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NOMENCLATURE

a design variables, eqs. (i)

b design variables, eqs. (i)

c airfoil chord, m (ft)

cd section drag coefficient

c£ section lift coefficient

c section pitching-moment coefficient referenced to quarter chord
m

Pl - P=
C pressure coefficient
P q_

C * pressure coefficient for M£ = 1P

f shape function, eqs. (I)

g shape function, eqs. (i)

h tunnel height, m(ft)

M free-stream Mach number

m shape function exponent, eqs. (2)

n shape function exponent, eqs. (2)

p static pressure, N/m 2 (ib/ft 2)

q dynamic pressure, N/m 2 (ib/ft 2)

R Reynolds number based on free-stream conditions and airfoil chord

r shape function exponent, eqs. (2)

s shape function exponent, eqs. (2)

" x airfoil abscissa, m (ft)

y airfoil ordinate, m (ft)

Subscripts :

max maximum

£ local

iii



free stream

wall correction factor

angle of attack
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SUMMARY

A 10-percent thick helicopter rotor section designed by numerical optimi-

zation has been tested at Mach numbers of 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75,

0.77, 0.79, 0.8, 0.81, 0.82, 0.83, and 0.84 with Reynolds numbers ranging from

1.9x106 at Mach 0.2 to 4×106 at Mach numbers above 0.5. During the design
process, emphasis was placed upon achieving acceptable maximum llft coeffi-

cients at Mach numbers below 0.6, a drag divergence Mach number of at least

0.8 at lift coefficients near 0 and low pitching-moment coefficients.

Test results have shown that the maximum lift coefficient decreased from

approximately 1.33 at Mach numbers of 0.2, 0.3, and 0.4 to below I at Mach 0.7.

A drag divergence Mach number of 0.82 at lift coefficients near 0 was achieved

with some "drag creep" at Mach numbers above 0.6. Pitching-moment coefficients
at zero lift decreased from approximately -0.01 at Mach 0.2 to -0.03 at
Mach 0.8.

INTRODUCTION

An automated airfoil section design program utilizing a conjugate gradi-

ent numerical optimization algorithm (ref. i) coupled with an aerodynamic

analysis program (ref. 2) has been used successfully in the past to design

advanced airfoil sections at low to transonic speeds (refs. 3-5). A major
advantage of design by numerical optimization is that the designer may consi-

der multiple design points simultaneously during the design process. For

" example, "drag creep" was eliminated during the design of an advanced super-

critical airfoil section for Mach 0.78 by imposing a drag constraint at Mach

0.76 (ref. 3). The constraint prevented the optimization code from seeking a

. profile which was highly design-point optimized without regard to off-design
performance. Such directconsideration of two design conditions would be

" difficult, if not impossible, with inverse design methods. This feature of

design by numerical optimization makes it useful in the design of rotor sec-

tions since several design conditions must be considered simultaneously dur-_u_

ing the design process. Some of these design conditions are high maximum-lift

coefficients and good stall characteristics from Mach 0.3 to 0.5, a high
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lift/drag ratio at Mach 0.6 and c£ ~ 0.6, a drag divergence Mach number of at

least 0.8, no "drag creep", and low pitching moments over most of the Mach

number range. To achieve all these conditions the optimization code must

monitor and constrain certain aerodynamic parameters at five or six different

combinations of Mach number and angle of attack. Such a design problem

inevitably means compromise and would normally be carried out by trial and

error with the designer making all decisions and providing all computer mani-

pulations. With numerical optimization, the computer makes many of the design

decisions thus reducing the time and manpower required during the design pro-
cess. While there are no fundamental limits on the number of design points

that can be considered, there are cost limitations. For example, a typical
five-design-point problem would use approximately8 hr of CPU time on a CDC

7600 computer._.:During the stUdy reported here, three design conditions were

considered. Two conditions addressed the high-lift performance of the retreat-

ing blade while:the third consideredadvancing blade performance. "Drag-creep"
and hover performance were not considered in order to reduce computing time
and cost. As will be shown later, omitting"drag creep" from consideration
compromised airfoil performance above Mach 0.7.

DESIGN METHOD

Only a brief description of numerical optimization will be given here
since a complete discussion of the technique can be found in reference 6.

• Airfoil design by numerical optimization starts with a baseline profile

provided by the designer. The baseline profile can be somewhat arbitrary but
is usually chosen from a family of airfoils which exhibit some of the charac-

teristics desired by the designer. Such a choice reduces the time and cost
required to finalize the design.

• The airfoil geometry is represented in the design program by the follow-
ing equations

= YUSbaseline . _i aifi 1

Yus

+ _big i (i)Y£s Y£Sbaseline .

where YUSbaseline 'and Y£Sbaseline are the ordinates of the upper and lower

surfaces of the baseline airfoil, ai and b i •are the participation coefficients

(design variables) and fi and gi are the shape functions which are added

linearly to the baseline profile by the optimization program to achieve the

desired design improvement. The contribution of each function, fi or gi, is
determined by the'value of •the participation coefficients _ ai and bi. The
shape functions, fi and gi, can• be any smooth function defined over the air-

foil chord, but experience has shown that the following functions give accept-
able results from most design problems:



m

fi or gi = sin[z(x/c)n]

or (2)

(x/c)S[l- (x/c)]
fi or gi = er(X/C)

where n, m, s, and r are exponents which determine the chordwise locations

and/or magnitude of each shape function. Such functions are well suited to

airfoil design because the effect of each function can be concentrated over a

limited region of the airfoil.

The optimization design process begins by setting all participation coef-

ficients to zero so the first computation gives the aerodynamic characteristics

of the baseline profile. After computation of the characteristics of the base-

line profile the optimization program changes the participation coefficients,
one by one, from the initial value of 0 to a small number _ << I. The aero-

dynamic analysis of each perturbed airfoil was obtained and used to calculate

the gradient of the aerodynamic coefficients with respect to each design vari-

able. The importance of each shape function in achieving the design goals can

be ascertained at any step during the optimization process by observing the

value of the participation coefficient associated with each function at that

step.

The optimization design program used during this study permits the

designer to designate one or more of the aerodynamic quantities to be mini-

mized or maximized as the objective function. All other aerodynamic and geo-

metric quantities pertinent to the design are treated as constraints. The

designer must decide which parameters will be treated as constraints and which

will be the objective function. If the choice is not obvious it will be

necessary to use trial and error to determine which combination of objective

function and constraints gives the best overall result.

During the present study; the shock-drag coefficient at M = 0.82, e = 0°

was chosen to be the objective function. Constraints were imposed on the

shock-drag coefficients (cd S 0.001) at M = 0.4, e = 12 °, and M = 0.5, e = i0 °
to delay retreating blade shock-stall. The shock-drag objective function

forced the optimization program to seek a shock-free airfoil at M = 0.82,

= 0°. As the optimization process proceeded it became clear that the pro-

file required for good advancing blade performance would not necessarily pro-

duce good retreating blade performance. Hence, the designer had to decide if

" the drag constraints imposed at M = 0.4 and 0.5 were too restrictive and

whether or not to require a shock-free profile for M = 0.82. In other words,

" the design required a compromise and it was decided that the design process
._ should not be completely automated for this first application of numerical

optimization to the design of a rotor section. Hence, the designer remained

in the "loop" for the entire optimization process monitoring design progress,

adjusting shape functions, altering constraints, and changing design conditions

in an effort to find the most suitable compromise ....



The aerodynamic analysis code contained in the design program does not
consider the effect of viscosity. Hence, several intermediate airfoils were

selected during the design process for boundary layer and stall analysis. If

boundary-layer growth appeared excessive or premature separation was indicated,

adjustments were made to the shape functions and/or constraints to guide the
optimization process to a more efficient airfoil.

The airfoil selected as the initial profile to start the optimization

process for this design problem was a Wortman airfoil designed for helicopter

applications. This profile was chosen since it already exhibited some of the _'

desired characteristics of a rotor section and hence would require less com-

puter time to achieve the final design. The profile resulting from this

demonstration of design by numerical optimization is designated the A-I air-

foil since it is the first rotor section designed by numerical optimization at
Ames Research Center.

APPARATUS AND TEST PROCEDURE

Model

An airfoi! model of the A-I airfoil (shown in fig. i) was machined from

a stainless-steel billet (the profile coordinates are given in table i). The
' mode i had a chord of 15.24 cm (6 in.) and a span of 60.96 cm (24 in.). The

model was equipped with 24 upper-surface orifices and 23 lower-surface orifices .

drilled normal to the surface to determine the pressure distribution on the
model surfaces.

Wind Tunnel

The test was conducted in the Ames 2- by 2-Foot Transonic Wind Tunnel, a

variable-speed, continuous-flow, ventilated-wall, variable-pressure facility.

The tunnel can be used for two-dimensional testing by replacing the ventilated

side walls with solid walls where model-supporting thick glass windows are

mounted. The windows are rotated by a motorized drive system to change the

angle of attack. A 82-tube drag rake located 1.75 chords behind the model

trailing edge was used to survey the model wake. Airfoil models are mounted

spanning the horizontal dimension of the tunnel test section so that the
center of rotation is near the 25-percent chord station on the model. The

gaps between the side walls and the end of the model were sealed.

Instrumentation

d

Measurements of the model surface pressures and the wake-rake pressures

were'made by an automatic pressure-scanning system that utilizes precision

pressure transducers. Basic tunnel pressures were measured with precision

mercury manometers. Angle of attack was measured with a potentiometer operated

by the drive gear for the rotating side windows. Data were obtained by a

high-speed, data-acquisition system and recorded on paper tape.
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Tests

The section aerodynamic coefficients of the A-I airfoil model were
obtained at the following nominal test conditions:

M Rxl0-6
0.20 1.9

. .30 2.5
.40 3.5

• .50 3.5
- .60 4.0
• .70 4.0

.75 4.0

.77 4.0

.79 4.0

.8O 4.O

.81 4.O

.82 4.0

.83 4.0

.84 4.0

The angles of attack ranged from approximately -2° to stall. At the higher
Mach numbers it was not possible to obtain data for a fully-stalled condition

because of severe vibration of the wake rake due to the unsteady loads
induced by total flow separation over the upper surface of the model. Data
were obtained for all test conditions with free transition only.

Pressure coefficients were determined from surface pressure measurements.
Section normal-force coefficients, chord-force coefficients, and pitching-
moment coefficients were obtained from an integration of the pressure coeffi-
cients. The pitching-moment coefficients were referenced to the quarter-chord
point. Section profile drag was calculated from the wake-rake total and
static-pressure measurements.

The model angle of attack was corrected for the presence of the tunnel
walls by the following equation:

As = 6(c/h)c£

where As, 5, c/h, and c£ are the angle-of-attack correction, correction
factor, model chozd/tunnel height ratio, and section lift coefficient, respec-
tively. The angle-of-attack correction factor 6 is a function of Mach
number. The following values were used and the corresponding As was added
algebraically to the model geometric angle of attack expressed in degrees:



M 61

0.2 5.4
.3 8.5
.4 10.6

•5 11.9

.6 12.5

.7 12.8

.75 12.9

.77 12.9 ""

.79 12.9

.80 13.0

.81 13.0

.82 13.0

.83 13.1

.84 13. i

RESULT AND DISCUSSION

The basic aerodynamic force coefficients for the A-I airfoil are shown

in figures 2(a) through 2(n). The lift curves indicate that the stall charac-

teristics are fairly abrupt at Mach numbers 0.2, 0.3, and 0.4 but become much

more gradual at Mach numbers greater than 0.4 (compare fig. 2(a) and 2(e)).

The stall characteristics were difficult to determine at the higher Mach num-
bers due to severe vibration of the wake rake under conditions of massive flow

separation. The lift curves exhibit some nonlinearity at the lower Mach num-
bers which may be due to variations in transition location.

The drag polars at Mach numbers below 0.7 show a minimum drag point at
lift coefficients above 0.3 due to an increase in laminar flow over the lower

surface which is caused by the pressure gradient changing from adverse to

favorable near the leading edge (compare the pressure distributions in figs.
3(a) and 3(d)).

The pitching-moment curves exhibit some nonlinearity with incre@sing lift
coefficient which may be attributed to variation in the transition location.

The pitching-moment coefficient at zero lift decreased from approximately

-0.01 at Mach 0.2 to -0.03 at Mach 0.8. Pitching moments of this magnitude

are somewhat greater than desired and are due primarily to the inability of

the aerodynamic theory contained within the design program to predict the
pressure distribution accurately near the trailing edge.

Pressure distributions for all test conditions are shown in figures 3

through 16. Of particular interest is the pressure "peak" appearing near the
leading edge on the lower surface at low lift coefficients for all test Mach

numbers. This pressure "peak" is due to the flow accelerating too rapidly
around the leading edge of the lower surface and is a result of too much

iThe correction factors, 6, were determined during a tunnel calibration
conducted by L. S. Stirers, Jr.
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forward curvature. The pressure "peak" could have been minimized during design

by imposing a constraint on shock drag at a Mach number slightly less than 0.8

to avoid "drag creep." Such a constraint would have forced the optimization
code to seek a curvature distribution which would accelerate the flow more

gradually along the lower surface, thereby delaying shock development until

after "drag rise." The pressure distributions along with the drag curves

clearly show that the lower surface pressure "peak" was the main contributor

to the "drag creep" of the A-I airfoil. Further work is needed to assess the

effect of changing the leading-edge contour on the overall performance of the
profile.

The upper surface pressure distribution exhibits a slight pressure "hump"

over the forward region of the profile at low lift coefficients which gives

rise to a weak shock at transonic conditions. The moderate adverse pressure
gradient following this "hump" would cause transition to occur near the lead-

ing edge at low Mach numbers but would not cause separation for typical flight

Reynolds numbers as indicated by the good trailing-edge pressure recovery.

Summary curves of drag coefficient vs Mach number for lift coefficients

from 0 to 0.5 are shown in figure 17. The "drag creep" due to the pressure

"peak" near the leading edge on the lower surface discussed earlier is clearly

evident above Mach 0.6 at c£ = 0. As the lift coefficient increases, the
pressure "peak" on the lower surface decreases and the "drag creep" is replaced

by an early "drag rise" due to increasing shock strength on the upper surface.

Summary curves of pitching-moment coefficient vs Mach number for lift

coefficients from 0 to 0.5 are shown in figure 18. The desired range of

-0.01 S cm S 0.01 was achieved only at Mach 0.2 for all lift coefficients'but
was attained at Mach numbers to 0.7 at" lift coefficients of 0.4 and 0.5. The

difficulty in achieving low pitching moments was due primarily to two factors:

first, the aerodynamic theory contained in the design program did not predict

the pressures near the trailing edge well enough, and second, the magnitude

of the pressure "peak" near the leading edge on the lower surface was under-

predicted by the theory for some flight conditions causing the importance of

the "peak" to be underestimated. If the "peak" were eliminated the suction

pressures over the forward lower surface would be minimized thereby reducing _'

the nosedown pitching moment.

A summary plot of maximum lift coefficient vs Mach number is shown in

figure 19. The maximum lift coefficient remains nearly constant from Mach 0.2

to Mach 0.4 at a value of approximately 1.33 and falls rapidly thereafter.

. The constancy of maximum lift coefficient at lower Mach numbers is due in part

to increasing Reynolds number with increasing Mach number, but it also reflects

the favorable pressure distributions generated by the design method at

" M = 0.4,

Some typical experiment-theory comparisons are shown in figure 20. In
° general, the theory predicts the basic Character of the flow fairly accurately. ....

However, there are discrepancies between experiment and theory in some areas. .....

First, the trailing-edge pressure recovery is consistently overestlmated_" _-'_



theory, even for attached flow. Second, the shock location shown by the exper-

imental data is somewhat further aft than indicated by theory (figs. 20(g) and
20(h)). Finally the theory tends to give poor drag prediction. A rather

surprising feature of the experiment-theory comparison is the good agreement

for the low Mach number, high lift condition (e.g., fig. 20(b)). This agree-

ment was not anticipated because the Nash-McDonald, integral, boundary-layer
method used to correct the potential aerodynamic theory was developed for

flattop transonic pressure distributions with concave pressure recoveries.

The fact that the theory reproduces the main features of the flow reasonably

well makes a redesign effort of the A-I airfoil possible. A complete descrip-

tion of the theoretical aerodynamic analysis program used for the experiment-
theory comparison can be found in reference 7.

CONCLUDING REMARKS

An advanced helicopter rotor airfoil section has been designed by numer-
ical optimization. The section is intended for use on rotor blades of con-

stant profile and therefore was designed to exhibit acceptable aerodynamic

characteristics over a wide range of Mach number, angle-of-attack conditions.

Such a section would be expected to be less than optimum at each condition.

-_Wind-tunnel test results have shown that a drag divergence Mach number

of 0.82 at zero lift was achieved with a maximum lift coefficient of approxi-

mately 1.33 at Mach numbers of 0.2, 0.3, and 0.4. Test Reynolds numbers varied

from 1.9x106 at Mach 0.2 to 4x106 for Mach numbers greater than or equal to
0.6. A modest amount of "drag creep" occurred at low lift coefficients at

Mach numbers above 0.6 due to rapid acceleration of the flow to supersonic

speed along the lower surface. The leading-edge bluntness which caused the
acceleration was developed to promote acceptable stall characteristics and

C£max at intermediate Mach numbers. More work is needed to find a better

compromise profile which will exhibit good "drag-rise" characteristics, accept-

able C£max , and no "drag creep."

In spite of the deficiencies found with the A-I airfoil, numerical opti-

mization has been found to be a good technique for rotor section design; the

main advantage being the ability to consider multiple design conditions simul-
taneously during the design process.

The test results validated the basic approach for the multiple design
point problem of rotor blades with conflicting requirements.
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TABLE i.- COORDINATES FOR THE

A-I AIRFOIL

0.00000 0.00000 0.00000
.00020 .00238 -.00233

.00050 .00377 -.00338

.00100 .00541 -.00472

.00200 .00766 -.00651

.00350 .01013 -.00844

.00500 .01214 -.00995

.00650 .01388 -.Oll20

.00800 .01543 -.01227

.01000 .01732 -.01350

.01250 .01945 -.01482

.01600 .02214 -.01634

.02000 .02490 -.01777

.02500 .02801 -.01922

.03500 .03335 -.02137

.05000 .03991 -.02365

.06500 .04523 -.02549

.08000 .04961 -.02710

.i0000 .05421 -.02902

.12500 .05829 -.03104

.15000 .06098 -.03277

.20000 .06344 -.03551

.25000 .06431 -.03727

.30000 .06446 -.03828

.35000 .06409 -.03866

.40000 .06316 -.03848

.45000 .06154 -.03782

.50000 .05924 -.03665

.55000 .05623 -.03501

.60000 .05249 -.03297

.65000 .04792 -.03056

.70000 .04246 -.02785

.75000 .03600 -.02486

.80000 .02860 -.02153

.85000 .02064 -.01786

.90000 .01260 -.01374

.92500 .00899 -.01144

.95000 .00598 -.00888 q

.97500 .00392 -.00603

.99000 .00322 -.00421 •

1.00000 .00299 -.00300

I0
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Figure I.- Helicopter rotor sectionA-I.
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Figure 2.- Aerodynamic characteristics of airfoil A-I; transition free.
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Figure 2.- Continued.
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Figure 2.- Continued.
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Figure 2.- Continued.
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Figure 8.- Pressure distributions for A-I airfoil, Mset = 0.7.
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Figure 9.- Pressure distributions for A-I airfoil, Mse t = 0.75.

79



M = 0.750• M = 0.750
R = 3.98(10) 6 R = 3.96(10) 6

-1.2 - o C£= 0.203 - o, C£= 0.266
* * Cd = 0.0108 * Cd = 0.0119

, Cm = -0.0168 Cm -0.0144
-.8 * * =

o. *

cG -.13 <>

-.4 _0 ******* -, ***0, 0

Cp * _oseo o moooo Omr_ m eo 8_ o
_m° °mmmeOmmommo8

0 8o -

*_ * %o _

.4

.8-
i

1.2 I I I I (e) f I I I I (f)=
0 .2 .4 .6 .8 1.0 0 .2 .4 .6 .8 1.0

x/c x/c

-1.6 - M = 0.750 M = 0.748
R = 3.94(10) 6 R = 3.93(10) 6

C£= 0.347 * * , C£= 0.424
-1.2 * * Cd = 0.0137 Cd = 0.0163

Cm = -0.0160 , Cm = -0.0175
-.8 o * *

. cG c;
-.4 _:_ o

"0"**O***<) 0

Cp . o , *

"emmmm ee mer_ meoo o e 88 ° emer, o r_o o o r__ e r_n mr, _;O, Br_

.4 ;

.8 -

1.2 = I I I (g) l I I I = (h) ( -
0 .2 .4 .6 .8 1.0 0 .2 .4 .6 .8 1.0

x/c x/c

Figure 9.- Continued.

8O



-1.6 - M = 0.749 M = 0.751
OOOR = 3.95(10)6 <_ o <> R = 3.93(10)6

o OO

-1.2 - C_= 0.547 <> C£= 0.655
o Cd = 0.0228 <_ Cd= 0.0333

o Cm= -0.0177 <_ Cm= -0.0210
O

-,8 m

o
<)

o
-.4 -

Cp ° o <_¢, o <_
O O O<> O

0 ._z_:jo ° ° ° '_D ° D _ a ° r_O8 _ r_ _ D_Oooor_Dr_aa_Dega

.4 -

.8-

1.2 <' I 1 I = (i)= , s I I I (J) l
0 .2 .4 .6 .8 1.0 0 .2 .4 .6 .8 1.0

x/c x/c

Figure9.- Continued.

81



M = 0.752 M = 0.753
-1.6 o o _ R = 3.92(10)6 - _>_>_>o o R = 3.90(10)6o _0 0

o C_= 0.761 _> C_ = 0.843
o Cd = 0.0475 o Cd= 0.0587-1.2 - o

o Cm = -0.0341 Cm = -0.0424
<>

-.8 o o - o

c; c;
O _ 0

-.4 "_ '_ -
0 o

Cp _> _>o0 0
_>

0 _ r_OO mmr_°m°r_r_°°m e eeemmmr_mmr_e°8_¢°°
O 0

r_r_ raO
r_

.4 - 13

.8

1.2 ' I I I I (k) I ' I I I ! (I) I
0 .2 .4 .6 .8 1.0 0 .2 .4 .6 .8 1.0

x/c x/c

Figure 9.- Continued.

82



-1.6- o°°° M=0.753 - o°°'_ M=0.753
R = 3.99(10)6 o R -- 3.98(10)6

0 0 0

o C_= 0.826 C£= 0.836-1.2- o _ o
Cd = 0.0695 Cd = 0.0689

= <_ Cm = -0.0374o o Cm -0.0355 o

-°8 - o 0

,_ o-- c_ ,_ _ c_0
-.4- o _ <_

o o

Cp <_ <><_
¢, 0 <> 0

0 --

oooooooooooao88_o ooooooooooo_
o o

o

.4 I_ _0

[3 []

.8 -

1.2 ! I I I ml I I I I n l
0 .2 .4 .6 .8 1.0 0 .2 .4 .6 .8 1.0

x/c x/c

Figure 9.- Concluded.

83



-1.6 - M = 0.769 _ M = 0.768

R = 3.95(10) 6 R = 3.97(10) 6

-1.2 ee C£ =-0.137 ; C£=-0.077
aa Cd = 0.0106 oo Cd = 0.0097

r_e Cm = -0.0346 _ Cm = -0.0312rl

-.B o
o o

° c;

Cp e88_***'0 * eeC_8_aeeee
<)

o8 o

GGQ_G ]
0 -_ "_o _ "

%a o_
o o

.4 _

.8

1.2 I I z t (a) I ' I I t (b) l
0 .2 .4 .6 .8 1.0 0 .2 .4 .6 .8 1.0

x/c x/c

M = 0.769 M = 0.767

R = 3"97(10)6 _ R = 3.97(10) 6

-1.2 eo C£= 0.015 _ C£= 0.046
r_ o _> Cd =0"0099 _ o o Cd=0.0099

-.8 Cm = -0.0269 o _> Cm -0.0253r:'= 0 =

c;
t:l 13 13 o {> ° _ <) {> {>

Cp e o

ee_e0 _a

o

.4 o

.8

(c)
1.2 = _ _ _ I _ I I _ (d) l

0 .2 .4 .6 .8 1.0 0 .2 .4 .6 .8 1.0
x/c x/c

Figure I0.- Pressure distributions forA-I airfoil, Mset = 0.77.

84



M = 0.772 M = 0.771
R = 3.98(10) 6 R = 3.95(10) 6

-1.2 Fo C_= 0,077 - C_ = 0.153
[] ¢ o <> Cd = 0.0104 [] o ¢ o o Cd = 0.0111

Cm = -0.0255
-.8 o o Cm = -0.0203

¢ o

c;_F1, DO

00000 Cp
-.4 %DD[]O_r_O

¢¢_OO
Cp Oo r_r_ nooogor _ ¢

D[][]000 DOE } <_
<_ ¢ .

D_8 °' 0 o08
%0 8 []

o ¢
.4

o

.8

1.2 I I I J (e)t I I I I I (f) i
0 .2 .4 .6 .8 1.0 0 .2 .4 .6 .8 1.0

x/c x/c

M = 0.769 M = 0.764,f=

-1.2 R = 3.96(10) ° _ R = 3.95(10) 6
-i.;_ o o o o C = 0.294o o <_0o = 0.235 o ,_ ,_
Cd = 0.0121 Cd = 0.0142

-.8 b ¢ o Cm =-0.0229 o Cm _ODO208

c; , c;_ 0

Cp -.4 °_OOooo•O00OOOo8°°°°° 0**0 0
¢ 00 _OEO000000o0000oo _Bo¢0 80

o o

.4

18 -

, 1.2 i I i I (g)u l f I I (h)_
0 .2 .4 .6 .8 1.0 0 .2 .4 .6 .8 1.0

x/c x/c

Figure I0.- Continued.

85



• M =-0.771 M = 0.768
R = 3.96(10) 6 R = 3.96(10) 6

-1.2 - <><>_>¢ ¢ C_ = 0,380 - <_¢ ¢ o ¢ C_= 0.431
' _> _> Cd = 0.0168 o o Cd = 0.0193

Cm = -0.0258 Cm = -0.0240
--.8 ¢ 0

-.4 % o C; c;-0

Cp c_ ¢ ¢ c, <> o ¢o<>¢
o ¢

o OeOOOOOQOOomQ 8 md3°mm°e°m°mD°°°8.•

Bm _ 8o -

.4
¢ ¢

.8 -

1,2 I I t I i I z t f j
0 .2 .4 .6 .8 1.0 0 .2 .4 .6 .8 1.0

x/c x/c

-1_.6 M = 0.770 - M = 0.773

R = 3.94(10) 6 R = 3.94(10) 6

C_= 0.469 C_= 0.531
<>O 0 ¢ <><> = <><>_> ¢ <> <> =

-1.2 o Cd 0.0229 - ¢ Cd 0.0287
¢ Cm = -0.0237 ¢ Cm = -0.0267

G,

-.8- o o

C*
-.4 - ¢ C_ ¢ o p<>

<_

Cp r_ _>oo< > _>o

ooO000ooooooooo098o0 P Io_o°°°°°°°°°°°°So_o
%o [] %0

¢ ¢

.4 _-

,8

, (k) (I)1,2 J i i r i i i i i I
0 .2 .4 .6 .8 1.0 0 ,2 .4 .6 .8 1.0

x/c x/c

Figure i0.- Continued.

86



M = 0.768 M -- 0.766
-1.6 - R = 3.92(10)6 R = 3.91(10)6

C£= 0.570 C£= 0.589
_,o Cd = 0.0293 o _ o o o o Cd = 0.0312-1.2 - o o o o o o

Cm= -0.0307 Cm = -0.0276
o

o

0 0
m=8

o

o, c; ° c;
-.4 o o

Cp o ,_0

0 _3o°°°°°°°°D°°°8°8o _°°Do°r_o_r_o°D_;=_o
o o

.4

.8

1.2 I T I I (m)= = I I I (n) l
0 .2 .4 .6 .8 1.0 0 .2 .4 .6 .8 1.0

x/c x/c

Figure i0. m Continued.

87



M = 0.771 M = 0.767
-1.6 - R = 3.92(10)6 R = 3.90(10)6

Ct_= 0.619 C_ = 0.650
Cd = 0.0408 <><> Cd<> <) O _ _ _> <> _ G O <> <> --------

-1.2 Cm = -0.0332 Cm = -0.0330
o

-.8

<> <) O,.1(.

-.4 o Cp _ o Cl_
<> <>

Cp o o <> o

0 _ o '" _ _'_ '" Q° _ ° r" ° _ " o o ooD°°°°'"°°°'_Sa_o

.4 -

.8

1.2 I I I I (o) I , = I I I (P) I
0 .2 .4 .6 .8 1.0 0 .2 .4 .6 .8 1.0

x/c x/c

Figure i0.- Continued.

88



M = 0.769 M = 0.769

-1.6 R = 3.91(10) 6 R = 3.90(10) 6

o o _ C_ = 0.651 o o o <> C_= 0.674
-1.2 e Cd = 0.0497 <> Cd = 0.0535

o Cm = -0.0317 <> Cm = -0.0391
<>

-.8 - o

<> <> <_

°--,4 0 _ 0

Cp o o o o o
-r

0 _ _ _no _' _ _ oo _,_o_ _ _, _ o_,_ooo_,o_=_oO_0 _ 0

.4 :

.8

1.2 r r = = (q) i t I t I (r)=
0 .2 .4 .6 .6 1.0 0 .2 .4 .6 .8 1.0

x/c x/c " "

-1.6 - M = 0.770
o o R = 3.90(10) 6

o C_= 0.695
-1.2- <_ Cd=0.0634

o Cm = -0.0393

_,8

o o

o-T---c;
-,4- <_

Cp _ o

.4

.8

1.2 I I I t 11"s't
0 .2 .4 .6 .8 1.0

x/c

Figure i0.- Concluded.

89



M = 0.793 M = 0.791
R = 3.99(10) 6 R = 3.97(10) 6

-1.2 _cz3 o•C_= -0.140 - CQ= -0.057
Cd = 0.0109 % Cd = 0.0099

o o o Cm =-0.0364 o-.8 n _ Cm = -0.0327
0 O 0 0

0 O
0 0

-.4 o o-o-o o C; , o-o-o-_--:-- CI_
o o ° o o PlOoQ o or-IFl

O OG OOmm OO _ 0

O OOOO '"
o_

0 o -o °o

o
o

.4

.8

1.2 : I I I I (a)f i I I r (b) j
0 .2 .4 .6 .8 1.0 0 .2 .4 .6 .8 1.0

x/c x/c

M = 0.789 M = 0.790
R = 3.97(10) 6 R = 3.97(10) 6

-1.2 - C{t= 0.004 - C_ 0.052r_Q =

o Cd = 0.0101 mm Cd = 0.0108
o o o o Cm = -0.0308 _ o o o o Cm = -0.0277-.8 O 0 0

o

c; c;
o ,_ o-oo o -o--[]-n ,_[] o o o o

-.4 o [] _ l_r_[] o [] gSoo[] °
o

OOO[] 0 0 0

o o8 o °m_
0 8o _0

Cp o o

.4 -_

.8

1.2 I I I = (C)= _ 1 I I (d)l "
0 .2 .4 .6 .8 1.0 0 .2 .4 .6 .8 1.0

x/c x/c

Figure ii.- Pressure distributions for A-I airfoil, Mse t = 0.79.
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Figure 12.- Pressure distributions for A-I airfoil, Mse t = 0.8.
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Figure 13.- Pressure distributions for A-I airfoil, Mset = 0.81.
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Figure 14.- Pressure distribution for A-I airfoil, M = 0.82.set
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Figure 15.- Pressure distributions for A-I airfoil, Mse t = 0.83.
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Figure 16.- Pressure distributions for A-I airfoil, Mse t = 0.84.
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Figure 17.- Variation of section drag coefficient with Math member for the
A-1 airfoil, transition free.
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Figure 18.- Variation of section pitching-moment coefficient with Mach number
for the A-I airfoil, transition free.
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