User's Guide for Vectorized Code EQUIL for Calculating Equilibrium Chemistry on Control Data STAR-100 Computer

Ajay Kumar, Randolph A. Graves, Jr., and K. James Weilmuenster

APRIL 1980
User's Guide for Vectorized Code EQUIL for Calculating Equilibrium Chemistry on Control Data STAR-100 Computer

Ajay Kumar
Old Dominion University
Norfolk, Virginia

Randolph A. Graves, Jr., and K. James Weilmmuenster
Langley Research Center
Hampton, Virginia
SUMMARY

A vectorized code, EQUIL, is developed for calculating the equilibrium chemistry of a reacting gas mixture on the Control Data STAR-100 computer. The code provides species mole fractions, mass fractions, and thermodynamic and transport properties of the mixture for given temperature, pressure, and elemental mass fractions. The code is set up for the e-, H, He, C, O, N system of elements. In all, 24 chemical species are included.

INTRODUCTION

This report presents a vectorized code, EQUIL, developed for the Control Data STAR-100 computer, which calculates the equilibrium chemistry of a reacting gas mixture. Only gaseous species are considered. The code (see appendix A) provides species mole fractions, mass fractions, and thermodynamic and transport properties of the mixture for given temperature, pressure, and elemental mass fractions. It can be used as a subprogram to a flow-field code. The code is set up for the e-, H, He, C, O, N system of elements. In all, 24 species are included. The method given in references 1 and 2 is used in the present code for calculating the equilibrium composition. It uses the free-energy-minimization technique in which the method of steepest descent is utilized. Thermodynamic properties, thermal conductivity, and viscosity of each input species are evaluated by polynomial expressions. The coefficients for these polynomials are prescribed input to the code. The mixture transport properties are determined by using the semiempirical relation of Wilke (ref. 3).

The code is set up for calculating the equilibrium chemistry over 500 mesh points. The number of mesh points can be varied by suitably changing the code dimensions. The system of elements and species considered in this code can also be changed by suitably modifying the input data.

SYMBOLS

\[a_1, a_2, \ldots, a_7 \text{ coefficients in approximating polynomials for } c_p, H, \text{ and } F \]
\[b_1, b_2, b_3 \text{ coefficients in approximating polynomial for } \mu \]
\[c_1, c_2 \text{ coefficients in approximating polynomial for } k \]
\[c_p \text{ specific heat at constant pressure} \]
\[F \text{ free energy} \]
\[H \text{ enthalpy} \]
k thermal conductivity
R universal gas constant
T temperature
\(\mu \) viscosity

PROGRAM INPUT

Most of the data input to the EQUIL code is by punched cards. The detailed input information is presented in the following section.

Chemistry and Transport Model Input

The elements and species in the mixture are input through NAMELIST THERMO, which is described in table I. Thermodynamic properties (refs. 4 to 7), thermal conductivity, and viscosity of each input species are represented by approximating polynomials. The thermodynamic data are input by cards as follows. There are eight cards for each atomic, molecular, or ionic species:

Card 1 (Format (A6, 4X, 6F5.0)): Field 1 contains the alphanumeric identifier for the ith species SYMB(I), which is right justified in columns 1 to 6. Fields 2 to 7 (columns 11 to 15, 16 to 20, etc.) contain the array AA(I,J) for J = 1 to NE, which specifies the number of atoms of each element in the species (see table II). The order must correspond to the order of input of the MWEL array. For example, card 1 for species NO\(^+\) would be

\[
\text{NO}^+\quad -1.0.0.0.1.1.
\]

Cards 2 and 3 (Format (5E14.6)) contain the seven constants \(a_1 \) to \(a_7 \) used in the polynomials for calculating the specific heat, enthalpy, and free energy of each species in the temperature range from 300 K to 1000 K. These polynomials are

\[
\frac{C_p}{R} = a_1 + a_2 T + a_3 T^2 + a_4 T^3 + a_5 T^4
\]
\[
\frac{H}{RT} = a_1 + a_2 \frac{T}{2} + a_3 \frac{T^2}{3} + a_4 \frac{T^3}{4} + a_5 \frac{T^4}{5} + \frac{a_6}{T}.
\]
\[
\frac{F}{RT} = a_1 (1 - ln T) - a_2 \frac{T}{2} - a_3 \frac{T^2}{6} - a_4 \frac{T^3}{12} - a_5 \frac{T^4}{20} + \frac{a_6}{T} + a_7.
\]

Columns 29 to 80 of card 2 may be used for identification purposes.
Cards 4 and 5 (Format (5E14.6)) contain constants a_1 to a_7 for the thermodynamic data in the temperature range from 1000 K to 6000 K.

Cards 6 and 7 (Format (5E14.6)) contain constants a_1 to a_7 for the thermodynamic data in the temperature range above 6000 K.

Card 8 (Format (5E14.6)) contains the constants b_1, b_2, b_3, c_1, and c_2 in the approximating polynomials for viscosity and thermal conductivity, which are

$$\mu = b_1 + b_2 T + b_3 T^2$$

$$k = c_1 + c_2$$

where T is in K, μ is in lbm/ft-sec, and k is in Btu/ft-sec-°R. *

Coefficients for the species used in this code are given in appendix B.

The elements are input in the order e-, H, He, C, O, and N. The order of species input is shown in table II. The species composition is described using the AA(24,6) array in table II. For example, AA(i,2) defines the number of hydrogen atoms in species i, and AA(i,4) defines the number of carbon atoms in species i. If species i is a positive ion, then AA(i,7) is -1.

Temperature, Pressure, and Elemental Mass Fractions Input

The code is set to calculate the equilibrium chemistry at 500 mesh points. This can be varied by changing the dimensions of various variables. The temperature, pressure, and elemental mass fractions at all the mesh points are input to the code through vectors T(500), P(500), and CL(500,6). The temperature is in kelvins and pressure is in atmospheres. The code requires that at least one element of the temperature vector be in each temperature range used to calculate the thermodynamic properties in subroutine THERMO. As an example, the present code is set to use only two temperature ranges, $1000 \, K < T < 6000 \, K$ and $T > 6000 \, K$. There is a transition range from 5500 K to 6500 K to assure smooth transition from one temperature range to another. The temperature vector should have at least one element less than 5500 K, at least one element between 5500 K and 6500 K, and at least one element above 6500 K.

The vector CL(500,1) is an elemental array and, for the present setup, represents the charge balance, which is zero. However, the solution procedure does not allow zero values for an elemental array; therefore, the "electron" elemental array is set to an arbitrary small number. In this code, CL(500,1) is taken as 1.0E-10 for all cases. No element should have zero mass fraction. For cases where the mixture does not include a particular element, the mass fraction for that element can be prescribed as an arbitrary small number.

*1 $\text{lbm/ft-sec} = 1.488 \, \text{Pa-sec}; \, \text{1 Btu/ft-sec-°R} = 622.5 \, \text{W/m-K}.$
In addition to the aforementioned input quantities, a criterion for the convergence of the calculation procedure is required. The convergence criterion is as follows:

\[\text{CRIT} = \sum_{i=1}^{N} |X_i - Y_i| < 1.0 \times 10^{-6} \]

Here, the values of \(X_i \) are the species mole numbers for the current iteration, and the values of \(Y_i \) are the species mole numbers for the previous iteration. Thus, when the sum of the absolute values of the changes in the mole numbers for all the species is less than \(1.0 \times 10^{-6} \) from one iteration to the next, the calculation is terminated. The value of CRIT can be changed if necessary.

CODE STRUCTURE

Code EQUIL has a main program in which the quantities such as temperature, pressure, and elemental mass fractions are prescribed at all the mesh points. The value of CRIT is also input here. In addition to the main program, there are six subroutines.

Subroutine READ reads the NAMELIST THERMO and thermodynamic and transport data for various species. Subroutine THERMO calculates the thermodynamic properties of various species at all the mesh points. Subroutines CHEQ, MINENG, and EQSOL use the method of steepest descent to minimize the free energy. An initial assumption is made on the mole numbers of various species, and then an iterative procedure is followed to find the set of mole numbers of various species which minimizes the free energy.

Knowing the right mole numbers of various species, the subroutine CHEQ then calculates the mixture molecular weight, mole fractions, and the enthalpy of the mixture. Subroutine TP calculates the mixture specific heat, thermal conductivity, viscosity, and Prandtl number.

Finally, the main program EQUIL converts the mixture viscosity, conductivity, and specific heat to SI units. The species mass fractions are also obtained here. The printed output includes the mole fractions of various species, and the enthalpy, specific heat, viscosity, conductivity, Prandtl number, and molecular weight of the mixture.

LIST OF VARIABLES

- **CIS**: Species mass fraction
- **CL**: Elemental mass fraction
- **COND**: Thermal conductivity of mixture
- **CONDI**: Thermal conductivity of individual species
CP = Specific heat of mixture
CPI = Specific heat of individual species
CRIT = Convergence criterion
FORT = Free energy of individual species
HI = Enthalpy of individual species
KTEST = A parameter equal to either zero or one
MOLEF = Mole fraction of species
MW = Molecular weight of species
MWEL = Molecular weight of element
P = Pressure
SH = Enthalpy of mixture
SIG = Prandtl number of mixture
T = Temperature
VIS = Viscosity of mixture
VISI = Viscosity of individual species
WMIX = Molecular weight of mixture
Y = Mole number of species in current iteration
YII = Mole number of species in previous iteration used to start a new iteration for KTEST = 1

SAMPLE CALCULATIONS

Two sample calculations are presented here. The first example is for a mixture consisting mainly of e−, H, He, C, and O elements. The input temperature, pressure, and elemental mass fractions are listed below:

\(T(1;100) = 4000. \)
\(T(101;100) = 6000. \)
\(T(201;300) = 12570. \)
\(P(1;500) = 6.3549 \)
The mass fraction for the sixth element, nitrogen, was prescribed as a very small number. It took 24 iterations for the solution to converge. The actual computing time on the Control Data STAR-100 computer for this example was 5.3 seconds. The output for this example is given in table III.

The second example is for air. For this example, the elemental mass fractions for H, He, and C were prescribed as small numbers. The input temperature, pressure, and elemental mass fractions are as follows:

T(1;100) = 7000.
T(101;100) = 6000.
T(201;300) = 3991.17
P(1;500) = 1.146
CL(1,1;500) = 1.E-10
CL(1,2;500) = 5.E-6
CL(1,3;500) = 5.E-6
CL(1,4;500) = 5.E-6
CL(1,5;500) = 0.233
CL(1,6;500) = 1. - (Sum of other five elemental mass fractions)

It took 26 iterations and 6.2 seconds actual computing time for the solution to converge. The output for this example is given in table IV.

In these examples, the input conditions for the first 100 mesh points, for the next 100 mesh points, and for the last 300 mesh points were the same; consequently, tables III and IV give the results only at mesh points 1, 101, and 201.
CONCLUDING REMARKS

The code presented in appendix A calculates the enthalpy of the mixture for given temperature, pressure, and elemental mass fractions. However, in most flow-field calculations, it is the temperature which is to be calculated for given enthalpy and pressure. To use this code for such calculations, an iterative technique can be used in which a temperature is assumed initially. For this temperature, the enthalpy of the mixture is obtained from EQUIL. The temperature is then changed using the Newton-Raphson technique until the enthalpy of the mixture is obtained within desired accuracy to the initially known value. This iterative technique can be incorporated in the main program EQUIL, and only subroutines THERMO and CHEQ are required to be put in the iterative loop.

To save significantly on time for such calculations, a parameter KTEST is used. For the initial guess of temperature, KTEST is set equal to zero and for subsequent guesses, KTEST is set equal to one. When KTEST = 0, the subroutine CHEQ starts with a very crude approximation of species mole numbers. For KTEST = 1, mole numbers calculated in the previous iteration are taken as the starting approximation and the solution converges in fewer iterations.

Langley Research Center
National Aeronautics and Space Administration
Hampton, VA 23665
February 19, 1980
APPENDIX A

PROGRAM LISTING

The computational program EQUIL is listed in this appendix in Control Data STAR-100 FORTRAN language 1.4 (an extension of ANSI FORTRAN for the Control Data STAR-100 computer). This program consists of one main program and six subroutines.

```
PROGRAM EQUIL (INPUT, OUTPUT, TAPE5=INPUT, TAPF6=OUTPUT)
DIMENSION CIS(500,24)
COMMON/E1/T(500),P(500),WMIX(500),CL(500,6),SH(500)
COMMON/E2/H1(500,24),MOLFF(500,24),CP1(500,24)
COMMON/E4/MW(24),SYM(24),A(24,6),MWEL(6),AAA(500,24,6)
COMMON/FR/NE,NS
COMMON/F14/VIS(500),COND(500),SIG(500),CP(500)
COMMON/F15/R,P,CRIT,CRIT,NE,MN,M,WL,MW1,M
COMMON/F16/ENT(500,24),CPI(500,24)
EQUIVALENCE (CIS(1,1),ENT(1,1))
REAL MW,MWEL,MOLEF
RR=1.987
CRIT=1.E-6
RCRIT=1.E-6
MI=500

C T IS IN DEGREE K AND P IS IN ATM.
T(1:100)=4000.
T(101:200)=6000.
T(201:300)=12570.
P(1:MI)=6.3549

C THE ELEMENTS ARE IN THE ORDER OF F-,H,HE,H2,CA,ND N.
CL(1,1:MI)=1.E-10
CL(1,2:MI)=4229649999
CL(1,3:MI)=1008
CL(1,4:MI)=4518
CL(1,5:MI)=0.2443
CL(1,6:MI)=5.5.E-6
CALL READ(M)
MNS=M*NS
MMM=NE+1
MN=M+NE
MNN=M+M
MX=M+MMM
CALL THERMO(M)
KTEST=0
CALL CHEQ(KTEST,M)
CALL TP(M)
DO 10 I=1,NS
C CIS IS THE MASS FRACTION OF SPECIE I. HI IS IN J/KG.
CW=MW(I)
CWI=4184./CW
CIS(1,1:MI)=MOLFF(1,1:MI)*CW/WMIX(1:MI)
10 HI(1,1:MI)=HI(1,1:MI)*CWI
C HERE SH IS IN J/KG, CP IS IN J/KG K, VIS IS IN N SEC/M2, COND IS
C IN W/M K.
SH(1:MI)=SH(1:MI)*4184.
```

8
APPENDIX A

CP(1;M1)=CP(1;M1)×4184. /WMIX(1;M1)
VIS(1;M1)=0.1×VIS(1;M1)
COND(1;M1)=418.4×COND(1;M1)

WRITE(6,100)
WRITE(6,130)(M,MOLEF(M,1),MOLEF(M,2),MOLEF(M,3),MOLEF(M,4),MOLEF(M,5),MOLEF(M,6),M=1,M1,100)
WRITE(6,120)
WRITE(6,130)(M,MOLEF(M,7),MOLEF(M,8),MOLEF(M,9),MOLEF(M,10),
1MOLEF(M,11),MOLEF(M,12),M=1,M1,100)
WRITE(6,140)
WRITE(6,130)(M,MOLEF(M,13),MOLEF(M,14),MOLEF(M,15),MOLEF(M,16),
1MOLEF(M,17),MOLEF(M,18),M=1,M1,100)
WRITE(6,160)
WRITE(6,130)(M,MOLEF(M,19),MOLEF(M,20),MOLEF(M,21),MOLEF(M,22),
1MOLEF(M,23),MOLEF(M,24),M=1,M1,100)
WRITE(6,150)
WRITE(6,130)(M,SH(M),CP(M),VIS(M),COND(M),SIG(M),WMIX(M),M=1,M1,1100)
100 FORMAT(/,4X,'M',11X,'XE',13X,'HX',13X,'HX2',12X,'HX+',12X,'HXF',
111X,'HXF+',/)
120 FORMAT(/,4X,'M',11X,'XC',12X,'XC2',12X,'XC3',12X,'XC+',12X,'XC2H',
111X,'XC2H+',/)
130 FORMAT(2X,I4,2X,6E15.5)
140 FORMAT(/,4X,'M',11X,'XC3H',11X,'XC4H',11X,'XN',13X,'XN2',12X,'XN+',
111X,'XN+',/)
160 FORMAT(/,4X,'M',11X,'XCN2',11X,'XN1',12X,'XN2',12X,'XN+',12X,'XN0',
112X,'XN0+',/)
150 FORMAT(/,4X,'M',11X,'SH',12X,'CP',13X,'VIS',12X,'COND',11X,'SIG',
111X,'WMIX',/)
STOP
END

SUBROUTINE READ(M1)
COMMON/E3/AL(24,3),BI(24,3),CI(24,3),DI(24,3),FI(24,3),FI(24,3),
1GI(24,3)
COMMON/E4/MW(24),SYMB(24),AA(24,6),MWFL(6),AAA(500,24,6)
COMMON/E8/NE,NS
COMMON/E9/XMA(24),XMA(24),XMC(24),XMA(24),XKB(24)
DIMENSION ILW(9),ILWP(6)
REAL MW,MWFL
DATA ILW,5H SI,5H F,5H O,5H N,5H C,5H HE,
15H H,5H E,5H NS
/NAMERL/THERMO/ MW,MWFL,NE,NS
C INPUT PROBLEM NAMELISTS
20 READ(5,THERMO)
APPENDIX A

WRITE(6,THERMO)
DO 60 I=1,NS
READ(5,901) SYMB(I),(AA(I,J),J=1,NE)
DO 55 J=1,3
55 READ(5,902)AI(I,J),BI(I,J),CI(I,J),DI(I,J),EI(I,J),FI(I,J),GI(I,J)
READ(5,902)XMA(I),XMB(I),XMC(I),XKA(I),XKB(I)
60 CONTINUE

C THERMOCHEMICAL PROPERTIES
WRITE(6,919)
DO 120 I=1,NS
WRITE(6,920) SYMB(I),(AI(I,J),BI(I,J),CI(I,J),DI(I,J),EI(I,J),FI(I,J),GI(I,J),J=1,3)
120 CONTINUE
122 WRITE(6,921)
DO 130 I=1,NS
WRITE(6,922) SYMB(I),XMA(I),XMB(I),XMC(I),XKA(I),XKB(I)
130 CONTINUE

C SPECIES/ELEMENTAL COMPOSITION MATRIX
DO 135 I=1,NE
ILWP(I)=ILW(I)
IF(MWEL(I).LT.27.) ILWP(I)=ILW(2)
IF(MWEL(I).LT.17.) ILWP(I)=ILW(3)
IF(MWEL(I).LT.15.) ILWP(I)=ILW(4)
IF(MWEL(I).LT.13.) ILWP(I)=ILW(5)
IF(MWEL(I).LT.11.) ILWP(I)=ILW(6)
IF(MWEL(I).LT.0.1) ILWP(I)=ILW(8)
IF(MWEL(I).EQ.0.0) ILWP(I)=ILW(9)
135 CONTINUE
WRITE(6,923) ILWP
DO 140 I=1,NS
DO 137 J=1,NE
IF(AA(I,J).NE.0.) AA(I,J)=0.
137 CONTINUE
WRITE(6,924) SYMB(I),(AA(I,J),J=1,NE)
140 CONTINUE
901 FORMAT(A6,4X,6F5.0)
902 FORMAT(5E14.6)
919 FORMAT(1H1,34X,'THERMOPHYSICAL PROPERTIES - CURVE FIT COEFFICIENTS'
 /46X,'(1) THERMODYNAMIC PROPERTIES'/4X,'SPECIES',11X,'A',14X,'
 'B',14X,'C',14X,'D',14X,'E',14X,'F',14X,'G'/)
920 FORMAT(1H0,5X,A6,3X,7E15.6,1 T= 300K'/15X,7F15.6,1 T=1000K'/15X,
 .7E15.6,1 T=6000K')
921 FORMAT(1H0/4X,'SPECIES',30X,'VISCOOSITY',28X,1H*,12X,'CONDUCTIVITY'
 */)
922 FORMAT(1H,4X,A6,4X,3E20.6,3X,1H*,F16.6,F20.6)
APPENDIX A

923 FORMAT(1HO//49X,'ELEMENTAL PARTICLES TABLE'/42X,' SPECIES ',6A5)
924 FORMAT(1H ,43X,A6,1X,6F5.0)
NSNEM1=NS*NE*M1
AAA(1,1,1:NSNEM1).=O.
DO 110 I=1,M1
DO 110 J=1,NS
DO 110 K=1,NE
110 AAA(I,J,K)=AA(J,K)
RETURN
END
SUBROUTINE THERMO(MI)
C FREE ENERGY, ENTHALPY, AND SPECIFIC HEAT BY APPROXIMATING POLYNOMIALS
DIMENSION BG(500)
COMMON /EI/ T(500),P(500),WMIX(500),CL(500,6),SH(500)
COMMON/E2/HI(500,24),MOLEF(500,24),CPI(500,24)
COMMON/E3/AIL(24,3),BI(24,3),CI(24,3),DI(24,3),EI(24,3),FI(24,3),
G(24,3)
COMMON/E5/FORT(500,24),Y(500,24),X(500,24),YBAR(500)
COMMON/E8/NE,NS
COMMON/E9/AO(500),A10(500),A13(500),AA1(500),AA2(500),TV1(500),
TV2(500)
COMMON/E12/RR,CRT,RCRT,MNS,MMM,MNE,MNEI,MX
COMMON/E16/ENT(500,24),CPII(500,24)
DESCRIPTOR DA1,DA9
BIT BG
REAL MOLEF
C COEFFICIENTS ARE INPUT FOR THREE TEMPERATURE RANGES, (1) 300K TO
C 1000K, (2) 1000K TO 6000K, AND (3) 6000K TO 15000K. K AND L
C DENOTES THE SET OF COEFFICIENTS THAT ARE BEING USED. COMBINE TO
C ASSURE SMOOTH TRANSITION BETWEEN EACH OF THE THREE TEMPERATURE
C INTERVALS, T IS GENERALLY GREATER THAN 6500K.
C T VECTOR SHOULD CONTAIN AT LEAST ONE ELEMENT LESS THAN 5500K, ONE
C ELEMENT BETWEEN 5500S AND 6500K, AND ONE ELEMENT ABOVE 6500K.
BG(1:M1)=T(1:M1).LE.6500.
ASSIGN DA9,A9(1:M1)
DA9=08VCMPRS(T(1:M1),BG(1:M1):DA9)
L1=08SLLEN(DA9)
BG(1:L1)=A9(1:L1).LE.5500.
ASSIGN DA1,A10(1:M1)
DA1=08VCMPRS(A9(1:L1),BG(1:L1):DA1)
L2=08SLLEN(DA1)
AA1(1:L2)=DA1*DA1
AA2(1:L2)=DA1*AA1(1:L2)
AA3(1:L2)=AA1(1:L2)*AA1(1:L2)
TV2(1:L2)=VALOG(DA1:TV2(1:L2))
TV2(1:L2)=1.-TV2(1:L2)
APPENDIX A

DO 10 I=1,NS
 CPI(1,1:L2)=RR*(AI(1,2)+RI(1,2)*DA1+CI(1,2)*AA1(1:L2)+DI(1,2)*AA2(1:L2)+EI(1,2)*DA3(1:L2))
 FORT(1,1:L2)=AI(1,2)*TV2(1:L2)-5*RI(1,2)*DA1-CI(1,2)*AA1(1:L2)/6.
 1-DI(1,2)*AA2(1:L2)/12-.EI(1,2)*.05*AA3(1:L2)+FI(1,2)/DA1-GI(1,2)
 ENT(1,1:L2)=RR*DA1*(AI(1,2)+.5*RI(1,2)*DA1+CI(1,2)*AA1(1:L2)/3.+DI(1,2)*AA2(1:L2)/4.+EI(1,2)*AA3(1:L2)/5.+FI(1,2)/DA1)
 CONTINUE

 RG(1,1)=A9(1,1),GT.5500.
 DA1=Q8VCMPRS(A9(1,1),RG(1,1);DA1)
 L3=Q8SLEN(DA1)
 AA1(1:L3)=DA1*DA1
 AA2(1:L3)=DA1*AA1(1:L3)
 A13(1:L3)=AA1(1:L3)*AA1(1:L3)
 TV2(1:L3)=VALOG(DA1;TV2(1:L3))
 TV2(1:L3)=1.-TV2(1:L3)
 DO 20 I=I,NS
 TVI(1:L3)=RR*{(6.5-.001*DA1)*(AI(I,2)+.5*RI(I,2)*DA1+CI(I,2)*AA1(I:L3)+DI(I,2)*AA2(I:L3)+EI(I,2)*A13(I:L3))+(.001*DA1-5.5)*(AI(I,3)+.5*RI(I,3)*DA1+CI(I,3)*AA1(I:L3)+DI(I,3)*AA2(I:L3)+EI(I,3)*A13(I:L3))}
 CPI(I,1)=Q8VMERG(TVI(1:L3),CPI(I,1:L2),RG(1,1);CPI(I,1))
 TVI(I:L3)=(6.5-.001*DA1)*(AI(I,2)*TV2(I:L3)-.5*RI(I,2)*DA1-CI(I,2)/6.-DI(I,2)*AA2(I:L3)/12.-EI(I,2)*.05*AA3(I:L3)+FI(I,2)/2DA1-GI(I,2)+.001*DA1-5.5)*(AI(I,3)*TV2(I:L3)-.5*BI(I,3)*DA1+CI(I,3)+.5*BI(I,3)*DA1+CI(I,3)/6.-DI(I,3)*AA2(I:L3)/12.-EI(I,3)*.05*AA3(I:L3)+4FI(I,3)/DA1-GI(I,3))
 HI(I,1)=Q8VMERG(TVI(I:L3),FORT(I,1:L2),RG(I,1);HI(I,1))
 TVI(I:L3)=RR*DA1*{(6.5-.001*DA1)*(AI(I,2)+.5*RI(I,2)*DA1+CI(I,2)*AA1(I:L3)/3.+DI(I,2)*AA2(I:L3)/4.+EI(I,2)*.05*AA3(I:L3)/5.+FI(I,2)/DA1)
 CPI(I,1)=Q8VMERG(TVI(I:L3),CPI(I,1:L2),RG(I,1);CPI(I,1))
 CONTINUE

 RG(1,M1)=T(1,M1),GT.6500.
 DA1=Q8VCMPRS(T(1,M1),RG(1,M1);DA1)
 L2=Q8SLEN(DA1)
 AA1(1:L2)=DA1*DA1
 AA2(1:L2)=DA1*AA1(1:L2)
 A13(1:L2)=AA1(1:L2)*AA1(1:L2)
 TV2(1:L2)=VALOG(DA1;TV2(1:L2))
 TV2(1:L2)=1.-TV2(1:L2)
 DO 30 I=I,NS
 TVI(1:L2)=RR*(AI(I,3)+RI(I,3)*DA1+CI(I,3)*AA1(1:L2)+DI(I,3)*AA2(1:L2)+EI(I,3)*A13(1:L2))
 CPI(I,1)=Q8VMERG(TVI(1:L2),CPI(I,1:L1),RG(1,M1);CPI(I,1))
APPENDIX A

\[
TV1(I;L2) = AI(I,3) * TV2(1;L2) - 5 * BI(I,3) * DA1 - CI(I,3) * AA1(I;L2) / 6 - DI \\
1(I,3) * AA2(I;L2) / 12 - EI(I,3) * 0.05 * A13(I;L2) + FI(I,3) / DA1 - GI(I,3)
\]

\[
FORT(I,1;M1) = Q8VMERG(TVI(I;L2), HI(I,1;L1), AG(I;M1), FORT(1,1;M1))
\]

\[
TV1(I;L2) = RR * DA1 * (AI(I,3)) + 5 * BI(I,3) * DA1 + CI(I,3) * AA1(I;L2) / 3 + DI(I,3) * AA2(I;L2) / 4 + EI(I,3) * A13(I;L2) / 5 + FI(I,3) / DA1
\]

\[
ENT(I,1;M1) = Q8VMERG(TVI(I;L2), MOLEF(I,1;L1), BG(I;M1), ENT(I,1;M1))
\]

\[
30 CONTINUE
TV1(1;M1) = VALOG(P(1;M1) : TV1(1;M1))
DO 50 I = 1, NS
50 FORT(I,1;M1) = FORT(1,1;M1) + TV1(1;M1)
HI(1,1;NS*M1) = ENT(1,1;NS*M1)
RETURN
END
SUBROUTINE CHEO(KTEST, M1)

C CHEMICAL EQUILIBRIUM OF MULTIPHASE SYSTEMS BASED ON THE PRINCIPLE
C OF MINIMIZATION OF THE FREE ENERGY OF THE MIXTURE
C THE CONDENSED SPECIES OPTION IS NOT CURRENTLY IMPLEMENTED.
COMMON/E1/T(500), P(500), WMIX(500), CL(500, 6), SH(500)
COMMON/E2/HI(500, 24), MOLEF(500, 24), CPI(500, 24)
COMMON/E4/MW(24), SYMB(24), AA(24, 6), MWEL(6), AAA(500, 24, 6)
COMMON/E5/FORT(500, 24), Y(500, 24), X(500, 24), YBAR(500)
COMMON/E6/Y1(500, 24)
COMMON/E8/NE, NS
COMMON/E10/SKIP(500)
COMMON/E11/CONV(500), XLAMBD(500), DELT(500, 24), F(500, 24), DEBAR(500)
COMMON/E12/A9(500), A10(500), A13(500), AA1(500), AA2(500), TV1(500),
1 TV2(500)
COMMON/E15/RR, CRIT, RCRIT, MNS, MMM, MNE, MNE1, MX
DIMENSION BIG(500), WMIX1(500)
EQUIVALENCE (WMIX1(1), A9(1))
BIT BIG
REAL MW, MWEL, MOLEF
NT = 0
SKIP(1;M1) = 0.
C IF KTEST EQ 1 USE MOLE NUMBERS COMPUTED PREVIOUSLY FOR THIS
C STATION AS INITIAL GUESS.
C OTHERWISE, ESTIMATE SPECIES MOLE NUMBERS FROM ELEMENT
C MASS FRACTIONS.
C STARTING ASSUMPTION - ATOMS ONLY, NO COMPOUNDS
Y(I,1;MNS) = 1 * (10**-7)
Y(I,1,1;M1) = CL(1,1;M1) / MWEL(1)
Y(I,1,2;M1) = CL(1,2;M1) / MWEL(2)
Y(I,1,3;M1) = CL(1,3;M1) / MWEL(3)
Y(I,1,4;M1) = CL(1,4;M1) / MWEL(4)
APPENDIX A

Y(1,15:M1)=CL(1,15:M1)/MWEL(5)
Y(1,20:M1)=CL(1,20:M1)/MWEL(6)
GO TO 50

48 CONTINUE
DO 42 I=1,NS
42 Y(1,1:M1)=YII(1,1:M1)
50 CONTINUE

C FREE ENERGY MINIMIZATION BY STEEPEST DESCENT
CONTINUE

CALL MINENG(NS,NE,M1)

C LAMBDA AND DIRECTIONAL DERIVATIVE (DFDL), AND CONVERGENCE TEST
XLAMBD(1:M1)=1.

DO 100 M=1,M1
100 IF(SKIP(M).EQ.1.)GO TO 105
IF(NT.LE.8)GO TO 107
IF(NT.GE.17.AND. NT.LE.22)GO TO 107
DO 101 I=1,NS
101 IF(YII(M,I).LT.1.E-7)GO TO 102
XLAM=-Y(M,I)/DELT(M,I)
IF(XLAM.GE.XLAMBD(M))GO TO 103
XLAMBD(M)=0.9999999*XLAM
GO TO 101

102 DELT(M,I)=0.
101 CONTINUE
GO TO 100

DO 107 I=1,NS
107 IF(DELT(M,I).GE.0.)GO TO 103
XLAM=-Y(M,I)/DELT(M,I)
IF(XLAM.GE.XLAMBD(M))GO TO 103
XLAMBD(M)=0.9999999*XLAM
GO TO 100

105 DO 106 J=1,NS
106 DELT(M,J)=0.
100 CONTINUE

C DERIVATIVE FOR GASEOUS SPECIES.
F(I,1:MNS)=VABS(DELT(I,1:MNS):F(I,1:MNS))

CONV(1:M1)=0.
DEBAR(1:M1)=0.
DO 110 I=1,NS
110 DEBAR(1:M1)=DELT(1,1:M1)+DEBAR(1:M1)
NTRIES=0
APPENDIX A

120 CONTINUE
HALL(1:M1)=1./((YBAR(1:M1)+XLAMBD(1:M1)*DFBAR(1:M1))
NTRIES=NTRIES+1
DO 130 I=1,NS
130 F(1,I:M1)=(Y(1,I:M1)+XLAMBD(1:M1)*DELT(1,I:M1))*HALL(1:M1)
 F(1,I:MNS)=VALOG(F(1,I:M1);F(1,1:MNS))
DFDL(1:M1)=0.
 DO 140 I=1,NS
140 F(1,I:M1)=DELT(1,I:M1)*(F(RT(1,I:M1)+F(1,I:M1))
C IF DFDL < 0, WE ARE GOING THE RIGHT WAY ON FREE ENERGY SURFACE.
C IF NOT, REDUCE LAMBDA AND TRY AGAIN...
 BIG(1:M1)=SKIP(1;MI).EQ.1.
 DFDL(1;M1)=Q8VCTRL(1.E-10,BIG(1;M1);DFDL(1;M1))
 BIG(1;M1)=DFDL(1;M1).GE.1.E-9
 HALL(1;M1)=.75*XLAMBD(1;M1)
 XLAMBD(1;M1)=Q8VCTRL(HALL(1;M1),BIG(1;M1):XLAMBD(1;M1))
 IF(II.EQ.O)GO TO 200
 IF(NTRIES.GT.16)GO TO 600
 GO TO 120
200 CONTINUE
C NEW MOLE FRACTIONS
 HALL(1;M1)=VAHS(DFDL(1;M1);HALL(1;M1))
 BIG(1;M1)=HALL(1;M1).LT.1.E-9
 CONV(1;M1)=Q8VCTRL(RCRIT,BIG(1;M1);CONV(1;M1))
 BIG(1;M1)=CONV(1;M1).GE.CRIT
 XLAMBD(1;M1)=Q8VCTRL(0.,BIG(1;M1):XLAMBD(1;M1))
 SKIP(1;M1)=Q8VCTRL(1.,BIG(1;M1):SKIP(1;M1))
 IF(II.EQ.O)GO TO 600
 DO 220 I=1,NS
220 Y(I,I;M1)=Y(I,I;M1)+XLAMBD(I;M1)*DELT(I,I;M1)
 IF(NT.LT.50)GO TO 500
 WRITE(6,231)
231 FORMAT(/1X,'NO. OF ITERATIONS EXCEED 50'/)
 DO 350 M=1,M1
350 IF(SKIP(M).EQ.1.)GO TO 350
 WRITE(6,300)M,P(M),T(M),DFDL(M),CONV(M),XLAMBD(M)
350 CONTINUE
300 FORMAT(1X,14,5X,'P=',F12.5,5X,'T=',F13.5,5X,'DFDL=',F12.5,3X,'CONV=',F12.5,3X,'XLAMBD=',F11.5)
 GO TO 600
500 GO TO 60
600 CONTINUE
 WRITE(6,70)NT
APPENDIX A

70 FORMAT(/,10X,'NO. OF ITERATIONS=',I4,/)
 YII(1,1:MNS)=Y(1,1:MNS)
 SH(1:M1)=0.
 WMIX1(1:M1)=0.
 TV2(1:M1)=0.
 DO 10 I=1,NS
 CW=MW(I)
 WMIX1(1:M1)=WMIX1(1:M1)+YII(1,1:M1)
 10 TV2(1:M1)=TV2(1:M1)+YII(1,1:M1)*CW

C MOLECULAR WEIGHT OF EQUILIBRIUM MIXTURE
 WMIX1(I:M1)=TV2(1:M1)/WMIX1(1:M1)

C ENTHALPY OF EQUIL. MIXTURE IN CAL/MOL. DIVIDE BY MIXTURE MOL. WT.
 1 CAL/GM = 4184 JKG.
 DO 20 I=1,NS
 SH(I;MI)=SH(I;MI)+HI(I,I;MI)*YII(I,I;MI)
 20 MOLEF(I,I;MI)=YII(I,I;MI)/WMIX1(I;MI)
 SH(I;MI)=SH(I;MI)/TV2(I;MI)

END

SUBROUTINE MINENG(NS,NE,MI)
C FIT N-DIMENSIONAL PARABOLA TO POINT IN FREE-ENERGY SPACE, WHERE
C N IS NUMBER OF ELEMENTS IN SYSTEM.
 DIMENSION DELTA(500,24,6),F(500,24),DELT(500,24),BUM(500),
 IXYBAR(500),R1(500,7,7)
 COMMON/E4/MW(24),SYMB(24),AA(24,6),MWEL(6),AAA(500,24,6)
 COMMON/E5/FORT(500,24),Y(500,24),X(500,24),YBAR(500)
 COMMON/E6/YII(500,24)
 COMMON/E7/A1(500,7,7),BB1(500,7)
 COMMON/E10/SKIP(500)
 COMMON/E15/RR,CRIT,RCRIT,MNS,MMM,MNE,MNF,MX
 COMMON/E16/ENT(500,24),CPI1(500,24)
 EQUIVALENCE (F(I,1),ENT(1,1)),(DELT(I,1),CPI1(1,1))
 YBAR(1:M1)=0.
 DO 100 I=1,NS
 100 YBAR(1:M1)=YBAR(1:M1)+Y(1,1:M1)

C SET UP AND SOLVE MATRIX
 BB1(1,1:MNE1)=0.
 DO 110 J=1,NE
 DELTA(1,1,J;MNS)=AAA(1,1,J;MNS)*Y(1,1:MNS)
 110 DO 110 I=1,NS
C (1) FREE ENERGY - GASEOUS SPECIES
 DO 170 I=1,NS
 170 YII(1,1:M1)=Y(1,1:M1)/YBAR(1,M1)
 F(1,1:MNS)=VALOG(YII(1,1:MNS):F(1,1:MNS))
APPENDIX A

DO 180 I=1,NS
180 F(I,1:M1)=Y(I,1:M1)*(FORT(I,1:M1)+F(I,1:M1))

C INITIALIZE MATRICES
 A1(I,1,1:MX)=0.
 R1(I,1,1:MX)=0.
 A1(I,1,1:MNE)=B1(I,1:MNE)
DO 270 J=1,NE
 D(I,MNS)=AAA(I,1,J:MNS)*DELTA(I,1,K:MNS)
DO 275 I=1,NS
DO 280 J=2,MMM
 K=J-1
280 A(I,1,J:MNE)=R(I,1,K:MNE)
 K=J-1
310 A(I,MMM,J:M1)=A(I,K,1:M1)
 DO 320 J=1,NE
 D(I,MNS)=AAA(I,1,J:MNS)*F(I,1:MNS)
 BUM(I:M1)=0.
 DO 330 I=1,NS
330 BUM(I:M1)=D(I,1,M1)+B1(I:M1)
 B1(I:M1)=0.
 DO 340 I=1,NS
340 B1(I:M1)=B1(I:M1)+F(I,1:M1)
 B1(I,MMM:M1)=B1(I:M1)
 CALL EQSOL(MMM,NE,M1)

C NEW MOLE FRACTIONS (X)
 XYBAR(I:M1)=B1(I,1:M1)
 B1(I,1:MNE)=B1(I,2:MNE)
 D(I,1:MNS)=0.
 DO 390 J=1,NE
 D(I,1:MNS)=D(I,1:M1)+AAA(I,1,J:M1)*B1(I,J:M1)
 DO 400 I=1,NS
400 D(I,1:M1)=D(I,1,M1)+AAA(I,1,J:M1)*B1(I,J,M1)
 CONTINUE
 DO 410 I=1,NS
410 D(I,1:M1)=D(I,1,I:M1)+XYBAR(I,M1)
 X(I,1:MNS)=D(I,1,MNS)*Y(I,1:MNS)-F(I,1:MNS)
RETURN
END

SUBROUTINE EQSOL(MMM,NE,M1)
COMMON/E7/A1(500,7,7),B1(500,7)
DIMENSION U(500,7),S(500),TK2(500),UT(500)
DO 200 K=1,NE
APPENDIX A

J=K
S(1:M1)=0.
DO 20 I=K,MMM
20 S(1:M1)=S(1:M1)+A1(I,1,I,J:1:M1)*AI(1,I,J:1:M1)
S(1:M1)=VSQRT(S(1:M1));S(1:M1)
U(1,I,K,M1)=A1(1,K,J:M1)+VSIGN(S(1:M1);AI(1,K,J:M1);UT(1:M1))
KP1=K+1
KM1=M1*(MMM-K)
U(1,K,P1,M1)=A1(1,K,P1,J:M1)
A1(1,K,J:M1)=VSIGN(S(1:M1);AI(1,K,J:M1);UT(1:M1))
TK2(1:M1)=U(1,K,M1)*S(1:M1)
TK2(1:M1)=VABS(TK2(1:M1);TK2(1:M1))
JK=K+1
DO 70 JJ=JK,MMM
70 CONTINUE
UT(1:M1)=0.
DO 50 III=K,MMM
UT(I,III:M1)=UT(I,III:M1)/TK2(1:M1)
DO 40 I=K,MMM
TK2(I:1:M1)=LJ(I,K,M1)*S(I:M1)
TK2(I:1:M1)=VABS(TK2(I:1:M1);TK2(I:1:M1))
DO 200 II=K,MMM
200 CONTINUE
BB1(I,1,I:M1)=BB1(I,1,I:M1)/A1(I,1,I:M1)
BB1(I,1,I:M1)=(BB1(I,1,I:M1)-A1(I,1,I:M1)*BB1(I,1,I:M1))/A1(I,1,I:M1)
BB1(I,1,I:M1)=(BB1(I,1,I:M1)-A1(I,1,I:M1)*BB1(I,1,I:M1)-A1(I,1,I:M1)*BB1(I,1,I:M1))
BB1(I,1,I:M1)=(BB1(I,1,I:M1)-A1(I,1,I:M1)*BB1(I,1,I:M1)-A1(I,1,I:M1)*BB1(I,1,I:M1))
BB1(I,1,I:M1)=(BB1(I,1,I:M1)-A1(I,1,I:M1)*BB1(I,1,I:M1)-A1(I,1,I:M1)*BB1(I,1,I:M1))
BB1(I,1,I:M1)=(BB1(I,1,I:M1)-A1(I,1,I:M1)*BB1(I,1,I:M1)-A1(I,1,I:M1)*BB1(I,1,I:M1))
BB1(I,1,I:M1)=(BB1(I,1,I:M1)-A1(I,1,I:M1)*BB1(I,1,I:M1)-A1(I,1,I:M1)*BB1(I,1,I:M1))
BB1(I,1,I:M1)=(BB1(I,1,I:M1)-A1(I,1,I:M1)*BB1(I,1,I:M1)-A1(I,1,I:M1)*BB1(I,1,I:M1))
BB1(I,1,I:M1)=(BB1(I,1,I:M1)-A1(I,1,I:M1)*BB1(I,1,I:M1)-A1(I,1,I:M1)*BB1(I,1,I:M1))
BB1(I,1,I:M1)=(BB1(I,1,I:M1)-A1(I,1,I:M1)*BB1(I,1,I:M1)-A1(I,1,I:M1)*BB1(I,1,I:M1))
BB1(I,1,I:M1)=(BB1(I,1,I:M1)-A1(I,1,I:M1)*BB1(I,1,I:M1)-A1(I,1,I:M1)*BB1(I,1,I:M1))
RETURN
END
SUBROUTINE TP(M1)
APPENDIX A

DIMENSION BI(500), VISI(500,24), CONDI(500,24)
COMMONEI/T(500), P(500), WMIX(500), CL(500,6), SH(500)
COMMON/E2/HI(500,24), MOLEF(500,24), CPI(500,24)
COMMONEE/MW(24), SYMB(24), AAA(24,6), MHELP(6), AAA(500,24,6)
COMMON/ES/FORT(500,24),Y(500,24), X(500,24), YBAR(500)
COMMONE8/NE, NS
COMMONE9/XMA(24), XMB(24), XMC(24), XKA(24), XKB(24)
COMMON/E12/9(A500, A10(500), A13(500), A15(500), A12(500), TVl(500),
1TV2(500)
COMMONE14/VIS(500), COND(500), SIG(500), CP(500)
COMMONE16/ENT(500,24), CPI1(500,24)
EQUIVALENCE (VISI(I,I), ENT(I,I)), (CONDI(I,I), CPI1(I,I))
HIT BI
REAL MOLEF, MW
C HERE VISI IS THE VISCOSITY OF SPECIFIC I.
DO 200 I=1, NS
VISI(1,1;MI)=(XMA(I)+XMB(I)*T(I;MI)+XMC(I)*T(I;MI)*T(I;MI))/.0672
BI(I;MI)=VISI(I;MI).LE.O.
VISI(1,1;MI)=08VCTRL(1.E-10, A1(1;MI); VISI(1,1;MI))
200 CONTINUE
C CP IS SPECIFIC HEAT OF MIXTURE.
CP(1,MI)=0.
DO 210 I=1, NS
CP(1;MI)=CP(1,MI)+CPI(1,1,M1)*MOLEF(1,1;MI)
210 CONTINUE
C HERE CONDI IS THE THERMAL CONDUCTIVITY OF SPECIFIC I.
DO 220 I=1, NS
CONDI(1,1;MI)=(XKA(I)+XKB(I)*T(I;MI))/0672
220 CONTINUE
C WILKE RELATION FOR MIXTURE VISCOSITY AND THERMAL CONDUCTIVITY.
VIS(I;I)=0.
COND(I;MI)=0.
DO 240 I=1, NS
AI3(I;MI)=0.
DO 230 J=1, NS
WJ1=MW(J)/MW(I)
DENOMI=2.82*SORT(1.+1./WJ11)
WJ1=SORT(WJ11)
WJ1=SORT(WJ1)
AI1(I;MI)=VISI(I,1;MI)/VISI(1,1;MI)
AI1(1;MI)=VSORT(AA1(I;MI); AA1(I;MI))
AI1(I;MI)=1.+AA1(I;MI)*WJ1
AI1(I;MI)=AA1(I;MI)AA1(I;MI)
AI3(I;MI)=AI3(I;MI)+MOLEF(1,1;MI)*AA1(I;MI)/DENOMI
230 CONTINUE
VIS(I;I)=MOLEF(I,1;MI)*VISI(I,1;MI)/AI3(I;MI)+VIS(I;MI)
COND(I;MI)=MOLEF(I,1,1;MI)*CONDI(I,1;MI)/AI3(I;MI)+COND(I;MI)
240 CONTINUE
C PRANDTL NUMBER
SIG(1,MI)=VISI(I;MI)*CP(1,MI)/COND(I;MI)/WMIX(I;MI)
RETURN
END
APPENDIX B

PROGRAM INPUT

The input for the present setup of the program EQUIL is given in this appendix.

```
6.THERMO
NS=24,NE=6,
MWEL(1)=5.486E-4,1.008,4.01,12.011,16.0,14.0,
MW(1)=5.486E-4,1.008,2.016,1.008,4.01,4.01,12.001,24.022,36.033,12.01,25.03,26.038,
4.01,4.01,37.041,49.04,
16.32,16.28.011,44.01,
14.28,14.30,30.30,
6.END

E= 1
0.2500000E+00 0.0.0.0.0.0., E= 2
-0.7453749E+03-0.1173402E+02 GORDON AND MCBRIDE NASA SP-273
0.2500000E+00 0.0.0.0.0.0., E= 4
-0.7453749E+03-0.1173402E+02 GORDON AND MCBRIDE NASA SP-273

0.2500000E+00 0.0.0.0.0.0., H= 2
0.2547162E+05-0.4601176E+00 GORDON AND MCBRIDE NASA SP-273
0.2500000E+00 0.0.0.0.0.0., H= 4
0.2547162E+05-0.4601176E+00 GORDON AND MCBRIDE NASA SP-273

2.475164E+00 7.366387E-05 -2.537593E-08 2.386674E-12 -4.551431E-17 H= 6
2.523626E+04-3.749137E-01 NICOLET NASA CR-132470
0.294E-05 0.089E-07 -.0811E-12 2.49E-05 5.129E-08 H= 8

H2= 2
0.3057445E+01 0.2676520E-02-0.5809916E-05 0.5521039E-08-0.1812273E-11 H2= 2
-0.9889047E+03-0.2299705E+01 GORDON AND MCBRIDE NASA SP-273
0.3100190E+01 0.5111946E-03 0.5264421E-07 -0.3490997E-10 0.3694534E-14 H2= 4
-0.8773804E+03-0.1962942E+01 GORDON AND MCBRIDE NASA SP-273
0.3363E+01 0.4656E-03 -0.5127E-07 0.2802E-11 -0.4905E-16 H2= 6
-0.1018E+04-0.3716E+01 NICOLET NASA CR-132470
-0.079E-05 0.0791E-07 -.0886E-12 3.211E-05 5.344E-08 H2= 8

H+= 1
0.2500000E+01 0.0.0.0.0., H+= 2
0.1840334E+06-0.1153862E+01 GORDON AND MCBRIDE NASA SP-273
0.2500000E+01 0.0.0.0.0., H+= 4
0.1840334E+06-0.1153862E+01 GORDON AND MCBRIDE NASA SP-273
0.2500000E+01 0.0.0.0.0., H+= 6
0.1840334E+06-0.1153862E+01 GORDON AND MCBRIDE NASA SP-273
0.0 0.050E-07 -.1000E-12 24.000E-05 0.0 H+= 8

HE= 1
0.2500000E+01 0.0.0.0.0., HE= 2
-0.7453749E+03 0.9153488E+00 GORDON AND MCBRIDE NASA SP-273
0.2500000E+01 0.0.0.0.0., HE= 4
```
APPENDIX B

<table>
<thead>
<tr>
<th>Formula</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.7453749E+03 0.9153488E+00</td>
<td>Gordon and McBride NASA SP-273</td>
<td>HF 5</td>
</tr>
<tr>
<td>0.2500000E+01 0.</td>
<td>Gordon and McBride NASA SP-273</td>
<td>HF 6</td>
</tr>
<tr>
<td>-0.7453749E+03 0.9153488E+00</td>
<td>Gordon and McBride NASA SP-273</td>
<td>HF 7</td>
</tr>
<tr>
<td>-1.3451E-06 2.311191E-08 -4.73599AF-13 2.039AF-05 3.2493E-09</td>
<td>Gordon and McBride NASA SP-273</td>
<td>HF 8</td>
</tr>
<tr>
<td>HE+ -1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2500000E+01 0.</td>
<td>Gordon and McBride NASA SP-273</td>
<td>HF+ 2</td>
</tr>
<tr>
<td>0.2853426E+06 0.1608404E+01</td>
<td>Gordon and McBride NASA SP-273</td>
<td>HF+ 3</td>
</tr>
<tr>
<td>0.2500000E+01 0.</td>
<td>Gordon and McBride NASA SP-273</td>
<td>HF+ 4</td>
</tr>
<tr>
<td>0.2853426E+06 0.1608404E+01</td>
<td>Gordon and McBride NASA SP-273</td>
<td>HF+ 5</td>
</tr>
<tr>
<td>0.2500000E+01 0.</td>
<td>Gordon and McBride NASA SP-273</td>
<td>HF+ 6</td>
</tr>
<tr>
<td>0.2853426E+06 0.1608404E+01</td>
<td>Gordon and McBride NASA SP-273</td>
<td>HF+ 7</td>
</tr>
<tr>
<td>0.0 0.0500E-07 -1.0000E-05 26.0000E-05 0.0</td>
<td>Gordon and McBride NASA SP-273</td>
<td>HF+ 8</td>
</tr>
<tr>
<td>C 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2532870E+01 -0.1588764E-03 0.3068200E-06 0.2677006E-09 0.7488A2E-13</td>
<td>C 2</td>
<td></td>
</tr>
<tr>
<td>0.8524040E+05 0.4606237E+01</td>
<td>Gordon and McBride NASA SP-273</td>
<td>C 3</td>
</tr>
<tr>
<td>0.2581066E+01 -0.1469620E-03 0.7438800E-07 0.7941017E-11 0.5800097E-16</td>
<td>C 4</td>
<td></td>
</tr>
<tr>
<td>0.8521629E+05 0.4312888E+01</td>
<td>Gordon and McBride NASA SP-273</td>
<td>C 5</td>
</tr>
<tr>
<td>0.5214E+01 0.3219E-03 -0.549AF-07 0.3604E-11 -0.5564E-16</td>
<td>C 6</td>
<td></td>
</tr>
<tr>
<td>0.8542E+05 0.6874E+01</td>
<td>Esch et al. NASA CR-111989</td>
<td>C 7</td>
</tr>
<tr>
<td>1.997E+05 1.772E+07 -3.378E-12 2.506E-05 3.749E-08</td>
<td>Esch et al. NASA CR-111989</td>
<td>C 8</td>
</tr>
<tr>
<td>C2 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7451814E+01 -0.1014468E-01 0.8587937E-05 0.8732110E-09 0.2442979E-11</td>
<td>C2 2</td>
<td></td>
</tr>
<tr>
<td>0.9891198E+05 -0.1584687E+02</td>
<td>Gordon and McBride NASA SP-273</td>
<td>C2 3</td>
</tr>
<tr>
<td>0.4045355E+01 0.2057365E-03 0.1090575E-06 0.3642787E-10 0.3412786E-14</td>
<td>C2 4</td>
<td></td>
</tr>
<tr>
<td>0.9970947E+05 0.1277715E+01</td>
<td>Gordon and McBride NASA SP-273</td>
<td>C2 5</td>
</tr>
<tr>
<td>0.4026E+01 0.4857E-03 -0.7026E-07 0.4066E-11 -0.1142E-15</td>
<td>C2 6</td>
<td></td>
</tr>
<tr>
<td>0.9787E+05 0.1090E+01</td>
<td>Esch et al. NASA CR-111989</td>
<td>C2 7</td>
</tr>
<tr>
<td>1.931E-05 1.1772E-07 -2.2575E-12 2.59E-05 2.423E-08</td>
<td>Esch et al. NASA CR-111989</td>
<td>C2 8</td>
</tr>
<tr>
<td>C3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5740846E+01 -0.8428123E-02 0.1862019E-04 -0.2151052E-07 0.3967697E-11</td>
<td>C3 2</td>
<td></td>
</tr>
<tr>
<td>0.9715752E+05 -0.2383737E+01</td>
<td>Gordon and McBride NASA SP-273</td>
<td>C3 3</td>
</tr>
<tr>
<td>0.3681536E+01 0.2416523E-02 -0.843481E-06 0.1450819E-09 0.9569730E-14</td>
<td>C3 4</td>
<td></td>
</tr>
<tr>
<td>0.9713955E+05 0.1481178E+01</td>
<td>Gordon and McBride NASA SP-273</td>
<td>C3 5</td>
</tr>
<tr>
<td>0.2213E+02 -0.1759E-01 0.5565E-05 -0.675AF-09 0.2825E-13</td>
<td>C3 6</td>
<td></td>
</tr>
<tr>
<td>0.9423E+05 -0.1021E+03</td>
<td>Esch et al. NASA CR-111989</td>
<td>C3 7</td>
</tr>
<tr>
<td>2.019E-05 1.1797E+07 -1.1655E-12 3.630E-05 5.804E-09</td>
<td>Esch et al. NASA CR-111989</td>
<td>C3 8</td>
</tr>
<tr>
<td>C+ -1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2595384E+01 -0.4068664E-03 0.6892366E-06 -0.5264487E-09 0.1508337E-12</td>
<td>C+ 2</td>
<td></td>
</tr>
<tr>
<td>0.2166628E+06 0.3895729E+01</td>
<td>Gordon and McBride NASA SP-273</td>
<td>C+ 3</td>
</tr>
<tr>
<td>0.2511827E+01 -0.1735978E-04 0.9504267E-08 -0.221851E-11 0.1862198E-15</td>
<td>C+ 4</td>
<td></td>
</tr>
<tr>
<td>0.2166772E+06 0.4286129E+01</td>
<td>Gordon and McBride NASA SP-273</td>
<td>C+ 5</td>
</tr>
<tr>
<td>0.2528E+01 0.4869E-05 -0.7026E-08 0.1134E-11 -0.3476E-16</td>
<td>C+ 6</td>
<td></td>
</tr>
<tr>
<td>0.2168E+06 0.4139E+01</td>
<td>Esch et al. NASA CR-111989</td>
<td>C+ 7</td>
</tr>
<tr>
<td>0.0 0.5000E-07 -1.0000E-12 26.0000E-05 0.0</td>
<td>Esch et al. NASA CR-111989</td>
<td>C+ 8</td>
</tr>
<tr>
<td>C2H 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2649940E+01 0.8491951E-02 -0.9816537E-05 0.6537362E-08 -0.1735627E-11</td>
<td>C2H 2</td>
<td>2</td>
</tr>
</tbody>
</table>
REFERENCES

TABLE I. - NAMELIST THERMO

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS</td>
<td>Number of species present in the mixture; NS = 24</td>
</tr>
<tr>
<td>NE</td>
<td>Number of elements present in the mixture, including electrons; NE = 6</td>
</tr>
<tr>
<td>MWEL</td>
<td>An array of molecular weights of the elements present</td>
</tr>
<tr>
<td>MW</td>
<td>An array of molecular weights of the species present</td>
</tr>
</tbody>
</table>
TABLE II.- ELEMENTAL PARTICLES TABLE

<table>
<thead>
<tr>
<th>Species (i)</th>
<th>e^-</th>
<th>H</th>
<th>He</th>
<th>C</th>
<th>O</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>e^-</td>
<td>1.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
</tr>
<tr>
<td>H</td>
<td>0.</td>
<td>1.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
</tr>
<tr>
<td>H_2</td>
<td>0.</td>
<td>2.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
</tr>
<tr>
<td>H^+</td>
<td>-1.</td>
<td>1.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
</tr>
<tr>
<td>He</td>
<td>0.</td>
<td>0.</td>
<td>1.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
</tr>
<tr>
<td>He^+</td>
<td>-1.</td>
<td>0.</td>
<td>1.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
</tr>
<tr>
<td>C</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>1.</td>
<td>0.</td>
<td>0.</td>
</tr>
<tr>
<td>C_2</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>2.</td>
<td>0.</td>
<td>0.</td>
</tr>
<tr>
<td>C_3</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>3.</td>
<td>0.</td>
<td>0.</td>
</tr>
<tr>
<td>C^+</td>
<td>-1.</td>
<td>0.</td>
<td>0.</td>
<td>1.</td>
<td>0.</td>
<td>0.</td>
</tr>
<tr>
<td>C_2H</td>
<td>0.</td>
<td>1.</td>
<td>0.</td>
<td>2.</td>
<td>0.</td>
<td>0.</td>
</tr>
<tr>
<td>C_2H_2</td>
<td>0.</td>
<td>2.</td>
<td>0.</td>
<td>2.</td>
<td>0.</td>
<td>0.</td>
</tr>
<tr>
<td>C_3H</td>
<td>0.</td>
<td>1.</td>
<td>0.</td>
<td>3.</td>
<td>0.</td>
<td>0.</td>
</tr>
<tr>
<td>C_4H</td>
<td>0.</td>
<td>1.</td>
<td>0.</td>
<td>4.</td>
<td>0.</td>
<td>0.</td>
</tr>
<tr>
<td>O</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>1.</td>
<td>0.</td>
<td>0.</td>
</tr>
<tr>
<td>O_2</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>2.</td>
<td>0.</td>
<td>0.</td>
</tr>
<tr>
<td>O^+</td>
<td>-1.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>1.</td>
<td>0.</td>
</tr>
<tr>
<td>CO</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>1.</td>
<td>1.</td>
<td>0.</td>
</tr>
<tr>
<td>CO_2</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>1.</td>
<td>2.</td>
<td>0.</td>
</tr>
<tr>
<td>N</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>1.</td>
</tr>
<tr>
<td>N_2</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>2.</td>
</tr>
<tr>
<td>N^+</td>
<td>-1.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>1.</td>
</tr>
<tr>
<td>NO</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>1.</td>
<td>1.</td>
</tr>
<tr>
<td>NO^+</td>
<td>-1.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>1.</td>
<td>1.</td>
</tr>
</tbody>
</table>
TABLE III - RESULTS FOR FIRST EXAMPLE

<table>
<thead>
<tr>
<th>Species (i)</th>
<th>Mole fractions for mesh point (i)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>e^-</td>
<td>1.0356E-10</td>
</tr>
<tr>
<td>H</td>
<td>4.1791E+00</td>
</tr>
<tr>
<td>H₂</td>
<td>4.4188E+00</td>
</tr>
<tr>
<td>H⁺</td>
<td>1.0030E-06</td>
</tr>
<tr>
<td>He</td>
<td>8.1824E-01</td>
</tr>
<tr>
<td>He⁺</td>
<td>1.1205E-20</td>
</tr>
<tr>
<td>C</td>
<td>2.3667E-02</td>
</tr>
<tr>
<td>C₂</td>
<td>7.1464E-03</td>
</tr>
<tr>
<td>C₃</td>
<td>9.4738E-03</td>
</tr>
<tr>
<td>C⁺</td>
<td>6.5849E-06</td>
</tr>
<tr>
<td>C₂H</td>
<td>2.5102E-01</td>
</tr>
<tr>
<td>C₂H₂</td>
<td>1.4824E-01</td>
</tr>
<tr>
<td>C₃H</td>
<td>6.8313E-02</td>
</tr>
<tr>
<td>C₄H</td>
<td>2.6219E-02</td>
</tr>
<tr>
<td>O</td>
<td>4.7058E-07</td>
</tr>
<tr>
<td>O₂</td>
<td>6.7916E-15</td>
</tr>
<tr>
<td>O⁺</td>
<td>9.7430E-14</td>
</tr>
<tr>
<td>CO</td>
<td>4.9752E-02</td>
</tr>
<tr>
<td>CO₂</td>
<td>2.0416E-09</td>
</tr>
<tr>
<td>N</td>
<td>1.0220E-05</td>
</tr>
<tr>
<td>N₂</td>
<td>2.1336E-05</td>
</tr>
<tr>
<td>N⁺</td>
<td>7.2752E-13</td>
</tr>
<tr>
<td>NO</td>
<td>2.6104E-10</td>
</tr>
<tr>
<td>NO⁺</td>
<td>8.9366E-12</td>
</tr>
</tbody>
</table>
TABLE III.- Concluded

<table>
<thead>
<tr>
<th>Thermodynamic and transport quantities for the mixture</th>
<th>Mesh point 1</th>
<th>Mesh point 101</th>
<th>Mesh point 201</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enthalpy, J/kg</td>
<td>.68375E+08</td>
<td>.17007E+09</td>
<td>.28681E+09</td>
</tr>
<tr>
<td>Specific heat, J/kg-K</td>
<td>.97937E+04</td>
<td>.10073E+05</td>
<td>.12513E+05</td>
</tr>
<tr>
<td>Viscosity, N-sec/m²</td>
<td>.67567E-04</td>
<td>.11113E-03</td>
<td>.17887E-03</td>
</tr>
<tr>
<td>Conductivity, W/m-K</td>
<td>.13222E+01</td>
<td>.18599E+01</td>
<td>.34679E+01</td>
</tr>
<tr>
<td>Prandtl number</td>
<td>.50052E+00</td>
<td>.60192E+00</td>
<td>.64548E+00</td>
</tr>
<tr>
<td>Mixture molecular weight</td>
<td>.32553E+01</td>
<td>.21118E+01</td>
<td>.19523E+01</td>
</tr>
<tr>
<td>Species (i)</td>
<td>Mole fractions for mesh point -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>101</td>
<td>201</td>
</tr>
<tr>
<td>e^-</td>
<td>.51200E-03</td>
<td>.17932E-03</td>
<td>.76507E-06</td>
</tr>
<tr>
<td>H</td>
<td>.10608E-03</td>
<td>.12973E-03</td>
<td>.14546E-03</td>
</tr>
<tr>
<td>H2</td>
<td>.63731E-10</td>
<td>.31662E-10</td>
<td>.78930E-08</td>
</tr>
<tr>
<td>H+</td>
<td>.52121E-08</td>
<td>.16868E-08</td>
<td>.97069E-10</td>
</tr>
<tr>
<td>He</td>
<td>.24459E-04</td>
<td>.29650E-04</td>
<td>.33909E-04</td>
</tr>
<tr>
<td>He+</td>
<td>.30139E-14</td>
<td>.10362E-20</td>
<td>.12286E-23</td>
</tr>
<tr>
<td>C</td>
<td>.22278E-04</td>
<td>.54805E-06</td>
<td>.22217E-10</td>
</tr>
<tr>
<td>C2</td>
<td>.25186E-11</td>
<td>.17195E-12</td>
<td>.33864E-19</td>
</tr>
<tr>
<td>C3</td>
<td>.64357E-23</td>
<td>.51556E-21</td>
<td>.13274E-25</td>
</tr>
<tr>
<td>C+</td>
<td>.36922E-06</td>
<td>.19954E-08</td>
<td>.25887E-13</td>
</tr>
<tr>
<td>C2H</td>
<td>.31134E-18</td>
<td>.16576E-22</td>
<td>.74580E-23</td>
</tr>
<tr>
<td>C2H2</td>
<td>.18587E-27</td>
<td>.11607E-24</td>
<td>.57230E-25</td>
</tr>
<tr>
<td>C3H</td>
<td>.33961E-23</td>
<td>.38821E-25</td>
<td>.50137E-29</td>
</tr>
<tr>
<td>C4H</td>
<td>.21375E-30</td>
<td>.37541E-32</td>
<td>.20308E-40</td>
</tr>
<tr>
<td>O</td>
<td>.26123E+00</td>
<td>.31168E+00</td>
<td>.25236E+00</td>
</tr>
<tr>
<td>O2</td>
<td>.33795E-04</td>
<td>.24698E-03</td>
<td>.34585E-01</td>
</tr>
<tr>
<td>O+</td>
<td>.53787E-04</td>
<td>.36374E-05</td>
<td>.49716E-09</td>
</tr>
<tr>
<td>CO</td>
<td>.25821E-04</td>
<td>.61045E-04</td>
<td>.61969E-04</td>
</tr>
<tr>
<td>CO2</td>
<td>.81239E-09</td>
<td>.10493E-07</td>
<td>.89826E-06</td>
</tr>
<tr>
<td>N</td>
<td>.47790E+00</td>
<td>.16095E+00</td>
<td>.13023E+02</td>
</tr>
<tr>
<td>N2</td>
<td>.25688E+00</td>
<td>.51837E+00</td>
<td>.66646E+00</td>
</tr>
<tr>
<td>N+</td>
<td>.12045E-03</td>
<td>.16831E-05</td>
<td>.11455E-09</td>
</tr>
<tr>
<td>NO</td>
<td>.27366E-02</td>
<td>.81706E-02</td>
<td>.45044E-01</td>
</tr>
<tr>
<td>NO+</td>
<td>.34498E-03</td>
<td>.18364E-03</td>
<td>.12500E-04</td>
</tr>
</tbody>
</table>
TABLE IV.- Concluded

<table>
<thead>
<tr>
<th>Thermodynamic and transport quantities for the mixture</th>
<th>Mesh point 1</th>
<th>Mesh point 101</th>
<th>Mesh point 201</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enthalpy, J/kg</td>
<td>.25612E+08</td>
<td>.14583E+08</td>
<td>.73277E+07</td>
</tr>
<tr>
<td>Specific heat, J/kg-K</td>
<td>.15926E+04</td>
<td>.13997E+04</td>
<td>.13339E+04</td>
</tr>
<tr>
<td>Viscosity, N-sec/m²</td>
<td>.19216E-03</td>
<td>.15987E-03</td>
<td>.11002E-03</td>
</tr>
<tr>
<td>Conductivity, W/m-K</td>
<td>.39288E+00</td>
<td>.31231E+00</td>
<td>.21043E+00</td>
</tr>
<tr>
<td>Prandtl number</td>
<td>.77901E+00</td>
<td>.71658E+00</td>
<td>.69747E+00</td>
</tr>
<tr>
<td>Mixture molecular weight</td>
<td>.18160E+02</td>
<td>.22015E+02</td>
<td>.25177E+02</td>
</tr>
</tbody>
</table>
A vectorized code, EQUIL, is developed for calculating the equilibrium chemistry of a reacting gas mixture on the Control Data STAR-100 computer. The code provides species mole fractions, mass fractions, and thermodynamic and transport properties of the mixture for given temperature, pressure, and elemental mass fractions. The code is set up for the e\(^{-}\), H, He, C, O, N system of elements. In all, 24 chemical species are included.