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ABSTRACT

Future Large Broadband Switched Satellite Communications Networks

This report summarizes critical technical, market,
and policy issues.relevant to future large broadband
switched satellite networks. Four market projections
for the period 1980-2000 are compared; they yield
estimates of ti 10-100 Gbps domestic satellite traffic
for the United Sta°'.,s. A new concept for clusters of
switched satellites, in lieu of large platforms, etc.,
is shown to have some significant advantages. Analysis
of an optimum terrestrial network architecture suggests
the proper densities of ground stations and that link
reliabilities > 99.99% may entail less than a 10 percent
cost premium for diversity protection at 20/30 GHz, a
result highly favorable to utilization of this band.
These analyses also suggest that system costs increase
as the % 0.6 power of traffic, thus favoring consortia
which obtain economies of scale. Cost estimates for
nominal 20/30 GHz satellite and ground facilities
based on projected 1985 technology suggest optimum
system configurations might employ satellites with
`L 285 beams, multiple TDMA bands each carrying ' L 256
Mbps, and ti 16-ft ground station antennas. The resul-
tant low systems costs favor significant use of satel-
lites and the growth of new services such as full-motion
video conferencing. A review of policy issues suggests
that current changes in this area could impact the full
benefits ultimately received from these new technologies.
NASA's new initiatives in this area could be quite help-
ful and a nominal development program is outlined.

D. H. Staelin
R. L. Harvey

December,1979
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	 This report summarizes the.results of a study which began under NASA

sponsorship in August, 1978. The purpose of the study was to explore

alternate approaches to establishment of possible future large wideb6nd

satellite communications networks, and to identify technologies that may

be critical and require additional development. The report is intended

to support NASA's definition of its revitalized communications satellite

research program.

Because development programs should reflect constraints imposed by

the marketplace, technology, and issues of public policy, all three of

these aspects were surveyed and integrated in this report. Although the

wide scope of this effort did not permit complete discussions of most

topics, we did touch upon several critical issues, a few of which are

explored here in greater depth than is generally available elsewhere.

The market survey in Chapter 2 is unique primarily in its summary of

several recent studies in the public domain, and in its projections of

future domestic telecommunications and satellite traffic. Unfortunately

certain other major surveys are not publicly available. The network

issues described in Chapter 3 are intended primarily to stimulate further

discussion and analyses; the optimum densities of ground stations, the

proper market share for satellites, the true costs of site diversity to

combat rain-induced outages at 20/30 GHz, and the advantages of clusters

of switched satellites are examples of interesting questions considered

here which deserve further attention.

In Chapters 4, 5, and 6 a particular 20/30 GHz satellite communica-

tions system is analyzed and the relevant technologies and costs are

surveyed and extrapolated to the 1980-1990 time period. Although the

report focuses on a particular "baseline" design, the analysis, with

modest revisions,is relevant to a wide range of system variations.

Chapter 7 summarizes the results of these baseline studies and shows how

the baseline specifications couldbe altered slightly to further reduce

and optimize system costs. }Because these chapters present detailed costs,

it should be possible for readers to alter various assumptions and to

trace the consequences. Another result of interest is the "economy of

scale" estimate derived from these analyses.

j.	 - viii -
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	 In Chapter 8 certain historical, economic, and regulatory issues are

surveyed briefly, with emphasis on issues which impact technological

i	 change and satellite communications systems. Chapter 9 concludes the

report by suggesting some of the technological challenges NASA might most

usefully address.

For the most part, the principal author for Chapters 4 and 5 was

Robert Harvey, and the principal author for the other chapters was David

Staelin.

Because of the ambitiousness of this study, there are undoubtedly

some errors, and some assumptions which could be revised. We would

welcome correspondence and will attempt to incorporate any improvements

in future reports on this subject.

In this effort we have been very fortunate in being able to draw upon

the expertise of a large number of people -- too many to properly credit

here. The most intense effort was contributed contractually by personnel

at the M.I.T. Lincoln Laboratory, where the baseline spacecraft and ground

station designs were analyzed. In addition to these contributors,

acknowledged at the ends of Chapters 4 and 5, we should particularly

like to thank Waiter Morrow, Donald. MacLellan, and Charles Niessen who were

instrumental during the definition phases of the project.

The public policy questions are more intangible, and the guidance

and critical comments of Ithiel Pool, Wilbur Davenport, John Harrington,

Charles Jackson, Roger Noll, Delbert Smith, Edward Zajac, and Thomas

Zimmer were part-icularly helpful. Because of the continual editorial

process, the final version of the policy discussion was not fully

reviewed, and the author (DHS) must take full responsibility for any

remaining imperfections.

The market survey drew heavily from the parallel NASA contractual

efforts undertaken by Western Union and the International Telephone and

Telegraph Company. In addition, Michael Tyler provided further valuable

information and useful appraisals and perspectives.

During the course of the study we also benef'itted greatly from group

discussions held at various locations. We particularly wish to thank the

organizers of these sessions, including Donald Dement and John McElroy at
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r NASA Headquarters, John McCarthy and Joe Sivo at the NASA Lewis Research
r
9 Center, Robert Powell and George Morris at the Jet Propulsion Laboratory,

Robert Cooper and Louis Ippolito at the NASA Goddard Space Flight Center,

John Harrington at the Communications Satellite lotporation, William

Brandon and Joseph Katz at the MITRE corporation, William Burdine at the

GTE Laboratories, Dean Gillette, Douglas Reudink, and John Lawson at the

Bell Telephone Laboratories, Lewis Branscomb and Paul Green at IBM, Lynn

Bronstein at the Hughes Aircraft Corporation, and Ronald Jorash at the

Ford Aerospace Corporation. 	 We should also like to Olauk the many other

people who have contributed to this effort, including, in particular,

Clare Smith and Gwen Terry,who typed the manuscript.
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CHAPTER 1

EXECUTIVE SUMMARY

1.1 INTRODUCTION

This report summarizes the results of a NASA-sponsored study of the

critical technical, market, and policy issues relevant to the future

development of large broadband switched satellite networks for domestic

communications. The study was particularly intended to support the

definition of appropriate NASA new-technology initiatives for its revi-

talized communications research program. Although a few issues were

explored in some depth, the report is general and intended to serve as a

useful reference for future workers who will be able to revise our various

assumptions and test their impact on our conclusions. The arguments have

been presented in sufficient detail that such revisions should be straight-

forward.

The report first surveys several market :studies which suggest that

during the period 1980-2000 domestic satellite capacity will grow to

'L10-100 Gbps, and that voice will probably remain the dominant service.

Consideration of general network architectural issues combined with an

analysis of a particular baseline design for a 20/30 GHz satellite net--

work led to cost estimates that are quite attractive for the expansion of

new broadband services and satellite voice circuits. The same analysis

suggests the character of nearly optimum network architectures in both

the nascent and fully developed phases. A review of relevant national

l}

	

	 issues suggests that there are no intrinsic barriers to the establishment

of such large systems, but that much may depend upon the outcome of current

debates. It is clear that NASA's involvement could be very beneficial, and

a normal spaceflight  and technology developmentgy	 p	 program is outlined.

'e	 1.2 MARKET ISSUES

Market studies by ITT, Western Union (WU), Xerox, and the Conference

on European Posts and Telecommunications (CEPT) all suggest rapid growth

in both broadband and satellite traffic. The ITT and WU studies suggest



growth in domestic satellite traffic capacity to '1-25-125 Gbps by the year

2000; the Xerox study projects a growth in non-voice service to ' 1-1.4 Gbps

by 1990, which becomes 14 Gbps if the 66-kbps video circuits are replaced

by 3-Mbps circuits; and the CEPT study suggests that video-conferences

might substitute for 11-1.7 to 10 percent of meetings requiring travel as the

price varies from a couple of dollars per minute to negligible values, a

range (in Gbps) which rivals voice traffic, even with video compression to

3 Mbps.

The ITT and WU studies projected the market share of long-lines

traffic allocated to satellites on the basis of relative per-circuit-mile

costs. This analysis was repeated here with the fixed and variable costs

separately identified for each modality, an approach which suggests that

satellites may also capture some shorter thin routes and lose to optical

fibers or microwaves some long heavy routes.

The most controversial estimates involve videoconferences and related

services, primarily because they are the most novel and involve the most

uncertain technology and economics. The potentially low costs projected

in this study for compressed full-motion video suggest that serious atten-

tion should be given to the possibility that video services could become'

areas of major growth in the late 1980's and-perh--ps eventually equal the

total satellite bandwidth allocated to voice.

1.3 NETWORK ARCHITECTURE AND ECONOMICS

In optimizing the network architecture, attention was given to the

efficiency with which each of the economic elements was utilized; these

include the satellites, ground stations, transponders, subsystems com-

prising the satellite and ground stations, and the links connecting the

ground stations to the users. For exrmple, satellite efficiency can be

maximized by launc iiig several similar switched satellites sequentially

into the same orbital slot as required to share the growing load. Thus,

instead of large space platforms or a cluster of satellites served by a

1

	

	 single switch, there would be a cluster of individually switched satellites

which would share the total load and could communl-'cate if necessary. Other

virtues of this approach include improved reliability, ease of modernization,

and ease of interconnectivity with multiple ownership.
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Ground stations and user links are efficiently utilized if no terres-

trial link connecting satellite traffic from one local hub to another is

more expensive than the basic costs of a ground station which could alter-

natively serve the first hub. . This implies that the optimum number of

ground stations in a region is proportional to the 2/3 power of regional

traffic, and that it also depends upon the minimum fixed cost of each

ground station and the cost-per-circuit-mile of the terrestrial alternative.

Typical cost and traffic estimates suggest that there should be 1\1000-2000

ground stations in the United States network, and that spacings between

them might vary from 11-3 miles in large cities to %60 miles in typical rural

areas; this is roughly comparable to the Distribution of existing toll cen-

ters. The rrme analysis suggests that the additional cost of diversity

protection ,o achieve 99.9% link reliability at 20/30 GHz should be less

than 0-10 percent of the cost for the satellite/ground-station system, which

is highly favorable for use of the 20/30 GHz bands for these purposes.

Because of the large number of ground stations it is economically

desirable to have a large satellite antenna, which implies many beams.

Because satellite transponders are expensive and few, it is necessary to

efficiently distribute this communication capacity over the beams by

flexible TDMA switching schemes, the two most promising of which are the

switched-feed configuration proposed here (also Stae.liu and Harvey, 1979)

and a similar segT ted scanning array scheme proposed by Acampora et al.

(1979); the former becomes increasingly attractive as the satellite

capacity increases. Thus the satellite switching function would be split

into an r.f. portion which couples the antenna to the transponders, and a

baseband portion which interconnects the transponders.

In order to determine the appropriate tradeoffs between antenna gains,

transmitter powers, data rates, etc. a baseline design was analyzed and

costed, and the results were then used to determine a more nearly optimum

system for handling `b10-60 Gbps. Figure 1-1 characterizes the form of

the optimized network and Table 1-1 summarizes the set of system parameters

wh.ich.appear to yield minimum total costs assuming 1985 technology were

utilized. Because of the many assumptions necessary in such an analysis,

the true optimum parameters may vary a factor of two from these, but devia-

tions by more than a factor of three would be unexpected without a corres-

ponaingly significant change in network topology or assumptions.

r
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MICROWAVE
FIBERS

COAX
OPTICS

WIRESb

SINGLE ORBITAL SLOT,
2-6 SATELLITES

P

LIMITED
COMMUNICATIONS

ER 18/30 GHz SATELLITE:

• 25X 2 TRANSPONDERS
@ 256 Mbps = 12.8 Gbps

• 4-7W  TRANSMITTERS

• 2 4 x 6- M APERTURES,
285 BEAMS TOTAL

• FAS4 BASEBAND SWITCH;
NO MEMORY

T 	 IN 12 FDMA BANDS (2.6 GHz 1
X2 POL. n 6 Gbps MAX PER BEAM

S 6 Gbps IN NEW YORK BEAM IMPLIES
<60 Gbps FOR UNIFORM SYSTEM

i
x,

62IL-

GROUND STATIONS	 USER FACILITIES

— 16 FT, ANTENNAS	 O VIDEO
7W FOR 1-2 BANDS IMPLIES - 10-15 dB RAIN MARGIN 	 DATA
CODING, CRYPTOGRAPHY, BANDWIDTH COMPRESSION 	 DOCUMENTS
— 1800 GROUND STATIONS, CARRIER OWNED AND OPERATED 	 FACSIMILE

VOICE

Figure 1-1. Nominal optimized network architecture assuming 30 Gbps
domestic traffic for the United States, 20/30 GHz links,
monolithic architecture, and 1985 technr;,ogy.
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Table 1-1. Optimized System Parameters.

ASSUMPTIONS;

1. Satellite traffic of % 30 Gbps; full U.S. coverage,
all services.

2. 1985 technology; 20/30 GHz; monolithic architecture.

SYSTEM PARAMETERS:

1. 3-6 similar fully-switched satellites share one
orbital slot.

2. % 1500 ground stations, ti rural, typically near
existing toll centers.

3. Terrestrial links between ground stations provide
diversity protection and 99.99% reliability.

4. Multiple PDMA TDMA bands, each at 256 Mbps, are
synchronized and assigned so that memoryless
digital switching occurs in space without
inter-satellite traffic.

5. Bit-error-rate < 10-7 ; QPSK/TFM modulation; 12
210-MHz bands in 2.6-GHz allocation, in each
polarization; 240 TDMA cycles/sec.

6. Satellite has ti 4-7 watt transmitters, 800°K T
superheterodyne receivers, and a 285-beam Sys

antenna simultaneously activating % 12-50
independent switched beams that address
limited but overlapping service arenas.

7. Ground stations typically have 16-ft antennas,
7-watt transmitters, 500°K T sys receivers,

dual-redundant 256-Mbps electronics, and
assorted error-correction coding, crypto-
graphic, and bandwidth-compression circuits.

8. Broadband user links of'256 kbps-128 Mbps
capacity would be % 0-7 miles long in cities
and % 0-30 miles in rural areas.

The total investment required (1979$) for the system described in

Table 1-1 is suggested in Fig. 1-2. Since 1985 technology is assumed,

there is no allowance for nonrecurring costs incurred prior to then,

some of which would be borne by NASA.

- 5 -
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sate Uitee	
8%	

user facilities,
(i.e. 50,000 video-

conference

	

$350M	 rooms,

	

22%	 ground	 10%	 facsimiZe

	

stations	 ports, etc.)

$800M	 $450M	 $3B
50%	 28%	 17%	 65%

ZocaZ distribution
Zinks

Network Investment 	 Network plus User-Facilities
(Revised Baseline System)	 Investments

	

Total = $1.6B	 Total $4.6B

Figure 1-2. Allocation of system investments.

The important conclusion is that local links may dominate network

costs. and that user facilities may dominate service costs. Although these

estimates assumed video-conference and fast facsimile terminals dominated

user facilities, even voice equipment capable of generating 30 Gbps would

be expensive (perhaps 10 million telephones plus electronics).

Annual tariffs designed to cover these costs might be "-$40,000 for a

typical dedicated one-way 3-Mops link user-to-user, and "-$20,000 for a

similar link which is nearly unused (half the investment is in user links).

If multiplexing costs were zero, then a dedicated 60-kbps circuit might

cost "-$900 per year, depending largely upon the pricing of the particular

local links serving the users. Non-dedicated links would be cheaper. The

price for a one-way 3-Mbps video conference might be 63(,% per minute plus

$2000 per month, which is sufficiently low to stimulate considerable usage.

All these numbers are more than an order of magnitude less than present

tariffs and almost certain to cause full-motion video to prevail over most

freeze-frame services.
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The above costs and tariffs are based on 30-Gbps system capacity,
i

but other system sizes can be evaluated because total costs are approxi-

mately proportional to the 0.6 power of total traffic. This estimate,

combined with the market-share calculations based upon the relative costs

of terrestrial and satellite circuits, suggests."that a system which would

be profitable on a large scale should be even more profitable on a smaller

scale because then the market is more nearly "cream," whereas the costs

vary relatively slowly with size. This dependence of costs upon system

size also provides an incentive for small competitors to j.)intly own or

share certain network resources if they are to compete successfully or

perhaps even survive; such sharing might involve ground stations and

satellites, but need not include local links, user facilities, or other

communications services, which together totally dominate costs.

1.4 POLICY ISSUES

Regulatory control in the telecommunications industry has been exer-

cised to varying degrees over market entry, market exit, tariffs, corporate

structure, and various other technical and market decisions. Such control

originated because of the pervasive and essential role of telecommunica-

tions in our society and because of historical monopolistic tendencies in

the industry arising partly from economies of scale and the need for inter-

connectivity in certain business segments.

Regulation in the United States has ?been guided largely by the

Communications Act of 1934, which had antecedents in still simpler times,

and which is now possibly being revised. The FCC has recently exercised

its authority under that Act to introduce more competition into the indus-

try. In a series of events, including the Carterphone, Execunet, and the

Resale and Shared-Use decisions, the interconnect and private-line markets

have become increasingly competitive, and this process is beginning to

impact even standard MTS long-distance services.

Much of the effort to introduce competition has centered on reducing

AT&T's ability to cross-subsidize or compete in certain markets. The

acceptance of fully-distributed-cost (FDC) accounting principles, the

early restrictions on AT&T's ownership of certain satellites and on the

marketing of certain information services (under the 1956 Consent Decree),

and the current debate concerning the possible forced restructuring of the

company are characteristic of this controversy.
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These debates will influence the growth of satellite communications

in various ways. Although competition can stimulate the introduction of

economic technologies such as communication satellites (which can be even

more competitive with terrestrial links on long thin routes than on heavy

ones, and can therefore appeal more to small carriers), the present regu-

latory and legal uncertainty in the marketplace has a depressing effect on

such long-term investments by focusing attention on short-term returns on

investment and on risk limitation.

Economic factors will almost certainly stimulate the use of large

switched satellites singly and/or in clusters as traffic grows. Policy

issues will be more critical, however, in determining whether various com-

petitors will adopt efficient protocols for interconnecting these networks,

perhaps through the sharing of switched-satellite clusters. Development of

common protocols for efficient intercoitnection of networks and services

will almost certainly be critically important to achievement of the full

potential of modern telecommunications technology, but it is one of the

mot uncertain aspects of the present regulatory situation.

Although the system architect to date has principally been AT&T, there

is no clear replacement emerging in the newly competitive markets, and the

ability of hostile competitors to produce an efficient integrated architec-

ture remains to be demonstrated, as does the ability of any government

agent, such as the FCC, to accomplish the same objective. Such architec-

tural issues arise, for example, in definition of protocols for TDMA sig-

nals, cryptography, command and control signals, video bandwidth compres-

sion, etc. If the evolving federal policies are to be maximally productive,

they must provide a good solution to this problem. This problem is also

manifest on an international scale, where the protocols and connectivity

of domestic and international satellite systems are issues.

One of the most difficult policy issues is how the nascent broadband

services will be tariffed; will prices tend to be somewhat independent of

circuit bandwidth, or more nearly proportional to it? Technical arguments

ultimately favor the former, and present policies favor the latter. The

basic problem is that cheap broadband circuits could be multiplexed by

competitors who might then underprice the narrowband tariffs. These

narrowband tariffs must now support today's costs plus some operating costs

and depreciation chaiges associated with certain obsolete equipment. Part

- 8 -
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of the obsolcte-equipment problem apparently arose because depreciation

charges under regulation have tended to reflect the physical rather than

the technological life of assets; some depressed tariffs earned previously

should now be compensated by increases--will AT&T shareholders or the pub-

lic pay? The issue is presently unresolved and may never be addressed

directly. To summarize, the health of broadband services, particularly of

full-motion video conferencing, will require low broadband tariffs, and

many policy tools exist *'such as market and tariff controls) to achieve

them; the question is whether those tools will be used.

1.5 NASA PROGRAM OPTIONS

There clearly is an important future global role for large switched

communications satellites of the type considered here, because the cost

advantages of satellites for long-haul circuits are so significant. Be-

cause regulatory uncertainties and other factors have curtailed long-range

high-risk investments necessary in this area, and because of the national

benefits in proceeding expeditiously, several national groups have recom-

mended NASA's re-entry into development of basic communications satellite

technology.

The presently proposed 20/30 GHz technology program appears well con-

ceived to achieve the major goals proposed by the various advisory groups,

and the optimum system parameters proposed here should provide good guide-

lines for specification of that program. One additional architectural

option which deserves attention is that of a pure FDM system designed to

increase power efficiencies, and therefore reduce ground station costs to

much lower levels. The technical challenge is significant, however.

Another area which may deserve increased emphasis is that of protocol

compatibility. Some of the most profound decisions made in the establish-

ment of pervasive new broadband services will be those which fix protocols

for services such as inter-frame video bandwidth compression, facsimile,

etc. In today's competitive environment a variety of technologies and

options will emerge, and promotion and demonstration of technologies

designed to enhance compatibility between present protocols and future

improvements and requirements could constitute a major contribution to the

ultimate public utility of these new developments.

f
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To summarize, there is significant potential for major growth in

satellite communications, and NASA's historic role in promoting the

relevant technologies could be of critical national value.
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CHAPTER

FUTURE UNITED STATES MARKET FOR TELECOMMUNICATIONS SERVICES

2.1 INTRODUCTION

This chapter summarizes published estimates of the future growth in

domestic long-distance telecommunications traffic together with estimates

of that fraction which might be allocated to satellites. These projected

demands for services are the primary design constraints which shape the

architecture and economics of the advanced satellite communications systems

analyzed later in this report.

In Section 2.2 various traffic projections are summarized, and ire

Section 2.3 the particular case of video services is examined further

because of its uncertain but potentially large impact on traffic projections.

Section 2.4 summarizes briefly the international market for communications

satellites and international competition. The remainder of this introduc-

tion summarizes briefly some of the very important motives for continued

expansion of telecommunications capabilities.

The two primary motives for significantly expanded communications capa-

bilities are improved national productivity and improved quality of life.

The productivity of the 15-20 million information workers in the United

States has been estimated to be reduced by as much as 30 percent due to

missed information and inferior or needlessly duplicated solutions to prob-

lems. Instant business mail, convenient video-conferencing, and shared

computers and data bases could all improve business productivity consider-

ably. For example, personal travel and slow distribution of mail can intro-

duce costly delays or inhibit desirable contacts. Perhaps more important

is the extent to which even our present communications and productivity

could be impaired by future energy shortages and diminished transportation.

Since even a one percent change in national productivity represents billions

of dollars, the incentives are enormous.

Improvements in the quality of life due to broadband communications

would probably be greatest in rural areas; the result would be de-urbanization
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and expansion of rural suburbs. Benefits could follow, for example, from

increased use of teleconsultation in medicine, increased video-conference

education and job training programs, improved contact between distant friends

and relatives, and the increased rural distribution of information-intensive

businesses and government organizations. The cultural importance of these

changes could ultimately rival those of the automobile.

2.2 TRAFFIC PROJECTIONS

2.2.1 UPPER LIMITS TO TRAFFIC GROWTH

Before reviewing the estimates of traffic growth presented in Section

2.2.2, it is useful to estimate those upper limits on traffic placed by the

finite intellectual capacity of a population to generate useful information.

These simple limits also provide a more intuitive understanding of the rela-

tive traffic associated with the various services. The four general classes

of service, in order of increasing traffic potential, are data, facsimile,

voice, and video.

These upper bounds to United States long-distance (over ti30 miles)

traffic potential are summarized in Table 2-1. The data, voice, and fac-

simile services were assumed to involve most future information sector

employees as potential generators of traffic, approximately 50 million people.

Table 2-1. Assumed Upper Bounds to United States
Long-Distance Telecommunications Traffic

Service Assumed Limits Bits/ ear
Peak rate
(Gb s)

Data 50 x 10 6 employees 2 x 10 16 7
50 pages/day @ 5 x 10 4 bits/page
peak rate = 2.5 x 40 hr/wk average

Facsimile 50 x 10 6 employees 5 x 10 17 15
50 pages/day @ 106 bits/page
peak rate = average rate

Long-distance 50 x 10 6 employees 2 x 10 18* 700
Voice 8 hr/wk @ 30 kbps

peak rate = 2.5 x 40 hr/wk average

Video 10 x 10 6 employees 5 x 10 18 1900
1 hr/wk @ 3 Mbps
peak rate = 2.5 x 40 hr/wk average

*This is ti10 times the actual 1978 equivalent traffic (30 kbps circuits).
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An average of only one long-distance recipient is assumed, although local

distribution of traffic could increase the number of message recipients.

Video is assumed to involve fewer people, perhaps 10 million. The data

rates of 30 kbps and 3 Nbps assumed for voice and video services reflect

a modest amount of compression, appropriate for large traffic levels.

Facsimile is assumed to be a deferred service for which the peak transmis-

sion rate approximates the average rate, whereas the other three services

are assumed to occur predominately during a 40-hour work week, with a peak

rate arbitrarily equal to 2.5 times the average rate during that 40-hour

period. Although these approximations are crude, they do suggest the rela-

tive traffic potential of the various services if price or availability were

not factors.

The principal conclusion is that data and facsimile communications

involving people or text are comparable with each other, but are dwarfed

by voice, particularly since present voice traffic is already within an

order of magnitude of its limit. The only service capable of surpassing

voice is video, but this would require extensive acceptance of video by

most organizations now possessing telephones. As discussed later, these

upper limits for voice and video could be fully accommodated by satellites

only with very great difficulty; terrestrial links would be required for

much of it, although satellites could easily handle the maximum level of

data and facsimile traffic.

One other service deserves notice, computer-to-computer data traffic.

It is sufficiently unpredictable that it is not considered here. It is

unlikely to surpass the other services, however, because economics would

tend to encourage duplication and one-time transmission of data or software

instead of repeated computer access from distant locations. Since most

software and data bases are compatible with human intellect, the data and

facsimile limits are appropriate.

2.2.2 SURVEY OF TRAFFIC PROJECTIONS

2.2.2.1 Western Union Projections

In the summer of 1979 Western Union (1979) presented the results of a

demand assessment study they performed under contract to the National

Aeronautics and Space Administration as part of the.NASA satellite communi-

cations program in the Office of Applicaticns. In this section some of the
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relevant highlights of that study are summarized. They first developed

estimates for total long-distance terrestrial and satellite traffic for

voice, data, and video services, where data includes facsimile, etc. These

estimates are primarily extrapolations of present growth trends. One set

of estimates was intended to be conservative, the "baseline market forecast",

and the second set, the "impacted baseline forecast,",required speculation

about the uncertain effects of regulation, competition, price elasticity,

technology, etc. These are presented in Table 2-2.

Table 2-2. Western Union Traffic Forecasts

Baseline Market Impacted Baseline
Forecast Forecast

Services Units of Volume 1980	 1990	 2000 1980	 1..990 2000

Voice Half circuits (thousands) 3063	 7661. 10990 3068	 8050 20371

Data Terabits/year (10 12 bpy) 1670	 8883 34813 1678	 10559 42834

Video Wideband channels 176	 267	 341 176	 294 458

They further divided these projectijns by service classification. In

1990 they anticipate that voice services will be comprised 38, 32, 29, and

1 percent by private line, public MTS, business MTS and mi=scellaneous ser-

vices, respectively. Data would be divided 69, 25, 3, and 2 percent for

data transmission, electronic mail, electronic funds transfer and point of

sale services, and miscellaneous, respectively. The video channels would be

allocated 35, 31, 18, and 16 percent to video conferences, CATV, network,

and occasional services, with video conferences dominating by the year 2000.

They also estimated the distance distribution of traffic demand for voice

and data, as summarized in Table 2-3.

Table 2-3. Distance Distribution Function for Traffic Remand, 1990

Milea a Band
Percent Traffic in Mileage Band

Voice Services Data Services

41- 150 11.4 7.8

151- 500 28.8 26.9

501-1000 25.7 29.6

1001-2100 24.2 26.0

2101-2700 9.9 9.7

Totals 100% 100%
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According to the table, slightly more than one-third the traffic occurs on

circuits in the ran$e 1000-2700 miles; this traffic is the set most likely

to be transferred to satellite circuits, as discussed in greater detail in

Section 3.2.2.

The study then assumed annual costs of approximately $10 per voice-

circuit-mile and derived breakpoint distances (see Section 3.2.1) of ^,600

miles for satellite versus terrestrial least-cost routing. The costs per

satellite voice circuit were assumed to be ^,$7000, based in part upon

parallel NASA studies performed by Ford Aerospace Corporation (1979) and the

Hughes Aircraft Company (1979). Such market-share computations were then

combined with the previous market estimates for each category of service

to yield the total market estimates for satellite communications service,

as presented in Figure 2-1. This market is estimated to grow from ^,3 Gbps

in 1980 to ^,40 Gbps in the year 2000.

2.2.2.2 ITT U.S. Telephone and Telegraph Corporation Projections

The ITT (1979) Service Demand Assessment, performed for the NASA Lewis

Research Center in parallel with the Western Union, Ford and Hughes studies,

projected the demands summarized in Table 2-4. The reason their data traffic

estimates (Gbps) are so large relative to the other services is that the

CPU-to-CPU links are assumed to be utilized inefficiently, which they may be

if the cost of communications is small compared to that of computation; com-

puter time typically costs several dollars per minute. Because of this ser-

vice category the ITT estimates for data traffic are more than ten times

those of Western Union. The two video and voice traffic estimates are more

nearly comparable, differing by less than a factor of ^,3.

The estimated distance distribution function flor traffic demand is

listed in Table 2-5.

on the basis of traffic allocation procedures similar to those used by

Western Union the amount of traffic which satellites would carry was pro-

jected for the 1976-2000 time period, as summarized in Fig. 2-2.
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Table 2-4. ITT Traffic Forecasts for Circuits over 200 Miles

Annual Traffic Peak Demand
(10 15 bits) (Gbps)

Service 1980 1990 2000 1980 1990 2000

Voice
Private Lines 230 605 1440 7 19 46

MTS 169 428 879 14 36 77

WATS 160 369 572 23 _	 53 82

Total Voice 559 1402 2891 44 108 205

Data
Terminal to CPU 110 265 389

CPU-to-CPU 1.2 7.1 35 21 50 77

Electronic Mail 0 5.8 6.7

Freeze-frame TV 0 0.6 1.9 0 0.2 0.7

Other 0.8 2.5 4.8 0 0.6 1.5

Total Data 112 281 437 21 51 79

Video
Video Conference 3 84 268 0.4 10 33

Education 20 36 110 0.6 1.1 3.5,

CATV 46 33 26 1.5 1.0 0.8

Network 13 16 11 0.4 0.5 0.3

Health and Public, Safety 0 2 2 0 0.2 0.2

Total Video 82 171 417 2.9 13 38

TOTAL, ALL SERVICES 753 1854 3745 68 172 322

*Message services a re combined here in 'other" category.

Note that the projected voice traffic for the year 2000 slightly exceeds

the postulated limits postulated in Table 2-1, although the peak data rate

is lower by a factor of 3; the lower peak rate arises from the ITT assump-

tion that traffic is more uniformly distributed over the 168-hour week.

._
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Table 2-5. ITT Estimated Distance Distribution
Function for Traffic Demand, 1990

Mileage Band
Percent Traffic in

Mileage Band

51- 100 1

101- 150 14

151- 200 6

201- 250 8

151- 300 6

:301- 500 15

501-1000 20

1000+ 30

2.2.2.3 Xerox Corporation Traffic Projections

In November, 1978 the Xerox Corporation (1978) filed a Petition for

Rule Making with the FCC; they proposed the establishment of a new common

carrier Electronic Message Service in the band 10.55-10.68 GHz. As part

of that petition they presented a market survey to support their proposals.

Although they did not include voice services in their study, they did treat

data, document, and teleconferencing services. They too began by estimating

the total United States market, and then factored in the share of market

that the proposed system, XTEN, might capture.

On the bass; of various arguments they estimated that the average

employee might handle a total of 12 pages per day, transmitted plus re-

ceived, which could be compressed to an average of 200,000 bits per page.

They projected data demand by using AT&T's projections through 1985, and

then assumed 10 percent per year growth subsequently. Their teleconferenc-

ing estimates were based upon SRI's estimate that 8% of U.S. air travel

could be substituted by an effective audio/graphic service; this, combined

with the projected number of passenger emplanements and the presumed 66-

kbps data rate required, led to their .final projections for the potential

market. They further assumed that teleconference services would achieve a

maximum of only 10% of the SRI potential value, and that growth would

follow a Gompertz curve with an inflection point in 1990.
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These projections are summarized in Table. 2-6. The annual traffic is

reduced by the percent of market penetration and the assumed peaking factors

to yield the estimated peak communications capacity required; the market

penetration estimated for the entire United States in 1990 appears in the

rightmost column of the table.

Table 2-6. Xerox Traffic Projections

Service

Annual
(10 15

1975

Potential Traffic
bits per year)

1980	 1985	 1990

Peak

1980

Capaoity
(Mbps)
1955	 1990

Percent
Market

Penetration
1990

Document
Distribution 10 13 16	 18 1 182 657 8

Data
Transmission 0.8 1.6 2.7	 4.4 1 212 506 25

Teleconferencing
(66 kbps) 10 12 16	 20 0.6 51 282 3

Teleconferencing
(3 Mbps)* 454 545 727	 909 27 2318 12800 3

*Modification of Xerox projections if all 66 kbps circuits become 3 Mbps.

The Xerox estimates for teleconferencing assumed a freeze-frame format

for video services, but if the user equipment costs dominate the transmis-

sion costs, which is suggested by the present study in Section 7.4.2, then

compressed full video services may prevail and thus make greater demands

upon the network, as discussed in Section 7.4.3. In this case the data

rates could be increased by the ratio of 66 kbps to ti3 Mbps, which is a

reasonable rate for interframe video compression algorithms. This possi-

bility is suggested on the last line of Table 2-6 for the assumed market

penetration of 3 percent. This traffic would completely dominate the Xerox

estimates, particularly if the penetration grows to 10 percent or more.

The Xerox study noted at length that the present high cost and slow

delivery of documents offers an important new area for growth of high-data

rate network capacity. Their estimated peak capacity refers only to traffic

handled by the XTEN class of satellite communications system.
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2.2.3 PRESENT PRICES FOR TRANSMISSION SERVICES

Typical current monthly tariffs for end-to-end services were tabulated

in an Aerospace Corporation Report (1978) prepared for the NASA Goddard

Space Flight Center in July, 1978. These tariffs appear here in Table 2-7.

The least expensive service is a single dedicated 4-kHz voice circuit which

costs only $8880 per year for a New York to Los Angeles link and $4980 be-

tween Atlanta and Chicago (based on a quotation from American Satellite

Corporation). For 56 kbps data the tariff is more than ten times as high,

and color video costs are mire than thirty times as high.

Table 2-7. Typical Monthly Tariff for End-to--End Service

Service Type
Monthly Tariff

Situation	 ($)

Single Circuit Via Atlanta - Chicago 415
Satellite (4 kHz) New York City - Los Angeles 740

Radio Broadcast Via Atlanta - Chicago 830
Satellite (8 kHz) New York City - Los Angeles 1480

Data
56 kbps, 2 stations $1.8K/mo for fractional transponder.

84% are station costs for dedicated
earth stations 10,000

56 kbps, 3 stations 78% are station costs 16,200

112 kbps, 2 stations 85% are station costs 12,400

224 kbps, 2 stations 87% are station costs 17,200.

TV distribution, Before 5 PM EST 32,600
color or monochrome After 5 PM EST 71,800
(uplink and Assumes 8 hours/day, 365 d/yr.
satellite trans- (100 $60K receiving stations
mission only) amortized over 3-7 years +20%

maintenance would quadruple
costs)

Present terrestrial costs are not low, either. One recent quotation

(1977) for a few two-way video channels prepared by an AT&T affiliated'

company suggests that the costs for a particular suburban 10-mile link are

approximately $90,000 plus $5000 per two-way channel, plus a monthly charge

of $6000 for 1-3 channels. These charges include cable facilities and

terminal equipment for standard analog video signals. Such charges would

presumably vary considerably depending upon the location.
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2.3 THE MARKET FOR VIDEO CONFERENCING AND VIDEO-PHONES

Examination of the three estimates by Western Union, ITT, and Xerox

(Section 2.2) of the demand for video conference services suggests the great

uncertainty in these projections. The estimates for video capacity in 1990

were '\,100 wideband channels, 10 Gbps, and 282 Mbps, respectively. These

numbers can, be better compared if the widths of all video channels are

n .,

	

	 assumed to be approximately 3 Mbps; then the data rates are 300 Mbps, 10

Gbps, and 1.2.8 Gbps. Because these estimates were based upon cost, per-

formance, and availability assumptions that varied widely, it is informs-,

tive to review a more detailed study of person-to-person business communica-

tions conducted by a working group of the Conference of European Posts and

Telecommunications (CEPT). This recent study (Tyler, 1977) was quite exten-

sive and involved several consultants and approximately 30 PTT staff members

from seven PTT administrations, each of which conducted an extensive survey

within its own country of meetings which had required travel. Together they

surveyed 26,000 meetings in over 1000 establishments. Their conclusions

suggest the degree to which video-conferences supplemented by facsimile

might substitute for travel.

The CEPT analysis revealed that most meetings requiring travel involved

small groups (fewer than five people participated in 71-90% of the meetings),

lasted less than one hour (62-87%), and involved participants from only two

locations. About half the meetings were arranged a day or more in advance

and 40-60% involved visual aids or documents. Most of the documents were

less than five pages long and were not distributed in advance. About half

the meetings were for purposes of information exchange and problem solving;

only a small fraction involved conflicts or interpersonal relations that

are known to be less suitable for teleconferencing.

On the basis of these data the CEPT team developed mathematical market

models which led them to the following conclusions. First, the maximum

potential market share (ignoring costs) of teleconference systems in support-

ing business meetings now involving travel is '\,50%. One-fifth of these

teleconferences would require video and about half would require graphics

communications; the remainder could be served by purely audio systems. It

was estimated that the fraction of meetings that would employ video would

drop approximately a factor of 6, from 10% to 1.7%, if costs of a few dollars

per minute were assumed.
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They further estimated that the European demand for desk-top audio-only

conference systems would be roughly one meeting per year per person, e.g.,

equivalent to 250 million meetings per year in the United States. This

implies an average of approximately 60,000 simultaneous one-half-hour

teleconference meetings in the United States during working hours, and

perhaps 12,000 simultaneous two-way video conversations,'if those meetings

requiring video employed it.

These results suggest that the largest network the United States might

employ for video-conferencing would be one inwhich %60,000 duplex video

channels would typically be active, assuming maximum substitution of tele-

conferencing f,r travel and use of video services in preference to audio;

this :implies video costs and convenience must not be problems. The CEPT

data also suggest that if the costs are a more reasonable n,$0.50 - $2.00

per minute, then the total traffic might be ti4000-24,000 active one-way

ci;.annels. These estimates could rise if the quality of the service stimula-

ted as increase in the total number of meetings or a substitution of video

for audio services or for meetings, not requiring travel. The demand could

be less if there were poor system characteristics, regulatory restrictions,

or inhibitory prices due to technical or other factors.

A very important unknown is the final market acceptance of the service.

Although the CEPT study was conducted very carefully, the actual choices

made by people would depend on several elusive factors; therefore the per-

formance of user evaluations in realistic circumstances is very important.

Hough et a1. (1977) reviewed several video-conferencing experiments, but

the results are ambiguous because most of the various facilities involved a

variety of shortcomings such as limited accessibility and quality, lack of

simplicity and complete human factors design, expense of operation, lack

of adequate graphics capability, and their temporary and sparse character.

Although small scale experiments can be very informative, it is important

to properly design, control, and analyze the results if they are to be

applicable to the basic issue of video viability. These problems are dis-

cussed at length in the book "Evaluating New Telecommunications Services,"

edited by Elton-et al. (1978).

Examples of recent tests include SBS's 1977-1978 satellite communica-

tions market test, Project Prelude, which involved testing teleconferencing,

document distribution, and data processing at Montgomery Wardi,Rockwell

International, Texaco, and Aetna Life and-Casualty; the test employed the 4
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NASA 12/14 GHz Communications Technology Satellite for a few weeks at each

}	 of several corporate locations. The FCC also recently approved a limited

test of satellite video conferencing by AT&T and GTE. It will last at least

one year and will be offered at the same tariff rates as terrestrial land-

line video service.

An example of one of the phenomena difficult to address by small experi-

ments is the reality of the "threshold of utility", which is the hypothesized

minimum size system necessary to maintain user interest in network capabili-

ties; the probability that any desired party can be reached must be accept-

ably high (Staelin, 1979). If the purpose of a network is to provide intra-

organizational communications, then the threshold number of terminals would

be approximately the number of facilities which that organization wished to

link. Because this number is typically modest, most existing video-

conference networks are of this type. Communications between organizations,

or communications within very large organizations such as the federal govern-

ment, would require much larger systems.

Network size depends in part on the number of terminals, which depends

in turn upon the degree to which they can be accessed and shared by the

users. In general, terminals should be within reasonable walking distance

of a majority of the users because most professional workers are accustomed

to walking to conference rooms, computer terminals, or duplicating machines,

but tend to resist travel to other buildings or across town. It is reason-

able to assume that one terminal per 200-1000 employees would define an

acceptable walking radius for most people; such groups typically might each

generate revenues of 'x$10-50 million dollars. The two-trillion-dollar gross

national product for the United States might include 40,000-200,000 such

average units, half of which would perhaps involve information workers.

Although some segments of the economy would not require so many termi-

nals, others, such as law firms and similar professional organizations,

might require more. If five percent of the information workers each used

these terminals two hours per month, the terminals would be occupied ti12-

60 percent of the working day for 100,000 and 20,000 units, respectively,

and approximately 12,000 one-way Video channels would typically be active.

In the "new rural society" this number would be many times larger.
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The threshold of utility for an interorganizational video-conference

system might be that network size for which only half of all desired confer-

ence partners have access to terminals. At this threshold, two-party meet-

ings are constrained; and three-party conferences are very difficult. The

probability that a desired conference partner has access to a terminal is

plotted in Figure 2-3 under various assumptions as a function of the number

of active one-way channels in a national network serving the United States.

The first assumption is that the average person is willing to walk within

the confines of 10-million or 50-million dollar entities; both cases are

presented in the figure. Two alternative assumptions are then made concern-

ing the use of the terminals. In Case A we assume that each terminal is

used half the time regardless of the total number of terminals in the

system, and in Case B we assume that this 50. percent utilization is multi-

plied by the fraction of entities that have terminals; for example, if only

40 percent of all entities had terminals., then their utilization would be

50 percent in Case A and 20 percent in Case A. Under these assumptions the

threshold of utility for an inter-organizational network requires at least

2,500 to 25,000 active one-way video-conference channels, as indicated in

the figure.- Although this simple model overlooks threshold reductions

arising from the fact that the most important communications centers will

be the first to have them, the threshold would, on the other hand, be in-

creased if some groups monopolize portions of the system capacity.

Thus it appears likely that a basic national inter-organizational fully-

switched broadband communications network would need 2,500-50,000 one-way

broadband channels, with 10,000 being a more realistic estimate. These

might be nominal 3-30 Mbps channels capable of handling video-conferences,

facsimile, and other services. The number of user-terminals required for
each service might be on the order of 20,000-100,000. Later in this report

it is assumed that 50,000 user terminals would comprise the baseline system

analyzed in Chapters 4-7.

This analysis of the baseline system suggests that the costs of video-

phone and videoconferencing services would be largely controlled by the

costs of those facilities on the customer's premises if they exceed %850,000.

This threshold, where user equipment costs dominate, is related to the

assumed bandwidth of ti3 Mbps, which could probably convey acceptable quality

full motion color video with inter-frame compression. If the images were
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slightly blurred, jerky, or noisy in the presence of modest motion, then

256 kbps might even suffice, and the threshold cost for video equipment would

drop correspondingly. The lowest cost option in Table 6-1 was priced at

$25,000 and incorporated three cheap cameras and monitors. A unit which

physically resembled Picturephone, which is a desktop unit containing a

small camera and screen, should be manufacturable for less than $10,000,

even with the inter-frame compression equipment included (Inter-frame

compression and A/D equipment costs,ti$3K, are estimated in Table 5-1.)

Thus, if a $60K facility corresponds to 3 Mbps, then $25K might corre-

spond to 1.5 Mbps, and less than $10K might correspond to 256 kbps. The

tariffs achievable with the favorable projected economics of the baseline

system, summarized in Table 7-1, might be as low as 65, 30, and 15 cents

per minute for 3, 1.5, and 0.5 Mbps, respectively, plus monthly charges of

$2000, $1000, and $400. If the customer purchased or leased the video

terminal separately, the monthly charge could be nearly eliminated.

Since these marginal costs per minute approximate present long-distance

telephone tariffs, significant use of such capabilities could be envisioned

if the service quality were preferable to regular telephones. In other

words, if a ;Few key members of an organization believe that the initial ex-

pense of such a system is justified by their use alone, then the very low

anticipated marginal costs of everyone else's use could easily result in

the facility being over-utilized. This situation could conceivably prevail

even if the costs were doubled. Although technology may permit such low

tariffs, issues of national policy and corporate strategy might intervene

to prevent them, as discussed in Chapter 8.

In summary, although there is insufficient data on user behavior and

system economics to draw any safe conclusions, serious attention should be

given to the possibility that inter-frame-compressed full motion video in

the 256-3000 kbps range could become a major new service, perhaps rivaling

voice, with the growth of efficient broadband network capabilities.

2.4 THE INTERNATIONAL MARKET

The first launching and use of synchronous satellites was in 1963 when

NASA successfully transmitted television signals though the SYNCOM II

satellite, built by Hughes Aircraft Corporation.. In 1962 Congress author-

ized the formation of Communications Satellite Corporation (Comsat) to

-26-
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represent the United States in the International Telecommunications Satellite

Organization (INTELSAT), which was formed in 1964 and has grown from the

original 11 countries to more than 102 members today. Its growth in inter-

national traffic is now 20 percent per year. The system comprises more than

220 ground stations and approximately 5 active satellites and 5 spares oper-

ating around the globe.

Intelsat I was placed in service in 1965 with 240 voice circuits or one

TV channel. The Intelsat V, being developed by Ford Aerospace Corporation,

will have 12,000 voice circuits and 2 TV channels.

The first domestic satellite communications system using dedicated geo-

stationary satellites was that of Telesat which became operational in Canada

in 1972; it has grown significantly since then. More than five other such

domestic systems have become operational, and the trend will continue. The

United Kingdom flew the 7/8 GHz Skynet Satellite, France and West Germany

provided the 4/6 GHz Symphonie with 90 MHz transponders in 1974 and 1975,

Italy launched Sirio in 1977 for 11/17 GHz TV and telephone experiments,

Japan has several satellites, including the CS satellite which provides 6

20/30 GHz channels and 2 4/6 GHz channels of 200 MHz each, the Soviet Union

has several satellites, and the United States has several dogiestic satellite

systems. In addition, many countries are now subscribing to Intelsat satel-

lites to meet their domestic requirements and are also forming regional

groups to develop special systems. Examples of regional activities include

the Nordsat and Arabsat systems now being developed. Other national systems

under development include those by France, West Germany, India, and others.

The biggest users of the Intelsat domestic services are countries like

Nigeria, with 19 ground stations, Algeria, etc.

Although most of the early communications satellites were developed by

United States firms, this leadership position is rapidly and significantly

eroding due to technologically aggressive developments in Europe, Japan,

and elsewhere. For example, Thomson CSF (France), AEG Telefunken and

Siemens (West Germany), and NEC (Japan) all are competing successfully  with

Hughes,Litton, Varian, etc. in the United States for high performance micro-

wave power tubes, and similar competition is increasingly faced in other

technologies as well.
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Japan is perhaps the most aggressive in advanced telecommunications.

Their Nippon Telegraph and Telephone Public Corporation ()ITT) has developed

a series of 5-year plans which grew from approximately one billion dollars

in 1953-1957 to 26 billion in 1973-1977, and the pace is continuing. During

the last period they added more than 22 million telephones to their system.

Their first applications satellite (JETS-1) was launched in September, 1975.

Their engineering test satellite, ETS-II, performed simple propagation tests

with beacons at 1.7, 11, and 34 GHz. Just 9 months later they launched in

December 1977 their "Medium Capacity Communications Satellite (CS)" with

1.6 GHz total bandwidth divided among 6 transponders. This capacity signi-

ficantly exceeds that of most other existing satellites. Although CS was

developed with considerable U.S. assistance, the Japanese capabilities are

increasing at a very significant pace.

An example of their export posture is NEC's installations of terrestrial

radio and transhorizon equipment. They placed 732 stations for NTT, 793 sta-

tions for other Japanese customers, and 2384 stations overseas; the numbers

are significant, Other areas of technical strength include high-power solid-

state microwave devices, low-noise microwave amplifiers, high-power micro-

wave tubes, high-data-rate optical fibers, other digital equipment including

inter-frame video bandwidth compression systems, and a wide variety of very

low cost video cameras and monitors, a market they largely dominate today.

The United States has at least four domestic common-carrier satellite

communications systems. RCA operates 20 medium and heavy route earth sta-

tions and 100 small ones in Alaska, plus 7 major stations in the 48 states.

Western Union has at least 8 stations; GTE and AT&T operate 6 major facili-

ties, and American Satellite has more than 5. In addition there are approxi-

mately 2000 receive-only stations for CATV video distribution, plus another

large number of stations for other customer-premises applications. All the

domestic U.S. satellites together have a capacity of 11-7 GHz, which should be
p	 compared to the 1.6 GHz capacity of the first Japanese CS satellite. The

Canadian Anik series of satellites is also impressive.
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CHAPTER 3

ARCHITECTURAL ISSUES; DEVELOPMENT OF A BASELINE DESIGN

3.1 INTRODUCTION

The market estimates summarized in Chapter 2 suggest that a pervasive

domestic satellite communications system might reasonably have 10-60 Gbps

capacity in the 1990 t s and could carry a significant fraction Of all

long-haul traffic, including voice. Such large-scale employment of

satellites with their unique technical and economic characteristics

raises important architectural issues not addressed previously. In this

chapter several of these issues are identified and explored in sufficient

detail to permit a baseline design to be defined. This baseline system

includes the satellites, ground stations, local exchanges, and user

facilities.

The purpose of the baseline design is to facilitate the system

technology and, cost estimates presented in Chapters 4-6, and to provide

a starting point for the architectural tradeoff discussions and system

optimization exercises presented in Chapter 7. The final result is a

system design optimized for the various assumptions about future tech-

nology and economics. Since no such forecasts are perfect, the estimates

and the conclusions which follow are presented in sufficient detail that

readers may readily revise them and understand the consequences. In most

cases revision of only one or two assumptions does not have a controlling

influence on the outcome because the total system is so large and complex.

In Section 3.2 network architectural issues are discussed, with

emphasis on the optimum distribution of traffic between satellites and

terrestrial links and the resulting geographic distribution of ground
1

stations. Interesting results include 1) the identification of satellite

"markets" other than simple long-haul, 2) the dependence of ground-

station density upon traffic density, 3) the costs of diversity protec-
o 

tion, and 4) identification of other opportunities for optimization.

Section 3.3 reviews the architecture of the satellite system; with

special emphasis on optimization of subsystem gain, switch	 ' chitecture,

and multibeam antenna design; the antenna discussion includes extensive

computations of beam-crossover gains and sidelobes by T. Bigelow.

-30-

w

F'



3.2 NETWORK ARCHITECTURE

3.2.1 RATIONALE FOR SATELLITES

The primary justification for communications satellites is economic,

although issues of security, national policy, and communications flexi-

bility may also intervene. In this section the principal cost advantage

of satellites is discussed in terms of a greatly simplified cost model.

This discussion continues in Section 3.2.2, where the model is extended

to permit qualitative understanding of the proper division of communica-

tions traffic between space and terrestrial links.

Consider a cost model in which the transmission costs per circuit-

mile-year are identical over the entire terrestrial telecommunications

system. Then the cost of linking two stations ($/circuit year) is

directly proportional to the length of that link, as illustrated in

Fig. 3.2-1 for annual costs of one and ten dollars per voice-circuit

mile. Although these costs are below those of the most expensive

existing links, they are probably more nearly characteristic of that

range spanning the present-average and present-marginal costs of the

existing long lines network. Unfortunately the actua;. costs are gener-

ally unknown, unpublished, or controversial -- nonetheless the numbers

used here are quite adequate to vinderstand the general role of satel-

lites in communications.

The division of traffic between terrestrial and space links will

depend upon the relative costs. As noted above, it is reasonable to

characterize terrestrial costs as proportional to the product of data

rate and link length, whereas satellite costs depend only on data rate

and not link length; once a satellite is invoked, it can communicate

with any ground station within its field of view with almost equal ease.

In Fig. 3.2-1 two different costs per satellite circuit year are

plotted: $250 and $2500. The smaller cost is approximately that

projected per 64-kbps digital circuit for the baseline system analyzed

later in this report (see Table 7-1). The higher cost is below present

tariffs for existing voice links via satellite (see Table 2-7; costs are

below tariffs for efficient use).

Since the satellite costs are independent of distance, there

is some distance beyond which satellite., are less expensive than the
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distance-dependent terrestrial costs. If we compare the $250 per-

satellite-circuit cost with the $1 per- terrestrial-circuit-mile cost,

then it follows that for circuits over 250 miles long, satellite links

are less expensive Comparison of the $2500 satellite costs with the

$1 terrestrial cost yields a breakpoint of 2500 miles, which would

relegate satellite links primarily to transcontinental and inter-

continental traffic.

Once the break-even distance is known, then the fraction of the

total traffic that could be allocated to satellites can be roughly

estimated. First consider the general shape of the traffic demand

curve as a function of link length. If population were distributed

uniformly, then the number of people per mile at any particular distance

would be proportional to that distance L; the number of circuit miles

would thus be proportional to L2 if traffic were proportional to popula-

tion alone. This growth with L must end when the boundaries of the total

region are reached. For example, most of the eastern seaboard traffic

occurs within distances characteristic of the Boston-Washington corridor,

say 400 miles. Similar distances characterize the industrial midwest

and the western seaboard. Thus the relative traffic for distances above

ti 400 miles should drop to levels more characteristic of transcontinental

distances. Such a curve appears in Fig. 3.2-1; it is qualitatively

similar to one presented for a representative subset of large corporate

customers of AT&T (Cochrane and Lawson, 1979). Actual traffic distribu-

tions also depend on tariffs and business practices, and these can move

the peak of the distribution to distances of 'L 100 miles for submarkets

such as certain residential Long distance calls, etc. (see Tables 2-3 and 2-5).

If we consider the 250-mile breakpoint in terms of this traffic

distribution curve, then it is clear that satellites could carry well

over half of all long-distance traffic. However, if the 2500-mile

breakpoint is more appropriate to the actual costs, then satellites would

best be used internationally, if at all. It is probably fair to say that

present usage of satellites is more nearly characteristic of the 1500-

mile breakpoint for conventional voice traffic, but that evolution toward

increased use of satellites is likely. For distribution of wideband

signals such as network television, it appears that the breakpoint

- 33 -

I



distance is already approaching hundreds of miles, in view of the rapid

growth of this service.

Some of these breakpoint arguments are somewhat artificial, however,

because of regulatory and other considerations. For example, the cost

of leasing AT&T terrestrial long-lines by a new communications vendor

may be the tariff established to cover average AT&T system costs, rather

than the marginal costs associated with his expansion of the total market.

Thus the tendency for such new communications firms to employ satellites

could be greater than that of AT&T, which faces a different tradeoff.

These issues are discussed further in Chapter 8.

The other non-economic issues concerning the utilization of satel-

lites include security, system flexibility, and national policy. Satel-

lites enhance security because the only link elements readily vulnerable to

natural or other hazards are at the ends of the link close to the users

and within their more direct control. Although satellites face other

hazards, they are statistically somewhat independent, and

therefore increase the total security of the communications system.

Security and economic advantages also follow from the flexibility

inherent in satellite systems which link modest ground stations that can

be installed, expanded, or removed relatively quickly and easily in

response to rapidly changing needs. Both these virtues of satellites

support national policy objectives. These objectives are also sup-

ported by the occupancy and utilization of orbital slots, the export of

technology, equipment, and services, and the increase in national and

international communications that can follow from the economies made

possible by satellite technology.

3.2.2 DIVISION OF TRAFFIC BETWEEN SPACE AND TERRESTRIAL ELEMENTS

The rationale for allocating traffic to satellites was discussed

in the previous section. Depending on the assumed costs per circuit,

the fraction of long-distance traffic allocated to satellites could vary

from a negligible fraction to a significant nsajority, with satellite

links generally being dominant for circuits longer than some breakpoint

distance. However, the basic assumption made in the preceding analysis

was that terrestrial costs are proportional only to circuit miles. It

is more accurate to consider a cost which is proportional to circuit

34
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miles plus a second component which is a fixed cost proportional only

to miles. These fixed costs include the costs of burying conduit,

building microwave towers, right'-of-way costs, etc. The costs propor-

tional to the number of circuits or' to bandwidth are associated with

electronics and the costs of the transmission medium, e.g., optical

fibers. The simplified analysis of the preceding section, based upon

constant costs per terrestrial circuit mile, breaks down seriously if

technological advances can reduce the variable electronics costs to

levels significantly below the fixed costs per mile, or if traffic is

sufficiently low that terrestrial fixed costs dominate.

To better understand the issue, consider the simplified cost

equations below, which divide both the terrestrial and satellite costs

for a particular circuit route into a constant term plus a variable

component.

Satellite Cost C = k + k t (dollars/route year)
s	 so	 s 

Terrestrial cost Ct = ke + kttm(dollars/route year)
0

where the k's are constants, t is traffic (equivalent circuits), and m

is the circuit length (miles). Whether any particular route should be

handled by satellite or by terrestrial systems depends (in this simpli-

fied analysis) only upon which costs less. This decisioz thus depends

only upon the variables t and m, once the constants k are fixed. This

decision rule is represented graphically in Fig. 3.2-2, where the axes

are m and t. Although several curve forms are possible, only a few are

illustrated. Table 3.2-1 presents the values assumed for the constants

used in the figure.

Table 3.2-1. Assumed Cost Constants for
Terrestrial and Satellite Circuits

fi

t

k
so

k
to

k
s

k
t

Asymptotes
High t Low t Cross-

($/ ($/ ($/ ($/circuit over
Case route) mile) circuit) mile) ks/kt

k 
	 /kt k 	 /ks0	 0 0

A: Non-aggregated
106 104 103 103long lines 1 100 10

B• Aggregated
4. 105 103 400 400 400long lines 1 2.5
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Consider first Case A, as defined in the table and figure. The

constants correspond to the case where the fixed cost of a link is

allocated to that link alone and not shared by foreign traffic; the fixed

cost per terrestrial link, kt , is assumed here for illustrative purposes

to be $10,000 per mile. Consideration of Eq. (3.2-1) reveals that there
i

are two major asymptotes of interest, the high and low traffic limits.

In the high-traffic limit the variable terms proportional to t dominate;

in the other limit the fixed terms are largest. The breakpoint mileages

for these two limits are k s/kt and ks At , respectively; for Case A
0 0

they are 1000 and 100 miles, respectively. There is also a transition

region between the two limits defined by the equation t = k  /ks , if k 
0

is sufficiently small. Other values of constants give somewhat different

curves and limits.

The high-traffic limit case is the same as that considered in the

previous section, Section 3.2.1. In this limit the constant cost compo-

nents are negligible compared to the variable terms kttm and k st. This

breakpoint, at 1000 miles here, defines the satellite market discussed

in the previous section; in the figure it is designated the long-haul

market and is best satisfied by satellites. If the breakpoint mileage

for the low-traffic limit is less than the high-traffic breakpoint, then

there may be a very important additional satellite market which is the

low-traffic portion of the medium-haul market, also defined in the

figure. In this medium-haul market satellites are competing primarily

against the fixed per-mile costs of terrestrial links and not against

their traffic dependent costs. The route between New York and Chicago

may even fall into this medium-haul satellite market, whereas it is

outside the long-haul satellite category. In fact many routes would

fall in the satellite portion of the medium-'.haul market, but not very

heavy short routes such as New York/Philadelphia. Different cost

assumptions produce different decision rules, such as Case B.

In Case B the major change in assumptions is the reduction of the

fixed terrestrial costs per mile by a factor of ten; such reductions

could be appropriate for incremental additions to existing routes which

already carry significant traffic. In Case B the high and low traffic

limits are coincidentally both 400 miles, and thus there is only a

W
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long-haul satellite market and a short-haul terrestrial market; the

mediur. haul market does not exist.

With future improvements in technology it will be possible for

terrestrial links to regain a portion of the long-hat,l market. The

possibility of this happening before the end of the century is non-

negligible; already single optical fibers have been demonstrated to be

capable of carrying 1.2 Gbps with repeater spacings of 23 km (Yamada et

al., 1979). Thus a few fibers could carry a large fraction of all na-

tional traffic. The costs of fibers and repeaters are dropping rapidly,

and they could become negligible expenses in the near future.

In the event the traffic-dependent cost term, k t , goes to zero, the

decision curves in Fig. 3.2-2 approach the free-fiber limits. The cross-

hatched region in the figure that defines the long-haul fiber market

for Case A does not include any routes with less than 10,000 circuits,

and thus this market has little economic significance under these cost

assumptions. However, under Case B this market could include the impor-

tant New York/Chicago route and perhaps others like it. Thus the long-

haul market could also be split, with the heaviest routes remaining or

reverting to terrestrial services.

In the event that the fixed costs per mile dominate, then the

number of miles required to connect major switching centers becomes of

interest. In Fig. 3.2-3 the 50 largest U.S. metropolitan areas are shown;

the five largest are marked by filled circles (New York, Los Angeles,

Chicago, Detroit, and Philadelphia). If one were to connect these 50

areas by terrestrial links, only 8000 air miles would be required, as

suggested by the solid lines in the figure. This network has no

redundancy; any two nodes could be separated by a single break. Addi-

tional lines (303 of the total) could provide dual redundancy, as

indicated by the dashed lines; any two nodes could then be isolated only

if there were two separate line failures. If only the five largest areas

were connected, then 4000 miles would suffice.

Consider the lines connecting the five largest cities, and suppose

that they had a fixed cost of $20,000 per mile. The total cost for 4000

miles would be only eighty million dollars,and yet it might carry several

percent of all long-distance traffic. Once such a line were established,
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a the marginal costs of adding traffic from nearby nodes, such as Toledo,

could be small, so there would be a "halo" market as well. Nonetheless,

satellites could probably retain a very firm grip on the low-traffic end

of both the long-haul and medium-haul markets.

The market division between terrestrial and satellite links might

be differentiated further by the quality of service desired. Such

differences include the quarter-second delay incurred for single satel-

lite hops and any differences in the statistical distribution of system

failures and blocking. With the coexistence of both a satellite and a

terrestrial network, as envisioned here, the traffic could divide between

the two modalities in response to both tariffs and service, with the

higher terrestrial tariffs being associated with the longer, thinner

routes. Many .regulatory and pricing options exist, and would complicate

the simplicity of the preceding discussion.

Before concluding this section it is interesting to estimate the

actual breakpoint distance for present AT&T or independent company deci-

sions. Typical satellites cost $20M-$30M for 10 4 circuits (e.g.,

Intelsat V) and requirements for backup capacity, launch-failure allow-

ances, loading efficiencies, etc. might increase this to ti $80M for

10,000 circuits, or % $1200 per circuit year for a seven-year satellite

lifetime. Inclusion of ground station, depreciation, and labor costs

might increase this total to $2000 per circuit year today.

These numbers represent estimates by this writer only and not the

results of published analyses. Actual costs would also vary consider-

ably with scale and specifications. Smaller systems providing digital

switching services would be more expensive than large inflexible

trunking systems.

Costs per incremental terrestrial circuit mile year now average

'v $1-5. If we assume a 15-year life for the systems costed in Fig. 6-1

then the present capital costs might be ti $2, and labor costs could

increase it further. The capital costs are projected to decrease

significantly with technological improvements.

The ratio of these two variable costs, $2000 per circuit year and

$4 per circuit mile year, yields a high-traffic-limit breakpoint distance

of 'ti 500 miles. The fixed costs which determine the other breakpoints are

-0-



a
3

more difficult to estimate, and will generally be different for AT&T and

its competitors.

The biggest fixed costs for microwave links are those for microwave

towers, real estate, access roads, etc. and the associated development and

maintenance. A tower costing $200 , 000-$300,000 and lasting 20 years might be

costed at $20,000 per year plus maintenance costs of '^ $20,000 (author's guess).

A 20-mile link would thus have fixed costs of 1$2000 per mile per year. Since

AT&T Long Lines already owns a large network of towers, cable routes, etc., its

fixed costs for marginal increase in plant could be much less. They would con-

sist primarily of the fixed costs of the electronics alone plus the marginal

costs of maintenance (site visits are presumably already made regularly). Thus

the fixed costs for marginal increases of existing links could approach the

fixed electronics costs alone, which can be less than $1000 per mile per year.

A very large ratio also exists between the fixed cost of new buried conduit

versus cable additions to existing conduit. For k t = $4K,,ks = $40K, and ks =
0	 0

$4K, the low-traffic limit is 10 miles and the cross-over is 1, thus extending

the medium-haul market to shorter, but thinner routes than suggested by Case A.

3.2.3 DISTRIBUTION OF SATELLITE GROUND STATIONS

In this section, as in the preceding ones, simple cost models are devel-

oped which illuminate the principal issues. The question of ground station

density hinges on the relative costs of basic satellite ground stations on

the one hand, and those of inter-node terrestrial links on the other.

First, it is important to note that in most cases it would be more

economic to aggregate traffic from many users into one hub served by a single

ground station, instead of providing each user with his own station. This

conclusion follows easily from comparison. of ground station costs of hundreds

of thousands of dollars versus terrestrial link costs of thousands, or even

tens of thousands of dollars, per mile. Only seriously isolated or very

heavy users would normally find it cheaper to have a private station. Since

these large satellite systems should be hub-centered, and since such hubs with

convenient and economical rights-of-way, facilities, etc. already exist in

most cities, the question of optimum inter-hub distances will, in practice,

generally be a matter of deciding whether a particular existing hub should'

have its own ground station or whether it should route its traffic to a

neighboring one.
k;
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This question is posed schematically in Fig. 3.2-4 where these

options are cartooned. The costs of the two options are S dollars per

year for the satellite ground station versus ktm dollars per year for

the equivalent inter-node link, where t is satellite traffic, m is inter-

hub miles, and k is a constant. The cost S represents only the fixed

traffic-independent portion of ground station costs, because the traffic

dependent parts are the same independent of the number of ground stations.

The breakpoint distance m b beyond which two hubs should have separate

ground stations is easily calculated by equating the two costs and solv-

ing:

mb = S/kt	 (3.2-2)

The solutions to this equation are plotted in Figure 3.2-5 for

several different cost assumptions listed in Table 3.2-2. Typical ground

station separations might be on the order of 1.0 to 100 miles, with lesser

separations in urban areas because of the greater traffic density there.

If we further assume that the peak satellite traffic t exported from

a region is proportional to the population residing there, then the den-

sity of ground stations can be related to population density p (popula-

tion mi-2). The average traffic per capita is the total export satellite

traffic T for regions of a given size, divided by the total population P.

Combining these definitions with Eq. (3.2-2) and defining the region size

as mb , it follows that:

t _ p (T/P) mb = S/k 1°b	
(3.2-3)

mb = [SP /kpT]1/3
	 (3.2-4)

Table 3.2-2. Assumed Costs for Terrestrial Links and
Satellite Ground Stations: Definition
of Cases.

$/ckt.mi.) 1	 4	 16

S( /gnd^ta^.)^.

50K A	 B	 C

200K D	 E	 F
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If we assume a population of 300 million requires one million 
0

circuits, then the ground-station breakpoint distance ranges between

250 and 5 miles for cases A and E as the population density varies from

1 to 105 mi-2 ; and 150-3 miles results for cases B and F.

It is also possible to estimate the total number of ground stations

required for a given region. If the population and traffic densities

were geographically uniform, then the number N of ground stations required

would be:

N = A/m2b = A(kpT/SP) 2/3	(3.2-5)

where A is the total area of the region (mi2 ). The number N can be

bounded for the United States by assuming a population of 300 million is

distributed uniformly over 3 million square miles; 1000-3000 ground sta-

tions would be required for cases A,E and B,F, respectively. If this

same population were compressed into 3000 square miles at 105 people

per square mile, then only 120-320 ground stations would be required for

the same cases, respectively. A more realistic assumption is that per-

haps 80% of the population resides on 5% of the land, and that the other

20% is distributed uniformly; this results in 700-1800 ground stations

for the same two cost assumptions; about half would be rural stations.

This number grows as the two-thirds power of 1) the total satellite

system traffic T, and 2) the ratio of terrestrial-link to satellite-

ground-station costs, k/S.

It is interesting to test Eq. (3.2-5)by computing the number of

ground stations appropriate for present satellite traffic levels. If

we assume the fixed cost per ground station is now $500,000 and the cost

per circuit mile is $10, then the present United States satellite traffic

capacity of % 60 transponders, or - 10 5 voice circuits, would imply about

7 ground stations should serve this traffic; which is of the correct

order for voice circuits.

3.2.4 IMPACT OF PROPAGATION STATISTICS ON NETWORK ECONOMICS AND
ARCHITECTURE

It is very important to understand the impact of atmospheric

propagation statistics on network economics because it is only the

P
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increased susceptibility of the 12 /14 GHz and 20/30 GHz bands to rain

attenuation that ultimately will limit their utilization in preference

to bands at lower frequencies. Otherwise, the far greater bandwidths

and smaller antennas (late 1980's technology) required at these higher

frequencies would make them clearly preferable., One of the most inter-

esting and significant conclusions which can be drawn from the preceding

simple cost models is that the propagation statistics for 20 /30 GHz in

the United States are sufficieit tly close to perfect that less than a

ti 10% impact on network economics results from the inclusion of diversity

protection ' adequate to ensure almost any reasonable level of link reli-

ability. This result, explained below, applies for any reasonable level

of satellite participation in the existing flow of traffic. The positive

stimulus this conclusion could provide to the development of this band is

clear.

The central technical fact is that if adequate space diversity is

employed, then modest link margins of 10-15 dB are completely adequate

to provide 99.99 % relirbility or more. Typical of the many studies of

this phenomenon is the summary prepared by Ford Aerospace and Communica-

tions Corporation, one part of which is repoated in Table 3 . 2-3. This

table lists the link fading margins required to ensure less than 0.1 and

0.0l' link outage at 18 GHz for no diversity and for 8-km diversity.

Without diversity a 12.4-dB margin is required in Houston to yield 0.1%

performance, but with a second ground station only 8 km away this re-

quired margin drops to 4 . 7 dB for 0.01% performance. The attenuation

in this frequency band is approximately proportional to the square of

frequency (Wilson, 1969), so the required margin for Houston at 30 GHz

would be ' v 13 dB for 0.01% outage. This performance can easily be

improved further by increasing the separation between the two inde-

pendent ground stations or by using triple or higher order diversity.

The principal limit to the use of diversity is economics. Consider

Fig. 3 . 2-1 which suggests that the peak of the traffic distribution curve

corresponds to links several hundred miles long, and that terrestrial

links are usually less expensive than satellite links for routes less

than several hundred miles. The question now is: what percentage cost

increase is associated with providing 8 km or more of permanent extra

• i
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links between an originating hub and its nearest neighbor in order to

provide this diversity protection? In the preceding section a typical

inter-hub separation of 10 to 100 miles was derived, and if we compare

this to the breakpoint distance of several hundred miles or more s then

for the peak of the traffic distribution, the extra land links required

would add typically less than ti 5% to the total link cost. The number
5% corresponds to an assumed 30-mile diversity link added to an assumed

nominal 300-mile communications route (10%), reduced by a factor of two

because two ground stations can share each such diversity link. These

inter-hub diversity links would be a small part of the total terrestrial

long-lines capacity unless satellite circuits totally dominate the long-

lines installed plant. If these diversity links are a small part of the

inter-hub communications plant, this implies that the costs of diversity

could be reduced further. For example, if the rain outages systematically

occur away from the peak hours, then there will always be adequate inter-

hub plant sufficient to provide the desired diversity when required.

The exact degree to which this effect could reduce diversity costs would

depend upon the detailed statistics of local traffic and atmospheric

propagation.

An alternative method for estimating diversity costs is to recall

that ground stations are separated by distances such that the fixed

ground station cost equals the cost of an inter-hub link adequate to

handle the satellite traffic. To provide diversity this link is re-

quired anyway, and thus the fixed ground station costs are doubled;

actually the fixed costs of only half the ground stations are doubled,

because two stations could share each diversity link. Furthermore, the

variable costs of each ground station should be increased by an amount

adequate to handle the excess traffic from neighboring stations suffer-

ing rain attenuation. If the diversity links are rearranged so the

ground stations are not connected in pairs but rather in a continuous

mesh (this can be done without increasing the required number of

diversity-circuit miles), then ground stations an arbitrary distance

away can be employed to handle any rain-displaced traffic, and the

excess required variable costs approximate zero. In this case, which

is the configuration of choice, the cost of diversity is only half the

fixed cost of the ground stations, as noted above. If the fixed ground
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station cost were half the variable ground station cost, and if the

,

total ground station cost equaled the space segment cost, the cost of

full diversity would then be approximately 8% of the total satellite

communications costs.	 This is comparable to the previous estimates.

Therefore, if the cost savings of the 20/30 GHz bands exceed 5--109,

then these bands would be :economically preferable.

Diversity costs become high only if a user who is totally reliant

upon his own ground station and not connected with adequate back,-up

terrestrial plant insists upon receiving a very high degree of link

reliability.	 In this case an extra ground station plus the connecting

terrestrial link would be required, approximately doubling that user's

terrestrial costs. 	 This would obviously be an unusual situation. 	 Such

a user might alternatively segregate his traffic into high and low

priority messages, with the high priority traffic enjoying the higher

link reliability statistics afforded by whatever terrestrial circuits

do exist.

3.2.5	 MONOLITHIC VERSUS POLYCENTRIC ARCHITECTURES

Monolithic satellite networks are those with a single switching

locus in space viewed by all ground stations; such a system could pro-

vide all communications services to all users. 	 Monolithic networks need

not be owned by only one entity, however., The switching locus could
contain several interconnected satellites with diverse ownership, and

the ground stations could also belong to a variety of organizations.

Only the basic protocols and standards must be commonly accepted. 	 The

virtue of a monolithic architecture is its cost effectiveness and avoid-

ance of Long inter-satellite links or multiple hops with their attendant

delays and costs.	 Within a monolithic system there could still be

specialized satellite subsystems which, for example, might employ nar-

rower bandwidths and greater power densities to communicate with very

small and inexpensive ground stations.

' Polycentric architectures can be broadly grouped in three classes:

1) multiple satellite systems, each providing some services to all users,

2) multiple satellite systems, each providing all services to some users,

and	 3) multiple systems, each providing some services to some users.
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Table 3.2-4 summarizes the main differential cost elements associated

with these various options. Unfortunately, the range of possible varia-

tions is so great that a simple comparative analysis of these options

is not practical.

Table 3.2-4. Differential Cost Elements for Alternative
Switched Satellite Network Configurations.

Additional Cost Elements Required

Inter- Multiple Ground
Satellite Terminals for Multiple

Configuration Links Each Hub Satellites

Single satellite
platform or cluster

Multiple non-competing
service-specific X X
satellites

Multiple competing X X
all-service satellites

Multiple competing
partial-service X X X
satellites

3.2.6 FREQUENCY REUSE REQUIREMENTS

The degree of frequency reuse that is required depends upon the

available spectrum allocation, the efficiency of spectrum use, and the

desired levels of traffic. In the 20/30 GHz bands the spectrum alloca-

tion might be as much as two or three gigahertz; in this report we assume

2.6 GHz is available. The bit rate available for the tamed-FM (TFM) modu-

lation scheme discussed in Appendix A3.1.3.3 is 1.33 bits/Hz, which degrades

to 'L 1.22 when allowances are made for gaps and system overhead functions.

If polarization diversity is employed, than these assumptions imply a total

capacity of 2.6 x 1.22 x 2 = 6.34 Gbps per antenna beam. As discussed in

Chapter 2, the total domestic Unitel States satellite traffic might fall

in the range 1-100 Gbps, which would require frequency reuse ranging from

1 to 32 times, which could be handled by 1 to 16 independent beams. If

the beams originate in one orbital slot, and if they are arranged in a

four-beam unit cell, then sidelobe characteristics such as those described

in Section 3.3.3 imply that from 1 to 64 beams would be required.

.	 -49-
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These estimates are appropriate if the traffic demand were distrib-

uted uniformly; however, as much as ten precent might originate in the

New York City beam alone. In this event the system capacity might be

limited to less than ten times the 6.34 Gbps beam capacity, if no region

receives less than its per capita share of total capacity. If certain

cities should saturate their capacity, then the total traffic could rise

further. One mechanism for doing this is to handle a larger fraction of

the traffic for saturated regions by terrestrial links. Another more

general approach is to use terrestrial links in saturated zones only to

link hubs outside the saturated beam, and then to allocate that traffic

to satellites or to further terrestrial means on the basis of relative

cost.

The length of a terrestrial link needed to offload traffic in a

saturated beam can be estimated by assuming that the maximum number of

beams discussed above, 64, are distributed uniformly over the 'L 3 x 106

square miles of CONUS. This implies beam separations of 216 miles, thus

links of 200 miles should normally suffice to transfer traffic to a non-

adjacent non-interfering beam. Such a link could be heavily used, such

that its cost per circuit could be quite low with high-technology

optical fibers.

Alternatively, the need for such links crossing out of saturated

zones could be avoided by making the beams smaller so as to resolve the

high density areas. Resolving the New York area in a meaningful way

would require beam diameters less than ti 50 miles. Since the traffic

already would be aggregated into a small number of hubs, to connect them

to a high capacity link 200 miles long would probably be far cheaper

than increasing the size of the satellite antenna by the required factor.

This conclusion follows easily from the discussion in Section 3.2.2 and

the cost analyses of Section 4.3.

We can now crudely estimate the required number of antenna beams

in terms of the total traffic requirements. For uniform population

distribution, 64 beams yield 100 Gbps capacity. If the beams are of

equal size, and if the population resides uniformly over one-third of

CONUS, then 192 beams would be required. Thus, crudely estimated, it

appears that 200 antenna beams would have adequate frequency reuse
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capability to provide 100 Gbps capacity for CONUS, if a few hundred miles

of terrestrial links were used to disperse satellite traffic near satu-

rated cities, and if 2.6 GHz were available.

To summarize, one beam could handle up to 6 Gbps, 'L 200 beams could

handle 100 Gbps, and intermediate loads would require an intermediate

number of beams. Actually, as discussed in Section 3.3,2, the choice

of antenna size and number of beams may be dominated by link margin

requirements, and not purely by the issue of frequency reuse.

In the unrealistic limit of infinite traffic, a. negligible portion

could be handled by satellites. It is interesting to estimate the number

of cable miles required to link CONUS customers without satellites.

First divide metropolitan areas into 1) the 50 largest centers (popula-

tions above 770,000, or larger than Oklahoma City), 2) the next 200 centers

(populations above 86,000, or Columbia, Missouri), and 3) the remainder of

the population in suburban or rural areas; the total populations in these

three classes are now ti 100, 56, and 55 millions respectively.

The miles of lines required to connect 50 population centers

distributed uniformly over the United States' area of 3.6 x 10 6 square

miles would be % 50,x (3.6 x 10 6 /50)2 = 14,000 miles. This is comparable

to the distances suggested by Fig. 3.2-3, which are 8000 miles for single

links and 12,000 miles for dual redundancy. A similar geometric calcula-

tion for 200 additional centers yields 16,000 more miles of lines. Be-

cause population centers are clustered, fewer miles may suffice, but

requirements for redundant lines and for circumventing geographic features

partially compensate. Finally if we assume that user sites are distribu-

ted uniformly over one-tenth of CONUS, then N(3.6 x 10 5
 
IN) j^ miles might

be required for additional local networks; this is 19,000, 60,000, and

190,000 cable miles for N equal to 1000, 10,000, and 100,000 user sites,

'

	

	 respectively. Under these assumptions, the average length of a single

link connecting any user to a nearest neighbor would be approximately

19, 6, and 1.9 miles, respectively. These mileages would all be reduced

e

	

	 by a factor of 3.2 if the sites were distributed over only one percent

of the land instead.

Although these numbers are crude estimates, it is clear that the

miles required to link the 250 largest centers dominates until the number

....
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of user sites exceeds some threshold„ v ,hich appears to be on the order of

10,000. Subsequently the local lines would be of greater total length.

Tl.as, in the event the services spawned by inexpensive satellite

communications outgrew the available spectrum resources, then the exist-

ing local distribution networks would already be so large that the cost

of replacing the satellite long lines with terrestrial links would repre-

sent a small part of the total existing plant, provided that the fixed

costs per mile then dominate the costs of long cables. It is fortunate

that the level of traffic which would overwhelm the capacity of a satel-

lite system would also move most intercity links above the free-fiber

Limit shown in Fig. 3.2-2; the conversion to terrestrial links might

therefore occur for economic reasons in advance of total frequency satu-

ration. Even if the reconversion to terrestrial links were motivated by

saturation rather than economics, the cost penalty should be modest.

3.2.7 SIGNAL FORMS AND PROTOCOLS

Many of the questions concerning signal characteristics and protocols

are not strongly dependent upon the topological form of the network. For

example, although analog signals can be handled with considerable bandwidth

efficiency, the need for such signals to pass through several switches,

amplifiers, etc., and the requirements for system flexibility, cryptog-

raphy, and bandwidth compression all strongly suggest that digital signals

are best for large switched networks. The decreasing cost of digital

circuits is rapidly making this alternative more attractive, even for

video signals. For these reasons only digital systems are analyzed here.

One of the primary protocol issues concerns the method for handling

the interface between satellite and terrestrial elements of an integrated

wideband network. One approach would be to optimize the protocols and

signal formats for the two elements separately, and then to provide what-

ever buffers are required to translate across the interface. For example,

one system might employ packets and the other may rely on conventional

switched circuits. Obviously each system must provide adequate command

and control information to the common interface.

The amount of memory required at such interfaces between terrestrial

and satellite elements, or between the users' terminals and the switched
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network, would also depend upon the signal formats and protocols. In a

wideband system the high data rate could lead to substantial memory

requirements at switching nodes or system interfaces, so the use of

small data packets and careful synchronization could be helpful. For

example, a time-domain-multiplexed (TDM) satellite system which has its

major switches in space could avoid most memory requirements if the up-

link and down-link time-slot assignments were synchronized at the satellite.

ec
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3.3 SATELLITE SYSTEM ARCHITECTURE

3.3.1 INTRODUCTION

The satellite system comprises the satellite complex, the ground

stations, and the associated command and control systems. In Section

3.3.2 those elements which impact the link margin are considered; they

include the choice of modulation and data rate, antenna sizes, and trans-

mitter powers. Although other factors such as receiver sensitivity are

involved too, they generally have a l.eso profound impact on the system.

Section 3.3.3 discusses the architecture of the satellite switching

system and its impact on system specifications and the efficiency with

which the satellite transponders are utilized. The satellite antenna

design enters this discussion, and this leads naturally to Section 3.3.4

which elaborates further on antenna design considerations. Section 3.3.5

combines the foregoing in a discussion of the total spacecraft communica-

tions system and the associated numbers of required components. The

remainder of this section deals briefly with the subjects of command

and control (Section 3.3.6), terrestrial signal processing equipment

(Section 3.3.7), and the architecture of the satellite ground stations

(Section 3.3.8).

3.3.2 SELECTION OF LINK PARAMETERS

3.3.2.1 Design Variables

The link parameters of interest here are those which determine the

bit-error-rate (BER); they include the transmitted power P T (watts), the

gains of the transmitting and receiving antennas G  and bR, the path

loss L, the receiving system noise power density No (W/Hz), and the link

data rate R (bps). For reasons discussed in Section 3.2.7, only digital

systems are considered here. The bit-error-rate depends upon the choice

of modulation and the achieved ratio of bit energy E  to noise power

density No.

For a given type of modulation the bit-error-rate (BER) is a known

function of EB /No ; this is discussed further in Appendix A3.1. This

ratio is simply related to the ratio of received power PR to noise Not

as shown in Eq. (3.3-1), and is therefore related to the other link

parameters:

.3
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PR/No = R(EB/No) = PTGTGRL/NO	(3.3-1)

The path loss generally includes atmospheric attenuation as well as the

more significant geometric losses, and the equipment attenuation losses

can be included in the antenna gains G or listed separately.

The principal design variables of interest in Section 3.3.2 are Rt

YT , GT , GR, and No . The satellite antenna gain is further expressed in

terms of the number N of antenna beams it employs to cover Alaska, Hawaii,

and the continental United States, the region of interest for the baseline

design. There is essentially a one-to-one relation between the number of

beams required and the satellite antenna gain because we assume that it

is important to provide each state with approximately the same satellite

performance. The number of a-atenna beams required is related to the peak

beam gain. If we assume that the number of unique beams N is approxi•-

mately equal to the total solid angle scanned by the satellite divided

by the solid angle of a single beam (the angle inside the 3-dB con-tours),

then, for example, 53-dB gain would correspond approximately to 100 beams,

or in general:

G = 53 + 3 log2 lN/100)	 (dB)	 (3.3-2)

Although this relation is imprecise, it suffices for the following discus-

sion.

3.3.2.2 Link Design Issues

The first issue is the choice of time-domain multiplexing (TDM) or

frequency-domain multiplexing (FDM), in either case we have previously

restricted ourselves to digital signals (Section 3.2.7). The importance

r

	

	 of TDM results primarily from the requirements for significant switching

in space. In Section 3.2.3 it was estimated chat there should be hun-

dreds of ground stations, each conveying traffic designated for any of

the others. if single frequency bands were allocated to each of these
Or

	

	 station pairs, the number of bands could be 10 5-106 , which could pose

tremendous equipment problems. The fact that each of these bands would

carry significantly different traffic loads seriously compounds the prob-

lem. Therefore the basic channel is assumed to be TDM within some fixed

bandwidth. Ground stations with heavy traffic would employ several TDM
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bands. Because the cost penalty for doing so appears modest, we further

assume that both the bands and time slots can be dynamically allocated,

and thus the result is a multiple-access FDMA/TDMA system.

Because the number of free parameters is large, it is conceptually

useful to regard the less variable ones as fixed so as to focus initial

attention on those which are more critical. These fixed variables can be

determined separately with little penalty. By simplifying the tradeoff

problems it is easier to understand the basic issues and to trace the

impacts of the various assumptions. Although computerized tradeoff

analyses employing large numbers of nonlinear cost equations are more

accurate in principle, the lack of understanding they convey makes them

less suitable for the present discussion.

Two variables which we initially regard as nearly fixed are the

receiver noise No and the ground station antenna diameter. The receiver

noise for the uplink includes perhaps 300°K of terrestrial blackbody

radiation, and economical uncooled superheterodyne mixers already have

nearly comparable noise temperatures. We assume a system noise tempera-

ture of 500°K, which would not vary much in any tradeoff analysis. The

nominal 8-ft antenna diameter for the ground stations can be varied

separately once the other variables and their costs are more nearly

determined. This issue is discussed further in Chapter 7.

We can now consider the basic tradeoff between data rate R, space-

craft transmitter power PT , and the number of spacecraft antenna beams N.

We have assumed N
0 

is -201.6 dBW/Hz (for 500° system temperature), the

ground antenna gain as 52 dB (for an 8-ft aperture and 50% aperture

efficiency), EB/No is 12.5 dB (for tamed f.m. modulation and a BER of

10-7 ), and the satellite antenna gain G  is 53 + 3 log 2(N/100) db

(coverage of United States). In addition we assume the path loss to

synchronous orbit is -211 dB, atmospheric and line losses are -3 dB, and

the margin for rain attenuation, etc. is 10 dB. With Eq. (3.3-1) these

assumptions permit the relationship between R, P T , and N to be studied.

In Fig. 3.3-1 the data rate R is plotted as a function of the number

of antenna beams for transmitter powers of 10, 30, and 220 watts. To

begin, there are certain regions of the diagram which are undesirable.

t
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For example, limits to the number of beams can be set by the

maximum antenna size. In the figure there are bound::, drawn for the

20 GHz band at 400 and 1000 beams. The bound at 400 beams corresponds

to antenna apertures of 4 x 8 meters, approximately the largest size

which can be launched by the space shuttle without folding the primary

reflector. Use of larger folded reflectors at this frequency carries

a significant cost penalty. The bound at 1000 beams is a soft one

corresponding to rea4 ily available surface tolerances for folded

20 GHz antennas having standard surface deviations of 5 x 10-5 times

the antenna diameter (Powell and Hibbs, 1977). In general the system

parameters should be selected to the left of these bounds. A similar

bound at 145 beams applies to non-folding antennas at 12 GHz.

The transmitter powers of 10, 30, and 220 watts correspond, respec-

tively, to 1) a practical 20-GHz TWT expected to be available by 1985,

2) a near-maximum power 20-GHz helix TWT anticipated by the late 1980's

(Frediani, 1978; Deml, 1978), and 3) the planned 220 watt H-SAT

transmitter. To assume space transmitter powers above these could also

entail significant cost increases, and so the preferred parameters lie

to the lower right of these bounds.

Another bound can be set by frequency-reuse requirements. This

constraint for the multi-gigabit systems hypothesized here lies in the

range of tens of beams, although the bound can exceed 100 beams for the

largest options over 30 Gbps.

Another bound consists of the data rate R desired for the most

broadband service. If this service is full broadcast quality color

video, then this lower bound might be ti 30-128 Mbps; 64 Mbps might

represent a reasonable compromise. A softer but similar lower bound on

data rate is set by the need to limit the number of separate r..f. sub-

systems in the satellite. Each band requires receivers, transmitters,

switch ports, etc., and similar coats occur on the ground.

These bounds together loosely define the desirable operating points

for the communications space links. Motions in different directions on

the chart incur different cost penalties, as suggested by the large

arrows in the figure. The satellite costs are balanced between those
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for the transmitters, antennas, and the other r.f. and baseband components.

The ground costs are balanced between the necessary link margins and the

r.f. and baseband component costs; they generally are reduced as the

number of spacecraft antenna beams increases. The effect of this last

observation is to favor larger spacecraft antennas as the traffic and

therefore the number of ground stations increase.

3.3.2.3 Baseline Design and Options

Because a complete multidimensional non-linear minimum cost design

would be prohibitively expensive and require an excessive number of

arbitrary estimates, the baseline design parameters analyzed in the next

chapters were selected to lie in the broadly defined "cost-effective

regions" of Fig. 3.3-1. A further discussion of these design choices is

contained in Chapter 7.

The number of antenna beams in the baseline design is 400, which is

the maximum number that can be launched without folding the reflectors.

The peak data rate R is 140 Mbps, or 128 Mbps average, which is adequate

to handle one or two color broadcast video channels uncompressed. For

most ground stations one such band would normally suffice; a 30-Gbps

system with 1000 ground stations would average 30 Mbps per station. With

such a large satellite antenna a 10-watt TWT transmitter yields a rain

margin of 15 dB at 20 GHz, or a 4-watt solid state system could provide

11 dB margin. In general, the preferred range of specifications is

`L 50-300 Mbps, 3-10 watts transmitter power at 20 GHz, and 100-400

antenna beams. With larger ground station antennas these ranges would

shift correspondingly toward higher data rates, fewer beams, and weaker

transmitters; the cost impact on the large anticipated number of ground

stations suggests that little movement in this direction would be

desirable, as discussed further in Chapter 7.

3.3.3 SATELLITE SWITCH ARCHITECTURE

3.3.3.1 Objectives

The primary objective of the satellite switch is to provide full

connectivity for all ground stations, regardless of their sbifting demands

upon the system. To the extent practical the switch should also enable

-x
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all functioning transponders on the satellite to serve this vary'ng load
such that no link fails for Jack of transponders unless all of the tran-

sponders are saturated. Since transponders account for much of the

satellite costs, the efficiency with which they are utilized is an

important consideration.

3.3.3.2 Switching at Radio Frequency

Any large multibeam satellite will generally have fewer transponders

than antenna beams, and therefore one important reason to switch the

signals at microwave frequencies is to efficiently share these transponders

among the antenna beams. Efficiently sharing transponders can be important

because the data rates of interest here are in the 50-300 Mbps range and

the satellite capacities are in the 1-20 Gbps range (which implies

Ou 3.0-100 transponders), whereas the number of beams is in the range

3.00-400, or several times larger. In addition, regardless of the number

of antenna beams, microwave switches could be used simply to dispatch the

traffic.

There are three r.f. switching schemes of interest here: the

electricallN, scanned TDMA spot beam technique, the limited-range electri-

cally scanned TDMA multiple spot beam technique, and the limited-range

stepped TDVA multiple spot beam technique. The two former approaches

have been described by Reudink (1978) and by Acampora at al. (1979);

the latter is described here and by Staelin and Harvey (1979).

The scanning spot beam approach connects a single transponder to an

electrically scanned phased array which has active elements associated

with each array element. For example, in the scheme of Reudink et al.

each transmitting antenna element has a separate small solid-state

amplifier driven via an electrically switched phase delay. Because the

many small transmitters are in phase for the desired beam, significant

total transmitter powers can be achieved. The disadvantages are that use

of more than one transponder requires the signals to be superimposed in

each array element amplifier, which introduces serious intermod.ulation

problems if more than a few transponders are employed. The need to

employ few transponders also boosts the data rate, which can be partially

compensated by the greater available space transmitter power, although

*)U
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this does not help the uplink. The limited communications capacity of

this approach suggests that it might be combined with several spot beams

serving major traffic centers, as discussed by Reudink et al. (1978).

The same research group subsequently showed that the transponder effi-

M.,
	 ciencies would be low with this approach (Acampora and Davis, 1978;

Acampora et al., 1979), and that multiple limited-range scanned beams

were significantly more efficient. Another difficulty with the scanned

beam approach is that for multiple transponders, one active device is

required for each antenna array element, which generally equals or

exceeds the number of available distinct antenna beams. Thus for large

multibeam systems this could be a significant penalty, particularly if

there are more than 100 beams.

The limited-range scanned TDMA multiple spot beam technique is a

natural improvement of the previous scanning beam geometry. Rather than

having multiple transponders each connected to all the antenna elements,

the transponders would each serve their own separate subset. In the

proposal of Acampora et al. (1979) there would be perhaps seven 500 Mbps

transponders, each driving perhaps 20 phased array elements. These 20

elements would be arranged in a line, and the seven lines would be

adjacent to one another; adjacent pairs would employ orthogonal polariza-

tions. This.configuration would thus incorporate 7 transponders and 140

transmitter phase shifters and antenna elements, and could handle 3.5 Gbps.

If each transmitting antenna element were one watt, then each downlink

would have 20 watts. If one of these 20 transmitters should fail, then

that scanning beam would exhibit extra sidelobes of only 25 dB.

High transponder efficiency requires equal traffic in each strip;

Acampora et al. show how this might be accomplished to first order by

sizing the feed elements so that the strips are of different widths and

are carefully placed across the service area. In addition, adjacent strips

would overlap somewhat, although with degraded antenna gain, and one could

therefore couple as many as three transponders to the same ground station.

The difficulty with this approach is that there should be more than 10

transmit..ea-.- per transponder if the failure of one is not to produce

sidelobe o.\ier 20 dB. For satellite capacities of many gigabits per sec-

ond this implies a great many transmitters and phase shifters, particularly

if the data rate is a more modest 64-128 Mbps. For example, 12.8 Gbps at

_t-_	 . _	 _	 _ _ I -_
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128 Mbps per band implies as many as 1000 transmitter phase shifters and

antenna elements.

The limited-range stepped TDMAimultiple spot beam approach

described by Staelin and Harvey (1979), is similar to the previously
described limited-range scanned beam technique, except that each tran-

sponder would be connected to only one feed element at a time rather

than to a set of several phased elements. These connections would be

made via broadband low-loss ferrite or diode switch

binary trees such that a typical transponder might serve 8-16 feeds.

Furthermore, the switches would be configured so that each feed could be

served by up to three alternative transponders. The geometry is shown in

Fig. 3.3-2. The set of feeds normally serving each transponder would be

arranged to yield approximately equal traffic loading on each transponder.

This flexibility, plus that afforded by sharing traffic from one ground

station on as many as 6 adjacent beams (albeit with reduced rain margins),

should be more than adequate to ensure almost 100 percent transponder

efficiency, even if one or more should fail.

The disadvantage of this approach is the relatively large number of

ferrite or other switches required, approximately one per feed for the

uplink, and the same for the downlink. Furthermore, placing feeds such

that their beam cross-over points have reasonable antenna gain is diffi-

cult, as discussed and resolved in the next section; this problem is easier

with phased-array feeds. Nonetheless, this is an extremely attractive

approach to the problem of r.f. switching, particularly for satellites

with very large capacities (above 5-10 Gbps), and is employed in the

baseline design.

3.3.3.3 Switching at Baseband

The r.f. switches described in the previous section were used pri-

marily to connect each ground station to one of perhaps two or three

transponders allocated to that station. These input transponders must

then be connected to the appropriate output transponders; this is most
easily done at baseband or with demodulated digital signals. The receiv-

ing and transmitting portions of the transponders would thus perform the

r.f.-baseband conversion for each band and would interface with the base-
band switch, perhaps via modems; see Fig. 3.3-2.
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During each TDMA time slot the switch would couple its input and

output ports, and then would reconfigure between slots. If this switch

were a digital logic switch operating at 140 Mbps, for example, then the

switch could be reconfigured instantly without the need for any gaps.

However, if memory is to be avoided on the spacecraft to perform time-

slot translations, then the ability to reconfigure instantly will be

limited by the duration of one bit compared to the timing tolerances

which are achievable at the ground stations.

It is reasonable to synchronize the ground and space systems indi-

vidually to within one bit, so that one might suppose that no data gap

much larger than this would be needed to separate time slots. However,

the inter-slot gaps should instead be established to permit the synchro-

nization of the demodulators for each new TDM burst of data; this gener-

ally requires many bits. All ground stations would have to be separately

synchronized to the spacecraft because they are separated by different

distances. One-'pit synchronization at 100 Mbps implies 10 nsec accuracy.

If M transponders are employed, then the switch should be M x M,

which is straightforward if M is perhaps fewer than 10. However, a

10 Gbps system with 100 Mbps data rates would require a 100 x 100 switch,

which is very large. As discussed in Appendix A4.4, one of the most

efficient architectures is the rearrangeable Clos-type switch which

requires approximately 12 M log 10M elementary switches for M inputs and

outputs; this number is 2400 for M equal to 100. With integrated GaAs

switches, the switch power dissipation and size could be quite modest for

operations on the order of hundreds of Mbps. Even silicon technology

could probably be employed if necessary.

The switch could be driven by circulating memories which repeti-

tively drive the switch in the desired sequence of patterns once per TDMA

cycle. If the smallest burst contains approximately 1 kbit of data, then

a 100 Mbps data rate and a 4-,msec TDMA cycle (the baseline design) would

imply 400 steps per cycle and a circulating memory of 400 x 2400 bits =

105 bits.

The design of the TDMA timing must also accommodate the requirement

that each ground station may simultaneously have traffic destined for a
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significant fraction of the other ground stations, and there should be

sufficient time slots available to accommodate at least one packet for

each such other station. A 30-Gbps system with 1000 ground stations would

average 30 Mbps per station. If the smallest packet corresponds to a rate

of 256 kbps, then 30 Mbps implies traffic is being sent to a maximum of

120 other ground stations, and thus 120 time slots would be adequate; the

baseline design has 400 such slots per band.

A fundamental question is whether there exists a TDMA assignment for

any given traffic matrix that ensures that all the transponders and TDMA

time slots can be used efficiently. Fortunately this problem has been

solved affirmatively and is discussed by Acampora et al. (1979),

3.3.3.4 Baseline Design

The baseline system incorporates both r.f. and baseband logic

switches. The r.f. switches are binary trees of low-loss ferrite switches

arranged as shown in Fig. 3.3-2. The bandwidths of these switches, many

of which have flown in space, can be 1 GHz or more. The insertion loss

can be 0.2 dB.

Because a single feed at a single frequency can be connected to only

a single transponder at one instant, a high-traffic beam using several

bands must either interleave the bursts at different frequencies so the

transponder can be tuned to each frequency in sequence, or transponders

in adjacent beams or satellites must be employed. Frequency multiplexers

can alternatively interface one feed to several. transponders at several

different frequencies, but with an insertion loss of perhaps 1-3 dB. The

baseline satellite might have one tenth of its 12.8 Gbps traffic origi-

nating in the New York beam, which would require 10 128-Mops bands to

handle it. With frequency diplexers on each beam, the New York beam and

the seven overlapping beams around it could together accommodate 14 bands.

The use of redundancy modules in the ferrite switch matrix

(Fig. 3.3-2) provides a degree of switching flexibility that should be

more than adequate to handle varying loads and element failures with

nearly 100 percent transponder efficiency, even on a single satellite.

The baseline design employs modems so that the baseband switch

(Fig. 3.3-2) is a logic switch without any cross-talk problems. By

-65-



. 	 ..	 ..	 ,.x	 .,.	 ^,	 to	 n ....... w.xlh .:. --.i,:a..^a..,<•:rc cw c- . \W M`TM".:x'e*'^'Y,,.!

Y'

demodulating and remodulating, the link margins and beam cross-talk

problems are also significa:.Itly reduced.

The baseband switch is assumed to be of the rearrangeable Clos type,

or to have a similarly efficient architecture. Its state would be

changed as often as once per basic packet, i.e., once per 9 microseconds.

The baseline TDMA timing diagram and some of its variations are

illustrated in Fig. 3.3-3. The basic 4.16-msec TDMA cycle would be

commensurate with typical television frame rates, so that four packets

would accommodate one video half-frame. Periodic packets could accom-

modate data rates of 256 kbs to 32 Mbps or more. Each packet would have

a 200-bit header for identification and control purposes, plus a preced-

ing gap adequate to handle the satellite switching and modem synchroniza-

tion requirements. The gaps necessary to accommodate the ferrite switch

transients should be at least one microsecond long; they are specified

here to be at least 5-microseconds, which enables 40 3-Mbps packets to

be accommodated per cycle. Since the number 40 is larger than the maxi-

mum number of beams (36) accessible to any one baseline transponder, no

beam should ever remain unserviced.

Each 4.i6-msec TDMA cycle would be preceded by a 112-psec access

block containing space for 80 200-bit access and control words that could

be used fuz communications with ground stations. Whether these slots

alone are used for this purpose,, or whether a single ground station

aggregates all the commands would not impact the cost of the baseline

system, and so this issue has not been examined.

3.3.4 ANTENNA DESIGN

3.3.4.1 Objectives

The spacecraft antenna has two important functions; it must be capable

of the desired degree of frequency reuse and it must have sufficient gain

to reduce the ground station antenna requirements to modest levels so as

to minimize total system costs. Both these requirements become more

severe as the total system traffic grows, although the dominant constraint

initially is probably link margin requirements, as discussed in Section
9

3.2.2. That disc:<,,sion led to estimates for an optimum 20/30 GHz system of

66



CLan  
Ja

2 z
M Qr
th V

h
CL

Y
1ONJ
N Z

ZOa
O tf V

NJW
Z

M Z

0grL)
----A— s

v
N
N

Y a

O M^

♦ Q P-11

Q3 (D ri
Y

N + E
cr w
w

to °

L) w Y
O = d.

m N
O

ww°
cn Q
a w
Q =
(D F--
v m

N'

°o
In N

a a nQ

m N
O
LO

Y O N

O a: N
w E

® w c—°

Y =
U CC) m

OJ Y Y
M h In

O O O

Fr

aQ°

Cs

ar m

N 
O

O N

N

z
a
m
N	

N

F-

^	 ~M, vl

Fn	
(V

ro
z a^i ff)

O \ a

LL N
N T	 {ff
E

Q	
an

cr- 	N

Q
U

i
F-
m rn

O(n ^,N F-
O-1 N
OD N

N

F-

ag N
Y M
to

W

E a
m QY
V X

WO
Y ir

m M wO
^ M

W
Jm
cn

a
O
Nc Jw Q

W d_ Q
c^

m N
O ^^
O a0
N %r

W

b
7
3
N
d
N
N

Ad
U
O
.o

ba

a

cd

a^

4

cd

cil
Q)

a
a^

G

0
Ic

cd

•a

on
G

H

O

b^

a

,n

M

M

M

a^

R
00
.,j
w

-E7-



100-400 beams and many ten ' s of transponders. It also explored some of

the relationships between the choice of antenna and the nature of the

associated r.f. switching system,

she requirements for communications capacity led to a baseline design

having 400 beams and 50 transponders, a ratio of 8 to 1. Each transponder

handles two 105-MHz bands, so that a 2.6-GHz frequency allocation would

require a minimum of four-times frequency reuse in ,a .12.8 Gbps satellite.

A three-satellite system would have 12-times frequency reuse. An alloca-

tion of 450 MHz, such as might be obtained in the 12/14 GHz bands, would

require frequency reuse of 24 times per satellite. The sidelobe level

required for each beam must be such that the aggregate interference from

all co-frequency beams is less than approximately 20 dB if link margin is

not to be unduly penalized. Figure A3.1-8 presents the tradeoff curves

for isolation versus loss of link margin, assuming TFM QPSK modulation.

The problem is made more severe by the nominal. BER specification of

10-7 . Ore would like to assume that the interfering signals add inco-

herently, but in fact their oscillators will be synchronized to within

the 0.5 percent implied by a baud length of 200 cycles (140 Mbps at

28 GHz). Such a frequency difference would correspond to being in the

adjacent band, hence the synchronization. If we assume the relative

phase of any oscillator is fixed within each baud, but otherwise random,

and that two oscillators are "in phase" if they are within one radian,

then the probability that n interfering sources are all in phase is only

(1/27t) n . This is less than the BER only if n is 9 or more. In fact, the

envelope of the sum of single-frequency random-phase sinusoids is Rayleigh

distributed, and the BER should be related to the sidelobe specifications

on such a more complete basis.

In the absence of such a complete analysis, worst-case losses in

link margin were plotted in Fig. A3.1^-8, which assumes that all the co-

channel interfering signals add in phase. If they are more nearly inco-

herent, then the sidelobe requirements are relaxed several dB. In the

worst case one interfering signal 20 dB below the primary signal would

result in the loss of approximately one decibel of link margin, and six

such coherent signals would cost 8 dB of margin. If the six interfering 	 -

signals were each reduced to 35 dB, then the margin loss would be only	 j

r_
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I dB. With the possible exception of the New York beams, one would

normally not try to reuse frequencies in beams separated less than two

or three beamwidths, so that the interfering signals would normally be

seen in the second sidelobe or beyond. Additional isolation is provided

by using polarization diversity for reuse within such a radius. A system

requiring 12 times frequency reuse within CONUS is thus feasible if the

higher order sidelobes approach 35 dB; in this case only 1 dB loss re-

sults. The sidelobe specifications might be relaxed to 8.5 dB and 24 dB

if one or six interfering signals are accommodated, respectively, for a

margin loss of 4 dB. Still other tradeoff possibilities can be obtained

from the figure.

On the basis of typical system analyses, we may assume that the first

antenna sidelobes should be no greater than ti 20 dB, and that they should

fall away fairly rapidly to 30-35 dB or less. 	 The polarization isolation

should generally be at least 20 dB within a single beamwidth. More aggres-

sive .frequency reuse would require more stringent sidelobe specifications.

In addition to having a large number of beams and transponders, each

with low sidelobes, there is a second important constraint on the antenna

design. This is the requirement that the system provide sufficiently

uniform coverage of the service area that no present or potential future

ground station is burdened with excessive link margin requirements. In

the present case, where there might be 1000 ground stations scattered

across the United States every hundred miles or so, there is no good

alternative to this policy. System economics suggests that a significant

fraction of the ground stations should not be penalized with larger

antennas, and related expenses. Requirements of system flexibility and

political acceptability also make it undesirable to penalize any ground

station more than a few dB because of its geography.

3.3.4.2 Coupled Feed Elements and Phased Arrays

Multibeam antennas incorporate many feed apertures; a single signal

may pass through one, several, or all of these. In this section the last

two alternatives are considered. In each case one of the major problems is

resolution of the basic conflict between the requirements for low side-

lobes and for uniform coverage.. The problem is that two feeds can yield

antenna beams which increasingly overlap as the feeds approach one another,
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but once they touch, the feeds must be made smaller in order to approach

further. As they become smaller, their diffraction beamwidth then

I
	 increases at the expense of either spillover, sidelobe level, or

dissipative losses.

One way to resolve that conflict is to couple adjacent feed apertures

in small overlapping local clusters, as discussed for example by Ohm (1979).

in this approach each feed connects to its designated electronics, but the

same electronics is also weakly coupled to the immediately surrounding

feed apertures with amplitudes and phases such that the local cluster

serves as a hyper-feed with improved sidelobe characteristics. Since each

feed may be part of several overlapping clusters, the hyper-feeds may

overlap to any desired degree.

The principal difficulty with this approach is its complexity. If

each hyper-feed consists of 7 feed apertures, then there must be 7-port

hybrid networks for each aperture as well as an active element. The active

elements are useful to compensate for the signal losses necessarily

incurred in the hybrids. When the number of feed apertures increases

beyond twenty or thirty, then this approach can become quite cumbersome

and expensive; it clearly appears to be inappropriate if there are more

than 100 overlapping beams.

Electrically phased arrays offer a more efficient method for obtain-

ing many of the same objectives. -In this case all or some subset of the

feed apertures are each coupled to the same transponder by means of

electrically controllable phase shifters. Reudink (1978) has discussed

a system where all the apertures drive one transponder, and Acampora et al.

(1979) present a configuration where linear subsets of the apertures drive

each transponder.

For reasons discussed in Section 3.3.3.2, the configuration of

Acampora et al. has advantages when several transponders are employed.

The antenna concept is simple. Each transponder drives a set of elec-

trically controlled phase shifters, amplitude modulators, and the

associated feed apertures, which are arranged in a continuous straight

line in the focal plane of the cylindrical primary aperture. The image

on the ground is a single spot beam scanned linearly across a portion of

the total service area. The optics can be folded if necessary.
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The sidelobes can be controlled parallel to the linear array by

means of controllable phase and amplitude tapers, and the sidelobes in

the orthogonal plane can be controlled by the fixed feed excitation taper

in that direction. In the case of the transmitter, it may be desirable to

provide active elements for each feed aperture because many low-power

solid-state amplifiers can thus be combined, as discussed briefly in

Section 3.3.3.2. Fortunately only one receiver per transponder would be

required if low-loss phase shifters are used. In general, the number of

feed elements would equal or exceed the number of possible orthogonal

beams. The sidelobe problem increases when one of these active elements

fails, and can be serious if high-order frequency reuse is desired. If

one of ten amplifiers in a line fails, then a new broad sidelobe of ti 20 dB

is created and the on-axis gain drops 'u 1 dB. The new sidelobe would not

necessarily affect reuse by other parallel linear arrays a few beamdiwths

away.

The same conflict between sidelobes and coverage arises in this

configuration when adjacent linear arrays are positioned. The solution

proposed by Acampora et al. is similar to that described by Staelin and

Harvey (1979). By employing a polarization-diplexing subreflector (or

primary reflector) it is possible to interlace the images of two cross-

polarized sets of linear arrays. This effectively permits the line feed

aperture to be doubled along the axis perpendicular to the scan axis,

which is adequate to achieve an acceptable sidelobe-coverage compromise.

The result is that there can be as many independently scanned spot beams

on the ground as there are transponders. Each spot beam is constrained to

scan a straight line, and an array of such lines covers the service area,

with alternate beams in alternate polarizations. In general, one would

probably employ two different primary reflectors, one for transmitting

and one for receiving. Although they could be combined, it would be dif-

ficult. The satellite might resemble the baseline design illustrated in

Fig. 3.3-11, except the feeds would be phased arrays instead of circular

corrugated horns.

The most important virtues of this general class of antennas are

1) very low sidelobes can be achieved, so that they do not limit frequency

reuse, 2) the number of independent solid-state amplifiers which can be

- 71 -

• F-
a



devoted to a single beam can range from one to the number of feed

elements in a line array; ten or more per line are desirable if modest

sidelobes are to result when one fails,-and 3) the only electronics

Increasing with the number of feed elements are the phase-shifters re-

quired for both transmitting and receiving, and perhaps transmitter and

receiver elements, unless low-loss phase-,shifters operating at r,f. are

used.

The disadvantages are 1) large numbers of transmitter and receiver

elements (one per feed element) are required for high capacity satellites,

unless the phase-shifters are at r.f., 2) either frequency multiplexers or

more than several hundred beams are required if more than ti 1 0 transponders

are used; these multiplexers would interface the active elements with the

antenna, and therefore might be required in very large numbers, and

3) in the desirable events that the phase shifters are broadband and at

r.f., and that any multiplexers follow the phase-shifters, then there is

only one excited beam per line, even though more than one transponder may

serve that beam; for some traffic loading patterns this may be inefficient.

If the multiplexers precede the phase-shifters, then very large numbers of

multiplexers and phase-shifters are required. For these reasons the system

described below becomes attractive when many beams and transponders are

required.

3.3.4.3 Independent Feed Elements; Baseline Design

The offset Cassegrain reflector antenna has several well known

advantages for multibeam antennas, including light weight, simplicity,

broad bandwidth, and performance. In order to scan many beamwidths off-

axis, it is necessary to increase the f/D ratio, however. For the systems

of interest here the number of beams would be approximately 100(f/D)451

where f and D are the antenna focal length and diameter, respectively.

Some of the issues have been discussed by Ruze (1965), Ohm (1974), and

others.

Although a 400-beam antenna would require an f/D ratio greater than

unity, the structure could be compact because hyperbolic subreflectors

can magnify the effective ratio. Extensive computer computations are

necessary to prove any given design, but there is no doubt that high-

performance antennas with many hundreds of beams can be obtained.
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Corrugated circular waveguide horns are excellent feeds for this type

of antenna because of their very low sidelobes and smooth taper. Further-

more, the aperture field distribution can be made independent of fre-

quency for up to octave bandwidths (Dragonne, 1977). This property aids

in the equalization of ground patterns for a two-frequency system.

The basic problem is the conflict between sidelobes and the severity

of the nulls between adjacent beams. To produce high beam-crossover gains,

the angular separation between feeds should be minimized; hexagonal feed

packing has advantages. Some additional spacing must be included to

accommodate the feed wall thickness, which generally is ti X/4 for corruga-
tions. This spacing can be reduced if the feed apertures are hexagonal

and if the corrugations are omitted from the outer portions of the feeds

where they touch. Such feeds can be made dual-frequency by employing one

band of corrugations to detach one frequency from the horn wall, and then

a second band tuned to the second frequency for the same purpose. In this

fashion five frequencies were combined in a single horn in the SMMR micro-

wave spectrometer flown on the Seasat and Nimbus-7 satellites in 1978

(Gloersen and Barath, 1977).

!>	 The best performance is obtained with the feeds packed tightly
r

together; the other degree of freedom is the size of the primary aperture

or, more precisely, the taper of the aperture excitation. If the image

of a single feed cluster on the ground has unacceptably deep nulls for

any taper, one approach is to superimpose the patterns for a completely

different feed cluster, perhaps using a different primary reflector.

Alternatively, two independent feed clusters could share one primary re-

flector if it or a subreflector had two different effective surfaces, one

for each polarization. The baseline design incorporates two primary

reflectors, each of which is polarization diplexed, so that the patterns

of four independent clusters are superimposed. Ways in which such pat-

terns can be superimposed for square and hexagonal clusters are lllus-

;^

	

	 tiated in Fig. 3.3-4, and a sketch of such an antenna appears in

Fig. 3.3-11.

The next several figures present the tradeoff curves relevant to the

design of the baseline antenna. The patterns were computed assuming the

corrugated feed supported only the dominant HE 
11 mode, which is reasonable
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null depths (0).
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if the feed is more than two wavelengths in diameter, and if the flare

angle is small. The feed aperture fields were assumed to be

E x Eo Jo (2.4048 ^)

where x is a unit vector, J is a Bessel function, a is the feed aperture
o

radius, and r is a radius vector in the feed aperture. This feed excita-

tion pattern is Fourier transformed to yield the pattern in the plane of

the primary reflector. This field is assumed to have zero phase and is

again Fourier transformed over the extent of the aperture to yield the

far fields. Because the fields were represented by a finite grid, there

are small computational errors in the far sidelobes.

Figure 3.3-5 shows how the two major gain-loss mechanisms depend

upon the illumination taper for the primary reflector. Losses for 19 GHz

were calculated assuming that the feed patterns were purely diffraction

limited. The total loss relative to an ideal radiator refers to the

degradation of on-axis gain by spillover losses at small tapers and by

aperture illumination efficiency for large tapers. The additional gain

reduction at points L and M results from the increasingly narrow character

of the antenna patterns as the size of the primary reflector is increased

in order to increase the reflector taper and reduce the associated side-

lobes. It is clear from this figure that the gain advantage in the nulls

is very significant for the 4-feed-cluster configuration, particularly at

29 GHz.

Figure 3.3-6 presents the antenna gain at the beam-crossover points

relative to the on-axis gain which would result if the same primary aperture

were illuminated with 100 percent efficiency and without spillover; the

units are dB Consider the worst null, which is point L at 29 GHz for a
f

	

	 single feed cluster. The best performance is obtained at point 1 in the

figure, which results in 8.5 dB loss for a 2-dB taper. This loss corre-

sponds to an aperture efficiency of only 14 percent. The efficiency at

19 GHz is even less for this taper; a more optimum solution is point 3 in

the figure, which yields 13 percent aperture efficiency at both frequencies

e for a taper at 29 GHz of 2.5 dB. The corresponding points on the figure

for the four-feed-cluster configuration are labeled 2 and 4; they corre-

spond to aperture efficiencies at the worst null of ti 37 percent for a
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taper of ti 6 dB. The on-axis efficiencies for a 6-dB taper at 29 C,Hz

would be approximately 48 and 79 percent for 19 and 29 GHz, respectively,

neglecting other losses due to poor surface tolerances, etc. Thus the

use of four feed clusters improves the gain in the nulls by approxi-

mately 4.5 dB.

The sidelobe levels are presented as a function of the 29 GHz taper

in Figs. 3.3-7 and 3.3-8 for corrugated and non-corrugated feeds, respec-

tively. Corrugated feeds have sidelobes which are approximately 1 dB

less for tapers near 6 dB. The difference in sidelobe levels for corru-

gated and non-corrugated feeds may be even less than this because the

points labeled 3 and 4 on Fig. 3.3-6 fall at larger tapers, 3 and 10 dB.

Corrugated feeds also have very slightly larger efficiencies, 17 and 40

percent, at the beam-crossover points for single-cluster and four-cluster

configurations. The question of corrugated versus non-corrugated feeds

may ultimately depend on the specific cost situation.

The'antenna patterns which re.3ult for a 6.4-dB taper at 29 GHz are

plotted in Figs. 3.3-9 and 3.3-10 along the axis connecting adjacent feed

centers. Even when the sidelobes are near 20 dB, there are sufficiently

large solid angles in the nulls nearby where the gain is quite low enough

to provide the protection necessary for significant frequency reuse.

A more complete comparison of the various feed configurations is

contained in Table 3.3-1, where the optimal tapers, sidelobe levels,-on-

axis efficiencies (dB loss), and the null depths (dB relative to on-axis

gain) are listed for the 15 different points identified in Fig. 3.3-4.

The single--frequency part of the table presents the results if the

design is optimized for 19 or 29 GHz alone, and the 2-frequency entries

result when both frequencies share the same feeds and are optimized

jointly. Corrugated feeds were assumed. The table entries relevant to

the baseline design are points 5 and 6 for the 2-frequency case. This

configuration seems to be nearly optimum for the present problem.

A view of the spacecraft illustrating the baseline antenna design

is found in Fig. 3.3-11. The antenna employs two rigid mesh or solid

surface reflectors, each of which drives a polarization-diplexing sub-

reflector and two feed clusters. Thus the 400-beam baseline design has

four clusters of 100 corrugated feeds each, arranged in hexagonal
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patterns. The feeds would be very thin metal, perhaps supported on a

rigid foam substrate. Each feed would incorporate a frequency diplexer,

which could be implemented instead as a polarization diplexer, because

polarization diversity within a single feed is not required here. Each

of the 800 antenna ports, 400 transmitting and 400 receiving, would be

connected to low-loss (0.2 dB) y-junction ferrite circulator switches,

as described earlier. Separate antenna feeds could be installed at the

subreflector facing the feed clusters for the purposes of system

monitoring and maintenance.

The baseline design uses primary reflectc,rs 4 x 8 meters, which is

the aperture area required to yield ti 400 beams. The 4-meter dimension

is limited by the maximum width reflector the space shuttle can launch

without folding it. The 8-meter dimension is deplr;.ed such that the

patterns on the ground are more nearly circular than otherwise. The

fact that most major adjacent cities lie approximately north-south,

such as New York and Philadelphia, makes increased resolution in this

dimension more valuable for frequency reuse purposes as well. Such beam

distortion implies that the feed patterns must be comparably distorted,

but this should not pose a major problem. Figure 3.3-12 suggests how

the 400 beams would be distributed uniformly across the United States.

3.3.5 SPACECRAFT ARCHITECTURE AND COMPONENT REQUIREMENTS

The major architectural features of the baseline design have been

discussed in Sections 3.3.2, 3.3.3, and 3.3.4. Figure 4-4 is a summary

system diagram, and Fig. 3.3-2 shows the communications system architec-

ture in more detail. That figure illustrates how the 400 feeds would be

grouped in sets of 8, each of which drives one of 50 transponders. Each

receiver would have a bandwidth of -v 440 MHz, and would be followed by

two additional programmable frequency translators which drive baseband

demodulators capable of burst operation.. Thus each transponder could

handle two tunable 128-Mops bands, and 100 such digital bands would

enter the main digital switch. The 100 switch outputs (12.8 Gbps total

capacity) would drive modulators and programmable frequency translators.

These signals could be combined in pairs to drive a single 10-watt TWT

(as per the baseline cost analysis) or solid state amplifiers. Pro-

grammable gain controls on the two bands could allocate the bulk of the
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transmitter power to one of the ;bands if it were affected by rain attenua-

tion. A more economical approach would probably be to provide each of the

1.00 ban's with its own 'u 4-watt solid state amplifier,

The spatial distribution of the 8 feeds which are combined would be

selected to maximize anticipated transponder efficiency. In general,

beams serving areas like New York would be combined with beams serving

rural areas like Nevada. Furthermore, beams in the same set should not

be adjacent; this would maximize the ability of adjacent beams to share

unexpectedly large traffic demands in one of them. Because alternate

beams have alternate polarization, two-times frequency reuse should be

possible everywhere, in addition to the reuse permitted by the specific

sidelobe levels and link margin degradation.

In addition to the elements shown in Fig. 3.3-2, there would also be

modems and TDMA buffers which could interface any of the signal streams

to the main communications control computer. These lines would be dis-

patched by the main digital switch and would be used to handle all

command and control signals communicated in the 200-bit headers on each

TDMA burst and in the access block occurring once each TDMA cycle. Four

such links would be suf_ficie.at. Additional lines could also interface

the main digital snitch with special purpose time-translation or format

conversion equipment. Because several such baseline satellites would

operate as an integrated unit in space, some of the 400 feeds, perhaps

4-8, would be directed along the synchronous orbit to provide inter-

satellite communications. These circuits could be identical with those

serving this ground, and the antenna gain could be much reduced. As dis-

cussed in Section 3.3.6, only a small fraction of the total communica-

tions capacity should normally be intersatellite.

The system architecture is summarized in Table 1,1, and the

space link performance is summarized in Table A3.1-1.

The number of beams which would be required to serve local popula-

tions of various sizes is p—.sented in Table 3.3-2. It shows that over

half the satellite capacity would be serving beams with populations less

than one million. Only 21 beams would normally require more than one

128-Mbps band, and even New York City would need fewer than 10. Since

there are 7 beams which overlap New York, snd since each transponder can
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Table 3.3-2. Components Requirements for
a Single 12-Gbps Spacecraft.

AVG/MAX
REAM CAPACITY TRANSMITTERS OR RECEIVERS---

POPULA- NO. PER BEAM AMPS/ TOTAL NO. FERRITE
TION BEAMS (Mops) BEAM AMPS LINESt SNITCHES

>8M 3 512 2 6 12 12

>4M 5 256 1 5 10 10

>2M 13 128-256 1/2 6.5 13 32.5

>1M 22 64-256 1/4 5.5 11 38.5

>0.5M 38 32-256 1/8 4.8 9.6 52.8

>0.25M 65 16-256 1/16 4.1 8.2 77.9

>0.12M 74 16-256 1/16 4.6 9.2 87.4

>66K 46 16-256 1/16 2.8 5.6 53.2

>32K 30 16-256 1/16 1.8 3.6 34.2

>20K 25 16-256 1/16 1.6 3.2 30.4

<20K 80 16-256 1/16 5 10 95

MAINTENANCE
FEEDS (2) 128 2 (4) (4) (4)

TOTALS
220M 401 12 Gbps - 96 524

'Numbers of: lines to switch, translators, and
modulators/demodulators.

)Not included in total.

x.j
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handle two such bands, there would be 14 128-Mops bands available in the

New York area per satellite. If this were not enough, it would be pos-

sible to add frequency multiplexers to the satellite so that more than

one transponder might serve each of the relevant beams. The average and

maximum capacities per beam listed in the table reflect the degree to

which the dwell time of the ferrite switches might allocate transponders

to those feeds. Because of the great flexibility of the architecture,

the transponders would gener;;.I.y be available with 100 percent efficiency,

even if some fail.

The 12.8 Gbps baseline satellite would carry a total of 100 primary

amplifiers, 50 for transmission and 50 for reception. There would be a

total of 1048 ferrite switches and there would be approximately 100 in-

put and 100 output lines on the main digital switch.

3.3.6 COMMAND AND CONTROL; MULTIPLE SATELLITES

One significant economic problem in planning satellite communica-

tions systems is zriaximization of the average loading of the installed

spacecraft. Often a satellite is placed in orbit such that the traffic

grows linearly over its li£espan, and once it is saturated it may be

replaced by a bigger unit and become a backup system. Approximately

half of the Intelsat satellites now serve as spares. Suppose the load

grows linearly over the life of a satellite, reaching maximum capacity

on the last day; then the loading efficiency would be 50%. If two were

in orbit, one as a spare, then the efficiency would be only 25%. The

loading efficiencies of large satellite systems can become much larger

if several satellites are used in a coordinated fashion, such as pro-

posed here for the baseline system.

Since each baseline satellite is a completely self-contained
y

redundant system which can tolerate a considerable number of component

k	 failures, and since many such satellites could operate in the same orbital

t	 slot without interfering, provided their frequency and time slot assign-

meets did not conflict, such a multiple-satellite configuration should be

practical. They could even be attached to a single platform. The

advantages of multiple satellites sharing the same load would be

1) redundancy in the event one suffers a total failure, 2) efficient

Y
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redundancy since fewer than half the satellites need to be spares; one

good satellite or a couple of obsolete systems would probably suffice,

3) flexible growth and higher average loading factors; new satellites

would be launched to support load growth and technological improvements

only as needed, and 4) separate carrier ownership and management of the

various satellites is possible.

The improvement in loading effic'aacy can be understood in terms of

a simple example. One satellite plus its spare would have an efficiency

of 25 percent as the load grew to saturation, whereas a satellite one-

third that size launched with a spare and then followed by two more

units, when load growth requires, would result in a total loading effi-

ciency of 50 percent over the same period for the same traffic. More

frequent launches also permit more frequent upgrading of the technical

specifications of the total system.

There are other economic consequences as well. Because the

satellites are individually smaller, they are individually cheaper but

slightly more expensive per Gbps capacity. The nonrecurring costs should

also be less, but the reduced costs of individual launches may be more

than offset by the increased number which are required.

Because any given link request could be 'handled by any of the satel_.

lites in a given cluster, there should be no requirements for inter-

satellite communication. This would change if several carriers were

involved and each wished, for example, to receive traffic from its own

ground stations, or if one carrier used a peculiar space-link protocol

which required it to handle all communications with its own ground sta-

tions. Such non-standard protocols would negate some of the economic

and technical advantages of satellite clusters.

The problem of allocating traffic to multiple satellites is essen-

tially the same as that for allocating traffic to multiple transponders

and.time/frequency slots on a single satellite. The only difficult

allocation problems would be the political ones of allocating traffic
i

among several cooperating satellites owned by separate entities, but

these are not different in kind from the problems which now arise when

revenues are distributed among several national or international carriers

handling the same terrestrial communications traffic. Whether the

S
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computer which executes the scheduling algorithm is on the ground or in

space is not critical; although the benefits of making the difficult

decisions on the ground are obvious.

Communications between carriers could be handled easily, as noted

earlier, by simply placing a few of the antenna beams on the side of each

spacecraft pointing in both directions along the synchronous orbit. Then

as additional satellites were placed in the same slot to the left or right

alongside existing ones, the flexible architecture of the baseline

design could be used to transfer an appreciable fraction of the tran-

sponder capacity to the task of intersatellite communications, as neces-

sary. As a matter of policy it may be desirable to require such inter-

satellite communications flexibility, as discussed further in Chapter 8.

3.3.7 TERRESTRIAL ELEMENTS

3.3.7.1 Introduction

The terrestrial elements include the ground stations, the local links,

and the user facilities; these may be associated primarily with the satel-

lite network, or they may simply be imbedded in the existing terrestrial

telecommunications plant. A more detailed discussion of ground station

design and economics appears in Chapter 5 and here in Table 3.3-3, and

the local links and user facilities are discussed in Chapter 6. The

relationship between the existing terrestrial system and satellite systems

is discussed at length in Section 3.2. The design issues discussed here

include those involving ground station costs, protocols, the distribution

of signal processing capacity throughout the system, and the relationship

between video bandwidth compression and system structure.

3.3.7.2 Ground Stations

For many existing satellite communications systems the majority of

k	 the cost is associated with the ground stations. Therefore the ,minimiza-

tion of these costs is paramount here because of the very large number

of such stations. A survey of basic ground-station equipment costs was

presented in a recent Aerospace Corporation contract report (Woodford,

1978) and is summarized in Table 3.3-3.
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Table 3.3-3. Basic Ground-Station Equipment Costs, 1978.

Ground Station Type Approximate Cost

High performance INTELSAT $1M or more
standard station A

Advanced WESTAR, SBS (Ku band) $345K

LES-8,'LES-9 (4-ft antennas, 36-38 GHz) $250K

MARISAT (4-ft antenna, L-band) $63K

U.S. Army Manpack satellite terminal $23K
(225, 400 MHz; AN/PSAC-1)

Television receive-only ground stations $10K - $22K

The genera]. class of ground station appropriate to the baseline

system design, i.e. an 8-foot K-band antenna with 10 watts transmitter

powerfor one 128-Mbps TDMA band,is closest to those stations developed

for the Lincoln Experimental Satellites LES-8 and LES-9, and for the

Advanced WESTAR and SBS systems. The LES stations use r.f. technology

that is relevant to the baseline 20/30 GHz systems, and the communica-

tions traffic of the Advanced WESTAR and SBS TDMA systems are also

relevant. The SBS station has 18-25 ft antennas, 450 watts for 43 MHz,

and 2.70°K system temperatures; these are more expensive than the baseline

specifications. Approximately half the cost is for baseband and control.

electronics. Architectural features of the baseline system which can

further reduce costs include 1) modest antenna diameters, near 8 feet,

2) modest transmitter powers, near 10 watts, 3) Taudest system noise

temperatures, near 500°K, 4) use of non-tracking antenna mounts, and

5) maximum use of integrated circuit technology appropriate to the mid-

1980's. Although it is conceivable that costs might approach those for

MARISAT terminals, the differences in complexity and bandwidth are

sufficiently great that the goal would be difficult to achieve. A

detailed cost analysis of the baseline system appears in Chapter 5.

3.3.7.3 Locus for Signal Processing

The services of interest include voice, data, facsimile, and video;

the bandwidths, protocols, and tariffs might vary within each of the

service types. In general, most data must be converted to digital form,

encrypted, encoded for error-correction, and buffered to the TDM modems.
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Some data should also undergo bandwidth compression. The character and

location of this equipment is the architectural issue of present interest.

Under the least-cost constraint, most multi-purpose equipment should

be located in or near the ground stations so that it can be shared by the

maximum number of users and most economically maintained. This would

normally include all the processing ^. ,-uipment except perhaps that for

A/D conversion, bandwidth compre6s"_ n, encry r.- I..on, and error-correcting

coding. The location of any encryption are error-correcting circuitry

depends upu,.,L the tradeoff between circuit cost and the level of protec-

tion required. Economics suggests concentration at the ground stations

or at the terminus where risk is first encountered, whereas the risk is

probably least if this equipment is on the user's premises,. With the

rapidly decreasing cost of digital equipment, the dispersion of such

equipment can be expected to increase; the baseline assumption, however,

is that such equipment is part of the ground stations.

The best location for the A/D conversion and bandwidth compression

equipment may depend largely on the tradeoff between efficiency of

equipment utilization and the costs of local transmission for compressed

and uncompressed signals. It is difficult to anticipate now how the

local transmission costs will vary in coming years for broadband digital

signals; the baseline assumption is that transmission costs will favor

aggregation of video-compression equipment in the ground stations, and

that facsimile compression equipment is cheaper and will be built into

the user's equipment. In view of the relatively large costs for local

digital links (discussed further in Chapter 6) compared to the costs for

interframe video bandwidth compression circuits (estimated in Section

5.3.2.4),	 it is more likely that centralization of bandwidth compres-

sion in the ground stations will occur only if very short or low-cost

links are available, perhaps analog links.

3.3.7.4 Protocols

We may consider the importance of these signal processing procedures

to the various services. Voice traffic is increasingly being converted

to digital form for long-lines transmission, and the obvious vulnerability

of such traffic to interception is motivating increases in signal

fi.
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	 security. The processing steps which are not required for voice include

compression and error-correcting coding. Ian the future even compression

may become increasingly attractive as the penetration of digital systems

increases and the costs for compression decrease. None of the issues

here change greatly if satellite links are involved in handling the

traffic.

The services of greatest importance to facsimile and video are

bandwidth compression. Selection of these protocols perhaps poses one of

the greatest potential hazards to an efficient pervasive communications

system. This is so because it is unlikely that two different compression

algorithms would be compatible. One could imagine protocol conversion

equipment being made available by the local carrier for a iee, but even

this may not suffice because the best video compression algorithms take

advantage of imperfections in the human visual system to discard irrever-

sibly much of the data. If two compression algorithms are to be inter-

faced, and they discard information differently, then the cost and quality

of such protocol conversion could be prohibitive. For the baseline system

we assume these protocols were selected intelligently and no extra con-

version equipment is req+ul. id.

Although one could imagine prototol "wars" between vendors hoping to

sell patented equipment or services, perhaps the greater problem is the

conflict between protocols established initially and superior ones which

may be discovered or become economic subsequently. The original contro-

versial selection of a broadcast television protocol and the difficulty

one would have changing it now are two examples of hazards to be avoided.

The only traffic for which error-correction coding is particularly

desirable is data, such as involved in electronic funds transfers. This

too is a problem in the present terrestrial network and is being addressed

independently of satellite systems.

3.3.7.5 Video Bandwidth Compression

The importance of video bandwidth compression arises because of the

potentially large fraction of satellite traffic that could be devoted to

this service, perhaps as much as 50 percent (see the discussion in

Chapter 2). The total cost of a video communications link will vary
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almost inversely with compression ratio because most costs are bandwidth

dependent rather than circuit dependent. if a good color video image is

presumed to have 3 x 10 5 independent pels Coded with 10-bit accuracy

(2 bits for color, at a frame rate of 30/sec, then the data rate is

90 Mbps. By using intraframe coding techniques broadcast quality video

has been reduced to 30 Mbps, and perhaps 20 Mbps may be achieved soon.

Further significant reductions seems unlikely without picture degradation

unless interframe compression techniques are used.

The most successful interframe compression techniques at present are

those which employ selective replenishment schemes which code the replen-

ishment information. Considerable savings are possible if only the image

changes are transmitted, particularly if they are coded efficiently by

sending, for example, only portions of Fourier transformed picture ele-

ments, or by sending velocity vectors for picture elements. A wide

variety of schemes exist, and much work remains to be done. Nonetheless,

there already is available from NEC an interframe compression unit that

operates at a variety of compresston ratios; for data rates of 6 Mbps

the images are generally acceptable, and they deteriorate as picture

motion increases or as the desired data rate decreases. With future

improvements it seems reasonable that full color video motion adequate	 .,

for video conferences should be available at a nominal 3-Mbps rate.

Progress beyond 3 Mbps without noticeable degradation seems difficult to

this writer, but good monochrome images at 1-2 Mbps have been claimed

(Limb et al., 1974; Haskell and Schmidt, 1975; Wendt, 1977, and Bur,-

meier, 1977), and Musmann and Klie (1979) have claimed even 64 kbits

can be achieved with only moderate degradation.

The importance of this is that tariffs for video conferences could

be economically very attractive, as discussed further in Chapter 7, and

that the total capacity of a 30-Gbps system is adequate to handle a

pervasive national video-conference system operating near the threshold

of utility, as defined in Chapter 2. A data rate of 30 Gbps could

handle 10,000 one-way links at 3 Mbps.
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CHAPTER 4

BAWL INE SATELLITE DESIGN

i

4.1 INTRODUCTION

This section presents an estimate of the WIDENET satellite weight,

power and cost assuming late 1980's technology. Many assumptions were

needed to generate this estimate. It is believed that the most important

assumptions have been explicitly stated in the following text. An effort

has been made to be conservative regarding the system components. As

will be seen in the discussions of individual systems, further weight and

power reduction of 10% to 15% is possible with the assumed models if the

most optimistic projections for the late 1980's are used. However, for

purposes of exhibiting, hopefully, a credible design, the maximum use of

projected late 1980's technology made by other workers in the field is

avoided.

The baseline design is a big, complex satellite. The 12.8 Gbps

version is approximately twice the weight of the recent FLTSATCOMs.

Nevertheless, it appears to be feasible in the above time frame and it

can be deployed by the Boeing IUS currently in development.

Section 4.2 gives the main conclusions of this analysis, including

summary figures of weight, power and cost as a function of communication

capacity. Section 4.3 gives a discussion of the major,bus systems

(4.3.1) and major communication systems (4.3.2). These two sections

generate the inputs for estimating the total satellite weight and power.

Section 4.3.3 outlines the weight and power algorithm. For comparison,

application of this algorithm to the FLTSATCOM satellite is shown. Sec-

tion 4.3.4 discusses costing algorithms for satellites. A simple algorithm

based on BOM (beginning of mission) weight is applied. Final comments are

in Section 4.4. The appendices contain the mathemLtical details.

Appendix A4.1 reviews the launch capabilities of vehicles now under

development. Appendix A4.2 reviews satellite attitude control systems

and Appendix A4.3 surveys 20-GHz spaceborne transmitter technology.

Models for the channel switching matrix and communication processor are

given in Appendices A4.4 and A4.5, respectively. Finally, Appendix A4.6
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estimates the 7-year East/West and North/South station-keeping require-

ments for a satellite over CONUS.

4.2 CONCLUSIONS

(1) Figure 4-1 r.>hows the estimated BOM weight and power for WIDENET

satellites assuming late 1980 1 s technology, The satellite BOM weight

and power for the baseline 12.8 Gbps satellite system is about 3,900

pounds and 4 kWatts.

(2) Figure 4-2 shows the (1979) nonrecurring and recurring costs based

on a DCA model after adjustment for inflation. The baseline 12.8 Gbps

channel satellite has a nonrecurring cost of $224M, a recurring cost of

$67M and a launch cost of $30M per satellite. The total space segment

cost, e.g., of two active satellites, and one spare would be about $485M.

This system would have the capacity to handle 780 32 Mbps one-way chan-

nels or 7,800 3.2 Mbps one-way channels, or the equivalent, de-lending on

the sophistication of the ground terminal digital processing.

(3) Based on Appendix A4.1. and Fig. 4-10, a two-stage Boeing IUS can

deploy up to a 16.6 Gbps baseline satellite (5,000 pounds) into a geo-

synchronous orbit. With a single shuttle flight and a three-stage IUS,

up to a 36-Gbps satellite (9,000 pounds) can be deployed.

(4) The above satellite weight and power estimates assume the following

advance3 technology: a CMOS computer based on the present,Fault-Tolerant

Computer, composite material for the antenna structure and support, high-

efficiency solar cells (20 Watts/pound), Nill2 batteries, a star tracker'

for guidance and control and 10 Watt/20-GHz TWTs. All these technologies

are presently in development and, it appears, will be available by the

late 1980's. All the other systems are assumed to use current technology.

Reduction of system weight below these estimates is feasible.

4,3 ANALYSIS
.

4.3.1 MAJOR BUS SYSTEMS

4.3.1.1 RCS (Reaction Control System)

The .RCS includes the secondary propulsion engines, tankage, feed

system and electronics, but excludes the propellant. Appendix A4.0

a"
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shows that the total propulsion requirement of the RCS is about 1310 ft/

sec for a 7-year mission with North/South and East/West station keeping

}	 to less than 4.5 arc min. * This propulsion requirement is'summarized in
i

Table 4.3-1. Assuming a pressurized monopropellanr hydrazine system

(I SP = 220 lbf see/lb 
III ), 

the wet-to-dry weight ratio of the satellite is

about 1.2. The tankage and ,feed system weight is estimated by a formula

based on flight hardware (Appendix A4.6). Since the amount of propellant

and tankage weight depends on the dry weight of the satellite, an iterative

procedure must be used for estimating the satellite BOM weight and power

(Section 4.3.2). Figure 4-3 shows the RCS weight over the range of

satellite BOM weights of interest.

Table 4.3-1. RCS Propulsion Requirements.

AV

Station Keeping	 North/South	 1170 ft/sec
(7 years)

East/West	 40 ft/sec

Orbit Trim	 30 ft/sec

Momentum Dumping	 70 ft/sec

1310 ft/sec

4.3.1.2 ACS (Attitude Control System)

The ACS includes the sensors for determining position and pointing,

reaction wheels for rotating the satellite and microprocessor-based

control electronics. A zero momentum system is assumed to allow moan

flexibility compared to a monentum bias system in accommodating large

asymmetric antennas with large solar pressure imbalance torques.

Appendix A4.2 shows the ACS weight and power of selected satellites

and components. Based on these designs, the assumed ACS for a WTDENET

I satellite is shown in Table 4.3,2. Since a satellite may have a downlink

The uplink 1-dB beamwidth of a 2.4-meter antenna at 30 Gliz is about
10 arc min.
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antenna pointing requirement of less than 1 arc min.•a star tracker is

included in the ACS to permit measurements to less than 1 arc sec.*

Table 4.3-2. Attitude Control System.

Component Power Bus Watts

Reaction Wheels (4) 68 50/wheel

Accelerometers	 (3) 3 -

Third Generation Gyros (6) 7 54	 (3)

Star Tracker 43 45

Electronics 25 5

Processor/Computer 30 30

Contingency 4 6

Total: 180 lbs 140W + 50/Wheel

4.3.1.3 Control Processor

N
t

Considerations of subsystem integration and efficient on-orbit

operation suggest that the on-board computing tasks be divided between

two separate processors. The communication processor (Section 4.3.2.7)

could, be a special purpose computer with modular redundancy for efficient

execution. A separation control processor consisting of a state-of-the-

art general purpose computer or an FTC (fault tolerant computer), if

available, could control the launch sequencing, supervise the communica-

tion processor, and provide autonomous in-orbit operation when the satel-

lite was not in a ground-control mode. Distributing the on-board computing

tasks between a communication processor and a control processor structures

the system into functional parts with maximum independence, simple inter-

faces and a minimum of required interaction. The communication processor

can then be primarily a hard-wired, efficient machine with fault tolerance

provided by modular redundancy to be switched in by the on-board control

processor or a ground-control terminal. Figure 4-4 schematically suggests

The downlink 3-dB beamwidth at 30 GHz is about 7 arc min. Satel-
lite antenna pointing could also be done via an uplink beacon, thereby
simplifying the ACS. This tradeoff remains to be examined.

OF
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how the computational tasks coulri be split between the two processors.	 {

This division may not be optimal, but it appears to be a feasible

approach for simplifying the design and testing of a complete system to

meet a late 1980's launch date.

An estimate of the control function computer requirements is based

on other studies of large communication satellites. Table 4.3-3 sum-

marizes the speed and memor ry requirements assuming that the communication

channels are monitored once per second on a aeon-interference basis. Weight

and power estimates are shown for both a state-of-the-art LS/TTL (low power

Schottky/transistor-transistor logic) (Aukstikalnis, 1974). and a scaled-

down TFC of the projected flight model (Burchby and Kern, 1976). 	 If the

satellite is used primarily for voice traffic, then the computer memory

would have to be considerably larger (say 20 Mb) to handle the switch

commands. This would increase weight and power only moderately for 1985

technology.

Based on these estimates, 5 lbs and 5 (conditioned) Watts are

assumed for the satellite control processor.

4.3.1.4 Power

Significant performance improvement in satellite solar array and

battery systems in the 1983 to 1988 time frame appears likely. Tables

4.3-4 and 4.3-5 summarize the current and projected technology for solar

arrays and batteries, respectively (Barthelemy, 1978).

Current flight-qualified oriented solar arrays have a generating

capability of about 9 Watts/pound (Rauschenbach, 1976). The projected

performance in the 1985 time frame varies from 25 Watts/pound, using the

best production cells with 12 to 13% efficiency, to about 60 Watts/pound,

assuming the potential 25 to 30% efficiency of multi-bandgap cells is

realized. For preliminary design purposes, the conservative performance

of 20 Watts/pound is assumed. This specific power corresponds to the

long-lifetime, radiation-hardened, flexible rollup array, known as the

Harden Array Power System, whose development was completed in 1978.

One nominal FTC flight configuration (50 lbs, 35 Watts, 250,000
ops/s) is considerably larger than is necessary for the control process-
ing tasks.
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Table 4.3-3. Control Processing Requirements.

Speed
(ops/s)

Memory
(8-bit Words)

Launch

Launch Sequencing 200 2,500

Orbit Injection/Station Acq,

Deployment/Separation

On-Orbit

Control

Station Keeping 3,000 200

Attitude Control 750 500

D/L Pointing 500 250

D/L Search 200 500

TTC Buffering N/A 1,600

Autonomous Control 100 200

Communications

Channel Supervision 7,500 15,000

Total 12,250 -20,750

(Equivalent
Adds)

LS/TTL 1.3 1bs/3.OW

FTC 1.7 lbs/2.OW

I
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Table 4.3,4. Solar rower Technology.

Type Status
Watts/Pound

(5,7 Year Geosync Mission)

Spanner Flight 3

Oriented Qualified 9

Hardened Development 18
Completed 1978

12% EFF ST 25
25 kW Array

15% EFF ST Initial Development 30

20% EFF GAS 40

25-30% Multi-GAP 60

WIDENET Design Value 20

Table 4.3-5. Satellite Battery Technology.

Type Status	 W-HR/Pound

NiCd Flight Qualified	 4.5 - 6.8
Projected. (1985) 	 10

N-H2 Two Successful	 14 - 20	 (1985)
Flight Tests in 1978

WIDENET Design Value 16
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Current flight-qualified NiCd (nickel-cadmium) battf

effective energy capacity of 4.5 to 6.8 Watt-hour/pound and a 1985 pro,

jected capability of 10 Watt,hour/pound. In 1978 NiH 2 (nickel,hydrogen)

batteries completed a major development phase and two successful flight

tests. The projected 1985 capacity is 14 to 20 Watt hour/pound. For

preliminary design purposes, the conservative capacity of 16 Watt-hour/

pound is assumed.

Comparisons of solar battery and nuclear-electric power systems

based on specific power show nearly equivalent performance in the 1985-

1990 time frame for power levels above 50 kWatts (Barthelemy et al.,

1979). Below 50 kWatts the solar/battery systems appear to maintain

their present advantage. Current flight-qualified solar battery systems

could be used in this application while accepting the associated weight

penalties. The solar option with current technology is compared to the

projected solar technology in Fig. 4-10. In contrast, current flight-

qualified nuclear systems are too small for this application and proj-

ected technology programs must be assumed if a nuclear power system is

selected.	 For these reasons only solar battery systems are considered

in this preliminary design. The choice between solar and nuclear must

ultimately be made on the basis of life-cycle cost. This analysis is

yet to be done for this application.

4.3.2 COMMUNICATION SYSTEMS

4.3.2.1 Receiver Channels

A black diagram of the complete satellite communication subsystem

is shown in Fig. 3.3-2. Figure 4-5 shows a typical receiver channel and

the assumed per-unit weight and (conditioned) power for each component.

These unit weights and powers are based on current design practice for

flight hardware. The TFM demodulator weight and power are based on

Dekker (1979). The total number of units is a function of the number of

The largest flight-qualified nuclear power systems are the RTGs
(radioisotope thermoelectric generator) on the LES-8/9 spacecraft. They
produce 0. 300 Watts, whereas the baseline satellites in this system
require 'L 4 kWatts.
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M

channels. Figure 4-5 shows the number of units of the 12.8 Gbps baseline

system, taken from Table 3.3-2, and the resulting total recei;rer weight

(220 pounds) and conditioned power (175 Watts).

4.3.2.2 Transmit Channels

Figure 4-6 shows a typical transmit channel based on Fig. 3.3-2 and

the assumed per-unit weight and power for each component. Appendix A4.3

gives the present anal' projected (1983-1988) spaceborr.e, 20-GHz power

generation capabilities together with other technical data. This informa-

tion is based on the technical literature and contacts with several manu-

facturers. The data suggest that TWTs are likely to maintain a lead in

power output and efficiency while having acceptable reliability and inter-

modulation products. For preliminary design purposes a 10-W (RF) TWT with

30% efficiency is assumed. These values are below the projected limits of

30 Watts and 33% efficiency. The number of units of the 12.8-Gbps base-

line is shown in Fig. 4-6 and gives a total transmitter weight of 455

pounds, 150 Watts of conditioned power,and 1,750 Watts of bus power.

4.3.2.3 Local Oscillator Bus

Figure 4-7 shows a typical LO (local oscillator) bus for the transmit

and receive channels. The assumed component per-unit weights and powers

are indicated. There are separate LO busses for the receive RF-to-IF,

receive IF-to-baseband, and transmit baseband-to-RF mixers. The number of

mixers is a function of the satellite data rate and is 250 for the 12.8-Gbps

system. The t0<n.1 LO bus subsystem weight and power for the 12.8-Gbps

baseline is 55 pounds and 30 (conditioned) Watts. The unit in Fig. 4-7

can be reduced in weight and power by a factor of 'L 3 at the expense of

not covering all 24 bands in a single satellite. A 12.8-Gbps system

requires only 5-10 bands.

r 4.3.2.4 Switching Matrix

Appendix A4.4 shows that 'ti 12N loglON switches can connect N input

dines to N output lines with small blocking probability. For the baseline

TDM format, the guard time between message packets varies from about

50 psec to 200 nsec, depending on the user-to-user rate. Hence, the

-111 -



t

^t

OJ

^O

iL Z X ^ X	 ^
	

I

Cl

bD

41

-112 -



a

"Or

fo =105 MHz

*1	 LOCK ../
	 x n, n+1,

	

.	 ...,n+23

	

FROM	
SELECTELECT

^It	 CLOCKS	 CLOCK

#2	 x n, n +I,
... n+23

}	 L i 
+2 ..

POWER POWER
yi+i •• DIVIDER DIVIDER

r N 9 PORTS [r

yi
L.O. ..

I

MIXER x
yi 4-WAY

POWER
6^f
POWIff(I OF 100) y I DIVIDER DIVIDER

-	 ^` f n FILTER
+ AMPLIFIER

- 9X24  POSSIBLE 48 AMPLIFIERS 12 AMPLIFIERS
PORTS IN 216

x	 Figure 4-7.	 Possible local oscillator system for the satellite transmitters
and receivers.

- 113 -

k'

w"



h;

required switching speed varies from about 25 kliz to 5 MHz. A single

switch would generally be thrown no more often than % 125 kHz, which

would correspond to 256-kbps packets arranged in the worst possible way.

Table 4.3-6 shows the estimated weight and power of a switch matrix

assuming, for preliminary design purposes only, low power Schottky tech-

nology. As shown, the 12.8 Gbps baseline switch would weigh 5 pounds and

require 5 (conditioned) Watts. The maximum number of switches that can

be integrated into one chip is limited by power dissipation. Typical LSI

chips today have a maximum dissipation of about 1 Watt (Waser, 1978).

Since the above switch power exceeds this present limit, a detail design

of the switch would need to address this cooling problem.

Table 4.3-6. Satellite Switch Matrix Summary.

Capacity
Gbps

No. 32-Mbps
Links

No. Input
Lines

No. SPST
SW

Cond
Pwr

Design
Value

12.8 390 98 2,342 2.3W 5W

25.6 770 202 5,588 5.6 10

42 1,290 356 10,900 10.9 15

74 2,270 618 20,698 20.7 25

assumes:

1.	 LS/T2L

2.	 1 mW per switch

3.	 interchannel guard times 48 psec (21 kHz) to 200 nsec (5 MHz)

4.	 NSW = 12 N log 10N, Nsw = No. of (SPST) switches, N = No. of lines,

4.3.2.5 Communications Weight and Power, Summary

The preceding receive, transmit, LO and switching subsystems consti-

tute the portion of the satellite that is directly a function of the

satellite communications capacity. These subsystems are referred, to as

COMM in the algorithm for computing the satellite weight and power

(Section 4.3.3). Table 4.3-7 summarizes the four systems of COMM for the

cases of 12.8, 25, 42, and 74 Gbps channels. Figure 4-8 shows the curves

of satellite capacity vs. COMM weight, conditioned and bus power.



n "

Table 4.3-7. Communications System Weight and Power Requirements.

12.8 Gbps Pounds Cond. Watts Bus Watts

Rx 220 175

Tx 455 150 1p750

LO Bus 55 30

SW 5 5

COMM Total 735 360 1,750

25.6 Gbps

Rx 426 343 -

Tx 859 303 3,220

LO Bus 55 50 -

SW 5 10 -

COMM Total 1,345 706 3,220

42 Gbps

Rx 668 553 -

Tx 1,332 534 4,725

LO Bus 55 82 -

SW 5 15 -

COMM Total 29060 1,184 40725

74 Gbps

Rx 1,124 957 -

Tx 2,162 927 71420

LO Bus 55 141 -

SW 5 25

COMM Total 3,346. 2,050 7,420

a

115



r
10,000

C
0
Z
m0
a.v
^. 4,000

W

2,000v

W
m 0

U) 
a.
0 11000
Z

O Q

500z
g
0U

10	 80	 100
SATELLITE. CAPACITY (Gbps)

Figure 4-8. Satellite communications subsystem conditioned and bus power
and weight.

2005

-116



- 117 -

4.3.2.6 Antenna

The antenna assembly includes the reflector surfaces, structural

supports, feed and diplexer assembly, and the ferrite switching matrix.

The following paragraphs give the weight and power estimates for each

of these systems.

Figure 3.3-11 gives a schematic of the antenna structure. For pre-

liminary design purposes the reflector weights are based on the wrapped-

rib construction technique since this is a method that gives accurate

surface shapes. In practice another technique may be used, e.g., with

composite materials; however, the wrapped-rib weight estimate should be

an upper bound. For antennas in the 20-foot diameter class, the specific

weight of wrapped-rib antennas based on projected area is about 0.4 pound/

ft  (LMSC, 1970). The total area of the primary and secondary reflector

surfaces is about 860 ft  giving a reflector weight of about 345 pounds.

It is assumed that a composite material is used for the structural

supports. Powell and Browning (1978) show a typical beam assembly for

space structures that weighs about 1.1 kg/meter. The material is a

thermoplastic resin with glass and graphite fiber reinforcement. For a

4-meter equivalent length and a safety factor of 5, the antenna structure

would weigh about 50 pounds.

The feed and diplexer assembly is an integrated structure. Assuming

1 cm  of copper per feed (including a diplexer), 400 feeds, and a factor

of 3 for the supporting structure, the total weight of this assembly is

about 25 pounds.

The weight of the ferrite switches for the receive and transmit

channels is based on 91 gm and 0.1 Watts per switch (Electromagnetic

Sciences, 1:978). * The total weight for 1,000 switches is about 250 pounds,

including 50 pounds of supporting structure; the weight of each switch

might be reduced by appropriate engineering prior to 1985.

*
ESI-Model 408-6.



4.3.2.7 Communication Processor

A WIDENET system may be controlled by ground-based or spaceborne

computers. To bound the maximum satellite weight and power, it is

assumed that the network is controlled by a spaceborne computer. As will

be seen below, there may be a technical risk with this approach due to

radiation effects. The ground-controlled system may be preferable for

this reason, in addition to economic and other issues.

For purposes of estimating the basic computer parameters, a baseline

computer architecture, shown in Fig. 4-9, is assumed. Appendix 4.6 shows

the model used to estimate the memory size and computational speed of this

baseline architecture. The weight and power are estimated assuming

CMOS/SOS implementation. For the 12.8-Gbps baseline, the communications

computer would have a memory of 1.2 Mbits, a speed of 2.3 Mop/sec

(equivalent adds), weigh 20 pounds and use 45 (conditioned) Watts.

Table 4.3-8 summarizes the computer parameters for other channel

capacities.

Table 4.3-9 shows the cumulative radiation hardness of current state-

of-the-art CMOS devices (Borkan, 1977). Assuming a residual radiation

exposure of about 70 krads (Si) per year (Reagan, 1977) for devices

shielded by the equivalent of 0.1 inch of Al (plus 0.010 inch Ni covers),

marginally acceptable devices for a 7-year mission must be hard to at

least 0.5 Mrad (Si) total dose. Allowing for processing variation in

hardened devices, a hardness level of at least 1 Mrad (Si) must be re-

quired or additional shielding must be used. The current state of the

art of hardening technology yields CMOS devices which are marginally

acceptable. Unhardened MOS is totally unacceptable. The availability

of CMOS/SOS switches and useful devices in full sets (processors,

memories, etc.), and the effect of CMOS LSI hardening processing tech-

nology and design variation of long-term reliability of parts, remains

to be assessed.

Typical LS/TTL is hand to several Mrads (Si) and thus could easily

meet the requirements of a 7-year mission with inherent spacecraft

structural shielding at the 0.1 inch of Al equivalent level. Implementa-

tion by LS/TTL would increase the power required by about a factor of 4.

i^
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Because of these considerations, a detailed design of a WIDENET

system may indicate that a ground-controlled routing system is

preferable.

Table 4.3-8. Satellite Communication Processor.

12,8 Gbps 25 Gbps 42 Gbps 74 Gbps

Req. Buffer	 (kbits) 1 1 1 1

Terminal Memory (kb) 1,000 1,000 10000 1,000

SW CUNF Memory	 (kb) 18.7 44.7 87.2 165.6

Contingency	 (kb) 180 154 112 33

Total Memory	 (kb) 1,200 1,200, 1,200 1,200

No. of SW 2,342 5,588 10,900 20,698

Speed	 (Mops) 2.3 5.6 10.9 20.7

Weight (lb) 19.1 46.7 90.8 172.5

PWR	
(W)	 CMOs/SOS 41.4 100.8 196.2 375.6

Design Values

Weight	 (lb) 20 50 50 175

(COND) Power (W) 45 100 200 375

Table 4.3-9. Cumulative Hardness of CMOs Technology.

Technology Cumulative Hardness

AL-GATE/BULK SI 1 Mrad (Si) typical

3 Mrad (Si) max achieved

AL-GATE/SOS 0.5 Mrad (Si) PROM

3 Mrad (Si) Time-base generator

10 Mrad (Si) MUX

SI-GATE/BULK SI 0.30.5 Mrad (Si)

SL-GATE /SOS 1 Mrad (Si)	 (low dose rate)
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4.3.3 SATELLITE WEIGHT AND POWER ALGORITHM

The satellite weight and power are estimated by an algorithm gener-

ated for large communication satellites. Table 4.3-10 shows the

algorithm applied to the FLTSATCOM satellite. Using the assumptions and

models outlined previously for the various systems, the above algorithm

with minor changes was applied to the WIDENET satellites with different

channel capacities. Table 4.,3-11 shows the resulting weight and power

breakdown for the 12.8 Gbps baseline. It is seen that the BOM weight

and power are 3,925 pounds and 4,917 Watts, respectively, for this case.

Table 4.3-11 shows that all items following Item 10 are computed. An

iteration is required since the RCS tankage depends on the propellant

weight and, hence, the BOM weight (Fig. 4-3). Repeated application of

this algorithm for different communication capacities was used to generate

Fig. 4-1.

The linear dimensions of the satellite body can be estimated from

the black-box densities of other satellites. For the12.8-Gbps baseline

(Table 4.3-11), the satellite body weight is estimated to be 2;575 pounds,

i.e., 3,925 pounds BOM minus 1,350-pounds (654 pounds RCS propellant, 55

pounds RCS tankage, 246 pounds solar array, 395 pounds antenna reflector).

Assuming a density of 15 pounds/ft3 (LES 8/9), the body volume is about

172 ft  and has a linear dimension for this case of about 5.6 feet

(1,7 meters).

Figure 4-10 shows the sensitivity of a typical large future 20/30-GHz

satellite BOM weight to assumptions about the power system technology.

The current (advanced) satellite power technology assumes 9 Watts/pound

(20 Watts/pound) for the solar array and 15 Watt-hour/pound (16 Watt--hour/

pound) for the batteries. The figure indicates a 25% to 30% reduction in

BOM weight with advanced power technology. As discussed in Section A4.1.4,

}	 the WIDENET baseline design assumes advanced power technology. Nevertheless,

'	 the above advanced technology is on the low end of the projected, technologyi
range (Table 4.3-4) and an additional 25% weight reduction is possible if

's	the more speculative performances are realized.

It is clear that many similar tradeoffs can be done with the other

satellite systems. This task remains for a detail design exercise.
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Table 4.3 .10. Satellite Weight and Power Algorithm Example.
(This example uses FLTSAT communications	 4

payload weight and power.)

Item Description Pounds Watts Remarks

1 Comm. Payload 490 881 Electronics, Antennas

2 Attitude Control 125 60

3 TTC 60 40

4 RCS (Less Tankage) 50 25

5 Sub-Total 725 1006

6 Thermal Control Power 20 2% of Item 5

7 Sub-Total 1026

8 Power Contingency 100 (.10)x Item 7

9 Battery Charge Power 135 (.12) x (Items 7 + 8)

10 Array E.O.L. Power 1261 Items 7 + 8 + 9

11 Power System Weight 544 W = 40 lb. + 0.4 lb/Watt

12	 Total Fixed Weight (WF) 1269

13	 Structure 325 .16 WD (Dry Weight)

14	 Thermal Control Weight 81 .04 WD

15	 Hardness 183 .09 WD

16	 RCS Tankage 28 .014 WD

17	 AKK Case 145 .072 WD

.376 WD + WF = WD

18	 Total Dry Weight (WD) 2031 WD = (1.60) WF

19	 RCS Propellant 181 (.072) WD + 35 lb

20	 Total Wet Weight (WW) 2212

21	 AKM Propellant 2041 (.923) WW

22	 Total Launch Weight (WL) 4253
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Table 4.3-11. Satellite Weight and Power Estimates
(12.8-Gbps Baseline System).

Cond	 Bus
Item (Formula) Pounds(A) Watts(B)	 Watts(C)

1 Comm 735 360 1750
2 ACS 180 - 190
3 RCS 75 - 25
4 Control Processor 5 5 -
5 Communication Processor 20 45 -
6 CMD/TLM (S-Band) 20 20 -
7 Ant Reflector and Structure 395 •- -
8 Ant Feed and Diplexer 25 - -
9 Ferrite Switch Matrix 250 100

10 Sub-Total 1705 430 2065
11 Pwr Conditioning Loss

(10% Item 10B) 43
12 Conditioned Power 430

13 Bus Pwr 2538
14 Thermal Control Pwr

(2% Item 13) 51

15 Sub-Total 2589
16 Pwr Contingency (10% Item 15) 259

17 Sub-Total 2848
18 Pwr Dist/Cond (5% Item 19C +

10% Item 10B) 200 (10% Item 16) 285

1905 313319	 Sub-Total
20 Harness (5% Item 19A) 95 (5% Item 19C) 156

2000 Night Pwr = 328921	 Sub-Total
22 Batteries (7.5% Item 21C) 246 (15% Item 21C) 493

2246 EOM Pwr = 378223	 Sub-Total
24 Solar Array (20 W/lb)

(5% Item 32C) 246

25 Sub-Total- 2492
26 Thermal Control (4% Item 28) 125
27 Spacecraft Structure

(16% Item 28) 498

28 Sub-Total (125% Item 25) 3115
29 Wgt Contingency (5% Item 28) 156

30 EOM (Dry) Wgt 3271
31 RCS Propellant 654

32 BOM (Wet) Wgt (120% Item 30) 3925 (130% Item 23C) BOM Pwr 4917
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4.3.4 SATELLITE COST ALGORITHM

During the past few years cost-•estimating models have been developed

based on components and/or major subassemblies (Fong, 1977; Bekey,

1978). The advantages of such models are that they give a more accurate

description of a given subsystem and that they can take into account the

development status of particular components. The disadvantage of these

models is that they cannot be applied to advanced concept satellites

where there is insufficient information about the subsystems (assuming

they agree on subsystem definitions).

Satellite development (nonrecurring) costs appear to be the most

sensitive to program peculiarities while production (recurring) costs are

less sensitive and are much better estimated by all the cost models.

Recent studies (Dryden and Large, 1977) suggest that cost models should

not be used mechanically. While the models themselves differ sharply

and give different results, nevertheless all appear to agree that the

most important variable is weight and that very few other variables are

useful.

For purposes of a preliminary design, the cost estimates for the

WIDENET satellites are based on an algorithm generated for communication

satellites in a recent ACA study (DCA, 1976). This algorithm, based on

satellite weight, grossly agrees with other models for communication

satellites. Figure 4-11 shows the 1979 recurring and nonrecurring costs

according to the DCA model, and Fig. 4-12 presents the estimated costs

($1975) for launch to synchronous orbit. Figure 5-3 shows the recent

inflation rate for materials and labor. Based on this data, the WIDENET

costs have been adjusted to 1979 assuming 8% inflation per year.

Figure 4-2 shows the resulting 1979 costs per satellite as a function

of communication capacity.

4.4 FINAL COMMENTS

'y

	

	 This communication satellite is big and complex. Its design,

construction and deployment would be a major undertaking. Nevertheless,

based on the foregoing preliminary examination, the satellite appears to

be technically feasible in the late 1980's, and the costs , seem reasonable.

r-
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CHAPTER 5

BASELINE GROUND STATION DESIGN

5.1 INTRODUCTION

Ground station costs are a critical factor in determining the

feasibility of a WIDENET system. The total ground station cost consists

of the component costs plus other costs such as operation and maintenance,

design, assembly, etc. Preliminary estimates of both ground station and

terminal costs are included here for completeness.

Section 5.2 gives the main conclusions including the summary table

and figure. Section 5.3 gives the analysis consisting of the underlying

assumptions (Section 5.3.1) and a system-by-system (recurring) cost

estimate of the major ground station components (Section 5.3.2). Ground

link costs are discussed in Section 5.3.3 and user facilities in

Section 5.3.4. Final comments are given in Section 5.4.

5.2 CONCLUSIONS

The following is an estimate of the ground station component recurring

costs for a 1985-1990 system employing 10-watt transmitters, 128-Mops data,

and 8-ft antennas. The cost estimates are summarized in Table 5.2-1 and

Figure 5-1.

1) The total initial price ($79) per ground station is estimated to

vary from '- $380K to $150K as the lot size varies from one to five-

thousand. The estimating algorithm involved 1) determination or

estimation of catalog prices for key components, 2) multiplication

by the number of units per station, 3) incorporation of an esti-

mated learning factor, 4) use of a price multiplier which includes

allowances for cost markups, other components, packaging, etc., and

5) addition of contingency, consultant fees, etc.

2) Although baseband costs comprise roughly half the ground station

costs (1985 technologv) for small lot sizes, they drop to less than

one-third for lot sizes of 5000. For such large lot sizes the RF

and antenna system and the personal service charges become more

important because of their assumed higher learning factors. Lot

sizes of a couple of hundred units are consistent with the ground

a
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station costs incorporated in the total communications system cost

analysis.

3) An operation and maintenance budget of 10 percent per annum is

estimated. If half goes to site-visit labor, this labor involves

'L 0.3-0.1 man-years per year for lot sizes of 1-5000, respectively.

5.3 ANALYSIS

5.3.1 ASSUMPTIONS

5.3.1.1 Baseline Block Diagram

Figure 5-2 shows a block diagram of a typical ground segment unit.

The unit consists of a ground station, ground links to the terminals

(optical links are shown in this example), and one or more terminals.

The ground station contains the antenna system, RF and baseband systems,

computer, interfaces with the ground link, and other peripheral systems.

In Section 5.3.2 the major component costs of the ground station segment

are estimated. The component costs of the ground links and terminals

are estimated in Sections 5.3.3 and 5.3.4.

5.3.1.2 Inflation

Figure 5-3 shows the recent inflation rates for materials and labor

(McGraw-Hill, 1979). Based on this data the component costs have been

adjusted to 1979 dollars assuming 8% inflation per year.

5.3.1.3 Lot Size

In general large production lot sizes reducethe average per unit

cost. The cost reduction factor, Q(N), from one unit to N units is
log2N

modeled by Q(N) = L	 , where L is the learning factor. For mature

technologies that are not labor Intensive or complex, such as antenna

systems, L is near unity and exhibits modest cost reduction. For exam-

ple, a typical value for antenna systems is L = 0.93 (Kelley, 1977;

Stanford, 1977) giving an average unit cost reduction of 0.79 for 10

units. For technologies that are rapidly changing, labor intensive or

complex, L is smaller and significant average cost reductions can
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result for large lot sizes. For example, the assumed value for base-

band systems is L = 0.85 giving a 10-unit cost reduction of 0.58. In

general L ranges from 0.85 to 0.95. Table 5.3-1 shows the design

values for the learning factors.

In the following analysis only lot sizes up to 5,000 units are

considered because, even if more units were produced, it is unlikely

that one manufacturer would be the sole producer. Finally, while learn-

ing curves give an insight into how costs could decrease with increasing

lot size, there is no substitute for quotations based on a vendor's

actual cost calculations. Such an exercise remains for a point-design

of the ground segment. It is interesting to note here that unpublished

Stanford memoranda show that engineering decisions based on L = 0.95 for

all technologies are generally not sensitive to the particular value of

L (Russell,.1978).

5.3.1.4 Technology

The technological state of the art of several major ground station

systems is rapidly improving in performance and/or decreasing in cost

per function. This trend is particularly strong at this time in signal

processing. Where noted, cost estimates are based on projected mid-

1980h technology using published data.

5.3.2 MAJOR GROUND STATION SYSTEMS

5.3.2.1 Antenna Reflector and Mount

The Prodelin Company and others have developed a simple non-steerable

space frame mount which is easy to transport and assemble in the field.

Figure 5-4 shows the mount cost (no price multiplier) versus the reflector

diameter based on the Prodelin Catalog (1976). Since the pointing

accuracy of these mounts is limited to ±3 degrees elevation and ±6 degrees

azimuth, an additional cost is added to bring the pointing accuracy to the

±0.1 degrees required for this application. This additional cost can be

The learning factor is also a function of the production rate,
i.e., units per year. This effect is not explicitly modeled. The
analysis assumes the total units are produced in less than five years.
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Table 5.3-1. Design Learning Factors.

Learning
Item Factor Reference

Antenna

1.	 Reflector 0.93 (Stanford, 1975)

2.	 Mount 0.93 (Stanford, 1975)

3.	 Feed 0.93 (Stanford, 1975)

RF

4.	 Transmitter 0.95 (Stanford, 1975)

5.	 Receiver 0.94 (Stanford, 1975)

6.	 LO 0.94 (Stanford, 1975)

Baseband

7.	 Modem 0.85 (Assumed)

8.	 TDM buffer 0.85 (Assumed)

9.	 Switching 0.85 (Assumed)

Control-Support

10.	 Computer 0.85 (Assumed)

11.	 Master Clock 0.95 (Assumed)

12.	 Power Supply 0.95 (Assumed)
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Figure 5-4. Antenna mount cost versus reflector diameter.
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allocated to either augmenting the structure, adding an electronic

steering capability, or some combination. The design curves for lot

sizes of 1 to 5,000 units (L = 0.93) are shown. For example, for a lot

size of 10 and a reflector size of 8 feet diameter, the cost of the

mount alone would be about $2,520 prior to any cost multiplier.

Reflector costs are primarily functions of the diameter and surface

accuracy. Variations in f/D ratio do affect the link margin slightly,

but the change is small and 0.33 is a reasonable compromise between deep

and shallow reflectors (Philco--Ford, 1974). Figure 5-5 shows the 1974

costs as a function of diameter and link loss at 30 GHz due to surface

inaccuracies (Philco-Ford, 1974). Assuming a 1-dB maximum loss at 30 GHz

for this application, Fig. 5-6 shows the reflector 1979 cost for lot

sizes of 1 to 5,000 units (L = 0.93). 	 As shown, an 8-.foot diameter

reflector would cost $6,610 in lots of 10 units. 	 4

5.3.2.2 Transmitter

The transmitter cost (includes power supply, controls, etc.) is`

based on a survey of published data. Figure 5-7 shows the 1976 trans-'%.

mitter cost over the frequency range of 6 GHz to 25 GHz and saturated

output powers of 5 Watt to 10 Watt (Philco-Ford, 1974; NASA, 1976;

Rafuse, 1976; Kelley et al., 1977). Also shown are the approximate

30 GHz technology breakpoints at this time for solid-state, TWT and

klystron devices. The data suggests that output power is the dominant

parameter over this freque,;e_ • range. Based on this data, Fig. 5-8 shows

the non-redundant transmitter design cost curves for lot sizes of 10 to

5,000 units (L = 0.95). As shown, the cost of a 10 Watt transmitter in

lots of 10 would be about $12,600 (1979).

5.3.2.3 Receiver

The receiver cost is based on a survey of published data. Figure 5-9

shows the 1976 receiver cost versus frequency (Stanford, 1975; Kelley et

It is assumed the sidelobe levels satisfy the interference
standards. This issue is site dependent and remains to be addressed.
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Al., 1978; Russell, 1977) for a 300°K system noise temperature. 	 Based

on this data Fig. 5 -10 shows the receiver design curves for lot sizes of

10 to 5,000 units (L = 0.94). The cost of a receiver in lots of 10 units

would be about $10,500 (1979).

5.3.2.4 Baseband Systems

Modem: The baseline design for the modem uses TFM (tamed frequency

modulation) because of its high power and spectral efficiencies (deJager

and Dekker, 1978).	 Based partly on Dekker (1979) and Russell (1978),

a recurring 1979 cost of $4,000 is assumed per unit plus a 3-3.5 man-

month nonrecurring cost.

Buffer: The baseline design uses a TDM ( time division multiplex)

system. Section A5.1 shows that the TDM buffer for multiplexing 8 duplex

channels would cost, assuming mid-1980's signal processing technology and

costs, about $600 (1979) per ground station if projected technology gains

are realized. For design purposes a_cost of $8K (1979) per ground station

is assumed.

CODEC: The baseline design for the CODEC assumes convolutional

encoding and Viterbi decoding on each channel. Appendix A5.2 shows the

estimated memory size and computational speed for a rate 2/3 code. As

expected, these parameters are dominated by the decoding function.

Assuming 1979 technology and paralleling six state-of-the -art LSI's,, the

CODEC recurring cost for 100 unit lots is estimated to be about $450 per

35-Mbps channel or $3,600 for eight 35-Mops channels.

Encryption/Decryption: Assuming a commercially available NSA

approved DES (data encryption standard) system (IEEE, 1978), the estimated

An optimization study of the antenna size, transmitter power and
receiver temperature shows that the combined cost is a strong function
of the EIRP and a weak function of the system noise temperature (Kelley,
1977). Figure 5 -9 costs include a redundant preamp, all components
through the IF amplifier, and the power supply.

e

	

	 TFM is a type of QPSK modulation. Compared to QPSK its power
efficiency is about 1 dB less and its spectral efficiency is about
3 dB more (Section A3.1).
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cost to encrypt and decrypt one channel is $100 (1979). In addition,

assuming that each user would have an individual DES key to control the

common ground station DES system increases the cost per terminal to $200.

A design value of $500 per terminal is assumed for component costs. A

public cypher system could distribute DES keys at a pace sufficient to

ensure security. Integrated circuits of the same order of copiplexity as

the DES chip can;'perform this function.	 3

Bandwidth Compression: Recent unpublished work suggests that with

interframe coding the data bit rate can be reduced to 3 Mbps for a real-

time video channel. The required processing appears to involve a 3.5-Mbit

memory with an access time of 30 msec. Projected 1980!s memory cost at

this access time is 0.5 millcents per bit (Feth, 1976). This projection

gives a per-channel cost of $44 (1979). Sincd this is well below the

estimate based on current technology, a design value of $1K per channel

is assumed for component costs.

A/D and D/A Converters: Current catalog prices for 'DAC of video

quality in 100 unit lots is $26 (1978). Current catalog prices for ADC

of video signals in 100 unit lots is $485 (1979) (TRW TDC 10075). On a

per-channel single lot basis, the A /D and D /A component costs are assumed

to be $1.5K (1979).

5.4 FINAL COMMENTS

The ground station components appear to be technically feasible;

cost is the critical parameter. One important technical task remaining

at this time appears to be the design of the overall system control func-

tion. Details for implementing this function remain to be specified.

Basic options need to be outlined regarding the location of the control

hardware (;round or space), subsystem interfaces, channel protocols,

control function evolution from the initial system, computer architecture,

etc. This task is chiefly-a design problem and it appears to have a low

technical risk.

Useful follow-on work regarding the ground station centers in three

r^
	 areas. Given the ground segment parameters generated by this study, e.g.,

transmitter power, antenna size, data rate, etc., a point design would

study, first, how to optimize the design for lowest cost; secondly, how

t^
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to implement the control function of the system; and thirdly,

generate more accurate cost data based on quotations from component

manufacturers. A second point design at lower data rates per band,

say 12.8 Mbps, could be more relevant for ground stations serving

sparsely populated areas; see the discussion in Chapter 7.
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CHAPTER 6 i
4

BASELINE SYSTEM: USER FACILITIES AND LOCAL LINKS

6.1 USER FACILITIES

6.1.1 INTRODUCTION

The purpose of this chapter is discussion of cost estimates for

user facilities and local links associated with the baseline 20/30 GHz

satellite communications system. The major necessary premise is that the

costs of interest are only those associated with incremental additions of

new equipment to existing plant which will utilize the increased capacity

made available by the satellites. Thus the links and user equipment of

interest will be oriented primarily toward video and facsimile equipment,

because these are the services which most uniquely require the expanded

bandwidths of the satellites and which have the most expensive terminals.

The links of interest are also broadband units capable of handling the

3-6 Mbps traffic appropriate for compressed video and very-high-speed

facsimile circuits.

6.1.2 VIDEO FACILITIES

There are two major classes of video facilities; those desktop units

serving one person as a videophone, and those which occupy a conference
4

room serving groups of people. The cost of a videophone terminal would

presumably be in the range one to ten thousand dollars, or a few times

greater than the cost of the video camera and monitor it contained. They

could be made more elaborate with mirrors for graphics communications and

switchable zoom lenses for conferences, for example, but then they start

to approach the costs of inexpensive video-conference rooms.

Video conference services can span a very wide range of quality and

cost. The basic specifications should be market-driven. As discussed in

Chapter 2, the primary incentive for video conferences would be informa-

tion sharing, problem solving, and discussion of ideas; often it would be

used in lieu of traveling or to involve people who otherwise could not

attend. It is a particularly useful tool for extending the presence of
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top management, and professional expertise over large geographic areas.

The principal means of non-verbal communications in conference include

gestures, facial expressions, prepared and spontaneous graphics, documents,

and models. Full motion video services are required to convey the gestures

and facial expressions, and to maximize the sense of "presence"; such attri-

butes would generally be preferred if the cost were modest. The cost of

these user terminals will be approximately the same whether or not full

video is employed; in fact, freeze-frame service may require extra equipment.

In order for a conference to be effective, it must not only convey the

types of information noted above, but it must also be convenient and com-

fortable to initiate and conduct, with a minimum of delays and interruptions

due to the need to make system adjustments. For this reason the baseline

system assumes that such facilities are simple, standardized, and capable

of operating largely untended under the control of standard automated deci-

sion algorithms.

A typical system would consist of a standard meeting table shaped in

a vee so that up to six or seven people might simultaneously see each other

as well as the video cameras and monitors positioned in front of the group.

The table should make sense even if the video services are not employed.'

The table should have microphones which are permanently mounted and adjusted

for each participant. They and the loudspeakers located well behind them

should also be focused and shielded so as to minimize feedback and echos.

To further minimize echos and extraneous noise, the baseline audio control

system would also attenuate for the first half second or so any speakers

who interrupt; microphones below a certain threshold for a period longer

than a minute or so would be turned off until they are stimulated above

some audibility threshold. Such algorithms for assigning microphone gain

and priorities would be under the control of a small microprocessor located

in the control console.

'

	

	 Similarly automatic assignment of video resources to speakers could be

implemented. These resources might include a camera focused on the lec-

°°'

	

	 turer's position at the table, cameras focused on each side of the vee-

shaped table, and cameras which view the entire group. The switching on

and off of these cameras, or the equivalent adjustment of one of them,

could be automatically controlled by the same signals and algorithms which

control the microphones. In addition, the lecturer's position might also
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have override controls to permit switches to be made between views of the

speakers and views of the graphics, etc.

A control panel would be provided which has a very simple set of

video and audio override options and network access controls. It would

also contain a less accessible set of more detailed and flexible controls

which could instantly be reset to the default option appropriate to less

sophisticated users. These controls are assumed to employ digital algor-

ithms and signals in order to take maximum advantage of cost reductions

available with LSI circuits.

The most expensive items for a conference room would probably be the

video cameras and monitors. One zoom camera might be located on the ceiling

to view transparencies or other graphics placed in front of the speaker's

position at the table. It might also have a mirror which could be flipped to

permit the camera to view the front of the conference room, a model, a flip-

chart, or a blackboard. Two other zoom cameras might be located in front of

the table in the cluster of video monitors; they could interchangeably view

the lecturer's position or any or all of the other participants, as gov-

erned by the allocation algorithms. A fourth camera might serve as a

spare or some other purpose. One or two large-screen video monitors might

present the received and transmitted video signals, or perhaps higher-

resolution locally generated signals from transparencies or from a high-

resolution graphics telecommunications terminal. Other small monitors

would present other video signals. Such a system might provide either

full-motion or freeze-frame video services, or both.

A good facsimile or graphics terminal would be an important adjunct

to such a conference room. Often letters, contracts, tables of data, etc.

are important in a conference and yet are beyond the resolution capabili-

ties of conventional video equipment. Such a terminal might transmit

rapidly high-resolution copies of short documents or transparencies which

then could be viewed or projected locally. The cost of such a two-way

terminal would be perhaps two or three times that of a copier machine

capable of comparable image quality and printing capacity. Copier prices

now range from %$1,000 for the simplest unit to several thousand dollars

for moderate quality, and over ten thousand dollars for high volume units.
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1
Transmitting copiers of good quality and reasonable cost are just now

beginning to be marketed, and the range of performance and price should

improve significantly over the coming years.

In order to control the costs of manufacture, installation, and

maintenance, such equipment should be standardized and packaged in large

modules which can be interconnected flexibly and easily. For example,

the table module might be standardized with the microphones and loud-

speakers premounted and adjusted, so that only one or two cables need

to be plugged in. The table might also contain one or two mounting posi-

tions for the control panel (one near the lecturer's seat) and built-in

slots for transparency projection, etc. Each participant's position might

also have a small set of lights to indicate the status of the microphone

or the speaker's priority. Switches could also be provided at each posi-

tion to gain microphone access or to communicate other information, if

desired.

A second standardized module might contain all the video monitors and

cameras with appropriate signal lights or other features. It would be

important to provide a minimum of controls, and perhaps to control them

exclusively through the control panel with its built-in automatic reset-

to-default-option switches.

By standardizing all the modules it should be possible to install a

conference room with a minimum of design and engineering. The baseline

cost estimates assume that approximately 10 percent of the capital cost is

allocated to design functions, and 10 percent to installation and start-up.

The design function might be split, half being allocated to a consultant

who would analyze an organization's communications needs, and half for the

engineering of the installation itself.

These general assumptions about the character of a video-conference

room, together with catalogue prices for presently available video and

copier equipment, lead to the following estimates for the cost of such a

facility. Three different estimates are presented in Table 6-1; they are

for low-quality, medium-quality, and high-quality rooms. The "price multi-

plier" is an estimate of the ratio of the catalogue price to the price that

would be paid by the customer; it reflects handling, interface, integration,

and other costs.
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Table 6-1. Cost Estimates for Video-conference Rooms ($1979).
Y

Quantity and Costs Total Costs
K	 per unit Price ($K)

High HighMulti-
Item Low Medium Quality 2lier Low Medium	 Quality

Video cameras,
color 3@$1 4@$3 5@$25 1.5 4.5 18 187.5

Video monitors,
color 3@ 1 4@ 2 5@ 3 1.5 4.5 12 22.5

Conference
facsimile 3 6 9 1.5 4.5 9 13.5

Audio equipment 1 3 6 1.5 1.5 4.5 9

Lighting 1 2 4 1.5 1.5 3 6

Control console,
interfaces 1 3 7 ;, 2 2 6 14

Wired conference
table 2 4 6 1.5 3 6 9

Communications
consultant 1 3 12 1 1 3 12

System
engineering 1 3 12 1 1 3 12

Installation and
start up 2 6 24 1 2 6 24

Totals 25 70 310. -.

The costs for these three types of video-conference rooms are thus

$25K, $70K, and $310K for low, medium, and high quality facilities. The

range of possible costs for video services spans two orders of magnitude

as the system progresses from a simple $3K videophone to an elaborate

$300K conference room. Other variations are glso possible, such as the

inclusion of video recorders, but the total cost range would not be signi-

ficantly impacted. For the baseline system we assume the full span of

facilities would be used, with the inexpensive systems being the most

common, and the moderate quality systems being closest to the average cost.



This average cost is assumed to be $60K in 1979 dollars, and the average

life is assumed to be 5 years.

In order to estimate the fraction of the total system investment

allocated to user facilities, it is necessary to estimate the number of

such units installed. For a fully operational national video communica-

tions system sufficiently large that most major offices of most major

organizations could communicate with each other, there might be one video

terminal per 2000 employees or per 'L$50M gross national product; this

corresponds to approximately 50,000 terminals in the United States. If

each transmitted 3 Mbps for 8 hours per work week, the average total

traffic would be 30 Gbps, comparable to the total capacity of the baseline

system.

6.1.3 -OTHER SERVICES

The major communications service will continue to be voice for many

years. The introduction of extensive satellite circuits will lower the

costs of long-distance calls, but will probably increase the numbers of

installed telephones only moderately. The baseline system is not appli-

cable to proposals that extremely large satellites be used to connect wrist

watch mobile radios worn by a significant fraction of the population, nor

are there any other evident ways in which the numbers of user voice termi-

nals could be significantly increased.

The services which will benefit most from reduced costs will be those

requiring large bandwidths. Besides video, these include many types of

facsimile and high-speed data transmission. Adaption of existing copier

technology to electronic transmission is moderately straightforward, and

such systems were included in the cost estimates for video services described

in Section 6.1.2. Because many of these systems could employ existing voice

circuits and are being introduced on that basis, they are not included here

in the economic analysis of the baseline satellite network. If they were

included, they would simply increase further that fraction of the total

investment allocated to user terminals. -A similar situation prevails for

high-speed data transmission systems'; high-speed computer-to-computer links

could be very important, but their market penetration is difficult_ to esti-

mate, as is the fraction of such growth that should be credited to satellites.
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To first order, the cost of the user equipment associated with 30-,,::-)s

traffic is the same for video or voice. The baseline 30 Gbps capacity could

handle 10,000 3-Mbps video links, and a 20 percent duty cycle implies 50,000

terminals exist. If the average terminal each is $60K, the total investment

would be $3B. The same 30-Gbps capacity might handle 10 6 voice links, corre-

sponding to the equivalent of perhaps 10 7 additional phones. If these phones

and associated hook-ups cost $300 each, then the total investment would again.

be $3B; this is obviously a very crude estimate, but it does suggest that

user facilities are an important part of the total investment.

6.2 TERRESTRIAL LINKS

As in the case of the user terminals, the object is to estimate the
costs associated with the increased capacity of the satellite system. For

example, to the extent that the satellites motivate and handle video-

conference tra:f".1c, and that increased local capacity is required to support

that same traffic, then those local costs should be reckoned in, the total

satellite systems cost 4nalysis„

To simplify this analysis .for the baseline system, we assume that the

new local links .A imul.ated by the satellite handle commercial traffic of

%30 (bps in the aogrtR ate. For convenience, the cost summary in Chapter 7

associates the total satellite capacity with 50,000 high-data-rate users.

The costs would probably be higher if the same local capacity were spread

more uniformly over the entire voice service population. This is so

because the local costs are to a );easonable extent simply proportional

to local circuit miles but are less dependent upon circuit bandwidth;

therefore broadband services can be less expensive in the aggregate.

Cost estimates are often expressed as costs per circuit mile. In

Figure 6-1 are presented comparisons of the costs for installed voice cir-

cuits for c:.hree types of terrestrial link. In the time period of interest

here, the average investment costs are approximately $10 per mile for both.

microwave radio and fiberoptic cable. ;These estimates were prepared for

NASA by Western Union (1979). If we assume that 400 such voice circuits

are capable of handling a nominal 3-Mbps compressed .full-video circuit,
e	

and that annualized costs are approximately 10 percent of the installed

costs, then the annual cost per video circuit mile would be approximately
$400, and the cost per voice circuit mile would be $1.00. These estimates
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are close to those prepared for NASA by the ITT U.S. Tel. & Tel. Corporation

(ITT, 1979), which appear in Figs. 6-2 and 6-3.

These last two figures further separate the capital and operating

costs. The average annualized costper video-channel mile is perhaps most

relevant to the baseline system estimates, because the satellite-induced

additions to local plant would probably consist of one or two video-channels

linked to each of perhaps 50,000 major user facilities, or the equivalent.

The ten-year total cost for the ITT estimate would be approximately $5000

per video-circuit mile, and this is the estimate we use for the baseline

system. However we assume 10-year straight-line depreciation and that the

annual operations cost is only 10 percent of the purchase price of $2500

per mile. The ITT estimate allocated a larger fraction of the cost to

operating expenses, 80 percent each year instead of 50 percent. The lower

percentage used for the baseline estimate may be appropriate if the oper-

ating cost is more nearly proportional to the number of circuits than to

the link bandwidth, and if low maintenance fiberoptic cables are a large

part of the total plant. This assumption is reconsidered in Chapter 7.

To determine the link cost we must estimate their average length;

this depends upon the separations between ground stations, and therefore

upon their numbers. Equation 3.2-5 predicts this number in terms of the

annualized basic ground station costs and the costs per circuit mile. If

we use the ground station cost estimate of $212.38K (for lots of 100) less

the baseband equipment cost of $76.4K, we obtain a basic ground station

value of $140K (see Table 5-1). Five-year straight-line depreciation plus

10 percent operating costs total $42K per year. The annual cost per voice

circuit is ti$5 (Fig. 6-2) and therefore Table 3.2-2 suggests that case B

is most appropriate for determining ground station separations.

In Section 3.2.3 it is argued that case B would probably correspond

(Pi	 to 1800 ground stations across the United States if we assumed that 80

percent of the population were distributed uniformly over 5 percent of the

! land!,, and the other 20 percent uniformly occupied the rest; hall the ground

stations would be rural. The 900 urban ground stations distributed over

e

	

	 150,000 mil would be spaced an average of 13 miles and the mean link length

would be 0 4.3 miles. The 900 rural stations would be spaced 58 miles, and
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the mean link length might be ti15 miles. If 80 percent of the links are
1

4.3 miles and the rest 15 miles, then the average length would be 6.4 miles

and initially cost ti$16K at $2500 per mile; for an estimated 30-Gbps load,

this implies a total investment in 50,000 links of $805M, and an annual cost

of ti$160M.

It is easy to determine average data rates for these stations. If 900

handle 80 percent of 30 Gbps, the average rate is 27 Mbps, and that for

rural stations is only 6.7 Mbps. There are about 10,000 local offices,

800 toll centers, 230 primary centers, 70 sectional centers, and 10 regional

centers in the Bell system; thus all toll and higher centers might have

ground stations, plus key rural local offices.

Xerox Corporation, in their 1978 petition for rule making to the

Federal Communications Commission, proposed establishment of special-

purpose microwave communication links designed to couple large bandwidth

services (say 256 Kbps) to dedicated regional satellite ground stations.

Each major client facility would have its own private microwave link of

several miles length which would connect it to the nearest network node.

These nodes would in turn be linked by microwaves to the appropriate ground

station. This configuration is quite compatible with the cost estimates

prepared for the baseline system. Even though the present market for such

systems is very thin and technological improvements are needed, low-cost

microwave links are already available. Typical of such new systems is the

Model DM18 18-GHz digital microwave radio transceiver which can handle two

Bell System digital line rates--DS-1 at 24 channels and 1.544 Mbps and DS-2

at 96 channels and 6.312 Mbps; the system is offered by Farinon Electric of

San Carlos, California. The estimated price for one transceiver with a

2-ft antenna, enclosure, mounting structure, and a flexible waveguide for

one T-1 line would be $9500. Although two such systems would be required

y

	

	 to link a user to a local network, and therefore these present costs are

1%j20 percent above the baseline link cost estimate, future improvements

in technology should reduce these prices over the next five to ten years;

'

	

	 such private microwave links would be necessary for only a portion of the

customer base, in any event.
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Another option is to use existing wire pairs for data. For unloaded

22-gauge wire pairs Even et al. (1979) have suggested that 200 kbps could

be sent 2-3 miles if the signals are properly conditioned to handle re-

flections and noise. Large numbers of Tl cables have been installed in

recent years, and they can handle 1.5 Mbps if properly conditioned. Thus

many customers could significantly expand their digital capacity without

new cables simply by adding appropriate electronics to those lines already

in place.

Chapter 6 References

1. ITT U.S. Telephone and Telegraph Corp., 30/20 GHz fixed communications
systems service demand assessment, NASA Rept. No. NASA-CR159620,
August 1979.
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CR159547, July 1979.
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CHAPTER 7

SYSTEM ECONOMICS AND GENERAL CONCLUSIONS

7.1 INTRODUCTION

This chapter summarizes the analyses and estimates presented earlier

for large broadband switched satellite communications networks. The mar-

ket estimates in Chapter 2 led to the discussions in Chapter 3 of the

network architectural issues that arise for such large satellite systems.

The understanding developed in Chapter 3 then led to the definition of a

baseline system design and its cost estimates; Chapter 4 analyzed the

space segment, Chapter 5 treated the ground stations, and Chapter 6 dealt

with the terrestrial links and user facilities. Those economic estimates

in Chapters 4-6 are summarized and combined here in Section 7.2 to yield

a portrait of the economics anticipated for large satellite networks like

the baseline system, and to explore how those economics might vary with

total traffic and technology.

Because Chapters 3-6 provide cost estimates for each of the major

subsystems of the baseline system design, it is possible to examine the

economic effects of design changes. Such tradeoff analyses are presented

in Section 7.3 for the basic system engineering specifications. These

studies lead to a revised baseline design which is believed to be more

nearly optimum for communications systems of the size studied Kere. Future

point design studies might wish to begin using specificatior,.-. 	 ?s
these. Section 7.4 then combines the baseline system econom:,!^ &%i ly is
(Section 7.2) with the traffic estimates of Chapter 2 to deter^^Ixae Wiether

or not smaller versions of these systems are economically competitive.

Section 7.5 draws upon all of the preceding discussion in order to

arrive at the final technical and economic conclusions derived from this

study effort. Conclusions relevant to issues of public policy and NASA's

program options are presented separately in the chapters devoted to those

topics, and all results are reviewed in the executive summary (Chapter 1).

7.2 ECONOMIC SUMMARY; BASELINE SYSTEM DESIGN

The baseline system includes a space segment, ground stations, local
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loops, and user facilities. The primary purpose of the baseline system

design was to enable the relative costs of these elements to be estimated

and to enable their dependence upon total traffic and other assumptions to

be better understood. The major architectural assumptions were that a

20/30 GHz satellite communications system was desired which could provide

pervasive, fully switched digital communications to the entire United

States at levels up to '14 38 Gbps. Although it would presumably be

thoroughly intertwined with the existing communications plant, the cost

estimates were not significantly affected by this assumption because the

baseline system was assumed to require new facilities.

The costs of the four basic elements are summarized .in Table 7-1,

together with estimated total investments, tariffs, and revenues. The

space segment costs were estimated in Chapter 5 on the basis of estimated

spacecraft weight and the DCA weight -based cost model. Although the accu-

racy of general cost models is always uncertain, this model performs ac-

ceptably well for most other communications satellites that have been

launched. The formulas given in the table show how the estiL.ited cost

depends on the 3822 -1b weight of each satellite (revised to 3925 lb in

Table 4.3-11).

The baseline system is assumed to consist of three 12.8-Gbps satel-

lites plus one spare (each satellite alone has a redundant architecture),

which would cost an estimated total of $386M if space -shuttle launch costs

were $30M per satellite. The nonrecurring costs are assumed to be re-

covered during the initial 5-year period, although conventional design

practice should permit longer lifetimes. The total recurring and non-

recurring investment in the space segment is thus 'L $600M. _ The annual

maintenance and operating costs for the satellites alone are assumed to be

5 percent of the recurring space segment costs, which should cover the

costs of monitoring and controlling the system from the ground, and

certain general and administrative costs. This estimate is doubled in

j	 the right -most column of the table to provide a more conservative account-
.toF	

ing .

These costs can be allocated to the users as fixed monthly charges or

as use charges per minute, as listed in the :able. For example, the non-

recurring satellite costs could be recovered by spreading a monthly cost
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of $'3.5M over L designated users or, equivalently, by spreading the

average nonrecurring system cost per 3-Mops minute, $336, over the

average number L of 3-Mops system users during that minute. These costs

per minute assume there are 10,400 minutes per month, which corresponds

to 4u-hr weeks. This arbitrary assumption is also equivalent to saying

the average system load is 24 percent of the peak load. The equivalent

costs listed in the table are representative numbers for the same 3-Mbps

example if there are 50,000 potential users, of which 10,000 are active

at once. Thus, according to the table, the nonrecurring space segment

costs could be recovered if each of the assumed 50,000 users paid $70

per month or, equivalently, 3.4^ per 3-Mbps minute of actual use, which

is assumed to average 8 hours per week per user.

The total-system numbers at the right end of the table present the

total investment, $210M for the nonrecurring costs, and the associated

revenue per year ($60M) if the costs were spread uniformly over 5 years

and then multiplied by 1.5. These two very simple approximations, i.e.

the factor of 1.5 and the 5-yr straight-line depreciation for facilities

which probably would last 7 years or more, are intended to reflect average

loading factors of perhaps 65 percent and the cost of capital. The same

approximations are applied to all capital cost items in the table.

The loading factor deserves special comment. Although linear traf-

fic growth reaching saturation at the end of a single satellite's life

might normally yield 50 percent loading, or 25 percent if there is an

idle spare, the four-satellite system proposed here would instead have

50 percent loading with an idle spare and properly timed launches, as

discussed in Section 3.2.5. Furthermore, one might choose to load the

satellite up to 100 percent by transferring terrestrial traffic. Although

this is extreme, it is important to note that the "mobility" of satellite

capacity enables it to augment any overloaded or failed terrestrial long-

lines circuit. Therefore terrestrial circuits can be operated with much

less excess capacity than otherwise due to the "overload insurance"

provided by the satellite back-up. Thus the capacity of a new satellite

could be committed immediately to this insurance function, permitting

postponement or omission of 'terrestrial improvements otherwise needed.

For example, it is not uncommon to find certain telephone routes over-

loaded at certain times of day; to install terrestrial plant adequate
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to obtain 100 percent availability would be prohibitive. The capacity of

a new switched satellite could immediately increase availability perfor-

mance if 100 percent loaded. When availability degrades unacceptably,

6	 the next satellite could be launched.

Another way to state the same fact is to say that the value of a

switched satellite circuit is greater than its terrestrial counterpart,

even if the hardware costs are equal, because of its ability to substi-

tute rapidly for any of a large number of potentially overloaded circt..'_ts,

each of which might otherwise need greater capacity. Thus the effective

loading factor for the satellites might well exceed 50 or 60 percent

(multiplied by the 24 percent factor for load fluctuations) if the satel-

lite capacity is not excessive in relation to statistically saturated

terrestrial plant.

The ground station cost estimates tabulated in the figure were

derived in Chapter 5. The basic facilities include everything but the

user-specific baseband circuits which are proportional to the average

traffic. Equivalent costs are tabulated for two sets of assumptions. In

the first case 1800 ground stations were assumed (see Sections 3.2.3, 6.2)

and 50,000 users, i.e. there is an average of 28 3-Mops potential users

per 'ground station. Under this assumption the average user's share of the

basic and user-specific ground station costs would be $80 and $50 per

month, respectively. This is equivalent to 3.9 and 2.4 cents per minute.

For the case where a user must provide his own station (N = 1), the

monthly costs would be $2300 and $250 for the basic and user-specific

circuits.

The ground station links are assumed to have an average cost of $16K

per 3 -Mops capacity (Section 6.2). Microwave links would typically be

slightly more, and cables in old conduit or the use of data-above-voice

could be significantly cheaper; the cost estimate is an average.

User facilities costs depend on the service; video is assumedhere.

As discussed in Chapter 6, assumption of voice services being dominant

might lead either t, the same or to significantly lower costs depending

on whether the satellite traffic growth is associated with new phones or

with the increased use of old phones. The reason the costs might be

comparable is that those services with lower data rates must have a

f
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comparably larger number of terminals, albeit less expensive, to utilize

the assumed 30 Gbps system capacity. It is clear from the table that the

user facilities costs are dominant for video services, followed by the

local loop costs.

The total cost of communications can be estimated by summing thE*'

various components. For the assumptions noted above, the average total

cost per month of a 3-Mbps one-way video link would be $2200 or, equiva-

lently, $1.10 per minute; the corresponding prices might be $3300 per

month or $1.65 per minute. It is more customary, however, to separate

charges into two components, one more nearly related to fixed posts, and

one proportional to variable costs. '.n the table each item is charac-

terized as being more nearly fixed or variable, and is summed in the

appropriate category to yield an estimated total tariff for the assumed

video-conference services. These estimated tariffs are $2000 per month

plus 630, per minute for 3-Mbps full-motion video teleconference services

augmented by high-speed facsimile and high-speed data ports. If a user
insists on his own private ground station, these could rise to $7400 per

month plus 54Q per minute.

The investments for the video option are approximately $600M, $400M,'

$800M, and $3000M for the space-segment, ground-station, ground-link, and

user-facilities costs, respectively; these represent 12, 8, 17, and 63

percent of the total 4.8 billion dollar investment. The investment in new
network plant alone is thus only .$1.8B. The revenue streams associated

with these elements are also listed in the table, and they total $2B per

year. Since the revenues associated with maintenance and operations are

approximately half those associated with 5-,year depreciation, an alterna-

tive accounting appears in the right-most column of the table, where the

maintenance and operations revenues are arbitrarily doubled to yield

total annual revenues of $2.6, a 30 percent increase.

The obvious conclusion is that the costs are dominated by the users'

video-conference room equipment, and that the remaining 37 percent of the

costs are divided approximately equally between the space, ground station,

and ground-link elements, with only 12 percent devoted to the satellites

themselves. The second conclusion is that the estimated tariffs for

video-conference services are quite low, perhaps sufficiently low to
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stimulate substantial use of the service, even beyond the 30-Gbps assump-

tion, as discussed in Chapter 2.

These estimates can be viewed in other ways, for other assumptions.

For example, the tariffs per 3-11.bps one-way user-to-user link would aver-

age 'x, $525 per month plus 25^ per minute for 20 percent utilization during

r

	

	 the work week. A fully dedicated lirik would be $2625 per month plus 25q

per minute. The corresponding voice tariffs for a dedicated link, neglect-

ing multiplexing and user-equipment costs, could be as low as $50 per

month plus 0.5(,% per minute; thus the multiplexing, signal conditicaing,

and other user-equipment costs could dominate. The annual tariff for a

single dedicated 60-kbps user-to-user one-way circuit, neglecting multi-

plexing costs, could be $1080, and 20 percent utilization plus sharing

could reduce the cost further.

All of'these estimates are based upon the assumed 30-Gbps baseline

system; it is interesting to explore how the costs might vary for systems

of different capacities. If the 12.8-Gbps satellite were developed, the

costs for traffic in the range from ti 10 to 60 Gbps would bk approximately

those quoted above because of the flexible, multi-satellite architecture.

Significant departures from this range would require re-examination of

the assumptions developed in Chapters 3, 4, 5, and 6; a simple cost model

for much smaller or larger systems is described below.

In Section 3.2.2 it was argued that the number of ground stations

should be proportional to the two-thirds power of total satellite traffic,

and Table 5-1 indicated a small learning-factor correction was appropriate

for ground station unit costs. These two considerations result in the

total ground station cost being approximately proportional to T0 ' 6 , where

:C is the total traffic (Gbps). The cost of the satellite as a function of

size was presented in Fig. 4-10; the cost is proportional to the 0.5

power of the capacity if all other specifications are fixed. For capaci-

ties below 12.8 Gbps, fewer than 400 beams would be more cost effective,

thus increasing slightly the cost dependence upon capacity; a reasonable
,f

	

	
approximation would again be % T 0 ' 6 . The cost of the local terrestrial

links is proportional to the product of .their average length, which varies

as the distance between ground stations, and the total traffic T. The

average length varies as the square root of the number of ground stations,
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and thus it is proportional to T-0 ' 33 ; the product is proportional to

TO'67. To assume that the total baseline system costs are approximately

proportional to TM is probably quite reasonable. This relationship will

be useful later in understanding the growth problems of such large networks.

7.3 TRADEOFF STUDIES; BASELINE D ESIGN SPECIFICATIONS

One of the important benefits of a detailed baseline design study is

that any of the assumptions can be altered to explore the relative merits

of various design alternatives. Perhaps the most basic common denominator

relating variuus design specifications for the space link is link margin.

For each element contributing to link margin there is a cost per decibel

for small departures from the baseline specifications; by identifying

these various costs, a more nearly optimum solution can be determined.

The cost per decibel will generally be equal for all variations only at

the optimum design. Such an analysis appears below, and more nearly

optimum design specifications are determined.

There are seven design variables which appear to be significant;

these are listed in Table 7-2, For each cost element the present price is

estimated, together with the prices expected if the link margin were to be

improved or degraded 3 dB. These estimates generally follow from the

discussion in the chapters on cost analysis. The rightmost columns pre-

sent the increase and decrease in total system costs associated with each

of these potential 3-dB design changes. The perturbations are with respect

to the 1800-ground-station system described in Table 7-1; the system

capacity remains constant.

Since all the increments in total system cost are not equal, design

specifications can be altered to improve the system economics. It is clear

that the least expensive way to improve link margin is to increase the size

of the ground station antennas; a 3-dB improvement costs only `L $20M.

Improving all system noise temperatures would cost $113M, increasing the

II 	 number of beams to 800 would cost $240M, and decreasing the data rate to

64 Mbps would cost $337M. The cost estimates for receiver improvement and

800 beams are more uncertain because these technology options were not

analyzed and could stretch the future state of the art. Conversely, the

greatest cost savings are obtained by increasing the data rate, and by

reducing the number of antenna beams and the transmitter powers.
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Table 7-2. Base
in E

Variable Change

Unit Prices *,# OK)
Total

System Cost
Baseline

($M)'f'
Higher	 Lower

Present	 Price	 Price
Price (+3 dB	 (-3 dB

Margin) Margin)
Increase
(+3 dB)

Decrease
(-3 dB)

Ground station reflector 8 16 4
antenna diameter mount 3 4 2 20 11
(8 to 11.3 or 5.7 ft) site costs 4 6 3

Space antenna, antenna,
number of beams structural wt., 30%# 70%? 15% 240? 90
(400 to 800 or 200) ferrite switches,

etc.

Data rate per band ground receivers 17 34 9
(128 to 64 or 256 Mbps) transmitters 32 64 16

modems 5 11 3 55 26

satellite costs 47% 94% 24% 282 144
(receivers, 337 170
transmitters,
modems, etc.)

Satellite transmitter transmitter tube
power and driver; 32% 64% 16% 192 96,

(10 to 5 or 20 watts) associated costs

Ground transmitter transmitter tube 32 45 23 24 16
power and driver
(10 to 5 or 20 watts)

Satellite system noise preamplifiers 3% 9%? 2% 36? 6
temperature
(800 to 400 or 1600°K)

Ground system noise preamplifiers, 17 60? 15 77? 4
temperature antenna backlobes
(500 to 250 or 1000°K)

Per ground station; lot size is 100.
'1800 ground stations, 4 satellites.
Percent of $600M space segment investment.
?Technology and costs uncertain.
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The size of the ground station antenna appears to be the single most

important parameter to consider. Since the cost of the antenna is approxi-

mately proportional to its area, its diameter might be increased from 8 to

16 'ft to yield 6-dB improvement at a cost of $60M-$80M. One uncertainty is

the site cost necessary for such large antennas because they no longer can

freely be placed on secure rooftops, but must have special footings,

enclosures, and utility services provided on the ground. If the increase

in each site cost were $25K, then the incremental cost of 16-ft antennas

could even be % $105M.

This 6-dB improvement could then be exchanged for a 6-dB degradation

in other specifications. Examination of the table suggests that a 3-dB

loss due to an increase in data rate, plus 1.5-dB losses due to reductions

in transmitter powers and the number of antenna beams, would yield a nearly

optimum design. These changes in system specifications and their conse-

quences are summarized below in Table 7-3.

Table 7-3. Improved Baseline Design; Changes
in Specifications and Costs.

Specification Change
Change in
Margin

Change in
System Cost

Ground station 8 ft to 16 ft +6	 dB +$60-105M
antenna diameter

Data rate per band, 128 Mbps to 256 Mbps; ­3	 dB -$170M
average halve number of

transponders

Transmitter power, 10 W to 7 W -1.5 dB -$ 65M
space and ground

Satellite antenna, 400 to 285 -1.5 dB -$ 52M
number of beams

TOTAL 0	 dB -$200M

Another design change worthy of consideration is the substitution of

solid state amplifiers for the assumed TWT I s in the spacecraft. The link

power budget summarized in Table A3.1-1 shows that if each amplifier

handles one band, as it might during rain fading, then the margins are

15.4 dB for the downlink and 15.8 dB for the uplink at the peak of the

n ,
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beam, and that in a null the downlink margin is greater than the uplink

margin. Since the fading induced by rain is approximately twice as

great for the uplink, greater symmetry in uplink and downlink margins

could be achieved by reducing the downlink transmitter power from the

7 watts suggestr:d in Table 7-,3 to perhaps 4-5 watts, which appears to be

achievable with lighter weight solid state units. Furthermore, it may

become practical to replace each TWT with two such amplifiers, each

handling one band instead of two. The efficiency of the transmitters

could be improved if their linearity requirements could be reduced in

this way.

The replacement of the baseline switched-feed antenna with a

segmented phased-array system such as described by Acampora et al.

(1979) would alter the optimum specifications only slightly. Because

the downlink transmitter power can readily reach 10 watts, the other

parameters might alternatively be relaxed an aggregate of ti 1 or 2 dB.

If Ku band is used, the reduced link margin requirements might release

another few dB, although the antenna diameters must then be scaled upward

with the increase in wavelength.

In general, the optimum design specifications occupy a broad minimum

in a multidimensional cost function, and changes by a factor of two in

most parameters may be economically feasible provided the total perfor-

mance is acceptable. For example, the design changes proposed in

Table 7-3 reduced the total cost of the spacecraft by an estimated $250M

(see also Table 7-2),or 42 percent. On the other hand, the ground sta-

tion costs increased by % $40M, or 10 percent. The total change in the

satellite and ground station costs was an estimated $200M, or 20 percent.

7.4 SYSTEM GROWTH AND ECONOMIC VIABILITY

The very attractive costs discussed earlier in this chapter for the

baseline system are based on traffic levels of 30 Gbps; it is important

to understand whether or not they are still attractive for the smaller

traffic levels anticipated during the growth years of such a system.

Although complete analysis of this issue is well beyond the scope of this

study, it is nevertheless still possible to mcd' ,A the economics with suf-

ficient fidelity that the nature of the answer can be understood.
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In Fig. 3.2 -1 the basic traffic allocation diagram suggests that

the fixed costs per circuit for satellites will lead to satellite

supremacy for links longer than some breakpoint distance where terres-

trial and space costs are equal. The figure also displays the nominal

traffic distribution as a function of distance. This simple model com-

bined with the baseline cost estimates make clear the strong economic

incentives in favor of satellites, even for systems much smaller than

the baseline design; the analysis is summarized in Table 7-4.

The second column of the table (derived from Fig. 3.2-1) lists the

relative number of circuits of a given length, ± 1 mile, and the third

column represents the product of the circuits per mileage band and the

nominal width of the link-length interval of interest. That is, the

first band (30 miles) extends approximately from 20 to 50 miles, and the

product of this width (40 miles) and the 0.2 relative circuits yields

the 8 relative circuits listed in column three. It is evident from

column three that most circuits are a few hundred miles long, but that

there is a significant fraction at still greater distances.

Because satellites are assumed to carry all traffic for links

longer than the breakpoint distance, the fourth column sums all such

circuits enumerated in column three. Thus the last entries in columns

three and four are the same. Column five lists the equivalent number

of 50-kbps circuits longer than the given mileage; it is arbitrarily

normalized such that the total long-distance market is 30 Gbps or

6 X 105 50-kbps voice circuits. Column twelve is the same as five,, but

expressed as Gbps. The table suggests that, for these assumptions, a

30-Gbps system could handle all long-distance traffic, and a 10-Gbps

system could handle all traffic over 'L 1200 miles.

This relation between total satellite traffic and breakpoint

mileage (columns one and twelve) can be used to relate the costs of satel-

lite service to breakpoint mileage. Thus column six lists the baseline

;s
	 cost per circuit year deduced from the baseline cost estimates as a

function of traffic T; the assumed relation is that total system cost

is proportional to T
0

' 6 , and that the cost per circuit is therefore

proportional to T-0 ' 4 (see Section 7.1).
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This cost per circuit (column six) can now be compared with the

1	 cost per terrestrial circuit at that breakpoint mileage. These terres-

trial costs are assumed to be proportional to circuit miles; a value of

$4 per circuit-mile-year is used here, and is intended to reflect approxi-

mately the marginal capital costs plus operating costs. The analysis can

readily be repeated for other assumptions. The annual terrestrial circuit

cost for the given mi'.eage is listed in column seven; it extends from very

low values of $120 at 30 miles to very high values of $12,000 at 3000

miles. Comparisons of columns six and seven produce the important

result that satellites are cheaper for circuits longer than 'L 300 miles,

and that a 27-Gbps system could capture this market. These numbers are

obviously sensitive to the many assumptions involved; for example, all

traffic numbers are directly proportional to the assumed 30-Gbps size of

the total long-distance communications market. Also the impacts of the

"medium-haul" market and the "free-fiber limits," etc. (Fig. 3.2-2) have

not been considered.

Less sensitive is the very important observation that smaller satel-

lite systems are actually more competitive than large ones because they

are restricted by their capacity limitations to the most profitable very

long routes. For example, a. 2.5 Gbps system would have annual circuit

costs of $2918, which is much less than the breakpoint cost of $12,000

appropriate to that restricted 3000-mile market. This result stems from

the fact that the per-circuit cost of satellites varies much more slowly

with system size than do the terrestrial costs with respect to mileage

and the corresponding traffic. It should be noted that this result fol-

lows in part from the assumed distribution of circuit lengths presented

in column two of the table and discussed further in Section 3.2.1. An

independent but similar tabulation of the same traffic distribution func-

tion appears in Tables 2-3 and 2-5, as presented by Western Union (1979)

and ITT (1979).

To indicate the relative insensitivity of the general conclusions

concerning the value of satellites we may alter the cost assumptions.

Table 7-1 suggests that the annual revenues for the baseline system would

equal approximately 40 percent of the initial investment cost, a ratio

generally consistent with AM's present ratio of annual revenues to book
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value. For many businesses this ratio is closer to unity. Therefore the

satellite cost entries in column eight have arbitrarily been increased a

factor of 2.4 to reflect a higher ratio of revenues to investment. Even

with these inflated costs, the breakpoint distance is 1000 miles and the

total satellite traffic is 13 Gbps. The satellite traffic would include,

in addition to this, any load which is desirable to relieve momentarily

oversubscribed terrestrial routes, even if less than 1000 miles long.

Although a single entity, such as AT&T or a group of carriers

including AT&T, might reasonably plan on total system traffic of 30 Gbps

or more, independent companies forced to provide their own separate net-

works could face more difficult economic alternatives. If such a company

obtained a 10 percent market share for those route distances where it was

economically viable in competition with terrestrial circuits, then its

higher costs per circuit would lengthen the breakpoint distance and reduce

its traffic. The column in the table for 10-percent market share suggests

that the baseline design scaled by T0.6 would yield a breakpoint distance

of 2000 miles and a load of 750 Mbps. A 50 percent share of the satellite

market would decrease the breakpoint distances to 500 and 2000 miles for

the baseline and maximum baseline cost estimates; the corresponding loads

are 10 and 3.2 Gbps. The maximum baseline cost estimates would make a

10 percent share of the satellite market untenable at any distance for

the present assumptions.

If subsystems of the various communications vendors are to soiae

extent interconnected, then they may to that extent all take advantage

of the scaling laws appropriate to the total joint system capacity.

Market share remains an issue, however, if there is competition between

satellite communications organizations of different sizes. At this

point the technical, marketing, and policy issues become thoroughly

intertwined, and their resolution becomes obscure. Some of the relevant

issues are addressed in Chapter 8.

7.5 SUMMARY OF CONCLUSIONS: NETWORK ARCHITECTURE, ECONOMICS, AND MARKETS

7.5.1 NETWORK ARCHITECTURE

This study attempted to define the most cost-effective architecture

for a large pervasive broadband fully switched satellite communications
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network capable of providing 10-60 Gbps capacity for the United States in

the late 1980's. Although this network would presumably be intertwined

with the existing telecommunications plant, the architecture is not

greatly sensitive to this assumption. The design was optimized by

modifying slightly the parameters of a.baseline design so as to minimize

total system cost; the baseline design costs were estimated to the sub-

system level on the basis of technology projections for the mid-1980's.

Although changes of a factor of two in any parameter would generally

alter system costs less than 20 percent,.changes greater than this may

well be economically inferior. The optimum design is summarized below

in Table 7-5, and discussed in greater detail in Section 7.3.

Table 7-5. Summary Specifications for Optimum 20/30 GHz
Switched Satellite Communications Network of
10-60 Gbps Capacity.

1. 3-6 similar satellites, each of 3-13 Gbps capacity, share
one synchronous orbital slot; they provide fully switched
long-haul capability.

2. Multiple FDMA TDMA bands, each at 256 Mbps, are synchro-
nized and assigned so that memoryless digital switching
occurs at the satellite complex without intersatellite
traffic.

3. 'L 1800 ground stations, typically at existing toll centers-1

4. Terrestrial links-between ground stations provide
diversity protection; 99.99 percent reliability.

5. Satellite has 4-7 watt transmitters, uncooled super-
heterodyne receivers, and a 285-beam antenna simul-
taneously activating independent switched beams that
address limited but overlapping service areas.

6. Ground stations typically have 16-ft antennas, 7-watt
transmitters, and dual-redundant 256-Mops electronics.

In general ground stations would not be on customer premises be-

cause the cost of linking most customers to a local ground station

would normally be significantly less than that of the station. The

first ground station in a given locality could be on the premises of a

major customer, however, but it then would be more economic to connect

subsequent traffic to that same station. The total number of ground

F,
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stations should be approximately proportional to T 2/3 , where T is the

traffic in Gbps. For a 30-Gbps system the optimum number of ground

stations would be very approximately 1800, of which about half might be

0	 rural and about half might be located near existing toll centers

(Sections 3.2.3, 6.2).

The concern about propagation statistics at 20/30 GHz may be exces-

sive. Since the communications capacity of a nominal ground station

significantly exceeds its average load, and since the separations between

ground stations would typically be only % 13 miles in urban areas and

11, 58 miles in rural areas, the cost of space diversity is only the cost

of a short terrestrial link (Section 6.2). Furthermore, since most of

the satellite traffic might originate from existing toll centers, and

since these centers are already well inter-connected, the costs of

space diversity could be quite modest, generally less than 10 percent of

the costs of the satellite system (Section 3.2.4), and perhaps much less.

Significant improvements in system flexibility and loading effi-

ciency can be achieved by the use of multiple cooperating switched

satellites in the same orbital slot (the loading factor might be double);

they would comprise a "pseudo-platform" with significant technical and

economic advantages. They would have all the inter-connectivity and

orbit-conservation advantages of platforms plus a significantly in-

creased loading efficiency because capacity could be added incremen-

tally as needed. The reliability advantage of having several simul-

taneously operating self-contained systems is obvious (Sections 3.2.5,

3.3.6) .

One scenario for technical establishment of such a large switched

satellite system is the following. An initial series of satellites of

ti 3 Gbps each (comparable to the existing Japanese CS satellite, but

fully switched) might be launched beginning in the late 1980's, and

these might be followed by a second series in the 1990's with 12 Gbps

per satellite. Ground stations would be established first at regional

and sectional centers, and then at an increasing number of primary and

toll centers as traffic grows and the costs decrease. Costs for

smaller carriers will be minimized to the extent they can share in the

economies of scale available to larger carriers. At one extreme, each
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carrier could have an independent system; alternatively they could share

one or all of the cooperating satellites, or even share the ground sta-

tions. The present requirements for AT&T to connect other carriers with

the terrestrial long-lines network could be translated into a requirement

that any large switch in space must provide direct access to adjacent

switches in space and/or to all accepted ground stations.

Cost effectiveness is maximized if the rather long-lived ground-

station antennas are built initially to the specifications anticipated

to be optimum later, and if the same foresight is applied to as many of

the other specifications as possible.

7.5.2 SYSTEM ECONOMICS

On the basis of the cost estimates developed for the baseline system,

several conclusions can be drawn; these concern the total costs of large

switched satellite communications systems, the associated tariffs, the

dependence of the costs upon system size, and the competitiveness of

such systems as a function of size.

The total costs in 1979 dollars of the three major elements of a

30-Gbps system are listed in Table 7-6 together with the costs estimated*

for video user facilities sufficient to utilize that capacity. The

costs of user equipment for other services would vary. These estimates

are based upon 1985 technology and therefore do not include the costs of

intervening research and develo pment efforts. The only nonrecurring costs

included in the estimate are those for development of the satellites;

nonrecurring costs for development of the ground station design, local

links, etc. are not included. These should be a small part of the

total. Also listed in the table are the investment costs estimated for

the revised baseline design and the baseline system revenue estimates.

The most important conclusions to be drawn from this table are that

total costs for a large communications satellite system could be rela-

tively modest, and that the value of the user facilities and local

distribution systems clearly dominate the total.

The revenues estimated in Table 7-6 can be equated to estimated

tariffs for dedicated switchable links. Such price estimates are pre-

sented in Table 7-7 for a variety of data rates, where the prices are
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Table 7-6. Summary of System Economics ($FY79).

Number Investment*
System Element of ($M) Baseline

Units RevenuesBaseline Revised
System Baseline ($M/yr)

Satellites 4 600 350 205

Ground stations 1,800 400 450 185

Local terrestrial links - 800 800 240
(50,000 users)

User facilities (video 50,000 3,000 3,000 1,400
assumed)

Total network (no user 1,800 1,600	 630
facilities)

Total (with user facilities) 4,800 4,600	 2,030

*Omits all nonrecurring costs except those for satellite
development.

simply proportional to the rate because multiplexing costs are not in-

cluded; the basic data rate for the baseline system is 3 Mbps. The

monthly price for a dedicated one-way 3-Mbps link is $3390 ($FY79), and

this could be reduced to ti $1100 if the link is committed only 20 per-

cent of the time (Table 7-1). These prices include everything but the

equipment on the user's premises. Although these estimates may be no

more accurate than a factor of two, increases of a factor of three or

more would probably result only if policy issues were controlling.

Table 7-7. Summary of Tariff Estimates ($FY79)*

,F

Service+
(one-way dedicated

1990's 1978
30 Gbps 3 Gbps

line, to wall sockets) ($/mo.) ($/mo.) ($/mo.)

10 kbps 12 56 -

60 kbps 68 315 10,000

256 kbps 290 1,350 18,000&

3 Mbps 3,390 15,700 -

30 Mbps I	 33,90(' 1 157,000 1	 50,000#

*Based upon baseline cost estimates for 3 Mbps service.
+Omits multiplexer and user equipment costs for 100% .line use.
&Approximately 85% is for dedicated earth terminals.
#For transmission of analog TV 8 hr/day and uplink costs only.
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These tariffs are a function of system size and of time. For

comparison, the table also presents the tariffs estimated for the same

dedicated services with a 3-Gbps system capacity aad with 1978 prices

(also see Table 2-7).

The costs of any system depend on the size of that system. The

arguments that the number of ground stations should be proportional to

T2/3 (where T is total system traffic, Gbps), and similar arguments con-

cerning the satellite capacity and the costs of the local links, all

suggest that the total system cost is approximately proportional to

T0.6 (Section 7.2). The plausibility of this rule and the estimated

costs for a 30-Gbps system can be partially tested by combining them to

estimate the 1979 costs of a nominal 1-Gbps system; the estimate is

approximately 235 million dollars ($FY79). Although the cost advantages

of 1985 technology are assumed for the baseline design, the switching

power is then compensatingly greater.

The final conclusion is that if a particular system is cost com-

petitive with terrestrial circuits, then it becomes more competitive

for smaller versions of that same system. This assumes that the satel-

lite system has the same market share of all traffic longer than the

particular breakpoint distances appropriate to each case (Section 7.4).

For example, if concept X can profitably capture 20 perrFnt of all long-

distance traffic longer than 1000 miles, then a smaller system with

capacity adequate only to handle 20 percent of the traffic longer than

2000 miles would be more competitive economic^:lly. This result follows

if the terrestrial costs are proportional to circuit miles (and vary a

factor of 2 in this example), because the satellite costs are propor-

tional only to the 0.6 power of traffic and therefore are more invariant,

provided that the traffic distribution assumptions described in Sec-

tion 7.4 are correct. Of course, smaller systems can be less profitable

N	 if their smaller versions capture a smaller market share at a given
i

distance, in addition to losing the shorter routes. The converse is

also true; if a small system with x percent of the traffic at some

distance is enlarged, it will become less profitable per Gbps unless

x is sufficiently increased.

J
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7.5.3 MARKETS

One basic conclusion is that total domestic long-distance traffic

will continue to grow strongly over the next 20 years, with voice grow-

ing approximately 9 percent per year, and the other services perhaps

growing more. Voice is expected to remain the largest single service.

The total traffic carried, by domestic satellites is also expected to

grow quite fast, with peak rates nearing 'x, .10-40 Gbps in 1990 and

ti 30--100 Gbps in the year 2000. These projections assume the market

share of domestic long-distance traffic allocated to satellites will

become ti 10-30 percent by 2000 (Section 2.2).

The baseline cost analysis here suggests that satellites might even

capture more than half the long-distance market, if other considerations

don't intervene. The traffic routes allocated to satellites will proba-

bly include those which are sufficiently long that the traffic -dependent

terrestrial costs exceed the costs per satellite circuit. A second

potentially important market for satellites is that "medium-haul" set

of routes for which the fixed costs of satellite: are less than the

fixed traffic -independent costs of the terrestrial route; this is most

relevant to thin routes which otherwise are shorter than the nominal

breakpoint distance (Section 3.2.2).

One of the most important conclusions is that the anticipated low

costs for interframe-coapressed full moticv. video could motivate sig-

nif; ^ant use of full -motion video conferencing and desk-top type

picturephone services; this possibility appears to be sufficiently

realistic and profound that it deserves mach more careful examination

than was possible in this study. If we assume that it is reasonable

for the user facility to cost approximately the same as the communica-

tions link, then a $60K user video facility might correspond to a 3-Mops

r
	 circuit and 63(^ per minute plus $2000 per month; a $10K desk-top

'

	

	 picturephone might employ 512 h.bps and cost 15C per minute plus $500

per month. Approximately 75 ,Ieg,cent of the monthly fee represents the

lease cost for the user's teiiaiiiia.l equipment. With marginal prices

approaching those of audio services it is clear that there could be

significant demand (Sections 2.3, 6.1.2, 7.2).
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The same estimated costs also strongly suggest that compressed full

motion video should supersede freeze-frame video because the price of

the video equipment is approximately the same for either service, and

i
	 generally greater than the potentially low tariffs for 500-3000 kbps

video circuits. Thus for little extra cost the generally preferable

performance of full motion video could be obtained. Freeze-frame video

makes sense only if transmission costs are very high (as they are now)

or if data rates above 250 kbps are unavailable, Similar conclusions

appl;i to the eventual displacement of slow facsimile by high-resolution

fast facsimile employing data rates in the 50-500 kbps range, which

corresponds to facsimile terminal costs on the order of a few thousand

dollars.

7.5.4 CRITICAL ASSUMPTIONS AND SUGGESTIONS FOR FUTURE WORK

7.5.4.1 Assumption that Decisions are Based on Cost

The =44t important single assumption is probably that the satellite

capacity will indeed grow beyond several Gigabits per second and that the

antics:pated economies of ,scale can be achieved. If the allocation of

traffic to satellites versus terrestrial circuits is made on the basis

of cost alone, then such growth in satellite traffic should certainly

occur. However, this assumption that cost considerations will dominate

may be invalid, as discussed further in Chapter 8. Even if domestic

satellite traffic is artificially curtailed, many of the basic architec-

tural arguments would still apply to the smaller systems, and it is

unlikely that the same constraints would similarly curtail the inter-

national market.

7.5.4.2 Availability of Critical Technology

A second important assumptionis that certain critical technologies

will indeed be ready by the mid-1980's. The most important here include

1) switched multi-beam antennae with % 100-400 potential beams and ti 5-50

transponders, 2) efficient broadband 20-GHz satellite transmitters with

'L 3-20 watts power, ' 3) compact pulsed rtudems, frequency translators,

oscillators, and related r.f. equipment, 4) Space-qualified compact

logic switches for up to ti 100 x 100 connections which carry a few

hundred Megabits per second (e.g. 256 Mbps), 5) design and acceptance
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of command, control, access, and communications protocols, including

those for cryptography, error-correction coding, and bandwidth compres-

sion, and 6) low-cost LSI modules which implement the chosen protocols.

With aggressive NASA support of these technologies, they should be suffi-

ciently developed to validate this important assumption; significant

progress is also being made in private development programs in several

of these areas, including significant programs abroad.

7.5.4.3 Importance of a Flexible Inter-frame Video Compression Standard

Special importance should be attached to the design and acceptance of

efficient high-performance inter-frame video bandwidth compression algo-

rithms which can meet both immediate and future needs and opportunities.
An ideal protocol would be a very general one which could be implemented

by a rather simple receiver but which could permit almost arbitrarily
great sophistication on the part of the transmitter; it could become

increasingly efficient ove7. the years and transmit at whatever rate was

economically appropriate for the task at hand. The rate should be capa-

ble of varying semi-continuously from freeze-frame to broadcast quality.

Thus no user's equipment would become obsolete or incompatible, it would

simply not be as efficient as the latest models. A simple example of

such a protocol would be one which involves the sending of variable-length

packets with variable addresses which either replace or add to portions of

the receiver's memory of the current image being displayed. The burden

would then be upon the transmitter to make the most of the substantial

opportunities for improvement such limited flexibility provides, The

development of such a protocol could be one of the most important ingre-

dients in the successful establishment of pervasive full-motion video

services. It will be important not to sacrifice temporary expediency for

long-term value, or vice-versa.

1
7.5.4.4 Minimum-Cost Ground Stations

The systeut architecture developed here envisions ground stations

spaced many miles apart and serving entire towns. The system configura-

tions suggested by the SBS and Xerox XTEN proposals are more individual-

ized; their visions of the market would be enhanced by the development of

much lower cost -ground stations which could be placed much closer to

individual clients.
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Ground atation cost is related principally to size, if we assume

that technology will rapidly drop the cost of the electronics. The best

way to reduce the size of the ground station is to reduce its bandwidth,

perhaps to data rates on the order of 0.25 - 12 Mbps. The resulting

10-26 dB improvement in link margin could reduce the size of the ground

station antenna to - 4 feet and the ground transmitter power to r, 0.1-4

watts, which could be implemented with solid-state devices. Such a

development would require, however, an entirely different approach to

the satellite because the dwell time of the beams must necessarily be

much longer on each spot, and because each transponder must handle a

much larger number of adjacent signals without excessive intermodulation.

Whether or not the signals are demodulated, they must be separated and

passed through a very much larger switch. The problems with this ap-

proach are formidable, but the rewards are sufficient to warrant further

effort.

7.5.4.5 Choice of 12/14 versus 20/30 GHz

Another area worthy of attention is the question of frequency selec-

tion. The relative merits of the 12/14 GHz band versus 20/30 GHz are not

clear. If the demand for switched satellite capacity of tens of GHz is

realistic, then the 500-MHz bandwidth of the 12/14 GHz allocation forces

a very high degree of frequency reuse, perhaps 40 times for a 30-Gbps

system. The burden this places upon the satellite antenna could be

intolerably expensive compared to the smaller cost of antennas at 20/30

GHz. Although the surface tolerances are relaxed slightly at 12/14 GHz,

the areas of the ground station and space antennas must be approximately

four times greater than those at 20/30 GH.z to provide the same gain.

When ttese factors are combined with the greater ease of finding sites

for smaller antennas and other considerations, it is not obvious which

band will be more cost effective in 1985. To incorporate both 12/14 and

20/30 GHz ground stations in one switched system would involve either

multiple ground stations at each site or the use of significant inter-

satellite communications links tocouple the two systems. This issue of

band selection thus requires further examination too.
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7.5.4.6 User Acceptance of Servicesd

Much of the projected traffic growth presumed that users would not

mind significantly the delays and residual echoes present on satellite

circuits. If the services are not well encrypted, there could be another

market acceptance problem. The ease and reliability of access is also an

important factor. The present cost estimates should be adequate to

eliminat° all these problems except for the delay, and we have assuemd

that this delay would not be an important factor if only one satellite

link were used. These assumptions are being tested now by various

carriers.
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CHAPTER 8

ECONOMIC AND REGULATORY ISSUES

8.1 INTRODUCTION

Discussion of future communications satellites might be confined to

issues of technology, economics, and markets, but the degree to which

these opportunities are eventually realized may well be determined as

much by national policy as by technology. Because development of tech-

nology without reference to constraints posed by policy could be inef-

ficient, the present chapter attempts to illuminate some of these rele-

vant policy issues. Their full exploration would be far beyond the scope

of this report. In this chapter economic issues and regulatory history

are surveyed briefly in Section 8.2, the introduction of new technology

is discussed in 8.3, various policy options are described in 8.4, pos-

sible satellite ownership and use patterns, including estimates of

satellite size, are mentioned in 8.5, and all these issues are summarized

in 8.6.

8.2 ECONOMIC ISSUES

The following discussion highlights a few of the economic considera-

tions that enter in determining proper investment and prices for tele-

communications. It is apparent that the subject is quite complex, and

that this could itself be one of the central policy issues. In the face

of this difficulty, there have evolved some general principles_ which

guide policies, and some of these are also discussed below. A good

survey of these issues is that of Yordon (1979), and much of the dis-

cussion here follows his presentation.

In an idealized economy it is well known that social benefit is

maximized by setting prices equal to marginal costs._ In this situation

rational consumer decisions maximize productivity. For the ideal con-

sumer, his marginal utility per dollar spent is the same for all com-

modities; utility signifies the value of a commodity to a consumer and

marginal utility is the incremental change in that value for the last

unit consumed.
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One problem arises when an industry has costs which strongly increase

or decrease with the scale of production. An example of an increasing-

cost industry is oil. The cost of early barrels per year is low, it

almost flows out of the ground by itself, but the last barrel may involve

Arctic drilling and long-distance piping. If marginal pricing were used,

the profits of the oil industry would now be very large because the

marginal cost for the last barrel is much greater than the average cost.

Telecommunications is under many circumstances a decreasing-cost

industry; the cost to provide the last increment of transmission in the

existing size market may be leso, than to provide earlier increments.* For

example, the fixed cost of in^,htallin.g long lines for thin routes is much

greater than the bandwidth-dependent cost (Kahn, 1971), and the local

access cost per subscriber might drop from $450 to $290 as the number of

subscribers in a given area increases from 1000 to 100,000 (Mandanis et

al., 1977). Marginal pricing would set the price per transmission to the

very low cost associated with the last unit, and total revenues would then

be below cost. Under these circumstances the largest vendor can charge

less than smaller ones, thus driving them out and ultimately securing a

monopoly position for itself, after which it could raise prices. Some

typical major industries characterized by strongly decreasing costs

include telephone utilities, the distribution of water, gas, and elec-

tricity, and the automotive and semiconductor electronics industries.

These are all industries in which the trend toward monopoly is strong.

The belief that telephone service was an essential good and that the

industry was characterized by declining costs has led to its regulation

almost since its inception. Other issues have also been important. For

example, Theodore Vail (President of AT&T, 1885-87 and 1907-19) argued

successfully that it was appropriate for residential customers to be

spared paying in proportion to their own marginal costs because of the

value which each such subscriber confers on the total network; everyone

benefits by being able to call a particular subscriber, not just the

subscriber himself.

If the average price must be maintained above the marginal cost of

telephone service, then the regulator must determine how to preserve

economic efficiency at the same time as he pursues various other

*
See FCC Doc. 20,003. The FCC has questioned AT&T's "Economies of

Scale" theory.
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objectives. One concept that has achieved wide acceptance, especially

abroad, is "value-of-service pricing. Since different market sectors

value a service differently, equity is said to be maximized for fixed

total revenues if the sectors are charged differently. Although such

value-of-service prices involve charging what the market will bear, or

some price proportional to that, it also involves not charging what the

market will not bear. Thus a businessman might be charged more than a

homeowner because telephone service is of greater importance to a busi-

ness, even if the marginal costs are greater for the homeowner.* Home-

owners would still pay a price sufficient to cover their marginal costs.

Regulators may decide to permit the homeowner rates below any

economic criterion as a matter of social policy. For example, the early

view that telephone service is a luxury has increasingly been replaced

by the view that it is a necessity, and that below-cost "lifeline" rates

should be available to individuals.

In opposition to 'value-of-service" pricing and to concessionary 	 3

rates is the currently popular doctrine that dominant carriers should

face competition to the maximum extent possible. Theoretically an

unrestrained dominant carrier might establish low predatory rates

where it faces competition and establish high prices elsewhere. There-

fore this current American doctrine argues for "rate-of-return" pricing

under which each service pays its own true costs; these are average,

not marginal costs. Because various services generally share certain

facilities, the allocations of "true costs" to various services can be

controversial.

Much debate has centered on what constitutes marginal costs. To

exaggerate one facet of the problem, the additional wear-and-tear on the

network caused b ,̂ a customer using idle capacity may be zero, but the

customer whose blocked call stimulated plant expansion instigated a

very high marginal cost. Different users have different probabilities

'	 of being among the high-cost blocked-call set, and thus their marginal
i

costs would differ one from another and from time to time. Some feel

that prices should reflect short-run marginal costs (e.g. lower rates at

night or for use of under-utilized plant), and some feel that long-run

incremental costs (e.g. charging for temporarily under-utilized plant)

*Higher business rates are also justified by businesses' greater
impact during "peak" hours.
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should guide rate setting. Fully distributed costs (FDC) make cross-

subsidization easier to audit. Perhaps for this reason AT&T was unsuc-

cessful in its arguments before the FCC that long-range incremental cost

accounting (LRIC) should be used for rate-setting in preference to FDC

accounting.*

The foregoing discussion can be :summarized simply. The declining-

cost and essential-service character of the telephone industry has led

to its regulation. A sophisticated form of marginal-cost pricing which

considers long-range incremental costs and relative demands can result

in economically and socially desirable results, even though the rates

may appear to be discriminatory; what is socially desirable involves

value judgments by the regulators.

However, because of the great complexity of the issues and the lack

of well accepted cost and demand data:

The rate structure for myriad telephone services is only
haphazardly, if at all, related to the structure of costs.
In telephone, as in transportation, the rate structure
which has evolved is the product of vaguely conceived rate-
making principles and historical happenstance. The present
structure, contained in thousands of tariffs and exceptions,
is based in part on cost considerations, in part on demand
considerations, but for the most part is inexplicable
(Office of Telecommunications Policy, 1976).

In the early days the natural monopoly characteristics of telephone

service resulted in a large number of local monopolies which, by 1914,

were largely (85%) under the umbrella of AT&T; long-lines services were

then provided almost entirely by AT&T (Yordon, 1979). 1 Most customers

paid flat rates, with businesses typically paying more, although some

paid fees proportional to the number of calls or to other measures of

use. Some competition existed in the private-line area, but economic

and aesthetic considerations (unsightly poles) also favored monopolies;

the Bell System, Western Union, and a few independents dominated this

business, but it is now becoming increasingly competitive. Although

terminal equipment is not characterized by strongly declining costs, it

was effectively excluded from competition by the argument that such

"foreign" attachments could jeopardize service quality. In 1968 the FCC

Carterphone decision began to open this terminal market to competition

*See FCC Doc. 18128. The FCC favored FDC methods for equity and fair
competition reasons.

Good access to long lines was one motivating factor for small firms
to join AT&T.

M.
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too. Much recent history has been dominated by growing interest in

competition and deregulation.

Telephone rate structure has traditionally recognized two broad

classes of service, basic and non-basic. Basic refers only to local

exchange services, and non-basic is everything else, including long-

distance, private, data, and luxury user facilities. The philosophy has

been to maximize contributions (revenues minus costs) from non-basic

services so as to subsidize or "benefit" the high fixed costs of basic

services. Basic service tariffs were then set to yield the necessary

aggregate return on investment approved by the regulators. The actual

degree of cross-subsidization or "benefitting" depends on controversial

cost accounting methods. The FCC does not now favor this ,approach.

One key cost item is the local subscriber loop and the first switch.

These are used for both local and long-distance calls; how should the

costs be allocated between them? In theory one might wish to benefit

the basic lo--al exchange costs by drawing upon the non-basis: long-

distance users. Such a transfer of revenue occurs in fact in the form

of separations payments from AM's Long Lines Department to all local

telephone companies in proportion to a complex formula. In 1974 these

payments were $3 billion; without them the rates for basic exchange

service might have been % 24% higher and the message-toll-service (MTS)

and wide-area-telephone-service (WATS) might have been ti 29% lower

(Yordon, 1979).

Regulator and phone company collaboration in distributing costs

"equitably" teas been disturbed in recent decades by a series of decisions

which have introduced elements of competition into the equation. Two key

areas of growing competition are private lines and user equipment. In

1950 the FCC licensed TV networks to establish microwave links to remote

areas and subsequently granted similar permission to railroads, remote

lumber camps, etc.. In 1959 these temporary privileges were confirmed

when the FCC decided to grant permission to most private groups if their

private long lines were not shared; the local telephone companies pro-

hibited connection of these .lines to the local networks, however.

In 1966 the prohibitions against sharing were relaxed, and in 1969

the FCC approved Microwave.Communications, Inc.'s (MCI's) request to
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establish a shared (up to five corporate subscribers) long-lines service

between Chicago, Saint Louis, and nine intermediate points. More impor-

tantly, the FCC also permitted MCI to connect these private lines with

the local telephone networks, a decision upheld 5y the Supreme Court.*

Although by 1975 such microwave lines had captured o4aly ti 2% of the

private line market, they impacted AT&T's long- ioes revenues far more

significantly because AT&T responded by lowering its rates for heavy

users. Such rate-cutting appeared in the form of WATS and TELPAK in

1960. The latter service involved leases of 60 to 240 voice grade

circuits at rates 51 to 85 percent below those existing at the time.

Protest by Motorola against the TELPAK rates resulted in a cost

analysis of Bell's interstate services (The Seven-Way Cost Study). The

FCC used FDC accounting methods to show that certain TELPAK rates were

indeed discriminatory, although AT&T unsuccessfully argued that LRIC

accountingp was more appropriate and that the charge was false. AT&T

charged in turn that the private carriers were "cream-skimming" by

taking the profitable heavy routes and leaving the expensive routes to

AT&T to service. In addition to the advantage of being able to skim

the cream, the new competir7i5rs also have the advantage of employing the

latest technology at low costs. These two advantages helped overcome

disadvantages posed by AT&T's economies of scale h The additional

advantage of avoiding separations payments has since diminished as a

result of a recent agreement that small private-line carriers will also

participate in the separations process (Elec. News, April 16, 1979, p. 23).

The FCC has indicated that WATS and MTS should not be subject to

competition, perhaps because of the implications to local exchanges of

serious erosion of long-lines revenues. However, the Justice Department

recently told the FCC that MTS and WATS should also lose their monopoly

status and that protection of rural and residential customers was an

inadequate motive (Elec. News, July 24, 1978, p. 61). # Thus the social

benefits of competition., which stimulates innovation and efficiency, are

balanced by reduced power to allocate costs in the previously perceived

optimum fashion. Restricting the competition to the private-line market

appears to be an attempt by the FCC to achieve both benefits.

*See also the specialized common carrier decision (29 FCC 2nd 870) and
Execunet.

See FCC Doc. 20003; the economies are questioned..
OMCI, ITT, and SPC now offer limited MTS-like services.
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The second area of competition opened with the court Hush-A-Phone

decision in 1956 and the subsequent FCC Carterphone decision in 1968.

These and subsequent rulings permit users to attach computers, facsimile

machines, key telephone systems (KTS), private branch exchanges (PBX),

etc. to the local netvork subject to FCC safety certification. Because

the telephone monopoly had previously permitted charges for these non-

basic services to contribute to basic exchange costs, competition in this

"interconnect" market now places an additional burden on basic subscriber

rates and the remaining non-basic charges. AT&T has claimed that if all

services other than residential basic exchange were repriced to eliminate

their contribution to access cost, the average residential exchange

rate would have to be increased 79% -- this is apparently a worst-case

situation. The FCC disagreed strongly with this assessment and suggested

that local rates might even decline (FCC Docket 20003, Sept. 23, 1976,

pp. 123-125).

Satellite technology alone has also %een the focus of several specific

rulings designed to control competition. In 1972 the FCC author.'zed U.S.

common carriers to construct and operate domestic satellite telecommunica-

tions systems in the competitive free-enterprise mode; this "open-skies

policy" has encouraged application of satellite technology to development

of new private-line services. This opportunity excluded AT&T, which was

at least temporarily prohibited from entering the private-line satellite

market. AT&T subsequently leased space on Comsat's Comstar satellite

and on other satellites, but intends to launch its own replacements to

Comstar beginning in the early 19801s.

AT&T was similarly restricted under the terms of the 1956 consent

decree from selling data processing services, a restriction that may , be

loosened under legislation or other means. One motive behind these

restrictions of AT&T's entry into new technologies and markets has been

the fear of AT&T's potential, ability to cross-subsidize the new services

and to extend its effective monopoly powers into new markets. Many of

00

	

	 issues are being more sharply focused in the current debates on the

possible revision of the Communications Act of 1934. This somewhat

obsolete legislation drafted in simpler days has guided in part the

various rulings of the FCC and the courts, and its modernization could

possibly clarify many of the present uncertainties besetting the industry.
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The response of the Bell System to growing compe',tion appears to be

1) restructuring of its internal organization into aggressively managed

market divisions (business, residential, and long-lines) rather than

remaining divided in terms of technical function, 2) seeking increased

depreciation rates on certain equipment to reflect its technical obso-

lescence as well as its physical life, and 3) increased "unbundling" of

rates and the t.;rowth of elaborate usage-sensitive pricing of all aspects

of service. These steps, in combination with a variety of political,

legal, and other means, are intended to preserve the basic financial and

technical integrity of the system in the face of competitive threats

encouraged in various court and FCC rulings and in the massive antitrust

suits now underway.* It is also possible that one of the basic objectives

of increased competition is being realized; there may be an increased

sense of urgency to translate technical innovations into the marketplace

for competitive purposes and for the benefit of the general public.

Examples of such innovations include the Advanced Communications Service

(ACS), proposed to provide data manipulation and communications services,

the AT&T Dataspeed 40/4 terminal, capable of both communications and data

Opcessing, and the introduction of satellite technology.

8.3 INTRODUCTION OF NEW TECHNOLOGY

The opportunities and problems posed by new technology are perhaps

best understood in terms of simple idealized situations. Assume there is

some new technolog° that permits existing services to be provided more

cheap;,v and that also offers new service opportunities for the same reason.

A benign monopoly acting in the public interest would not retire any

existing equipment prematurely unless it were cheaper to do so, all

factors considered. Unless the new technology were so cost effective

that it could win a marginal cost competition with the old technology,

including premature retirement of old equipment, it would be introduced

only in plant expansion, where it would presumably dominate until yet

another economic technological improvement were made. The cost benefits

of the improvement could be conferred upon existing users in the same

proportions the previous benefits were distributed. The new users

attracted to the new services would generally pay a tariff greabo than

the marginal costs of their utilization, but less than the maximum price

*Over 40 separate suits.

we
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they can afford. The particular price comFromise would usually depend

upon the perceived marginal utilities, costs, and social good associated

with the expanded services.

The behavior of a regulated monopoly acting in its shareholders'

interests is less clear. In theory regulation is intended to provide

investors with a "fair" return on their investment, and therefore the

investors should not be greatly impacted by managerial details; the

behavior of a regulated monopoly should approximate that of a benign

monopoly.

Some have claimed that management would seek to maximize the

investment base, because profit formulas are often tied to total invest-

ment. In this case a monopoly might choose to denigrate possible tech-

nological improvements which could reduce plant investment; recognition

of such nee • opportunities would imply that present plant may be over-

valued and should be depreciated faster. A competitive environment can

force i:,rlier recognition of technological opportunities, and lead to an

increased role for technological obsolescence in depreciation schedules.

Another school of thought is that the primary thing to avoid is a

"service crisis" of the sort New York City experienced a few years ago.

Additional plant was required at the very time deteriora::ing service

quality angered customers who wanted punitively lower rates because they

felt the telephone company had performed poorly. A good strategy for

avoiding such crises is to steadily lower costs and rates while improving

service, both by upgrading the quality of existing services and by intro-

ducinC new ones that fulfill needs and expand the revenue base sufficiently

to compensate fur contractions elsewhere. By thus introducing improvements

a regulated monopoly can hope to stay ahead of uncertainty. It is

debatable whether reliance upon "regulatory lag" is as effective an

incentive for innovation as is competition. It may depend largely upon

the degree to which the regulated monopoly is allowed to profit from its

innovative activity. Innovation is a difficult activity for regulatory

bodies to reward because of the complex technical issues involved, and

the public character of regulatory decisions.

Competition increases the complexity of the problem. To the extent

that telecommunications is a declining-cost industry, the dominant firms
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can retain or even expand their dominance in a cost competition. The

complexity of cost accounting issues unfortunately makes prevention of

cross-subsidization very difficult, and simple steps, such as requiring

separate subsidiaries for separate operations, do not fully solve the

problem. At present the courts are the final arena in which the fair-

ness of competitive practices must be determined, but the legal process

can be very lengthy, expensive, and uncertain. One mignt dope that the

proposed revisions to the Communications Act of 1934 could clarify some

of these issues or could provide a speedier and more efficient process

for adjudication.

If one or more firms in a competitive market are partially or fully

regulated, then much depends on the regulators. If the regulators refuse

to recognize fully technological obsolescence in establishing depreciation

rules, or fail to define market sectors properly, then the competitive

marketplace will be distorted. For example, if a broad class of customers

is tariffed the same, but the costs of providing that service vary, then

there is a potential opportunity for "cream skimming" by a carrier which

serves only the high profit market sectors. By use of their market

entry, market exit, and tariff setting powers regulatory bodies can have

considerable control over the character of partially regulated competitive

markets; and independent judicial action can also have a significant

impact.

In such a partially regulated environment, what are the incentives

for introducing new technology? The incentive to the new competitors is

abundantly clear. They wish to drop prices sufficiently that their

market share is assured. If the dominant firm is not free to follow suit

due to regulation, and if the new firms' profits are unregulated, then

technological improvements directly improve their profit margins. If

their profits are also regulated, then their strategy with respect to new

'

	

	 technology shot,l,d depend upon the particular tariff and accounting ,rules

imposed. The optimum technological strategy for a regulated dominant

firm competing against unregulated or partially regulated firms is

obscure because it is so sensitive to the present and anticipated rulings

of the regulators, the courts, and the Congress. In general, the dominant

firm would want to decrease "true" costs as rapidly as possible in the
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competitive areas so as to contain market expansion by their competitors,

apd improved technology could be very helpful.

In summary, there are several regulatory climates which appear

favorable to technological innovation. It is also interesting to

identify factors which can inhibit innovation. One such factor can be

non-recognition by regulatory bodies of the carriers' risks; they may

not reward successful risk taking with higher allowed profits while they

still may penalize unsuccessful ventures. Such a posture was taken when

rates of return were negotiated with Comsat. The FCC claimed that satel-

lites are no riskier than terrestrial phone service and that the same

rates of return were equitable for both terrestrial and satellite ser-

vices. If failures are punished but risks are.not rewarded, then risks

and any associated new technology tend to be inhibited.

Another inhibiting factor can arise if the market and/or regulatory

climate are unsettled. For example, if AT&T were to be unfettered,

competitors could be more reluctant to enter the affected markets. The

net effect of all such regulatorylegislative, or judicial uncertainties

is to increase the risks and to raise the effective discount rate used

by companies to compute the present worth of anticipated future cash

flows resulting from any proposed investment. Thus uncertainty depresses

sound long-term investments by focusing attention on short-term gains.

Another powerful depressant to risk-taking and innovation can be

bureaucratic decision making --- a situation where the personal careers

of the decision makers are motivators, and where again the penalties for

failure can significantly exceed the rewards for success. Heavily

regulated environments are often suspected of this lethaAgic form of

behavior, and the present trend toward deregulation is driven in part

in response to such perceptions.

`	 Innovation can be encouraged by lowering its costs or by increasingr
its rewards. The costs and risks can be lowered, for example, by

government pursuit of relevant technological developments. The develop-

ment of packet communications by the Department of Defense and NASA's

satellite communications program are examples of such assistance. The

proposed revisions to the Communications Act of 1934 also offer the

opportunity to reduce the un<,.e.,:tainties in the marketplace by resolving

I	
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some of the uncertainties as to what is acceptable behavior and/or by

providing improved mechanisms for doing so in the future; for example,

the FCC could be given, an enlarged role in regulating competitive-be-

havior in preference to the courts, which have introduced delays and

uncertainties in adjudicating certain antitrust and other cases.

In addition to risk reduction there are opportunities to increase

rewards by deregulating certain market sectors. This is perhaps one of

the most uncertain areas of current regulatory interest, for it is pos-

sible that some forms of deregulation could have undesirable results.

For example, an abused public could react with unpredictable effects if

service were degraded or if some prices became unreasonable. Certain

innovations could also be inhibited if they require a long-range mono-

lithic approach to development. The Bell System has been the principal

architect of our national telephone plant, and long-range planning has

been an important factor in its success. In a competitive environment

the role of architect may become somewhat fractured with unknown effects.

For example, establishment of an efficient integrated satellite communica-

tions system could become more elusive unless means can be found to

combine deregulation with effective joint planning of such large

national facilities.

8.4 POLICY OPTIONS; STI14LJLATION OF SATELLITE TECHNOLOGY

Four major markets are impacted by the satellites of interest here:

dedicated long-lines, long-lines network switching, broadband local

exchange services, and the broadband interconnect market. With the use

of local multiplexing, the local narrowband data and voice markets could

also be impacted for large users if they piggy-back on low broadband

tariffs made possible in part by satellites. The incentives for the

industry to develop and use advanced satellite technology for these

i	 markets will depend to a great extent upon the regulatory and competitive

environment, as discussed in the previous section. Here we have attempted

to identify some of the major policy options and to estimate crudely

their possible impact on the marketplace and on incentives for develop-

ment. The discussion is intended to be suggestive more than definitive.
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We may characterize the range of policy options in terms of the

degree of competition permitted and the degree of government control

imposed. Neglecting for the moment competition in the interconnect

market, we may divide network competition into four broad categories of

possibilities:	 1) no competition, 2) competition in private-line net-

works decoupled from the public long-distance network, 3) the same, but

fully coupled with the public network, and 4) full competition, including

MTS and WATS available to the general public. Four degrees of government

control include= 1) prohibition of undesired linkages, 2) government

taxation of undesired linkages, 3) carrier tariffs which inhibit un-

desired linkages, and 4) no restrictions. The resulting 16 policy

options and some representative possible outcomes are summarized in

Table 8-1.

In the first case, where there is no significant competition, the

non-basic services benefitted the basic services via differential tariffs,

separations payments, and other intra- and inter-corporate transfers of

funds. Although the government could have used taxation and subsidies to

accomplish the same thing, it elected to use its regulatory powers to

stop competition instead.

In the case of private line competition without restrictions on the

non-dominant carriers, the loss of potential benefits to basic services

is relatively small because the maximum market without network connection

privileges is small, and because without economies of scale the small

carrier cannot realize the full potential of cream skimming. In the cave of

MCI it initially received permission only for very specific routes, and thus

market share could be controlled by that mechanism. Imposing requirements

on MCI for separations payments and permitting AT&T to reduce tariffs to

some lower threshold could enable further control of MCI's mark-et share.

By broadening the scope of competition to include private lines

with arbitrary local connections via the public network (the current situ-

ation), the potential impact on long-lines benefits increases to moderate

levels, but extension of the separations concept to all long-haul carriers

minimizes this effect, albeit with a competition-reduced revenue base

(presumably). Additional benefits can be extracted via special access

charges for network interconnections, and by government intervention.
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At this level of competition there is some small incentive for competi-

tors to develop novel services and protocols, which may introduce some

compatibility problems.

The final competitive alternative has not yet been tested, and it is

the most combative of all for it directly affects all of long-lines ser-

vices. In this case small carriers would be permitted to establish long

lines, and provide local access to the general public at either end using

either lines they provide'.or the local network, as they choose. Thus the

Bell System WATS and MTS services would face direct competition. As --.oted

earlier, it is unlikely an unfettered AT&T could not dominate such a

market, but there is little public sentiment evident to the effect that

it should be unfettered, and the courts must rule on the antitrust impli-

cations of such a situation.

Several serious issues must be addressed in this situation, includ-

ing 1) how to preserve economic efficiency despite the great legal and

political uncertainties wide-open competition would introduce into such a

large vital newly deregulated industry, 2) allocation of financial losses

arising from accelerated depreciation of competitively displaced plant;

should cross-subsidies be used or should the stockholders pay? (unfor--

tunately much telephone plant has historically been depreciated at rates

appropriate to physical rather than technological life), 3) who becomes

the system architect? AT&T has designed a system with full interconnec-

tivity and compatibility between equipment and services introduced over

a wide span of years; in a fully competitive environment the role of the

FCC in protocol definition, ensuring efficient interconnectivity, and

providing for efficient reliable evolution, could become vastly impor-

tant -- are they or any government organization equipped to handle the

difficult tasks in a timely and correct manner? and 4) to what extent

can and should basic services continue to be benefitted?

The first issue listed above concerns distortions in decision making

which increase when the regulatory, legislative, and judicial environment

becomes more unpredictable. In particular, investment incentives can be

reduced because uncertainty causes the future to be discounted more, thus

reducing the present value of expected future cash flows and the estimated

return on investment for proposed capital improvements. Short-range

i
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programs are then preferred over superior long-range developments. The

powerful economic incentives afforded by switched satellites would

probably survive such hurdles, but the pressures for inferior short-

range approaches could be significant.

The second issue may diminish if revised depreciation policies can

correct some present errors before competition makes further corrections

painful. Consider the extreme case where satellites can economically

replace enough terrestrial plant that, on certain routes, it becomes

inadequate to serve the nation in time of war if all satellites were

destroyed. To insure against this possibility some form of tax on

satellites might preserve the terrestrial option, or, more efficiently,

DoD might purchase terrestrial long-lines back-up capacity adequate to

maintain essential but uneconomic routes until needed in wartime. For-

tunately the number of such routes that are both essential and economi-

cally vulnerable may be very limited or even non-existent due to the

network economic issues discussed here in Section 3.2.2. The same sort

of subsidy for uncompetitive lines might be obtained by charging success-

ful competitors "back-up" fees. The concept arises from the notion that

a large customer dependent upon a single small-carrier microwave link or

other interruptible element might transfer all of its traffic to the

terrestrial network if that element failed, thus degrading everyone's

service unless spare plant were already available; back-up fees could

help support such emergency capacity.

The present concern about the interconnectivity of private lines

with the public network would persist in this case where a portion of the

switching function is performed competitively in space. Suppose. Company X

purchases SBS's service and installs a wide range of broadband terminals

for intra-corporate communications. It would obviously be in the public

interest for those terminals to be able to communicate effectively with

those of Company Y even if Y were a customer of Xten, AT&T, etc. The

link might be made via several alternative routes such as; 1) SBS to

satellite to Xten, 2) SBS to SBS-satellite to Xten-satellite to Xten,

0 3) SBS to SBS-satellite to SBS-ground to AT&T. Long Lines to Xten-ground

to Xten-satellite to Xten, etc. In terms of cost and performance, the

first or second options are preferable, but they would require compati-

bility between the systems.
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Obviously such interconnectivity must be planned before satellite

designs are frozen, and the penalty fcr omitting interconnectivity would

be higher costs and/or reduced performance. Although interconnectivity

was not a design consideration in the early unswitched satellites, it

should be a major concern in the next generation if the full service-

promotion benefits of competition are to be achieved; without it competi-

tion could be counter-productive.

Broadband switched satellites do introduce one additional complica-

tion that is less important in the present narrowband long-lines competi-

tion, and this is the low cost of very broadband channels. If video

conferencing and very high-speed facsimile are to be widely accepted, then

the costs for channels of 1.5-6 Mbps must be made quite low; presumably'

less than % $1 per minute. But a 3-Mbps channel could be multiplexed to

carry 100 30-kbps voice streams, and with 1985 electronics such multi-

plexing could be very inexpensive. This should have little impact if

competition is restricted to private lines, because even total loss of

basic-service.benefits from that service would not be much different from

present circumstances. In the case of ,open competition for WATS and MTS,

however, small carriers might multiplex local long-distance voice traffic

and send it cheaply on AT&T's or someone else's long lines. In terms of

satellite economics this is quite acceptable, but in terms of network

economics it poses a problem beause this traffic would otherwise flow

at higher tariffs that would cover depreciation charges for the present

network.

The estimates in this report suggest that costs per minute for a

3-Mops link could indeed be below $1.00 (see Table 7-1), and that the

problem is real. Industry behavior could take many forms. For example,

AT&T could 1) depreciate their long-lines plant as rapidly as possible,

2) invest in large broadband satellites to carry voice and a growing list

of broadband services, including video, and 3) compensate for reduced

investment in terrestrial long-lines by increased investment and earnings

from local distribution and other services.. By aggressively capturing

the low-cost market, competition could be foreclosed; even though AT&T's

revenues might shrink, this scenario is favorable to broadband services.

Alternatively, AT&T could seek to 1) block, deregulation of MTS and WATS,

t
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2) oppose and/or underprice large satellite ventures of its competitors,

3) generally seek to raise the risks and uncertainties faced by the

competitors sothat they are pressured into smaller, less -efficient

short-term investment options, and 4) generally not seek to provide

low-cost broadband links in the absence of protection against rate-

breaking multiplexing by competitors. In this scenario the prospects

for video services are bleak. At present AT&T appears to be pursuing

some combination of these strategies. AT&T's competitors could also

pursue a variety of strategies. For example, they might 1) seek

deregulation of WATS, MTS, etc. and expansion of their network access

privileges so as to expand their opportunities for multiplexing, cream

skimming, and sales of new services, and 2) seek to establish the

largest satellites and other systems possible consistent with the risks

involved.

Because of these possible developments, the prognosis for broadband

services is uncertain. However, almost regardless of the competitive

situation, it is still possible for regulators or Congress to endorse

different tariffs (per Hz) for broadband and narrowband services and

thus encourage video and other broadband offerings. A similar problem

exists today with telegraph circuits which.. carry perhaps 300 bps, whereas

a multiplexed voice-grade circuit could carry 30 such lines. Despite

this possibility, the tariffs are now approximately the same per minute

for both services. By extension, a video circuit might have a comparable

tariff per minute, so that tariffs might best be characterized as cost-

per-circuit-minute, nearly independent of bandwidth. Such a result can

be obtained only by regulation, as has been the case for telegraph.

Because telegraph is a small specialized service, there are no great

enforcement problems in prohibiting the public from such multiplexing.

An example is the controversy surrounding Consortium Communications

International's (CCI''s) multiplexing of its Telex and TWX traffic on

AM's broadband circuits. CCI provides up to 60 percent savings for

s

	

	 their customers. If telegraph were as widespread and popular as voice,

the enforcement problem could be more severe. However, since the private

line market is characterized by large firms who would not wish to

jeopardize their communications privileges, and the same is true of

non-dominant carriers, the enforcement problem should be quite tractable.

IY
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Thus, although the initial introduction of competition into the regu-

lated marketplace may enable a certain degree of government withdrawal,

should that deregulation eventually include all long-distance services,

the resulting controversies concerning system architecture and performance,

the financial health of AT&T, antitrust issues, protection of broadband and

other classes of service, etc. could all produce the contrary and counter-

intuitive result that an increase in effective government presence might be

required to ensure stability and service improvement.

8.5 OWNERSHIP AND USE OF SATELLITES

The ownership and use of satellites for general telecommunications

will follow directly from decisions concerning deregulation and the

introduction of competition into the industry. In the event that only

private lines are competitive, then the market might be divided as,fol-

lows. ITT (1979) and Western Union (1979) projected that private-line

services might comprise % 20 and Ou 38 percent of total voice, respec-

tively,,in the 1990-2000 time period. If 30 percent of all satellite

traffic', were private line, and if total satellite traffic were "k, 10-100

Gbps, as projected in Section 7.5.3, then domestic private-line satellite

traffic would be ti 3-30 Gbps, of which perhaps 1-10 Gbps would be non-

AT&T. AT&T would handle perhaps 2-20 Gbps of private-line traffic

plus 7-70 Gbps in other categories, or a total of 9-90 Gbps (author's guess).

The satellites serving this market could be organized as one jointly

owned system, two systems, or a multiplicity of systems, one per competi-

tor. * A single system might comprise 4-8 satellites in orbit, each of

'L 3-12 Gbps capacity; a second satellite system which amalgamated AT&T's

small competitors might comprise ' U 3-5 spacecraft of 'v 0.4-3 Gbps capacity

each; and each small competitor acting alone might alternatively have a

system of -ti 2-4 spacecraft of ti 0.15-1 Gbps capacity each, if there were

three small firms dividing the nominal 1-10 Gbps non--AT&T private-line

satellite market. If all long-distance services were competitive, then

non-AT&T firms might capture as much as 30 percent of the total 10-100

Gbps satellite market, or 3-30 Gbps. A non-AT&T system might comprise

3-6 satellites of r,,0.5-6  Gbps each, and three equal competitors might

alternatively each own 'L 3-5 spacecraft of ti 0.3-3 Gbps capacity.

*This discussion is restricted to large switched satellites for general
telecommunications, not for services like direct broadcasting, etc. Consid-
eration should also be given to resale and shared use options (FCC Doc. 20097).
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These system sizes can then be evaluated in terms of an analysis

such as that in Table 7-4, where for certain assumptions it was argued

that a satellite system with only 10 percent of the market at any break-

point distance would carry perhaps 7.5 Gbps profitably, and by extension

a system with 3.3 percent of the market could be uneconomic compared to

land lines. In the presence of such economics and in the absence of

additional subsidies, it appears that there would be strong economic

incentive for the small competitors to amalgamate their satellite.systems

so that the compeff ion with AT&T would have some semblance of viability.

Alternatively, t'.1e amall firms might employ only land lines, but then the

opportunities for such competition to enhance service development would

be greatly restricted. Service development would probably be easiest in

the intra-corporate broadband private-line-market made practical only by

satellites.

The ownership of .a group of satellites by the small competitors
could be by means of a consortium such as Intelsat, with ownership in

proportion to use, or perhaps by means of a single protocol-establishing

body plus inter-connectable satellites each launched and owned by the

separate carriers, similar to the multi-satellite architecture of the

baseline system. Similar options of ownership and control could be

employed if AT&T and the small carriers shared the same set of satellites

and confined their competition to the ground stations, local interconnec-

r,ions, and user services.

In the event that AT&T's competitors do sponsor a single system,

or if all carriers cooperate together, including AT&T, it would be

necessary for 0-Io se firms to conduct protracted negotiations and obtain

government approval. Because of the continual antitrust litigation in

the industry, such negotiations concerning collaboration involve legal

risks; even technical discussions involving details like protocols must

be conducted cautiously. Fortunately there is a rather well established

legal doctrine which may protect such discussions; this is the "Noerr-

•$F	 Pennington" defense to the Sherman Act.

In Eastern Railroad President's'Conference v. Noerr. Motor Fright,

Inc (365 U.S. 127, 5 L. Ed. 2d 464 (1961)) a group of trucking companies

sued under §4 of the Clayton Act alleging that a group of railroads
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1

conspired to monopolize long-distance freight in violation of 	 and 2

of the Sherman Act; the railroads had cooperated in a publicity campaign,

detrimental to the plaintiffs, which was intended to promote passage of

legislation favorable to the railroads. The Supreme Court held that the

railroads were protected under the First Amendment, even though their

purpose was to eliminate competition by the plaintiffs and even though

the plaintiffs were injured by the adverse publicity used in the campaign:

"[T]he Sherman Act does not prohibit two or more persons from

associating together in an attempt to persuade the legislature or the

executive to take particular action with respect to a law that would

produce a restraint or monopoly." (81 S.Ct. at 529).

Two exceptions to the Noerr-Pennington defense arch of note. In

Cantor v. Detroit Edison Co., 96 S.Ct. 3110 (1976),it wo.s alleged that

Edison injured a drugstore owner by distributing free light: bulbs

pursuant to a tariff filed with the state regulatory authority. It was

held that Edison could not rely on Noerr because Noerr did not involve

any question of liability or exemption for private, action taken in

compliance with state law (96 S.Ct. 3122). In California Motor Transport

Co. v. Trucking Unlimited, 404 U.S. 508, 3 L. Ed. 2d 642, 92 S.Ct. 609

(1972), it was held that the Noerr principle did not protect a "sham" use

of the First Amendment to harass and deter individuals from their free

access to agencies and courts. A number of similar cases have defined

further the "sham" use of the First Amendment to bring forward improper

(false) or frivolous information or suits so as to harass or injure

competitors.

The error of Edison was similar to the error ,n,-jolved in the forma-

tion of SBS; judicial review of FCC's approvals prompted re-examination

by the 'FCC of some of the antitrust issues. This risk could be reduced

if a group using the Noerr-Pennington defense successfully petitioned
a

Congress for approval of their plans instead.

Thus there appears to be at least one legal approach to corporate

cooperation in defining and seeking government authorization for jointly

managed or owned facilities, even if those facilities would constitute a

monopoly.
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8.6 SUMMARY AND CONCLUSIONS
i
7

The future development of large switched communications satellite

systems will depend on legal and regulatory issues as much as upon tech- 	 a

nical and economic considerations'. This is the result of the present

monopolistic character of much of the industry, a situation which arose

from the need to obtain rights-of-way, the declining-cost character of

certain business elements, and other reasons. The resulting collabora-

tion between telephone companies and regulatory agencies has produced an

effective integrated national system with tariffs that have tended to

cross-subsidize local exchange costs at the expense of long-distance and

other services.

This moderately comfortable relationship is now becoming more

volatile with the development of new low-cost technologies such as

satellites and integrated circuits, and with the growing introduction of

competition, initially in the interconnect and private-line markets. The

prospective modernization of the Communications Act of 1934 and the cur-

rent major antitrust cases involving .AT&T. are also sources of uncertainty

and potential change.

In this newly competitive world the pressures for aggressive ad^7v,)tion

of new technologies are as great as ever; the principal negative factor is

that the current uncertainties encourage firms to discount the future more

and to prefer smaller, more short-term investments instead of pursuing

more cost-effective and better performing options which require more long-

range planning and delayed returns on investment. Governmental reduction

of some of these uncertainties could be to everyone's benefit. Satellites

are now being aggressively developed, but the schedule for introduction of

more effective switched satellites is presently uncertain.

Some of the critical policy issues which will impact establishment

of large switched broadband satellite networks include 1) what will be

the scope of competit^',,n -- for example, will it extend to all long-

distance services and mandate ful:t network interconnection privileges, or

will it be constrained to private-line or other services? 2) to what

extent will government policies red;tce the level of uncertainty so as to

encourage desirable long-range planning and investment? 3) what

i.
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institutional mechanism will replace AT&T as system architect -- and
what are the risks? and 4) shat mechanisms (if any) will establish

tariffs in the F-ublic interest such as appropriately low tariffs for

broadband services?

The ownership and use of large switched satellites will probably

be dominated by AT&T and a few competititors such as SBS, Xerox, RCA,
etc. The market projections in Chapter 2 plus reasonable estimates of

market shares suggest that if all carriers collaborate, they might employ

a satellite capacity of u 10-100 Gbps divided among ti 4-8 cooperating
satellites	 b 2-12 Gbps capacity each. AT&T alone might employ a

comparable system. If the smaller firms claim ti 30 percent of the total
market, and share a single satellite cluster, it might comprise ti 3-6

satellites of % 0.5-6 Gbps capacity each. If competition were restricted

to private-line services, then perhaps \, 3-5 spacecraft of A, 0.4-3 Gbps

could serve such a consortium. If three small firms divided the non-AT&T

private-line market, each might own n, 2-4 satellites of n, 0.15-1 Gbps

capacity each. Thus the total range of possibilities is spanned by

satellite capacities of 0.15-12 Gbps each.

The principal incentive for AT&T's competitors to form a consortium

is the resultant economies of scale and improved planning, and the incen-

tive for all firms to join a single consortium is the improved inter-

connectivity and systems planning which could result; this need not be

at the expense of service diversity because various subgroups of satel-

lites could focus on particular objectives and yet provide full and
efficient interconnections. The joint corporate proposal. of such systems

for government approval appears to be protected from antitrust action by

virtue of the First Amendment, as articulated in the "Noerr-Pennington"

doctrine.

The shape of the satellite communications industry will become
increasingly well defined and firm over the next decade, and the quality

and economy of the resulting system will very much depend upon the

government policies being formulated now.
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CHAPTER 9

0

TECHNOLOGY DEVELOPMENT: NASA PROGRAM OPTIONS

9.1 NASA PROGRAM OBJECTIVES

The NASA satellite communications program, begun in 1959, contributed a

number of historically important technical developments and, more recently,

has also demonstrated the usefulness of a variety of direct-to-user services,

particularly in the public service area. The central thrust of the program

has always been toward increasingly efficient and effective use of the radio

spectrum.

The early enthusiasm for this program diminished in 1972 when budgetary

pressures were combined with the perception that the private sector would

support satellite technology development at levels appropriate to the promise

of the technology. In subsequent years this perception has been questioned;

evidently high--risk long-term technology development has not been vigorously,

pursued, perhaps because such risks were believed to be too great in view of

market uncertainties and the volatile regulatory environment. Recent studies

by the National Research Council, the IEEE, the AIAA, the Electronic Indus-

tries Association, and others have all urged revitalization of this NASA

program, and such action has now been approved. The U.S. Civil Space Policy

has now specifically asserted that the role of the Federal Government in

satellite communications shall be carried out by NASA "toward the efficient

and effective use of the spectrum and orbit". An overview of the NASA pro-

gram has been presented by Dement (1979).

The National Research Council Committee, chaired by Wilbur B. Davenport

(1977) specifically recommended that NASA implement an experimental satellite

communications technology flight program subject to certain safeguards. They

emphasized that it should be characterized by comprehensiveness, orderliness,

accountability, and continuity, and that a-wide range of private and govern-

mental organizations, including users, be involved in the various phases of

the program, including conceptualization. One initial formal mechanism for

such interaction is the NASA Advisory Council serving communications, which

has five carrier representatives and five technology managers.

213 -



At present the NASA program most relevant to wideband communications is

the 20/30 GHz satellite communications technology program, for which this

report was prepared. Although any satellite experiment will most likely

employ the 20/30 GHz allocations, the program is conceived as also being

relevant to bands at lower frequencies. It is the belief of these writers

that first priority of such an effort should be technology development and

demonstration, and that this view is widely shared. A lower priority should

be attached to user familiarization experiments and similar activities which

can be performed by the private sector with lower risks and better continuity

with subsequent operational phases.

9.2 CRITICAL TECHNOLOGIES

The present study, by exploring further the architectural tradeoff

issues in large switched communications satellites, permits refinement of

previously prepared lists of research priorities. One such priority list

has been presented by Durham and Stankiewicz (1979) based upon extensive

interviews with government and industry people in the satellite communica-

tions field; it is repeated below:

1. System analysis and synthesis

2. Multibeam antennas

3'. Communications processors

4. Low cost user terminals

5. Component technology

6. Propagation.

The present study, itself a priority-1 activity, supports this rank ordering,

but permits elaboration.

The study suggests that one important class of system is a large multi-

satellite fully-switched system operating as a coordinated entity in a single

orbital slot and having a total capacity of ti10-60 Gbps carried by satellites

of the tit-12 Gbps class. Nominal system characteristics for the 1995 period

might be:

1. Multiple FDMA TDMA bands, each at 256 Mbps; space-qualified
burst modems are a critical element;

2. 285-beam antenna employing switched feeds or segmented
electrically scanned arrays;
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3. 20-GHz satellite transmitters of 'A-7 watts; solid-state and/or
TWT (or ti0.5 watt units plus phase-shifters for scanned arrays);

4. 30-GHz ground-station transmitters of ti 7 watts; great linearity
may not be required.

5. Ground-station antennas of 'L16-ft diameter.

6. Fast 256-Mops 8x8 to ti128xl28 digital switches for space.

7. Diversity protection to 99.99% reliability by means of
terrestrial links 'k,10-60 miles long between the %1800 ground
stations typically located near toll centers or other local
nodes.

,If some carriers wish to maintain their own separate systems, despite

the economic penalties of such a configuration, then such separate systems

might be characterized by small clusters of satellites of bO.15-1 Gbps capa-

city,. Althouth this option vras not specifically analyzed, it would appear

that '1) transmitter and ground antenna specifications might remain compar-

able, 2) the data rates might drop to '\,32-128 Mbps, and 3) the number of

antenna beams might be %lOO; thus the number of transponders per satellite

would remain a reasonable ti6-8, and link margins would be preserved.

The range of desirable technical specifications appears to be suffi-

ciently narrow that developing and proof-testing the elements of such a

system would be useful to most switched satellite networks. One nominal

20/30 GHz NASA experimental payload (Wright, 1979) envisions testing a sys-

tem with two transponders plus a spare, an 8x8 baseband switch, and a portion

of a large multi-beam antenna. Such an experiment should be adequate to

demonstrate most of the critical new technologies, and such a candidate

experiment is defined and costed in the next section.

Communications processors, item 3 on the priority list, deserve further

comment. The present study makes clear that the cost of bandwidth is rela-

tively small by today's standards until it exceeds a few megabits per second,

at which point total system costs become more nearly proportional to data

rate. The analysis suggests that inter-frame video bandwidth compression

to ti1-6 Mbps will therefore be an important part of any large video network,

and that the selection of a standard compression protocol could have signifi-

cant consequences. Unfortunately, however, protocols with commercial signi-

ficance are not always freely placed in the public domain; the algorithm

employed in the commercially available NEC video inter-frame compression

device is an example of this. If high-performance protocols are to be

n ,
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developed and achieve easy acceptance as standards in a timely manner, then

such technology should be an important part of the total program. For

example, NASA might focus on the technology of algorithm compatibility--

compatibility between various present algorithms and between present and

potential future improvements. Similar importance can be attached to broad-

band error-correction circuits, cryptographic systems, TDMA buffering and

packet technology; the fact that very broadband signals are involved here

partially distinguishes these technical problems from those now being ad-

dressed at much more modest data rtes.

9.3 CANDIDATE 20/30 GHz SATELLITE EXPERIMENTS

One possible benchmark experiment which would exercise most of the rele-

vant technology is the following (Table 9-1); it is generally consistent with

the nominal configuration described by Wright (1979). The purpose of the

benchmark experiment definition is to provide a baseline cost estimate for a

program which explores most relevant technologies for commercially relevant

parameters; the detailed cost estimates permit the budgetary impact of re-

ducing the number of feeds, limiting the number of ground stations, or other

simple modifications to be assessed.

Table 9-1. Benchmark 20/30 GHz Communications Flight Experiment.

1. Space Segment:
1 flight and 1 back-up satellite.
1 20/30 GHz antenna reflector 3.4x6.7 meters, consistent with
285 beams over the United States.

80 switchable feeds, 70 on one polarization and 10 on the other,
in a configuration resembling the baseline design, but par-
tially filled; no more than one feed cluster would be complete.

2 transponders at 256 Mbps and 2 at 12.8 Mbps, interchangeable.
4-watt solid-state transmitters and 7-watt TWT's. TFM modulation.

8x8 switch for 256-Mbps b.aseband logic signals.
superheterodyne receivers, broadband.

2. Ground Segment:
10 256+12.8 Mbps ground stations (5 mobile); 16-ft antennas,

7W transmitters yield 1-13 dB up and 11 dB downlink rain margins
(26, 24 dB at 12.8 Mbps).

10 12.8 Mbps ground stations (5 mobile); 5-ft antennas, 4W
transmitters yield 1-14 and 17 dB.margins.

5 diversity links 10-30 km long.
10 local data links < 4 km long.
20 full-service experimental user facilities at NASA centers

(video, facs, data), 2 per fixed station; facilities also
use commercial circuits.
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Using procedures similar to those described in Chapters 4 and 5 the

weight and power requirements for the experimental satellite communications

payload are estimated in Table 9-2, the spacecraft weight and power are

estimated in Table 9-3, and the total prcgram costs are estimated in Table

9-4. Since most of the program costs are technology development oriented,

modest changes to the benchmark experiment specifications would have a rela-

tively small impact on the budget.

Table 9-2. Benchmark Communications Experiment
Payload Weight and Power Estimate.

Unit Unit Total Total
Weight Power Weight Power

Units lb W 1b W)

Receiver
RF mixer 4 0.5 0 2 0
IF amplifier 4 1 0.5 4 2
IF mixer 4 0.2 0 1 0
LPF/amplifier 4 0.2 0.5 1 2
Demodulator 4 1 1 4 4

Total 12 8

Transmitter
Modem 4 1 1 4 4
Driver 4 2 2 8 8
Final amplifier 4 2 20 8 80

Total 20 92

Local oscillators, clocks
2 6 1 12 2RF multiplier chain

IF multiplier chain 2 3 1 6 2
Total 18 4

Other
Switch (8x8) 2 1 2 2 4
Miscellaneous,

contingency 30 50
Total -	 32 54

TOTAL EXPERIMENT PAYLOAD 80 lb 160 Watts
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Table 9-3. Benchmark Experimental Communications Satellite
Weight and Power Estimates.

SUBSYSTEM Pounds
Cond.
Watts

Buss
Watts

Subtotals
Pounds	 Watts

Communications Electronics 80 160
Attitude Control System 100 100
Reaction Control System 100
Spacecraft Computer 5 5
Communications Computer 20 40
Command, Telemetry 20 20
Antenna Reflector (3.4x6.7m)

and Structure 150
Antenna Feeds, Diplexers (80) 10
Ferrite Switch Matrix (100) 50 20 535 120

Conditioned Power 250 370
Thermal Control 30 8 378
Power Contingency 40 418
Power Distribution & Conditioning 25 42 590 460

Harness 30 23 620 483
Night Power (400)
Batteries 20 60 640 543
Beginning of Satellite Life 556
Solar Array, 20 lb/watt 30 670
Spacecraft Body Structure- 107 777
Weight Contingency 78 855
Attitude Control Propellant 136 991 556

TOTALS 991 lbs 556 Watts

The total estimated budget is $275M in 1979 dollars, which is comparable

to other NASA space flight programs and consistent with the budget levels dis-

cussed by the Davenport Committee in the 1977 National Research Council re-

port (Davenport, 1977). Some of the largest items are the non-recurring

costs associated with the satellites ($65M), and the ground stations and

associated technology (.$70M).

The experiment concept described by Wright (1979) involved testing both

feed arrays and scanned beams. For smaller systems the segmented phased

array concept developed by Bell Telephone Laboratories (Acampora et

al., 1979) appears quite promising, but needs further development in order to

be fully competitive with the switched feed configuration at 20/30 GHz. The

difficulty involves fast broadband very low loss phase shifters; without them

the number of active systems must apparently approximate the number of poten-

tial antenna beams, which becomes expensive for large systems. Addition of
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Table 9.4. Budget Estimate: Benchmark
NASA Communications Satellite
Experiment.

Item

Number
of

Units

Unit
Cost

($M'79)
Cost

($M'79)

Cost
Sub-

totals
($M'79)

1. Space Segment

Recurring costs

,,2[$31K(991 lb) 0 ' 93 ] ,4, $30M launch 1 70 70

Non-recurring costs*

%$16K(991 lb) 
1.15 

xl.5(technology factor 1 65 65 135

2. Ground Facilities

256/12.8 Mbps ground stations 10 1 10

12.8 Mbps ground stations 10 0.5 5

Non-recurring costs, estimated 1 20 20

Diversity broadband links 10-30 km 5 0.2 1

Broadband user facilities 20 0.2 4 40
(video, facsimile, data)

3. Other Program Costs

Other ground station technology 1 30 30

Other protocol technology 1 20 20

Operations 3(yr) 10 30

Supporting science, analyses 10(yr) 2(avg) 20 100
(1981-1991)

TOTAL 10-YR PROGRAM COSTS 275

*Assumes 1982 technology, \,1986 launch
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such a phased array experiment might add approximately 200 pounds to the

f	 communications payload, and perhaps 400 pounds to the spacecraft weight.

This might add $14M to recurring costs and $34M to non-recurring costs, in

terms of the DCA communications satellite cost algorithm.

Another potential subsystem to add to the experiment would be one de-

signed to accept very large numbers of relatively narrowband signals which

are nearly continuous, in time, and then to switch them among a large number

of possible antenna beams. The difficulty with this otherwise attractive

approach to reducing ground station costs is that there is no immediately

evident way to continuously receive a large number of narrowband signals,

separate them so they can be switched, and then reassemble them in different

down-link beams, all with competitive economics One critical technical

problem is design of low-loss high-order frequency multiplexers which can

buffer many beams simultaneously to one transponder. If such narrow signals

are also demodulated and remodulated in the spacecraft, then the problem is

r
compounded. If these problems could be solved in a practical way, then such

a subsystem experiment could be an important addition.

To summarize, there are several varieties of large switched satellite

experiments which are practical and could make very significant contributions

to the understanding of these technologies, and to the more rapid and effi-

cient introduction of them into the communications marketplace.
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SIGNAL CHARACTERISTICS

A3.1.1 INTRODUCTION

The selection of a modulation technique for a WIDENET system re-

quires consideration of the bandwidth occupied by the signals, trans-

mitter power of the terminal and spacecraft, end-to-end error rate,

modulation waveform, interference between channels in the frequency,

spatial, and polarization domains, and hardware implementation. All

these factors place constraints on the system design and are discussed

below.

High spectral and power efficiencies are desirable for a WIDENET

system because of the limited spectrum available, the large data rate

(up to `L 50 Gbps), and the transmitter power/antenna size constraints.

Several techniques are available for close frequency packing of signals.

The desired characteristics are constant envelope signals for convenient

signal generation and amplification, close frequency packing with low

crosstalk between users in adjacent channels, high modulation efficiency

in the sense that the required energy-per-bit-to-noise-density ratio is

low and, finally, relatively easy implementation of the transmitters and

receivers. In general, these are conflicting characteristics and trade-

offs must be made.

Section A3.1.2 gives the conclusions of this analysis. In Section

A3.1.3.1 an estimate is made of the baseband Eb/NO (bit-energy-to-noise

density ratio) and BER (bit error rate) required for a broadcast-quality

color-video channel. The basic uplink and downlink parameters are shown.,

Section A3.1.3.2 summarizes the relationship between MR, E b,INq , and W/R

(noise-bandwidth-to-bit-rate ratio). Section A3.1.3.3 briefly reviews

current work in modulation waveforms that minimize the frequency spacing

of adjacent channels. An estimate is given. for tb.e f'regnenfi y spacing of

two or more coherent, interfering signals as a function of modulation

waveform. Section A3.1.3.4 gives an estimate of the interference between

coherent signals in the same frequency band. These signals mays be

spatially separated on the ground by the satellite multi-beam antenna or
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r	 separated by the sense of polarization. A.3.1.3.5 considers the hard-

I ware implementation of a particular modulation waveform. A3.1.4 gives

the mathematical details of the interference estimates and their rela-

tion with on-going waveform design work. Section A3.1.5 estimates the

number of equal-power coherent channels that can be accommodated in an

allocated band.

A3.1.2 CONCLUSIONS

(1) A DPCM bandwidth-compression coding system has been developed and

experimentally verified for transmitting a 4 MHz NTSC color video sig-

nal with broadcast quality at a data rate of 32.064 Mb/s and a maximum

BER of 10-7 . Interframe compression should permit acceptable reduction

to a few megabits per second; the NEC unit presently being manufact^^:red

can probably be improved so that 30 GHz might accommodate up to '^, 10,000

one-way video circuits.

(2) Use of a coherent QPSK (quadrature phase shift keying)-type modula-

tion waveform appears to be a reasonable choice because of the high

spectral efficiency compared to BPSK (binary phase shift keying) wave-

forms,and high power efficiency compared to higher-level MPSK (M-ary

phase shift keying)-type waveforms. Use of coherent demodulation rather

than differential demodulation appears to be possible because the ground

terminals and satellite are stationary with respect to one another and

interference reduction techniques such as preci,te frequency hopping are

not required.

(3) A TFM (tamed frequency modulation) waveform (a type of QPSIQ appears

to give high spectral efficiency with about 1-dB penalty in E b/N0 rela-

tive to QPSK for a given BER. With DPCM signal encoding, 10% bit-rate

overhead, and two polarizations, about 2.4 Gbps/GHz frequency allocation

with less than 1-dB signal loss due to crosstalk interference from equal

1	 power users appears to be possible. In comparison, QPSK would allow

about 1.2 Gbps/GHz with 1-dB crosstalk signal reduction.
I	 '

(4) A TFM transmitter and receiver have been demonstrated. In view of

the available block diagrams and the existence of breadboards for the

transmitter and receiver, both TFM transmitters and receivers appear

feasible for a WIDENET in the 1990 time frame.

n
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(5) Antenna sidelobes of 30 dB are sufficient to limit the signal loss

to 1 dB or less from co-channel crosstalk in adjacent beams.

(6) Polarization isolation of kO aB is sufficient to limit the signal

loss to 1 dB or less from polarization crosstalk.

A3.1.3 ANALYSIS

A3.1.3.1 CHANNEL LINK PARAMETERS

In recent years many redundancy reduction techniques have been

investigated for video signals. Recently (Sawada and Kotera, 1978) an

encoding system has been designed and built that encodes a luminance

component and two chrominance components of a composite color video

signal separately by DPCM. This system has been shown to give high

quality and high coding efficiency compared to other redundancy reduc-

tion coding techniques. Experimental results suggest that this system

is applicable for broadcast-quality color-video digital transmission at

a 32.064 Mbps rate with a BER of 10
-7
 or lower. A field trial over a

communication satellite link is planned.

If a 32.064 Mbps data rate per channel were required for a WIDENET

video link, the required E b/N0 for aTFM waveform (see Section A3.1.3.3)

and a BER of 10-7 is about 12.5 dB.	 Therefore, the required PR/N0 per

channel in a link calculation is about 87.6 dB Hz. Table A3.1-1 shows the

downlink and uplink parameters fora 140 Mbps TDMA band. It is seen

that the nominal downlink and uplink margins are 15.4 dB and 15.8 dB,

respectively.

A3.1.3.2 BIT ERROR RATE, POWER EFFICIENCY AND BANDWIDTH EXPANSION

Figure A3.1-1 shows a schematic block diagram of a single 32-Mbps

video channel. The channel encoder takes a baseband 32-Mbps bit stream

(data symbol) and encodes the bits to select a channel, waveform (channel

Eb/NO is related to the link signal,to^noise ratio (S/N) by

SIN = (EbIN0)(R/W); R-is bits per sec (bps) and W is bandwidth (Hz).

Coding would reduce the required E b /NO while increasing the signal band-

width, but this option appears counterproductive for TFM because of the
great sensitivity of TFM BER to SNR.
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Table A3.1-1. Space Link Performance.

LINK PARAMETERS DOWNLINK UPLINK
(20 GHz) (30 GHz)

AVAILABLE SNR

PT (dBW) 10.0 10.0

GT (dB; 2.4 m or 4x 8) 59.3 55.7
` (DA = 60%, 65%)

EIRP (dBW) 69.3 65.7

L (dB)(synch orbit) -211.0 -214.5

LINE LOSSES (dB) -3.0 -3.0

NULL (dB) (-3.0) (-5.0)

G	 (dB; 2.4 m or 4 X 8) 52.2 62.0R (nA w
 

65%, 50%)

N	 (dBW/Hz) -201.6 -199.6
° (T= 500°, 800°K)

s
PR/N° (dB Hz) 109.4 109.8

AT NULL: 106.4 104.8

REQUIREMENTS

R (dB Hz, 140 Mbps) 81.5 81.5

EB/No (BER a 10-7 , TFM) 12.5 12.5

PR/N° (dB Hz) 94.0 94.0

MARGINS (dB Hz) - 1 BAND/AMP

8-FT ANTENNA	 PEA.'. 15.4 15.8
NULL 12.4 10.8

12-FT ANTENNA	 PEAK 18.9 19.3
NULL 15.9 14.3

16-FT ANTENNA	 PEAK 21.4 21.8
NULL 18.4 16.8

MARGINS (dB Hz) - 2 BANDS/AMP

3.4 6.88-FT ANTENNA	 PEAK
NULL 0.4 1.8

12-711C ANTENNA	 PEAK 6.9 10.3
NULL 3.9 5.3

16-FT ANTENNA PEAK 9.4 12.8
NULL 6.4 7.8
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symbol). * The channel symbols then modulate the carrier. Figures

A3.1-2 and A3.1-3 show the well-known relationships, referenced to the

data symbols, between the bit error rate BER, power efficiency Eb/NO,

and bandwidth expansion ratio W/R. ** In these figures M denotes the

level of modulation, e.g., M = 2 is BPSK, M.= 4 is QPSK, etc. MI

denotes differential (encoded and decoded) PSK levels, e.g., M , - 2 is

DBPSK, etc. The noise bandwidth, W, corresponds roughly to the half-

power signal bandwidth.

Several observations can be made. Figure A3.1-2 shows that QPSK

modulation waveforms have a power efficiency comparable to BPSK (within

1 dB). MFSK with M > 4 suffers significant power penalties (,^, 4 dB).

Figure A3.1-3 shows that QPSK waveforms have bandwidths ti 1/2 that of

BPSK. While higher level PSK waveforms have smaller bandwidths, the

bandwidth reduction over QPSK is decreasing slowly while the power

penalty grows rapidly. It should be noted that these results do not

permit estimating the interference between users in adjacent frequency

channels (crosstalk). The actual interference to an adjacent user is a

function of the receiver implementation, channel symbol synchronization

between the two bit streams and power ratios (see Section A3.1.3.3).,

It is concluded from these figures that for this application a

QPSK modulation waveform represents a reasonable choice for a power-

efficient and bandwidth-efficient modulation waveform. Section A3.1.3.3

discusses types of QPSK waveform. In addition, use of coherent modulation/

demodulation appears to be possible because the ground terminals and

satellite are stationary with respect to one .another and interference

reductions techniques such as rapid frequency hopping are not required.

The nomenclature follows Lindsey and Simon (1973).

**The common practice is to give the error rate of the channel
symbols PE (E) versue Eb/NO . It is believed that the bit-error proba-

bility PB (E) is more meaningful in this application. The two error rates

are related by PB (E) /PE (F) 2 M/(M - 1) for orthogonal block encoding

and M-ary waveforms.

F
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A3.1.3.3 ADJACENT CHANNEL INTERFERENCE, MODULATION WAVEFORM AND BAND-
WIDTH EFFICIENCY

Modulation waveform design with high bandwidth and power efficiency

is a presently active research area (Kalet and Weiner, 1977; Kalet, 1977;

deJager and Dekker, 1978; Seay, 1978). Much of the work has focused on

QPSK modulation for the reasons given previously. This section applies

recent results to a WIDENET system.

Figure A3.1-4 (Kalet and Weiner, 1978) shows the predicted BER of a

single channel due to the mean square crosstalk from an adjacent channel

at the output of the integrators for a SFSK (sinusoidal frequency shift

keying) modulation waveform (a QPSK waveform). The 0-dB curve indicates

equal power channels,the 10-dB curve indicates the interfering channel

signal is 10 dB larger, etc. These results were generated by a white

noise analytic model (Appendix A3.1.4) that has been verified by computer

simulation using differential demodulation. Recent hardware measurements

have also confirmed this model: Figure A3.1-4 shows that there is a

sharp threshold to the frequency spacing of two users. Below the

threshold (Af/R ti 0.9 for equal power channels) the BER increases

rapidly.	 This sharp threshold behavior suggests that estimates of the

BER versus Af/R may give approximately the same threshold as computer or

laboratory hardware simulations because of low sensitivity to modeling

errors.

Two estimates of the signal degradation due to crosstalk at the

output of a coherent demodulation receiver are derived in Appendix

A3.1.4. Figure A3.1-5 shows the signal degradation due to equal power

interfering users (assuming the interfering user signals are tone-like)

versus the bandwidth spacing of one or more interfering channels as a

function of several QPSK modulation waveforms. Comparison with Fig.

A3.1-4 indicates that this estimate gives about the same threshold for

SFSK. Figure A3.1-5 also shows that simple QPSK channels cannot be

spaced closer than df/R 1.5 without significant signal degradation

loss (> 3 dB). Figure A3.1-6 shows the BER versus Af/R for the D/L and

U/L channels of Table A3.1-1 with TFM using the white noise model. Both

Figs A3.1-5 and A3.1-6 show that if TFM waveforms are used, then the

spacing can be reduced to Af/R of 0.65-0.75 with many adjacent channels.
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s	 Figure A3..1-7 shows the BER versus E b/NO for TFM and other coherent MPSK

waveforms. It is seen that TFM has about 1 dB loss in power efficiency

compared to QPSK. All these results can be interpreted with reference

to the auto-correlation functions and power density spectra of the

various waveforms. Such a discussion is beyond the scope of this

appendix and is discussed in the current literature. Suffice it to say

'that TFM has a broader, smoother correlation function and narrower

spectrum than the other QPSK waveforms.

Section A3.1.5 shows that using TFM waveforms allows a spectral

channel density of about 75 32-Mbps channels/GHz frequency allocation

W/R = 0.75) compared to 37 channels/GHz with simple QPSK.

It is concluded that since a WIDENET system will require high

spectral and power efficiencies, TFM appears to be a reasonable initial

choice. The increased hardware complexity compared to other QPSK

waveforms is addressed in Section A3.1.3.5.

A3.1.3.4 CO-CHANNEL INTERFERENCE

In this section the tone interference model for the channel degrada-

tion developed in Appendix A3.1.4 is applied to estimate the interference

effects on signals spatially separated on the ground by the satellite

multi-beam antenna or separated by a polarization mismatch.

Equations (A3.1-15) and (A3.1-16) give the interference-to-signal

power ratio for zero frequency offset and a power reduction due to

either the polarization mismatch or antenna sidelobes, respectivel7.

Figure A3.1-8 shows the resulting channel degradation from a single

interfering channel with polarization mismatch L (N = 1). Also shown

is the worst-case degradation due to six (N = 6) interfering channels

(the maximum number of adjacent beams about a center beam) each with an

antenna sidelobe level L.

It is seen that to limit the signal loss to 1 dB, a polarization

isolation of 20 dB and an antenna sidelobe level of 30 to 40 dB are

sufficient.

A3.1.3.5 TFM DIPLEMENTATION

In the TFM reference (deJager and Dekker, 1978), two different

implementations are shown for the transmitter. In addition, breadboard 	 I
i
d
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71

prototypes are shown for both systems. Only a block diagram is shown for

the receiver with the statement that its implementation is relati .Yt,el,y

simple. Recent correspondence (Dekker, 1978) has confirmed the implemen-

tation of the receiver; a TM transmitter and receiver have been demon-

strated in Europe. The measured error performance fits closely the

calculated performance.

A3.1.4 AN ESTIMATE OF THE CO-CHANNEL AND ADJACENT CHANNEL INTERFERENCE
FOR COHERENT DETECTION

In this section two models are derived that estimate the interfer-

ence degradation of a coherent channel. Both models give about the same

threshold for the adjacent channel frequency spacing that results in

large BER. In addition, these models agree with the available computer

simulation results for SFSK modulation waveforms.

The first model assumes that the interference is equivalent to

white noise. The noise density in the presence of interference, 
(NO)I'

is modeled by
r

^NO)I = NO + PI /W .	 (A3.1-1)

where

N0 = AGWN density,

W = noise bandwidth,

PI = total interference power from the adjacent channels

passing through the matched filter.

Or,

(NO) I
	 PI

N	 = 1 + N W	 (A3.1-2)
0	 0

The resulting channel degradation can be written as

(ENO )b	 I 	 J
(A3.1-3)

(Eb/NO)I=0	 1	 Eb((Rl nP

II=0l

where
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PS = EBR = signal power from the matched filter,

EB = energy per data bit,

R = data rate.

In the limit of (Eb /NO)I=0(R/W)(PI
/PS) » 1 0 Eq. (A3,1-3) becomes

= 
W 
ks

(A3.1-4)
NO IR 

This result is equivalent to the model used by Kalet and Weiner (1978)

and it applies when the interference noise dominates the thermal noise.

In general, PI is given by

OD	

2PI	H(f)I GI (f)df	 (A3.1-5)
^o

For a matched filter JH(f)' 2 is proportional to the signal power density

spectrum

jH(f) 12 
ti Gs(f)

Assume the interfering channels have the same shape power density spectra

but different average powers and frequency offsets. For N interfering

channels, with power ratios Li, and frequency offsets Afi , i = 1, ..., N,

with respect to the signal channel, PI can be written as

N
PI M il

l 
Li (PI)i,

=

where

(P I)'L

cc

 I G(f) G(f - Afi) df .

Similarly PS is

00

PS 'L I G2 (f) df .
—oo
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Hence,

00

(P )	 f G(f) G(f - Afi) df

I i -^	 (A3.1-b)PS	 I G2(f) df

-00

(PI ) i /PS can also be written in terms of the signal auto -correlation

function, RS (T), and the mean crosstalk, E[c 2 (0] (two functions

frequently discussed in the literature)

(PI ) i	F[R2(Afi)J
(A3.1-7)

PS	
F[RS(0)]

and

(P diE[c2(Afi)]

PS	 E[c2(0)]

where F[ ] is the Fourier transform and E[ ] is the expectation operator.

Using published spectra, auto-correlation , or crosstalk calculations,

(P I ) i/PS can be computed from either Eqs. (A3.1-6), (A3.1-7), or (A3.1-8)

and used to estimate the channel degradation by Eq. (A3.1-3).

The second model 
*

is a lower bound on the interference effects. The

amplitude of the signal is ru S. Likewise, the amplitude of the inter-

ference is ti I . For coherent channels the worst case interference

causes destructive interference during the entire matched-filter integra-

tion time.	 With N interfering channels, the amplitude at the detection

output is

*This approach was originally suggested by Louis S. Metzger.

**While it is impossible for two signals offset in frequency to
have continuously destructive interference over a time interval of many
carrier cycles, such an assumption is clearly a worst case for tone
interference. Also, it can be shown that destructive interference
leads to the maximum increase in EER even for QPSK where the decision
boundaries in Tzignal space are 45° to the quadrature signals.

*
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ti WIFS	 E
i 1 

ii
=

or

N(PI)i^, 3PS 1-^ Li P
i=1

Hence, the channel degradation is bounded by

	

(Eb/NO) I	N	 (pI)i 2

	

(Eb NO) I=0	 i=1 i PS

In general, the spectra of P S and PI will contain a continuous and

a discrete component. The discrete portion of the power spectral density

is caused by the nonzero average E[sin0(t)], where 0(t) is the phase

modulation function S ilker 1977 	 299^	 ( p	 '	 ' p.	 )'	 (P I ) i can be written as

(PI)i = ls
f ; i + (PI )i

c.	 d

where

PI = continuous (mean) spectrum,
c

PI = discrete (random) spectrum.
d

Equation (A3.1-9) can then be written as

2
(Eb/NO) I	 N	 (PIc)i
	

PId

	(Eb /N0 ) I=0 = 1 -
	 Li P	 1 + P	 (A3.1-10)

The power spectral density for a Markov source is (Lindsey and Simon,

1973, p. 17)

G(f)= 2 1 ( 1 Pi S i (T)l2 S ( f	 T) + T	 PiiSi(f)j2

	

T n=-oo i=1	 i=1

	I + T Re E

N 
G

N 
Pi 5i (f) Sk(f) 

Pik 
(e-)wt ) 	 (A3.1-11)

i-1 k=1

The discrete spectrum occurs when 0(t) deviates from a rectangular
shape.
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where the symbols are defined in the above reference. The point being

made is that

OD

PI	
T L G(T) G(Af 

+ T)

P d - n^
_
^	 < 1.	 (A3.1-12)

I 	 I G(f) G(f - Af) df

Hence, Eq. (A3.1-10) can be written as

(Eb/N0)I	 N	 (PI)i 2

(E N 	 > 1 -	 2Li 
P	

(A3.1-13)

	

b 0) 1=0	 i=1	 S

where P I is the continuous (mean) interference power as before and PI/PS

isiven b E	 A3.1-6 A3.1-7)	 )g	 y q. (	 ),	 or (A3.1--8 .	 This bound on the chan-

nel degradation was used to plot the channel degradation versus frequency

spacing for two or more users and for different modulation waveforms.

The above model can also be applied to bound the antenna sidelobe

isolation and polarization isolation by setting Af = 0. For the case of

co-channel interference, Eq. (A3.1-13) simplifies since 
(PI ) i PS°

	

(Eb/N0)I	 N	 2

	

(E N )	
> (1 - Y	 )	 (A3.1-14)

b 0 I-- 0	 i=1

For the case of interference between two channels with polarization

isolation, Lp , Eq. (A3.1-14) becomes:

	

(Eb/NU)I	 _ 2

(E /N 	 > (1 - N	 ) .	
(A3.1-15)

n 0)1=0

For the case of N interfering channels spatially separated with an antenna

sidelobe level of La , Eq. (A3.1-14) becomes:

(Eb/N0)12
	^N )
	 > (1 - N 2-La)	 (A3.1-16)

0 I=0

The identical lower bound for the effects of tone interference can
be shown using the formulation in Spilker, 1977, pp. 326-331. For QPSK,
BER 4/3 Qf 2 

(Eb NO )
I= 0 (1 - 2P- PS )] .
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A3.1.5 ADJACENT CHANNEL-SPACING DENSITY
J

The total bandwidth, WT , occupied by N adjacent channels can be

written as

-WT = R(1 + n)(N/2)(Af/R), 	 (A3.1-17)

where

R = data bit rate,

n = overhead factor and guardbands,

N = number of adjacent channels (two polarizations),

Af/R = frequency spacing ratio.

Assume

R = 32.064 Mbps,

n = 10%,

Af/R = 0.75 (TFM).

Then from Eq. (A3.1-17)

N(l GHz)	 75.6 channels /GHz (192 MHz /16 channels).

For QPSK, Af/R % 1.5, giving

N(1 GHz) = 37.8 channels/GHz.

- 242 -

I.	
t

wiirre ,^ _ _. _	 -._ ^. .rte	 sr^hNni^Fanrvifl	
`"`"	

ai^MAi^a : ^ _
	 ,,.



.j	 Appendix A3.1 References

1. de Jager, F. and Dekker, C., "Tamed Frequency Modulation, A Novel
Method to Achieve Spectrum Economy in Digital Transmission," IEEE
Transactions on Communications, Vol. COM-26, No. 5, pp. 534-542
(May 1978).

2. Dekker, C., private communication with I. Kalet (10 October 1978).

3. Kalet, I., "A Look at Crosstalk in Quadrature-Carrier Modulation
Systems," IEEE Transactions on Communications, Vol. COM-25, No. 9,
pp. 884-892 (September 1977).

4. Kalet, I. and Weiner, L. N., "Close Packing of PCSFSK Signals-Model
and Simulation Results," ICC Conference, Toronto, Canada (June 1978).

5. Lindsey, W. and Simon, M., Telecommunication Systems Engineering,
(Prentice-Hall, 1973).

6. Sawada, K. and Kotera, H., "A 32 Mbit/s Component Separation DPCM
Coding System for NTSC Color TV," IEEE Transactions on Communications,
Vol. COM-26, No. 4, pp. 458-464 (April 1978).

7. Seay, T., "Bandwidth Efficient Modulation Techniques," International
URSI Meeting, August 1978, Helsinki, Finland.

8. Spilker, J., Jr., Digital Communications by Satellite (Prentice-Hall,
1977).

243

wi



^t

3

APPENDIX A4.1

SATELLITE DEPLOYMENT

A4.1.1 INTRODUCTION

The STS (Space Transportation System) is being developed by NASA to

meet the national space needs for the next two decades. Cargo weights

up to 65,000 pounds will be placed in low earth parking orbits of 100 to

250 nmi altitude by the reuseable EOS (earth-to-orbit shuttle or Orbiter).

Payloads to be deployed in higher orbits will be transferred from the

parking orbit by an upper stage. Initially, the upper stage will be the

SSUS (s-,;inning solid upper stage). Later, the IUS (interim upper stage)

will be available. Still later, the OOS (orbit-to-orbit shuttle or

Space Tug) should be available (Davis, 1978).

In this section the upper stage propulsion requirements for deploy-

ing a WIDENET satellite are discussed. Also, the lifting capabilities

of an IUS and a Centaur -based OOS (a current candidate for the reuseable

OOS) are estimated.

Section A4.1.2 presents the conclusions of this analysis. In

Section A4 . 1.3.1 the propulsion requirements for a parking-to-geosync

(geosynchronous) transfer are summarized. Section A4 . 1.3.2 describes

the Boeing IUS, and Section A4.1.3.3 describes a candidate Centaur-based

OOS. Section A4.1.3.4 shows the satellite BOM (beginning of mission)

weight versus shuttle cargo weight for an IUS and a Centaur -based OOS,

Options and constraints for one and two EOS flights are outlined.

Finally, Section A4.1.4 outlines the orbit transfer calculations.

A4.1.2 CONCLUSIONS CONCERNING PROPULSION SYSTEMS

(1) With a single Orbiter flight, a WIDENET satellite of up to 9,100

t

	

	 pounds can be deployed using a three -stage IUS, and up to 5000 pounds

with a two-stage IUS. This IUS is based on the current Boeing IUS

program and differs chiefly from the planetary three-stage IUS by the

K
	 off-loading of propellant to give the proper perigee and apogee speed

changes.

(2) With a single Orbiter flight, up to 17,000 pounds can be deployed

- 244 -
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with a Centaur-based OOS used in an expendable mode. In a reuseable

mode, the Centaur-based OOS would have, roughly, the same lifting

capability as the IUS.

(3) With two Orbiter flights, up to 12,260 pounds could be deployed

with a three-stage IUS. Satellite weights above 12,260 pounds would

require a four (or more) stage IUS. With an expendable Centaur-OOS, up

to 34,000 pounds could be deployed with two Orbiter flights.

(4) The Boeing three-stage IUS would require few modifications for a

WIDENET mission and should be available in the mid-1980'x. A Centaur-

based OOS also would require few modifications of the present Centaur

upper stage subsystems. The Centaur modifications mainly would be to

satisfy the safety requirements of the STS. (The Centaur vehicle has

to date flown 37 missions and currently there are missions planned into

1982.) However, at this time the Centaur-OOS is a long range NASA

project and may not be available for the initial WIDENET flights.

A4.1.3 ANALYSIS

A4.1.3.1 OOS STAGING REQUIREMENTS

STS operational flights will be launched from the NASA KSC (John F.

Kennedy Space Center) beginning in 1980. Payloads orbited by the EOS

can be placed into low earth parking orbits up to 250 nmi altitude for

orbit inclinations of 28.5 0 and delivery-only missions. For two or more

EOS flights requiring delivery and rendezvous missions, parking orbits

up to 190 nmi altitudes can be used. Figure A4-1 shows the maximum cargo

weight for delivery and rendezvous flights to circular parking orbits

(NASA, 1977). For this analysis it is assumed that each EOS flight

delivers 65,000 pounds to a 190 nmi altitude circular orbit with 28.5°

inclination. This is a near-optimum parking orbit for the WIDENET

mission.

k
Section A4.1.4 shows the equations for computing a parking-to•-

j	 geosync transfer. A Hohmann trajectory is assumed with zero plane change

at burn 1 (transfer orbit insertion) and 28.5° plane change at burn 2
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(circularization at 1X sync). 	 Table A4.1-1 shows the staging require-

ments for an upper stage operated in an expendable mode. For comparison

the corresponding requirements of the 100 nmi and 250 nmi parking orbits

are also shown. It is seen that the upper stage requirements are rela-

tively insensitive to the parking orbit altitude (within ±190 ft/sec)

and that about 13,915 ft/sec total AV is required of the upper stage

propulsion system for the baseline mission.

Table A4.1-1. Staging Requirements for an Upper Stage.

Burn
100
(185

nmi
km)

190 nmi
(350 km)

250 nmi
(460 km)

Perigee 8,072 ft/sec 7,917 7,812

Apogee (28.5°plane change) 6,033 ft/sec 5,998 5,973

OOS Total AV 14,105 ft/sec 13,915 13,785

A4.1.3.2 IUS DESCRIPTION

The STS consists of the Shuttle plus upper stages. The Shuttle is

a manned, recoverable system that delivers payloads to low earth orbit.

The upper stages are required to deliver payloads into mission orbits that

are beyond the orbit capability of the Shuttle. A reuseable, upper stage

(Space Tug) is in the long range plan of the STS. However, in order to

cover the interim between the availability of the Shuttle and the

availability of the Space. Tug, an IUS (interim upper stage) is necessary

and has been agreed to by DoD and NASA.

This is a near optimum strategy. Many "fine r' adjustments are pos-
sible here and later in the analysis, e.g., trading cargo weight for-a
higher parking orbit. The above preliminary results, neglecting these
refinements, are accurate to a few percent in the final satellite weights.

For comparison, the optimum transfer would have a 2.21°plane change
at perigee and a 26.29°plane change at apogee and require a total AV of
13,823 ft/sec.

A reuseable 00S would require the same speed increment to return
to the original parking orbit.



After two proposal competitions, the Boeing solid stage IUS has been

seleeted for validation studies. The material presented here is for the

Boeing IUS system under development by DoD; it is current with the

beginning of the validation phase (Boeing, 1976).

Figure A4-2 shows the IUS family consisting of a basic two-stage

vehicle with three- and four-stage configurations for the high energy

missions. The three-stage vehicle is formed by adding another existing

large motor as a lower stage to the two-stage vehicle. The four-stage

vehicle is formed by adding an existing motor to the three-stage vehicle.

The three- and four-stage vehicles are required for the Earth escape

missions.

The IUS has a three-axis stabilized propulsive and avionics system

for trajectory and stability control. The possible RCS (reaction control

systems) are common in design and differ only in the number (two, three

or four) of propellant tanks required. The RCS is a hydrazine, mono-

propellant, blow-down-pressured system with twelve thrusters, eight

facing aft for pitch, yaw and velocity controls and four for roll control.

The IUS has simple interfaces with the spacecraft, Shuttle, support-

ing facilities, and ground equipment for a wide range of missions. Space-

craft are cantilevered from the interface adapter and all services to and

from the spacecraft are through the IUS. Deployment in the parking orbit

is by means of the remote manipulator system.

Application of the IUS to a WIDENET system is considered in

Section A4.1.3.4.

A4.1.3.3 CENTAUR-BASED OOS DESCRIPTION

The Centaur D-IT is a key element in NASA's future space program

with a backlog including Viking, Helios and Marine-Jupiter-Saturr_

missions. * The D-IT reconfigured for STS use is the basis for the OOS

*The D-IT is an improved Centaur vehicle and it is currently used as
'	 the high-energy (LO 2 /LH 2) upper stage on the Titan ('"T" for Titan) . The

D-IT incorporates a space radiation shield insulation system and subsystem
modifications to make it comparable with the Titan TIIIE. The TC-2 flight
in December 1.974 demonstrated the D-IT capability to OOS missions, includ-
ing long coast and four starts (Jones and Heald, 1975).
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Vi the following analysis because it is being considered for the plane-

tary and stage reuse missions by NASA and because it represents a logical

choice for a high performance upper stage vehicle.

Figure A4-3 schematically shows an OOS candidate design configura-

tion based on the D-IT (Hazard, 1974). The OOS can be operated as an

expendable stage similar to current upper-stage operation or it can be

operated in a reuseable mode in which case the OOS will deliver a pay-

load and subsequently return to a parking orbit where it can be serviced,

refueled and maintained by an . EOS. For more extensive repair the OOS

would return to earth by an EOS.

Major subsystems require few modifications to mount the Centaur

vehicle in the EOS and to meet the man-rated safety requirements (Jones

and!Heald, 1975). Structural changes are the enlarged propellant tanks,

new equipment module and a new aft skirt for support loads. Main engine

and attitude control systems are unchanged. The fluid lines are modified

to match EOS interfaces including in-flight dump lines. The avionics

system is essentially unchanged, except for a new communications system.

The propellant tank redesign represents a new development task, but not

a high risk because design and fabrication techniques are state of the

art. A truss pallet forms the structural interfaces between OOS and EOS.

An overriding design and operating requirement is safety. During

EOS ascent any leak that might develop in a main.propellant tank will

immediately gasify. Since the EOS payload bay is filled with nitrogen,

the leak will be into an inert atmosphere. Leaking propellant will con-

sequently be safely swept from the payload bay along with the venting

nitrogen. Once the EOS has attained an altitude greater than 110,000

feet, the atmospheric pressure is below the 0.1 psia required for

ignition of any mixture ratio of the propellants. During an EOS abort,

helium is used to purge the hydrogen tank before the EOS has descended

to 170,000 feet altitude.

Application of this OOS to a WIDENET system is considered in

Section A4.1.3.4.

A4.1.3.4 IUS AND OOS CAPABILITIES AND OPTIONS

In Section A4.1.3.3 the total propulsion requirement of an
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expendable upper stage is shown to be about 13,915 ft/sec. The lifting

a capability of an upper stage is given by the satellite weight inserted

into a geopync orbit veraus. the Shuttle cargo weight. A basic assump-

tion of the following, staging calculations is that the Shuttle cargos

are weight but not volume constrained. This assumption should be checked

after an estimate of the satellite stowage envelope is made. For a

single Shuttle flight with a cargo weight of 65,000 pounds, the available

satellite stowage envelope is about 15 feet in diameter by 30 feet long

for an. IUS upper stage and 15 feet in diameter by 38 feet long for a

Centaur OOS. Additional considerations of center of gravity, interface

design, etc. are tasks for an iterated design.

Table A4.1-2 gives an example sequential mass property summary for

a three-stage IUS and a 65,000 pound Shuttle cargo weight. These mass

data are not parametric values, but are the result of several Boeing

design iterations. Nearly 90% of the dry weight is based on either

existing hardware or detailed analysis of new hardware. A weight growth

allowance of 10% is included in the dry weights.

For the IUS some form of energy management is required to match the

speed increments obtained with each solid motor stage to the speed

increments required for a particular trajectory. In general, four methods

of energy management are available: trajectory design, ballasting,

attitude modulation and propellant off-loading. An optimum mix is a

future task. Propellant off-loading is an effective method of energy

management and it is the only one considered in this preliminary analysis.

Table A4.1-3 gives an example launch summary of a Centaur OOS and a

65,000 pound Shuttle cargo weight. -These mass data are from .representative

weights for the engines, guidance and control system, and order subsystems

based on Hazard (1974) and Jones and Heald (1975). The OOS weights are

based on a formula shown in Table A4.1-3, i.e., the residual propellant

weight is 1% of the total propellant weight and the dry weight is 13%

of the wet weight.
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Table A4.1-2. IUS Launch Summary.

L '`
Shuttle cargo weight 65j000 1bs

Adapter 3,500

EOS separation 61,500

RCS prop 20

Preburn 1 61,480

,Prop 21,400

Inerts /RCS prop 170

AV = 4,031 ft/sec

ISP - 2.92.6 lbf sec/lb^n

Postburn 1 39,910

Staged /RCS prop 2 1460

Preburn 2 37,450

Prop 12,876

Inerts/RCS prop 170

AV = 3,969

1 S = 292 .6

Postburn 2 24,405

Staged/RCS prop 2,460

Preburn 3 21,945

Prop 100219

Inerts/RCS prop 170

AV = 6,000

ISIP = 292.6

Postburn 3 11,556

Staged/RCS prop 2V460

Payload 9,096 lbs
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Table A4.1-3. Centaur-based OOS Launch Summary.

Shuttle cargo weight

Adapter

EOS separation/Preburn 1n	 6Tl

Prop

RCS prop

AV = 13,915 it/sec

ISO. = 445 lbf sec/lbm

Postburn 2

Engine section	 1,450

Structure/tankage 	 3,464

ACS	 850

OOS dry weight (13% wet) 	 5,764

Residual prop (1% total prop)	 385

St=yed

Payload

65,000 lbs

3. 700

0300

38,089

100

23,111

6,149

36,962 lbs



E 

t
Figure ,A4-4 shows the launch options for both the IUS and OOS.

These curves were generated by varying the weights in Tables A4.1-2

and -3.	 It is seen that for a single Shuttle flight, the three-

stage IUS could deploy a 0,100 pound satellite and an expendable OOS

could deploy a 1 71 t 000 pound satellite.	 Two Shuttle flights could

deploy a maximum satellite weight of 2.1,200 pounds with a four-stage

If- or 34,000 pounds with an expendable OOS. For the Centaur OOS, if

the satellite weighs 23,500 pounds or less, then the satellite can be

first lifted to the parking orbit for assembly and checkout separately

from the Shuttle flight carrying the OOS. Above 23,500 pounds the

satellite Shuttle flight must carry some OOS propellant. This require-

ment may impact the allowable time between Shuttle flights because of

the cryogenic propellant boiloff.

Use of the Centaur OOS in an expendable mode gives the maximum

satellite weight. Preliminary estimates of the lifting capability

using a reuseable mode also have been made. The resulting satellite

weights are more sensitive to the assumptions about the vehicle charac-

teristics. However, a reuseable Centaur OOS would have, roughly, the

same lifting capability as the IUS.

Finally, higher satellite weights can be deployed only by using

more Shuttle flights and/or the development of a higher-performance 00S,

e.g., one with a nuclear propulsion system. Both these options appear

to decrease the feasibility of a WIDENET system compared to the above

cases.

For comparison, the SSUS is designed to carry two primary classes
of spacecraft. The Delta class (SSUS'-D), which requires up to 2,400
pounds to be put'into a geosync transfer orbit, and the Atlas-Centaur
class (SSUS-A), which requires up to 4,000 pounds to be put into a
geosync transfer orbit. It is expected that four Delta class or two
Atlas-Centaur class spacecraft can be carried on a single Shuttle flight.

The slopes of the IUS and OOS curves differ slightly because the
OOS curve is based on the formula given in Table A4.1-3.

For the IUS in this case, the thrust of the solid rocket motors is
60,280 pounds and produces a 5.2 g acceleration at the end of the third-
stage burnout. This load may impact the satellite design.
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A4.1.4 PROPULSION CALCULATIONS

The propulsion requirements shown in Section A4.1.3.1 for an upper

stage are based on a Hohmann transfer from a low-altitude circular park-

ing orbit to a geosynchronous orbit. * The first burn t AVl , at the park-

ing orbit is computed from Escobal (1968),

AV 	 2R- 1,VI	^l + R,	 (A4.1-1)

where

V2 = Or, = orbit speed of the parking orbit,**

R = rF/rI = final-to-initial orbit radii ratio,

WI , r  = initial and final orbit radii,

P = 3.986 x 10 5 km3 /sect.

The second burn, AV 
29 

at the final orbit is computed from

AV 	 2,2	 2X1l 32

V

	 [_1
)R 	 IR(l + R) I	 + 2 IR(l + R) I lRJ 

(1- cos 6)

(A4.1-2)

where

6 = magnitude of the plane change at burn 2.

Using Eqs. (A4.1-1) and (A4.1-2), AV  and AV  were computed for

parking orbit altitudes of 100 nmi, 190 nmi and 250 nmi and are shown in

Table A4.1-1.

1

F

	

	 *A Hohmann transfer has an elliptic trajectory between the two
(initial and final) burns with no plane changes, The above Table A4.1-1
calculations assume a 0° plane change at the first burn and a 28,5° plane
change at the second burn.

Fur a 190 nmi altitude parking orbit, V 	 25,253 ft/sec and
R = 6.278.	 I
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The ACS (attitude control system) orients and stabilizes the satel-

lite in three axes after separation from the launch vehicle.' For compari-

son Table A4.2-1 shows the ACS weight and power of several recent satellites.

Because the satellite antenna pointing requirement may be less than

1 arc min, a star tracker has been included in the baseline WIDENET ACS

shown in Table 4.3-2. The ACS would provide coarse pointing of the

entire satellite to about 0.1 degrees. Fine pointing of the antenna

would be .-one by tilting the secondary reflector via an uplink beacon

signal and/or 'the star tracker.

Reaction wheels can be categorized by their momentum range (Davis

et al., 1974). Small wheels are from 0.1 to 7 ft-lbf-sec and are used on

the ERTS and VELA satellites, medium wheels are from 5 to 50 ft-lbf-sec

and are used on FLTSATCOM and CTS satellites, and large wheels are from

200 to 2000 ft-lb f-sec and are used on Skylab and military spacecraft.

For preliminary design purposes a 5 to 50 ft-lb f-sec wheel size appears

sufficient for WIDENET.

Table A4.2-1. Attitude Control Systems.

Satellite Pounds Bus Watts Type

LES-9 105 25 bias

ATS-6 217 60 zero

FLTSATCOM 100 35 bias
(less array drive)

DSCS-II 17 35 bias

DSCS-III 79 49 zero

See references at the end of Chapter 4.
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F' APPENDIX A4.3

SPACEBORNE 2O-,GHZ .TRANSMITTER TECHNOLOGY

Few 20-GHz power amplifiers are presently available because of

previous lack of interest in this frequency band, An exception is the

amplifiers for the JCS (Japanese Communications Satellite) program

(TWT/4 Watts RF). The following paragraphs outline the current and

projected (1983 to 1988) spaceborne 20 -GHz power generation capabilities,

The devices considered are TWTs (traveling-wave tubes), IMPATT

diodes, and FETs (field-effect transistors) because these appear to be

the leading candidates for 20 -GHz applications (Staecher and Peterson,

1977). Amplifiers have been developed at slightly lower (12-18 GHz) and

slightly higher (35-40 GHz) frequencies. While high power/high frequency

amplifiers are not simply scaled,nevertheless the technology necessary

for a 20 GHz amplifier development is currently available.

Table A4.3-1 shows the 20 -GHz output and DC to RF efficiencies with

current technology. The TWTs give the highest power. These JCS tubes

have not been space qualified to military specifications, but they could

be so qualified in the 1980 time frame. Comparison between the solid-

state devices indicates that IMPAT`iCs offer twice the power and a more

mature technology; whereas, FETs offer twice the efficiency, linearity,

and less weight and combiner complexity. The difference in power between

TWTs and the solid-state devices may be somewhat reduced by the introduc-

tion of other communication parameters such as IMP (intermodulation product)

that could reduce TWT performance more than the solid-state device per-

formance. Data to make such comparisons at 20 GHz are unavailable,

Tables A4.3-2 and A4.3-.3 show the 1983 to 1988 projections at 20 GHz,

The TWT data are for helix tubes. While a coupled-cavity tube offers

higher output power, it is heavier, larger and more costly than its helix

counterpart. In addition more than 95% of all spaceborne TWT experience

is with helix tubes; consequently, the coupled cavity tube would require

substantially more development and demonstration of tube reliability.

i
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Table A4.3-1. Current 20-GHz Spaceborne Transmitter Technology.

Diode Performance Source Description /Comment

IMPATT Diode PRF = 0.7-1W Lincoln Laboratory GaAs, modified profile

p = 10-11% Development Program subharmonic termina-
tion, package

FET P = 0.5-1W MSC, "End of 1 78 GaAs, unpackaged
RF
n = 10-15 / projection" based on

Ku-band development
work in progress

TWTA PRF = 4W Hughes Model 129411

H = 17.5%
(JCS program)

Table A4.3-2. 1983-1988 Projected 20-GHz
Spaceborne Transmitter
Technology.

Device Performance	 Source	 Description/Comment

IMPATT PRF n, 2-4W	 Raytheon	 GaAs, double drift

11 ǹti, 20-25%	 (r	 €4vvelopment work
Ak	 ^ y^zrA' at present)

FET PRF	 2-3W	 MSC	 Gwks, into rnal -

20T	 matching ^,s for
packager d,,.vice

TWTA 2-4W/33l to	 Hughes	 250 H; development
30W/33%	 work for Bell Labs

t
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Table A4.3-3. 1983-1988 Projected Transmitter Configuration.
	

I

Power Approximate Approximate Approximate
Device Out DC Power Size (cm) Weight (Kg) Description/Comment

IMPATT 2W low 25 X 8 x 2 ,8 Series cbain, 5-6
stages includes

4W 20W 25 x 8 x 2 current regulation
(90X eff.), circu-
lator and interstage
isolator loss.	 Micro-
strip environment.

FET 2W low 20 x 5 x 2 .3 Series chain, 6-8
stages,	 Microstrip
environment.

4W 20W 26 x 5 x 2 .4 Power combining at
output likely for 4W.

TWTA 2W 6W 34 x 11 x 9 2.2 Similar to 250H.

4W 12W 34 x 11 x 9 2.2 Size and weight from
MOD 1294H.

From a survey of available tubes at other frequencies, 40 Watts appears

to be the limit for a helix tube operating at 20 GHz (Frediani, 1978). Ex-

amples of current high power/high frequency helix-type TWTs are a 100-to7

150 Watt tube (Thomson-CSF) operating from 10 to 16 GHz and a 200-Watt tube

(AEG-Telefunken) operating at 12 GHz. A 10-Watt tube (Watkins-Johnson Type

3638) operating from 26 to 40 GHz (3 GHz bandwidth) is under development.

TWT intermodulation data extrapolated from lower frequencies suggests

that for two equal amplitude signals, a 3-dB to 10-dB power backoff would

be required for a 10-dB IMP reduction. Redesign of the TWT to optimize

efficiency for operation in a backoff mode may be feasible. TWT lifetime

is limited by cathode wearout and is a function of time and cathode loading.

These is insufficient history at 20 GHz to determine a MTTF (mean time to

failure). However, a design life of 7 to 10 years (6 x 104 to 9 x 104 hours)

appears to be achievable. The effect of transient operation is unknown.

The above data suggest that TWTs are likely to maintain their lead in

power output and efficiency while having acceptable reliability and IMP.

For these reasons a 10 W (RF) TWT, 30% efficiency, 3 GHz bandwidth, and

continuous operation are assumed for preliminary design purposes.
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APPENDIX A4.4

SWITCHING.MATRIX

In this appendix a model is given for estimating the number.' of SPST

(single pole, single throw) switches necessary to interconnect N input

lines to N output lines.

Following Shannon, consider 'a sequence in which the input line 1

is connected to one of N output lines,, followed by input line 2 being

connected to one of the N-1 remaining output lines, etc. The number of

different sequences is n:. Each particular sequence corresponds to a

particular state of the SPST switches. For S binary switches there are

2 S possible states. Hence, to have no blockage

2S > N!

Or,

S > N 109 2 N

Using a sparse crossbar to interconnect, Bassalygo and Pensher

(Pippenger, 1978) proved the existence of a switch matrix such that

S = cN log  N

where c is a constant. We have examined a realization of a switch matrix

based on a two-dimensional array of 4 x 4 switches. For N = 350 the

number of switches was S = 10,440 for modest blocking probability.

Clos networks are a more general class of multistage switching network.

Marcus (1977) has reviewed their characteristics; his Figure 6 shows that

rearrangeable Clos networks require only 'L 12N 1og10 N switches. Hence,

as a design equation we used:

S = 12N 1og
1O N

for arbitrary N.

See references at the end of Chapter 4.



APPENDIX A4.5

a,,
COMMUNICATIONS PROCESSOR

The communications computer controls the switching matrix on board

the satellite. Figure 4-,9 shows the architecture assumed for estimation

purposes. The following paragraphs give the model used to estimate the

basic computer parameters of memory size, speed, weight and power.

The dominant function of the computer is the switch-command task,

and the associated memory and command circuits dominate computer size and

weight. We assume that the command algorithms reside largely on the ground

and that the switch command sequence is communicated via a standard

20/30 GHz channel. The baseline digital switch has 'u 2400 switches

which could be thrown many times within each TDM cycle of ti 4 msec.

If the smallest packet corresponds to a 256-kbps link, then

'u 400 x 2400 106 bits specify an entire TDMA cycle, and can be

repetitively executed; there are ti 400 256-kb packets per cycle. Such

a bit stream must be generated by the computer once per TDMA cycle, or

250 times per second. if these are output in 250-bit words, then

'ti 1 Mops suffices.

The weight and power requirements for this computer are estimated by

scaling a point design of a CMOS /SOS computer of 12.5 lbs/27 (conditioned)

Watts for 500 kbit memory, 1.5 Mop /sec. Assuming a. linear scaling according

to speed, the 12.8 Gbps baseline computer is about 20 lbs/45 Watts as shown

in Table 4-8.

0

e
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APPENDIX A4.6

RCS PROPULSION REQUIREMENTS AND-SYSTEM MODEL

The RCS propulsion requirements involve station keeping the satellite

in a geosynchronous orbit after deployment, momentum dumping of the

reaction wheels, and orbit trim to correct for launch vehicle tipoff.

The following paragraphs estimate each of these factors.

Since the total WIDENET system cost is expected to be dominated by

the ground segment, N/S (North/South) station keeping is done by the

satellite to mitigate antenna tracking by the ground stations. The rate

of long-term inclination buildup (about an 18-year period) varies uniformly

from about 0.95 deg/yr in 1988 to 0.79 deg/yr in 1997 (Isley and Duck,

1974). Roughly, 75% of this buildup is due to lunar effects and 25% is

due to solar effects. A maximum of about 167 ft/sec/yr is required to

prevent long-term inclination buildup. The short-term latitude excur-

sions (about a 14-day period) will be less than 1 arc min and, hence,

are unnecessary for this application to correct. Thus, for a 7-year

mission the N/S station keeping requirement is about 1170 ft/sec.

The E/W (East-West) drift is due to the asphericity of the earth's

(122 harmonic) gravitational field. Depending on the longitude, the

CONUS E/W requirement can vary from 0 ft/sec/yr at a stable point (107°W)

to almost 6 ft/sec/yr (60°W) for station keeping to within 4.5 arc min.

Assuming the maximum 6 ft/sec/yr, the E/W requirement for 7 years is about

40 ft/sec.

Orbit trim and momentum dumping are estimated to be 30 ft/sec Wad

70 ft/sec, respectively, based on the LES 8/9 and other satellites. A

summary of the RCS propulsion requirements is shown in Table 4.3-1.

Tankage, feed system and thruster weights are estimated from flight-

designed hardware. For a pressurized monopropellant hydrazine system

(Free and Hudson, 1974).

CONUS is located roughly between 60°W (East Coast) and 125 0W (West
Coast).
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W 2/3

Wtank 
a
 73o	

t	 (A4.6-•1)

where

Wtank " tankage and feed weight (lb m),

W 
	 - propellant weight (lb m).

Assuming 24 1-lbf thrusters each weighing 0.8 lb m , the design equation

for the RCS weight, 
WRCS' 

is

W 2/3

'A- 20 + 7 30 	 (A4.6-2)
RCS

The above system has a ISP 220 lbf sec/lbm.

The RCS bus power is estimated to be 25 Watts based on current

designs.

By 1990 a bipropellant system may be available with a I SP 300 lb£

sec/lbm (Schindler and_Schoenman, 1976); hence, the above model may over-

bound the RCS weight.

DSCS-III (19 W), FLTSAT (18 W), ATS-6 (24 W).

See references at the end of Chapter 4.

- 266 -



9

APPENDIX A5.1

TDMA BUFFER

In this appendix the TDMA format of the baseline system is used to

estimate the TDMA buffer parameters including cost.

Figure A5.1-1 shows a schematic of a TDMA system in which n input

bit streams are multiplexed into a single output bit stream. -One TDMA

frame time (tF sec.) corresponds to transmitting n packets (t G sec) each

with 
k  bits, separated by n gaps tG . Thus t  = n(tP + tG). From these

figures the following relationships can be written:

k  = R 
I 

t F = RO tp ,	 (A5.1-1)

R0 RM/tP = n(RI + ROH) ,	 (A5.1-2)

t  = n(tP + tG)	 (A5.1-3)

RI
tp = R  t  ,	 (A5.1-4)

where

RI' RO' ROH
tp , t0' tF

k 
n

The frame tii

= input, output, overhead bit rates (bits/sec),

= packet, guard, frame times (sec),

= buffer memory per channel (bits),

= number of multiplexed channels.

ne, tF , is related to the video frame time by:

t = tVF
F n 

where

`	 tVF = video frame time (two scans)(sec),

n = number of packets required to send one

video frame (two scans).

For the baseline system,
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n  = 8 packets/frame,

n=4,

RI = 32 Mbps,

ROH = 3 Mbps,

tVF 33.3 cosec (30 Hz video frame rate).

Then, Eqs. (A5.1-1) to (A5.1,5) give:

t  = 4.167 msec,

tP = 954.2 usec,

,tG = 87.5 usec,

R  = 140 Mbps,

k  = 133.3 kbits.

Assume a CCD implementation using a LARAM (line addressable random

access memory) system organization for short access time and high data

rate (Harloff, 1978). For 133.3-kbit memory buffers on a single chip

with a 10-MHz shift rate and a 1,000-bit length for each register, the

average access time is 50 usec. Taking data from 50 registers in parallel,

one chip allows a 133.3 kbit block to be transmitted in less then 300 usec

resulting in a 0.3-msec block acquisition time. For 16 channels (8 trans-

mit, 8 receive) per ground station, rte module memory capacity is about

2 Mbits. Organization for smaller acquisition times would be straight-

forward and quite plausible by shortening the registers, using more chips

in parallel or increasing the shift rate. The dominant cost item is

memory, so a buffer for more channels at lower data rates could be nearly

identical.

j	 Projections for the early 1980's show a CCD cost of about 20 to 50
i

millcents per bit at these access times, including controls and buffering

(Feth, 1976). For a 2-Mbit system (memory for 16 simultaneous links),

the resulting cost per ground station is about $600 (1979). On a per

link basis the cost is about $40 (1979). Since this cost is low by 1979

standards and the projected technology gains may not be realized, the

per link cost is increased to $500 (1979) or $8K per ground station.

See references at the end of Chapter 5.
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APPENDIX A5.2

CODEC

In this appendix the characteristics of a convolutional encoder/

Viterbi decoder are used to estimate the cost of the CODEC.

Consider a convolutional encoder with a K-stage shift register.

Assume k data bits are shifted each cycle through the shift register and

n parity sums are formed to give a k/n encoding rate.

One decode cycle gives k decoder output bits. Assuming a Viterbi

decoder, there are 2K lookup, add and compares per decode cycle at data
rate R or 

k 
2K lookup, add and compares per second. There are 2K-k old

paths to consider each about 4K bits long, or 4K2K
-k 

path-bits to be

stored. There are also 2 K-k path metrics. Each metric has

(log2 En--+ nMF) bits, where nMF is the bits for matched-filter quantiza

tion, or a total (log2 k+ nMF)2K
-k
 metric-bits to be stored. Hence,

the total decoder memory per channel is about (4K + log2 
Kn 

+ nMF
bits.bits.

Assuming rate 2/3 encoding with K = 4, k = 2, n = 3, and nMF = 8,

the memory required is about 45 bits per channel. The speed is 8R for

each lookup, add and compare. Assuming each lookup and compare is
equivalent to an add, for R 35 Mbps the speed is about 840 Mops/sec/

channel. These numbers show that the speed to implement the Viterbi

decoder is the dominant cost driven.

At present a chip can perform an 8-bit multiply in 70 nsec and

costs $70 (1979) in lots of 100 units (TRW/TDC-1008J). Assuming this

chip is equivalent to a 7-nsec add or 140 Mops/sec, paralleling six

chips to allow for overhead gives a recurring cost of $450 (1979) per

channel in lots of 100 units.
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