 7 2 3. 1 I 
zerodur , gold surface 1. 0 ° 13 . 3 2 9 I 

11 floate glass 1 . 50 8 . 3 10 8 I 

° 1 3 . 3 19 . 0 26 .4 I 12 Floated glass , cleaned 1 • ° 
. 1 . 5° 13 . 3 36 . 4 24 .4 I 

1. 0 ° 8 . 3 3 8 . 1 23 . 4 I 

1. 5° 8 . 3 46 . 0 17 .1 I 

1 . ° ° 13. 3 8.4 17. 6 I 

13 Floated glass , cleaned 1. 5° 1 3 . 3 I 

1. 0 0 
8. 3 9 . 1 11 4 I 

1. 50 8. 3 I 

1. 0 0 
1 3 . 3 I 

14 Floated gla.ss , cleaned 1. 5° 13 . 3 6.6 10 . I 

1 . ° 
0 8 . 3 I 

1. 5° fl . 3 7 . 3 6 . 8 I 

1 .0 0 
13 . 3 1 1 20 .1 I ° 

15 Kanigen on Al 
1. 50 1 3 . 3 1 4. 4 15 . 3 I 

° ' 1. 0 8. 3 15.3 14 .8 I 

1 r. 0 
• J 8. 3 1 9 . 9 11. 3 I 

0 
1 3.3 1. 4 7 . 2 1 .0 I 

1. 50 1 3 . 3 1. 7 5. 3 I 

23 Kanigen on Al 1 . 0 ° 8 . 3 2 . 3 5 . 7 I 

1. 5° 8 . 3 3.4 4. 7 I 

1. ° . 3 30 1 5 I 
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2lj Kan gen on Al , 5° 8 . 3 6' ° 
27 Kan gen on Al 1. 5° 3 . 3 1 

' : 5° . 3 

29 Ka gen on Al . 5° 3 . 3 2 

. 5° . '3' 1 2 9 I 

30 Zerodur , or g- . 5° 3 . 3 2 6 
inal of 3 . 5° 8 . 3 3 I · 

33 Kanigen on Al 5° 8 . 3 6 ' 
. ° 1 6 I 33A Sample 33 after . 5 . 

s orage (30 d) 0 8 3 10 

3lj Kan gen on Al . 5° . 8 . 5 I 

3ljA Sample 34 after 1. 5° 8 . 3 ° varn sh test 
(blue varnish) 
removed with ace-
to e a d ether 

° 37 Kan ge 0 Al . 0 3 . 0 . 0 . 5 II 

. 5 0·' 3 . 3 I 

° 3 . 3 5 . 6 II 
° 
00 3' '3 S • . 7 I 

• 5° 8 . 6 1. 
37A Sample 37 after • SO . 3 9 varnish test (blue 

varnish) , 30 min 
acid bath , removed 
with acetone and 
ether 

38 
0 3 . 3 7 5 2 I Kanigen on Al , cloth 0 . 5 

poli sh . 0° 3 . 3 2 49 I II 

1. SO 13 . 3 85 I I 

2 . 0 
0 13 . 3 . 90 6 I 

I . 0 
. 5 : :8 . 3 97 7 

38A 0 . 5° 
I 

Sample 38 polished 44 . 8 7 108 I 
a second time ( cloth) 

0 . 6 ° 17 . 6 50 1 16 III 

0 . 6 ° 1 3 . 3 67 " 11 

0 . 6 
o~ 

. 3 89 . 96 I 

o . 0 3 . 3 102 III 

0 . 80 8 . 3 9 9 I 

° . 8 9 0 

48 0 17 . ° 



1 . 10 13 . 3 9S 98 I I I 

1. 30 13 3 10 11 9 

1. 0 '1 4 . 8 45 105 I 
1. 50 17 . 6 99 11 3 I 

2. 0 0 4-1. 8 7 2 11 I I 

38 two-
1. 20 44 . 8 39 11 3 I 

38A Sample en-
0. 50 

s onal sca ' er n d 's - 17. II 
tr bu ion 1 . 0 0 17 . 6 II 

Al 
o. r. 0 8 . 3 II 

39 Kanigen on 0 
1. 13. 3 4 8 I 

39A Sam Ie 39 , sh test 1 •. 5
0 

8.3 7 7 I varn 
(0576 ) , removed w th ace - , .50 8.3 10 8 I 
tone and ether 

39B Sample 39A t h gold 0. 5 0 13 . 3 7 33 I II 
sur face 

0. 6 0 9. 9 6 20 III 

0. 6 0 8 . 3 6 1 G I II 

0. 5 0 5.4 1 1 17 I I I 

1. 10 13.3 8 16 I I I 

1 . 10 9. 9 9 13 I I I 

1 . 0 0 8. 3 7 10 II I 

1 . 0 0 5 . 4 18 1 1 II I 
1. 50 13. 3 1 1 14 I I I 
1. 50 9. 9 1 1 10 I I I 
1. 50 . 3 10 8 I II 

2. 0 0 13. 3 1 4 12 II I 

2 . 0 0 9. 9 17 10 III 

2. 0 0 8. 3 15 8 III 
50 Kan gen on AI , with II 0. 50 8 . 3 2 . 5 11. 9 II preferent i al di rection 

/I 0 1 .0 8. 3 7 .1 10 . 0 I I 

/I 2 . 0 0 8 . 3 29.7 11. 2 I I 
.l 1 .0 0 8.3 4.7 8.1 I I 
..L 0 n.3 9.4 5 .9 II . 0 
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60 
0 1 3 . 3 . 2 . 1 Kan en 0 Al gol 

u face 1 . 0 
13.3 '") /, . 2 I o. 

2 0 0 13 . 3 0 . 3 1. 7 

2 . 50 13 . 3 . 4 1 . ::> II 

61 Homos 1 gold surface 3. 0 0 1 3 . 3 0 . 6 1. I 

1 . 0 8 . 3 0.07 3 . 15 I 

1. 
0 8 . 3 0 .1 2 2 . 73 II 

2 . 0 0 8. 3 o . 17 2 • <1 II 

2. 50 8. 3 0 .17 1. 9 6 II 

3.0 0 8.3 0 . 36 2. ~ 1 II 

Af er some prelim .nary tests of he cho ce of mater al as 
I 

well as the polish1 g echn que [25J we chose for the 32 cm tele-
sco e kan gen on alum num . Thus he rna or ty of the above samples 
cons sts of alum num w th a kanigen surface that had been care­
fully polishe . The samples 23 to 29 were used to tes methods 
to apply the kan gen as well as the polish ng mater als and ech­
niques (Ze ss Company Oberkochen) . \1th an opt mum method def n­
ed , a set of samples [33 to 39J was produced n order to test the 
reproducib l1ty of the opt mum polish . The roughness of these 

o 0 

samples is e ee 6 and 8 A and on the average (7 . 2 ± 1 . 0) A. 

The later varn sh ests of these samples were also designe 

[33A 0 39AJ for the production problems of the 32 cm teleseope 158 
(see Sect on 4. 5) . 

We had ndeed expected to encoun er d ff cult es when upon 
completion of he telescope the olis ng techn que had 0 be 
applied to a two- d mens onally curved surface . At his t me , sea -
tering invest gations are carried out with the f n shed para oloi -
hyperbol0 d system n the X~ray range . The f rst tests ind cate 

o 
a roughness of about 10 A. Thus the te~escope is well suite to 

o erve astropnys cal scatter ng hole·s : At A = 1 3 . 3A and for dust 
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gra n s zes 0 0 . 8 } m he expec ed as ro ys cal halo ( co X- I) s 

a ou one or er of mag tu e above 

pears f om reflect on n he 1 m 

he exper men al alo as ap-

of vanish ng scat er ng angle . 

As e from our stu es th respec 
elescope e have w h samples 1 0 5 

to the evelopment of he 
ested a ethod for the 

pro uc on of h ghly 01 shed m rrors ch prom ses 0 reduce costs 

ras cally n the fu ure namely he so- called repl ca me hod 
(Sec on 4 . 7) . A s ec al case is presen e y sa Ie 50 where e 
es ed a pos b 1 Y 0 mprove the sca er ng ehav or by the 

cho ce of a prefer ed pol sh ng d rect on . The cloth polish ng 
as a pI ed to samples 38 38A and 39B is less expens ve and use-
ul 0 m rrors wh ch are no supposed 0 produce exact mageB /59 

bu ra her to focus solely (parabolo d rn rrors of the ASTRO- 8 type) . 
The sample was used to nvest gate b~ decrease of reflectiv ty 
through m croroughness (Sect or. 4 . 9) . The samples were also used 
together w th t e samples 60 a d 61 to nvest gate the dependence 
of he scatter ng on graz ng angle and wavelength th the aim 

of ver fy ng the appl cab 1 ty of he stat sti~al surface scatter-
ng theory (Sect on 4 . 3) . Samples °11 to 15 are p eces of the Baez 

telescope of the Harvard College Observator y/SAO Cambr dge Mass . 

that were flown successfully and partially cleaned and tested for 

scatter ng . The results are that floated glass has a surface qual­
i y s m11ar to hat of the opt mally polished kanigen mirror 

Some of the measurements will be d scussed n eta 1 below . 

4 . 3 . Integral Scattering Component 

Accord ng to Sect on 3. 4 . the ncoherently scattered contr -
but on to the total reflected energy flux is independent of the 

exact form and la er al di str bution of the unevenness of t he mirrors . 

It is only' the standard r oughness () wh c nfluences th ' s qual ty : 

In t he case of a nor ma l di str ut i on 0 he heights we have fo r the 
n t egr a l scatter ng contr but on : 
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I = , - -g 
. = ( 2 ' () where 

S nce g az ng angle and aveleng h are known h s Quant y allo s 

to tes he appl ca 1 ty of he stat st cal surface sca ter ng 160 
theory (Sec on 3 . 4) in the energy range of sof - rays and n he 

case of graz ng ncidence . If n turn he a pI ca 1 y of h s 

theory s verif ed then X~ray measurements are excellent means 0 

determ ne the m croroughness of optical mirrors : 

() -

Aside from s udying the /~ -and C( - dependence of he scatter­

ng component wit samples 38A , 39B 60 and 61 we carr ed ou com­

par son measurements n order to determ ne he roughness depth on 

he basis of other methods (Sect on 4 . 10) but w t the same sam­

ples . 

The parameter go was determ ned from he measurements in the 

folIo ng manner : A gular measurements (I lx~1 u) were ntegrated 

over he ent re angular range except for I I ~ 1 rcmin w th 
an exponential nterpolation for the behavior of the sca ter ng 

lux dens ty for I 1>1 0 ln the table below the fourth column 
shows th s ntegral in units of counts/sec · arcm n . Column 1 shows 
the nu ber of the measuremen s , column 2 the measured port on of 

column 4 column 3 the ex rapolated port on. 

In order to obtain a clear picture of the separation of the 

specularly reflected component and the scattering halo we have 

carr ed ont scat er ng measurements at very small angles I f!~2arr.min). 

These measured curves were ntegrated over the range I~I ~ 1aremin . 
The halo component of this integral was obtaine by extrapola-

tion of the halo from the range 0. 5 min 6- ' 'f l 6 2 rem' n to 

the range ' ~ I ~ o. 5aremin . Column 5 identifies he running num~ 

er of t his small- angle measurement , column 6 states the integral 
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1 2 Meas - Extra- 3 4 5· 6 Meas-' F.xtra- 7 8 9 10 1 1 12 i 3 
ure- polation ure - pblat ~.on . 

Nr .Lment ~Extr L:total Nr ~ment L.Extr L Peak I -total ~ Halo 9 o( degree () ( A) R 
Ii I ? 1' l'fl ! l' I~l ?,' 1'( 1 L 1 - I '{ I ~ t' I ~I (,1' 

90 18 43 .6 0. 0 
9 2 163.4 22.2 185 . 6 91 909.0 83.4 825.6 109 4 . 6 269.0 0.28 1.00 10 8 . 5 0.5 
94 243.9 9 .4 253 . 3 93 596.3 125. 2 471 .1 84 9. 6 378 . 5 0. 55 1. 50 101 . 4 o . 

96 259.4 60 . 1 31 9 . 5 95 329.6 101 . 8 227 . 8 649 . 1 421 . 3 1. 05 1. 98 105 . 6 0 . 35 

8 55 .2 8 . 3 63 . 5 97 1294.7 29 . 6 126 5. 1 1358 . 2 93 .0 0 . 07 0. 50 103 . 9 0. 7 
00 207 . 4 46 . 2 253 . 6 99 671 . 3 84 .7 586 . 6 924 . 9 338 .3 0. 46 1. 25 110 . 3 0 . 50 

83 796 . 3 0 . 0 

85 288 .3 71. 1 35 9. 4 84 114.8 61.4 53 .4 47 4 .2 420 . 8 2. 18 0.58 96 . 3 0 . 60 
87 266 . 1 40 . 4 306 . 5 86 36.1 30. 5 5 . 6 342 . 6 33 7 . 0 4 • 11 0.84 91. 3 0 . 43 

64 647 . 6 0.0 
66 14 2.0 14. 5 15 6 . 5 65 246.4 4<1 . 3 202.1 402. 9 200 . 8 0. 69 0 . 58 116 . 2 0 . 6 2 

68 203 .7 30 .5 234 . 2 67 78.7 39 . 9 38 . 8 312 . 9 274 . 1 2 . 09 1.09 107 . 6 o . 
70 205 . 2 9 . 8 215 . 0 69 31. 1 27 .7 3 . 4 246 . 1 242 . 7 4.27 1. 49 112 . 6 0 . 3 

78 . 6 o . 

75 302.6 48. 8 351 . 4 74 325.2 103 . 7 221.5 67 6 . 6 455 . 1 1. 12 0 . 58 11 0 . 6 o . 
7 368 . 5 38 . 0 406 . 5 76 72.7 50. 9 21. 8 47 9 . 2 457 . 4 3 . 09 1 . 0 9 97 . 8 o . 

9 406 . 7 38 . 5 445 . 2 78 173 . 7 90 . 0 83 . 7 618 . 9 535 . 2 2 . 00 0 . 84 102 . 1 0 . 52 
8 1 291 . 5 64 . 8 356 . 3 80 41 . 0 34 . 3 6 . 7 397 . 3 390 . 6 6 . 39 

Measurement 1 to 11 : Sample 38 , 1\= 8 . 3A Measurement 20 to 28 : Sample 39B , A = 13 . 31 

r-1easurement 31 to 39 : Sample 39B , A= 9 . 9$. Measurement 42 to 50 : Sample 39B, A:: 8 . 3A 

Measurement S3 to; 56: Sample 39B, A = 5 . 4A Measurement 46 to 70 : Sample 38A, A= 17 . 6A 

Measurement 71 to · 81: Sample 38A, /\= 13 . 3A Measurement 83 to 87 : Sample 38A , A= 8 . 3 

Neasurement 90 to 100: Sample 38A, 1\= 44 . 8)\ 
\J1 
w 



\J1 
.t=" 

Nr 

1 1 

10 

9 

8 

7 

22 

24 

2 

2 8 

33 

35 

37 

39 

44 

8 

50 

::> 

5 

2 Meas - F.xtra - 3 
ure - polat1on 11 5 

Lment TExtr 2:.total Nr 
(,{Iti' l 'i'l ~t ' I'((ll ' 

799 .3 

970 . 4 

80 9 . 

127 . 3 

50.0 

39.0 

60.0 

56 .0 

41.3 

44.2 

59 . 3 

72.0 

44.3 

37 . 2 

48 . 5 

50 . 0 

25.2 

37 . 3 

49 . 1 

15 . 0 

7 . 

1.3 

2.7 

4 .7 

7 . 5 

6 .1 

2.0 

11. 1 

0 . 5 

8 . 0 

6 .0 

.8 

6 . 7 

8 . 3 

• 1 

.3 

8 48 . 4 

985 . 4 

816 . 9 

128 . 6 

52 . 7 

43 . 3 

67 . 5 

62 . 1 

43 . 3 

55.3 

69 . 8 

80 . 0 

50 . 3 

45 . 0 

5 . 2 

58 . 3 

·2 

3 

5 

20 

21 

2 3 

25 

7 

3 1 

32 

34 

36 

38 

42 

43 

5 

49 

53 

32 . 3 

45 . 6 5 

6 Meas - Extra- 7 8 
ure - po l ati on 

Lment l:Ext r L Peak 

9 10 " 2 l) \ 'I 
! tetal L Halo 

2 . 7 

g degr ee G (H 
1,(1 L, ' 1'1' 1 q . 1'( 1( " 

637 .1 

650. 9 

8 2.2 

48 . 

1149.1 

9 10 .0 

71 1 . 5 

461. 

070 . 4 

89 8 . 6 

704 . 8 

458 . 

1167. 

16 . 8 

6 9 7 . 6 

05. 

6 • 1 

68 . 

308.9 

355 . 6 

:321.6 

1328 .2 2485 . 5 1157 . 3 

. 29 5 . 3 16 36 . 3 1341 . 0 

0.63 

1. 71 

2 . 98 

S . 53 • 7 

60 . 6 119 9 . 1 1138 . 5 

0 . 1 177 . 0 17 6 . 3 

1539 . 8 

34 .2 1114.9 

33 .1 876 . 9 

21 . 5 690 . 0 

2 . 0 449 . 7 

201 . 8 

953 . 3 

779 . 0 

52 3 . 8 

• 3 

30 . 8 

5 . 

11 . 8 

12 86 . 2 

0 44 . 'j 1 113 . 

867 . 8 953 . 9 

689 . 4 774 . 6 

4,16 . 9 538 . 

151 ... . 

25. 8 1 14 . • 

. 0 892 . 8 

26 .3 671 . 3 

9 . 9 395 . 5 

1217 . 

8 6 . 9 0.075 

76 . 4 0 . 083 

89 . 0 0 . 121 

. 10.1 53 

69 . 6 0 .06 

86 . 1 0 . 095 

85 . 2 o . 

91 . 8 0 . 187 

6 . 1 

69 . 0 

7 1. 5 

68 . 2 

0 . 06 

0 . 0 

0 . 10 

0. 159 

0 . 0 

0 . 58 

. 00 

1. 49 

. 98 

0 . 0 

0 . 5 

. 09 

. -.9 

. 98 

0. 0 

0 . 58 

1 . 09 

. -.9 

. 96 

0 . 0 

0 . j8 

. 00 

1. 49 

. 98 

26 . 3 

2 . 

961 . 8 

742.8 

6 3 . 7 

812 . 9 

• 8 52 8 . 

S6.1 314 . 3 

58 . 

58 . 

0 . 0 

0 . 118 0 . 50 

0. 205 1 . 00 

5 . . 

9 . 5 

3 . 9 

0 . 9 

O . bO 

o . 

. 06 

32 . 6 0 . 78 

6 . 0 0 . 62 

0 . 5 

. 0 0 . 34 

9 . 7 

. 8 

o . 

9 . 9 

16 . 

0 . 3 

8 . 

. 6 

0. 8 

o . 

0 . 60 

o . 

0 . 80 

0. 6 

o . • ~ 

0 . 31 

6 .9 0 . 65 

0 .39 



he ran e I ~ t ~ 1 rc i column 7 he ex rapolate alo 
ution or I !:': 1 rcmi an column 8 the specul !r'ly e -

flected component obta ned from t ese opera ions (column 8 cor­
responds to column 6 m nus co1.umn 7). The sum of columns 4 and 
5 then yields the total !r'eflec ed energy flux (column :J

) . 01 -
umn 11 , finally sho s the quan i y g . The graz ng angle s 
stated n column 12 ' columns 13 and 14 summar ze he values for 
t he roughness ~ as obta ned by computation from column 11 , an 
the elect v ty n he form of the ratio of the values from 
co lumn 9 and the correspond ng in egrals over the d rec ray , 
res ect vely . 

In the case of sample 38A we find by averaging all '-'- val 
ues of the above table a mean roughness of :- = (1 0 6 .3 ~ 7 .7)A . 
Making use of h s value for the roughness we have n F g. 24 
entered the heoret cal dependence of the relative scattering 
contr ution on the grazing angle as tbB solid curve . The wave-
leng h parame ers are 8. 3A, 13. 3A, 17.6"-. and 4 -1 . 8A The small o error in the standard roughnes s of 7. 7 A correspond ng to 7% 
is reflected in the da a by the good agreement between the meas­
ured and the heoretical values . The error limi s as shown were 
determined in the following manner : If P is the count ng rate 
at the peak , S the counting rate n the halo then the error Q = 
Si (S+Q) reads 

r 
I - - ---

/64 
If the errors !J S and P are proportional to Sand r res 

ective l y , that is , 1S = qS, ~p = qP then L\Q = 2 ( Q _ 2 ) 

For sample 38A we estimated the error in P and S to e a~ 
bout 20%. Th s results in a max mum error for Q :; C. Ij of Q""",~ 1 0'& 
The departure of the experimental data from the correspond ng 
t heoretical curve~ is only in t he case of large scatteri g lar -
er t han t he error as computed above . That means that t e rough-
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~:J ) t ~ . ?~ • ~ , 
' .)7." ~ ~ ~ 

~ .. 
.0 I 
.r-i ~ . 9 -: fI H7 ! I H 

s:: I 
0 ! 

... '~ 
I 

bO r s:: r. .r-i I 

OJ ~ 
L 

~ 
til r-
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cO r ri 

[ OJ , , , ~ , . , . . C. , (\. 5 l." 1.5 2 . ~ 

grazing angle (dep!;rees ) 

F gure .24 . Compar son of theoretical and measure dependence of the ntegral scatter ng componen on the graz ng angle and the wavelength in the case of sample 38A . 
I , , I I , I I I I , • • ! -' 

~ 
cO 
c> 
til 

i r OJ O. 2~ 1 ~':-> i ~ ~ :0 J ~-'= ' -~~:~ cO 1: ---===.-'-.--:.. - . ~-;":':";'-~ . I " I • r 
OJ D. 0 - . "--'---r---:-. -:.-~ . ' 
~ U.O u. 5 : .~ : .S . 0 

grazing ang e (degrees) 
Figure 25 . Comparison of theoret ca~ and measured dependence he integral scatter ng contribution on the grazing an Ie an ave length in the case of the sample 39B . 
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ne s ndeed follows a nor al d 

ponen al he gh d s r ut on 
lar er mean e ro for the stan 

s r bu on. In 
t I 

\v (z ) 
1 e -(f :.: -

2-

ar roughness : 

t e 
we 

For 
we nd from the measurements a mean roug ness of 

Cf- (97.4 + 19.9)ii.. 

case of an ex-
f nd a much 
I 

r = 1 1 -
(1 +~)a. 

We shall compare th - .. tri ution (6'" = 1 oG1\) 
resul in Se ' on 4.10 for normal s ­

h results of 0 her roughness measuremen s . 

The same reduction me hod has een used w th sample 39B wh ch 
represents a 1 ell pol shed kan1gen sample with gold surface . The 

ntegral scattering contribution in th case is much less depen­
dent on the graz ng angle and he wavelength (F g . 25) . It should 

be ment ioned , owever that n th s case the errors ~S and ~p are 

much broader , so that the error ncreases dur ng the extrapolat on 

to ard larger scattering angles . The evaluation according to he 
above me hod leads to a roughness of u = ( 1 3 • 9 + 6 .4) 11.- . If on 
the other hand a fit of the type I = I + C s mposed scatt surface 
on the measured values then the constant C receives the value of 
0 . 06 + 0 . 02 . This fit is also entered in Fig . 25 . From here we -
f nd an average roughness of CJ = (7. 3 + ' 2 . 9) 1\, " he relative 
scattering of the single values of u thus cannot be reduced 
signif cantly by ntroduc ng a constant scattering component /66 
(change from 46 to 40%) . Ther e is also a bas c d ff culty involved 
in assuming a constant scatter ng component , since t was shown 
in Sect ' on 3. 5 that the contr ut on of volume scatter ng s much 
less than 6% . It appears more pro able that the departures from 
the exp( - g) - relat on are due to an increase of the roughness to­
ward the edges . The measurements were carr ed out with the a d of 

a 30Dp collimator slit w th the result that the rrida ed surface 

of the mirror was 34.4 mm wide at 0 . 5° but only 8 . 6 mm w de at 2° . 
If onlY he measurements at a grazing angle of 2° are ret a ned 

then a mean roughness of (9. 4 ~ 2.1) A is obta ne an~ the scat ­

ter of individual values is only 22% . 
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P cures taken with e mult ray nterference m croscope (Sec ­

on 4 . 10) did not ver fy an ncrease of the rou hness oward he 

m edges ' the resolution of opt cal measuremen techn ques s 
not su f cent for the pur ose . Tn order to tes he appl ca 1 

of he above scattering heory for m rrors whose roughness s elo 
° 10 A, a small sample as produced ha could also e tes ed in an 

electron interference m croscope (Sec ion 4 . 10) . 

The ependence of the ntegral scattering component on the 
grazing angle n the case of h ghly pol shed samples was obta ned 

with a gold- surface homos 1 sample w th the aid of a 100 coli ma-
° tor (appara us TT) : At 8. 3 A, the scattering dis ribu ion at 1° 

1 . 5° , 2° 2 . 5° and 3° was measured and compared w th the scat er­
ing of the irec ray : lf he d rect ray is separa ed into the 

peak and halo components Dp and DH 
ents for the reflected ray Rp + RH 

with the correspond ng compon-
then we have 

R + 
P 

= (D + D ) 
H P H 

( 8 + H) ~ D + Df.! + D <1> H. 
P P J ~ P 

Here ~ + H is the slit image funct on 0 the mirror which has p 
ee decomposed in the same manner with a specular contribution d 

and the sc.attering contribution H. Hence if one su tracts from 

the reflected ray the ~eflected ray normalized to 1den ical total 
in ensity then approximately the fol ing integral of the peak of 

the direct ray with the halo H s ob ained . An example of this 

difference 1s shown in F g . 26 . 

y 

One might conceive of the scattering distribution as cons st ­

ing of two contributions : A steeply ecreas ng componen St l whose 

width suggests an autocorrelation length of ~50J , and a broad 
contri ution S 2 correspond ng to an autocorrelation leng h of~ 6? . 

The t wo components as well as the total scattering a d he result ­

ing values of g1' g2 ' °1 , ~2 are shown in the table to follow : 
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Figure 26 . Scattering distribution (difference) for .sample 61 for 

A = 8 . 3A , cx= 2 . 50 

1 . 0 o 1. 5 o 0 2 . 0 2 . 5 o 3.0 o 

Str1 ~. 321( 1 0 
-2 

8 15 '10 -2 1. 40)( 10 - 1 2 . 09 10- 1 3 .1 2 10- 1 

St r 2 6.8 90: 10 -3 1 .16)( 10 -2 1. 66,. 10 -2 1.6 6 )( 10- 2 3 . 57,..10 - 2 

St 5 .1 0 lC 10 -2 9 . 31>< 10 - 2 1. 57)<10 - 1 2.26)(10 - 1 3.48.<10 1 

g1 . <1 . 21< 10 -2 8 . 50x10 -2 1.51,,10 -1 2 . 34'1(10 - 1 3 . 7 1('10 
- 1 

g 2 6 . 91"10 -3 1 .1 7)(10 -2 1 . 67,..10 - 2 1 . 67 ,,1 0 -2 
3.6 4" 10 -2 

'.---'-
g 5 .1 4,.10 -2 9.77 ,, 10 -2 1 .71 1( 10 -1 2 . 56,,10 - 1 4 . 28'«10 - 1 

-
G', (A ) 7 . 96 .. 7 . 36 7 . 35 7. 32 7 .7 2 . 
. Ci

2 
(A ) 3 . ' 5 2 . 73 2. 45 1. 96 2 . 41 

G"" (A) 8 . 58 7 . 89 7 .8.) 7 . 66 8 . 26 
For the steepl~ decreasing component a roughness of 

~ = {7. 5 ~ 0 . 3) A, is computed. Volume frequenc es between ~~ 
and : ; as taken into accoun for the same sample n the eiectron 
interference microscope however are only pr esent with a mean 
roughness of ~ = (2 . 54 ~ 0.~ 4)A In the presen case the ad-

dit i ve dec'omposi tion is allowed since for smail scatter ng (9
0
t..<.. 'j ) 

the scatte~ing di.s r ' bution is propor ional to t e Fourier comp- /69 
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onen of he au ocorrelat on funct on so hat as ell 1 + + 'l:''' . T(e,) -, .! eel) (see Sect on 3.4) . Fig . 27 summar zes the compar son 
or the two sea ter ng components a d of he otal scat ering ~on ri ­

t on with the theo~eticallY expected b ehavior as a funct on of 
the graz ng angle . Both scattering components suggest a normal 
dis ri u ion n heigh . The corresponding theore cal curves a ­
gree w hin he error lim s w h t h e measured values . e conclude 

o tha even in he range 0 m croroughnesses of onl~ a few an 
for scattering contribu ions of a few percent the theory of surface 
sea erin~ is adeauate 0 describe the scattering process . 
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4. 4. Scatte ring Di stribUti on /70 

According to Section 4. 3 the scattering d s r but on not only 
yields a val" for the roughne ss ' " n add;!.. on t he form of 
the distribut~~n yields informat on on he behavior of the autocor­
relation function . In the simplest case that is that of a very 
small scattering angle Og()« 1) the autoco!r'relation funct on s pro-
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or ional to he ~our er ~~ansfo~m of he sea ter ng d str u on 

CEq . 34) . Hence , one can e\I've he au ocorrela on fu.nct on 
rectly from the sca ter ng ist u ion , Xn he case of larger 
scat e ng owever the scat e ing s r ut on is e sum of he 

Fou e ransform of powers 0 he autocorrelat on funct on CEq. 
33) an his rela ion cannot e solve any ore or C(~) . 

In order to eterm ne the autocorela on fUnct on from the 

measure ents of sample 38A here the scatter ng contr bution s no 
small th respect to un y we have for various au ocorrelation 
funct ons with he roughness & as determined in he jast Sect on 

o taine the scat ering distribut on accord ng to Eq . (33) and com­
pared w' th the measuremen s . A Gaussian as well as a Lorentzian 
sh~pe of the au ocorrelation function could e excluded n this 

manner . The best agreemeut between the measured scattering dis -
tr but on is obtaine1 for ar. exponential shape of he autocorrela-

' '1:' 1 . 

tion funct on : C(~) _ c T This ~esult agrees W th the s udies 
y Eastman and Baumeister [13] n the optical range. 

The scatter ng distribut ons we have calculated in this man- /73 
ner are shown in Figs . 28 a to j as solid curves (T = 10 . 0 , ) . The 
vertical arrows at he os tions ~ 30 45 and ~ 90 arcmin sho 
the osition where the detector enters the shadow of the m rror 

so t hat the scattering intenSity should decrease to zero. The con­
stant background of 0 . 05 counts/sec has already een taken nto 
account in this context. 

Figures 28 a to j show good agreement of the measurements with 

t he theoret cal scattering curves ' small departures are only ev dent 

in the immed ' ate neigh orhood of the specularly reflected component . 
This means that 10ng~wavelength ~oughnesses ( :- 50p ) are under~ 

represented in the exponent al autocorrelation funct on o An ad- /74 
ditional de arture for the theoret cal curves s found at ~ = 0 . 50 

i f tp ends to _~ ; Here > the flux dens ty of the ±ntensi y is less 

t han expecte . The reason for this ehav or is the fact that the 
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s ca ter ng ang e 
'Figure 2Bh A = 

n arc/m n 
. 31\. , :::: 0.5

0 

07 

satter ng angle . n arc/m n 
F gure 28j A - 8.3A , 0( = 0 .7 50 

theory does not nclude 'fiul ple sca terings and shadow ng effects . 
For small graz ng angles the proba 11 ty tha the outgoing wave hits 
the surface aga n ncreases s gnificantly in art cular if the 
outgoing wave is almost parallel to the surface (~ ~ - ). Multi­
ple scatterings rna he neglected for grazing angles above 0 . 50 as 
shown by the measurements ' this holds for the scattering d str bu­
tion but not for he reflect v ty , as w 11 be shown i n Section 
4 . 9 . 

4.5 . Dependence of the Scatter ng on the Surface Treatment /75 

D ff cult es appear during pol sh ng at the edges . TImpur ies 
and fresh pol shing material hat may get under the po~ sh ng tools 
resul n ncreased r oughnes s . On the 0 her hand he pressure ex~ 
erted by the too~s a the edge is d fferen with the result that 

he exact form of the m rror s not mainta ned ate very edge . 
Thus one plans for an overshoot whi ch i s then separated af er he 
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polish ng has een f nished . In order to ayo d any damage to 

m rror surface by th s se arat 0 procedure 

a yarn sh layer . 

t s protec ed by 

e /76 

e have este tree of he kan gen sam les of a ou he same 

qual ty [34 7 an 39J or he conse uences of he varn sh and 

ac d rea ment for he sca er ng behav or . Fi s. 29 a 0 d sho 

the result of he rea men th respec 0 scatter ng . The un-

reated an ustfree stored sample 33 shows no change n the scat ­

er ng behav or w t in he lim ts of the measur ng accuracY ' t e 

t 0 measurements were se arated by abou a mon h . Sample 34 was 

covere th blue yarn sh and the yarn h was then removed two 

weeks later h the a of acetone and ether . The sca ering in-

creases by a out 50% . Sample 39 was treated with some other type 

of yarn sh (0576) . Aga n the scatter ng ncreased th s time by 

30% . Sam Ie 37 was sim larly treated with 0576 . The sample was 

pro ected and then pu, for 30 minutes nto an ac d bath ' the var-

n sh was then i nally removed in the same manner as with sample 34 . 

Aga n the sca er ng ncrease was about 30% . S nce the surface 

that must be protected n the case of the telescope is only about 

5% of the total m rror surface t e yarn sh ng changes the scatter­

ing ehavior of the telescope by less than 1% . 

4 6. . on /77 

The theory of scatter ng states that the width of the scat ­

tering d stribut on in the mer donal d rection, that s n the 

plane of inc dence is larger by a factor (sin ~l) ~ l than the d s ­

trib t on n the sag ttal d rect on that s perpendicular to the 

plane of nc dence ' see Eq . (29) . In order to test this theoret ­

ical result we have measured the scatter ng d str bution n the 

case of sample 38A in two d mens ons : The collimator slits were 

replaced by d aphragms w h c rcular openings (diameter 600·P ) , and 

a circular d ' aphr agm of the same ameter was 'ffiounte in front of 

the deteetor . The ntens ty d ' str ' ution was then measur ed horizon-
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a ly , ha s meri onal 

hese measu he form 

F gs . 29 a 0 

of e ght prof 
sho 

les : 

e resul s 0 

Eac cross - over 

po n cor esponds to a measur n pOin in the ne or ood 0 e 

co e . In he 
n meri onal 

alo case however only every ten 

rection co responds 0 a easur n 
- over po n 

oin ; in be 
t ween we ave use a l Onear in er ola on . 

40.2 crcmin 

Figure 29a Intensity d s ibution of the d rect ray ~n the plane 
dete~tor : A= 17. 6A 

Figure 29 . 
plane of he 
incidence is 
plane of the 

Intensity distribut on of t e reflected ray n the 
detec or sample 38A A== 8 ° 3A , (j. == 0 . 5 0 l'lane 

n he longitudinal rection and erpend cular to 
rof le o 
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F glre 29c . Tntens ty distr ut on of the ~eflec ed ray 
lane of the detector , sample 38A i\ = 17. 61-" , .- o. r- o 

of inc dence as n Fig . 29 . 

Figure 29. In ens ty distr bution of ,he ~eflec ed ray 
plane of the etector sam Ie 38A A:: 17. 6i\, ex. = 1. OU • 

of nc ence as n F g . 29 . 
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rec ray (plane m rror) h le he scatter ng halo is only spread 

n he mer onal d re ion ' n e 
sprea ing s seen by com arison with 

flux density s shown n Figs . 29 a 

erpen cular d rec on no 

he d rec aY e T e energy 
o n linear ea u e (in arb-

trary units). The reference for scatter ng n the me id onal di-

rect on s par cularly clear ' n Fi . 29 · ample38A 
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Figure 30 . Merid onal and sag1tta~ cut through the po n image 
function sam le 38A A= 17. 6A, ex = 10 /80 

The behavior of the scattering d stribution n the meridional 

direction allows to determine the scattering ampl tude A from the 

relation : < ~ ~"> = I P kula ( f , ' ) + l\ ~ I Jl a 0 ( r ' where 
III 10 ( 0 , 0 ) = 1 From the fact hat the l.ntens1 ty d str but on 

of the reflected ray n the sagittal direc ion has w th n 0 . 5 arc 

sec , exactly the same w d a the d rect ray even where the n­
tens ty has decreased to 10~3 of the max mum value (see F g . 30) 

we find for a known scattering widt n the sag ' ttal d rection that 

the sca ering d ' str but on n the t - d reetion is less than 30 arc -
sec . The theore cally expected sea er ng w d s y a fac or 

between 3 and 6 depending on he graz ng angle below th s 1 m 
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4 . 7 . Sca ng Measurements on Repl ca Samp~es /81 

The rep1 ca method s part cularly a ~act ve for the ass 

p oduction of high y pol shed mirrors . The method cons s s 0 

copying several mirrors from a h ghly pol shed negat ve orig nal . 
o 

The original obtains a hin laye (200 A) of gold on a layer of 
hromium ox e hat increases the adhes on be we en old and car­

r er . This carr er is last ad ed eit er as a preforme p ece , 
to e glued on w th an intermediate laye~ of epoxy (EXOSAT) , or 
else the carr er mater al is applied electrolytically . In the 

latter case the epoxy layer is unnecessary . The advantage of 
this method s self- evident n tha the expensive polishing s prac­
ically avoided since many cop es can be made from one orig nal. 

The first method was tested with three plane samples : T 0 

copies of an opt mally polishe zerodur sample were made on equal­
y well polished zerodur mirrors . The copies were of the same 

quality as the original in fact , the copy on sample 1 had even 
a smaller roughness than the original . Th s s un e stan able 

nce n order to dimension out the original it had to obtain 

a layer of gold in order to achieve a measurable reflectivity at 
1 . 5° . Fig . 31 shows the results for the third sample . Here , the 

carrier is a 

etched prior 

13 . 3 and 8 . 3 

coarsely polished aluminum mirror which had been 
to copying . While the original at wavelengths of 
o 
A had 2 and 3% ntegral scattering contr but on reS -

pectively the replica sample showed scattering contr but ons of 
o 

39 . 7 and 56 . 7% , respectively , corresponding to a roug ness of 26 A. 
The cattering distribution is well ~epresented y a Lorentz an /83 
shape (solid 1 ne in Fig . 32) with its width co~responding to an 
autocorrelation length of between 28Mand 22p. These measurements 
show that the replica method at this time only then yields good 
results with e oxy application if the carrier and the or g nal 

are 0 c~mpara equal ty . This , however , defea s the purpose of 
the re 1ica method . 
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4 . 8 . Dependence of the Scatter ng on the Pol 

The scatter n heory presen ed n Sec ' on 3 . 4 assumes hat 
he roughness 0 he m r or s he same in all rec ons an , n 
art cular tha the au ocor-rela on funct on depen s only on 
~ 2 2' t' - /)x ·t-/:},y The normal pol shing methods ndeed makes sure 

t hat there is un formity in all direc ions . Thus , n the case 
of perpendicula nc dence , the ro at onal symmetry s rna nta ned . 

Schroeder and Kl masenki [36J rna e the firs study of the /84 

influence of a preferred d rect on in the polish ng on X- ray sca -
o 

tering in the case of grazing inc dence . At a wavelength of 1 . 9A 

and a grazing angle of a out 10 arcm n the authors found a sl ght ­

ly i ncreased scat er ng n he case that the d rection of polish­
ing is perpendicular on the direction of inc dence . The measure­

ments were carrie out at at ospher c pressure . Since at such 
small grazing angles , shadowi ng effects are very important , the 
results of t hese author s cannot be extrapolated 0 the soft X- ray 
r an e . 

We have nvest gated the dependence of the scattering on the 
o 

Polishing dir-ection at 8 . 3 A and for , grazing angles between 0 . 5 and 
2° . The mirror we used was a well polished sample with kanigen on 
aluminum w th the final pol shing carried out n one direct on . 
This preferred d rect i on is eas ly recognizable in the Normarski /85 
interference microscope (Fig . 35c) . The table below shows the re­
sults of our measurements . The numbers g ven for the scattering 
contri ution refer- to the measur ng range eetween - 18 and +18 arc ­

min ; thi s means that the result ng values for g and u represent 
a lower limit . The scatter ng depends clearly on the pol sh ng 

direction : If the olishing ire tion is perpend cula:r he scat ­

tering contribution is 2- 3 t i mes the amount of the parallel ar­
rangement . In the forme r case one finds from t e scatter ng con-

o 
trlbution a roughness of (7 . 0 + 1 . 6) A in the latter (11 . 0 + 1 . 0) 
0 --

A. The scatterin - theor-y es It that n t e case of small scatter-

72 



n contribut ons the roughness u is obta ne fpo~ the relat ve 
, G" Tst r A. 

sca ter ng com one IS r as = 1111" i l1 cJ.. ha ee er ved n 

Sec 'ion 3. 4 n ependen 0 e autocor elat on fu ct on . Hence 

the result must be equa11y val d n e ease 0 a referred d -

rec on 0 01 shing . The d fference n he roughness can hen 

e explaine y assuming hat perpend cular 0 he polish ng d -

rec ion he roughness has a smaller wavele g h han as n he 

pa allel direction. The hi her spa ial frequencies of the rough­

ness correspond to larger wid s n he correspond ng scatter ng 

distr but on . If the pol shing rect on s per pend cular to 

the plane of nc dence the ntens ty s scat ered nto larger 

angular ranges w th the result t at a larger percentage falls 

outside of the measuring range . Thi then leads to the erron­

eous result that n the case of perpend cular d rec ion he 

roughness is smaller . 

o 
Pol shing direct on Grazing angle Scatter ng contribution g u (A) 

1. 0 250 0. 0 47 0 . 048 8 . 1 

2 . 01 0 0 
0 . 094 0 . 099 5 . 9 

...L 

---
0 . 500 0 

0 . 02 5 0 . 025 11 . 9 
-----

II 1. 0 250 0 . 07 1 0. 074 10 . 0 - --
2 . 0 100 0 . 2 97 0 . 353 11 . 2 ---_._--_.-. 

The image contrast of an X~ray can here fore e increased 

by choosing a large rotational speed with respect to the ax s 

of the telescope u r ng the final pol shing rocess y compar -

son w th the ax al is lacemen speed . 

4. 9. Influence of the Roughness on the In egral Ref ectivity 

Our scatter n t eory trea ed the reflectiv ty as ndepend­

en of the roughness of he' mirror samples. One suspects however 
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hat the ef~ect v ty does in real ~ po only depen on the rough-
nes u also on he chemical o er es 0 the sur ace , such as 

h possi lY presen 0 omolecular layers of fore gn matter [llJ . 

T er e are eu rently very few measurements of the reflec vi y 

ava lable n the soft X- ray range , an he results sho s gni ican 
differences . For nstance he values for the decreme of the 

r~ ract ve index vary be ween authors - von Ershov et al . [15J 
Luk rs{ et al . [27 28J , costa et al . [llJ - by more than 100% . 

Part of the d f erences is t e fac ha no always a distinct 0 

is made be een specular an~ ntegral reflect vity ' we shall under­
stand y re lect v ty in '.,-., follow ng the integral reflectiv y . 

We shall not a empt to nvestigate the discrepanc es ; this would 
have to be done w th the a d of a monochromator and include a 
chemical analysis of he surface . Ins ead we shall iscuss the 
dependence of the re lectivity on the roughness on the asis of 
sam les 38A and 39B comparing reflectivity measurements with a 

well pol shed surface y means of t~~ hromator ~.~ ~ ! B;~~ .. -,_L...J-.L..J-'-_ 

with theory . 
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F;i,gure 32a . Reflect yity for
A= 8 . 3~ -rr~.rITr ~i~i~i~i"~i~i~'~i rl~i ~i~i~i~I~I~i~'~~~~ 

x = specular reflectiv ty 
o = integral reflecti vi ty 
<> = integral reflecti v ty 
+ == Measurement Rausch 

_ = theor e ical gold 
theoretical n ckel 

- - : 
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As we w re able 0 show n Sect on 4 . 4. shadowing effects 

and multiple sca ering does not ave 0 e taken into account 

en he sea te n d s r bu on s compu ed . However as shown 
b F gs . 32 a to e these effec s nfluence he re <lect v y . 

The shadow ng effects make he mean m crosco c graz ng angle 
ffer from the macroscopic , hat s the former sh fts to larg­

er angles with LC eas ng roughness , and th s n turn results 
in a decrease of the reflectiv ty . The case of mult pIe scat ­
ter ng obv ously nfluences the reflect v ty . The decrease is 
clearly seen for samples 38A and 39B by a eompaT son of e 
measuTed and theoretical reflectivit es . /88 
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Re lect v ty for 9. 9 A. x = spe cUlar reflect v ty , 
0 -

sample 39B 
integral reflect vity 
sample 39B 
theoretical gold 

Figures 32 a to e compare the theoret cal l'eflectiv t es for 
gold ( ) and nickel (---- ) w th exper mental determ nat ons 
b y Rausch [32J ( +++ ) and those for samples 38A and 39B . The theor­

et i cal values are all above the experi men al ones . W ereas the 
measurements by Rausch with the monochromator are fa rly close 0 

o 
the t heoret cal values except at 44 . 8 A, the reflectivit ties 

of samples 38A and 39B are as much as 50% elo t he heoretical 
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Figure 32 . Heflect i vi ty for :1.7 . 6 A. 

76 



0. 0 O. S 1.0 / .S 

F gu e 32e . Reflectivi y for ' 44 . 8 

" .0 ? S .'1 . 0 

o 
A. = integral reflectiv ty , 

., <> =sample 38A 
+ :: Measurement Rausch 

___ =theoretical gold 
theoret cal nickel 

- - = 

If one forms the rat 0 of the measured reflectivity and the 
theoretically expected value a 1 near dependence of the grazing 

angle is 0 tained : 

Q( 

The quantity A as determined from the relat on A 
n _ ·L G. (ol; ) 

~ O! ; 

where n s the number of po~nts . The influence of the s adowing 
effects and 0 multiple cattering increases with ' ncreasin raz­

ing angle. Samples 38A and 39B lead to the following ~alues for 

A ( A. ) 

Sample 38A Sample 39B 

13. 3 17. 6 44 . 8 8. 3 9 .9 1 3 . 3 17 . 6 

0.22 0.30 0.32 0.21 0 •. 11 0.22 0.19 

The ortion of the incident ntensity which is lost due to the 
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rough ess 0 

ure s hen 
he surface ha ~ t e fferenee Rtheor ~ R 

e ne Y' A ( ~) thcor ( ex. , A )t 0( •• 

eas-

Iss r r s ng hat e t e Q no he iffe ence R heor -

Bmeasure V n sh for A~ O. The eason s 0 s iy t e uncerta n­
ty n he opt cal constants for la ge aveleng hs ' n a dition , 

the resolu on 0 he poor onal counte s insuff c en at the 

low photon energy . 

4 . 10 . Compar son Measurements of the Roughness 

In v e of he s n ficant exper mental effort requ red by 

ca er ng measurements in the X- r ay range other measuremen 
teehn ques for roughness should e explored . These measuring 
te hniques should ul mately prov de vaiues for small- angle scat ­
ter ng in the X- ray range . In order to avoid any d sturbance 
of the pol sing process of the telescope a techn que is pre­
ferable wh ch allows the m rror to remain in the polishing device . 

J . M. Bennet [3J gives an extensive survey of measur ng techniques 
or surface roughness and wave- type patterns . e shall in the 

foll0wi ng discuss four such methods ' the last one actually is not 
yet listed in reference [3J . 

PERTHOMETER 

The ert ometer s a mea sur ng device w ich follows mechani ­
cally the surface w· th a amond and translates height f!l:uctuations/92 

by means of induct on into electrical voitage fluctuations . The 
result is hen recorded (fig . 33) . The heig t prof Ie is use0 to 
determine the height d str ution and he autocorrelat on function ' 

the pr ocedure s shown for a 1p-diamond lapping sample n Fig . 33 . 
S nce the diamond v s bly etches t e surface n ar cular on a 
soft gold su face th s type of quant · tative evaluation makes only 

o 
sense in t he he ght ra~ge elow 50 A. T e lateral resolution is 
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a ou 1)l. In a qual a 
o 

ve sense t is poss ~ to co are samp-
1es do to a ou 10 A excep n the case of soft surfaces suc 
as gol . 

on Autocorre1at on func on 

20 //J 50 eO . )J 

F gure 31. He ght prof 1e he ght d str bution t on fundt on of a 1).1 - lapped sample . 
and autocorre1a-

The recording of 20 measurements at various pos tions and 
in ifferent directions for the sample 38A resulted for the stand­
ard dev at on () and the maximum dev ation Rt in the follow ng 
values : 

() = (11 2 . 0 -I- 17. 3 ).~, = ( 838 . 0 + 168 . 6 )h t 

An individual measur ng interval was 1 mm . Spat i al frequen~/93 
The result for the standard 

c es elow ~ti were su pressed . 2.> r I 
ev at on or the sample 38A s in agreemen with the determina­

p tion of the roughness from scatter ng measurements as 106 A. 

- Interference M croscope 

A second method for the eva1uat on of surface roughness in 
particular in the range () f: 50 , makes use 0 tne Noma:rsK inter .... 
f er ence microscope a t w n beam polar za ion interference ~ · cro­
scope [30J . L nearly pola:rized , monochromo ,· 1c 1 gh t is se arated 
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y a ollaston r1sm nto t 0 ~u ally perpend cu1ar1y olar1zed 

eams (f g 34) . The tro ea s suffer d f e ent se changes 

u 0 t ansm ss on an ef1ec on a the 0 ect If he beams are 
ought ack toge aga nand nterfere the mage reflects 

he nhomogene1t1e of e ob ec although a quant tat ve re uc -

on of the ata not oss1 le . P . At J . e Korte an R. La ne 

[23] at empted 0 0 ta1n from nterference microscope pictures 
data on e lateral struc u ng in he case of highly polished /95 

X- rays mirrors . The omarski method allows to 0 ta n a three-

d mens ona1 mpress on of the m crostruc ure of the surface and to 

compare sam 1es n a qual ative manner . 

F gures 35 a to d ShOW P ctures of he samples 38A 39B 50 

and 12 in the d fferent a1 nterference contrast according to Nor­

marsk . In a qual at ve sense the d fference between the sam­

ples 38A and 39 s obv ous . The high con rast of he scratches 
n the case of sam 1e 38A is evidence for the depth of the scrat­

ches . If a 1 near scan is ehosen across the sample and if the 

clearly vis hle scratches are counted that cross that 1 ne then 

a scratch s foun every a 0Ut ~ hat s e have a correla-
tion length T = 5p . Th s value is for 0 vious reasons smaller 

than the one obta ne from scatter ng measurements (10 . 0 I ) : 

flat and for th s reason low- frequency uneven areas are under 
represented n the estimate . However the two results agree as 

to he correct order of magnitude . 

Sam les 39B and 50 s ow approximately the same contrast 

and th s reflects the approximatel~ equal results of the scat ­

ter ng measurements . The preferred direct on during the f nal 

pol shing procedure n the case of sample 50 s clearlY v s ble 

in the Nomarsk picture . 

A pic ure w th floated glass (sample 12) s added for com- /96 

par son . The contrast s decreased aga n at places w th respect 
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Ana yzer , 135 0 

Polar zer 45 0 

Wollaston pr sm 

Ob ect ve 

M r r or sample 

F gure 34 . Basic setup of a omarsk m croscope 
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Figure 35c . Sample 50 ~ Samp~e 35d . Sample 12 
Nomarski ictures made by the Zeiss Company in Oberkochen 

L2 

U TV 

Figure 36 . The pr nciple of the ~ECO method. 

; , 
i 
1 

~ 
I 

t 
j 

samples 39B and 50 . On the other hand signific~~t disturbances 

are v sible that cannot be descr bed with the aid of a statist cal 
theory . It is for this reason not surpr sing hat measurements 

with the glass samples y eld so iffere t results . The results 
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s ly depen on he n m er 0 di tur aces tha a en to e 
o he llum na e portion 0 t e mirror sur ace . 

r~" , ..... ~.- ._.,...... -,-', _ ....... , --'--~'r"- "-"'-"~'-':--

I 

.~ ... ~.t..~_to~ : •• ___ ..... ~~ .. :..-... __ .. _~_ 

r 
........ ·-.. ~·"r·.,..,.·~~ --, 

-.0 ... , 

. j . 

...... .. -......... -~.~... . . ... --(""' ......... .-",- -.. 

. ,! 
. \ 

l ' . ..-

~ . .. ......... -, ~ .. .Io~~ .. l.-:v_"'""; .... ~-..~ ... ~ .. ~" ".~_ ... ____ •• ' 

.... :.....,~ ...... \f'_ •• _ .. 

.; '. 

'j 
. 1 

1 
·1 

) 

.j 

·Fig . 37a 
FECO image 0 sarrple 38 

Fi . 37 . FECO image 0 samp~.e 
50 . Slit perpend cular to the 
direction of polishing . 

Figure 37c . FECO i ma e of 
sample 50 . Slit parallel to 
the direction of pol shing 
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THE FEeO METHOD 

Figure 37d . 
Sample 39 . 

FEeo ma e 0 

The metho descr ed n the Ii erature y the te~ FEeO (fr n­

ges of equal chromatic order) uses ~lt pIe nte fer~nce [3J and 
o 

was develope to he po nt that roughnesses 0 only a few A can be 

evaluated (lateral resolution 2P, ) . White 1 ght s v a semi­

transpar ent plate mirrored into an interferometer whose one m rror 

surface s the sample . A lense L2 forms at the entrance slit of 

a spectrograph (L3 
p ~4) an n erference mage . 

An nterference fringe pattern is thus produced in t e mage/98 

plane of the spectrograph and th s pattern s recorded by the cam­

era . In order to cal brate the height resolution a 1 ne spectrum 

s entered on the semi - transparen plate from the left (Fig. 36) . 

Fig . 37e shows the he gh amplification as a funct on of the pos ­

ition of the str p on the image . This cal rat on y elds for the 
o 0 

indiv dual sam les an average roughness of 80 A (sample 38A) 10 A 
o 

(sample 50) both in perpendicular and parallel pos t on and 15 A 

(39B) . The resolut o~ is not good enough to d st nguish the cor­

relat on leng hs perpendicular and parallel to the d rection of 

pol sh ng (Figs . 37 b and c) , The correlat on length s less than 

l }l. 

84 



ct! 
o 4 

o 
r-i 

2 

1 
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n s an e rom the e t im~ge e e 

Figure 37e . He ght ampl ficat on as a function 01' ne position on 
the interference image . 

DIRECT LIGHT ELECTRON I TERFERE CE MICROSCOPE /99 

I 
l i b prism' 

I 
I 
I 

def e or magnet 

~ . pr sm 2 

\ 
Figure 38 , The principle of the d rect light electron interfer­
ence m croscope. 

The ray path of the d rec 1 ght nterference m croscope is 

s milar to that of he Nomarski m croscope (F , 38) , However n 

h e case of electron nterference the nterfer ng beams are spat -
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ally separated on he 0 Jec [26J ' A electron earn is separated 

into t 0 equal eal/lS 'Y a b ' PI' sm . The wo coherent e ms reach 

he m rror sam Ie via elector ma ne , an ere hey are reflecte 

b means 0 an ap ro r ate co n er vol a e. tf the electrons are 
suff1c ently monochromatic and f he counter voltage s only a 

little a ove he accelera 1ng voltage so hat all electrons are 
reflected just in ron of the mir!'or (l P ) then a fr nge pattern 

s produced by he su sequent superpos ion of the coherent elec­
ron bea s . Th s pattern shows the form of the counter voltage 

just in ront 0 the mirror su face and hence proved there are 
no magnetic or electrostat c nclusions , the surface form tself . 
This metho allo s the measurement of height differences in steps /100 

o 
of 0 . 1 A accord ng to reference [26] . 

The method has been tested with sample 61 : The surface pro­
f Ie was determined a 20 d fferent posit ons and the average 
roughness computed in the spatial f equency range t 1..0/ e ween -=1T)l 

and . .!::E:. Whereas sca tering measurements produce n th s 
1~fl 0 

frequency range a roughness of (2 . 54 ± 0 . 44) A (see Section 4 . 3) 

the roughness obtained from the electron nterference microscope 
o 

pictures resulted in (3 . 2 ± 1 . 2) A. Within the stated error 1 m-
ts the t 0 measurements are in agreement. Thus we conclude 

that the 'measurement of surface roughnesses with the a d of the 
rect 1 ght electron interference m croscope 'Y elds even for 

o 
very small roughnesses of the order of a few A results that al -

low to predict correct~y the scattering ehav~or v a scatter ng 
theory 

T e measurements with the d rect light interference m cro­
scope were made y Dr . L chte of t he 'Institute for Applied Phys cs 
of the Un ver s ty Tubingen (Director Professor Mollensted ) . 

I would like to thank the gentlemen for 
ation . 
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5 . SPECTRO COP TH TELESCOPE TRA S ISSIO GR G 110i 

5 . 1 . Introduct on 

Si nce hermal processes ar e respons Ie for the X~ray em s ­
sion of many cosm c X- ray sources one expects 1 ne emiss ons . 
hereas the spectrum of a piasma a 50X106 K wi h an average ele-

o 
men t aundance shows isolated lines at 1 . 9 and 11 . 2 A [ • H. 
Tucker and M. Koren [42JJ hat can be resolve h he limited 
r esolu on of a propor ional coun er as as done f rst for Cyg­
X~ l [34 37J the resolving of lines at 5 x 106 K requires already 

a resolving poweF of about A~ = 50 Th s special resoiving 
power can be achieved in a w de energy range y a comb nation 
of X- ray telescope and ransmiss on grating [4 5 22J . We shall 

n t he following d scuss the image errors that appear in th s 
corn nation and suggest means for their correction . 

22.5 

B no .t' 
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":.t 
. ~ ~ 

.II 
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)' /1! 
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)' 

F gure 39 . Spectrum of optically thin plasmas . a . T 

. T = 5xl06 K. acc0rding to Tucker and Koren [42J . 

;:: 50 xl06 K. 

' 5 . 2 . Gr ating Errors and Correct on Possibili ies /102 

:L t us f 'rst cons ider the case where the transmission grating is arranged 

beh 'nd the telescope . We shall not take image errors of the telescope into 

a ccount , i ns t ead we assume t hat the source is i n i ne optical axis . Thus the 

grat 'ng ' s i l uminated converg ntly (Fi g . 40) ; t hen t he well-known error s 

the thi rd ord r appear. Their ca l cula t ' on and discussion uses Fermat ' s 

Principl : If the reference f rame i s def ' ned such t ha the x- axis is identical 

with the op ical axis and the yz- pl ane w'th t he pl ane of he gra ing then 

t he f ocal point has he coordinates Po(D,O,O). PI (O,y z) is the locus of 

gr ating passage of the beam, P
2
(D,y',z') the observing point in the focal plane. 

Then according to Fermat s 87 



nc pIe , he path 

must be an e remum ' dew z) 1s the d stance be een neigh 0 ng 
gra ing elements . 'f the path d f erences are expresse y he 

coordi ates y z y ' z ' and f the derivat ves w th respe c to 
y and z a e ormed then 

, I 
y 'l. Y 

dv (49) ~ 7. 'Y Y :x 1_ J D = - Tj)r 1- -p-P) ell. d. ( w. ) 
0 . 

... ("> 2 , 3 ,2 2 ' + ,3) 1'1'1). .:L. + + D - 01 J y Y - y y z yy 
cA (Y. (50) 

e no ntroduce the coordinates of the Gaussian mage point 
of the mth opc'ler the.t 1s i& == -i and ~ :-: 0 and f we 

P , 0 0 

set y ' = y ; + "'( z:= z; + ~ andd ( , z ) = d
o

(1 + (} (y , z ) n 

Eqs . (49) and (50) where dO is the gra ng constant on the 

optical axis then we obtain for the displacement of the Gaus ­
s an image point 

'; = ~A [ ~ ( ~/+ +(;t - 3>' mA. 1 ( I11A)1. d( 'l. ) ] 
TO d;" + ""T ~ - . 'I, c 1( 51) 

'd y 
() ~ J S (w, c) c1 w J 

., ~ (,)2) 
D focal plane 

/o~X 
--~'- - - - P-

o 2 

1-
order ,. 

L 

//' convergent beam fro 1 the 
(/ X- ray telescope 

.... Figure 40 . 
Transmiss on grad ng n the con­
vergen beam pa h 

y' 



The rs t 0 erms n Eq . (5~) ~get e wi h he f rst term 

o Eq . (52) e cr be he comat cerro . Tf we co s der the case 

where only a small r ng of ~a ius R is 11um na e on the grat n~ 

hen the comat c er or pa tern sac rcle of la uS r = .1. ( B. )'2. A D 
. l.. D -;r-' 

h ts cen er displaced y 2r th espec to he Gauss an mage 

po nt . Tn the case of an equ d stan grating ( b = 0) the coma 1c 

e ror s dorninan fo small wavelengths . If, by con rast /104 

O(y , z ) = .1 ( ':I ) 2 + J.. ( .7::.. ) 2 
() ]- n 

S chosen , then he comat c error isappears a1 oge her s nce 
y 

) 2 2 y ? ';;l [1 \./ 1 'l. 
5i". "i" ( 0 + - ( D ) d" - - D;:-

0 

Thus , a coma-corrected grat'ng mus have a g at ng "constant " that 

creases toward the edge · n the cas~ 0 the 32 cm te1esco e the 

grating period would have 0 e varied y 0 . 01% . Such a var at on 

is prac cally mpossi 1e for ' ra ing constants of 1p or 0 . 5p as 

are considered currently for soft X- ray wavelengths . A techn cally 

less di ficult solution for the coma correction is the ntroduct on 

of a curva ure into he grating · this s shown in F gs . 41 a to d . 

The errors ~ and ~ as defined above are stated . Pa~ticularlY in­

teresting for oin sources is he alte~native 41b since n the 

case of X- ray telescopes r2+ ( -;;)2 is very nearly constant . The 

coma ic error does adm ttedly not d sappear altogether , but it does 

not really make the reso1ut on power much worse , since it only 

displaces the pos ion of one 1 ne e An add t ,onal correction is 

possible by introducing a curvature of the focal plane [5J . 

The spec ra1 resolut on ~ s given by the i age error n he 

d rect on !:ty' of he d spers on to read 

1\ mA D 
I.A :: cJ... by ' (53) 

The spectral resolution is dim n shed n addition to the conse ­

quences of gra ng e rors y image errors of the telescope DT , 

and h e fin e reso1u on of he detector b 
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F g . 4la . ec on y eans 
o va a 0 he gra ng e 0 

L =-[1 - 2..')Io .-:P-D.t. ..." 

1..' _ m [_ ..!. 1: ""~ 1 
o '. l.. 0 .1.0 

Fig . 4lb . Curva ure pe pend ular 
o the gra ing d rect on aro n he 

focus : 

Figure 41c . u va ure parallel to 
he grating d reet on around the 

focus : 

Figure 4ld . Spherical cu~vature 
around the focus : 
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~igure 42 . Comparison of the spectral resolu ion of a trans­
mission grat ' ng n the eam pa h of an ~ray telescope ( ~(= 1.5°, 

f = 300cm, D = 24ocm, d = o. Sp ) ) w th the resolution of cr -
stals and prop or ional coun ers 
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y' ) 2 _ (Ll'l' ) 2 + ( ) 2 + (6 ) 2 /107 

He e , '~is he g at ng error n he ec on of d s ers on . 

F gure 42 s 0 s a compa son of he reso1ut on n various 

cases : The sol d 1 nes are the reso1ut on power of a transrnis ­

s on grating toge her th a x- ray e1e cope (f = 300c = 1. 5°) 

~i h or thout coma correc on or wo fferent values of the 

angular resolution po er of he e1e cope - detector system . At 

the short wavelengths this angu1a reso1u on power s the dom­

inant fac or so tha he spec ral reso1ut on is pro or onal to 

~ whereas for large ave lengths the reso1u on s pro or iona1 

to "\ -1 f th A ue 0 he increase 0 east gma sm opor ona1 to 

A2 Tn the case of the high- reso1u on elesco e (2 . 3 arc sec) 

he grating correction results in he opt mum wavelengt range 
o 

(30 to 40 A) in an mprovement by a fac or of 5 . ~ = 1 in this 

representat on dentif es the wavelength where the optical depth 

of 0 . 5~ gold grating clemen s reaches unity . In he mos favorable 

energy ranges the spectral reso1u on of he telescope- grating 

comb nation s comparable wi th that of h gh- reso1ut on c ysta1 

spectrometers . 

The results of Section 5 . 2 were publ shed in reference [4J . 

5 . 3. Posit on of the Transmission Grating /108 

So ar we were concerned with the case where the transmiss ­

on grating was placed into he conve-rgpnt beam path behind the 

telescope . T - on the other hand the transm ssio grating is 

placed in front of he - ray telesco e then t is met y a plane 

wave and no 

t on s requ 

n nth order 

mage ~rrors occur in the gra ing so that no correc ­

red for the g a ing . However the elescope now Sees 
m"f.. 

the source by ~ 

suIt t at the off- axis errors of 

ou side of he axis , with the re ­

he telescope become mportant : 
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) + 4t ~ - ant 

gra ing eh n 

... 1x' ( E 2) ) 
C = d " see q . . In the case of • 

he te eseope we have for the error 
he uncorrec ed 

here t 

~ ( ; ~) t: n 
2 

40< + ~ ~ 7" X ) 2 t n 4 c{ 

anc _or he correc ed gra ng 

The 1 m for the most favora Ie pos on of the gra ng n front 
of or behi d he elescope then reads 

(54) 

n the case of the uncorre ted grating and 

(55) 
in the case of the correc ed grat ng (full coma correct on) . Fig . 
43 show's this limit ng line for a typical paraboloid length to 
focal length rat 0 of 0 . 1 - both cases are represented . In the 

Shade area the position of the gra ing behind the telescope is 
mor e favorable . not corrected 

(116 

~ 0.1 2 
o 
E 0.08 

o.Ol) -

/ 

" " " 
" 

" " " 

corrected 

20 [, 0 0 I 80~ graz ng ang e 20 LtO 

Figure 43 . rtep esen~a i on of he areas n which the Poi-tion of 
the grat ng behind the telescope causes 1ess erro han in t Je pos ­
i tion n front of the telescope ' dashed curve : ~ = tan~ 

-;x: 
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If no coma correct on s appl ed the pos on beh nd 1109 
he telescope s only n a s all area more favor ble than he 

pos on in fron of the telescope . By contras f he coma 
correct on to the grat ng s appl en then for nearly all graz­

ng angles an wavelen~ths ( -:!:f t 0( )the pos t on beh nd he 
• 

telescope .s more favorabl e . If only alf t coma error s cor-

rected the limit does not depend on the wavelength : ThA pos on 
hphipd the telescope s mo e favorable if t a n O( !:: If - ...:e..' (for 
!:r. - 0 l' d.." 3. 3 u . 30 f f •. ) . Thus n the s oft V __ ~y range he pos -

it on o f the gra ng s optimal beh nd he telescope · n the XUV 

range a gang in fro t of 

f a coma correct on 0 less 

he telescope may be more favorable 

han one half s poss ble . 

6 . SUMMARY 1110 

The crucia~ point for a h gh- contrast mage n the soft X- ray 

range of a mirror telescope is op mum pol sh ng . We have shown 

on the basis of extens ve scat er ng stud es w th plane samples 
that , as de from the glass and glass/ceram cS mater als well - known 

from opt cs such as quartz herasil zerodur and homos I metals 
such as kanigen may y eld good results : The bAs metal samples 

o 
show scatter ng that corresponds to roughnesses between 2 and 3 A. 

The dependence of the scatter ng on the wavelength and the 
graz ng angle was stud eo on the bas s of three samples of d ff ­

erent qual ty and compared w th the statistical surface scatter ­

ng theory . We were able to show that volume effects do no ~on-
o 

tr bute s ~gn f cantly down to a surface qual ty of the order of 2 A. 
The appl cab lity of the surface scatter ng theory was ver f eo 

by means of surface roughness measurements with the aid of perth­

ometers , the FECO method , and the electron reflection m croscope : 
D rect measurements of the roughness lead to the same results as 

the roughness detern nat on from X- ray scatter ng measuremen s 

together w th the Sea ter ng theory . 
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A ly ng op m ze 01 s ng methods and rna er als to the 

a per cal sur aces 0 he 32 cm telescope has led 0 a sur ace /111 

qual ty hat seven compara le to ha of he glass m rrors of 

he h gh- resolu on HEAO- B telescope : W ereas the HEAO- B ele -
° irror sho s an average roughness between 30 and 50 A for 

he ess pe fec samples , the roughness of the m rrors of the 32 
° cm telescope s below 15 A. 

We have determined y means of computer s mula on the po nt 

mage unct on of he 32 cm elescope and i s dependence on he 
off- ax s angle and the posi on of the de ector plane . The rms 
w dth of the point mage func on can be improved y a factor of 
about 2 y displac ng he mage plane at fixed off~ax s angle ; the 
FWHM width remains n he process essentially constant Thus , the 
po n n is extremely mportant for as rophys cal scatterin halo 
measurements . Opt cal ests have shown hat the 32 cm elescope 
is even w th respect to he po nt resolut on cornpara le n quality 
to the HEAO- B m rror . 

The use of transmiss on grat ngs in connect on w th the teles ­
cope n the X- ray range promises hope for significant improvements 

of t e s ectral resolut on f compared w th pr oport onal counters 
or semiconductor counters . The coma- corrected gra ing reaches even 
a esolut on tha s com arable to ha of crystal s ectrometers . 

Tn the XUV range the posit on of the grat ng behind the telesco e 
s even with partial coma correction less favorable than the posi-

on n front of the telescope , f (in the case of typical m rror /112 

length to focal length at 0 of Lf/ f =0.1) he grazing an les exceed 

3° . 

The measurements repor ed in his thesis were carried out at 

he Astronomical Institute of the Un vers ty Tub ngen and at the 
Max- Planck Ins tu fur extraterrestr sche Phy sik n Garching . Pro­

fessor Trumper has a'ided me y u eful discuss ons and sug est ~ons 

hich were c ucial for t he efini ion of the themes of my work . I 
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help 
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and 0 Dr . L chte for he reduct on of 

he omparis on measurements wi h the electron n erference micro­
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