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A h e a t  t ransfer  area 

constant 
h C1 
0 

? h hea t  t ransfer  coef f ic ien t  
W 

k thermal conductivity 

Nu Nusselt number 

P pressure 

Pr Prandt l  number 

9 hea t  f lux 

R gas constant 

Re Reynolds number 

T temperature 

w mass flow r a t e  

x surface d i s tance  

r function of s p e c i f i c  heat  r a t i o s  

Y spec i f ic  hea t  r a t i o  

CI viscosi ty  

T wall o r  coating thickness; c h a r a c t e r i s t i c  
dinlens ion 

'P ( T ~  - T~,) /(T,  - T,..) 

SUBSCRIPTS : 

c coolant 

c i  coolant i n l e t  

e  engine 

g gas i n l e t  

ge e f f e c t i v e  gas 

t t e s t  

u  uncoated condition 

w wall 

w i  cooLant s i d e  of metal wall 

wo gas s i d e  of metal wal l  

z i  metal-ceramic i n t e r f a c e  

-3 gas s i d e  of ceramic 

L ceramic 

SUPERSCRIPTS : 

( e )  engine conditions 

(t) t e s t c o n d i t i o n s  

- average 



INTRODUCTION 

Ceramic thermal b s r r i e r  coatings a r e  being con- 
s idered f o r  the ho t  sect ion components of gas turbine 
engines to  supplement the thermal protect ion provided 
by various air-cool ing schemes. The thermal perfor- 
mance of these coated components a r e  o f ten  evaluated 
c t  reduced gas/coolant temperatures and pressures to  
avoid the complexity and expense of t e s t i n g  a t  actual  
engine guslcoolant conditions. However, extrapola- 
t i o n  (scaling) of these t e s t  r e a u l t s  to  engine condi- 
t ions can lead t o  erroneous conclusions unless the 
thermal e f fec t s  of var ia t ions  i n  ceramic, metal, gas, 
and coolant thermal conduct ivi t ies  a r e  considered. 

Several techniques e x i s t  which can be used to 
e s t a b l i s h  the reduced gaslcoolant temperatures and 
pressures (Xefs. (1) t o  (&)) necess :y f o r  t es t ing  
turbine components a t  s i m i l a r i t y  c0rr;ltions. The ap- 
proach used i n  each of these refererces  i s  somewhat 
d i f f e r e n t  but the r e s u l t s  and conclusions a r e  basi-  
c a l l y  the  same. That i s ,  k ine t ic ,  dynamic, and ther- 
mal s i m i l a r i t y  of the  gas and coolant can be main- 
tained between t e s t  conditions and engine conditions 
by maintaicing an equa l i ty  of various dimensionless 
parameters s1.1ch as  Reynolds, Prandt l ,  and Mach num- 
bers .  References (2) and (2) a l s o  discuss the need 
t o  maintain s i m i l a r i t y  of the m a t ~ r i a l  thermal con- 
d u c t i v i t y  to  achieve a s imi la r  thermal performance of 
the hardware a t  both t e s t  and engine conditions. 
Reference (z), however, concludes t h a t  the thermal 
conductivity e f f e c t  i s  not  s i g n i f i c a n t  f o r  the  condi- 
t ions and mater ial  considered. Reference (2) , how- 
ever, shows tha t  gas, coolant,  and metal thermal con- 
d u c t i v i t y  var ia t tons  between t e s t  and engine condi- 
t ions leads t o  a 4.0 t o  4.5 percent e r r o r  i n  the cool- 
ing effect iveness  parameter used for  comparison. 
Reference (5) invest igated cases of a ccramic ther-3 
ma1 b a r r i e r  coating mater ial  added t o  turbine vane 
a i r f o i l  and found t h a t  the addi t ion of the ceramic 
could r e s u l t  i n  e r r o r s  when data comparisons a r e  made 
between ceramic coated and uncoated turbine vanes and 
when these data a r e  extrapolated to  engine conditions. 
A correct ion technique developed i n  reference (2) re- 
su l ted  i n  correct ion fac tors  which were of opposite 
s ign between the uncoated vane data  and the coated 
vane da ta .  

The analysis of reference (2) i s  used here in  t o  
p red ic t  the data correct ions required f o r  ceramic 
coated and uncoated turbine vanes t es ted  a t  reduced 
gas/coolant temperatures and pressures. These cor- 
rected data a re  then compared t o  ac tua l  data taken a t  
engine conditions. The r e s u l t s  a r e  a l so  presented as 
an e r r o r  between engine and t e s t  conditions f o r  tur- 
birre vane cooling effect iveness  parameters from 0.3 
to  0.6. 

APPARATUS AND EXPERIMENTAL PROCEDURE 

Cascade F a c i l i t y  
The cascade f a c i l i t y  was designed f o r  continu- 

ous operation a t  gas temperatures and pressures up t o  
1600 K and 100 ~ / c m ~  (absolute) ,  A schematic of the 
cascade f a c i l i t y  i s  shown i n  Fig. l ( a ) .  The cascade 
f a c i l i t y  consisted of f i v e  major components shown i n  
Fig. l ( b ) :  an i n l e t  sec t ion ,  a high temperature com- 
bustor sect ion,  a circular-:,-annular t r a n s i t i o n  sec- 
t ion,  t h e  t e s t  sec t ion ,  and an e x i t  sect ion.  The 
t r a n s i t i o n ,  t e s t ,  and exir sec t ion  were water-cooled 
t o  achieve s t ructura;  d u r a b i l i t y  during high- 
temperature operation. A more de ta i led  descript ion 
i s  contained i n  reference (6). 

The high temperature combustor sec t ion  was re-  
moved and replaced by a spool piece f o r  low- 
temperature t e s t s  i n  the f a c i l i t y .  Hot combustion 
a i r  was then supplied t o  the: t e s t  sect ion by the low 
temperature combustor shown i n  Big. l ( a ) .  The low 
temperature combustor was capable of supplying com- 
bustion a i r  to  the t e s t  sec t ion  a t  temperatures up t o  
900 K. 

The t e s t  sect ion was a 23O annular sec tor  of a 
vane row and contained four vanes and f i v e  flow 
channels. A plan view of the t e s t  sect ion,  showing 
t h e  t e s t  vane (vane number 2)  and selected ins t ru -  
mentation, i s  presented i n  Fig. 2. The s lave vanes 
complete thc. flow channels f o r  the t e s t  vane and 
serve as rad ia t ion  shield15 between the  t e s t  vane and 
the water-cooled walls of the  t e s t  sect ion.  The t e s t  
sec t ion  walls were coated with y t t r i a  s t a b i l i z e d  z i r -  
conia to  increase the surface temperature and mini- 
mize net  thermal rad ia t ion  from the t e s t  vane. 

Vane - 
The turbine vane used i n  t h i s  inves t iga t ion  was 

a 3-75 s i z e  a i r f o i l  with impingement; cooling i n  the 
forward 213 of the  a i r f o i l  and-pin finlfilm-cooling 
i n  the a f t  113 of the a i r f o i l .  A cross-sect ional  
schematic of the  a i r f o i l  and cooling configuration i s  
shown i n  Fig. 3. The vane span was 9.78 cm and the 
midspan chord length was 6.28 cm. The wall thickness 
i n  the impingement cooled region was 0.152 cm. The 
vane a i r f o i l  s h e l l  mater ial  was MAR M-302. 

The impingement i n s e r t  had a staggered array of 
holes which were 0.051 cm i n  diameter. The spacing 
varied,  depending on locat ion,  between 6.5 and 9 hole  
diameters span-wise and between 2.4 and 9 holes diam- 
e t e r s  chord-wise. The closely spaced holes were i n  
t h e  leading edge region (6.5 by 2.4) while the mid- 
chord region had la rger  spacings (9 by 9 on the  pres- 
s u r e  s i d e  and 8.5 by 8.5 on the suct ion s ide) .  The 
impingement hole- t o  heat-transfer-surface-spacing 
was approximately 1.5 hole  diameters i n  the  midchord 
region and approximately 2 hole  diameters i n  the lead- 
ing edge region. The impingement i n s e r t  mater ial  was 
L-605. 

There were 7 chord-wise rows of round pin f i n s  
i n  the s p l i t  t r a i l i n g  edge. The three upstream rows 
had pin diameters of approximately 0.102 cm with a 
span-wise spacing of 0.406 cm and a chord-wise spac- 
ing of 0.353 cm. The l a s t  four rows had pin diame- 
t e r s  of 0.076 cm with a spsa-wise spacing of 0.305 cm 
and a chord-wise spacing of 0.264 cm. The width of 
the  s p l i t  t r a i l i n g  edge channel a t  the point  of d i s -  
charge was 0.089 cm. 

A s i n g l e  row of f i lm cooling holes was located 
between pin f i n  rows 3 and 4 on the vane pressure sur-  
face and ejected a i r  a t  an angle of 30° t o  the vane 
surface i n  the span-wise d i rec t ion .  The purpose of 
these holes was t o  provide a s u f f i c i e n t  flow area t o  
accommodate the  design coolant flow requirements. 

Thermal Bar r ie r  Coating 
The procedure used f o r  deoositine, ceramic coat- - 

ing (Ref. (l)) onto the vane metal s u b s t r a t e  was t o  
prepare t h e  subs t ra te  sur face  by gr i t -b las t ing ,  
plasma-spray on a bond coat  of NiCrAly, and then 
plasma-sprsy on the ceramic coating of y t t r i a  s t a b i -  
l i z e d  zirconia.  The measured surface roughness of 
t h e  applied ceramic coating was 8 t o  10 micrometers, 
rms. However, the coating surface was polished with 
s i l i c o n  carbide paper t o  a sur face  f i n i s h  of about 
3 micrometers, rms. 

The bond and ceramic coatings were b u i l t  up t o  
t h e  desired thickness by a succession of spray appl i-  



c a t i o n s  i n  the  span-wise and chord-wise d i r e c t i o n s  on 
t h e  a i r f o i l .  The coat ings  were f i r s t  appl ied t o  the  
vane leading edge, then t o  the  t r a i l i n g  edge, and 
f i n a l l y  tc, the  s u c t i o n  and p ressu re  su r faces .  The 
f i n a l  t o t s 1  coa t ing  thickness was determined, a f t e r  
t h e  pol ishing opera t ion ,  by comparing 10X p r o f i l e s  
o f  t h e  c l i r foi l  be fo re  and a f t e r  coat ing a t  each of 
t h e  thermocouple loca t ions .  The ceramic coat ing 
th ickness  was then assumed t o  be the  t o t a l  thickness 
l e s s  t h e  approximately 0.010 cm t h i c k  bond coat .  
The d i s t r i b u t i o n  of t h e  coat ing thickness i s  given i n  
Table  I. The {;dating was tapered t o  n e g l i g i b l e  
th ickness  a t  tha"mocoup1e l o c a t i o n  12. This was nec- 
e s s a r y  becausl of the  f i l m  cool ing ho les  a f t  of t h i s  
l o c a t i o n .  The coa t ing  techniques were not  s u f f i c i e n t -  
l y  developed a t  t h e  time t o  permit  coat ing i n  t h e  
h o l e  region without  h o l e  blockage. 

T e s t  Procedure 
Thermal performance t e s t s  were made a t  t h e  gas 

and coolant  condi t ions  given i n  Table 11. Tha de- - 
s i r e d  combus t i o n  gas temperature,  pressure ,  a. e x i t  
c r i t i c a l  ve loc i ty  r s t i o  (0.85) were e s t ab l i shed  and 
then t h e  cool ing-ai r  :lowrare was var ied i n  a s t ep -  
wise fashion from t e s t  po in t  t o  t e s t  point .  Steady 
s t a t e  data  were recorded a t  each of the  cool ing a i r  
and gas  condikion se t -po in t s .  Ambient temperature 
cool ing a i r  was u t i l i z e d  f o r  a l l  t e s t  and engine con- 
d i t i o n s  inves t iga ted .  The da ta  taken i n  t h e  cascade 
a t  h igh  gas temperatures and pressures  a r e  def ined as 
engine data  while t h e  da ta  taken a t  reduced gas tem- 
pe ra tu res  and pressures  a r e  def ined as t e s t  da ta .  

INSTRUMENTATION 

A r a d i a l l y  t r ave r s ing ,  s o n i c  a sp i ra t ed ,  type R 
(Platinum vs  Pla t inum - 13% Rhodium) t o t a l  tempera- 
t u r e  probe and a r a d i a l l y  t r ave r s ing  t o t a l  p ressu re  
probe provided t h e  i n l e t  gas condi t ions  t o  t h e  t e s t  
vane (Fig. 2 ) .  The temperature d i s t r i b u t i o n  was mea- 
sured upstream of channel 3 and t h e  pressure  d i s t r i -  
bu t ion  was measured upstream of channel 4. The i n l e t  
s t a t i c  pressure was measured only  a t  the  inne r  radius  
(hub) and was assumed t o  be cons tan t  across t h e  gas 
s t ream.  S t a t i c  p ressu res  were a l s o  measured a t  t h e  
e x i t  midchannel p o s i t i o n  of channels 2 ,  3,  and k a t  
both  t h e  inner  (hub) and ou te r  ( t i p )  r ad ius  pla t forms.  
These pregsures were used t o  e s t a b l i s h  the  midspan 
i n l e t  and e x i t  c r i t i c a l  v e l o c i t y  r a t i o s .  

The midspan of the  t e s t  vane a i r f o i l  was i n s t r u -  
mented with an a r r a y  of 12 Chromel-Alumel thermo- 
couples .  Figure 3 shows the  r e l a t i v e  l o c a t i o n  of 
these  thermocouples wi th  r e s p e c t  t o  t h e  important  
f e a t u r e s  of the  vane. Chord-wise thermocouple loca- 
t i o n s  a r e  given i n  Table I. The thermocouples were 
i n s t a l l e d  i n  s l o t s  EDM'ed i n  the  e x t e r i o r  s u r f a c e  of 
the  a i r f o i l .  The junct ion end o f  each thermocouple 
assembly was peened i n t o  the  s l o t  which e f f e c t i v e l y  
loca ted  the  measuring s t a t i o n  a s p e c i f i e d  d i s t a n c e  
from t h e  bottom of t h e  s l o t .  The remainder o f  the  
s l o t  over  the thermocouple junc t ion  was f i l l e d  by 
spot-welding a nickel-chromium mate r i a l  i n  t h e  void 
and f a i r i n g  the r e s u l t a n t  cons t ruc t ion  t o  t h e  o r i g i -  
n a l  a i r f o i l  p r o f i l e .  

The cons t ruc t ion  of the  thermocouple assemblies 
cons i s t ed  of Chromel-Alumel thermoelements wi th  mag- 
nesium oxide i n s u l a t i o n  i n  an Inconel-600 sheath .  
These a s ~ e m b l i e s  were drawn t o  two sheath  s i z e s ,  
0.05 and 0.025 cm o u t s i d e  diameter,  with a closed-end 
grounded junction formed a t  one end. The t h r e e  
thermocouples nea r  t h e  leading edge were 0.025 cm 
diameter  while t h e  remaining thermocouples were of 

0.05 cm diameter.  A d e t a i l e d  desc r ip t ion  of t h e  pro- 
cedures u t i l i z e d  f o r  thermocouple cons t ruc t ion  i s  
given i n  r e fe rence  (g). The s l o t s  f o r  the  0.05 cm 
diameter thermocouples were 0.06 cm square whi le  t h e  
s l o t s  f o r  t h e  0.025 cm diameter thermocouples were 
0.03 cm square.  The measuring s t a t i o n s  were nominal- 
l y  located 0.047 and 0.022 cm, r e spec t ive ly ,  belor? 
t h e  gas s i d e  su r face  of the  a i r f o i l .  

"NALYS I S  METHOD 

S i m i l a r i t y  
References (g) and (3) show t h a t  Reynolds, 

P rand t l ,  and Mach numbers a r e  s u f f i c i e n t  t o  ensure  
dynamic, kinematic,  and thermal s i m i l a r i t y  of t h e  
gas and coolant .  Geametric s imi la r i , t y  i s  maintaii.ed 
by using prototype engine component hardware. The 
fol lowing equat ions  from references  (2) and (3) estab-  
l i s h  t h e  r e l a t i o n s h i p  between t h e  engine and t e s t  
condi t ions  f o r  s i m i l a r i t y  of both t h e  h o t  gas and t h e  
coolant .  These equations a r e  based on an e q u a l i t y  of 
momentum thickness  Reynolds number and Mach number 
between t h e  gas condi t ions  of the  engine and t h e  
s i m i l a r i t y  t c s  t s  . I n  addi t ion,  an e q u a l i t y  of the  
coolant  Reynolds number i s  assumed. 

where 

Maintaining s i m i l a r i t y  between engine and t e s t  
condi t ions  is  necessary f o r  dup l i ca t ing  thermal per- 
formance of t h e  t e s t  components. The vane a i r f o i l  
temperature d i s t r i b u t i o n  i s  genera l ly  sought by 
these  t e s t s  of a i r -cooled tu rb ine  vanes. Refer- 
ence (2) has  shown t h a t  a i r f o i l  temperatures a t  en- 
g ine  condi t ions  can be predic ted from t e s t  r e s u l t s  by 
a dimensionless temperature d i f f e r e n c e  r a t i o .  This 
r a t i o  (Tg - T,,)/(T~ - Tc), which is a l s o  c a l l e d  t h e  
cool ing e f fec t iveness  cp, is based on a one- 
dimensional h e a t  balance which esnumes h e a t  flow only 
from t h e  gas  t o  t h e  coolank by convection and conduc- 
t ion .  

Figure  4 i s  a r ep resen ta t ive  c ross - sec t iona l  
schematic of a cooled tu rb ine  component wi th  a l a y e r  
of a ceramic coa t ing  on a metal s u b s t r a t e .  The com- 
ponent temperature i s  assumed known a t  t h e  metal- 
ceramic i n t e r f a c e .  The following one-dimensional 
equat ions  can be w r i t t e n  by neg lec t ing  l a t e r a l  h e a t  
conduction i n  t h e  component and r a d i a t i o n  h e a t  t r ans -  
f e r  between t h e  component and the  surrounding environ- 
ment. 

where 



T z i  i s  t he  metal-ceramic i n t e r f a c e  te lnpera t i~re  which 
i s  a l s o  t h e  gas  s i d e  ~ n e t a l  t en~pe ra tu re  Two, The i n -  
l e t  t o t a l  gas and coolant  tenlperature valucs  can be 
s u b s t i t u e e d  f o r  l o c a l  va lues  (Ref. (9)) and the  above 
equa t ions  then con~bincd t o  o b t a i n  t h e  fo l lowing 
dimensionless form. It  i s  a l s o  assunlcd t h a t  the  h e a t  
t r a n s f e r  areas  through t h e  a i r f o i l  a r e  equa l  (no 
c u r v a t u r e ) .  

A vane wi thout  t h e  ceramic c o a t i n g  con be rcpresented  
by equa t ions  (G), (a), and (9) where TZo i n  equa- 
t i o n  (G) i s  r ep l aced  by Two. 

I n  o rde r  t h a t  t h e  model coo l ing  e f f e c t i v e n e s s ,  
q, be d i r e c t l y  a p p l i c a b l e  equat ions  (12) nnd (13) 
show i t  i s  necessary  t o  have Nusse l t  number s i m i l a r -  
i t y .  S i n c e  hea t  t r a n s f e r  r e s u l t s  follow t h e  form 
Nu = c l ~ e m P r n  Reynolds and P r a n d t l  number s i m i l a r -  
i t y  a s s u r e s  achieving the  Nusse l t  number s i n l i l a r i t y  
r equ i r ed  i n  equat ions  (12) and (13). I n  add i t i on ,  
e q u a l i t y  o f  the  thernlal conduc t iv i ty  r a t i o s  nlus t be 
niaintained i f  t o t a l  s i n l i l a r i t y  o f  t he  cool ing  e f f e c -  
t i veness  i s  t o  be maintained between t e s t  and engine 
cond i t i ons .  This i s ,  gene ra l ly ,  no t  p o s s i b l e  with 
most component n l a t e r i a l s .  

Cooling Ef fec t iveness  Cor rec t ion  
The i n a b i l i t y  t o  mainta in  e o u a l i t y  o f  t h e  ther-  

mal conduc t iv i ty  i a t i o s  can l e a d ' t o  s i g n i f i c a n t  
e r r o r s  when us ing t e s t  d a t a  t o  p r e d i c t  component tom- 
pe ra tu re s  a t  engine  cond i t i ons .  The magnitude of 
t h i s  e r r o r  can be  determined by c a l c u l a t i n g  t h e  t o t a l  
d e r i v a t i v e  of cqua t ions  (12) and (13) with r e s p e c t  
t o  t h e s e  v a r i a b l e s .  

Kefcrence (4) has shown t h a t ,  s i n c e  t h e  r a t i o  
hg/hc i s  p ropor t iona l  t o  kg/kc, c o r r e c t i n g  f o r  t h e  
gas - to -coo lan t  t h e n l ~ a l  conduccivi ty  r o t i o  between 
t c s t  and engine  cond i t i ons  i s  equ iva l en t  t o  c o r r e c t -  
i n g  the  h e a t  t r a n s f e r  c o e f f i c i e n t  i n  a  s i m p l i f i e d  
model. The e r r o r  model r cp re sen ted  by equa t ion  (14) 
can  a l s o  be  used t o  c a l c u l a t e  a  c o r r e c t i o n  f a c t o r  
between t e s t  d a t a  and eng ine  d a t a .  

The f i r s t  p a r t i a l  d e r i v a t i v e  i n  equa t ion  (14) 
b e c o ~ ~ ~ e s  

The second p a r t i a l  d e r i v a t i v e  i n  equa t ion  (14) be- 
conies 

The t h i r d  p a r t i a l  d e r i v a t i v e  i n  equat ion  (14) becomes 

F i n a l l y ,  conibining equat ions  (15) t o  (17) and s in lp l i -  
fy ing ,  t h e  c o r r e c t i o n  f a c t o r  f o r  a  ceramic coated 
t u r b i n e  vane i s  

l-q, 

e - t  

c - t  e - t  

where 



A(?) e - t  =(%) -(?) t 

e - t  

and 

A($) e - t  =($) e -(?) t 

The correct ion fac tor  fo r  an uncoated turbine 
vane is  wri t ten as  follows 

@u,e-t  
e - t  

Nu T 

e - t  

F ina l ly ,  the cooling effect iveness  a t  engine 
conditions can be defined as the  cooling e f fec t ive-  
ness a t  t e s t  conditions plus the  correct ion fac tor .  

A l l  the terms i n  these equations f o r  the correc- 
t ion  f a c t o r s  a re  known or  can be  calculated. The gas 
s ide  h e a t  t rans fe r  coef f ic ien t  can be calculated by 
whatever method the user  has most confLdence i n  
modeling h i s  experiment. The turbulent f l a t  p l a t  
cor re la t ion  i s  used herein. 

The gas and coolant thermodynamic and t ransport  prop- 
e r t i e s  a r e  taken from reference (10) while the metal 
and ceramic thermal collductivity values tire taken 
from references (ll) and (s), respect ively.  

RESULTS AND DISCUSSION 

The s i m i l a r i t y  re la t ionsh ip  of turt:ae i n l e t  
gas temperature and pressure expressed by equa- 
t ion (1) i s  shown i n  Fig. 5. One point on each curve 
represents  a typical  gas turbine engine with a tu r -  
bine i n l e t  temperature and pressure of 1550 K and 
8.3 atm f o r  the uncoated vane and 1440 K and 8.6 atm 
for  t h e  ceramic coated vane. The i n l e t  coolant tem- 
l ~ e r a t u r e  assumed f o r  these engine conditions was 
300 K (see Table 11). Choosing e i t h e r  a t e s t  gas 
temperature or pressure f ixes  the other ,  and a l s o  
f ixes  a l l  other  parameters which s a t i s f y  the s imilar-  
i t y  re la t ionsh ips .  The reduced gas temperature and 
pressure t e s t  conditions were 890 K and 4.5 atm f o r  
the uncoated vane and 920 K and 5.2 atm for  the 
coated vane. The t e s t  condition coolant temperature 
was ambient a i r  a t  300 K which was not the 180 K re -  
quired by s i m i l a r i t y  constraints .  The discussion 
that  follows w i l l  r e f e r  t o  data  taken a t  high gas 
temperature and pressure as "engine data" and w i l l  
r e fe r  t o  data  taken a t  redcced gas temperature and 
pressure as " tes t  data." 

Cooling effectivcnc.ss correct ion factors  were 
calculated by the procedure discussed i n  the  ANAUSIS 
PETHOD sec t ion  and the test: and engine conditions 
selected f o r  study. Since the coolant i n l e t  tempera- 
tu re  f o r  the  t e s t  data  was greater  than tha t  required 
f o r  s i m i l a r i t y  a cor rec t ion  procedure s imilar  t o  t h a t  
developed i n  reference (9) was used to determine i t s  
e f f e c t  on the cooling effect iveness .  This correct ion 
foctor  i s  combined with the corrections f o r  the 
ceramic and metal thermal conductivity e f fec t s .  
Tl~eso ne t  t o t a l  correct ion factors  a r e  shown i n  
Fig. 6 as a percent correct ion versus the cooling 
effect iveness .  The n e t  correction f o r  the ceramic 
coated vane, a t  the conditions invest igated,  i s  es- 
s e n t i a l l y  zero near a 4, of 0.4 and minus 3 percent 
a t  a cp of 0.57. An analysis  of the  various terms 
of the correct ion equation show t h a t  a posi t ive cor- 
rect ion f o r  the ceramic i s  o f f - se t  by negative cor- 
rec t ions  f o r  both the metal and the  coolant thereby 
reducing the  ne t  e f f e c t  t o  nearly zero. In cons t res t ,  
the net  correct ion f o r  the uncoated vane i s  s t r i c t l y  
negative, composed only of the metal and the coolant 
correct ion foctor  terms, and i s  a function of the 
cooling effect iveness .  The correct ion fac tor  term 
f o r  the coolant was about the same f o r  both the 
coated and uncoated vane. 

The e f f e c t s  of these correct ion fac tors ,  when 
applied to  the average cooling effect iveness  t e s t  
data  of the uncoated vace, a re  shown i n  Fig, 7. The 
average coo1,ng effect iveness  was based on the area 
weighted average a i r f o i l  temperature and the i n l e t  
gas and coolant temperatures. The uncorrected t e s t  
data a r e  shown t o  be considerable higher  than the 
engine data .  However, corrected t e s t  data (using 
correct ion factors  i n  Fig. 6 )  are  shorn t o  compare 
q u i t e  well with the engine data. 

The correct ion fac tors  for  the ceramic coated 
vane t e s t  data were nearly zero a t  cooling e f fec t ive-  
ness values of about 0.4 and decreased t o  minus 3 
percent a t  a cooling effect iveness  of about 0.57. 
A comparison of corrected t e s t  and engine cooling 
effect iveness  data i n  Fig. 8 shows good agreement. 

The importance of correct ing the t e s t  data i s  
shown i n  Fig. 9 which i s  a cross-plot of Figs. 7 and 
8. A comparison of the  uncorrected t e s t  data of 
ceramic coated and uncoated turbine vanes would erro-  
neously show the thermal b a r r i e r  coating t o  be in-  
e f fec t ive .  A comparison of t e s t  data corrected f o r  
thermal conductivity and engine data of ceramic 
coated and uncoated vanes show tha t  the coating actu- 
a l l y  increases the cooling effect iveness  by an aver- 
age of about 12.5 percent.  

CONCLUSIONS 

The tilerma1 performance of a turbine vane can be 
evaluated re l i ab ly  a t  reduced gas and coolant condi- 
t ions.  However, tilema1 conductivity corrections a r e  
required f o r  the  data a t  reduced conditions. These 
correct ions for  a ceramic thermal b a r r i e r  coated vane 
a r e  s i g n i f i c a n t l y  d i f f e r e n t  than the  correct ions f o r  
an uncoated vane. Comparison of uncorrected t e s t  
data ,  therefore,  would show erroneously t h a t  the ther-  
mal b a r r i e r  coating was inef fec t ive .  When thermal 
conductivity correct ions a r e  applied t o  the t e s t  data  
these data a r e  then shown t o  be representat ive of 
engine data  and a l so  show t h a t  the thermal b a r r i e r  
coating increases the vane cooling effect iveness  by 
an average of 12.5 percent. 
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(a) Overall view of facility. 
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(b) Cross-sectional view of main high-temperature components. (Dimensions are i n  cm unless noted. ) 

Figure 1. - Schernctic of cascade facility. 
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Figure 2. - Vane row and laat ion of instrumentation stations i n  
static cascade test section. 
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Figure 3. - Schematic cross-sectional midspan view of test vane, showing the 
internal cooling configuration and Me  thermocouple locations. 

Figure 4. - One-dimensional heat transfer model of airfoil wall with ceramic 
coating. Thermocouple junction assume to be at the metal-ceramic inter- 
face. 
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Figure 5. - Similarity relationships for the test and engine condi- 
tions investigated. 
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Figure 6. - Test data correction factors for ceramic 
coated and uncoated vanes. 
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Figure 7. - Average cooling effectiveness tes! and engine data for 
an  uncoated turb ine vane. 
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Figure 8. - Average c w l i n g  effectiveness test and engine data 

for a ceramic coated turb ine vane. 
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Figure 9. - Comparison of test and engine cooling 
effectiveness data of ceramic coated and llncoated 
turbine vanes. 
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