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1. SUMMARY 

The process sequence for the fabrication of dendritic web 

silicon into solar panels has been modified to include aluminum back 

surface fi~ld formation. Sputtering is the preferred method for 

Jep~siting the aluminum. Plasma etching has been shown to be a feasible 

technique for pre-diffusion cleaning of the web. This would replace 

wet chemical cleaning. Several contacting systems have been studied. 

The total plated Pd-Ni system (Motorola Process) is not compatible 

with our process sequence; however, the evapora:ed TiPd-electroplated 

Cu system has been shown stable under life testing. Ultrasonic bonding 

parameters have been determined for various interconnect and contact 

metals but the yield of the process is not sufficiently high to use 

for module fabrication at tr.ls time. Over 400 solar cells, about 

11 cm2 in area have been fabricated according to the modified sequence. 

No sub-process incom~atibility was seen. These cells have been used 

to fabrica~~ four demonstration modules. A C?st analysis (SAMICS) of 

the modified process sequence resulted in a selling price of $0.75/peak 

watt (1980~ in 1~86). 

1 



-

2. INTlODUCTIOH 

The objective of th1e prolr.. is to specify a process 

sequence and to further develop proces. .t.~s .pecifically for the 

low C08t manufacturina of solar arrays from 8ina1e crystal dendritic 

web ¥i1icon. All costs, including silicon web at $O.21/peak watt 

(1980$) are to be considered with the aim of produ~ing encapsulated 

-~dule8 with 10% efficiency for a 8elling price of $O.70/peak watt 

!n 1980 dollaro. 

The proces8e8 selected for development during the second 

phase of this program were the feasibility of USing plasma etching 

a8 a subst~tute for wet chemical cleaning, the aluminum back surface 

field process, various metallization systems which may be more cost 

effective than evaporated TiPdAg, spraying methods for antireflection 

coating deposition, and ultrasonic interconnection technique •• 

Wet chemical cleaning is not consiuered cost effective due 

to the materials expense and the added cost of disposing of toxic 

liquids. Plasma etching. where an rf glow discharge is u.ed to break 

down various gas compositions into highly reaeti~e specie~ 1s a 

possible substitut'e. These gas species thell react with t": silicon 

surface and thus clean by etching. We have studied this method 4S a 

substitute for the prc-diffuaion (wet chemical) cleaning of the 

dendritic web ~illcon. As presently produced, the web silicon has 

surface 0), ides which mURt b(" rcmov~d before diffusion. Our experiment'l 

have shown that once the loose oxides arc removed, plMtI\ii etchin" is 

ns cfft'ctivt> a mt'thod for pre-cliffusion cleaninA lUI W('t chemical 

* m"~thods. When the pl;tsma cleanf i\.~ is atteqlted with the oxide .. on the 

* It is anticipated that with further development the wt'h can be grown 
without tl!ese oxides, and can be diffused without pn'-diffusion clc.>aning. 
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surface, the surface becomes irregular and patchy. Cells subsequently 

proJuced on this surface show inferior propertiea. 

The process sequence we de-/eloped during the fint part of 

thb program used boron diffusion to prepare a back surf~jce field. 

This procedure does produce operational back surface fields with 

maximum V of about 0.585V. Various theoretical considerations oc 
suggest that an aluminum back surface field would give a further V oc 
enhancement of at least 20 mY. In 4ddition, cost studies using 

a conceptual factory show the aluminum pr~ce8S should be le88 costly 

than boron diffusion if the same process yie~J can be achieved. 

During this past year we have studied various methods of 

applying the Al to the back of the cell and techniques for driving 

the Al into the silicon. Several methods for applying the Al hnve 

been shown feasible (including the Spectralab process specification 

for silk screenin~ Al paste). However, due to the difficulty in silk 

screening between the dendrites, a sputtering method for the deposition 

has been chosen for the process sequence. The Al back surface field 

cells also show operational back surface fields, but the open circuit 

voltage enhancement is only murginally better than the boron diffused 

cells. A number of experiments have becn carried out to determine 

the causes of the relatively low V Although the evidence is not . oc 
concluRive, the results of thesp. tests suggest that the cell proper:.icli 

(after the Al BSF formation) are controlled by the front Junction 

emitter. Whether this is an intrinsic characteristic of our front 

junction diffusion, or an interaction with the Al 8SF formation process 

is not known at this time. 

Solar cells, deployed in an array must meet stringent require­

ments for stability and reliability. Perhaps. the most important factor 

in att:lining this stability is a reliable contact system. Evaporatt·d 

"iPdA~ ha~ b('c'ome tht· 'lCcc:,ted stnntiard for space solar l'C'lls, but 

its us~ in lerrestri~l cells may not be cost-eff~ctivc. Several 

alternatives tc this system have been Iwggestt.'d. Motorola tillS iRsut'd 

a process specification on a total plated sYMtem consisting of Pd and Ni. 

3 



Another alternative would be to replace the AI with a le8s costly 

metal and to use a deposition technique that is more area selective 

than evaporation. 

We have tested the MOtorola contacting process in our process 

sequence. It was possible to obtain ohmic contacts, but the cleaning 

solutions and etches used in the process attacked the antireflection 

coating. By making certain modifications in the MOtorola process, 

total plated contacts were applied to the web cells without damage 

to the antireflection coating; however, the cell parameters were inferior 

to those with the baseline TiPdAg contact system. We concluded that 

it was not feasible to insert this metallization system into our 

process sequence without significant modification due to a lack of 

compatibility. 

In another aspect of the metallization study it was shown 

that electroplated copper could be substituted for evaporated silver 

with no degradation of cell parameters. Since copper is a very fast 

diffuser in silicon, a life test was carried out where cells with 

evaporated TiPd electroplated Cu contacts were heated at 225°C for up 

to 600 hours. After this time there was no measurable change in the 

cell parameters. Therefore, the electroplated copper appears to be 

a suitable substitute for evaporated silver and would be more cost 

effective. 

In our process sequence, the antireflection coating is 

applied by dipping immediately after the back surface field is formed. 

It might be an advantage if this coating was applied later in the 

sequence, perhaps after interconnection so that the coating (glass) 

would protect the interconnect metals. A small program was carried 
out in this area to determine cost effectiveness and compatibility with the 

entire sequence. It was found possible to coat the material using a hand­

held s~rayer, but for ubvious reasons, the uniformity of the film over the 

* cell surface was poor. We are presently working with an outside vendor on 

techniques for applying this coating. 

* Integrated Technologies, Inc., Acushnet, MA 02743. 
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Thl' !ntl.'lcolm('ction of the ct'lh into serlco/paralbl 

dr{'lIit~ to form tht' m{Hlule is an important stl'P in that the connt'ction 

I'rll('t'SS must be reI table and dUlCntlble to automation. In our design, 

(,lid, ('('11 will require II total of 14 intf.'rconnections; therefore, n 

large number of bonds Are rcquL,cd for II given unit module. The proc.'t'88, 

then must also have II nenrly 100% yield in terms of good bonds and 

cd! brt'llkap,e. 

TIt~ ull rllsonic bonding tcdmique has bl'en used for the pro­

duct ion of rllpid and h iRh strength bonds bl'tw('t'n various mf'tnl foils 

and has bel'n 8utom..1t«.>d. It has also bl'cn shown fellsiblt.> for bonding 

inll'rl'onnect foils ttl ... 01.1r cell cllntarts. This method dOf'6 nut I'l'tluin.' 

thn USf> nf t'xl'\'n~ivt' !'loldt't' nr Ct'rroslvl' ttUXt'l'1. A furthf'r ndvnntngt: [s 

that tlwl'l' is nl' ml,ull buildup on the.' 1.'('11 (ottll'r thlln th .. , intcrclllllll'ct 

stl'ap) whid\ l!';,ds to n simpler modll!t· fnhril'ntlon. 

Samplt'l'l fl)r mo~t of the tl'st~ with 1Iltrnsonil' hondinp, hlWl' 

hl'f.'1l Pl't'p~lred lIsin~ tIll' spot wt'ldl'r. Tid:, jlllll'\'lhl1'(' l'lliIblNl till' lIIill.I'I' [;Ib~ to 

be Joined t.l h' (\l\lt,h'tt'd hy an 1I1trllsonil'ully driven tool in onl' giv('n 

nrvn. After thp bond Is mad('. the tonI is l'e-positioned and nnothl'r 

hlHld m,ldt' tIll' samt' w:\y. A sl'cond tYPt' of w('ldl'r-scam-hondcr liSt'S :m 

III t rasoninllly tir iVl'tl tIll)} whh'h l"(llls alon", the workp! N't'. This tYIW Ill' 

Ih1lhil'r would Ill' of sp('l'int ndvnntngl' in sol'lr l'l,tls in thnt n ('llllt inuolls 

strip of foil is hondf.'d along tht' ('1.'11 contocts th" tt'n~th of the ('('lIs. 

TIll' work dllrin~ this prop,rnm hus l'oll('t'ntratl~d 1)1l d('tt'rmininp, 

tIll' hl'nt! parmuetl'rs (fnrl'l', tim .. ,. {,owl'r) for.,dlil'vin~ stronp, rl'linhll' 

Ihlnlil'1 hl'lwl'l'n intt'rclll\IH'l'l ml'tn Is and t hl' ClInt net S Oil tht' l't'11. Thl'Sl' 

panll1ll'tt'rs IHlVl' hl'l'n dl'tl'rmilll'd lIstn~ thl' SplIt hom!l'r, hut the yh'ld 

Ill' till' pnwl'ss is 111W. Prl'ltminnry tl'sts lIsi1lR .1 s('.'1m h01ldt'r do 

sll~~l'sl. hnWl'Vl'l'. that iI hi~lll'r yh'ld is lIdlh~Vllhlt, with this ml'thlld. 

{ndutll' till' aluminum hack slIrfal'l' fit'ld fllrmat inn. rl'sults 1n 1\ IH'11 fnp. 

pril-l' of $O.7~/IW;\k watt (l~lHO$ in 1986). In nJdHion. thl' ~AMIC~ 

_-0lil 



calculation has been used to show the importance of capital equipment 

costs and panel efficiency to the overall cost. In general, this 

cost method has been used as a tool to examine modifications in our 

process sequence and to determine their cost effectiveness. 

The specifications and control parameters for the various 

sub-processes of the sequen~e are given in Appendix B of this report 

6 
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3. TECHNI CAL RESULTS 

3.1 Plasma Etching 

The plasma etching process uses gas compositions, generally 

CF4 and 02 which are broken down into a variety of active species by an 

rf glow discharge. These active species form a low temperature, highly 

reactive plasma. which can react with surface contaminants on the silicon 

to form volatile products. These volatiles are then pumped from the 

system. 

The plasma etching process is attractive for solar cell fabri­

cation since it could eliminate wet processing steps and chemicals. 

~et processing may not be a cost effective step. 

Plasma etching was investigated as a substitute for pre­

diffusioa cleaning step of the dendritic web. At the present tilll'!, the 

as grown dencritic web comes from the furnace with a lightly adhering, 

brownish oxide coating. Analysis has shown this coating to be various 

oxides of silicon. With further development in the grcwth process. it 

is anticipated that this oxide layer will not occur. However. at this 

time a pre-diffusion cleaning is required. This cleaning includes an 

HF-HZO swab to remove the oxide together with further wet chemical treat­

ment of H202• HCI and H20Z 'NH40H to remove any itI1purities on the surface. 

In the experiments reported here, some of the web samples 

were plasma cleaned or etched in the as-grown condition while others 

were sw~bbed with an HF-H20 solution. Previous experience has shown 

that if s3r.lples are diffused in the as grown condition or with the HF-H20 

swab only. LIte cell efficiency will be several percent lower (absolute) 

than with properly prepared samples. Thus theRe two conditions are a 

fair test for the effectiveness of plasma etching. 

7 
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Table lrepresents the results of these experiments. All 

tests Were made on a single web crystal (RE 26-5) so that valid intercom­

parisons could be made. The plasma cleaning/etching was done in an 

LF~-301A reactor. 

In Treatment 1, the as grown web with the oxide coating was 

plasma cleaned for 3 min. at 200 watts rf with 300 cc/min. of O2 , 

Treatment #2 was the same as #1 except that PDE-IOO (a proprietary 

etching gas produced by LPE Corporation) was substituted for the oxygen. 

Treatments 3 and 4 were the same as I nnd 2 except that the 

web was lightly swabbed with an HF:H20 solution to remove the loose 

oxjde film. Treatment #S is our baseline cleaning process involving: 

HF/H20 swab, 

Hot H2S04 soak (2 min.). 

NH40H:H202:HZO chelating cleaning, 

HCl:H202:H20 cheating cleaning, 

D1 H20 rinse. 

The d .. :a in Table I show that Treatments 1 and 2 result in 

cells that are much poorer than the baseline treatment (115). The major 

difference is :In the Vo~' FF and lifetime. This would indicate thac 

som~ lifetime killing impurities remained on the surface after the 

plasma treatment and diffused to the junction durin!; the high tempera­

ture processing. 

Treatments #3 and #4 result in cells that are as good as the 

ha:;eline cells. It should be noted that when webs, which have only the 

HF cleaning procedure, ore diffused, the results are always inferior to 

the baseline cleaning process since these indicate a 2% decrease in the 

efficiency. Therefore, it can be concl'.ldcd thilt the plasma etching 

or cleaning of BF cleaned web is a suitable subf:titute f( r" a baseline 

wet chemical cleaning. 

A co<;t estimate has been made of tIIi,; process lISill3 SAMICS 

methodology. The inputs are shown in Table 2. The calculation was 

8 
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TABLE 1 

PLASMA CLEAN/ETCH TEST * 

2 
V (V) Treatment J (rna/em) FF Be oe 

l. Web - as grown 32.3 .502 .689 
+ 3 min. plasma 
clean 

2. t"eb - as grown 34.0 .514 .706 
+ 3 ~in. plasma 
etch 

3. Web - HF clean 33.3 .545 .743 
+ 3 min. plasma 
clean 

4. Web - HF clean 33.3 .541 .723 
+ 3 min. plasma 
etch 

5. Standard web 33.2 .545 .737 
cleaning process 

* Web - RE 26-5; 10 n-cm; Boron BSF 

AR coated 
2 

,\}1-1 - 100 mW/cm 
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13.1 24.7 



TABLE 2 

PLASMA ETCHING SUB-PROCESS 
INPUTS INTO SAMICS CALCULATION 

Total Output 

Silicon Throughput 

Floor Space 

Labor 

Capital 

Commodities 

25 MW/yr 

5000 cm2/min 

350 sq. ft. 

1.0 Person years 

$840,000 (1980$) 

60 tanks of purge gas 

60 tanks of etching gas 

carried out by inserting the plasma etch as a sub-process in the process 

sequence and determining the value added. This value added was 

$0.018 (in 1986 in 1980$). 

The yield for this sub process was taken to be 100%; however 

later in the calculation an 85% yield of cells and a 95% yield of 

panels was assumed, which increases the cost of the plasma etching 

step to SO.023 (in 1986 for 1980 $). 

3.2 Back Surface Field Studies (BSF) 

3.2.1 General Background 

The presence of a high-low junction near the bac.k surface of 
+ an n p junction structure results in enhanced open circuit voltage and 

short circuit current. The higher V of the BSF cells is due to the 
oc 

reduced back surface recombination velocity and a built-in voltage in 
+ the p p region. The built-in field in the high-low junction reduces the 

loss of photogenerated carriers and enhances the quantum efficiency of 

* the base region of the BSF cell and results in higher I 
sc 

* A more complete treatment of the factors affecting back surface field 
performance is given in Appendix A of this report. 
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The above effects can be summed u~ in the f.unctional expression 
+ for the junction leakage velocity (Spp ) oS minority carriers across the 

+ d 1 iii byl,2,3 p P ep at on reg on 8 ven 

where: Dp+ tit electron diffusion constant in p+ region 

Lp+ - electron diffusion length in p+ region 

Wp+ • width of p+ region 

NA - acceptor concentration in p region 

+ 
concentration + 

regi"n NA - acceptor in p 

LEg is a band gap narrowing term in th~ heavily doped + p 
region. which increases with the p doping. 

and 

As the value of Spp+ approaches a minimum. the effectiv~ bulk 

lifetime in the p region increases and the enhancement of the cell para­

meters discussed above occurs. 

Based on this equation, certain material and device parameters 

which will cause Spp+ to be a minimum can be identified. First, the 

minority carrier diffuGion length in the p+ region,Lp+ should be as 

large as possible. Although no direct measurements have been made on the 
4 

magnitude of L +' Hauser and Dunbar suggest that it varies from a few 

tenths of a rni~ron at NA =102l;cm3 to several micror.s at N: - lOlg/cm~ Second. 

the functional relationship for W IL is the hyperbolic cotangent. Since p+ p+ 
coth e has a minimum value of 1 for e > 3, W IL should be greater 

"'" p+ p+ 
than 3. Third t the ratio of N/NA &houldbe small. Since NA in 

15 3 . + itself should be near 10 Icm so that an effic1ent n p junction can be 
+ fabricated. the value of NA should be large. There is an obvious trade 

+ off here because as NA increases Lp+ decreases and 6Eg increases. 

Sinha and Chattopadhyarya(2) have shown that for a 5 ~m p+ region and 

11 

~~- 'wtee 



15 ) 
an NA of 10 /cm, the surface recombination velocity first decreaA~s 

because of the decreas!! in the ratio of N/NA+ but beyond N
A
+ '" 2 x 1019 /crn) , 

+ 
Spp begins to increasl~ due to the band gap narrowing effect. 

In light of this information and disucssion, we should consider 

the characteristics of boron doped and Al doped BSF to determine which is 

preferable for high efficiency solar cells. Table) lists some of these 

parameters. 

TABLE 3 

COMPARISONS OF B AND A DOPED BACK SURFACE FIELDS 

B-doEed Al-doeed 

NA+ (ll/eml) 1021 5 x 1018 

L + (~m) .1-.3 ~m 2-5 ~m p 
w+ (~rn) p obtainable 1-2 >10 

From the above data, it is obvious that W +/L + > 3 can be 
+ p p 

satisfied for both B and Al BSF. However Spp should be lower for 

Al BSF because of band gap narrowing in the B BSF offsetting the 

benefit of the high NA/NA+ ratio. 

Consideting all these factors, Sinha and Chattopadhyaya(2) 
+ 19 3 20 3 suggest that Spp will be a minimum for 10 /cm to 10 /crn. This 

indicates that to a first approximation that Al back surface field 

may be preferable. 

During the first part of this present contract, several 

experiments were carried out with boron doped BSF's. 

12 
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3.2.2 Boron Diffused Back Surface Pi.lda 

Previous experiments had indicated that boron doped back aur­

face fields using either a BBr) source or a doped boron CVD oxide were 

essentially equivalent. To extend and verify thia data, a diffusion 

experiment was carried out with four different web crystals and a float 

zone Si baseline which were diffused using three difterent techniques 

(BBr3 for a 0.4 ~m junction; BBr3 for a 1 ~m junction ~nd B-doped CVD 

oxide for a 1 ~m junction). This experiment was'to have determined if boron 

diffused BSFs could be improved either by deeper junctions or with the 

doped oxide source. The data are shown in Tabl. 4. In this teat, the 

cells were all processed in the same manner except for the boron dif-

fusion technique. 

The data show that Voc and Isc correlate well with the lifetime, 

rather than with increasing junction depth or doping technique. This 

suggests that the cell parameters are controlled by variables (bulk 

lifetime, front surface condition) other than the back surface field. 

After this test, all further BSF studies were conducted using 

Al as the dopant, since the enhanced V due to Al haa been reported to oc 
be above 0.605V. 

3.2.3 Aluminum Back Surface Field Studies 

The Al BSF studies carried out emphasized the following 

areas: 

1. Effect of back sarface condition on Al alloying, i.e., n+ or p 
surface. 

2. Methods of applying Al evaporation, sputtering, silk screening. 

3. Techniques to alloy Al rf or resistance heated furnace, 
temperature required and ambient gas. 

4. Al penetration depth and dopant profile. 

5. Protection required for front junction. 

Parts 2 and 3 were generally studied together while 4 was used 

mainly as a diagnostic technique. 

13 



Table 4 

Boron Diffused - Back Surface Fields 

(Measured at ~l; AR Coated - 1.4 Enhancement) 

Crystal BBr BBr Boron Oxide 
II (XJ 

2 0.4 J,lm) (Xj 
I&' 1.0 ... m) (X

j 
~ l.0 ... m) 

Efficiencx 

U50-l.2 13.0 12.4 
RE54-1.2 14.1 14.7 14.3 
RE54-2.l 12 .8 12.3 13.3 
J80-5.1 10.9 10.4 9.0 
Float Zone } 
S1 Baseline 14.7 14.8 

lsc (IDA) 

RE50-1.? 30.9 30.8 
RE54-1.2 32.2 32.6 32.6 
RE54-2.1 30.9 30.9 31.6 
J80-5.1 28.2 30.0 30.9 
Float Zone } 
S1 Baseline 31.8 32.4 

V (V) 
..2.E_ 

RE50-1.2 .547 .533 
RE54-1.2 .570 .573 .566 
RE54-2.1 .538 .526 .551 
.J80-5.1 .507 .516 .535 
Float Zone} 
S1 Baseline .580 .570 

T OCD (\l8Ce) 

RE50-1.2 12 8 
RE54-1.2 35 34 35 
RE54-2.1 12 7 22 
JBO-5.l 2 3 5 
Float Zone} 
S1 Baseline 35 13 
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3.2.3.1 Back Surface Condit1on 

Thara are levaral ch01c~. for the pre,aration of tha back 

lurface prior to application of aluminum. 

The 11mp1elt 11 to apply tha Al over tha back of the cell 

tmmed1ate1y after the phoaphor?ua difful10n, 1eavina tha phoaphorou~ 

81asl in place on both the front and back of the call. However, when 

this wa. tried (with evaporated, Iputtered or li1k Icreaned A1) the Al 

formed lmall balls durin8 the a110yin8. Thele balli, about 1-3 mm in 

diameter were uniformly diltributed over the blck lurfac. of the cell. 

After these A1 balls and the glass oxide were etched off, very little re­
liction between the Al and H was noted. Based on thea. results, the phos-

phorous glass was removed from the back of the cell before the Al was applied 

in all further testl. 

It WitS next determined 1£ the Al could be alloyed throu.,h the 
+ n skin after pholpllot'oul difful1on. 

In this s~rl~. of expertmlntl, 9.6 ~m of Al waa evaporated on 

the bacit of t!'.e cell stru~ture of both dendritic web and float zone 

crYltals. 

Thesp. eells used 1n thele preliminary telts had been diffused 

in phosl>tlorou6 before the Al dl!poaition to form an n+p junction .tructure. 

During this diffusion. phosphorous also diffused into the back of the 

wafer leaving an n+ skin. In one case, this n+ ~ayer was removed by etch­

ing bt:·foll! the Al deposition. while in the other case the Al W31 evaporated 
+ 

direc~ly on this n layer. The samples were placed on a Si coated carbon 

susr~;tor ~r.4 heat~d to 820·C in 5 minutel held for 15 seconds then cooled 

by :- ,''':''''1io& off pow,'r. Cells were made from thele samples and compared 

with nf.'n-l)i;F ct,US, 1..~ •• n+p structures. These data are shown in Table 5 

and are .lVi·rag...:, vi a number of cell •• 

+ The p p junction profiles of representative cells are .hown in '1&-

1 and 2. Figure 1 is the concentration profile of a float zone 
+ evaporated on a n layer. (remaining from a 

+ In this cale the A1 was alloyed throu8h the n 

,ilicon where the Al wal 

phosphorous diffusion). 
+ layer to form the p p structure. 
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TABLE 5 
.\4 BSF C~l1. - 9.6 ~m Evaporated At - RF Heolud 

(.~l - AR Coated) 

I (rnA) V (V) FF EFrOn T oeD (usee) Be oc 
(No BSf) 

FZ Cells 30.8 .543 .762 13.45 6 

aSF - (A~ + ~vap~rated on h' layer 

FZ ((! 11s 31.4 .591 .769 15.1 36 

'''~Br ... 11~ 31. S .516 .iSO 14.4 43 

BSF (At Evaporated on p-type surfac'e after n + layer 
etched off) 

FZ CC'lls 30.4 .591 .764 14.5 29 

\,fl-:S Cells 31.0 .572 .168 14.5 40 
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Figure 2 is the concentration profile of • float zone silicon 

cell where 1:he Al waa evaporated on a p-type surface (n + aurface etched 

off). 

+ + The p layer obtained when the Al was alloyed through the n 

skin is about 2 ~~ thicker than when alloyed into a p material. Although 

this difference ia small, it is a r~al effect in that the same variation 

was seen on a number of cells. 

+ The p penetration into the web was generally about 1 ~m less 

than for the float zone material. 

Several comments can be made regarding this preliminary data. 

• The junction depth in the two samples (4-6 ~m) approaches the 

10 pm believed to be required for optimum BSF operation. 

• There is an enhancement of about 50 mV due to the Al BSF 

(cf FZ BSF and no BSF). 

• There appears to be some advantage in driving the Al through 
+ the n skin, but the difference is small. Driving the Al 

+ through the n skin is however, a more cost effective process. 

During the course of these experiments, it was noted that the 

Al did not always alloy in smo~thly. In these cases, the Al ~ould form 

ba11s on the surface and alloy in from these balls, giving a non-uniform 

pe:letration. 

As mentioned above, this set of samples were prepared using 

evaporated aluminum. Further teRts showed that this method had a very 

poor yield of good devjces in that uniform all~ying was not achieved. 

The Al tended to puddle on the back surface. We were not able to 

determine the cause of this nonuniformity. Different cleaning methods 

and evaporation techniques were tested without success. 
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3.2.3.2 Application of Al and 'Irina Techftlsu .. 

The three _in _thode Ituclied for applYiDa Al to the bact 

of the cell: evaporation, sputtera .. and .Uk .creeJlia&. The Al usecl 

for evaporation and sputtering was hiah purity (Al > 99.99). For silk 

screening tests a prepared Al paste was Uled (lullehard '3484). After 

we received Spectrolab'. Process Specification for Al BSF formation, we 

used ~~AL Al powder 1631 prepared into a paste according to the speci­

fication. 

The alloying methods used were a resistance heated furn3ce in 

an N
2
-02 ambient and Gn rf heated furnace (graphite susceptor coated 

with silicon carbide) in N2 or 82 ambient. With the rf heated aethod 

several different heating and cooling rates were tested. 

• Silk Scroenin& 

The samples were silk-screened using a prepared Al paste 

sold by Englehard Co. (13484). The paste was applied using a 25 lIm 

screen and the samples were dried at 200-250·C before any alloying pro­

cedure was attempted. After drying, the thickness of paste was 20-

25 ~m and the density was estimated to be about 65% of pure aluminum. 

To determine the effect of heating time and temperature on the 

thickness of the regrown layer aOld to determine an optimum time/temperature 

regime for alloying. samples of float zone p-type crystals scre~ned with 

the Englehard paste were heated at SOO·C, e2S·C, and 8S0·C for 30 sec, 

60 sec, and 120 sec. In nearly all cells, the screened material appeared 

to wet the surface uniformly and did not bubble uF or lift off the surface. 

At higher temperatures and longer times, the crystals were warped and the 

SSO·C/120 sec. sample fractured. This warpage was not apparently related 

to the degree of preparation and when the excess Al was etched off the 

back surface of the crystal returned to its original flat form. 

The depth of the regrown layer was measured by a spreading 

resistan.-:e technique on an angle lapped surface. 
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An anomaly was noted in this aeriea of teata. In two casea 

the dopant concentration profile indicated evidence of nonuniform 

alloy1na. This effect is shown in Fig. 3. In this figure. the depth 

into the crystal in ~m) vs. the dopant concentration ia shown. An seen, 

there ia an abrupt change in concentration at 2.8 ~. with the regrown 

layer penetrating to 6.5 ~m where the base dopant concentration ia noted. 

This effect can be compared to a normal dopant concentration trace shown 

in Fig. 4. The sample showing the anomaly was etched and the area where 

the spreading resistance was measured was examined microscopicallv. A 

thin imperfection line was noted at the resistance discontinuity point. 

The chemical/crystallographic makeup of this band has not been deter­

mined; however, it represents a region of low Al concentration. 

The depth of the regrown layer determined from these measure­

ments as a function of time and temperature is shown in Table 6. These 

data do not show the expected relationship between the thickness of the 

regrown layer and the time/temperature conditions, probably due to lack 

of control of important variables. It may be noted that somewhat similar 

data was reported by W. Taylor et al. (5) These data show Voc and lsc 

peaking at certain firing times with both Voc and Isc lower at shorter and 

longer firing times. Our experiments were carried out in a resistance 

heated furnace in a nitrogen ambient, and it is quite probable that oxygen 

back-streamed into the furnace, since the oxidation.o~ the Al powder 

would occur more rapidly than that of the lower temperature samples. 

Therefore, in certain instances (e.g., high temperature) oxidation could 

impede the alloying process and reduce the regrown layer thickness. 

This oxidation process does not completely explain the data in Table 6 

but does give some idea nf the complexity of the problem. 
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TABL! 6 

Thickness of Regrown Layer at Various Tau and Temperatures -

Silk Screened Englehard 13484 

Thic.kneas of 
Temp. (OC) Time (sec) Rejrown Layer (Hm) 

800 30 2.1 

800 60 6.5 

800 120 7.5 

825 30 2.5 

825 60 13.8 

825 120 6.0 

850 30 8.0 

850 60 3.8 

850 120 1.0 
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At thia point a procel' specification on silk screened Al back 

surface fields became available from Spectrolab. Tbisproces. spec1fiea-
. . " 

tion detailed the preparation of a scre.enable paste uaina "AMPAL" powder. 

The next series of testa used this paste aDd the process outlined by 

Spectrolab. 

The paste was applied with a stainless steel screen having 

'an open grid area 0.004" x 0.004". After the paste was applied it 

was dried at 200°C for 15 minutes and then alloyed in an IF heated fur­

nace at 850°C in "2 or in a resistance heated furnace at 8S0·C in N2• 

The silk-screened samples did not show any excessive bubbling 

or lifting of tl,e Al layer during alloying as wss noted with the evapo­

rated material and some of the previous samples using other pastes. In 
both the resistance heated furnace and in the RF furnace, the melte(. Al 

on the back surface after alloying was sufficiently unoxidized, so that 

further metallization was not required to form a back contact. There 

was, however, some warping of the cell structure after the alloying and 

the cells were brittle. This warpage, due to the thick AI, meant the 

metal had to be removed to relieve the stress. In several cases this 

warpage was sufficiently bad to crack the silicon. This could indicate 

that large area screen printed devices may be difficult to fabricate by 

this process due to warpage and breakage. 

Table 7 shows the cell data for this experiment. All dendritic 

** web samples were from web crystal W-14l-l.4. The first two processes 

(1 and 2) compare slow cooled (: 2°C/min) and normal cooled (= 10°C/min) 

silk screened web samples alloyed in an RF furnace. The lifetime of the 

slow cooled material is about about that of the normally cooled, and this 

effect is mirrored in the short-circuit current. The low efficiency of 

the fast cooled malerial is due to both the low I and fill factor. 
8C 

* AMPAL #261; Atomized Metal Powders, Inc., Flemington, New Jersey. 

"* In order to screen the dendritic web samples, the dendrites were re-
moved by sCLibing. 
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Proce" 3 --.pl.. ar. control. aDd ar. fabricated on the .... 

web crystal with the Al asF produced by alloy1na a aputtered Al layer. 

Process 4 s..,l.s sre a180 control. and are boron Bsr cell. produced by 

Blr3 and POC13 diffusion followed by the .tandard photollth08raphlc pro­

cess (see Figure 18 of reference 8). Process 2 compares favorably ~lth 

these control .. aplea, 

Process S sample. are fabricated on float zone S'~with the ISF 

produced by alloyin8 in the silk screened AMPAL paste. The .. re.u1t. are 

to be compared with Process 6, which are FZ silicon cells with alloyed in 

sputtered At layers, The loss of lifetime in the silk-screened FZ cell 

(20 ~sec to 13 ~sec) may be due to some lifetime killina impurity, sinc~ 

all control samples were reacted at the same time as the experimental 

samples. The effect of the lifetime loss is noted in both I a~d n for sc 
the cells in Process 5, 

The data indicate that Al BSF cells can be fabricated uFoina 

silk screened "AMPAL" paste which are essentiaL" .Jqual to the sputtered 

Al process. 

The measured values of the OCD lifetime and the short-circuit 

current, while not as hiah as expected for an Al BSF, do indicate an 

operational back surface field. However, the open-circuit voltaae is 

also affected by the contribution to the reverse saturation current from 

the front junction, and it is possihlp that the front junction was de­

graded due to the fabrication of the Al BSF. 

The OeD lifetime of the sputtered At BSF is generally higher 

than the cells with a silk screened AI BSF. (See next section.) 

• Sputtered Aluminum Layers 

Due to the nonuniformity and lack of reproducibility noted with 

the evaporated AI, and to the difficulty in silk screening web without 

removing the dendrites, a number of experiments were carried out using 

sputtered Al on the back surface. In these trials, the phosphorus 
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diffused wab or flo.t lone sUicon "as back-sputtered for 10 .1nutes (to 

clean the surface) before 10 p. of aluminum "a. sputtered. 

The cells were heated in aD rf furnaca at 8OO·C. 82'·C. S50·C, 
and 81S·C in an H2 aabient. In this process, the rf senerator is preset 

to a power level 80 that the sampla reaches the required temperature In 

about 30 sec. When the teaperature is r .. ched (as ready by an II pyrO­

meter) the power is turned off and the sample cooled. With the inevit­

able sllaht over.hoot in temperatura, the ...,le ia probably at the 

required temperature for 10 to 20 eec. 

In leneral, these sputtered layers behaved well under the 

drive-in conditions. Over. 90% of the samples ahowed a complete and uni­

form .u layer on the 81J1'face after the drive in. The r ... iDinl ".O~ 

showed areas where Al did not wet the Si, and puddles of Al were formed. 

The cells were brittle and extreme care was needed in handling. 

Table 8 shows the results of theae testa. The thickness of the 
+ regrown p layer increased gradually with inereaaina temperature. The 

cell lifetime decreased sliahtly at the highest temperature and li_ited 

the V enhancement and the efficiency. The maxiaum V occurred at oc oc 
8S0·C with 0.S88V for the FZ material and with O.S77V for the web. 

+ The player 1s sufficiently thick that higher values of Voc 

and efficiency would be expected. It appears that some lifetime killinl 

mechanism is operatina to reduce the maximum efficiency. 

The OCD lifetime for these cells with a sputtered Al ISF waa 

lenerally higher than that of the cells with a ailk screened Al ISF. 

Due to the positive results of theae experiments and the diffi­

culty in silk screening web material, sputterina was taken aa the stan­

dard method for depositing Al in our process sequence. 

3.2.4 Front Junction P~otection 

In the aluminum back surface field studiea repnrted in previous 
+ sections, we have shown that metallurgically the p region satisfiea the 
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TABt.I 8 

CELL PAIAJIETEIS - SPUTTIIID AI 

(12 n-ca 8i) 

Drive Teap. + MatI. In Eff. TOCD(IIHC) P thicmeaa 
(·C) b.) ill.. 
800 2 WEI .577 14.5 20 

825 6-8 rz .585 14.4 37 

3 VEl .569 14.1 22 

850 8 rz .588 15.2 34 

9 WEB .577 14.8 26 

875 9 rz .574 14.1 32 

5-10 WEI .568 13.9 22 

2 
• AH-l; 100 'lIN/ CflI -- AI coated 

• Value. given are averag~a of 8-10 cell. 

• Fired in rf heated furnace - 82 

design criteria for the high-low junction. The 

penetrations achieved are in the 5-15 ~. range with the required 

dopant profile and proper aurface concentration of AI (6 x 1018/ca2). 
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In .pite of the .. reaulta. the open-circuit volta .. hal b~t ex­

ceed.d 0.S9V vbil ... ny contractor. r~port Voc'a > 0.609. 

The device IUetlM, and tbere10ft, the ... ".a-circuit ·~Ita .. 

are controlled not only by the p+p junction (BSr) and tbe ~u1k. but abo 
+ by the front n re.ion. Thue,it ia poa.ibi. that the ultlaat. properti •• 

of the 80lar ~ella are Haited by the front ellitt.r r •• ion. Th. ba~k 

aurfaee fielda di.~uaaed above are operatin. aad do produ~e an enhan~.­

ment of 30 to 40 MY, but the ulti .. t. properti •• (i •••• Voc > 0.6V) .. y 

be controlled by the front j~tion. 

In an effort to deteraine If a ... 11 aaount of alu.1nu. va. 

contaminetln. the emitter region, ·'.tber durin, aluainum application or 

alloylo ••• everal axperiaenta vare ~arried out in whi~ the front .urfaca 
+ va. protected. and an experiaent in which the n layer va. diffused in 

+ after the p layer va. prepared. The.a reaulta, •• well a. the experi-

mental ~ondition. are given in Table 9. The data .iven are the avera.e. 
+ of 8 t~ 16 cella for each tre.~ .. nt. In all ca ••• tha p lay.r v •• pre-

~ared by alloying In a .illt-.crelned layer of AMPAL 1631 paat. (a. de-
+ scribed earlier). The penetration of the p layer va. 6 to 8 ~ •• 

The .ample., In which the pho.phoru •• la •• diffu •• nt 10urcI val 

in place during the alloyln.. gave uniformly .uperior re.ult.. Treat-
+ + ment #3 (n l.yer lor.ed after p layer) va. tba POOr.lt and thele re-.. 

lults may be due to a aradinl of the p junction durlna the 8S0·C 
diflullon to for the n+ layer. 

Treatment II (top surface protected by S102) produced cell. 

which were allo con.iderably poorer than tbe cellI fabrieated with the 

phosphoru~ glas8 protection. 

Althouah not conclusive. these data do sUlloat that thore 1. 
+ some effect on the top .urlace (i.e •• top n p junction) durin, the ISF 

formation. 

[t should a180 be noted that even 1n the beat ca.e 
... 

(Treatanit 12) where the eell. have a 24 Ulec lifetime and a p layer of 

5 um, the maximum V is O.S7V. oc 
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Al lACK lUlrACI nltD III1ILft (AYIUGI 'AUJU) 

(Sllk Scr .... d AMPAL - '6ll - .so·~ Drive 1.) 

Tre.tment IK(M) 'oc(,) rr ,,(I) iOCD( .. uc) 

1. • 30.96 .562 .723 13.3 S10
i 

on ft 

s!d 

2. Pho.... lla •• 31.67 .572 .746 14.3 
on n side 

l. • player 30.96 .540 .730 12.9 
!~nHd before 
n layer 

Treatment 1 .. Phosphorous 11at, removed after POCl~ dlffu81on. 1102 
applied to Ofte n side t* protect sUffsce fro. Al. 
A! driven throuah back n le,er. 

16 

24 

12 

+ Treatment 2 - Phosphorous a1 ... re.ovad frOD Ofta side, left OR one n 
side to protac$ .urface frOll Al. A1 drlvaft throu"" 
cleaned back n la, •• 

• Treatment 3 .. Al driven into p cl'1.tal :.excees Al reaoved and ~ 
diffUSion carried out. p surface recOIlS ;'< ted with 
Ti Pd 4&. 

2 Me .. ured at AM-l: 91.6 HItl/ CIa .. All coated 

1 
I 
• 



3.2.) ~.ta of Back Surface Field Formation 

Uaio., SAMICS methodology. studies were carr3.ed out to determine 

~ile cost diffe:~eDtia1s between boron doped UP's. and sputtel'ed and silk 

Acreened Al BSH"s. 

TABLE 10 

COSTS OF SACK SURFACE FIELD FORMATION 
(Value Addt~d for Given Process - 1980$) 

Boron Diffused 

Sputtered Al 

Silk Screened Al 

Table 10 gives the results. 

O.079$/watt peak 

O.OS8$/watt peak 

O.039$/watt peak 

The boron diffused BSF process costs about twice the silk 

screened Al process. This is mainly due to the added sub-processes re­

quired such as etching and masking, and the equipment required to carry 

out these processes. 

A number of tests have indicated that if the cell processing is 

carried out without the dendrites, the overall yield, due to breakage 

would be low. Therefore, the screening process would require cons1der­

~ble machine development so that the silk screening could be done between 

the dendrites. 

The major cost factor in the sputtering process is the large 

capital investment required f~r sputtering equipment sufficiently large 

to handle the large throughput. Several vendors have supplied budgetary 
6 estimates for such equipment. Although expensive (> 10 $) ':here is no 

basic problem; but engineering design for scale-up is requirl~d. 

These cost estimates were made assuming equal cell yield from 

all three processes. In our processing studies, howeve4we have found 

32 

-: .... 
:.. "'-""c-'"""-r"-,"""",,,"," ~- ~""~"_~"'j .. ~-i""",~,,_,,,· ..... -R.i'<.. ......... ..-__ _ 

'l 
1 
i 
1 

1 

t 



that tlM apparently inherent br1ttleae •• and -rpha ot the MID calh 

does reduce the yield and make proce •• ina more difficult. 
-

We have a1so assumed that the unreacted Al on the back of the 

c~ll 1~ used a8 ~ck metalli.ation. Althouah thi. appears to be f.84i­

ble, cell deformation may pos •• proble.. If it is necessary to remove 

the Al and remetalliae, the co.t of the Al 8SF would increaae siantfi­

cantly. 

We have also seen that thinner silicon can be used as a baae 

stock with boron diffused 8SF, and thiS thinner material would decrease 

the overall cost by reducing the cost of the input material. 

Thus a comprehensive trade off study would be required to de­

~ermine which process iA indeed most COlt ~ffeetlve. 

3.2.6 Summary of BSF Studies 

The results reported in this section on back surface field 

studies can be summarized as follows: 

1. A model has been developed which provides optimum 

design rules for back surface field structure. 

this model bives insight into the relative impor­

tance of surface and bulk recombination on solar 

cell parameters. 

2. Boron diffused back surface cells have shown a 

maximum V of 0.580V. This is probably near the oc 
optimum vdue for a B diffused SSF. 

3. Al BSF structures have been prepared using evapo­

rated, sputtered and silk screened AI. All give 

essentially similar results with maximum V 's of 
oc 

0.58 to 0.C;9V. 

4. the optimum V for Al SSF structures has not been oc 
attained; possibly because the em1lter r~gion is 

limi ting perforlDtlnce. 
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hulna ~ ~~ ~~ ~rf •. eeftel •• ve ·· .. rie .. 
rally more lJrlttle thaabotqu diffuse4·8SFeel~lh 

rus condition was still noted wben the e.xc.ess 
~ ~ 

alumiDUIIl waa etched off the .ac~ of theceU. ~ 

~i8:6r,ltt1el\~S8c;C"~~'~~V8~;~a~iYJl;Q\i.;' ~ ~c\ ~ 
iC~l4'-~;o,~~~n~':~lio4uJi~~~tc'~ttc;n;.~' '·eo;.tdera~ , 
t19'\ ... cO\\!~f~~~;_~tie~, ~~ },~~~ .t_···~.a .. ;re­
_~-alU.zml, b~t~td. WoUld a~ slgntfUantly to t'" cos~ Qt:?d1~ipr~~8t~/j 

3.3 Deposition of Anti~eflectlon Coating by Spra:rina 
") 

To obtain greater f'l.xibilityin oui' proeess sequence we inves-

tigated a spr-aying mtethod,in Which the antireflec,tion (AR) coating cOllld 

be applied at any of several places in the sequence. 

As one example of a possible advantage of this flexibility, if 

the AR coating could be' applied lateT in the sequence, certain total 

plated contact systems might be feasible tn the s~quence. However, any 
~ 

chanae in the overall: cost must also be considered, e.g., a.mask may be 

needed for' the plating process. 

lriitial experiments were carried out using an air brush 

(Paasche Model VL) with the metal-organic solution of Ti and S1 oxides. 

All substrate. were prepared in the same manner as in the solar cell 

cleaning techniques. Four solution systems were used: ethyl alcohol, 

butyl alcohol, ethylene glycol and 2 ethyl-l-hexano!. 

With the present standard solution (3.5% mixed oxide concentra­

tion in ethyl alcohol) all spraying tests resulted in heavy, nonuniform 

films which ("racked and lifted from the silicon after baking. 
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Aftel dilutioa the standard solution to a concentration of 

1.2% mixcd~ oxides in ethyl alcohol. crackina was less obvious but the 

film wae still not uniform as noted by excessive color variations over 

the web. 

Somewhat i1\lproved results were obtained whtm a 1.8% solution of 

oxides in ethyl alcohol was diluted with ethylene glycol to a final oxide 

concentration of 1.2%. The results from this solution showed some slight 

cracking at the web dendrite interface but the film thickness was more 

uniform as evidenced by the uniform blue color of the fila. 

By substituting 2 ethyl-I-hexanol(6) for the ethylene glycol in 

the above equipment, further Improvc~ent was noted in greater color uni­

formity and less cracking. 

It is felt that beth ethylen( glycol and ethyl-I-hexanol are 

ideal candidates for solvents to be used in automatic spray equipment. 

These tests indicated that spray .~oating of the AR is a feasi­

ble process, however none of the samples prepared using a hand-held spray 

gun ~howed the required uniformity over the entire surface as is obtained 

with the dip coating method. 

A sample of the coating solution and ~ nUBber of web cells and 

web materi~l were submitted to a vendor of automatic spray equipment. 

These e~periments Hre not complete. 

3.4 Cont&ct Studies 

3.4.1 Ti-Pd-Cu System 

(7 8) 
It was previously reported • that the Ti Pd electroplated 

copper system showed promise in that it behaved the SS\1I(! way as the 1'i Pd 

electroplated Ag system. even when sintered at 400°C. TIlis work has been 

contil.ued by studying the long-term stability of the Ti-Pd-Cu system and 

the behavior of the evaporated Pd electroplated Cu system. (Sec 

Section 3.4.2 for a description of the coppe~·plating process.) 
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To test the stability of tbe Ti-Pd-Cu syatea. an accelerat" 

test was carried out where samples were heated at 22S·C for tl ... up to • • 600 hours. Table 11 ,hows th~ results of this test. Tbe baseline eva-

porated T1 Pd electroplated AI contacted sample. were included in the 

test as a control. 

After 600 hours, there was no noticeable chanae in the cell 

parameters and the test was terminated. 

From these data we conclude that the evaporated T1 Pd electro­

plated Cu system 1s as stable as the Ti Pd Ag system under the conditions 

of tho test. Therefore, the T1 (or T1 silicides) do serve as a barrier 
•• to the diffusion of the into the silicon. 

3.4.2 Copper Platin&..!rocess 

The copper plating process used in this work is compatible with 

our present system. To produce a uniform and adherent layer of copper it 

is preferable to first flash coat the areas to be plated with a thin film 

of copper. A ?roprietary electroless copper plating solution is used and 

was obtained from Shipley Co., Inc., Newton, MA. This is then followed 

with an electrolytic copper layer of 5 to 6 ~m. See Tables 12 and 13. 

The critical part of one COPPC? plating process 1s after the 

eleetroless copper plating 15 where the PR and excess metals were re­

jected in acetone. The photoresist must be totally removed for it hap a 

tendency to leave films which interfere with the adherence of the subse­

quent copper p13t1ng. Details are in the process outUne, which follow~. 

* The Ti Pd Cu samples were prepared by removing previously electroplated 
silver and electroplating Cu onto the remaining Ti Pd. The Ti and Pd 
thicknesses were l20A and SOOA respectively. Th' electroplated layer 
was 3 to 4 ~m for both Ag and Cu • 

•• In one earlier test under the same conditions, the T1 Pd Cu contacted 
samnles degraded considerably after 100 hrs. at 230·C. We were not 
able to repeat this result, and the data in Table 12 are the end result 
of several further tests, all of which showed no degradation of the 
Ti Pd Cu system. 
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Test for Stability of Ti-Pd-Cu Contact System 
(Each Entry is Average of 4 Cells) 

Test Condo 
I (mA) sc 

Ti Pd As Ti Pd Cu 

As Fabricated 21.4 21.0 

75 hrs./225°C 21.4 21.0 
in H2 

23 hrs./225°C 21.1 20.8 
in H2 

375 hrs./225°C 21.1 20.8 
in H2 

600 hrs./225°C 21.1 20.9 
in H2 

Cells not AR coated 

2 Measured at ~l; 91.6 MW/cm 

... ,,~.~ .. ··' ... M'"' .... '."'"'' __ ''''' _ •• ,"'" '"~" .. ,,_ .... ' .. ," ........... """ .. "_., .. ,,~ ____ ... _"."~ """",,, .... _.," .. 
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V (V) oc 
Ti Pd Ag Ti Pd Cu 

.520 .520 

.520 .518 

.520 .518 

.522 .522 

.521 .522 

Eff (%) 

Ti Pd Ag Ti Pd Cu 

8.1 8.2 

8.2 8.2 

8.1 8.1 

8.1 8.1 

8.1 8.2 
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EL!CTkOLESS CO~PEl PLATING SOLUTIOfi 

The electroles8 copper plating solutions have been obtained 
from Shipley Co. Inc., Newton, MA. The system consists of three 
solutions CP 70A, CP 10M and Cuposit 1.. The proportions used are 
as follows: 

1. Add 1 part CP 70A and 2 parts CP 70M to 16 parts 
of deionized water. 

2. Add 1 part Cuposit Z to the mixture just before 
plating. 

3. Maintain bath temperature at 49°C ± 2°. 

4. Time 20 seconds. 

S. Rinse in running deionized water for 10 minutes. 

6, Dry with N2• 

1. 

2. 

3. 

4. 

TABLE 13 

ELECTROLYTIC COPPER PLATING SOLUTION 

Dissolve 200 grams of Cu S04 SH20 in 1 liter of 
deionized water, 

Add carefully, 30 m1 of H2S04, 

Plating temperature 70 - 120°F 

Current density 2 20 - 40 rnA/cm • 

5. Ratio of cathode to anode 1:1. 

6. Anodes - copper; cathodes - silicon with metal grids. 
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ProceS8 Outline 

1. Immerse solar cells with antireflection coating, 

photoresist and grid area defined with Ti Pd metal­

lization into a electroles8 copper plating solution 

for 20 seconds. Rinse in runninr deionized water 

for 5 minutes. 

2. Place cells into a pyrex baking dish and cover with 

acetone for five minutes. Swab off loose metal and 

photoresist with cotton swabs and acetone. Spray 

cells clean with acetone. Swab again using methanol 

and cotton swabs. Spray clean with methanol. Dry 

in N
2

• 

3. Place cells into a holder that is connected to a 

power supply and immerse into a electrolytic copper 

bath. 

4. 2 Plate at a current density of 20 to 40 mA/cm with 

agitation for 30 minutes to give a 5 to 6 ~m layer 

of copper. 

5. Rinse in running DI water for 10 minutes and dry 

with N
2

• 

3,4.3 Pd-Cu System 

In the first Annual Report on this contract,(8) we discussed 

the evaporated Pd-electroplated Cu system. This system could not with­

stand sintering above 150°C. Further experinents were carried out to 

study the effect of (1) thicker Pd layers and (2) sintering the Pd before 

Cu plnting to form Pd sUicides. 

In these experiments, 800 A and 3000 A of Pd were evaporated on 

the sun side of the cell ilnd 4 \.1m of Cu was plated on the Pd. The data 

01& these samples is shown in Table 14 in the unsintered column. In this 

table, n. I • V and FF have their normal meaning. R is the cell 
se oc s 
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~er1ea reaiatance, ~H the shunt resistance aM I
j 

1s the exe ... junction 

current measured at O.3V. Fro. the uasintereel elata, there 1. GO 1a.41ca­

tion of any difference from a baseline contact syste.. Th ... ...,1 .. 

were then sintered at 300·C for 15 ain. in HZ' As seen in Table 14 this 

process degrades the cells conaiderably, mainly by a 2 to 3 order of mas­

nitude increase in the exceas junction current <RaB is nearly constant). 

It thua ap~~4rs that \msint.red Pd ia unable to fora a barrier for Cu 

diffusion, even at 3000 1 thickness. 

In the next experiment, the layers of Pel (apin 800 .1 snd 

3000 1) thick were sintered at 300·C for 15 ~n. in HZ to fora Pd sili­

cides. After this tre~t_nt. 4 1.111 of Cu was electroplated on the surface. 

This data is shown in Table 15. Alao seen in Table 14 are the results 

when the Pd Cu .ystem is sintered at lOO·C. Again, there is severe de­

gradation due to an increase in the junction exceaa current. The conclu­

sions that can be drawn from this data is that Pd sintered at 300·C does 

not form a barrier for Cu diffusion. (The degradation noted is due to Cu 

and not Pd because the cells with Pd only were measured and showed a very 

low junction excess current.) 

These data show that the Pd Cu system is sensitive to heat 

treatment, and thus a barrier metal 1s required. 

3.4.4 Total Plated System 

Possible methods for lowering the cost of silicon solar cell 

processing are constantly being examined. To this end, we are investi­

gating the electroless Pd-Ni plating system as described by Motorola. 

However, we are coating the Pd-Ni plated layers with electroplated AS in­

stead of dipping it into liquid solder. 

We have not investigated the cost factors in this process nor 

have we run a SAMICS calculation. However, the process does require a 

significant amount of wet chemical treatment and the use of corrosive and 

toxic substances which require special handlins equipment and disposal 

techniques. These considerations suggest a careful study is required 

before the total plated system cnn be proven cost effective. 
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11(%) 

Isc (IIA) 

V (V) oc 

FF 

R (n) s 

Rsh l_
1V 

(Kn) 

1j I (IIA) 
.3V 

, 

a .0_ 

TABLE 14 

EVAPORATED Pd - PLATED Cu CONTACTS 

• • SOOA Pd + 4 1J1IlCu 3000A Pd + 4 "II Cu 

Unsinured Sintereel Unsintered Sintereel 

S.96 4.67 9.15 3.0 

21.S 20.9 21 21 

0.542 /).501 0.552 0.360 

0.727 0.426 0.746 0.4 

0.8 0.4 0.6 0.3 

40 40 33 30 

0.01 5.67 0.082 14 

• Sintering was done at 300·C for 15 lIin. in H2" 

• Sintering degrades the junction response severely. 

• It appears that unsintered Pd is unable to form a 
barrier for Cu diffusion regardless of Pd thickness. 
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1'1(%) 

I.e: (mA) 

V (V' oe: . 

FF 

R (0) • 
Rshl_lV(xO) 

I j I. :W(mA) 

TABL! 15 

SINTERBD Pd - PLATED Cu COHTACTS 

• • 800A Pd Sintared at 150·C 3000A Pd Sint.red at 300·C 
4pa+Cu 4 .... eu 

Un.int.red Sintared Unaintared Sintered 

8.77 4.62 8.71 2.46 

20.4 20.4 20.9 18.5 

0.t;38 0.488 0.543 0.298 

0.755 0.458 0.725 0.42 

1.5 0.46 0.8 0.3 

100 60 250 10 

0.019 4.~ 0.038 11 

• Sinterinl WMS done at 300·C for 15 min. in H2• 

• Sintering the heat treated Pd-P1ated Cu contact. severely 
degrades the junction reaponae. 

• Pd sintered to 300·C doe. not serve as a barrier for au 
difful1on. 

• Degradation 1s related to Cu and not to Pd because Pd 
sintered alone at 300·C lives good cells. 
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In the Motorola proce.. a dilute Pd lolutlo~ i, uaed to .. nai­

tlze tbe 111icon cell by a diaplacement reactioD_ Thl. i, followed by an 

electrole,e Pd eolutioD util1z1na an autocatalytic reaction for platina 

the Pd to tbe aenaitized 8urface. After a beat treat.-at in nitroaen at 

3ao·C, electrole.a Nt i. plated onto the Pd aurface. The final 'tep in 

tbe Motorola procese however, differe fra. that used by We'tinahou.e; In 

our method silver te electroplated over tbe Ii, wbile tbe Motorola proce.s 

reflowa solder over tbe Ill,. The platina solutions liven 1ft Motorola 

specification are 8hown to Table 16. 

In initial test runa with the standard Motorola process, it va. 
noted that the required etches and rin8es attacked tbe antireflection 

coating (used aa a plating maak) , and thus such of tbe silicon surface 

waa plated as opposed to plating only In the grid area •• 

This attack on the AI i8 not a problem in the complete Motorola 

process since they use silicon nitride as an AR coating and thi' 1a im­

pervious to the etches and rinses. 

Due to theae reaults, the Kotorola process was modified with 

the HF and aqua regia rinses being carried out for shorter lengths of 

time. This modified process 1. shown in Table 17. 

With this modification, a test run of 30 cells (all from tbe 

same web crystal) were proce8sed through this modified procedure (includ­

ing an electroplated As top metal replacing the aolder dip). Before the 

initial plating, ch~ cella had an AR coat with the contact grid etched to 

tbe 51. 

The data on these cells are given in Table 18. Only IS eell. 

survived to the testing stage. The main 1088 mechanism was a .ligbt 

attack of the AR coating by the Pd plating solution with subsequent nu­

cl~ation of Pd on areas other than the cell grid .tructure. During the 

second plating, the nickel plated over much of the cell surface. appar­

ently using the Pd nuclei as starting points. 

In Table 18. the cells with very poor properties (31, 32. 52) 

had higb aeries resistance on tbe order of S to Ion. This as, be due to 
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TAIU 16 

PUTlIC SOLUTIOIS 

(1«JT01lOl.A SPICInCATI01l) 

Palladium Sen,lti'lna Solution 

1. To 1500 .1 of 50·C deionized w~~.r add SO .1 ~Cl and 0.048 of 
palladium chlor1de. Stir UDtil diaHlvec1. 

2. Add 10 a1 ~1. fluoride-.Ur. 

Palladium Stock Solution 

1. Add 10 .1 of HCt and 1.9, of palladi. chloride to 100 .1 of 
SO·C deionized water - Stir. 

Electrotess Palladium Solution 

1. Add 30 .1 of panadiua stock solution to 165 al of M'fI4OH. Allow 
to stand 1 hour and filtar into 750 al of deionized water. 

2. Add 27, of NH4C1 and 3.75, .odium hypopbosphate. Stir. 

3. U.e .olution at SO·C and a pH of 9.7-9.8. 

Electroless Nickel Plat ins Solution 

1. Dis.olve 15, of nickel chloride in 440 al of deionized water. 

2. Add 258 NRC!, .tir until dissolved. Add 428 sodium citrate. 
stir until di.aolved. Add 51 aodiua bypopbo.pbate and 65 .1 
of NH4OH. Stir until dissolved. 

3. Uae solution at 80·C and a pH of 10.0. 
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TAiLE 17 

MODIFIED ELECTIOLISS PUTIlIC P01t H and 1'1 

1. Itch c.ll. to open grid in AI coating and rin •• in DI H20 
CUa. 60/40/100::--,F/HCt/H20). 

2. P1ac. c.l1. into a t.t1on carrie~ and ~ra. into a pa11adiu. 
.en.itizing .olution under a hiah inten.ity light for 3 .inute. 
wh:~. aaitatina ,aDtly. (Maintain hiah inten.it, 1iaht within 
6 inche. of the cell •• ) 

3. Rln.e carrier and c.ll. in runninl deionized water for 5 .inute •• 

4. Again i1IIIIera. cella into the paUadiWll aeneithin" .olution under 
a hiah intenalty light for 5 .inute. while aaitatina aent]y. 

S. Rin.e carrier and cell. in running deionized water for 5 .inute •• 

6. Place carrier and cell. into the electrole •• palladiu. solution 
(SO·C) for 1 .inuts while alitatins. Aabient li,ht i. kept low. 

7. Rin.e carrier and cell. 1n running deionized water for 5 .inute •• 

8. Place cell. into a quartz boat and in.ert into a quartz tube 
furnace at 300·C with a "2 'low for half hour. Cool. 

9. Place cell. back into carrier and ~r.e into a e1ectro1e •• 
nickel plat ins solution at 80·C for 5 .1nut •• Vhile asitatins. 

10. ReaDVS carrillr .... cen. frOil the nickel solution and rin.e in 
running de10nized water for 5 .inute •• 

11. Plate .ilver electrolytically. 
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Cell 11 

11 

12 

21 

22 

31 

32 

41 

42 

52 

61 

62 

71 

72 

81 

82 

STD(3) 

1) 

2) 

3) 

TABLE 18 

Parameters of Cells Fabricated Using 
Modified Eleetro1ess Plating for Contact.(9) 

Isc(mA) VOC(V) FF EFF(%) 

27.9 .515 .719 10.8 

28.1 .510 .721 10.9 

26.8 .514 .711 10.4 

26.9 .513 .718 10.5 

19.3 .483 .365 ~.6 

22.6 .501 .363 4.4 

29.2 .502- .697 10.8 

28.7 .502 .672 10.2 

18.5 .479 .351 3.3 

29.0 .508 .721 11.2 

28.6 .500 .707 10.7 

27.8 • 496 .629 9.2 

28.6 .508 .704 10.8 

26.0 .480 .661 8.7 

27.2 .501 .704 10.2 

29.8 .556 .740 13.3 

2 AM-I Illumination - 91.6 watts/em, AR coated. 

All cells fabricated from same web crystal. 

Tocn(lJSee) 

1.7 

1.6 

1.8 

2.1 

.9 

2.0 

1.2 

1.2 

1.8 

1.8 

1.8 

3.1 

2.9 

1.0 

1.0 

12.0 

These are the parameters of cells fabricated from the 
same web crystal but with evaporated Ti-Pd-Ag contacts. 
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incomplete removal of the AR from the arid areas. thus,the wetal would 
not be ln continuous contact with the silicon. The .. nerally lower fl11 

factor on the other cells is apparently due to a sllahtly higher serie. 

resistance than normally achieved. III :;eneral. the efficiency of the 

best cella was 2.5 to 3% (absolute) lower than the standa~d processed 

cells. Some decrease in the ISC may be due to an attack by the solutions 

on the AR coating which would make it lesa effective, i.e., lower en~ance­

manto After these measurements. selected cells were uinterad for 

15 minutes at 42S·C. There was no systematic improvement. 

From these results and those of earli~r teals, we conclude that 

the Motorola process specification is not immediately transferable to the 

process sequence ",e use. It is also concluded that substantial effort 

would be required to make use of this process spe~ification. 

l.S Interconnect jon Tec~nol08Y 

3.5.1 Interconne.ct.bn Requirements 

Compl~ted solar cells must be interconnected in series andlor 

parsllel arrangements within a module in such a manner that the intercon­

nection procedS does not interfere with the preceding or subsequent steps. 

Interconnect reliability is of major concern. For the inter­

~onnections to maintain high bond strength and conductivity the effects 

(If corrosion, (ormation of intermetallic compounds, mechanical stress and 

metal fAtigue must be minimized. 

In dddition to these technical requirements, the interconnect 

process must be low cost and amen •• ble to high throughput nnd autolll<ltion. 

And, most importantly, the bonding .,rocess must have high yjeld 

in t"erms of acceptable bonds and cell breakage. A large number of 

bonds will be rcquir~d for ~ach module, and several failed bonds or one 

brokl~n ct'll cnn degrade tht! entire module. 
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3.5.2 Ultrasonic Bondi!, Evpluatlon 

3.5.2.1 Introduction 

A number of ~thods for interconnecting solar cells were dis­

cussed tn the last annunl r~port(8) on this contract. Such methods 1n- . 

elude conductive adhe~ive bonding, parallel gap welding, laser weld1us. 

thermo-compression bonding, soldering and solder reflow. However. based 

on a number of technical and cost factors, early in the program we chose 

to investigate ultrasonic bonding as a cell interconnection method. 

Ultrasonic bonding has a number of advantages for interconnect­

ing solar cells and should be considered a viable alternative to SQlder 

bonding. Some of these advantages are listed below: 

• mo3t materials can be bonded 

• low contact resistances are possible 

• strong bonds can be achieved 

• corrosive flux removal operations are unnecessary 

• total cell thickness is minimized (solder build-up) 

• moderate capital cost 

• low energy consumption 

• amenable to automation with high th~oughput. 

Bonding between two materials can be made to take place when 

the material surfaces are scrubbed against each other at ultrasonic fre­

quencies. The detailed method by which the bonding takes place is not 

known in all cases. When thermo-plastic materials are bonded, the scrub­

bing action appears to generate sufficient heat that local melting of the 

surfaces occurs. When metals are joined, tt is less likely that melting 

occurs; instead, it is hypothesized that either (1) surface oxides and 

contaminants are abrasively removed and atomic contact between clean 

metals is achieved. which in turn leads to chemical bonding or (2) the 

scrubbing lletlon causes microfracturcs in the surfaces of the metals and 

these fractures interlock forming a strong metal-to-metal bond. 
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Whatever the exact m~nl .. of ultraeonic bondlnJbetween 

metals, 'the process 1s successful in ppplications ranging from joinin. 

large copper busbars onta electric motor alternatora to attaching fine 

wires to thin films on integrated circuits. 

Because the exact nature of the bondina~roce8s is not known, 

the achievement of a~ceptable ultrasonic bonda 18>largely an empirical 

process. A large number of parameterlt determine the, quality of an ultra­

sonic bond. In so far aa the mat~ria18a~e concerned, the thickness. 
: '*. '- ,. ."-

temper, surface condition and-l:he materials themselves are illlPortant. 

Among the bonding p4r .. ete~s are the ultrasonic frequency, the vibrational 

amplitud~, the size and shape ~f the tool, ~he tool material, the vibra­

tional power input, the clamping force between th~ tool and the work 

piece, and the length of the time interval during which power is applied. 

It has also been shown that the properties of all the materials beneath 

the work piece have an effect. Although there are a large number of 

variables, experience has shown that once the materials to be joined have 

been ch~sen, that some combination of the force power and time of the 

welding will result in good ultrasonic bonds. 

Ultrasonic bonding machines are of two basic types. The sim­

plest type - the spot bonder, is one in which the ultrasonicallY-driven 

tool contacts the materials to be joined in a single area. After a bond 

is made, the tool is lifted and repositioned in preparation for the next 

bond. An analysis of this operation shows that the throughput rate of 

bonds is limited by thp time required to reposition the tool between 

bonding operations. In the second type of machine, commonly called a 

seam bonder, the ultrasonically-driven tool is in the shape of a wheel 

which is made to roll across tit.:: workpiece, making a continuous linear 
~ 

bond. This type of machine is widel} used to ~pl1ce the ends of metal 

foils and p1r.stic sheets. The advantage~ of applytne this type of machine 

to solar cell interconnection ar(~ obvious ii the interconnect material is 

in the for r 
•• of a continuous tapa or web to be b""l1ded along one edg~ of a 

solar cell. Even if the interconnect is in the fOl~ of discrete tabs 

bonded at poiata one centimeter apart, the use of a se .. 'm welder type of 
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machine will result 1n increased bonding speed: a spot bonder can bond 

and position itself for another bond at a rate of about one bond per 

second; a seam welder can roll along a Bolar cell edge (or along a long 

line of solar cells) at a rate of 15 em/sec, making 15 bonds per second. 

For these reasons given above, Westlnghous~ has proposed that 

solar cell interconnection should be accomplished with thin metal foils 

(e.g. t aluminum or copper) ultrasonically bonded to solar cell metalliza­

tion. 

A preliminary experimental survey of materials and ultrasonic 

bonding parameters was undertaken ia 1978 at the Sonobond Development 

Laboratory by Westinghouse personnel. The machine used was a Sonobond 

ML-60l0 (Wl060D) spot b,mder with a 0.062" diameter tool having a two­

inch tip radius. This machine operates at a frequency of 60 KHz (max 

power output is 10 watts). The results of this study were reported in 

the First Annual Report. (8) It was concluded that when proper processing 

p~rameters are used, low rt.'sistance, strong bunds can be made bp.tweel\ a 

variety of metal foils or ribbon and dendritic web solar cell metalHza­

tions. 

To further optimize this process and establish the capabilities 

for using ultrasonic welding in the fabrication of the moduleR, the same mo­

del spot welder discussed above was purchased. With this equipment, tests 

were made to study the bond parameters and determine yield. ~efore studvinR 

failure mechanism we have to establish a capable bonding process. The bondin~ 

parameters were determined for different interconnect metal-contact metal 

systems. including tests nn the metal system used in the modules, i.e., 

AI-Al and AI-Cu. 

During the latter part of the program, some preliminary experi­

ments using an ultras0nic seam welder were carried out. This apparatus 

bonds using a continuously moving circu13r weld head. 
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3.S.2.~ ~.!..<!!!tl to Electroplated and ~aporated Silver 

The first series of tests were carried out to determine the 

effect of the bond parameters on various metal foil interconnects and to 

study the failure mechanism of bonda. The contact metal was evaporated 

or electroplated silver. Since the metal foil interconnect was not 

in1tially specified, the teata were made with copper, aluminum and nickel 

foUs. 

these tests were made with the Sonobond (Model W-l060D) welder 

shown in Figure 5. Metal bonding parameters (force, time, and power) 

were selected based on previous experience with a similar unit at 

Sonobond Corporation and on trial runs on the new machine at Westinghouse. 

Copper, aluminum and nickel ribbons were bonded to plated silver and 

evaporated silver (Ti/Pd/Ag) metallization. The bonds were pull tested 

and the interface after ribbon lift-off was examined and photographed at 

lOOZ. The results are summarized in Table 19. Aluminum bonds to evapo­

r,lted silver were of uniformly high strength. Copper bonded to evapo­

rated silver and nickel to electroplated silver gave somewhat higher 

strength bonda but with less reproducibility. An examination of the 

silicon surface (bond interface) after lift-off showed that the highest 

bon~ strengths correlated with significant cratering. The crater area 

was estimated, and the bond strength was calculated based on force per 

unit area. Values ranging from 1000 to 3000 psi were typical. The in­

vestigation revealed that the lack of reproducibility appeared to be the 

most significant problem which would have been the result of several fac­

tors: 

• poor metallization adherence due to surface contami­

nation 

• movement or refhmances in the silicon or metal tab 

during bonding (variations in energy coupling at the 

bond interface), 

• room and table vibrations. 
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Ribbon to Metal Surface 

Copper (2 mil) _ 
Plated Ag 

Copper (2 mil) _ 
Zvap. Ag 

1.11 

Aluminum (1.5 mil) _ "'" Plated Ag 
11&: 

I~ 
Aluminum (l.S mil) _ 
Evap. Ag 

Nickel (1.5 mil) _ 
Plated Ag 
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TARLE 19 

RESULTS OF BOND TESTS 
(SONOBOOD W-I0600 "ELDER) 

90 0 Pef!l Test 
Bond Parameters 

Average MAX Power Force Time (Grams) Std. Dev. (MIN) (Watts) (OZ~ (Sec. ) 

32 57 118(0) 26 30 3 

109 73 181(14) 18 18 

36 15 64(16) 18 18 .07 

43 18 72 (11) 17 21 .07 

94 133 188(0) 26 3t) 3 

Interface 
Inspection 

Cratering of Silicon 
(Conco1dal fracture 
- High Str. Bonds) 

Cratering of Silicon 
(Conco1dal Fracture 
- Higb Str. Bonds) 

Cratering of Silicon 
(Matte Texture in 
Fracture Area) 

Cratering of Silicon 
(Concoidal fracture 
- Higb Str. Bonds) 
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, A aeccmd and IIIOre extenaive ,roup of boD4. t .. C., with co". .. 
aDd nickelrlbboll ultraaonically val4 .. to plated ailver, wn _a •• Jib-

,bon was SO .Ua wide by 1.S ~Ua thick. BoDd. were Md. or attapted ova a 

wide raftJle of clDPina forcea, power. and weld t1lle aett1n&s on the Soaoboad 

unit. The objective of theae teata waa to detemine the ranae of variable. 
over which lood bonds could be achieved and to identify tho.e factora which 

contributed to,bond strength variability in the firat teat serlea. 
'-, 

The 4 x 4 clamp1na force-power matrix in Fiaure 6 ahowe the 
ahaded area where bonda were observed for 1.S ail thick copper ribbon to 

4 ~m thick electroplated As with an evaporated Ti/Pd underlayer. The 

weld time in thia matrix waa 1.2 seconda. lbe metallized cella uaed in 

theae tests did not receive any post-depoaition alnterina aince previous 

data showed that, on occasion, the a1nter1nl atep reaulted in aome loaa 

of cell efficiency. A RiDdlar 4 x 4 clamping force-power matrix waa 

evaluated for shorter weld times (0.035, 0.10, and 0.2 aeconda). No bond. 

were made at these time intervala for copper ribbon to plated ailver. 

even at the hilhest force (38 oz) and power (30 watt) levela. A total of 

48 trials were made (5 bond attempts at each power-force settina). 

Cu to PLATED Ag (T • 1.2 sec) 

8 HB HB H8 H8 

-, 
18 N8 -"¥o 

Clar.:;:ling 
Force' 
(vz) 24 HB 

38 

12 20 2S 30 

Shaded area - bonds made POWER 
(Watts) 

HB - no bondf m.I 

Fig. 6 4 x 4 clamping force - power matrix for copper ribbon ultra­
sonically welded to plated silver (1.2 _econd w_ld tta.). 
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A similar series of tests were run for 2 mil thick high purity 

(> 99.99%) nickel ribbon to plated .ilvAr-metall1zed silicon web cella. 

Good bonds were observed in the shaded area of the 4 x'4 matrix (1.2 

second weld t1mes) shown in Fig. 7. Note that bonds were made at lrwer 

clam"f,nl forces (8 to 18 oz •• ) compared to 24 to 38 08. for copper 

ribbon (Fil. 5). The nickel ribbon welded at hilher clamping forces 

adhered to the bondinl tool. tip rather than the cell. 

Table 20 shows the 90· pul1-strenlth data for copper ribbon 

bonded to plated silver. The strenlth of 18 bonds was measured at the 

cIampini force-power settinlO shown in the table. The overall average 

bond strength was 139 grams. An examination of the bond areas on the 

substrate and ribbon after the pull-test showed that most failures 

occurred in the copper ribbon rather than at the me~£llization-substrate 

interface. Typically, a small section of the ribbon was pulled-out 

and section remained attached to the cell. The photomicrographs in 

Fig. 8 show the effect for two different copper to plated silver test 

specimens. 

The bond strength data for nickel ribbon in Table 21 shows 

considerably more scatter than the results for copper ribbon, and the 

overall average strength is lower for 26 bonds, (44 grams). Figure 9 

shows a photomicrograph of the bond area on the cell for a high 

strength specimen (181 grams). A small piece of the nickel ribbon is 

still attached to the substrate. The bon~ ~rea on the substrate for a 

lower strength sp~cimen (22.7 grams) is dnown in Fig. 10. The 

photomicrographs show that about one half of one bond area has a mirror­

like surface (exposed silicon sub8trat~:' where the metallization wos 

pulled away with the ribbon. The other half of the bond area containing 

a small section of the silicon cell pulled out, indicates that a metal­

lurgical type bond was made in this area. These effects are typical 

for all of the bonds that were inspected at high magnification. 
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Ni to PLATED Ag (T = 1.2 sec) 

Clamping 
Force 
(oz) 

38 NB- NB* NB- tlB-

12 20 25 30 

POWER 
(Watts) 

Shaded area - bonds lTiade 
NB - no bonding 
NB* - Ni bonded to weld tip 

Fig. 7 4 x 4 (.l~mping force - power matrix for nicke'l 
ribbon ~ltrasonica11y welded to nl atej silver 
(1.2 secGnd weld time) 
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Power 
~Vatta~ 

12 

20 

2S 

30 

Average 
(All Bonda) , 

Cl_ping 
Force 

(OZl 
38 

38 

38 

24 

l8 

24 

TABLE 20 

90· PULL TF.ST DATA 

1.5 MIL COPPER RIBBON BONDF.D TO PLATP.D SILVER (4 .... > 

90· Peel Strength 
Average Std. Bond a 
~Cr .. a~ Dev. Max. Min. Teateel 

5 2 7.0 2.0 3 

189 :~8 209 169 2 

19 1 
232 50 268 196 2 

149 117 331 0 8 

216 11 223 209 2 

139 109 331 o 18 
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Failure Mode 

All _tal ribboa­
Metalilaatioa. 1Dterfaee 
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Copper Ribbon 

Spe i men hI (JOOX) 

tn ll d @ &9 grams 

Spec imen 02 ( IOOX) 

Hule pull ed out o f cent ~ r of 
'o ppe r r ibbon 

F. I led li t 223 gr ams 

Substrate 

Figure 8 Photomicrographs o f failed bond a reas for two different 
copper ribbon t o plated silver test specimens. 
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Substrate Bond Area (lOOX) 

Failed at 181 Grams 
(Note Piece of Ribbon Attached to Substrate) 

Figure 9 Photomicrograph of the bond area on the substrate 
for a high strength bond (Nickel Ribbon). 
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Substrate Bond Ar~a ~lOOX) 

Failed at 23 Grams 
(Note Mirror Surface and Crater Pull-Out) 

Figure 10 Photomicrograph of the bond area on the substrate 
for a low strength bond (Nickel Ribbon). 
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Theae studies of bonding au and Nt ribbon to plated Ag metal 

,suggest that the main failure made Is at the Ti/Pd/Ag-Si interface. 

The difference in the data in Table 21 and 22 as compared to Table 20 

1s probably due to variability in the metal adherence. 

Copper ribbon bonds were strong only as high energy levels 

and no bonds were formed at lower levels of energy. The higher energy 

\ltlth greater frictional heating would tend to initbte some metallization 

sinterlng increasing the contact metal adherence. However, with the Ni 

!'il-bon bond~ were fomed at low levels of energy and no si.ntering would 

occur and the bond strengths (i.e. metal adherence) was more variab1~. 

The bond strengths given :in this section show considerable 

variation. At this point we cannot define the mintmum bond stren~th 

required. 

The average pull strength for 52 bonds in the 0.1 second 

matrix was 59 grams with a standard deviation of 33. Somewhat higher 

strengths were measured in the 0.25 second matrix for 42 honds (average 

19 g~ams. standard deviation 34). 

3.5.2.3 Bonds to Aluminum and Copper 

Cells metallized with Ti-Pd electroplated copper front 

contacts and aluminum back surface fields have been selected for module 

assembly. The next series of ultrasonic bond tests were designed to 

determine if good quality bonds could be made to these metallization 

systems at high yi~ld. 

• Aluminum to Electroplated ~opper 

EarlIer work has shown that aluminum rihhon forms more 

reliable bonds to eithpr plated corper on the front of th~ cell or 

III uminum on the back surface of the cel1. Thus II study was made of the 

bonding parameters of Al to electroplated Cu. These tests wer@ 

performed to verify that good quality bonds could be made with thl~ 

metal system for demonstration modulps. A damping forct'-power mntrix 

was examined for two different weld tim~R. The results nre shown in 
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Table 2~ The number in parenthesis is the average pull strength of 3 to 

5 bonds. A total of 66 bonds were measured giving an overall average pull 

strength of 74 gra1lls with a standard deviation of 60. u\'ou tonus wert:! 

made at all clamping force-power settings ,in both of the-test matr1Xes. 

The stNngest bonds (150 to 250 grams) were developed in the matrix 

with the longest weld ttae (1.2 second~). In general these results are 

equivalent to or better than those m~asured previously between aluminu1ll 

ribbon and plated silver. The electrical parameters, for these bonds 

were si1llilar. 

• Ultrasonic Bonding to Aluminum ~t~ta111zativ.l 

Several different types of alu1llinum back surface field processes 

ha~e been evaluated. In general, it is possible to produce strong 

bonds to sputtered and reacted aluminum although the reproducibility is 

not as good as with silver or copper metallizations. 

Pull strength data have ~een obtained for cOpper, nickel, and 

aluminum ribbon leads bonded to sputtered and alloyed aluminum. The 

data is shown in Table 23. 

TABLE 23 

ULTRASONIC BONDING TO METALLIZATION 

Interconnect Stup II of Bonds Av. Strength Std. Derivation 
(grams) 

Copper 8 88 54 

Nickel 8 30 10 

Aluminum 9 100 85 

Since the demonstration modul~s will be fabricated using Al 

back surface fields, contacting to At is a necessity and the reproduct­

billty problems make module fabrication difficult. 
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TABLE 22 

90· PUJ.L TEST DATA 

CLAMPING 

FORCE (Ol) 

90· PULL STRENGTH 

AV (GMS) , BONnS TESTED 

l.~ MIL AL TO 4 .. THICK PLATED CU - WELD TIME 1 SEC 

18 32 3-5 

24 30 3-5 

32 38 3-5 

18 54 3-5 

2/_ 74 3-5 

32 61 3-5 

18 9'+ 3-5 

24 92 3-5 

32 98 3-5 

1.5 MIL AL TO 4 lJIIl PLATED CU - WEI.D TIME 1.25 SEC 

18 117 3-5 

24 59 3-'\ 

32 46 3-5 

18 114 3-5 

24 34 3-5 

32 49 3-5 

18 82 3-5 

24 93 3-5 

32 153 3-5 
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3.5.2.4 Ultra80nic Sondina 1n Module Pabricatiojl 

As described 1n the preceedinl sections, the tecludcal 

feasibility of ultrasonic bondina of solar cell interconnections bas 

been demonst.rated. In this section we will discuss testa concemed 

with using ultrasonic bonding in actual modul, fabrieation. 

The module fabri~.tion procedure (discussed in detail in 

Section 3.7.2 involves .. king interconneetions to the front of the ce~l. 

then mounting the cell on a glass super strate with adhesive. and after 

curing, completing the back interconnects. 

Several features of this fabrication process were evaluated 

to establish feasibility. 

An ultrasonic bond test was performed to determine if leads 

could be bonded to dendritic web silicon solar cells embedded in a 

silicon rubber (RTV) material. The test was designed to simulate the 

method used to interconnect a solar cell array as described 1n our 

process sequence. When the cells are embedded 1n an adhesive there is 

some concern that they would vibrate during ultrasonic bonding. This 

could result in lower bond strength or even prevent bond formation. 

In this test, cells were embedded tn GE RTV 615. The resin 

was spread evenly over a glass substrste to a thickness of 2-3 mils. 

Solar cells were laid on top of the glass surf~ce with a circular 

motion (sun side down). The array was cured at 70oe. Ni ribbon leads 

were then ultrasonically bonded to the Ti/Pd/plated As back surface. 

(This contact system was used for the test due to the reproducibility 

problem with the AI system. 

These data show bond strengths equivalent to or better than 

those previously reported for cells not embedded in RTV. The next 

test was similar, except that ribbon leads wer~ first bonded to the sun 

side of the cells before embedding in RTV. This test was designed to 

provide a more complte simulation of an actual interconnected module. 

The concern h~rl:> was that the ribbon lead thickness might aggravate the 
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tendenC7 for the cells to crack under the hiah-point lo.dina required 

durinl ultrasonic bondtna of the leada to the back .ide of adjacent 

cell. tR the array. The first attempt va. not aucce •• ful becau.e of 

excessive thickness of the RTV under the _bedded cell. with the result 

that uny cells were cracked. A .econd ••• embly .. a prepared and extra 

care was taken to ensure that only the .1Diaua thieleneaa of ItTV _a 

present between the cell and 11a88 for proper adheaion (~ 2 mils). Tbe 

results of this test were significantly better. It was poaaible to 

produce strong bonds to plated Aa using three different metal ribbon 

leads (Al, Cu, and Ni) without crackinl the cella. The bonIa cannot be 

pull tested because of the short ienlths of ribbon extendhl from the 

welds. However, a qualitative evaluation of bond strengths indicates 

that the pull strengths are comparable to those previously tested. 

In order to interconnect a working cell array on larler 

plates, additional clearance is needed between the weld tip and the 

base of the ultrasonic shank. An extended shank (6.587 inches) has been 

obtained together with a longer weld tip. This assembly will permit 

the interconnection of cell arrays mounted on plates up to 30 x 30 cm 

to ensure the best possible bonding cCtnditions, the modified welder 

was taken to the Sonobond factory for set-up. The spot welder was adjusted 

by Sonobond and a number of lood bonda were made USinl the extended 

shank. Bonds were made between aluminum ribbon and metallized silicon 

web (sputtered aluminum back surface metal and electroplated copper.) 

During the various tests discussed above, a large number of 

failures occurred. On interconnections to the·back (Al) side the failuTe 

mod~ was cell breakage, generally in an irregular manner initiating at 

the bond PQint. On the front of the cell the failure mode was similar 

in that a number of small cracks would propagate from the contact point, 

and in extreme cases the cell would shatter. The failure rate during 

this process was greater than 501.. 
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Subsequent teste sh0we4 the followin8: 

1. This problr..a.m did not aria.. or wa, much 1.s8 ao~ie~bl •• 

with boron back surface field celle, even wh_ the cella 

were <125 pa thick. 

2. The problem was less sian1f1cant when the A1 back surface 

field cella were thicker than 200 um. 

It would then seem that ~he low yield is due to two, probably 

interrelated. conditions of thin cells and the inherent brittl~es. of 

AI. BSF cella. 

At this point we conclude that although parameters have been 

developed for ultrasonically bondin8 metal interconn.c~s to the cell, 

the yield of the process is so low that the process is not usable to 

fabricate the demonstration modules. 

3.S.2.5 Ultrasonic Bonding to Screen Printed Samples 

Silk screening of grid lines 1s the selected top contact 

process by several contractors. To determine the suitability of 

ultrasonic bonding to this type of contact, samples were obtained and a 

series of bonding tests carried out. 

A group of 3 inch silicon wafers were obtained from RCA(10) 

with a screened on grid pattern. Attempts were made to ultrasonically 

bond copper, nickel, ~nd ~luminum ribbon leads. Adequate bonds could 

not be obtained with copper or nickel straps but good results were obtained 

with aluminum ribbon. In fact, it was possible to make strong bonds with pull 

strengths of 50-100 GMS over the complete force-power matrix described 1.n the 
precedin~ section for weld times of 0.1 seconds and 0.25 seconds. 

3.5.2.6 Ultrasonic Seam Bonding 

A Sonobond seam welder (Model MS-5010) designed for welding 

large sheets of aluminum foil was modified to determine the feasibility 

for seam wleding interconnections to the silicon web cells. Several 

successful seam welds were made between 6-8cm lengths Gf metallized 

silicon (aluminum BSF) and aluminum foil. rhe aluminum foil was bonded 
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continuously over the entire lenlth of the ailicon atrip fa 1 ... than 3 

seconda. 

The photolraph in Figura 11 shove the set-up with the stU.COll 

web and alumina foil taped to an under1ayin, aheet of copper foil. 

The circular weld head was rolled over this assembly at • rate of 

lcm/sec usinl a pressure of 25 8rame (approximately 35 watts power). The 

alumina foil bonded tilhtly to the silicon alona its entire len,th. 

No indication of crackina or cell damage waa vistble. Several additional 

pieces of silicon were bonded with equally load results. It is evident 

that further evaluation with .r·".cialtzed fixturinl and :1nterc01lllect 

material. is needed to establ!sh a viable process. However, these 

prel~inary resulta are very encouraging particularly in comparison to 

the difficulties experienced with cell crac~ing ua:1na a spot bonder. 

3.5.2.7 Summary and Conclusions 

An experimental evaluation of ultrasonic bonding parameters 

and materials has demonstrated the feasibility of attachin8 interconnect­

ing leads to a wide variety of deposited metala on dendritic web solar 

cells. Considerable practical information hal been obtained on candidate 

material systems, process parametera and bond characteristics as well as 

the requirements for the design of ~proved jigs and fixturing. Proper 

fixturing and processing techniques were found to be the key to 

producing good quality bonds without damaging or cracking thin dendritic 

web ce1ls. 

The yield has been low when tests were made on 7.cm long cells 

due to the AIBSFprocesl induced brittleness of thin (4-6 mils) 

dendritic web material. It is essential that nearly lOO~ yield is 

!!~h~""'!" t;!uring module assembly. Therefore, it was decided to use 

solder bonds for the demonstration modules to be delivered under this 

contract. 

Preliminary experiments with an ultrasonic seam welder produced 

very promising results indicating that a high throughput, automatabIe 

process can be developed for solar cell interconnection. 
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3.6 Mask ne.i8n 

3.6.1 Dade 

One of the prolram objectiv •• wa. to d.atan • more efficient 

metallization grid pattern. That Is, a arid pattern which collects 

the laraeat amount of eneray from the cell. 

To derive the beat arid configuration, the various loss 

mechanisms in the cell must be conaidered and their sum minimized. 

The grid pattern considered in :hese calculations is a series of 

atrai8ht lines emanating from a cpntral pad at a specific angles of a 

1 em long by "htl cm wide ceUa. The anllea were chosen to give equal 

area sectors between the grid lines aud the minimization discussed 

below was csrried out only on this geometry. 

The ohmic losses and the active area losses considered were: 

1. sheet reslsitivity of the diffused surface layer, 

2. resistivity of the grid fingers (assumed 10 pm high), 

3. current loss due to active area of cell being covered 

by the grid finger, 

4. the interface resistance between the silicon and the 

metal contact, and 

S. the bulk re8istance of the silicon. 

To determine the min~ 108S, effects of these parameters 

were determined by a field theory method over the sectors between the 

grid fingers, summed, and then minimized with respect to the geometric 

parameters. 

The first calculation determined the optimum number of grid 

fingers for a given finger width end for 1.6 cm and 2.5 em wide cells. 

In this calculation, it is assumed that the grid pattern repeats every 

one em; therefore, the results are valid for cel1s of any length. 

Table 24 shoWG the results of this calculation for 25 pm and 

SO IIDl finger width!'!. The term n/n is the ratio of the efficiency of 
o 

the given grid configuration to a no loss configuration • 
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Cell 

nino 

.970 

.970 

.969 

.958 

.965 

.948 

--- - =-

tABL! 24 

OPTIMUM NUMBIll OF GUD ,meERS AT GIVD 
FINTIl· WIDTH FOil 1.6 ca and 2.0 c:a VID! ClLts 

Width • 1.6 c. Cell Width • 2.0 c. 

:1 Fingers Width of nino ' Finger. Width of 
Fingers Fingers 

( ana) b.) 

4 25 .959 3 25 

5 25 .964 4 25 

6 25 .964 5 25 

4 50 .964 6 25 

5 50 .963 7 2S 

6 50 .961 8 25 

.954 3 50 

.954 4 50 

.950 5 50 

.945 6 51) 

.940 7 50 
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The.e indicate tbat for either tbe 1 ail or 2 ail ftftger width. 

four to five finaera are required per balf cell. 

It 1. instructive to determine tbe effect of the cell width 
• on the normalized efficiency, nIno. The calculation vas carried for 

cells fro. 1 em to 10 ea wide and for finger widths from 5 ~a to 200 ~. 

The.e data are shown in Fia. 10. One factor to be noted 1a that there 

i. a di.tinct penalty in efficiency incurred when wider cells are used, 

especially with nar~ow grid finaers. For the wider grid fingers (100-

200 ~) which impoae their own penalty, the effect i. aint.al up to a 

4 em wld~ cell. However, for the thinner arid finaers (25-50 ~), the 

difference between a 1 em wide cell and a 4 em wide cell is significant. 

An ~p1icit result of the data in Fia. 12 is that for higher 

efficiency cella, the grid fln~er width must be a. small a. posaib1e, 

and no more than 50 uc wide. Such widths arp. attainable only by 

photolithographic techniques. The additional cost of this method (i' 

any) must be considered in a trade-off with decreased cell efficiency 

when using wider grid fingers. 

A new maak, incorporating the new pattern haa been prepared. 

1. 6 and 2.5 em wide masks wi:. grid fingers of 2S ua and 50 ~ have 

been fabricated. This mask 1s shown in Fig. 13. The figure i. a 10-

ttmea enlargement of a 1.6 ca x 4.0 CE .. sk. 

3.6.2 ~lts 

To determine the ~ ffectiveneaa of the mode diacussed in the 

last section, a test was made where cells having the new design mask 

pattuns were alternated down the length of t',e web with the standard 

mask pattern. The standard mask pattern la ahown in Figure 14. 

This consists of a series of collecting grids, with a 

nominal 0.2 em spacing and v~rtical bus bars perpendicular to these 

grids with a nominal 1.0 cm spacing. The total grid area coverage is 

8.9'. • 

* n i. defined as the efficiency of the cei~ when all ohmic and active o 
area 108ses are zero. 
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This web strip was proCH.ad in the ftonaa1 .. nner. The short 

circuit eurrent density and efficiency of ce11sbaving the new mask 
design were about 5.1% higher than the standard mask cells. This is 

what would be expected on a strictly optical area coverage factor of 

the two mask dsdps. SimUar OCD lifetimes 1adicate the Isc 
increase is not due to a change in bulk eharacterlstics. The measured 

ah~lt resistance was abov~<106n with the series res1stan~e less than 
0.50. These values would not affect the data. 

These results indicate that a signUic8llt improv8llents is 

obtained using this. gdd design •. 

3.7 Demonstration Module Fabrication 

3.7.1 Cell Fabrication Process 

The cells used in the demonstration modules were fabricated from 

dendritic web silicon. The web, as received, had the material character­

istics as given in Table 25. 

The cell fabrication process was as follows 

• Material cleaned using standard pre-diffusion 

cleaning - Material in strip form, 26 em long. 

• n+ surface produced on both sides by POC~3 diffusion. 

• Phosphorus glass source removed from one side of the 

web. 

• A~ deposited on cleaned n+ surface, and alloyed in at 

SSO·C. 

• Phosphorus glass removed from non-BSP side and 

coated with anti-reflection coating by dipping. 
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• . A pltotonaiat coatapp1JeI 'y41,,_; 
• Cn. •. ,.tructura, o,....la PI .... Al cOattap. 
• . T:l + Pd' avaporat" over anti re .urf.e. 

• dippea in eleetrole8. CU ,1.t1~!'~Or . 
10 .aco_ to procluca a Cu fluh co&ttaa. 

• PI. reject .. to fom ari_ .tructure OD atrlp. 

• Cu alactYoplated on arid to a thickna.. of 6-7 ~. 
• Calls •• pa~ta4 fro. deD4rlte-wab .. tria by l •• ar 

.cribiaa aDd braaklal. C.ll .1 •• i. 1.6 aa x 7.0 ca. 
. 2 

• C.lla t.stad at __ 1 aIlCI '1.6 ./ea . 

The efficiency, open clrcuit voltale aDd short circuit cu~­

rent distributions on cells fabricated in this .ay are shawn in 

Fiaures 15 to 17. The demonstration modules were fabricated usin, 

cells selected from this ,roup. 

TABLE 1$ 

Material Characteristics of Dendritic Web Silicon 

1. Single crystal· (111) orientation. 

2. The etch pit density, as determined after as-minute 

Sirtl etch, to be .qu~l to or le'8 than 3 x 104/cm2. 

The etch pits should be of the small, shallow variety 

with a minimum of the large, deep pits. 

3. For mechanical stability, the web should have a 

residual stress of le8s than 1.S x 108 dynes/em'. 

4. The web should be flat with no twist or bow. 

5. The surface striations acr08S the web shall be no more 

than 0.5 um in height. 

6. The width, excluding dand~ite8t should be 22 mm or 

greater for a 1.6 x 7.0 em cell. 
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TABLE 25 (Cont'd.) 

7. The thickness of the web at the center should be 120 ~m 

.t 20 utn. 

8. The web should be p·type. 

9. The resistivity should be 4 -12 O-em. 

10. The lifetime (oed after cell fabrication) should be 

greater than 10 ~sec. 

11. The tnaterial should be supplied as grown. 
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In previous sections. we specified aputterin. a. the pre­

ferred technique for applying aluminum to the back of tha solar cell as 

the initial step in formin. an aluminum back surface field. In a para­

llel Westinghouse sponsored program we h.ve recently developed another 

method for applying the aluminum which is as effective as sputtering 

but is simpler and less costly. In this second technique. plasma spray­

ing. an At powder is fed into a plasma stream where it is melted and 

sprayed onto the silicon. The plasma is generated by flowing an inert 

gas through an electric arc. 

One advantage of this process is that the At is still hot when 

it contacts the Si and thus forms an adherent layer. This adherance is 

important in the subsequent drive in process. 

Cells fabricated using this process have shown properties 

equal to or better than cells fabricated using sputtered At. 

Due to equipment availability and the time required to sputter 

10 ~m layers of At in non-optimum apparatus, the solar cells disc~sed 

in this section were all fabricated using this plasma spraying method. 

This technique is considered Westinghouse proprietary and an 

invention disclosure has been filed. 

There are several real and potential problems with these cells. 

First, when the dendrites are removed, the cells tend to bow lengthwise 

due to the aluminum metal remaining on the back. This bow is small; 

the Hngle with the horizontal being 1 .. 2 0 and the cell can be made flat 

with a small amount of pressure. However, this bow is sufficient to 

cause problems during the module fabrication. For example, when the 

cells are placed on a layer of the adhesive, some weight must be applied 

to flatten the cell either against the glass or the substrate. This 

can lead to misalignment of the cells as they slide on the adhesive. 

TIll.' Al nSF cells are also more brittle than l'ells with boron 

BSF (or no BSF). This lends to more breakage during the various 

processing steps, decreasing the yield. 
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One obvious way of remov1na the bowina. and probably makina 

the cell less susceptible to breakaae would be to remove the exce.a 

aluminum by etchina after the initial drive-in. This haa been done in 

several cases, and after the Al is etched off the cell flattens out; 

however, its brittleness has not improved. However, if this process 

ws~ used for all cells the extra steps of etching and recontactina would 

be required. The cost and c~st effectiveness of adding these steps to 

the process sequence would have to be determined. 

In earlier sections we noted that the OCD lifetimes of the 

Al back surface cells were generally lower than comparable boron back 

surface field cells. This has a direct bearing on the short circuit 

current. 

In view of these considerations and also in view of the only 

minimal improvement in cell parameters (i.e. Al BSF vs. B BSF) con­

sideration may be given to revising the process sequence to include a 

boron diffused BSF. Techniques to cost reduce the B BSF formation 

should then be studied. 

3.7.2 Module Fabrication Process 

During the latter part of the program we fabricated four 

demonstration modules; each approximately 30 em x 30 cm. Each module 

was composed of 72 cells each 1.6 cm x 7.0 em for a total cell area 

of 806.4 cm2. 

The cells as discussed in the previous section had Al back 

surface fields with evaporated Ti Pd and electroplated Cu top contacts. 

The fabrication jlrocess we originally planned to use to build 

the modules was as f01i0W8: 
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• Aluatnua lead. ultra80nieally bonded to the front eontaetl. 

• ( 111 loaded, sun side up, on fixture di8eul8ed in 

Section 3.2.2. 
* • Sunado glall 0.125" thiek prepared by painting with 

0.0011t to 0.0021t thir.k eoating of RTV 615.** 

• Cel18, in fixture, placed on gla8s and assembly is given 

a short cure time. 

• Fixture removed and back interconnections made by ultrasonic 

bonding. 

• Interconnected module coated on back with adhesive and 

0.125" thick phenolic board attached as a substrate. 

• Assembly cured. 

During the initial fabrication steps, problems arose so it 

became obvious that changes in this process were required; at least for 

these four demonstration modules. 

First, as noted in the section describing the work on ultra­

sonic bonding, we were successful in bonding Al an~ Cu interconnect 

straps to AI, Cu, and Ag contact metals. However, during the first 

interconnection step of attaching the aluminum foil to the electro­

plated copper, a large number of failures occurred. The failure mode 

was cracking of the cells at the point where the ultrasonic tool and 

the foil contacted the cell. On this part of the cell, a number of 

small cracks would propagate from the contact point, and in extreme cases 

the cell ~ould shatter. The failure rate during this process was greater 

than 50%. 

• Trademark - ASG Corp • 
•• Trademark - General Ele~~ric Corp. 
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Aa discu •• ed earlier, this yield problem v .. not •• siani­

ficant with the boron doped BSF cells or on thick A1 88' call. 

(>200 lUI). 

It would then seem that t.he low yield i. due to two, 

probably interrelated, conditions of thin cells and the inherent 

brittleness of Al BSF cells. 

The same problem was encountered to about the same degree 

when the Al foil was ultrasonically connected to the Al on the back 

of the cell. This low yield creates an almost ~possible situation 

in the building of the module, especially conside~~ng each module 

requires 14 interconnections per cell x 72 cell. = 1000 interconnection! 

per module. For this reason. it was decided to fabricate the modules 

by the soldering method used earlier. 

The second problem was the bowing of the cells as discussed 

in the previous section. To avoid extensive bubbles between the cell 

and the glass superstrate due to bowing, the cells were initially laid 

down on the substrate. 

A sketch of the module design is shown in Fig. 18 and a 

photograph of the completed module is shown in Fig. 19. Eighteen 

series connected cells are mounted on a 1/4" thick phenolic board, 

about 7.1 em x .9.4 cm. Four of these boards are th~ mounted on a 

1/8" phenolic board 29.4 cm x 28.4 em. External connections are made 

by soldering onto a copper filti.ng on the large board. With this 

design. each of the 4 strings of 18 cells can be individually tested, 

and a variety of series/parallel interconnections can be ma~e. This 

modular concept permits easier assembly of large panels from sm~ller 

suh-modules and also makes possible the replacement of single strings of 

cells in case of breakage. 

T~e cell op~rating temperature of these sub-modules was de­

termined by measuring the decreas~ in V as a function of time under 
2 oc 

AM-.1; 100 row/crn illumin,.tion (Ref. 8 t PP. 83). The stagnation 

temperature of 30°C above room tempe=atare was reached after 70 minutes. 

This data is in general agreement with Ref. 8 even though a phenolic 

backboard is used in place cf the Al frame. 
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3.7.3 Teat Data on DeaonatraU.OIl Hodul •• 

Four demon.tration 8Odul .. w.re fabricated a. d!.cu ••• d in 

th. laat •• lI!tlon. The data for th ... 8Odu1 •• 18 liven in Table 26. Tbe 
• 8Odul •• were Ur.t t •• ted with aU 72 c.ll. 11\ •• rt... Tb18 18 the 

underlined data in the Table. Followina th ... re.ultA. ..ch of the 18 

cell ctrin.. were t •• ted individually and th .. e data ar. noted a. lA. 

1B, etc. 

TAIL: 26 

THt ~ .2!!. Demon.tration Module. 

Module No. V ('/) oC I.c (MA) '" (%) 

1 :;8.81 .ill 10.44 

1A 9.83 295 11.10 
IB 9.85 313 10.77 
Ie 9.73 308 10.50 
ID 9.75 285 10.10 

2 39.10 303 !!.:.~ 
2A 10.08 315 12.:Z~ 
2B 9.79 293 10.66 
2C 9.97 323 12.05 
2D 9.75 295 10.94 

3 38.90 311 10.93 -
3A 10.13 323 11.78 
3B 9.46 306 10.36 
3C 10.08 310 10.46 
3D 9.59 316 11.21 

It 39.81 289 11.01 '---
4A 10.07 309 12.01 
48 10.48 280 10.93 
4C 10.66 294 11.25 
4D 10.11 308 11.20 

*The.e aea.urements were made at NASA-Lewis Research Center. We ~rish 
to thar,k Dr. Henry Brandhorat'. group for their a •• istance. 
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3.8 Cost Analysis 

3.8.~ Modification in Conceptual Factory 

In the first annual report on this program we described a 

conceptual Ca ctory fer the parallel processing of lengths of web. This 

factory consisted of eight separate lines, each producing 25 MW/yr of 

solar panels. To achieve this output, each line had an input of 

5000 cm
2

/min of dendritic web silicon in 3 meter lengths. 

The various elements of this processing line were then used 

as inputs into the SAMICS program to obtain a selling price under volume 

manufacturing conditions. 

During this past year, we have continued tc. make 1Il0difications 

in the processing line based on changes in the processing sequence, 

further inpets from vendors etc. Artists sketches of the modified line 

are shown in Figs. 20 - 25. (Several of these processes are unchanged 

but are included for completeness ). Figure 20 shows a number of web 
2 * growth furnaces; each producing 25 cm /min of web. The web being 5 cm 

wide between dendrites. Therefore, 200 furnaces are required to provide 

the necessary input to the processing line. The as grown web is wound 

on reels. Fifty such reels are ganged on a mandrel as the web fed through 

a laser cutter. Pieces of web, each 3m long are loaded into specially 

designed, light weight frames and held in a buffer station before moving 

to junction formation steps. 
2 

Each frame holds 75,000 cm of web, and thus 

to meet the throughput requirement, each frame must be processed in 

15 minutes. 

Figure 21 shows the junction formation processes i~ the s quence . 

The web enters the process and is washed with an organic solvent and dried. 

It th~n moves into a diffusion furnace where an n+ junction is diffused 

into each side. After diffusion the phosphorous glass is e t ched off one 

side. The web enters a sputtering appratus where a~out 10 ~ m of Al is 

* 1his work is being carried on under Contract 954654 (Task 2) and is 
included here only for completeness . 
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3.8.1 Modification 1ft Conceptual Facto1'! 

In the first annual report on this program we described a 

conceptual factory for the parallel processin~ of lengths of web. This 

factory consisted of eight separate lines, each producing 2S MW/yr of 

solar panels. to achieve this output, each line had an input of 

5000 cm2/min of dendritic web silicon in 3 meter lengths. 

The various elements of this processing line were then used 

as inputs into the SAMlCS program to obtain a selling price under volume 

manufacturing conditions. 

During this past year, we have continued t~ make modifications 

in the processing line based on changes in the processing sequence, 

furt:her inpl.:ts from vendors etc. Artists sketches of the modified line 

are shown in Figs. 20- 25. (Several of these processes are unchanged 

but are included for completeness ). Figure 20 shows a number of web 
2 * growth furnaces; each producing 25 cm /min of web. The web being 5 em 

wide between dendrites. Therefore, 200 furnaces are required to provide 

the necessary input to the processing line. The as grown web is wound 

on reels. Fifty such reels are ganged on a mandrel as the web fed through 

a laser cutter. Pieces of web, each 3m long are loaded into specially 

designed, light weight frames and held in a buffer station before moving 
2 to junction formation steps. Each frame holds 75,000 em of web, and thus 

to meet the throughput requirement, each frame must be processed in 

15 minutes. 

Figure 21 shows the junction formation processes in the sequence. 

The web enters the process and is washed with an organic solvent and dried. 
+ It then moves into a diffusion furnace where an n junction is diffused 

into each side. After diffusion the phosphorous glass is etched off one 

side. The web enters a sputtering appratus where about 10 ~m of Al is 

* This work 1s being carried on under Contract 954654 (Task 2) and is 
included here only for completeness. 
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+ sputtered on the n surface where the glass has been removed. The web 

is then reacted at 850°C for one minute. The entire web is then etched 

to remove the r ema ining phosphorous glass. The web at this time has an 
+ + n p p structure. 

Figure 22 shows the application of the antireflection coating 

and the photoresist, both by dipping. The equipment is designed to 

handle the 37 x 37 frames. In station 7 of this process, the web lengths 

a r~ p.:l ssed (one a t a time) into an exposure system where a suitable grid 

pattern i ·:- put onto the photoresist l a yer. The final stages etch the 

grid patt e rn tnto a photoresist and antireflective coatings and tl,e 

webs a r e aga in l oaded into frames for metallization. 

Figure 23 sh~ws the metallization process for the web solar 

cells. The web st rips, with t~ e Rrid pattern opened pass into a metal­

lizatioll chamber whe re both front metal is applied. Our costing studies 

a r e for an eV:1 por a t ed metal system but sputtering is a viable alt e rnative. 

After the photoresist is rejected (rejecting the excess metal) the 

* contact s are sintered and move to a plating station where Ag is plated 

to the pr ope r thickn SSe Plating is used in this build-up since the 

only silver used is that deposited on the cells, and tlte step is 

cos t effective. After a final cleaning the webs are stacked in a buffer 

st~lion be fo r e moving to a scribing process. 

We ha ve found tha t a fter the aluminum drive in, there is 

suffi ient Al remaining on the back of the cell to serve as a contact 

m t~l. Thus t he m~ta llization step does not in lude metall izing the 
+ back (p ) s urfa ,c . This makes the metallization step a simpler proc('s s . 

Figure 24 shows the cel l s eparatiun process. In this s t e p the 

dendrit ·s a r e sc ribed off and the cell is scribed to its fin a l size. 

( Fo r r os ting purpos s this size is 5 cm x 20 em.) Th e e lls arc un­

load d from the rack, one at a t i.me, and pass under a single laser head. 

This la _e r 118S s ufficient powe r so r hat it can make bo th the tr ans v r se 

* Sil ver has h n used in the cost ing s tudies as the top contact m tal. 
I" have s hown, howey r, the co pper is an acceptable s ub s t i tut e . 
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and longitudinal c~,ts. The laser beam is directe~ by a mirror which 

has been programmed to scribe o~t the 5 em x 20 em cell. The final 

stations break the cells from the dendrite-web matrix and perform an 

electrical test on each cell. The cells that pass a previously de­

termined specification are loaded into cassettes, with each cassette 

holding about 5000 cells. The yield of 85% is assumed at this point. 

Figur~ 25 shows the final processing step, Interconnection 

and Encapsulation. The cells are unloaded trom the cassette and an AI 

strip (interdigitated) is ultrasonically connected to the front of the 

cell. The cells are placed sun side down on glass which has previously 

been coated with a thin layer of adhesive. Automated positioning machines 

are capable of placing the cells to achieve a 96 - 98% packing factor. 

The back inter~ ~nnect!~~~ are made using a second ultrasonic welder, 

and a back ~oard wiph electrodeposited connecting strips is put over 

top of t he L~l!~. A final test of the entire panel completes this 

process. A yield of 95% is assumed at this testing stage. 

Crating and shipping, although in~luded in our costing, is 

not shown in this line. 

3.8.2 Cost Analysis of Basic Proce~s 

The manufacturing line described in the previous section was 

used to determine the various inputs into the Format A forms. Table 27 

gives a summary of these inputs. The numbers of the processes are not 

generally consecutive due to changes in the original plan as well as 

consolidation of some steps for ease in costing. These process steps 

ag r ee with the SAMICS Format A's. 

Definitions for Table 27 ar~: 

• Py· Person year - The number of operators on the floor 
during running time. 

• All commodity and utility usage expressed ir usage/min. 

• Capacity of factory is 25 MW/yr. 

(Text continueJ on page 104) 

95 0/ 



~ . , \ .~ ~ 

", .~, 
.. ,( 

RH-81979 

.. ' 



¥ 

TABLE 27 

Cost Inputs For Factory Manufacturing Solar Panels 

From Dendritic Web Silicon 

{All 1980$) 

1.01 Load web into frames; 
Clean and plasma etch. 

Labor: 1.67 py 

Space: 405 ft 2 

Capital: 

Commodities: 

Utilities: 

* SCAC - ShMICS Cost Accounting Catalog 

97 

Dip Cleaner 
(Eng. Estimate) 

$ 90,000 

Plasma Etching $840,000 
(Estimate from LPE Corp.) 

Si ~eb 5000 cm2/m1n 
(Cost at $0.00274/cm2) 

Acetone 0.002 lb/min 

HF 0.06 lb/min 

• (SCAr.) 

Purge Gas 1.2 x 10-4 tanks/min 
($134/tank per LFE) 

Electric 0.05 JeW/min (SCAC) 



1.08 + n Diffusion using POCl 

1.101 Depos~tion of Al 

Labor: 0.9 PY 

Floor Space: 400 ft 2 

Capital: Diffusion Furnace $456,000 
(Eng. Estimate) 

Cooling Buffer $ 13,400 
(Estimate) 

Tank Etcher $ 40,000 
(Eng. Estimate) 

Commodities: POCl) 0.003 lb/min (SCAC) 

Liq. N2 0.0007 cu ft/min (SCAC) 

HF 0.06 lb/min (SCAC) 

D1 H.,O 0.04 cu ft/min (SCAC) 
"-

Cooling H2O 0.21 cu ft/min (SCAC) 

Poisonous 0.015 gnl/min (SCAC) 
Acid Disposal 

Utilities: Electric 0.334 KW/min (SCAC) 

Labor: 1.0 PY 

Floor Space: 300 ft 2 

Capital: Sputtering Apparntus $1,700,000 
(per estimate from Leybould Heraus, 

Vac Tee and others) 

Conunodit ~s: Al Sputt('r- 0.00161b/min 
ing Target 
(Cost at $1~/lh per Vac Tee Corp) 

0.0001 cu ft/min (SCAC) 

Uti! !.ties: Electric 0.25 KW/min 

___ ...... ~ .... ~LlIi,..., __ --~.-.-~~.~Ii-Ii-II--.7.--15.n."I1--...... ' ___ ~--~-------- ______ c _____ ~~"_ ---



1.102 Al Drive In Labor: 1. 5 PY 

Floor SpAce: 300 ft2 

Capital: Drive Furnace and $430,000 
Holding Table 

(Estimate from existing equipment, 
e.g., Radiant Technology) 

COUMDdities: Liq. N2 0.0002 cu ft/min (SCAC) 

Cr·ol1ng H20 0.15 cu ft/min (SCAC) 

Utilities: Electric O.l/~l KW/m!n (SCAC) 

2.01 Antireflection Coating Labor: 0.40 PY 

160 ft 2 Application by Dipping 
Floo r Space: 

Capital: Holding Table and 
Dip Tank 

(Estimate) 

COm1!lOdities: 

Firing Furnace 
(Estimate) 

Isopropyl 0.013 
Alcohol 

$ 94,000 

$ 26,000 

gal/min (SCAC) 

AR Solution 0.0009 l/min ($2.00/1) 

Cooling H2O 0.06 cu ft/min (SCAC) 

Utiliti~s: Electric 0.10 KW/min (SCAC) 

2.04 Photoresist Coating Labor: 0.5 PY 

6S ft 2 Application by Dipping 
Floor Space: 

Capital: Dip Tank $ 80,000 

Bake Furna.ce $ 26,000 
(80th Engine~ring Estimates) 

Com!b.;'ries: AZ-lll O.OC;? gal/min 
Photoresist ($105/g3l per Shipl"y Co.) 

AZ-lll 0.0015 gal/min 
Thinner ($2.20/gal per Shipley Co.) 

Utilities: Electric 0.025 KW/min (SCAC) 
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2.06 Expose web and load 
into caRseLte::: 

Labor: 

Floor Space: 

Capital: 

Cotnr.lcdities: 

Uti lit ie~: 

2.09 Development of Photoresist Lahor: 

Floor SP;l\.C: 

Capital: 

Commodities: 

Utllitlt's: 

2.11 Antireflection Coating Lahar: 
Etch a~d Clean-up 

Floor Space: 

Capital: 

Commo.1i lies: 

Utll1t les: 

100 

--

1.0 PY 

250 ft 2 

Load~r and Unloader $ 80,000 
(Estimate) 

Exposure Apparatus $ 75,000 
(Based on Preliminary Design) 

Replacement Parts $ 12,OOO/yr. 
(lamps, masks, etc.) 

f:lectric 

0.4 PY 

120 ftl 

0.05 KW/min 

Tanks for Dlppin~ $ 30,000 
into Developer & Cleaner 

(Estimate) 

AZ303A 0.0002! ~al/min 

(SCAt:) 

Developer ($6.30/Ral pt'r Shipley Co.) 

Acetone 

El('ctric 

0.6 PV 

185 ftZ 

Dipping Tank 
(Estimate) 

0.033 Ih/min (SCAC) 

0.025 KW/min (SCAC) 

~ 26,OO() 

Wash Tank and $ "3""1,000 
lIoldinR Table (Eslimalt') 

(). :~4 ,'\1 f t/m!!1 (SCAt:) 

0.001 Pl/ml n 
(Sl.()(J/lb, ,'ata!"g pril'~') 

O.OWJ 1 h/:nin 
(S2.20/1b, caLtll'~' nrice) 

Electric 0.024 KI':/ml n ( S CA'.:) 



3.01 Deposition of Metal on Web Labor: 1 PY 

400 ft 2 Floor Space: 

Capital: $900,000 
(Budgetary estimate for evaporator of suitable 
size per Leybould Heraus and others) 

Commodities: Cooling H2O 0.007 cu ft/min (SCAC) 

Titanium 0.00013 lb/min (SCAC 
Metal 

Palladium 0.0049 troy oz/min 
Metal (use $64 troy oz as Catalog 

Utilities: Electric 0.22 KW/min (SCAC) 

3.03 Rejection of Photoresist Labor: 0.5 PY 

150 ft 2 
to form Metal Grid 

Floor Space: 

Capital Stripping Tank 
(per estimate) 

$ 26,000 

price) 

Connnodit ies : AZ Stripper 0.037 gal/min 
($2.70/ga1, Shipley Co.) 

Utilities: 

3.04 Sintering of Metal Contacts Labor: 

Hoor Space: 

Capital: 

Commodities: 

Utilities: 

101 

Electric 

0.5 PY 

200 ft 2 

0.033 KW/min 

Sintering Furnace $125,000 

(SCAC) 

(Estimate from existing equipment, 
e.g., Radiant Technology) 

Cooling H20 0.03 eu ft/min (SCAC) 

0.005 eu ft/min 

Electric 0.033 KW/min (SCAC 

-';.-



3.05 Plating of Silver and 
Cleaning 

4.01 Laser Scrib11g of Cells 

4.03 Breakout and Testing 
of Cells 

~--- . 

Capital: 

Commodities: 

Utilities: 

Labor: 

Floor Space: 

Capital: 

Commodities: 

L.lbor: 

Floor Spill't': 

CIlP i tal: 

Plating and Wash $ 65,000 
Tanks (Estimate) 

01 "20 0.04 cu ft/min (SCAC) 

Silver 2.5 gm/min (SCAC) 

Bath $0.1l4/min (catalog price) 
Components 

Acid 
Disposal 

Electric 

1.0 PY 

250 ft 2 

0.004 gallmin 

0.81 "OW/min 

Las~r Scribe $195,000 

(SCAC) 

(SCAC) 

(Estimate from Quantronics Co.) 

Cassette Loader 
(Estimate) 

$ 26.000 

Cooling H20 0.5 cu ft/min 

Electric 0.18 KW/m! n 

1.0 ry 
<, 

DO ft-

Tahh' & Tt'stl'r 
(Estimate (~) ARD) 

$l~().OOO 

Bn'ak Out Unit $ 40.0110 
(Engilwl'rin~ F!it imatl') 

(SCAC) 

Commodi ties: Nont' 

Utilities: Ell'ct dc 0.05 K\~/min (SCAC) 
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5.01 Foil Contacts Bonded to Labor: 
Top of Cells 

5.03 Cells Placed on Glass 
Superstrate Using 
Adhesive 

5.05 Interconnect Back 
Contacts to Cells 

Floor Space: 

Capital: 

Commodities: 

Utilities: 

Labor: 

Floor Space: 

Capital: 

Commodities: 

Utilities: 

Labor: 

Floor Space: 

Capital: 

Commodities: 

Utilities: 

103 

1.0 PY 

180 ft
2 

Ultrasonic Bonder $140.000 
and Table 

(Estimate based on contacts with 
Sonobond Corp.) 

Al Foil 

Electric 

0.6 PY 

150 ft 2 

0.006 1b/min 

0.05 KW/min 

Placement Machine $110,000 
and Table 

(SCAC) 

(SCAC) 

(Based on preliminary estimates 
and coatacts with Gardner-Denver Corp.) 

Glass 

Adhesive 

Electric 

0.5 PY 

80 ft 2 

2 5.3 ft /min 

0.029 1b/min 

0.04 KW/min 

Ultrasonic Bonder $135,000 

(SCAC) 

(SCAC) 

(SCAC) 

(Based on contacts with Sonobond Corp.) 

None 

Electric 0.083 KW/min (SCAC) 
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5.06 Substrate Attached and Labor: 
Panel Tested 

5.09 Yi~ld Dummy -
Hodified to include 

Floor Space: 

Capital: 

Commodities: 

Utilities: 

Lahor: 

Computer Control for Floor Space: 
Factory (Floor Space 
and Labor Allocated to Capital: 
Individual Processes) 

0.75 PY 

260 ft 2 

Coating Apparatus $ 67,000 
and Attachment of 
Back (Estimate) 

Transport Apparatus $ 26,000 
(Estimate) 

Tester (Estimate) $ 85,000 

Adhesive 0.56 Ib/min 

Back Board 5.6 ft 2/min 

(SCAC) 

(Charge at $.25/ft 2) 

Electric 0.07 KW/min (SCAC) 

(Estimate) $525,000 

Comwodities: None 

Utilities: 

5.10 Crating and Shipping Labor: 

Floor Space: 

Capital: 

Commodities: 

104 
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Electric 0.01 KW/min 

1.0 PY 

? 
ISO ft-

Overall Equipment 
(Estimate) 

$ J 2 , oon 

Crat ing 
Material 

0.033 KW/min 

(SCAC) 

(SCAC) 



• Floor space is space occupied by equipment plus maintenance area. 

• Capital estimates are based either on the best engineering 
estimates at the time or on budgetary estimates from vendors. 

• Cost estimates of commodities are either from the SAMICS 
Cost Accounting Catalog (SCAC) or based on estimates of vendors. 

Using inputs given in Table 27 and the SAMICS program, the data 

in Table 28 is obtained. All costs in this table are in 1980$. A selling 

price per peak watt of $.75 is obtained. 

Figure 26 shows the entire process sequence with the major 
+ + inputs for the individual processes. In this case, the nand p 

junction formation steps are separated. The value added figures for each 

sub-process step indicate where potentially significant cost saving3 

can be made. 

3.8.3 Sensitivity Analysis of Costs 

In the previous sections, we discussed a conceptual factory 

processing line for solar panels and using SAMICS methodolofY, a selling 

p~ice for the panel was determined. In this section, we will discuss 

several iterations which were carried out to determine the sensitivity 

of the selling price to various input factors. 

The conceptual factory line discussed was highly automated. 

This automation is necessary to achieve the high throughput with minimum 

of labor charges. This high degree of automation, however, implies 

large capital spending for machinery, controls, computers, etc. 

The process analyzed in the previous section required a 

capital expenditure of slightly over $10 x 106 for a 25 MW line. It is 

thus of interest to determine the effect on the selling price of the 

panels if this capitalization is reduced or increased. This was ac­

complished by increasing the capital in varioun processes, and in one 

case by adding computerized control for all processes. 
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TABLE 28 

PROCESS SEQUENCE FOR DENDRITIC WEB 
SOLAR PANELS - TOTAL COSTS - 1980$ 

ASSUMPTIONS: 25 MW/yr production 

12% panel 

Capital 

Direct Labor 

Floor Space 

Commodities 

5 em wide web 

85% yield of cells 

95% yield of panels 

Silicon input cost - $0.234/watt peak 

$10,350,000 

$ 1,920,000 

4800 ft 2 

$ 3,410,000 

Selling Price per Watt-Peak $0.75 

106 
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FIGURE 26 

PROCESS SEQUENCE COSTS (ALL 1980$) 

POCL~ 
Gase 
Etch gCises 

POCL3 Diffusion 

e~e~l lC Dir. Lab. L d T~ CapHal 

Silicon Camm. 

$0. 234/W 

Waste 
Gases 

Metall ize 

l500K 
1010K 
115.9K 

0.056 

Ti 
Pd 
Jl.g/Cu 
Acetone 

2800K 

n+p 
cells 

Capital 
Dir. Lab. 
Corrm. 201. 7K I p..contacted 

564K. cells 

Val. Added 0.112 

Toxic Wastes 

AL 

AL BSF 

Capital 3l00K n+pp+ Dir. lab. 13BK 
CORm. 10K cells 

Val. Added 0.058 

Waste 
Gases 

Capital 400K ~ Dir. tab. ~~0.9K' eparated--COITIJI. 
cells 

Val. Added 0.029 I 

Failed Cells 

AR 
PR 
Etches 

AR/PR DIP GRID 

Capital 
Dir. Lab. 
Corrm. 

Val. Added 

Toxic 
Wastes 

Interconnect 
Encapsulate 

Capital 
Dir. Lab. 
Comm. 

Val. Added 

600K ~ G ·d 
195.1k O~}ined 
102K 

0.042 

Glass 
Back Board 
Adhesive 
Interconnects 

1950K 
61.9K r 1M x 211 
2618K solar 
0.216 panels 

Failed Panels 
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The results of these calculations are shown in Table 

This calculation i8 valid over the range of + 10% of $10 x 106• 
- 6 

"charge" of $0.03/peak watt (1980$) for each $10 is relatively 

29. 

The 

small 

and would indicate that any process should be capital intensive for 

efficient production 

We next examined the effect of the process yield on the costs. 

In the standard calculation, it was assumed that 85% of the cells tested 

met specifications and that 95% of the panels fabricated with these 

cells were good. This is equivalent to an overall yield of about 81%. 

(lnthe calculations, there was no credit tak~n for the cells or panels 

which did not meet specifications. In an actual manufacturing situation, 

these would have some value. either as reprocessed material or as lower 

selling price-lower efficiency panels.) To determine the effect of the 

process yield on either side of the 81%, the yield was varied between 

70% and 90% and the calculation carried out. These results are shown 

in Table 30 which shows that each 10% increase in yieli decreases the 

selling price by $0.07/peak watt (1980$). Due to the complexity of the 

SAMICS program, this is not strictly a linear function, and this value 

is valid only between 70% and 90% yield. However,the yield effect is 

considerable and it indicates, for example, that it would be profitable 

to spend an extra $2 x 106 in capital if the yield could be increased 

by 10%. 

The next variation involved the panel efficiency. In the basic 

process in the previous section this was taken to be 12% and in these 

sensitivity studies, the panel efficiency was varied from 10% to 16%. 

This variation has a very straightforward effect on the overall costs 

since the increased efficiency reflects back on all processes and costs, 

incl~ding the amount of silicon required for the 25 MW/yr output. This 

result is shown in Table 30. Again, it is profitable to spend money 

on capital or processing costs to achieve the increased efficiency. 
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TABLE 29 

Sensitivity Analysis (1980$) 

CAPITAL EXPENDITURES 

6 For $10 x 10 ± 10% capital expenditure, 

each $106 of capital adds $O.OJ/watt peak 

to the selling pri~e. 

In 70 - 90% yield range, each 10% increase 

in yield decreases the selling price by 

$O.07/watt peak. 

PANEL EFFICIENCY 

For 1% increase in panel efficiency, the 

selling price is decreased by 

0.064$/watt peak. 

WEB WIDTH 

When the web width is decreased from 5.0 cm 

to 2.5 em, the selling price is increased 

by 0.07$/watt peak. 
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The width of the dendritic web in our proce.. .equence is taken 

to be 5 cm. In certain processing steps it may be advantageous to work 

with narrower web. Also it has been shown that for narrow grid linea 

(~ 25 ~m) the width of the cell should not exceed 3 em. 

For these reasons, a cost analysis was carried out where the 

web width (i.e. cell width) was taken to be 2.5 cm. This assumption 

required extra capital costs, mainly in the laser scribing and encapsulation 

processes. There were also additional material costs involved in that 

more photoresist materials would be needed, twice the number of inter­

connect straps would be required etc. The calculation was carried 

out assuming the same yield (81% total) and panel efficiency (12%) as 

in the basic case. In pOint of fact, a slight increase in both these 

numbers might be expected due to less breakage with the narrower web 

and mor~ optimum cell structure. 

when the added costs were taken into account the selling price 

i!l.:reased by $0.07/peak watt (1980$) over the cost for the 5 cm wide 

w~:" (Table 29"). 

The calculations discussed in this section were made to in­

dicate areas where the most attention should be paid to the processing. 

It is obvious that if either the panel efficiency or the process yield 

can be increased a large saving can be generated, and that it is worth­

while to increase capital spending to obtain these savings. 
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4. CONCLUSIONS 

Based on the results of this program during the past year, 

we conclude: 

1. Plasma etching 1s a suitable substitute for extensive 

wet chemical pre-diffusion cleaning. 

2. Operational back surface fields may be produced in 

dendritic w~b silicon using either sputtered Al or silk 

screened Al paste. Sputtered Al is preferred due to 

the problem of silk screenil~ between the dendrite. 

3. The ultimate V enhancement was not obtained with the oc 
Al BSF; possibly due to the front junction. 

4. The Motorola total plated contact system (PdN1) ts not 

compatible with our process sequence. 

5. The evaporated Ti-Po electroplated Cu system shows 

long term stability. 

6. The ultrasonic welding of interconnects has been 

shown feasible, but the yield is sufficiently low as 

to make it unusable at this time. 

7. Over 400 cells have been prepared using the modified 

process sequence. The sub-processes are compatible. 

8. A cost analysis of the sequence results in a selling 

price of $0. 75/peak watt (1980$ in 1986). 

9. Cost analyses suggest that a capital intensive proc~ss 

has the best chance of achieving the cost goals. 

III 
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5. R!COMKEN~TIONS 

We recommend that: 

• An encapaulation aequence be devised that ia more coat 

effective than our present aequence uaing adhe.ive. 

• Ultra.onic welding equipment and technique. be atuMed 

to achie~~ a satisfactory yield factor. 

• The front n+p junction be atudied to determine if it 

is controlling the V oc enhancement t and if &0. methoda 

should be atudied for ita improvement. 

• A continuing CUBt analysia be carried out to atudy 

chanita in the process sequence. 
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6. NEW TECHNOLOGY 

1. An improved mask has been designed and te.ted. This 

mask design minimize. the resistive elements in cell 

current collection. 

2. Plasma etching has been shown suitable for pre-diffusion 

cleaning. 

3. Evaporated TiPd-electroplated Cu has been shown Itable 

under long term heating. 
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APPENDIX A 

THEORETICAL DESIGN ~JNSIDERATIONS FOR BACK SURFACE FIELD SOLAR CELLS 

J. R. Davis and A. Robatgl 
Westinghouse R&D Center 
Pittsburgh, PA 15235 

ABSTRACT 

A simple analytic model of a solar cell is described which' 

provides optimum design rules for back surface field structures. The 

model provides useful insight into the relative impact of surface and 

bulk recombination on device performance. 
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THEORETICAL DESIGN CONSIDERATIONS FOR lACK SURFACE FIELD SOLAR CELLS 

J. R. Davis and A. Robatgi 
Westinghouse R&D Center 
Pittsburgh, PA 15235 

The theoretical maximum efficiency of a silicon solar cell is 

about ~5% but present day cells fall considerably short of this lfniting 

,·C\lue. This is largely a consequence of heavy doping effects, band-gap 

narrowing and high recombination at and near the cell surfaces. In thisAp-

pendix we describe a simple model which provides useful insight into 

these effects and guidelines for fabricating high efficiency solar cells. 

The calculations can be performed with a programmable calculator and are 

in good agreement with experimei"lts. The model is based on the use of an 

internal recombination velocity as a characterization parameter for the 

minority carrier loss mechanisms in the various regions of the device 

which directly provides the junction saturation current. The ~ajor 

benefit of reducing recombination is the increase in the open circuit 

voltage, V , which follows from reductions of the saturation current, J • oc 0 

Noting that V and I are both improved under the same conditions, we 
oc sc 

will neRlect further discussion of I and focus only on V sc oc Open-

circuit voltage is inversely related to the saturation current (Jo)' 
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v • n VT tn ~ + ~: ] (1) oc 

r- -
where (WI D WI 

+ t sinh D SC08hl"L t 
J • qn2 ...Jl 

o n n n (2) 
0 i Ln D WI WI n + S sinh L cosh L L n n n 

D and L are the diffusivity and diffusion length for a p-base device. 
n n 

Wb is the hase-width and Sois the surface recombination velocity at the 

back of the base region. Equation (2) dictates that for good devices. 

(large 1 ). J decreases as S is made smaller. 
n 0 0 

The recombination at the back surface can be reduced by introducing 

1-4 
a back-surface-field or low-high junction. A detailed analysis of 

10lo.'--high st ructures by Gunn 5 provides a beginning place for our model. 

The starting expression for the present discussion is an equation. 

.. 

derived from the carrier transport equations which transforms the surface 

recombination velocity at tl~ back of the device (S ) to an effective 
(\ 

recombination velocity seen by minority rdrriers at the low side of the 

low-high interface as a function of the properties oj the low and hig~ 

regions. + This equation for a p-p structure is: 

, 1-S L+ w+· I 
~+n + tanh t¥-I 

n n (3) 
C1 L+ .) 

1 + :.r tanh #-1 
n n J 
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• concentration. diffusion lenath and diffusivity 

of the minority carrier in the heavily doped p+ 

region. 

w+ • width of the heavily doped reaion. p 

S • surface recom~ination velocity at the back of the o 

high region. 

S • effective recombination velocity at the low side e 

of the low-high junction. 

n = minority carrier concentration in the low region. 
p 

The necessary modifications are introduced in the above 

expression to include the effects of degeneracy and band-gap narrowing. 

An empirical expression was devised for the effective band-gap 

6 7 
narrowing, (~VG) based on the data of Lanyon and Lindholm corrected 

for degeneracy effects. The values thus adjusted for Fermi statistics 

2 provide an effective value for ni which can be used in the usual 

Boltzman expression for the np product, i.e.: 

2 
np - nie - exp 

( AV+ _ AV-) 
U G U G 

+ where ~VG and ~VG are the effective band-gap narrowing in the high and 

low doped regions respectively, 

A-4 



liVe • 0.231 (4) 

and 

where Nand N are the effective densities of states in the conduction 
c v 

and valence band respectively 

Equation (3) can now be written as: 

(5) 

Empirical expressions were derived to relate the diffusion 

length and diffusivity to the impurity concentrations (N). 

The expression for diffusivity D was obtained from the data 

8 of Conwell as given in Grove . 

D 
D 0 + A (6) • 

{ ]"'6 
1 + 1:17 

0 

where for p-type 

D • D • 35 
0 no 

Ao • 1.8 
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and for n-type 

• D • 12.5 po 

Ao • 1 
9 

The diffusion length is obtained usinSan expression like Kendall'. 

for the lifetime in bulk silicon (lK) combined with Beck and Conradt's10 

data for Auger recombination lA. 

T - (1- + L )-1 
n fA fK 

(7) 

where 
f 

0 
TK • (8) 

1 + 1:i 
7 x 1015 

Note the value chosen for t is related to the quality of o 

silicon. Except for the data in Table III. we have used a value 

of 17 x 10-6 corresponding a moderate grade of material. We have 

found a value of 200 to 400 ~s more appropriate for modeling high 

performance devices. 

The Auger lifetime 1s given by: 

1 • 

where constant KA = 1.2 for p-type 

K • 2.8 for n-type 
A 

Then the diffusion length is obtained from: 

L • 

A-6 
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It should be noted that the derivation of Eq(S) i. completely 

general in that it may be applied to the calculation of an effective 

recombination velocity across an arbitrarily chosen plane anywhere in 

the device, as for example, within the base region where the doping is 

+ constant, we set NA • NA • NA (base). The effective velocity at this 

plane then characterizes the total recombination beyond this plane. The 

calculation can be done iteratively from the back surface, across the 

base to the edge of the depletion region and thus account for all the 

recombination processes in the base and back. Restating Eq. 2 1n terms 

of 5e as given in Eq. 5 permits expressing the base component of the 

sa~uration cur~ent density as: 

(11) 

~here Sej is the recombination velocity at the edge of the depletion 

region in the base. A similar calculation for the n-region above the 

junction will give Jon providing NO is chosen at the edge of the 

depletion region. Then neglecting current contributions from the 

dep:etion region, 

.\ 
V oc - V T 2.n (---J-.....;+~J~) 

on op 
(12) 

Now examine the application of this analysis to the desi~n of 

the heavily doped back-surface-field region of a 501ar cell. A b~se 

15 -3 doping of 4xlO em is chosen to avoid high-level injection con1itions 

which have not been acounted for in this model. 
6 

A value of 10 cmls 1s 
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assumed for S , which il realonable for _ metal backed device. Calculation. o 

• were made using equation S which showed that for any liven NA chere 1 •• 

minimum value of the interface velocity (5 i) which can be realized e-m n 

• if W 1s sufficiently large. 
p 

An example of thele resultl il Ihown in 

• 18 
Figure (1) for NA • 3xlO -2 cm The width at which S reached 5 i e e-m n 

• value is a function of the diffusion length in the p relion and 

• increases as NA is reduced. For metal backed devicel, 5e at the low lide 

• of the interface decreases as Wp increases reflectinl the decoupling of 

the high recombination at the surface (Fiaure 1). 5e reaches Se-min and 

• • remains at this value as W equals or exceeds about 3L , th1s being the 
p n 

maximum distance over which minority carriers can communicate. Figure 2 

shows that for metal backed devices with abrupt profiles Se-min reaches 

• 18-3 its lowest value with NA ~ 3xlO cm • This minimum occurs because of 

the intrusion of band-aap narrowina at higher doping and AUler recombination. 

If S is reduced, e.g. by oxide passivation, the velocity transform 
o 

equation shows that S can be reduced considerably as seen in the lower e 

• • curve of Figure 1. For S • the diffusion velocity • D IL ,S will be o nne 
• + 18-3 independent of the p width. The diffusion velocity for NA • 3xlO em 

is 1.24 104 cm/s and the corresponding value of S is 68 cmls, the large e 

drop across the interface being due entirely to the high field at the 

• p-p junction. If the surface recombination velocity is smaller than 

the diffusion velocity, Se can be made even smaller than Se-min by 

• reducing the width of the p region (Figure 1). This occurs because 

+ bulk recombination is dominant and diminishes as W il reduced. 
p 
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Now we examine the effect of a araded dopina impurity profile 

in the back-field region. An exponential profile i •••• umad and i. 

approximated by a series of discrete steps of uniform dopina. The value 

of Se calculated for each step becomes the So for the next atep. The 

results shown in Table I indicate that for an ohmic back device (S • 
o 

6 10 cm/s) any modification of a sinale abrupt .tructure produces inferior 

+ interface velocities provided the dopina in the p region is kept around 

3xlOl8 cm-3 Table I also shows that if one has to contend with heavy 

+ 18 doping NA »3xlO ) then a graded profile is preferred although the 

result remains inferior to the stepped profile with lower concentration. 

In Table II, a low surface recombination velocity is assumed 

+ and the best result is obtained with an abrupt profile and a p region 

with zero ~idth. This obvious impossibility is a consequence of 

neglecting the ~idth of the low-high junction field region. With more 

+ realistic p widths the graded profile shows an advantage. 

Table III shows a comparison of measured and calculated data 

for two devices made on high quality silicon. The calculated data is 

in good agreement with the measured characteristics using a value of 

T • 200 usees in Equation 8. 
o 

A simple recombination model which agrees with experiment has 

provided useful design rules for back surface field solar cells. The 

analysis indicates that an optimum structure consists of a passive 

+ 18 
surface and a thin p region with constant doping in the mid 10 

range. The junction side of th~ device can be analyzed in the same way 

and similar results are obtained. 
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Table 1 - Effect of Profile and Surface Depina Concentration 
15 -3 in the p+ Re&1on. (RA • 4 x 10 em • 

No. of 
steps (n) 

1 (abrupt) 

2 

100 (graded) 

W + • 20 ~m. S • 106 em/a) p a 

Effective Recombination Velocity (S • em/a) 

N + • 3 x 1018 cm-3 N + • 1 x 102e cm-3 
p p 

68 

106 

176 

70S 

131 

120 

-----------------------------------------------------------
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Table II - £ffe~t of Profile and Width of p+ ae,ion on S • 
+ 18 -3 e (S • 500 em/., N~ • 3 x 10 em _ 

o 15-3 
NA • 4 x 10 em ) 

------------------------------------------------No. of 
steps (n) 

Effective Recombination Velocity (S._ cm/.) 

W + ~ lO ~m 1 ~m 0.1 ~m 0.0 ~m p 

1 (abrupt) 68 16.8 4.17 2.14 

100 (graded) 117 9.2 3.38 

--------------~-----------------------------------------
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T.bl~ III - Ca.parlson of Measured and Calcul.ted Dat. 

ttEASURED DATA 

PEltFURMAIICE(l) EMITTER (2) .JUNCTION () JASE(]) ISF(]) 

" -'sf! V N Xdn Xdp N X
J VI NA V+ M+ Profile oc s Idn p A 

% A 
) -) -) -3 __ V __ ~ __ ,~ ... t: .. ... p. ea ... ea 

16.1 .012 .600 

10.0 .0225 .556 

V(5) 
oc 

.601 

.555 

20 ""2x10 .056 .71 1.lxi016 
"".25 100 1.5xlO15 10 lx1011 AllltUPT 

'\01020 .050 .41 1.3xl017 
"".25 260 4x1015 -.0". -

CALC1JLATID DATA 
.1 Jon Jop 

(4) 
5 ..... 

5 (6) 5 (7) 
0 

5ejft 5ejp c.+ op+ 

2.9xl0-12 1.1x10-12 1.8xlO-12 2700 75 14.4 4000 106 

1.18x10-11 4.55xl0-1Jl.29a10-11 1640 1110 4000 106 

(1) 

(2) 

(J) 
(4) 
(5) 
(6) 
(7) 

t 

91.6 11M AM2 (ELR) 

DepletiOll d.ta c.lcul.ted fra. zero bfaa c8peC1t .. ______ :. 
.ssuainc .ft erfc profUe. ". deduced fra. .... t re..taace 
_.sur .... t •• 
Spreadi... resist.ace d.t. 
erfc .pproxt.8ted by .n exponential profile 
Calcul.ted uainc ..-sured I c 
Me.sured 011 • st.il.rly prelired 8Uyface 
EstfJlated 
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Fig. 2 - Effect of abrupt doping concentration in the p+ region on 
the minimum effective recor.ibination velocity at the p- p+ 
interface. W + was )ti mized at each concentration P , 
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15 -3 
NA :4 '( 10 em 

18 • -3 
N + = 3 ')( 10 em Abrupt 

p 

6 
So'::" 10 c m/sec • 

~ 102 4 
E So = 1.25 x 10 
u 

10 

~~--~~~~--~~~~~~~ 
. 1 1 10 100 

w + (urn) p . 

F iq. I - Effect of surface reconlbi nation veloc ity. So, 
and widtll of p + region (W +) on til e effective re-p 
combi nation veloc ity at p - p + interface 

A-16 

,._" - ~-

1 
! 



LIST OF TABLES 

!able 

I Effect of profIle and surface doping concentration in 

15 -3 + 6 
region. (NA • 4xlO em ,Wp. 20 ~m, So • 10 em/s). 

II Effect of + profile and width of p region on See 

(5 • 500 o 
+ 18 -3 15 -3 

cm/s. NA = 3xlO em ,NA • 4xlO em ). 

III Comparison of measured and calculated data. 

A-17 

+ the p 

m 'd 



APPENDIX B 

PROCESS SPECIFICATIONS FOR PROCESS SEQUENCE -

DENDRITIC WEB SOLAR MODULES 

The process sequence we have defined for the fabrication of solar 

modules from dendritic web silicon consists of six main processes which 

have been further divided into 15 sub-processes relating to specific 

treatment of the web. 

The specifications of r.(~trol parameters for these sub-processes 

are given in this appendix. 

1. .Plasma Etching 

This is a pre-diffusion cleaning step for the as-grown web. If 

the web has a lightly adhering, particulate oxide on the surface, plasma 

etching must be preceeded by an HF/H20 cleaning. 

Process Specification: 

Insert web in plasma etch apparatus under following conditions: 

• Purge system with O2 • 

• Apply 200 watts + 10 watts rf power. 

• Flow 300 cc/min. ± 10 cc/min of PDE-lOO gas. 

or equivalent (PDE-IOO is a proprietary mix of 

CF4 and 02 supplied by LFE Corp.). 

• Hold for 3 min. + 0.5 min. and remove web. 

• Temperature not to exceed 120°C. 

Process Cuntrol: 

No test at this point, but web surface should be 

shiny and reflective. 
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2. + n Diffusion 

+ In this sub-process an n p junction is formed in thp. p-type 

web by diffusing in POCI
3

• 

Process Specification: 

• Use reagent grade POC1 3 {e.g., per Fisher Co. standards} 

at O°C. 

• Gases used - 200 cc/min. N2 through POC13 
1560 cc/min N2 carrier 

62.5 cc/min O2 carrier 

Rates are for a 4" dia. diffusion tube and the flows are 

+ 10%. 

• 
• Time - 35 min. + 10 min. 

• Cooling rate - approx. 5°C/min. from 850°C ~ 700°C. 

• Remove phosphorus glass from one side of web. 

Process Control: 

Sheet resistivity to be 50 Me + 10 n/Q . 

3. Deposition of Aluminum 

+ To form a pp back junction, Al must be deposited on one side 

of the web. We have found that the best results are obtained when the 

Al is deposited on an n+ surface. This means that after the diffusion 

process (which converts both surfaces to n+) neither of the n+p junctions 

are removed. 

This process specification details the deposition of Al by 

sputtering. We have achieved essentially similar results by applying 

the Al either by silk screening an Al paste or plasma spraying an Al 

powder. 
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Process Specification: 

• Insert web into sputtering apparatus. 

-6 
• Pump system to 10 Torr. 

• Sputter clean for 10 minutes. 

+ • Sputter Al on cleaned n surface. Al to be Q9.99% pure. 

A total of 10 ~m ± 3 ~m to be sputtered at a rate of 

about 1 ~m/min. 

Process Control: 

After removal from apparatus, web should not show excessive bow 

or curvature. 

4. Aluminum Alloying 

In this process the deposited Al is driven into the web to form 
+ a pp junction. 

Process Specification: 

Heat web in furnace (AI coated side up to 850 0 e + 3°e for I min. 

+ 0.25 min. 

Heating to be done in N2 atmosphere with a flow rate of 

200 cc/min. ± 25%. 

Cooling rate 50°C/min. ± 25°C/min. 

lv.'~b etched in 1: 1 H20 :HF for 30 sec. to remove oxide from 
+ n side. 

Process Control: 

+ Depth of p layer to be 10 ~m ± 3 ~m. 
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5. Depos it ion of Anti Rnf1ec tion Coating 

The process deflned requires an anti reflection (AR) coating 

to be applied to the web before metallization. This AR coating acts as 

a mask in the subsequent plating operation. 

6. 

Process Specification: 

AR Solution: 3.5% mixed oxide solution in ethyl alcohol. 

The mixed oxide ratio is 88% Ti02 and 12% Si02• 

ApplicaUon: The AR solution is applied by withdrawing the web 

from the AR solution at a controlled rate. The withdrawal rate 

to be 30 em/min ± 3 ern/min. 

Drying: The web is heated in air to 400°C and held at 400°C 

for 15 minutes. After firing, the color of the strip should be 

blue-black. 

Process Control: 

• Color of antireflection coating on n+ side of web should 

be dark blue-black. 

° ° • Film thickness 700 A + 30 A. 

Deposition of Photoresist 

A photoresist layer must be applied to the web (over the AR 

coating) so that photolithographic techniques may be used to define the 

conductive grid pattern. 

Process Specification: 

• Prepare a 50/50 solution of AZJ-lil photoresist an~ 

AZIIl thinner (produced by Shipley Co.). 

• Immerse web, lengthwise in above solution and withdraw 

at 25 ern/min. ± 5 em/min. to obtain a I to 2 ~m coating 

of photoresist. 

• Bake web at 90°C + 3°C for 25 min. + 3 min. 

B-4 

,.r- -. -_ 

] 
I" 
i 

I 
I: 
I 



Process Control: 

Photoresist coating should be free of obvious pinholes. 

7. Exposure and Development of Grid Pattern 

Standard photolithographic techniques are used to define a grid 

pattern through the PR and All. and thus form a metallization pattern. 

Process Specification: 

• Use negative mask fabricated on a plastic base; 

mask to fit between dendrites and lay on web. 

• Expose photoresist with 55 millijoule/cm2• 

• Develop grid in photoresist using AZ311 developer, 

at 2loC + IOC for 60 sec. with mild agitation 

(AZ3Il produced by Shipley Co.). 

• Rinse in D1 H20; 8 megohm minimum. 

• Develop grid in antireflection coating using etch 

composed of: 150 parts 01 H20, 60 parts HCI, and 

30 parts NH4F. 

• Wash in D1 H20; dry with forced, filtered air. 

Process Control: 

[
+ 5 lJm Width of grid lines to be 25 lJm 0 
- lJm 

8. Hetallization 

Thin layers of metal are evaporated over the entire surface of 

the cell. These metals serve as plating base for the electroplated 

conductive layer. The Ti serves as a barrier metal to prevent diffusion 

of conductive metals into the silicon. 
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Process Specification: 

• Place web in evaporation system. 

• Evaporate 300 A + 50 A of Ti, at 2-5 A/sec. 

• Evaporate 300 A + 50 A of Pd, at 2-5 A/sec. 

• Evaporation takes place over entire front surface 

of web. 

Process Control: 

Metal layer thickness can be checked using glass control 

slide and "Talystep" apparatus. 

9. Rejection of Excess Eyaporated Metal 

Since the thin metal has been evaporated over the entire cell, 

those parts of the metal layers, overlaying the photoresist are rejected 

by dissolving the photoresist. 

Process Specification: 

• Immerse web in acetone for 5 minutes with mild 

agitation, e.g. ultrasonic. 

• If any metal remains on silicon after this time, 

swab with cotton and acetone. 

• Rinse with methanol. 

• Dry in forced clean air. 

Process Control: 

No metal on cells other than in grid areas. 

10. yreparation of Conductive Grid by Electroplating 

The thin metal layers in the grid pattern cannot carry the 

current produced in the solar cell without excessive series resistance. 

Therefore, a thick conductive layer Is electroplated on top of these 

layers. 
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Process SEe~ific&tlon: 

• Web in holder immersed in plating solution 

(see below) and plated at 10 to 20 mA/cm2 for 

about 10 minutes (Area is area of grid). 

• Web washed in Dr H20 for 5 min. and dried in forced t 

clean air. 

Process Control: 

Plated Ag to be 7 vm ± 2 ~m. 

Ag Plating Solution: 

3.8 liters Dr H20 

* 19S gm Sol-u-Salt 

141 gm potassium cyanide (CP grade) 

56.6 ~m potassium cyanide (CP grade) 

Anode - 99.99 Ag with a 2:1 anod~/cathode area ratio 

Use at pH of 12.5 and at 23°C + 2°C with vigorous agitation. 

It. Laser Scr:.ibing 

Ur to this point in the process, the cells have heen fabricat~d 

on long lengths of web with the dendrites in place. The individual cc11s 

are separated from the web by laser scribing from the back and breaking 

out the cell. 

'Ie 
Sel-Rex Industrial Silver Process: Sel Rex Silver Sol-u-Salt 
produced by Sel-Rex Corp. 

B-7 

-- ':;;"''!.~~-''_.L""~-::-~''_-'''''''''1!'f'''''=''''''''=''''''_''''''-·'''-'''~'''~=-..... _________________ ~ ________ _ 

., 



Proce8s~cification: 

* • Align cellon holder with back of cell facing 

laser beam. 

• Scribe cell periphery with Nd-Yag laser. 

(Nominal power 3-5 watts repetition rate - lOOO/sec). 

Process C~tro~~: 

Cell area - A + 0.5%. 
0-

No cracks or chips on cell. 

Laser penetration from back 60 ~m{~ l~ ~m. 

12. Cell Testing 

Our process sequence envisions that cells will be 100i. t~sted. 

After testing, they are categorized n~, to final parameters. 

* 

Process Specifica~ion: 

T~ster should be automated and give hard copy printout of cell 

parameters. 

• Parameters to be measured: 

v oc 

I sc 

V at I = 0.9 I 
se 

V at I .. 0.8 I sc 

V at I :a 0.7 I 
Be 

• From these parameters determine: (1) efficiency, 

(2) fill factor, (3) I and V at peak power. 

A holder has been developed for this process which permits the c~ll to 
be aligned with the laser beam by observing the front of the cell in n 
45° mirror. A patent application descrihing this holder hus been filed. 
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PrOC(·'f'S Control: 
----------~-- ---.--~-. 

Cells meet sppcifications or can be properly classified. 

The interconnect and encapsulation processes are carried out 

in sl'qucnce. The first task is to m.1k(' the front int{'rconncct to the 

cell. 

• Prepare Al interconnect straps - 1 mm wide by IS mm 

long by 35 ~m thick (all dimensions ± 10%). 

• U~;ing lIItr.lsonic welding, hond ;10 interconnect strap 

to each contact pad on front of cell. 

PrOl'PS~; l:ontrol: - -'- - ~ --~~ - -- ----- - ~ "~-

Pull strength of hond - :> 50 gmf 

-5 Resistancc uf bund ~ ]0 . U. 

After thc front interconnect the cells are placed sun-side 

down on tht:' gl'lss slIpcrstrate .lnd iwld in place with an adhesiv('. 

'" 
** 

• Pn'parc sh('l·t of Sunadf'x gLIB!> - (l/8" thick hy X ft. 

* ** lung by Y ft. wide) by coating with adhpsive. 

(Slmadl'x produced by ASr. Corp.). 

• Lay top l'ontactl'd celis, sur. down side on ;lJIU'sivt', 

lTlaintaining 0.3 mm sp'lcing 011 .. 11 slut's. 

Size of ~lass not deflnrd. 

Adhesive is GE RTV 615 or simi1iJr. 
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• Cure adhesive - 120·C - three hours. 

• Connect straps to back using ultrasonic bonding. 

~cess Control: 

• Minimum amount of bubbles in glass/cell interface. 

Panel packing factor> 96r.. 

15. Attac~ment of SubstratcJ-..furin.Land Final Jest 

To protect the back of the glass-cell panel, a substrate is 

attached to the back of the pane]. After curing, the panel is again 

tested to assure that it m~ets specifications. 

Process Specification: 

• Prepare backboard by applying adhesive. 

• Place backhoard over ells, assuring conductors 

pads contact proper c~]l interconnects. 

• Cure adhesive 120°C, three huurs. 

• Final t(,Rt pO'H.·1 to determine if it meets specifi­

cations oc to classify as to parameters • 

.rL~sS C0l1tr21s: 

• Pnnel meets specific-ations. 
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