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ABSTRACT

The multi-level (multi-grid) adaptive technique is a gen-
eral s-rategy of solving continuous problems by cycling-
between coarser and finer levels of discretization. It pro-
vides very fast general solvers, together with adaptive,
nearly optimal discretization schemes. In the process,
boundary layers are automatically either resolved or skipped,
depending on a control function which expresses the computa-
tionzl goal. The global error decreases exponentially as a
function of the overall computational work, in a uniform rate
independent of the magnitude (&) of the singular-perturbation
terms. The key are high-order uniformly stable difference

equations, and uniformly smoothing relaxation schemes.

1. INTRODUCTION

The Multi-Level Adaptive Technigue (MLAT) is a general
numerical strategy for solving continuous problems such as

differential and integral equations and functional minimiza-
tion problems. It will be discussed here mainly in terms of the

numéricalsoluiionof partial differential boundary-value prob-

lems, with special emphasis on singular-perturbation preblems.

The work reported here was perform:d under NASA Contract No.
NAS1-14101 while the author was in resi eunce at ICASE, NAS4
Langley Research Center, Hampton, VA 5665.
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The usual approach is first to discretize the boundary-
value problem in some preassigned manner (e.g., finite-ele-
ment or finite-difference equations on a fixed'grid), and then
to submit the 1esulting discrete system to some numerical
solution process. In MLAT, however, discretization and solu-
tion processes are intermixed with, and greatly benefit from,
each other. A sequence of uniform grids (or "levels"), with
geometrically decreasing mesh-sizes, participates in the pro-
cess, The ccoperative solution process on these grids in-
volves relaxation sweeps ovér each of them, coarse-grid-to-
fine-grid interpolations of corrections and fine-to-coarse
transfers of residuals. This process has two important basic
benefits. On one hand it acts as a very fast general solver
of the discrete system of equations (including the equations
on the finest grid). On the other hand it provides, in a
natural way, a flexible, adaptive discretization. For

convenience, we discuss these aspects one by one.

21.1. The Fast Solver -

In Section 2 of this paper we portraié the multi-level
process as a fast solver, i.e., regarding the coarser grids
as nothing but auxiliaries for solving the finest-grid equa-
tions. The description has appeared before (Brandt (1972),
(1977a), (1977b)), but here we add more detailed examples of
the solution process (Sec. 2.2), and emphasize some new
important aspects. In particular, the "fine-to-coarse cor-
rection function" (or the "local relative truncation error")
tg is discussed, together with some of its usages.

One usage, developed in collaboration with N. Dinar, is
the so called t-extrapolation. It amounts to a trivial

additional operation in the multi-grid program, and costs
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negligible amount of extra computing time. But, as shown in
Sec. 2.3, it improves the solution, scmetimes by very much.
With it, at a total computational cost of 4 to 7 work-
units (a2 unit being the work equivalent of one Gauss-Seidel
relaxation sweep over the finest grid), a solution uh is
always obtained which is better (i.e., & closer approximation
to the true differential solution U) than the exact solu-
tion Uh of the difference equations. Furthermore, in case
some extra smoothness is present, uh will be some orders-
of -magnitude better than Uh; or, alternatively, it may be
obtained at a much smaller computational cost.

As other usages of the fine-to-coarse correction functionm
T: we list, in Section 2.4, some very efficient methods for
making nonlinear continuation (e.g., for bifurcation
problems), methods for optimal-control problems, ill-posed
boundary-value problems and parabolzc time~dependent problems,
as well as fast solution methods that can operate with a
limited computer storage. Also mentioned in Section 2.4 are

new numerical experiments, made in collaboration with

‘N. Dinar, for the steady—state zncompre551b1e Nav1er-5tokes

eguations, including the singular-perturbation case of large
Reynolds numbers. These, and many other >xperimentuy

briefly referred to, clearly indicate that the above-men-
tioned multi-grid efficiency (solution in just few work-
ﬁhiﬁs) is obtained fof geﬁeral elliptic and non-elliptic
systems on general domains.

The fast-solver aspect of the multi-level techniques was

§tudied by various other workers, starting, perhaps, with

the "group relaxation" of Southwell (1935). See references
in Brandt (1977a), and more recent references in Nicolaides
(1978) and Hackbusch (1978b). Most of this work is very

‘theoretical. That is, rigorous asymptotic bounds are _



‘derived for the multi-grid efficiency. The price of

rigorosity, of course, is that the results are far from
realistic: The proofs hold only for extremaly small mesh
sizes, and, even for those, the work estimates are orders-
of-magnitude too large. (Cf. Section 10 of Brandt (1977a).)
The rigorous estimates are too crude, in fact, to yield any
useful information; e.g., they cannot resolve the difference
between more efficient and less efficient multi-grid

processes. For singular-perturbation problems, especially,

.the tigorous proofs hold only for mesh-sizes which are

microscopic compared with the practical ones. For this
reason, and since the quantity we try to estimate here is
aotually nothing but the computer-time, which of course we
know anyway (at least aposteriori), a different tyre of
theoretical studies are preferred by the present author.
Briefly, discarding rigorosity, it is observed that the

important multi—grid processes are of 1oca1 nature, since

long-range cor.vergence is obtained by coarse-grid processes,

‘which cest very little. One can therefore analyze the

_erucial aspects of multi-grid processes by employing a local
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mode (Fourier; analysis, ignoring for instance far bound—

-aries and changes in the (possibly nonlinear) equationms.

Experiments with various types of equations (see Dinar
(1978) and also Poling (1978)) shows that this analysis
(which is much simpler than the rlgorous theorems) precisely

_predicts the multi-grid efficiency. It is therefore very
‘useful in selecting efficient algorithms (see, e.g.,
Appendix A in Brandt (i977a)), in understanding the numeri-

cal results, and in debugging multi~grid programs. It led,
in fact, to the efficient algorithms mentioned above, which

"solve, for examplé, Navier-Stokes equations in about 7 work-
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units. Its mechanized use if mentioned in Section 2.4 and,
for singular-perturbation problems; in Section 6.

About the difficulties in implementing multi-grid proce~-
dures, and what to do about them, some general comments are
made toward the end of Section 2.4.

1.2. Non-Uniform, Adaptible Structures

Section 3 of this paper (following and adding to Sections
2 and 3 in Brandt (1977b)) discusses the special capability
of the multi-level structure to create non-uniform, flexible
discretization patterns, especially such patterns as required
hy‘singular-perturbation problems, where thin layers should
sometimes be resolved, either near or away from boundaries.
This - capabllity is obtained by observing that the various
grids (levels) need not all extend over the same domain.
Finer levels may be confined to ihcreasingly smaller sub-
domains, so as to provide higher resolution only where
desired. Moreover, we may attach to each of these localized
finer grids its own local system of coordinates, to fit curve

boundaries or to approximate directions of interior inter-

~faces and thin layers. Unlike global coordinate transformation,

these local coordinates do not complicate the difference
equations throughout the domain (hence do not turn the one-
dimensional trouble of boundary approximations into a two-
dimensional trouble of complicated equations). All these
patches of local grids interact with each other through the
multi-grid process, which, at the same time, provides fast solu-
tions to their difference equations (an important advantage
over other methods of patching grids or using transformations).
This structure, in which non-uniform discretization is
produced through the sequence o£ uniform grids, is highly

flexible. Discretization parameters, such as (finest)




- mesh-sizes and approximation orders, can be locally adjusted
in any desired pattern, expending negligible amounts of
book-keeping work and storage. .

In particular, since in this structure only équidistance
differcncing is needed (much less expensive than differenc-
ing on variable grids), it becomes feasible to employ high-
order difference approximations, even in singular-perturba-
tion cases (see Section 5).

The discretization can thus be progressively tvefined and
adapted. The actual adaptive solution process is governed
by certain criteria, described in Section 3.6. Derived from
optimization considerations, these are local criteria which
automatically decide where and how to change the local dis-
cretization parameters. Furthermore, these criteria are con-
trolled by the user through a certain function G (the.ertor-
weighting function), which, in effect, expresses the purpose
of the numerical calculations, i.e., the sense (or the error
norm) in which approximations to the true solution are to be
measured. The resulting discretization will bte of high order
wherever the evolving solution is suitably smooth. Singu-
larities of all kinds will automatically be detected and
treated, usually by introducing increasingly finer levels omn

increasingly smaller neighborhoods of the singularity.

1.3. MLAT Solutions to Singular Perturbation Problems

The discretization patterns produced by this general
adaptive process for singularly-perturbation cases are
studied in Section 4. It turns out that boundary layers
are scmetimes resolved by the adaptive process, and in other
cases they are completely '"skipped", depending on the choice
of the control function G. The decision whether and how

to resolve the layer is automatically taken by the adaptive
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process itself. In any case, the convergence rate in the
suitable sense (i.e., in the error norm corresponding to G)
is always fast. |

Rates of convergence of adaptive processes are measured
by the rate of decrease of the error E = ||u - UII as a
function of the computational work W, where u = u(W)
is theevolving numerical solution, U is the true differ-
ential solution, and ”-]I is the appropriate error norm.
Since the grid is'no: uniform, nor does it have any fixed

number of grid-points, the work-unit in this context must

be different from the one mentioned above (which was defined
in terms of the finest grid). It can be defined, for
instance, as the work of applying the lowest-order differ-
ence equations at one grid-point. Thus, for example, in
the conventional case, where regular grids are applied for
solving & d-dimensional regular differential problem,
employing O(hp) difference approximations, if a fast
solver (e.g., a multi-grid algorithm) is used which solves
the algebraic equations in O(h-d) arithmetic operations,
then the rate of convergence can be expressed as
E :_C(p)wrp/d. The constant C dependé not only ;n‘—;-mg;;m——\ o
also on the solution U.

We show that, usirgy adiaptive discretization, the same.

p/d) is obtained uni-

p-order convergence rate E = O(W—
formly in the size (g) of the singular perturbation; that

is, C(p) does not depend on €. Moreover, if the order-

of-approximation p is adaptible too, the rate of conver-
gence 1is uniformly exponential. More precisely, for cases
requiring boundary-layer resolution it is shown that

E= cwpcxp(—cwu), with a¢ and ¢ independent of €. We
assume, of course, that the convergence rate for the reduced

problen would not be slower. In cases the boundary-layer is
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skipped, the rate depends solely on the rate of the reduced
problem. We also show that for this type of results it is
not necessary to adapt p 1locally; p hay be an adapeible
constant.

These convergence rates are uniform; they are obtained
for any ¢, small, moderate or large. Nothing actually
should be known in advance about the value of €. It is
not even required at all to know that this is a singulﬁt-
perturbation problem. Most other solution methods, by
contrast, solve either the regular case (e = 0(1l)) or the
asymptotic case (¢ very small), but not the whole range.
(Quite often, intermediate values of ¢ are the wost
difficult to solve). Here, no special analyses are required,
no need to separate the reduced problem from the singular-
perturbation, and, in particular, no need to coﬁpute the
proper reduced boundary conditioms. No matching procedures
are employed. The method works similarly for interior
singular layers, e.g., for ODE problems with turning points,
even when (as in nonlinear problems) the location of the
singularity is not known in advance.

Although no apriori knowlaedge is needed about>£ﬁé-éi;;"—--__
of the singular-perturbation, some rules should be kept in
dealing with potentially singularly-perturbed problems. As
is well known, difference schemes should be cgnstructed
wvhich are uniformly stable. This aspect is discussed in
Section 5, including the construction of high-order uni-
formly-stable difference operators. Similarly, in the multi-
grid processing of potentially singular problems, relaxation
schemes with uniform smoothing rates should be employed.

Such schemes are described in Section 6.

Remark. Sections 5 and 6 are abbreviated here. For

their full text, see Brandt (1978b). It will include



further discussion of ellipticity and uniform well-posedness
of finite~-difference systems, as well as remarks on the

unifornly well-posed épproximation of singular-perturbation

problems with highly-oscillating solutions.
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Uniformly stable, high-order discretizations
5.1. General remarks
$.2. Examples

Relaxatiors with uniform smoothing rates

2. MULTI-GRID FAST SOLVERS

To understand the basic numerical processes of MLAT,
consider first the usual situation where a partial differ-
ential problem

LU(x) = F(x), for x = (xl.....xd) in a domain (2.1a)

acxr,
AU(x) = ¢{x), for x on the boundary of 0 . (2.1b)
is discretized in a preassigned manner on a given uniform
h .

grid G, with mesh-gize h, yielding the finite~differ-

ence equations

G = e, e ™ . (2.2)
Here U = (UI’UZ""'Uq) and its discrete approximation
Uh are q-dimensional vectors of unknown functions, L and
A are linear or nonlinear differential operators and
LhUh(xh) is, correspondingly, a linear or nonlinear expres-~
sion involving values of Uh at xh and at neighboring
grid points. At various instances of the solution procéss,
we have on Gh an approximation to Uh, which we will
generalliy denote by uh.

In this section multi-level techniques for the fast solu-
tion of (2.2), with coarser grids serving as auxiliaries,
will be described. In this context the term multi-grid,
rather than multi-level, can be used. The difference

between "grid" and "level" arises only in the more general

situation (see Section 3 below).




2.1. Basic Multi-Grid Processcs

To obtain a fast solution to equation '(2.2) via the multi-

grid ne:ﬁod. we add to Ch

a sequence of coarser uniiorm
grids. Let Cﬁ be such a2 coarser grid; e.g., let the grid-
lines of GH be every other grid-line of ch. so that its
meshsize i, H = 2h,

One way of inexpensively obtaining an spproximate solu-
tion uh to (2.2) is first to 6btain an (approximate) solu-~

tion uH to the corresponding coarser problem

ety « el <F ey, ' (2.3)
(which is ouch less expensive to solve since it contains far

fewer unknowns) and then to inrerpolate uu to the fine

grid:
The ;ymbol IH stands for the operation of interpolating

from GH to hch. Polynomial interpolations of any order

can be used. (The optimal order is discussed in Section A.2
of Brandt (1977a). Generally, if mj is the highest order
of derivatives of Uj in L and p 4s the order of
approximation, then an interpolation of order at least

mj +p (di.e., polyno:ials of degree at least mj +p-1)
should be used for uj to ensure full multi-grid efficienry.
In some particular sitvations, even grester efficiency can
be achieved by still higher interpolation; see fontnotes 1
and 5 below.)

How good the approximation (2.4) is depends on the smooth-
ness of the solution Uh. In some cases Uh is so smooth
that, if the interpolation Ia and the coarse grid operator
LH are of order.high enough to exploit that smoothness,

then uh obtained by (2.4) satiafies
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"~ oll < o™ v, (2.5)
in some suitable norm. This means that W solves (2.2)
"to the level of the truncation error", which is all we can
meaningfully require in solving (2.2). 1In such cases, how-
ever, the fine grid Gh is not really needed: the coarser
grid CH already yieclds a solution with the required
accuracy. If Gh i{s at 3l] needed. our first approximation
(2.4) will require a considerable improvement.

Can we compute a correction to uh again by some inter-
polation from the coarse grid GH? Namely, can we somehow
approximate the error Vh = Uh - uh by sowme VH computed

1), the answer is no. 1If uH in (2.4) is

on CH? Normally
& good enough approximation to UH. then Vh will be a
rapidly oscillating function that cannot meaningfully be
described on the coarse grid GH. Therefore, before we can
reuse coarse grids, the eiror Vh should be smoothed sut.

An efficier: smoothing is obtained by relaxation sweeps.
A standard example is the Gauss-Seidel relaxation sweep.
This is a process in which all points xh of Gh are
scanned one by one in some prescribed order. At eazh point
the old value uh(xh) is replaced by a new value, which is
computed so that (2.2) is satisfied at that particular point
xh (or nearly satisfied, in case (2.2) is nonlinear at that
point; one Newton step of changing uh(x) is enough).
Having completed such a sweep, the system (2.2) is not yet
solved, because its equations are coupled to each other; but
the new approximation uh is hopefully "better" than the
cld one. .

In fact, 2 well known, and extensively used, method for
solving (2.2) is by a long scquence of relaxation sweeps.
When the system (2.2) is linear, convergence of uh to Uh

is odbtained by a scquence of relaxation sweeps if and only

-12-
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if the system is definite. But the rate of couveréence is
very slow. Typically, if m is the order of L and Ni
is the number of grid intervals in the xi direction, then
the number of sweeps required for convergence is proportional
to (min[Nl,...,Nd])m.

A closer examination, e.g., by Fourier analysis, of the
error Vh, shows that the components slow to converge are
those whose wavelength is large compared with the mesh-size
of h. The high~frequency components, however, converge
very fast; they practically disappear after a few sweeps.

For example, in Gauss-Seidel relaxation for.the 5-point

Laplace operator

LhUh(x,y) z AhUh(x,y) = -];2- {Uh(x+h,y) + Uh(x—h,y)
h

+ W (x,y+h) + UG,y -h) - 400Gy ), (2.6)
the convergence factor of the Fourier component
exp[i(elx + ezy)/h] (i.e., the factor by which the magni-
tude of its amplitude in the .error expansion is reduced by

one sweep) is

] \ =
L(Sl,ez, . (2.7)

For the longest components ej = O(Ngl), and hence
p=1- O(N;:2 + N;z). But for high-frequency components,
say with max[ejl.i'%, we have u < .5, so that in three
relaxation sweeps these components are reduced by almost an
order of magnitude.
This means that relaxation sweeps, inefficient as they

are in solving problems, are very efficient in smoothing out
the error Vh. This property, which is extensively used in

multi-level algorithms, is very general. It holds for

-13~




CGauss-Seidel relaxation of. any uniformly elliptic scalar

(@ = 1)  difference operator, whether linear or nonlinear.
For elliétic systems (q > 1), efficient smoothing is
obtained by suitable variants of the Gauss-Seidel relaxa-~
tion. Even degenerate and singularly-perturbed elliptic
operators are smoothed out with similar efficiency, provided
more sophisticated variants are used, such as line relaxa-
tions in suitable directions, or "distributed" Causs-Seidel
relaxations. Moreover, some of these variants are very

efficient even for non-elliptic systems. (See Section 3 in

‘Brandt (1976), Section 3 in Brandt (1977a), Lectures 5, 6

and 7 in Brandt (1978a2) and Section 6 below.} It is also
impbrtant to note that fortunately the swmoothing efficiency
does not depend on some sensitive relaxation parameters..
Such purameters are sometimes needed ‘(e.g., a relaxation
factor is required in simultaneous-displacement relaxation
écheﬁes, wvhich are used in conjunction with vector or
.parallel processing); but since smoothing is a local process,
the optimal values of the parameters depend on the local
Eoperator only, and can easily be calculated by local Fourier
';ﬁéifsis. Large deviations from the 6ptﬁmal valués haveA
?only mild effect. )

: Thus, after a couple of relaxation sweeps, the error Vh
Eis smooth, and a good approximation to it can inexpensively
;gé couputed on the coarser grid GH. To see how this is
?done in the general nonlinear case, observe that on Gh the

iequation satisfied by vP is the "residual eguation" .

}
LG = eM, 0 elted, - 289
:uherelo) ‘
!
ihh 2 Pl + VM) - P, © (2.8b)
rh.E Fh - Lhuh . y (2;8:) N
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In the Linear case Lh = Lh, and on first reading one may

like to keep this case in mind. (2.8) is of course fully
equivalent to (2.2), but we are interested in this form

berause Vh, not Uh. is the smooth function which we like

to approximate on the coarser grid GH. rh is the

"residual function", and, like Vh, it is smoothed-out by

relaxation. The approximation to (2.8) on the coarse grid is

L + ™ - ol = B,
<tedth (2.9)
where VH is designed to be the coarse-grid approximation to
Vh, and Ig and f: are interpolation operators (not nec-

h h

essarily the same) from G to GH. Since the points of G

are often a subset of the points of GH, one can actually
: LAY . . " . H h H
use direct "injection’, i.e., Ihu (x

cases, however, it is preferrable to use "full weighting",

) = uh(xH). In many

i.e., to use Iguh(xﬁ) which is a weighted average of
values uh(xh) at points xh € Gh near xH, in such a way
that all values uh(xh) equ&lly contribute to the coarse-
grid values.

Observe that at this stage we could not approximate the

equation Lh(uh + Vh) = fh on the coarse grid by the

simpler approximation

L + v = et (2.9")
since the error of this approximation depends on the rapidly-
oscillating part of uh, which may be large compared with
the function Vh we seek to approximate. In (2.8), by
contrast, even if Vh is small, the left-hand side ;s still
approximately a linear operator in Vh, and the left-hand

2)

side of (2,9) nicely approximates”’ that linear operator.

In fact, the coefficients of that quasi-linear operator on

-15-
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the fine grid depend on uh, while on the coarse grid they
H h

have similar dependence on I u . Hence, if I: is a =roper

averaging operator, the coars: grid coefficients will auto-
maticall& be acerages of the fine grid coefficients, so that
even if uh is highly oscillatory, the coarse-grid equation
is a proper "homogenization" of the fine-grid equation. (For
discussions of homogenization see, e.g., BabusSka (1975) and
Spagnolo (1975).)

Observe also that residuals rh are defined, and are
transferred (with some averaging) to the coarser grid, not
only with respect to the interior equations, but also with
respect to the boundary conditions. 1In order that such
transfers are done in the right scale, it is important that
(i) the difference equations (2.2), and similarly (2.3),
approximate (2.1) without change of scale (e.g., without
multiplying through by ne. Equations (2.8)-(2.9) refer to
the divided form of the difference approximations. Keeping
this in mind, one can of course write the program with
differently scaled equations, provided rh is multiplied
by a suitable constant when transferred to the coarser grid.)
(ii) Difference-equations approximating different differen-
tial equations should be clearly separated. For example, do
not scramble together equations approximating (2.1a) with
equations approximating (2.1b). Do not incorporate the
boundary condition into the neighboring interior équation.

Failure to observe these rules is a common error in multi-

level programming.

To avoid complicated linearization in solvimg (2.9), a
new unknown function
o = TP e (2.10)
h h . .
is introduced (instead of VB) on GH, in terms of which )

-16-
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(2.9) becomes

Lulod) - e, e Y e RO
vherclo) .
r: LBt h) + Ihr . (2.11b)

The advantage of this new form is that it is the same equa-
tion as (2.3), except for a different right-hand side. (The
difference between the two right-hand sides is an important
quantity which will be exploited below. See Section 2.3.)
Moreover, (2.11) and (2.2) has the same form as (2.2).
Hence, the same routines (e.g., the same relaxation routine)

can be used in treating all of them. (See for example the

. simple sample program in Appendix B of Brandt (1977a).)

It is also worth notins that our new unknown (2.10). .
represents, on the coarse grid, the sum of the basic approx-
imation uh and its correction v, Thus, 'ug is the full
current approximation, represented on GH. The scheme of
using uﬁ is therefore called the Full Approximation Scheme
(FAS). To be distinguished from the Correction Scheme (CS),
which directly uses VH. (The Correction Scheme is messy in
nonlinear problems, and cannot be applied on composite g;ids
(see Section 3). We therefore continue our discussion here
only in terms of the more general scheme FAS.) At conver-
gence, when ch = Uh and Vh = 0, we have Ui = I§Uh.

Thus Uﬁ is a coarse-grid function which coincide with the
fine-grid solution - a fact which will also be very useful
below (Sections 2.3 and 2.4).

Once (2.11) is solved (or approximately solved), we want
to use its solution to correct the basic apbroximation uh.
In doing so we should keep in mind that VH = Uﬁ IH h

U,

h

and not ug itself, is the function which approximates a
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smooth fine-grid function, and hence VH (or its computed

approximation) is what we should interpolate to the fine

grid and use it there as a correction to’ uh. Thus, denot-
ing our approximate solution to (2.11) by u:. the corrected
approximation on the fine grid should be

h h h.H .Hh :
unew = Yoo t In(®h ~ Intop’ (2.12)

Observe that this interpolation is not equivalent to

-h h H ‘
Unew = TgYn (2.13)
since I;Iﬁ is not the identity operator. The important

d fference is that (2.12) preserves the high-frequency
information contained in ugLD’ while (2.13) does not use
ugLD’ and thus loses this information. Interpolation of
the type (2.12) is called FAS interpolation.

The order of the interpolation Ig in (2.12) need not be
as high as in the first coarse-to-fine interpolation (2.4).
Order mj is enough (cf. the discussion following (2.4)).
For example, if the differential equation is of second-order,
then linear interpolation is enough.

We summarize the basic processes above: To solve the
fine-grid equations (2.2), an initial approximation (2.4) is
obtained from an approximate.solution t}i to the coarse grid
equation (2.3). Then the approximation is improved by a
"multi-grid cycle"”. This cycle includes a couple of relaxa-
tion sweeps followed by the "coarse-grid correction” (2.12),
in which uﬁ is an approximate solution to the coarse-grid
correction egquations (2.11).

In most cases, at the end of the multi-grid cycle the
approximation uh will satisfy (2.5) and therefore require
no further improvement. This is because the relaxation

sweeps effectively liquidate the high-frequency
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components of the error, while the coarse-grid correction

liquidates the lower components. In fact, we will see below
(Sectionm 2.3) that, with some modification in the algorithm,
at the end of une multi-grid cycle “uh-— UH may be much
smaller than ”Uh— U||. 1f, however, for any reason, a
greater accuracy in solving (2.2) is desired, additional
multi-grid cycles can be performed. Typically, each cycle
which includes three sweeps of a suitable relaxation scheme
will reduce Iluh - Uh” by a factor of .2 to .08.

We still have to specify how the coarse-grid equations,
first (2.3) and later (2.1lla), are actually solved. They
are solved in the same way that (2.2) is solved, namely, by
a combination of relaxation sweeps and coarse-grid correc-
tions, using & grid still coarser than GH. More precisely,
(2.3) is solved by a first approximation obtained from a
still-coarser grid (grid GZH, for éxample), and then a
multi-grid improvement cycle (using GZH again). For solv-
ing equation (2.11a) the first approximation is Iguh; one
multi-grid cycle (using GZH) is enough for improving this
approximation to the required level of accuracy.

The fuil algorithm has several variations. One is flow
charted here as Figure 1. This i1s essentially the same
algorithm as described in Section 1.3 of Brandt (1977b).
Sample runs of it can be produced by the MUGTAPE (1978a)
program FASFMG. It contains three switching parameters: a,
6 and n. Usually a = 2-p, where 'p is the approximation
order. Optimal values for & and n are discussed in
Sections A.6 and A.7 of Brandt (1977a). In practice the
precise optimization is not important. One can take n = ¥
and § = ﬁr; wvhere u 1is an estimate for the smoothing

factor (computed for example by SMORATE; cf. Section 6),
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vig. 1. FAS Full Kulti-Grid (FAS FMG) Algorithm.
(See Legend on next page.)
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Fig. 1. FAS Full Multi-Grid (FAS FMG) Algorithm. In this
flowchart, as in the program itself, the differcnt levels

(grids) are not labelled by their mesh-size, as in the text,
but by a positive integer k. k = 1 is the coarsest level,
k=M is the ultimately finest level, and k = § is the
currently finest one (i.e., the finest so far used by the
algorithm).

Thus, the original finite-difference eguation on level k
(before being changed to serve as a correction equation like
(2.11)) 1is Lkvk - Fk. uk denotes the current approxima-
tion, and fk the current right-hand side, on level k.

Ik denotes interpolation of o.det m (the order of the

k-1
differential equation) from level k - 1 to the next firer

level k. 'E:_I denotes higher—order (m + p order) intex-
polation. Iﬁ+l denotes transfer (by some averaging)ffrom
level k + 1 to the next coarser level k. <1 denotes an

k
approximate measure of the local truncation errors on level
k (cf. Section 2.3). e

taken during the relaxation sweep on level k. ‘;k is the

value of e, at the previous sweep, so that e, / Z; > 1

signals slow convergence. Ek is a tolerance designed so

that e, < ck signals convergence of the current k-level

problem. For k < L the k-level problem is the correction

is a measure of the residuals,

problem to level k + 1, hence €, = Gek On the current-

k +1°
ly finest level (k = &) we need convergence to within the

estimated size of the truncation error. Hence €
2
. ,
and before Tyy 1S known Eg =@ Ty 5- The parameters

n, § and a are discussed in the text.

R T &
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and r 4is the number of rclaxation sweeps per multi-grid

cycle. With good relaxation schemes u o~ .5 and r =~ 3,

A slightly different algorithm is shown step-by-step in
Table 1, in the next section. That algorithm can also be
run through program FASFMG (using its FASFIX subroutine).
The difference between the two is that the algorithm in
Fig. 1 is "accommodative", its flow depends on some internal
checks, while that in Table 1 is "fixed", its entire flow is
prescribed in advance, depending only on some input para-

meters.

2.2. Full Multi-Grid Run: An Example

Table 1 shows the steps and the results of a multi-grid
solution process for the 5-point Poisson equation (cf. (2.6))

AhUh(xh) - F(xY), oPe ¢y, (2.14)

where G" is a 97 x 65 grid with mesh-size h = 1/32,
153, 0% < 2}. Dirichlet

boundary conditions are’given on the boundary of the rectan-

covering the rectangle {0 < x

gle. In this particular run the boundary conditions and
F = AU were chosen so that the exact solution to the
differential problem is U = sin(3x1 + 3x2).

The flow of the algorithm can be seen from the first
column of the table. It tells us the mesh-size H of the
grid on which a Gauss-Seidel (GS) relaxation sweep is made.
Thus, the process starts with 5 sweeps on Glsh, a 7x35

grid with mesh-size H = 16h = 1/2, starting with the
16h

approximation wu £ 0. Since the grid is very coarse,
after 5 sweeps u16h solves (2.3) well below the trunca-
tion level. This last u16h is then cubic-interpolated

(i.e., interpolation of order 5) to the finer grid GSh to

serve there as the first approximation u8h, as indicated

-22-




T.BLE 1

Output of Multigrid Runs for a Poisson Problem, Produced
by the MUGTAPE (1978) Program FASFMG

H
Relaxation ”u - UH
Level # | ||x"| - o™ - vl
Work Usual T-extrap
16h 2.11 .0039
16h .750 .0078
16h .270 .0117
16h .104 .0156
16h .0417 .0165 .25 .25 «249
Cubic interpolation uah - Iah u16h
16h
8h 3.73 .0351
8h 1.34 .0508 .150 .150
16h 16h
“eh * “Tgn /
16h .570 .0547
16h .269 .0589 .0611 .0600
32h .203 .0596
32n .0262 .0605 -
32h .00164 .0615 .0586 .0538
16h 145 .0654 0765 .0600 ‘
8h 492 .0811 .0798 .0499 .0572
Cubic interpolation u4h = I:;ush
4h 1.01 144
4h .602 .206 .0645 .0407
8h 8h
Tn * érah/B
8h .418 .222
8h .2838 .237 .0398 .0246
16h ~150 .241
16h .0473 . 245 .0117 .0517
32h .0114 .246
32h . 000095 . 247




32h
16h
8h
4h

Cudbic

2h
2h

4h
4h
8h
8h
léh
léh
32h
32h
32h
16h

4h
2h

Cubic

2h
2h
4h
4h
8h
gh
16h
16h
32h
32h
32h

interpolation

8h,

.000006
.0145
.0988
.201

. 267
.205

177
.158
.109
.0752
.0378
.0139
.00551
.000715
.000045
.00435
0274
.0504
.0665

interpolation

.0680
.05%9

.0540
.0513
0455
.0393
.0278
.0192
00945
.00355
.00138
.000123
.000008

TABLE I -~ Continued

248 .00713
.252 .0123
. 266 0162
.330 .0180
,2h o 12h 4h
4h
.580
.830 .0168
4h
T2h
.893
.955 0146
.971
.986 .00893
.290
194 .00206
. 395
.996
.997 .00223
1.00 .00254
1.02 .00364
1.08 .00404
1.33 .00419
h h h
u = I2h
2.33 '
3.33 00412
IZh
h
3.58
3.83 .00394
3.89
3.95 .00340
3.97
3.99 .00206
3.99
3.99 .000562
3.99
3.99
4.00 .000540
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00458

.00565
.00731
.00525

.00467

4h
- étzh/3

.00387
.00242
.000870
.000109
.000253
.000226

.000675
.000472

.00448

2h
- éth /3

.000411
.000313
.000167

.0000594

.0000231

.0138

.00344




Continued

16h .00113 4.00 .000625| .0000261

Eh .00684 4.02 .000879( .0L00176

4h .0127 4.08 .000984 | .0000337

2h .0163 4.33 .00102 .0000438

h .0182 5.33 .00103 .0000518| .00086

in the table. Two CS sweeps are then made on GSh. Then,
the table shows, a switzh is made back to the coarser grid
Glﬁh. Such a "switch to the coarser grid" means that
coarse~-grid correction equations such as (2.11) are set up

on Gl6h, namely, their right-hand side is calculated and an

initial approximation u16h--Ig:huSh is introduced. Then,
as shown, 2 relaxation sweeps are made on those 616h equa~

tions starting with that approximation. Then a switch'is

32n

made to the still-coarser grid G (our coarsest grid

here, which is 4 x 3 and has therefore c¢nly 2 interior

points), where 3 sweeps are made. Then a switch back to the
finer grid Clsb is made. Such s "switch to the finer grid"
means that a FAS interpolation, lilke (2.12), is made from

032h to ClGh. These interpolations are all of order 2,

that is, linear interpslations. One relaxation on Gl6h,

then switch back to GBh and one sweep on it, and a multi-

grid cycle for GBh has been completed. At this peint u8h
solves (2.3) to the level of its truncation errdr,~so we can
alrcady use it, with cubic interpolation, as the initial
aepproximation on C‘h. Etc., etc., the first column in
Table 1 shows the flow all the way to a2 final approximation
on the finest grid (i <« h).

At ecach relaxation sweep over GH the residual- ra(xu)
are measured and their norm is accumulated. This norm is

shown on the second column of Table 1. The precise



definition of the mcasvred quantity !lrnllc is not Impor-
tant at this point. In this specific run we chose the fol-
lowing définition: rn are the dynamic residuals, i.e.,
rn(xn). as defined by (2.8c), is calculate? using values of
uH as they stand immedintely before the point xH is
scanned by the relaxation sweep, that is, irmediately before
the value uH(xH) is changed. Thisg type of residual is
least expensive to caiculate, since it is (almost) calculateu
anyhow in the course of computing the ne:r value of uu(xn).
The norm ||-”c used in the table is the grid analog of the

continuous norm

! C(x)lr(x)ldflifz

=l = (2.15)

f C(x)dxldx2
vhere G 4is some function related to the error functionQI
ve are interested in (see Section 3.6). In this particular
run we had G(x) = C:, where Cx i5 the distance of x
from the nearest corner.

The third column of Table 1 shows the accumulated work,

measured in work units. A work unit is the work of one

‘relaxation sweep on the finest grid Gh. Hence, a relaxation

sweep on GNh is counted as N-z work units, since it con-
tains about an the number of grid-pointes contained in Gh.
This work count neglects any other worl. except that of relaxa-
tion sweeps, hecause (i) Relaxation sweeps account for at
Jeast 702 of the total actual work. (ii) The other work,
mostly that of interpolations, is not directly expressible

in terms of work units. We could measure running time, but
this dcpends too much on the particular hardware, software

and program being used. ({ii) The theoretical prediction of
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convergence rates is made, too, in terms of these work units,
g0 it is convenient to usé them for comparing experiments
with theory.

Observe how little is the work accumulated on the coarser
grids. In sum, this solution algorithm requires only 5.33
work units. A more precise count of all operations (includ-
ing interpola;ions) shows that, if ”rnll is not computédB),
this algorithm requires less than 42n arithmetic operations,
where n is the total number of points in the finest grid.

Incidentally, in this particular problem (2.14), most of
these arithmetic operations are additioms. - In fact, one can
arrange it so that the only multiplications (and divisions)
involved are by factors 4, 2, 1/2 or 1/4, which in binary
floating-point arithmetic can be performed as additioms.
(For thi# purpose, cubic interpolation should be performed
through the difference operator itself, as for example in
Hyman (1977,.) Thus, no multiplications or divisions are
required.

In experiments at ICASE made by Craig T. Poling, the time
measured for this algorithm on a CDC 6600 was .083 seconds
for a 33 x 33 grid, and .303 for a 65 x 65 grid. A similar’
algorithm (using another kind of relaxation) on CDC STAR-100
computer required .01l seconds for a 65 x 65 grid and .0347
seconds for a 129 x 129 grid, i.e., about 2 microseconds per
grid point.

The first three columns in Table 1 exhibit the standard
output of a multi-grid run. The last three columns can be
produced only in experimental runs made for cases in which
the exact differential solution U is known. The purpose
of these colunns is to show the quality of the computed
approximations uH. Here, uH denotes the current approxi-

S H .
mation on G . Thus, in the coarse of a correction cycle
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for level hl < 1, uB denotes the full approximation on
level Gu, similar to (2.10). The exact solution of the
difference equations (2.3) on grid GH is denpted.by UH.
The féurth column of Table 1 shows, at vuarious stages,
the maximum difference between the exact differential solu-
tion U and the ¢ mrted uH, where the values of uH at
each stage are those obtained at the end of the G“ relaxa-
tion sweep corresponding to that row of the table. The
fifth column of the table will be explained in Section 2.3.
The sixth column gives, for each level H, the maximum
discretization error |UH - U]. It is shown on the row
corresponding to the end of the multi-grid correction cycle *
for level H. The main observation is, of course, that at
this stage HuH-UII is not considerably bigger that
HUH- UH, so the algorithm indeed solves the discrete.
problem to the level of the discretization error.
This performance is predictable, and will be the same for
any other data. The local mode analysis shows that the multi-
grid cycle used here reduces Huh-UhH by a factor .08.

A factor .25 would in fact suffice, since all we need in this

cycle is to reduce the error from approximately IIUZh'- U”
to approximately HUh - U”.

Moreover, observe the row one before the last in Table 1.
It shows that already at this stage u2h solves the problem
to the level of the. h discretization error, i.e.,
lu®® - ]| 1s not much bigger than ||UP- U[|. Hence, the
level of the h discretization error is actually obtained
in only 4.3 work-units. The total number of arithmetic
operations (additions and subtractions) required is only
about 35n. The full 42n operations are required only if
we need the solutiqn, to the same accuracy, at all points

of Gh, not only at points of GZh.
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Another interesting comment which follows concerns the
storage recquirement for this algorithm. If the algorithm
indeed férminates at 4.33 work-units, no FAS interpolation
to Gh is madu. Hence the values of uh need not be stored.
All the operations made on Gh are the initial cubic inter-

polation from GZh, followed by two relaxation sweeps and
2h
nb
by one pass over G, requiring in storage only 5 columns

the calculation of F All these operations can be made
of the grid at a time. (The first sweep of relaxation is
made on the fourth of these columns, then the second sweep

can already be made for the third column and the residual

‘transfer can then be made for the second column.) Thus, the

algorithm requires no storage (not even external storage)

for the finest grid. The storage required for the coarser

grids is only %4' Tlé'"' LR f_-;'- that of the finest grid. A

modified multi-grid algorithm can work with even smaller

storage (see Section 2.4).

2.3. Relative Local Truncation Errors and <t Extrapolation

To realize further aspects of the multi-grid method, we

now slightly shift our point of view. Going back to the

coarse-grid correction equations (2.11), we rewrite them,

using (2.8¢c), in the form

B H. H

LHUh R (2.16)
where - TEFh and

H H,,Hh =H._ h h

Th L (Ihu ) - Ih(L u ) . (2.17)

At convergence, where uh = Uh

, Wwe have Vh = 0 and, by
H Huh H

(2.10), Uh = Ih . Hence, T actually represents the

local truncation error of GH relative to Ch, i.e., the

error which arises when the fine-grid solution Uh is
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substituted in the coarse-grid equation (2.3). Compare this

to the usual local truncation error, i.e., to the error 1h

which arises when the truc differential ‘solution U is
substituted into the GH equations (2.3); namely

M=ty -1 (2.18)

We can now reverse our viewpoint. Instead of regarding
the coarse-grid as a devise for calculating the correction
(2.12) to the fine grid solution, we can view the f1ne grid
as a devise for calculatirg the correction Ti to the
coarse-grid equations, a correction which will make the
solution of these coarse-grid equations tojcoincide (up to
-interpolation) with the fine-grid solution. Tﬁ is there-~
fore called the fine-to-coarse correction function. It is a
kind of defect correction (cf. Sec. 3.4). This point of
view open many more algorithmic possibilities, such as the
multi~grid method for non-uniform discretization (Section
3.3 below), continuation techniques, methoés for ill-posed,
optimal-control, and time-dependent problems, and small-
storage procedures (Section 2.4).

The quantity Ti itself is very useful. First, it is an

'approximation to the local truncation error TH. More pre-

cisely, we see from (2.17)-(2.18) that

Ti = TH - Th . (2.19)

This relation will be used in the adaptive processes (Sec-
tion 3.6). Here we show how to use it to improve the multi-
grid solution.

The local truncation error can be expanded in Taylor

series, yielding always a relation of the form

D) = ool + o), G >p > (2.20)
where C(x) depends on the (unknown) solution, but does mot

depend on h. Applying (2.20) also to TH, and using
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(2.19), we find

1“ = ——!'-—-5 rg + O(Hp), (n = -‘l., hence
P usually n ='%) . (2.21)
Thus, if we replace t: in the coarse-grid correction equa-
tions (2.16) by T:/(l - np), we effectively introduce the
true truncation error (up to order Hp) instead of the
relative one, and the solution Uﬁ should become a much
better approximation to the true differential solution. U.

We call this replacement a local truncation extrapolation,
or, briefly, t-extrapclation.

Note that Tﬁ is defined with respect to both the inte-
rior difference equations and the boundary conditions, hence
1-extrapolation can be applied for both.

The t-extrapolation costs very little. Only one operation
(multiplication by (1 - np)-l) is added, and only at
coarser - grid points, so it amounts to less than %- opera-
tion per fine-grid-point. The stages in the algorithm where
this extrapolation is made are shown in the fifth column of
Table 1. Also shown in that column are the results of this
operation in terms of the error ”uH - U”"D at various
stages. We see that with exactly the same flowa , the
algorithm produces now much smaller errors; in fact uh now,
after 4.3 work-units, is a much better approximation (to U)
than the exact finite-difference solution Uh.

With more work and some changes in the algorithm (quintic
instead of cubic interpolations, and two instead of one
multi-grid cycles for each level, t-extrapolation being made
on the second of the two), Huh - UH., could be made much
smaller yets). '

The impressive improvement depends of course on the

smoothness of the solution. Similar improvements could be

~31-




i

L il dal

i s v o

obtained, in some such cases, by using Richardson extrapola-

tion (extrapolating from the solutions qH and uh). Indeed,
in case the solution is not smooth, e.g., if it oscillates
wildly on the scale of Gh, the t-extrapolation does not
considerably improve uH. But exactly in this case the one
multi-grid cycle is enough to reduce !]uh - Uhll well below
HUh- U|l, sincze, exactly in this case, T is not consider-
ably smaller than TH. So the point of the T—extrapolﬁtion
is that it can always be used, for negligible extra cost in
either programming or computer time, and it produces uh

that, at 4.3-5.3 work-units, is guaranteed Eo be no worse
than Uh, the full solution of the difference equations,

with the nice additional feature that any available smooth-
ness is automatically exploited to improve uh even further.

It should also be pointed out thnt the 1-extrapolation
can improve the solution in many cases where the Richards-n
extrapolation cannot. The T-extrapolation aepends on Taylor
expansion for the local truncation error, while the
Richardson extrapolation requires such an expansion for the
global discretization error Uh - U. In many cases the
later expansion does not exist; for example, no such expan-~

sion is possible when the local truncation error is not
uniform. Another nice feature of the T-extrapolation proce-
dure is that it produces the improved solution at all points
of the fine-grid, while Richardson extrapolation gives it
only at points common to the fine and the coarse grid.

A remark on both types of extrapolations: When the extra-
polated solution is considerably better than the fine-grid
solution, its accuracy is actually comparable to the accuracy
of a higher-order solution on the coarse grid. (Because the
coarse-grid higher-order error term is not removed by the

extrapolation.) That higher-order coarse-grid solution is
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in principle less expensive in computer resources than the

extrapolated solution, since it does not use the fine grid
at all. A fully adaptive procedurc (cf. Section 3.6) would
probably prefer in such a situation to use the higher-order

scheme on the coarser grid.

2.4. General Properties of Multi-Grid Solutions (Advertise-

ment)

We have discussed at length the multi-grid solution of one
particular problem. The algorithm, however, does not depend
on any of the particular features of that problem.

The shape of the domain is immaterial. Only low-frequency
error components are affected by it, and such components are
always liquidated on the coarsest grids for negligible
amount of work. The only effect of complicated boundaries
is to complicate the difference equations at adjacent points
and thus to make each relaxation sweep somewhat more expen-
sive. In terms of work-units as defined above, the effi-
ciency remains the same. Many experiments (reported in
Brandt (1972), with many more examples in Shiftan (1972))
confirm this. ' o

Variations in the coefficients, or nonlinearities, in the
differential equations usually also affect only low-frequency
components, and are therefore still treated at the same
multi-grid efficiency. When these variations are wild, i.e.,
vhen the coefficients change significantly over the scale of
the grid, attention should be given to the proper choice of
residual-weighting (TE in (2.9) or (2.11)), since the
residual function r is considerably less smooth than the
error Vh. (See discussions in Section A.4 of Brandt (1977a).

More precise rules of residual-weighting a:+ given in

Lecture 17 of Brandt (1978a). The weights near boundaries




depend on the type of boundary conditions.) It is also

important for such cases that the coefficients of the coarse-
grid difference equations represent local averages of the fine-
grid coefficiests. This, in fact, is automatically obtained
if (for variable-coefficients linear problems) the difference
equations on each grid are derived by suitably averaging the
differential equations, or if (for nonlinear problems, where
the coefficients depend on the solution) the solution-'
weighting (I: in (2.9) or (2.11)) is a full weighting
operator. ‘

Numerical éxperiments (Brandt (1978a) p;.17-7, and more
details in Ophir (1978)) were conducted with difference
equations of the form

h h

U - 2Uh + U

Lhuh s ah a-1.8 o, 8 c+l, B
G,B QB :

h2
h h h
b et " Postlagn _ on (2.22)
aB h2 a,8 ’ )
. . h h , h
wvhere the coefficients a and ¢ vary wildly; e.g., a

and ch are random; or aZB = CZB = ] at even points

. (a +Beven) but a = .01 and ¢ =1 otherwise; etc. When,
and only when, the algorithm (with proper line relaxation)
used full weighting in the transfer to the coarse grid of
toth the residuals and the coefficients, the solution was
almost as efficient as in correspcnding constant-coefficient
cases.

Many experiments were also made for various nonlinear
problems. In 1975-76 Multi-grid programs were developed for
the steady-state small-disturbance transonic flow problems
(see South and Brandt (1976), and Section 6.5 in Brandt
(1977a)), in which the differential equations are mixed

~34=




i -ctiessursi. - 5o

elliptic-hyperbolic, and fhe solutions contain shock dis-
continuities. Although these programs are somewhat obsolete
(with the present stage of multi-grid expefience and know-
ledge they could be improved in various ways), they do
clearly show that the typical multi-grid efficiency can be
obtained for this type of problems..

Recently, multi-grid codes for steady-state incompressible
Navier-Stokes problems have been developed (see Lecture 7 in
Brandt (1978a), Brandt (1978c) and Dirar (1978)). The
algorithm is similar to the one shown in Section 2.2 above,
except for the more elaborated "distributed" relaxation
scheme which is required here (a) because it is an elliptic
system, not a scalar equation, and (b) because, for large
Reynolds numbers R the system is singularly perturbed.
Cavity and pipe problems were solved, with R ranging'from
0 to large values (but below the values causing instabili-
ties). For any such R, the process required 6 to 7 work-
units, and produced solutions closer to the true differential
solutions (in cases those were known) than the exact solu-
tions of the finite~difference equationms.

Successful multi-grid applications are also reported for
the minimal-surface equations (D. J. Jones, Lecture 15 in
Brandt (1978a)), for the pressure iteration in Eulerian and
Lagrangian hydrohynamics (Brandt, Dendi and Ruppel (1978)),
and for some simple problems in finite-element formulations
(Nicolaides (1978) and Poling (1978)). Not listed here are

some other multi-grid applications, which seem not to have

6)

realized the true multi-grid efficiency
In some nonlinear problems a continuation (or embedding)

process should be made, either because there are several

solutions to the differential equations or because an

initial approximation to the solution cannot otherwise be
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obtained. In such cases a certain problem parameter, vy

say, is introduced, so that instead of a single isolated
problem we consider a continuum of problems, one problem
P(y) for each value of ¥y 1in an interval Yo 2Y 2 Y
where P(Yo) is easily solvable (e.g., it is lirear) and
P(y*) is the target (the given) problem. The continuation
method is to advance vy from Yo to v, in steps &y. At
each step we use the final solution of the previous step

P(y - 8y) (or extrapolation from several previous steps) as
an initial approximation in an iterative process for solving
P(y). The main purpose is to ensure that the approximations
we use are all "close enough” to the respective solution, so
that some desirable properties are maintained and convergence
is ensured. The process should of course be made carefully
in case of bifurcation, when several solutions branch off at
a certain value of y. (See, e.g., Keller (1977).)

With the multi-grid solution method the continuation
process may cost very little. First, because it can be made
on coarser grids. Sometimes, however, too coarse grids do
not retain enough of the solution features, and the continua-
tion may not accomplish its purpose. This means that oscil-
lations on the scale of a certain mesh-size h cannct bé
ignored. These oscillations, however, do not usually change
much at each &y step. The trick then is to use form (2.16)
of the coarse-grid equations. We can make several continua-
tion steps on the coarse grid GH only, retaining the values
of 1: fixed. By doing this we effectively freeze the high-
frequency part of the solution, and retain its influence on
the coarse-grid equations. Only once in several (sometimes
many) steps we need to calculate on the finer grid too, in
order to update the fine-to-coarse correction T:. This of

course may be carried further: the Gh equations themselves
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correction term, and once in several

h/2

h
may include a Th/2

visits to G we may go to calculate on G in order to
update that term; cte.

A similar technique can be used in optimal control
problems. Here, some parameters controlling the partial-
differential problem should iteratively be adjdsted s0 as to
achieve some optimal condition (minimal "cost"). In such
problems we can again make most of the ite;ations on coarse

g;tds, with frozen values of the fine~to-coarse corrections
dating ™ (Together with T, ve should also freeze the
fine-to-coarse correction of the cost functional.) If, for

making only infrequent visits to finer grids for up-

example, the control itself is a grid function (e.g., a term
in the right-hand side of the equations), a change in the
control value at a point will introduce only smooth changes
in the solution in regions away from that point. 1t is
therefore enough to keep refined only a small portion of the
domain at a time, while at other regions the coarse level is
used with frozen fine-grid corrections. This technique
should combine with the usual multi-grid approach of obtain-
ing the first approximation on each finer grid.by_inéerﬁoiAEQW" o
ing from a solution to a similar problem on the next coarser
grid.

Such techniques can also serve some ill-posed problems,
where the solution should fit some data which are not the
normal, well-posed boundary conditions. In such situations
only smooth components of the solution can be meaningfully
fitted to the data (or to smooth averages of data). The
data-fitting can therefore be made on a coarse grid, CH
say, but the coarse-grid equations should have the fine-to-

coarse correction (2.17), so that they represent a reason-

able approximation to the differential equationms.




Small-storage multi-grid algorithms are also based on the

form (2.16) of the coarse-grid equations. Observe that,
once T: is known, the fine grid is no longer nceded. But
1: depends mainly on high-{requency components of uh,
which can be computed by having in storage only a small seg-
ment of Ch. An algorithm based on this idca ("segmental
refinement"”, Section 7.5 in Brandt (1977a)) requires in
principle only some lsdlog n storage locations, where d
ie the problem dimension and n is the aumber of points in
the finest grid. No external memory is assumed.
Time-dependent problems, especially of parabolic type,
usually require the use of implicit difference equations.
The system of equations to be solved at each time step is
similar to the steady-state equations, and can be solved
usually by one multi-grid cycle, starting from the previous-
time solution as the first approximation. Moreover, in sone
important cases {(e.g., the heat equation) after a short
time to = O(hz) the high-frequency components
of the solution practically reach their steady
state, and further changes occur only in the smooth compo-
nents. Hence, for many time-steps, the values of rg hardly
change. Freezing Tﬁ for secveral time-steps we can then
solve the coarse-grid equation (2.16) without using the fine
grid at all. Only infrequently should we make a time-step
with fine grid calculations, to update the high-frequencies
of the solution and the values of 1:.
fine-grid accuracy but each implicit time step of this kind

In this way we retain

costs on the average much less than an explicit time sStep on
the finest grid. This kind of techniques for parabolic time-
dependent problems, are discussed in Lecture 9 of Brandt
(1978a), and some preliminary experiments are reported by
Dinar (1978).

-38-




Parallel or vector processing can be fully exploitcd by
the multi-grid algorithm. The main processes, namely, inter-
polations and relaxation sweepa, are completely paralleliz-
able, although it requires the use of a slijhtly different
type of relaxation, with smoothing rates (per sweep) some-
vhat slower than the (sequential) CGauss-Seidel relaxation.
(See Section 3.3 in Brandt (1977a).)

Implementation difficulties. A fair amount of knowledge
is required in implementing multi-grid aizorithmsg, including
some gencral knowledge common to all multi-grid programs,
plus particular expertise related to the specific type of
probler at hand.

Generally, one has to be familiar with the basic rules of
interpolation and residual-weighti. g, with the normal flow
of multi-grid runs7), and, last but oot lcast, with the data
structure used in multi-grid programs. Without a suitable
data structure the program will become complicated, wich
many unnecessary repetitions. It is advisable to folilow the
programmuing techniques exhibited in the simple Sample Program
(Appendix B of Brandt (1977a)) and irn the programs of
MUGTAPE (1978). With this technique, each operation (such
as relaxation, coarse-to-fine interpolation, fine-to-coarse
residual weighting) is written once for all grids. Moreover,
most operations can be written once for all programs; that
is, the same code can be used by all the programs which use
the same data structure. This includes the coarse-to-fine
and fine-to-coarse transfer operations (e.g., interpolation),
the operation of introducing the values of a given function
into a given grid, operations of generating amd manipulating
grids (e.g., avgmenting a grid, coarsening a grid, generat-
ing the interior part of a grid, or transposing a grid from

row structure to column structure), displays of grids or
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grid-functions, etec. Three different datau structurcs are

used in existing programs: One for rectangular grids, cne
for single-string grids (where the domaiﬁ can be defincd as
{(x.y)lxl L% £ Xo fl(x) <y < fz(x))). a2 .d one for general
grids. The latter is called the QUAD structure, and is
described in Brandt (1977b) and in Lectures 12 and 13 of
Brandt (1978a). With these techniques, the programming of a
nulti—grid'solutjon for ¢ new problem is essentially reduced
to the progremming of the relaxation routine. (The residual-
weighting routine should also be programmed anew for each
problem, but its part that depends on the pioblem is a

simple modification of a similar part in the relaxation
routine.)

Particular expertise is required in designinag the relaxa-
tion sweeps. For a uniformly elliptic scalar equations the
simplest Gauss-Seidel is the best scheme (on sequential
pachines), but suitable modifications are fequited for
degenerate-elliptic, non-elliptic, indefinite or singular-
perturbation problems, as well as for cases of parallel or
vector processing, and for problems involving more than one
unknown function. Generally speaking, the particular know-
ledge rcquired for des{gning'rclaxation is sigilar in each
case to the specific knowledge required in discretizing the
differential equations. Similar - but not identical. As iun
learning discretization mcthods,‘one should learn relaxation
methods gradually, starting from siwplest models, gaining
some rssic insights, and only then proceeding to coampi:x
real-world problems.

The design of rclaxation is much facilitated by a standard
gauge we have for apriori measuring the relaxation efficiency.
The only role of relaxation in multi-grid programs is teo

smooth the errors. The efficiency of the entire algorithm
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depends on (and can be apéroximately predicted by) the
“smoothing factor" of the relaxaticn sweeps. Since smooth-
ing is a local process, the smoothing factor can be calcu-
lated by a loc~l mode analysis (cf. Section 6). For simple
equations this can be done by hand (sce examples in Sections
%1 and 6.2 of Brandt (1977a), and Section 3 of Brandt
(1276).). For general equations it is donme by using the
comput~r routine SMORATE, available on MUGTAPE (1978). The
user of this routine supplies a déscription of the relaxa-

tion sclieme and other parameters (in a format explained by

" comment .3 ds in the routine). The output contains the

smoothing fact.r and other useful information, including an
estimate of the multi-grid convergence factor per work-unit.
The routine can therefore be used to optimize relaxation,
i.e., to select the best relaxation type and parameter;'from
a given set of possibilities. '

Some general orientation concefning the relaxation of
singular-perturbation problems is given in Section 6 below.

A major advantage of the multi-grid solution process, in
particular for singular-pertu-bation and other irregular
préblems,is its full compatikility with adaptive processes.
The reason is that the multi-grid process in itself is adap-
tive: in adaptive processes mesh sizes are adapted to the
computed solution; the multi-grid process' goes omne
step further and employ mesh sizes adapted to the error in
the computed solution. Let us now turn to these adaptive

aspects of the multi-level techniques.
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3. NON-UNIFORM AND ADAPTIVE DISCRETIZATIONS

3.1. Non-Uniformity Organized by Uniform Levels

In principls, the multi-grid solution pfocess described
in Section 2 could work equally well when the finest grid
Gh is non-uniform and even non-rectangular, with grid points
at arbitrary locations. A relaxation with good smoothing
rates on a general grid is obtained by employing all line
and marching directions. The main difficulty with general
grids, however, is practical: Merely to formulate and use
the difference equations, let alone solve them, is compli-~
cated. It requires lengthy calculations and large memories
for storing geometrical information, such as the location
of each grid poirnt, its neighbors, the coefficients of its
difference equation, etc. The multi-grid processing of 'such
arbitrary grids generates additional practical difficulties
since it requires the introduction of coarser grids and the
grouping of grid points in grid lines (for line relaxation).

These arbitrary general grids, however, are not really
needed. We will show beiow a method of organization which
is less general but in which any desired refinement pattern
can still be obtained, and easily changed, with negligible
book-keeping and with difference equations always defined on
equi~distant points. This flexible orgenization will
naturally lend itself to multi-grid processing and to local
transformations, and will lay the groundwork for efficient
adzptation.

It is proposed to organize non-uniform grids as "composite
grids". A composite grid is a union of uniform subgrids |

...,Gh 2h b /2 (3.1)

where the superscripts denote the mesh-size. The grids are

usually positioned so that every other grid-line of Ch is




a grid line of GZh. Unlike the description in Section 2,
however, the subgrids are not necessarily extended over the
entire domain Q: The domain of Gh may be 6n1y-a proper part
of the domain »f GZh, so that different degrees of refine-
ment can be created at different subdomains. See Figure 2.
Each Gh is extended, as a rule, over those subdomains
where the desired mesh-size is roughly 1.5h or less. Gh
may be thus disconnected, but its domain is always a sub-
domain of GZh. The effective mesh-size at each neighbor-
hood will be that of the finest grid covering that neighbor-
hood. Clearly, any desired mesh-size h can be approximated
by some effective mesh-size h', where 0.75h <h' :hl.SB.
Mesh-sizes never require better approximation.

The composite grid is very flexible, since local grid
refinement (or coarsening) is dome in terms of extendiﬂg (or
contracting) uniform subgrids, which is relatively easy and
inexpensive to implement. A scheme for comstructing, extend-
ing and contracting uniform grids, together with various
service routines for such grids (efficient sweeping aids,
interpolations, displays, etc.) is described in Brandt
(1977b) and is partly available on MUGTAPE (1978z2). One of
its advantages is the efficient storage. The amount of
logical information (pointers) for describing a uniform grid
is proportional to the number of strings of points, and is
therefore usually small compared with the number of points
on the grid. Similarly, the amount of logical operations for
sweeping over a grid is omly proportional to the number of
strings. Changing s grid is inexpensive, too.

Moreover, this composite structure will at the same time
provide a very efficient solution process to its difference

equations, by using its levels (3.1) also as the multi-grid

sequence (as in Section 2). Each Gh will automatically
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Fig. 2. A piece of non-uniform grid (A) and the uniform

subgrids it is made of (B, C, D, E).
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: ﬁﬁ play the role of the correcting coarse-grid whenever tﬁe

finer subgrid ¢ 2

is present (see Section 3.3).

In adaptive procedures, the sequence of subgrids will be
kept open-ended, so that we can add increasingly finer or
coarser levels, as needed. (Increasingly coarser levels may
be needed if the problem's domain & is unbounded and the
bounded computational domain is chosen adaptively).

The coarsest subgrid should of course be kept coarse
enough to have its system of difference equations relatively
inexpensive to solve. Hence, there will usually be scveral
coarse subgrids extending over the entire d‘omain Q. That
is, they will not serve to produce different levels of
refinement, but they are kept in the system for serving in

its multi-grid processing.

There seems to be certain waste in the proposed system,

because one function value may be stored several times when
its geometrical point belongs to several sﬁbgrids Gk. This
is not really the case: The extra values are exactly those
needed for the multi-grid processing. In the process, the
different subgrids may have different values at the same

geometrical point. Moreover, it is only a small fraction

(Z-d) of the points that are actually being repeated.

3.2. Unisotropic Refinements

For singular-perturbation and other problems, it is some-
times desired to have a grid which résolves a certain thin
layer, such as a boundary layer. Very fine mesh-sizes are
then needed in one direction, namely, across the layer, to

resolve its thin width. Even when the required mesh-size

is extiemely small, not many grid points are needed, since

the layer is correspondingly extremely thin. (See Section 4.)
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5;1&‘ Provided, of course, that the fine mesh-size is used only in

that one direction. We need therefore a structure for mesh-

sizes which get finer in one direction only.

In case the thin layer is along coordinate lines (xj =
constant), we resolve it again by using a sequence of
uniform grids, except that their meshes are no longer square;
hi’ the mesh-size in the x; direction, may be very differ-~
ent from hj. See Figure 3. We still require all mesh-sizes

to be binary multiples of some basic size h that is, on

0’
the k-th subgrid the mesh-size in the x; direction is

n.
h? -2 1kh0, (ng, integer, 1=1,...,d) . (3.2)

For the multi-grid processing we require that for each such
subgrid k, except for the very coarsest ¢k = 1), there

exists in the scheme a coarser subgrid, number 2 = 2(k)

say, such that for each 1 < i <d either n,, = n,
- - iL ik

iL = nik +1, and I n., > 2 nik' Grid 2 will be the

grid from which corrections are interpolated to grid Kk,

or

n

and to whichresiduals from grid k are transferred. We
call & '"thc predecessor of k", and k "a successor of
2". Each subgrid, except for the cnarsest, has exactly one
subgrid defined as its predecessor, and may have any number
of successors. The domain on which each subgrid is defined
is always contained in, or coincide with, the domain of its
predccessor. Thus, the set of subgrids is arranged
logically in a tree, instead of the linear ordering we had
before. .

All these subgrids are still uniform, and can still
easily be handled (created, extended, displayed, etc.) by
the system mentioned above. Except that some of the inter-

"polation routines required for this more general situation
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Fig. 3. A piece of non-uniform, boundary—lage; t:gpe- gﬁd
(A) and the uniform rectangular subgrids-it is made of

(B, ¢, D, E).
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- H
correction function 7T

are still missing in MUGTAPE (1978a); they have been
prepared for MUGTAPE (1978b). .

In case the thin ldyer is not along coordinate lines,
some local ccordinate transformation is required. This

technique is explained in Section 3.5 below.

3.3. Difference Eguations and Malti-Grid Processing

The difference equations and their wmulti-grid solution
for the cowmposite structure are explained in Section 2.2 of
Brandt (1977b). The main idea is that a fine-to-coarse
b’ correcting the CH equations,
(see (2.16)~(2.17) and the subsequent discussion) can be
computed wherever the finer grid Gh exists, or, more pre-
cisely, at any interior point of GH which is also an
interior point of its successor Gh. At all other points
the original coarse grid equation (2.3) can be used. From
this point of view it is clear that we can have various
patches of finer subgrids ("successors'") thrown over various
desired subdomains of. GH; the finer-subgrid accuracy will
be established in the equations of such a subdomain via the
tﬁ correction. On any part of such a subdomain a patch of
still-finer subgrids can be defined, etc.

The multi-grid process proceeds essentially as before.
If, for example, we regard the coarsest subgrid as level 1,
and all the successors of level j as level j + 1, we
could use exactly the same algorithm; e.g., the one shown in
Table ) above. Except that now, each operation (relaxation,
fine-to-coarse residual transfer, etec.) at each level is
performed not on one subgrid, but on the sequence of all
subgrids of that level in some preassigned order. Important

improvement: Relaxing each cycle progressively smaller

parts of the coarser grids.




- Note that successors of a given subgrid G" may geomet-

rically overlap. All is needed in such a case is to set
priority relations bctween the successors, to tell which
correction TE applies at those GH poincs which are
interior points of more than one successor. Such priority
relations ére automatically implied by the ordering of sub-
grids within each level.

An important advantage of this structure is its flexibil-
ity. One can add more and more patches of increasingly finer
subgrids, whére and wvhen they are needed. One can also dis-
card some such patches. Notice, however, that even when a
piece of finer grid, Gh say, is discarded one can still
retain its correction Tﬁ in the GH equations. (This
leads to multi-grid procedures which require only a small
memory. See Section 2.4 in Brandt (1977b).) -

Another important advantage of the outlined structure is
that our difference egquations are defined on uniform grids
only (patched together by the usual wmulti-grid interpola-
tions). Such difference equations on equidistant points
are simple and can be read from small standard tables, while
on general grids their weights would have to be recomputed
(or stored) separately for each point, entailing very
lengthy calculations especially for high-order approxima-
tions. Thus, our system facilitates the use of high and
variable (adaptive) order of approximation. '

Still another advantage is that relaxation sweeps, too,
are done on uniform grids only. This simplifies the sweep-
ing aad is particularly essential where symmetric and/or

alternating-direction line relaxations are reguired for

obtaining high smoothing rates.




3.4. Remark on High-Order Approximations

An efficient and convenient way of using high-order
difference equations, especially when the order is adaptible
(see Section 3.6), is by the well-known technique (suggested
by L. Fox) of "deferred correction" (see, e.g., Pereyra
(1968), Lentini and Pereyra (1975) and Stetter (1978)).
Simply, before starting a multi-grid cycle for improving an
approximation uh, add to the right-hand side of the fine-
grid equations (2.2) the correction

hh, h hh, h
u (x

o:(xh) - 6N - eh, e ¢, (3.3)

wvhere L: is the higher-order (order p) operator. Then
proceed with the multi-grid cycle as usual. The roll of o:
is similar to the roll of the fine-to-coarse correction

T:. We can thus call c: the high—order-to-low-ordef
("deferred”, or "defect") correction.

A certain amount of work is saved if p 1is advanced in
steps; e.g. each multi-grid cycle adveance p by 1 or 2.
In the adaptive procedures described below, p 1is always
advanced gradually.

Note that, since the multi-grid cycle operates with the
original operator Lh, no new routines (such as relaxation
routine) should be added, and the same multi-grid efficiency
1s obtained as in solving low-order equations. Except that
the number of multi-grid cycles may increase linearly with
P, since TZh/Th = 2P,

3.5. Local Coordinate Transformations

Another dimension of flexibility and versatility can be
added to the above system by allowing each subgrid to be

defined in terms of its own set of coordinates.




Near a boundary or an interface, for example, the most

effective local discretizations arc made in terms of local
coordinates in which the boundary (or interface) is a coor~
dinate line. 1In such coordinates it is ea-y to formulate
high-order approximations near the boundary; or to introduce
mesh-gizes which are much smaller across than along the
boundary layer (sce Section 3.2); etc.

Usually it is easy to define suitable local coordinates
(see below), and uniformly discretize them, but it is more
difficult to patch together all these local transformationms,
especially in an adaptible way. In the above structure,
however, this difficulty does not arise, since we can
introduce independent and overlapping patches of "successor"
grids. .

Each set of coordinates will generally have more than one
subgrid defined on it, so that (i) local refinement, in the
style of Figure 2 and/or Figure 3 above, can be made within
each set of coordinates; and (11) the multi~grid processing
retains its full efficiency by keeping the mesh~size ratio
between any subgrid and its predecessor properly bounded
(e.g.r 23).

Since local refinement can be made within each set of
coordinates, the only purpose of the coordinate transforma-
tion is to provide a certain grid direction, i.e., to have
a given manifold (e.g., a piece of boundary) coincide with
a8 grid hyperplane. We can therefore limit ourselves to
simple forms of transformations. For example, in 2-dimen-
sional problems, let a curve (a boundary, an interface, etc.)

be given in the general parametric form

x=x.(s), y-= yo(s), (0<s j_sl) (3.4)

vhere s 1is the arclength, i.e.,




i
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y

xﬁ(s)z + y6(3)2 -1, (3.5)

To get a coordinate system (r,s) in which such a curve
will be a grid line, we can always use the transiormation
x(r,x) = x,(s) ~ry)(s), y(r,s) =yo(8) +rx (s) . (3.6)

Near the given curve (r = 0) this transformation (a
special case of transformations discussed in Starius
(19772)) 1is orthogonal, owing to (3.5), and transforms any
small h x h square to another h x h square.

The main advantage of this transformation is that it {s
fully characterized by the single-variable'functions xo(c),
yo(s). These functions (together with xé(s), yé(s) and
q(s) = xS/yé ~ -yS/xa) can be stored as one-dimensional
arrays, in terms of which cfficient interpolation routines
from (x,y) grids to (r,s) grids, and vice versa, can be
programmed nnce for all. (Such a general routine, however,
is not easy to program, and is still missing in MUGTAPE
(1978).) The difference equations in (r,s) coordinates
are also simple enough in terms of these arrays. For
example, by (3.5-6),

'

’ ]
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X

(3.7)

Hence we can easily approximate the (x,y) derivatives by
(r,s) finite-differences, with numerical values of xé(s),
ya(s) and q(s) directly read from their stored tables.
(No interpolation is needed if the tables contain values
for s points which correspond to grid lines and hal f-way
between grid lines.)

Such a system offers much flexibility. Precise treatment
of boundaries and interfaces by the global coordinates is

not required, since along boundaries the global grids are
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only correction grids to~the local ones. The local coordi-

nates are easily changeable (changing only the one-
dimensional tables of xo.yo,xa,yé,q) and can thercfore
be adapted to a moving interface.

The wmain differcnce between this structure and the one
used by Starius (1977a), (1977b) and (1978) is that the
boundary grids are completecly embedded in the global grids
(their predecessors), allowing a fast multi-grid solution
of the equations. Also, since we have the multi-grid method
for local refinement, the coordinate transformation is used
only for orienting the grid, hence only the simpler trans-
formation (3.6) is needed, allowing simpler differencing
and interpolations.

Another variant of this procedure is required in c;se
the location of the curve (interfare, shock, etc.) 1:-not
fully defined. For example, a solution may include many
shocks, some weaker and some strcnger, and it is hopeless
to try to recognize where a shock occurs, let along deter-
mine its exact curve. The usual procedure is to let the
shocks develop by themselves, e.g., by adding some artificial
viscosity which spread shocks over several mesh-sizes.
Sometimes, however, this procedure is unacceptable because
too much artificial viscosity is used near strong shock (and
because of other reasons). We like to have a procedure
which will automatically use smaller mesh-sizes near stronger
shocks. This will be donc by the general adaptive procedure
(Section 3.6 below) if we choose the ecrror functional E
so that it contains somc measure of the artificial viscosity.
In order to obtain full efficiency, however, we like the
procedure to be able to prrduce mesh-sizes which are nuch
smaller in one directicu (the direction perpendicular to the

shock) than in the other. We therefore need a structure for
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adapting the prid orientation, too. Notice that on some
coarse grids the orientation is immaterial; the fincr the
grid the more precisely its orientation should be chosen.
Hence, the dircction can be refined succecsively, together
with the mesh-sizes. An example is drawn and explained in
Figure 4. We see that in this method the more general
transformation (3.6) is not needed; only rotations are used.
Hence the diffevence equations may be as simple as in the
original (e.g., cartesian) coordinates. This wmethod may
therefore be preferable sven in cases the curve (e.g.,

boundary) is known.

3.6. Adaptation Technigues

The flexible organization and solution process, described
above, facilitate the implementatinon of variable mesh-size
h(x) and the employment of high and variable approximation
order p{x). How, theu, ure mesh-sizes and approximation-
orders to be chosen? Should boundary layers, for exaumple,
be resolved by the grid? What is their proper resolution?
Should high-order approximation be used at such layers? How
does one detect such layers automatically? In this section
we survey (for more details, see Brand:s (1977a), Chapters 8
and S) a general framework for automatic selection of h(x),
p(x) and other discretization parameters in a (nearly)
optimal way. This system automatically resolves or avoids
froz resolving thin layers, debending on the goal of the
computations, which can be stated through a simple function.

As our directive for sensible discretirzation we consider
the prroblem of minimizing a certain error estimator E
subject to a given amount of solution work W (or minimiz-

ing W for a given E. Actually, the control quantity will
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Figs. 4A and 4B. Grid orientation around an interior thin

layer. The two coarsest levels (A) have the usual orienta-
tion 0. The next level (B) has 3 orientations: O, -:- and
--} (the later is not applied here). The next level (not
shown) would have 7 orientations: 0, i%, :-E-, t::!l, etc. The
successors (refinements) of a grid will always have either
the same orientation or one of the two closest ones (e.g.,

each successor of the l-oriented grid in B will have

4
orientation rI or 3r
4’ 8 8’"
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be neither E nor VW, but their rate of exchange). fhis
optimization problem should of course be taken quite loosely,
since full optimization would require too much control work
and would thus defeat its own purpose. )

The error estimator E has generally the form

E= [ G(x)1(x)dx , (3.8)
Q

where 1(x) = 1(x,h,p) is the wmagnitude of the local trunca-
tion error at x (see (2.18)). G(x) > 0 is the error-
weighfing function. It should in principle be imposed by

the user, thus defining his gozl in solving the problem. In
practice G(x) serves as a convenient control. It is only
the relative orders of magnitude of G(x) at different
points x that really matter, and therefore it can be chosen
by some simple rules. For example, if it is desired to
compute f-order derivatives of the solution up to the :
boundary then

Glx) = d:'l‘z , . (3.9)

where dx is the distance of x from the boundary, and m
is the order of the differential equation.

The work functional W is roughly given by

W= jl’—(P—(—"—?—)- dx , (3.10)
2 h(x)°

wvhere 4 dis the dimension and h-d- is therefore the number
of grid points per unit volume. w = w(p) is the solution
work per grid-point. In multi-grid processing, for p < 6
the work depends mainly on the number of cycles (cf. Section
3.4), hence w = ¥oP- For (unusually) large p, w= 0(p3)
since evaluating L: at each cycle involves O(p) terms and

C(p) arithmetic precision.

4
¥
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Treating h(x) and p(x) as continuous variables, the
Euler equations of minimizing (3.8) and (3.10) can be

written as

¢ M) .o, (3.11a)
h
]

cg—;+———2-“§ ) .o, (3.11b)
b

where A is a constant (the Lagrange multiplier), repre-
senting the @arginal rate of exchanging optimal accuracy
for work: X = -dE/dW. The = sign in (3.11b) should be
replaced by > at points Xx where p attains its minimal
allowable value Py (usually 1 or 2). In case we use
fixed-order difference equations (adapting h(x) only, P
is fixed in advance), equation (3.11b) should be omitted.
If constant order is used (p 1is constant over the domain,
but instead of being fixed in advance this constant is to

be optimized) equation (3.11b) is replaced by

9E oW
3p + A 3p 0. (3.12)

In principle, once X is specified, equations (3.11)
determine, for each x € Q, the local optimal values of
h(x) and p(x), provided the truncation function
t(x,h(x),p(x)) is fully known. In some problems the
general behavior of T(x,h,p) near singularities or in
singular layers is known in advance by some asymptotic
analysis, so that approximate formulae for h(x) and p(x)
can apriori be derived from (3.11). More generally, how~
ever, equations (3.11) are coupled with, and should there-
fore be solved together with, the given differential equa-

tions. Except that (3.11) is solved to a cruder approxima-

tion. This is done in the following way:




- B
JE N SO

.

In the multi-grid solution process (possibly incorporat-
ing a continuation process), incidentially to the stage of
computing th fron uzh, uh and fh (see figure 1 above,
2h correspending to level k and h to k + 1) we can
get an estimate of the decrease in the error estimator E
introduced by the present discretization parameters. For

example, the quantity

~AE(x) = G(x)|t(x,2h,p) - t(x,h,p)] (3.13)
= 60|l
= G(x) |£2h(x) - F2P () | -

(cf. (2.17)-(2.19) above) may serve as a local estimate for
the decrease in E per unit volume owing to the refinement
from 2h to h (ecf. (3.8)). Each such decrease in E is
related to some additional work W (per unit volume). For
example, that refinement from 2h to h required the‘

additional work (per unit volume; cf. (3.10))

AV = "'(g) - ‘Z(p;d . (3.14)
h 2h

We say that the present parameter (h in the example) is

highly profitable if the local rate of exchanging accuracy
for work Q = -AE/AW is much larger than the control para-
meter A. .
More sophisticated tests may be based on assuming T to
have some form of dependence on h and p. Instead of
calculating Q for the previous change (from 2h to h in
the example) we can then extrapolate and estimate the rate
Q for the next change (from h to h/2), which is the
more appropriate rate in testing whether to make that next
change. The "extrapclated test" is not, however, much
different in practice, and may actually be equivalent to

testing the former Q against another constant A.
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In deciding whether and where to change tlie discretiza-
tion, we adopt rules which stablize the adapt.ve process.
For example, a change (e.g., refinement-from- n to h/2,
which in practice (see Sec. 2.2) means an extension of the
uniform grid with mesh-size h/2) is introduced only if
there is a point where the change is "overdue" (e.g., a
point where Q > 151). But, together with each point where
the change is introduced, it is also introduced at all
neighboring points where the change is just "due" (e.g.,
where Q > 31).

We can use the Q vs A test to decide on all kinds of
other possible changes, such as: Changing the order »p
to p+1 (or p =-1); or changing the computational
boundaries (when the physical domain is unbounded); or we
can use such a test to decide whether to discard some terms
from the difference operator (such as the highest order
terms in some regions of a singular-perturbation problem);
or to decide on unisotropic changes in h and p (e.g.,
changing Ax to Ax/2 without changing Ay); etc.

In case of optimizing a global quantity (such as constant
approximation order; cf. (3.12)) similar tests can still be
applied, except that AE and AW should of course be
measured globally (summing over the entire region) instead
of locally.

The computer work invested in the tests is pegligible
compared with the solution work itself. The measure (3.13)

is taken only on G2h n Gh, and the stage of computing it

. h
occur only once per several relaxation sweeps on G .
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4. MULTI-LEVEL ADAPTIVE-SOLUTIONS TO SINGULAR-PERTURBATION 4
PROBLEMS: CASE STUDIES

To get a transparent view of the diséretization patterns
and the accuracy-work relations typical to the adaptive
procedures proposed above when applied to singular perturba-
tion problems, we consider now several cases which are
simple enough to be fully analyzed. The simplicity of the
solution, it should be emphasized, is not used in the solu-~

tion process itself.

d4.1. Optimal Discretization of One-Dimensional Case

Consider the 2-point boundary-value problem

eﬁ”-»,i‘l’--o in 0<x<1, (4.1)
dx2 dx

with constant € > 0 and with boundary conditions UtO)

and U(l) such that the solution is U = e-x/E. An elliptic

(stable) difference approximation to such an equation can
be central for € > 2L but should be properly directed for
small €. (See Section 5 below.) In either case, the
truncation error behaves like '

p e~x/c

— (4.2)

T(x,h,p) = [;%]

where Yy 1s a constant close to 2. (Actually, Yy slightly
depends on p; see (5.14). For simplicity, we neglect this
dependence.) For the error weighting'function we choose

6(x) = 1, ' (4.3)
which would be the choice (see (3.9)) when one is interested

in computing boundary first-order derivatives (correspond-

ing, e.g., to boundary pressure or drag, in sowe physical
models). Then, assuming w(p) = ¥oP» the optimization

equation (3.11la) yields
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T = _EQ , | (4.4) : \‘

and (3.11b) therefore becomes
- I . l =
h e © if p > Pgs h 2. € if p Py - (4.5)
From (4.2), (4.4) and (4.5) it follows that

h-{-e, p-log—l--l-!:- for 0 <x < x5, (4.6)

Awo
(x-x.)/(ep.+€)
=1 0 0 =
h=_ce » P = P for x05x<1, 54.7) |
, wvhere ‘
- X ., . '
Xy e(log Awo Po 1) . (4.8)
If X, > 1 then (4.6) applies throughout, hence |
1l w.p w.e - o
e [ L gx = 0 Y _ ...
we | 9% = oo Qe = - 1-30), 4.9)
0 0
: 1 Aw_ e
E £ x == S exp(- oW -0, (4.10)
and the condition % > 1 itself becomes, by (4.8)-(4.9),
1, ¥
W2 (py + 3050 - (4.11)

Thus, if W satisfies (4.11), E converges like (4.10).
That is, for lérge values of €, the total error E
decreases exponentially as a function of the overall work W.
Notice that when € is large no boundary-layer is
formed, and the mesh is uniform. Note also that the optimal
mesh;size h = ye/e is independent of the work W (or the
exchange rate ). That is, when more work can be afforded,
it should not be invested in refining the grid, but in
increasing the approximation-order p. 1In the'MLAT
processes described above p will automatically increase

by 2 (or by 1, if non-central approximations are used)
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every multi-grid cycle, until the desired accuracy (or the

work limit, or the prescribed exchange rate A) is recached.

4.2. Boundarr~Layer Resolution

For small e, however, the mesh-size h ® e is
impractical. 1Indeed, in the optimal discretization (4.6)-
(4.7), for small € we get small X and an "external
region" Xg 2% < 1 is formed where the mesh-size grows
exponentially. The small mesh-size is used only to resolve
the boundary layer. 1In this simplified problem the solution
away from the boundary layer (i.e., for x ®»¢) is practi-
callv constant, so that indefinitely large h 1is suitable.
Usually h will grow exponentially, as in (4.7), from
h = ye/e to some definite value suitable for the external
region (the optimal mesh-size of the reduced problem).‘ In
the transition region we have p = Py i.e., the minimal
order of differencing is used in the region where h
changes. This may be useful in practical implementations.

From (4.6)-(4.8) and (4.2)-(4.4) we get, for small ¢,

lwp w.e 2
= [ 0 .0 X . 2
W é h Ty [ D 2 el (had)
1 Awoe Y »
E= g 1dx = ” log Awo , (4.13)

wvhere exp(-1/¢) and similar terms are neglected. Using
(4.12) we can express X in terms of W and substitute

that expression is (4.13). 1In reasonable calculations

W > Vo and then the relation simplifies to
1/2 1/2
E = [—21—9 w] exp[— [—31— w] ] . (4.14)
Yo W8

Thus, essentially -

his




Far small values of €, the total error F decreases
exponentially as a function of Wllz, where this rate is
indepeﬁdent of € and does not deteriorate as ¢ -» 0. In
principle, thls rate is better than O(hp), for any £ixed p.

Notice that here h does depend on W (or 1), but
only in some transitional layer. In the inner part of the
boundary layer h = ye/e still holds, while away from that
layer h tends to the optimal mesh-size of the reduced
problem. (If the reduced problem is itself regular, its
optimal mesh-size will be determined by the "local scale"
of that problem. This scale is independent of W, as it
is for example in Section 4.1 above for the case of moderate
t. That scale is too small to resolve only when the reduced
problem is singular). What depends on the total computa-
tional work is the distance X, from the wall at which
the meshsize starts to grow exponentially. In fact, from
(4.8) and (4.12) we see thaf

x, = c[ﬁ-‘ W)l/z . (4.15)

w.€

0
Defining the computational boundary layer as the region

where h < h,. for some h, independent of €, the width

0 0
¥CBL of the layer is, by (4.7),
" 1 ;
VeBL = xo + (po + 1)e log s . (4.16)

Another, quite obvious but interesting observation can be
made at this junction, based on (4.11) above. Even for
small €, 1if W is sufficiently large then the exponential
relation (4.10) holds. Hence, in an asymptotic theory for
W+ « (corresponding to asymptotic theory for h -+ 0,
which is so common in numerical analysis) the relations of

this section, which undoubtedly dominate the numerical
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process at recasonable vaiucs of W, would not be seen.
What we should be interested in are valuves of W which are
large but independent of &, and therefore not large

compared with negative powers of e.

4.3. Fixed-Order and Constant-Order Discretizations

The optimal approximation-order p calculated above
varies with the location x. ‘This is not essential.
Indeed, if p is fixed then (3.11b) is omitted, but (3.11a)
and (4.2)-(4.3) still imply Tt = Aw(p)/(hp), and hence

1
ptl
b= Y[l‘—’} ceX/ (epte) (4.17)
Yp
Hence, for small ¢,
1
1 ptl
- dx _w(p +1) 1Yp
wew /[ S . [)‘w) , (4.18)
E-‘E flg_’i..lw._( +1)J—-)'P (4.19)
P g b P P G+ D :

Thus, E = cw P with C independent of €, so that the
convergence order is p (analogous to error E = O(hp)
when h is constant). Tha variable mesh-size (4.17) keeps
the convergence rate essentially unimpaired by the singular
perturbation, even though convergence is considered of the
first derivative up to the boundary.

The constant approximation-order P need not of course
be fixed in advance. It may be optimized just as well,
using global tests as mentioned above. From (4.19) it
follows that the minimal E for a given W 1is obtained

when p satisfies
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ei(p) —_—
1+ 5% "1 G e (4.20)
and for w = wopl the total error will be
A1/ (241)
E~ (YW)I/(£+1)exp[- -1-—}-& {%‘-’] } . (4.21)
: ()

For £ = 1 this rate is almost the same as (4.14). Thus, we

do not lose much by using constant, optimized p, which,

on the other hand, may be considerably simpler to program.
From (4.17)-(4.18) and (4.20) we see that the width of

the computational boundary layer is now

Voo ™ e(p+ 1) 103% i (4.22)

CBL
For small ¢ this is (p + l)/(po + 1) times wider than
the variable-order case (4.16). ‘

4.4. A Case of Skipping the Boundary-Layer

To see the effect of choosing different error-weighting
functions, consider again problem (4.1), but with the choice

G(x) = x . (4.23)
This will be the choice in case one is interested in
approximating U only, not its derivative, and to approxi-
mate it in the L. sensc. By substituting (4.2) and (4.23)

1
into (3.11), and solving for p, we would obtain

Aw

p=logyp-1-% - (4.24)
0

< log L 2.
- Aw
0
For bounded (independent of ¢€) A and sufficiently small
€, this p is smaller than Py Hence p = Pq should
replace (3.11b) and substituting (4.2) into (3.lla) we

actually get
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b 0 ) Awoe voe
YC xY .
Thus, for bounded A and sufficiently sma’l ¢, h > ¢

v

. ' (4.25)

everywhere, so that the boundary-iayer is not resolved by
the grid.
In fact, since h >> ¢, all interior grid points lie in
a2 region where the rate of convergence would normally be :
determined by the reduced equation (sce Section 4.5). 1In
our simple example (4.1), the reduced equation has the
trivial solution U = 0, and accordingly E-+ 0 as ¢ -+ 0,
for any fixed W (or A). This can be verified from (3.8),
(4.2) and (4.25).
In case one is interested in approximating U in the

L  sense, a precise choice of the ertor-weighting fungtion

is
Gx) =1 - e XE (4.26)
With this function, solving (3.11) for p we would get
-x/€
p(x) = log x(1 —Ae ) . 1 -2 , (4.27)
% t

max p(x) = p(e log 2) = log As; -1,
0

and hence, for ) reasonably small, p(c log 2) > Py-
Thereforc, around x = € log 2, we again have h = %c.
Beyond this point (for x > € log 2) the discretization
pattern is essentially the same as In Section 4.2 above
(since G(x) 1is essentially the same). Before this point
(x < € log 2) we have h(x) > x, so that in practice we

do not have there more grid points. Thus, the grid through-
out is essentially as in Section 4.2. Similarly, for
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constant p the mesh-size distribution will be as in
Section 4.3. The accuracy-work relation, too, is esscntially

as before.

.

4.5. Remarks on More General Problems

For pcieral problems it is of course impossible to find
apriori the relation between work and accuracy tlat would
result from multi-level adaptive solution processes. In
fact, in most non-trivial cases, an optimal (or nearly
optimal) choice of discretization parameters (h(x), P,
etc.) is not known in advance, since it depends on the
particular solution. This is exactly why adaptive tech-
niques are needed. Nevertheless, in this section we will
try to indicate that the simple relations described in
Section 4.2-4.4 are typical to many, perhaps most, sinéular-
perturbation problems, even in complicated, high-dimensional
problenms.

Consider first a more gencral one-dimensional, constant-

coefficient equation of the form

cm-nv(m) + a cm-n—lv(m-l) + **+ 4+ 2a U(n) (4.28)
m-1 n
+a 0D 4Ly @ o
n-1 !
normalized so that
ux) = e X/¢ (4.29)

is a solution. And assume the boundary conditions are such
that (4.29) is actually the solution. The truncaticn errvor
is then approximately (see (5.14))

p ~x/¢
} < . (4.30)

[ h
t(x,h,p) lYC =
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where Yy 1is again a congtant (slightly different thaﬁ
in (4.2), but still y =+ 2 for larger p. We again
neglect the changes in ). .
If we are intevested in computing U(j)(x) near x = 0,
the error-weighting function for small x should behave
like

G(x) = EJ-m+nxm_l-J . (4.31)

For the adaptive process, the multiplicative constant in G
is immaterial. For our convergence estimates, however, the
correct order of ¢ should be used. The behavior (4.31)
results from the observation that if em’nv(m)(x) = 6€(x)
in (0,1) and V(0) = V(1) = 0, then, for 0 < x < £ << 1,
0 ) = 0™y j
in (4.31) since we are interested in measuring relative
errors in u(j)(x), and by (4.29), u(j)(x) = O(C-j) for
x < 0(e).

An additional e’ factor appears

For j=m-~ 1, Gt is the same as in the special case
discussed in Sections 4.2 and 4.3 above. Therefore exactly
the same discretization parameters and the same accuracy-
work relations will follow. For smaller j, the accuracy-
work relation cannot get worse; it may even improve,
depending on the norm used (cf. Section 4.4).

In more general singular-perturbation problems, the solu-
tion U(x) can be written as a sur of a function ﬁ(x)
which tends uniformly to the solution UO of the reduced
problem, and boundary-layer terms, each of which behaves
like (4.29) above for scme suitable €. (See 0'Malley
(1974).) Consider the case of a fixed order p, as in
Section 4.3 above. Let ho(x) be the mesh-size distribu-

tion optimal (at some given 1) for the reduced problemn,

and hi(x) the optimal distribution in case the solution
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contain only the i-th bouﬁdary term (i =1,2,...,0). Let

Ei and Wi denote .the corresponding total error and overall
work (i = 0,1,2,...,0). For any given solution (containing
all terms) choose

h(x) = min h,(x) . (4.32)
O<i<o *
Then clearly E < Z Ei and W <1I wi. In an optimal choice
of h, E will be even smaller (for the same value of W; or
vice versa). Hence, essentially,

The convergence rate behaves either like one of those
described above for the boundary terms (Section 4.3), or like
the convergence rate of the reduced problem, whichever is
slower.

The situation is a little more complicated for variable
p, bnt we saw before that we don't loose much by using a
constant p. Moreover, the optimal p (4.20) does not
depend on ¢ and can therefore serve uniformly for all the
boundary-layer terms.

Similar convergence T«ates should be expected in higher-
dimensional problems, too. To see this, examine the
behavior near some portion of the boundary. Assuming our
computations use boundary coordinates (see Remark below),
ve cen regard the boundary as x, = 0. Using Fourier

1
transformation in all but the x coordinate, the solution

u can again be written, in manylcases, as 2 sum of u
(tending asymptotically to the reduced solution Uo) and
boundary-layer terms behaving like (4.29). Assuming also
that the only significant adaptation of mesh-size is needed
in the x direction (i.e., perpendicular to the boundary),

we may repeat the above argument, using (4.32), and arrive

at the same conclusion. .
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Remark about boundary coordinates: "Boundary Cbordinates"
is a coordinate system in which the boundary is contained,
at least locally, in a coordinate hyperplanc (e.g.,

{xl = 0}). I Section 3.5 above it is explained how to
construct and use such a coordinate system in multi-grid
processes. For the finite-difference equations it is
important to use a grid along such boundary coordinates.
Otherwise it is impossible to simultanecously use small mesh-
sizes in the direction perpendicular to the boundary and
large ones in the other direction(s), as required for
obtaining efficiencies similar to the one-dimensional ones.

Thin transition layers not on the boundary, such as turn-
ing points in ordinary differential equations or contact-
discontinuities and shocks in higher dimensions, are likely
to be treated by multi-level adaptive techniques as '
efficiently as the boundary-laver cases analyzed above,
since the procedures did not assume any apfiori knowledge
concerning the location of the layer. The layer is dis-
covered, and if necessary resolved, by the numerical process,
using general and automatic criteria. The only difficulty
is, in higher dimensional problems, to get a ccordinate
system in which the interuzl layer is a coordinate lhyper-
plane. To a suitable approximation, however, this can be
done, using the procedure described in Figure 4 above.

Not all singular-perturbaticn problems can efficiently be
solved by the above techniques, of course. For example:
problems with highly oscillatory solutions, such as the

Helmholtz equation

eldutu=0. (4.33)

In usual norms, this problem is not uniformly well-posed.




That is, the change in the solution caused by a ceftain

change in the data is not uniformly bounded: it may increase
indefinitely as € + 0. Such problems should be reformulated,
using other variables and norms, so as to make them uniformly

well-posed. (See Section 5 in Brandt (1978b).)

5. UNIFORMLY WELL-POSED HIGH-ORDER DIFFERENCE EQUATIONS

An extended version of this section appears as Secfion 5
in Brandt (1978b). It discusses the concepts of well-
posedness and uniform well-posedness, ellipticity and uniform
ellipticity, and their significance for siﬁgular-perturbation
problems in general, and for their multi-level solutions in
particular. Closely related are the extensive theoretical
investigations of Frank (1978 and references therein).
Related preliminary observations wcre made in Brandt (1976).

Here we summarize some of the more practical aspects.

5.1. General Remarks

In approximating potentially singular-perturbation equa=-
tions it is essential to ensure that the discrete problem
is uniformly well-posed (uniformly stable) not only with
respect to the mesh-size (h), but also with respect to
the singular-perturbation size (e). That is, in suitable
norms, a small change in data should cause a small change
in the solution, uniformly in both h and €. For this
to be possible, the original differential problem should be
uniformly stable (in €). This, however, is not sufficient.
Innocent-looking difference approximations Lh may easily
be uniformly stable in h (i.e., for any fixed ¢€), but
not jointly in h and €. In such cases satisfactory

approximations will still be obtained by cufficiently smell

-72~




h, but that h will have to be small compared with e (or
some power of €), and hence too small to be practical. In

particular such mesh-sizes are unacceptable (even for

moderate e) for the coarse grids of a multi-~level sturcture.

There are no general procedures to construct uniformly
stable difference approximation; nor even general procedures
to check uniform stability of given difference schemes.

This is in fact already true for the differential equatioms.
But there are some important classes of uniformly stable
operators and some practical ways of coustructions.

For various boundary-value problems to be well posed it
is required that the partial-differential operator (2.la)
is elliptic, i.e., that the homogeneous system of equations
has no non-constant periodic solution. This, together with
appropriate boundary conditions, ensures well-pocedness.
Similarly, the difference operator (2.2) can be defined as
elliptic if there is no periodic Uh such that LhUh = 0,
For scalar operators (g = 1) such a definition was
introduced by Thomee (1964), and various results related to
the stability of such operators were proved by him and by
Thomee and Westergren (1968). Many more results were
published in conjunction with finite-element formulations,
which yield scalar or vectorial elliptic difference operators.
(See Ciartet (1978).). Most of these results, however,
hold only for sufficiently small mesh-sizes, and are there-
fore not directly applicable in the present context (where
"sufficient-small" means smaller than ¢€). Slightly different
notions of ellipticity are needed. The most useful for

applications is, perhaps, the following.

R-Ellipticity. Assume the q %X q difference operator

Lh in (2.2) has constant coefficients, and let

e e
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h = (h .,dd), where h, <fs the mesh-size in the x,

l,.. J
coordinate. Denote
! ‘ X4
A — . = —— o e e ——
] (01,...,6d), 8.x/h 91 T + ed o (5.1)
1 d
le] = max(loll,...,ledl) . (5.2)

Then, for any constant g-vector V

LPei®x/hy g pyel® /by " (5.3)

where A is a q X q matrix, easily obtained by replacing
in the matrix Lh each hj-translatiOn with the complex
function exp(iej). B is called the matrix-symbcl of Lh.

The difference operator Lh is called R-elliptic if
Re VTB(B,h)V >0 for all 0 < |e] <7 and all (5.4)

real gq-vectors V # 0

An operator Lh with variable coefficients is called R-
elliptic if the frozen-coefficients operator at every point
is R-elliptic. A nonlinear difference operator is called
Rfelliptic if the corresponding linearized operator is R~
elliptic (which may depend on the solution around which the
linearization is taken).

This is not a complete definition of ellipticity. For
example, if L? ard Lg are R-elliptic, then L?Lg is
not necessarily also R-elliptic. But the definition gives,
on one hand, a concept much more general than the special
case of positive-type operators (which trivially satisfy
(5.4)); in fact, a definition general enough for almost all
scalar equations. On the other hand, the definition has some
nice properties. One property is that it restricts the
location of the operator, while Thomee's definition allows

any translation to be added to the operator (which of course
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cannot be permitted in digcussing finite nmesh-sizes, bécause
for example, it allows the two difference equations at two
neighboring points to coincide, i.e., to Be just one egua-
tion). This restriction is essential in discussing relaxa-
tion schemes, where a relation is required between each
difference'equation and the point at which it is relaxed.
Another nice property is that the sum of R-elliptic operators
is clearly also R-elliptic. One can therefore construct
R-elliptic operators one term at a time.

We can use this property for singular-perturbation
operators. If both the perturbed and the reduced equation
are elliptic, the required uniform stability is obtained by
constructing a difference approximation which is uniformly
elliptic. A simple way to achieve this is to construct R-
elliptic approximations to the varicus terms in the equation,
so that R-elliptic approximation is obtained, in particular,

for the reduced equation.

5.2. Examples

R-elliptic approximations, of arbitrafy order, will be
constructed in this section for the basic one-dimensional
operators. Since this construction do not use any relation
between terms, these approximations can be used as building
blocks for approximating many ordinary and partial differen-
tial operators. The approximations are constructed on
uniform grids only. As shown in Section 3, this is all we

need in a multi-grid environment.
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Y’ P
{ Using the operator notation
Su(x) = u(x+%) - u(x-%), Vu(x) = u(x) - u(x-h),
du(x) = u(x+h, - u(x),
: 1 . .h h
E Mu(x) = E'IU(X-+2) + u(x-—z)]. (5.5)
' du
| Du =g

and the calculus of such cperators (see, e.g., Dahlquist

and Bjork (1974) p. 311) one can derive the expansions

WD = s ] 2 (- 529 , (5.6)
q=0
2 _ 2,9
22 | S 3T 69 N %))
q=0 .
where

.
a. =1, a = —a=1 and hence (a )1/q -3 . (5.8)

q

From this we find the following expressions for the 2s-order
central approximations to the first and the second deriva-

tives, and for the corresponding local truncation errors:

) =3 ue Zo a (-69)% u(x) (5.9)
o
+ (1% n2 Py
u"(x) = ;12- (-8%) sfl qi = (=69)% u( (5.10)
- ° silh WDy,

where 51 and €2 are some intermediate points.
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Let us now check these difference approximationé for
R-ellipticity. It is easy to see that the symbols corre-
sponding to ué and to —62 arc, respectively, 1isind and
2(1 - cosf). The latter is positive for all 0 < |g] < =.
Hence all the above approximations to =-u" (note the sign!)
are R-¢clliptic. On the other hand any central approximation
to either u' or =-u' has purely imaginary symbol, and
is therefore never R-elliptic. , A

In various elliptic equations, -u" is added to au’,
where a maf have any sign. We therefore need to construct
R-elliptic approximations to both u' and =-u'. This is
done by afding to (5.9) an R-elliptic term of order high
enough: To obtain an approximation O(hzs_l), add any
positive multiple of the term % (-62)5; to retainthe
§7)

O(hzs) crder, add any positive multiple of %'V(- or

-v% A(-Gz)s. These terms are R-elliptic §ince the symbol
of V and -4 are 1 - e—le and 1+ ele, respectively,
so that their real part is positive for 0 < |6| < 7. The
values of the positive multiples can be chosen so that the
O(hz) approximation uges exactly £ + 1 points

(¢ = 25 - 1,s). This gives the following R-elliptic

approximaticns and truncation errors:

s-1 a
$y'(x) = {: 2ue ] a (-6H%+ == (-Gz)s}u(x) (5.11)
q=0 q 2h
a
+ (_l)s i;l h25—1 U(ZS)(€3)
s-1 a
u'(x) = {% we J a (-6H% + =22 V(-éz)s}u(x) (5.12)
q=0 ¢ *h

a
s-1 2s  (2s+1)
+ as} h u (54) ’

+ (D° {T
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8-1 a .
—u'(x) = {- ) aq(-éz)q -2 _A(-cz)’}u(x> (5.13)

q=0
a
- (-1)° {—%§i4-as} n2s u(25+1)(55) .

Observe that these operators are completely one-sided
(so called "upwind") only for the O0(h) and O(hz)
approxinations. One can describe the above formulae as the
non-central operators closest to the central among all
operators which use the minimal number of points. The one-
sided operators using the same number of points are not R~
elliptic (for orders higher than 2).

The error term. For theoretical purposes (as in Section
4.1 above) it is mofe convenient to express the magnitude of

the error terms in (5.10) and (5.13) in the forms

2s ., 2s
[—“5] W) and [—*11-] Wy, (5.14)
YS YS

respectively, and similarly for (5.11) and (5.12). It is
clear from (5.8) that both 72 + 2 and Yi.* 2 as s
grows. Infact, asshown in Table 2, each y: does not
change much with s, and for theoretical convenience we

treat them as constants.

TABLE 2
s 1 2 3 4 5
| 6 30 140 630 2772
v | 122 unm 1.86 1.93 1.97
Y2 | 346 3.08 2.87 2.73 2.64
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High~order approximations ncar boundaries may pose a
problem, since the above difference operators may need func~
tion values at points which are not on the grid. One way
out is to impouse this technical restriction on the adaptive
process (Section 3.6) which will, as a result, choose to
£urth¢r refine toward the boundary. The rcfinement will be
geometric, so that without using too many points (thei:
number is proportional to the high approximation order
desired in the interior), the mesh-size near the boundary
will be smali enough to allow low-order approximation. In
thic respect the boundary behaves like a singular curve.
Incidentally, for certain error norms (correspoadingly: for
certain functions G), iower order can be used (correspond-~
ingly: will be affected by the adaptive process) near the
boundary without spoiling the global order of approximaiion.
(Cf. Bramble and Hubbard (1962).)

6. RELAXATIONS WITH UNIFORM SMOOTHING RATES

A full version of this section appears as Section 6 in
Brandt (1978b). Here we summarize the main points through
sinple examples.

The role of relaxation sweeps in multi~grid algorithms
is to smooth the error (Section 2.1). The efficiency of
relaxation is thercfore measured by its "smoothing factor"
¥ and the corresponding "smoothing rate" v = |log ﬂl-l.
The smoothing factor is defined in terms of the local mode
analysis. Namely, if u(®) is the convergence factor per
relaxation sweep of the 6 Fourier~component (see for

example (2.7)) then,

u o= , max  u(e), vhere le} =.maxlei| . (6.1)
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The range %‘5 lo| < n, which is somewhat arbitrary (see
Section A.3 in Brandt (1977a)), is chosen because these are
the components which are too high to be seen on the coarser
(2h) grid, so they cannot normally be reduced by the
coarse~-grid corrections. This definition seems to assume
an infinite domain (where the Fourier expansion is made),
but the behavior of such high-frequencies is practically
independent of the domain. Thus, the smoothing rate v is,
roughly, the number of relaxation sweeps required to reduce
all high-frequency components by the factor 1/e. y and v
can be calculated for any relaxation scheme by the MUGTAPE
(1978a) routine SMORATE. A table of representative values
is given in Brandt (1977a), pp. 351-352. .

For uniformly elliptic operators all (reasomable) relaxa-
tion schemes have bounded smoothing rates. (See the general
theorems in Section 3.1 of Brandt (1976).) For singular-
perturbation problems, however, many relaxation schemes will
have Vv which grows indefinitely as the size of the
perturbation decreases (e - 0). That is, the convergence
rates of some couponents © will not be bounded uniformly
in €. One may somctimes still get a nice multi-grid
process if those bad compornents have only a small contribu-
tion to the error norms (see Poling (1978)), but it is
better and safer to use other relaxation schemes, with
smoothing rates which are bounded uniformly in €.

Two kinds of degeneracies will usually occur in relaxing

singular-perturbation problems. One kind occcurs in the

boundary layer, in dimension d > 2, when a highly stretched
grid (a2s in Figure 3E) is used. To see the problem,
consider the usual, pointwise Gauss-Seidel relaxation for

the 5-poiut Laplace operator on a grid with aspect-ratio
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a = hllhz << 1, Examining the component-zo . (0,g~ for
example, it is ecasy to sce that v > .5a ~, Since a may

be comparable to ¢, this smoothing rnte‘may be extremely
slow. The same s)low rate will occur for any point-wise
relaxation. 1f, in addition to the Laplace operator, the
differentizl equation has also lower-order terms (as it does,
of course, in singular~perturbation problems), the trouble
gtill occurs, since on the finest grid the higher-order term
(the perturbation) is dominant.

This kind of trouble can always be avoided by using
Gauss-Seidel line relaxation. This means a relaxation in
which we scan Gh (cf. Section 2.1) not point by point, but
line by line. At each line, all the values uh(xh)
associated with that line are simultaneously replaced by new
values which are computed so that they simultaneously ;atisfy
all the differ:cace equations associated with that line. 1In
the above example the lines should be horizontal lines
(x2 = const.), and the resulting smoothing rate will
uniformly be v = 2/log 5, no matter how small o is. The
same¢ smoothing rate will be obtained generally in the
boundary layer, provided line relaxation is emploved with
lines perpendicular teo the boundary.

Another type of degeneracy occurs on the coarser grids,
vhere the reduced part of the equation dominates the smooth-
ing process. The relaxation there should be one which is
suitable for the reduced equation. Still more difficult may
be the case of intermediate grids, where both the reduced
and the perturbation parts interact with the smoothing
process. Consider for example the ordinary differential

operator
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2
.. 4du du -
LU = c-3-+ a5 | (6.2)
dx

and its lowes:-ordera) stable approximatio: s (sece Section
5.2)

Tt -%{wa-h)—(2+nwhh)+ u+nmhu+h»<asn
h .

e

for a> 0,

U = & (a-muPexen) - -t + Uhxor ) (6.30)
h

for a <0,
vhere n = ah/c may be moderate or large. Denote by ;+(n)
and u_(n), respectively, the smoothing factors for the
forva~d and backward Gauss-Seidel relaxation of (6.3):
Forward and backward refer to the marching direction, i.e.,
to the order in which the points x are relaxed. A
straightforward calculation gives, for n > 0,

B = i_(om) = At

{24+ n+ i} (6.4)
- - 1
u_(n) =i (-n) = I2 ey sararey BB (6.5)

Observe that ;+(n) + 1 as n = =, vhich means that the
forward reclaxation is not uniformly smoothing for a > O,

and should not be used. No '"relaxation parameter’ will

help here. On the other hand in this case (a > 0) we have
i_(n) < 5_1/2, so the backward relaxaticn has a very good
uniform smonthing rate. The backward direction corresponds
to the direction of convection, or the down stream direction,
in physical problems modelled by (6.2). Generally,

physical incight is an invaluable scurce {or devising

successful relaxation schemes.
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For a < 0 the situation is reversed: Backward relaxa-
tion is useless at small €, but the forwardArelaxation
has excellen: (very small) smoothing rates. Slightly more

difficult is the case where a = a(x) changes sign in the

domain. In that case each relaxation direction will have .

slow smoothing at some part of the domain. The good scheme
then is symmetric relaxation, i.e., sweeping forward and
then backward. The smoothing factor (per single sweep) of
this is

/2 ) 140 1/2

3+ 3n+ n2+ i(24n)

OREN RGO (6.6)

N
Hence ;s < 2/log 3, uniformly bounded for all values of
n, positive or negative. Observe that, in fact, the
lurger is ln! the better is the sﬁoothing rate.
The same holds feor singular-perturbation equations in
higher dimensions: Very good smoothing rates are obtained
by a proper choice of the relaxation marching direction.
In some situations &ll marching directions should be employed
successively if a uniform smoothing is to be achieved.
This may require more sweeps per multi-grid cycle, which
one would like to avoid. We can, in fact, construct relaxa-
tion schemes which have bounded smoothing rates even when
marching against the local convection direction. These
schemes necessarily belong to the following class.
Distributed Relaxation. In classical relaxation we
rclate the unknown at a grid point to the difference equation
at that sanec point. That is to say, we change that unknown
to satisfy the correspbnding equation; or, as in line
relaxation, we change simultaneously a set of unknowns to

satisfy the corresponding set of equations. This "marriage"
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betwecen the unknown and the equation at the same point'is

not always natural. In many cases, espgcially in solving

a system of differential equations (g >-1), the natural
thing is to change several unknowns in ord:r to satisfy just
one difference equation. Such & scheme is called distributed
relaxation. (See Lecture 7 in Brandt (1978a).) A special
case of such a relaxation was suggested by Kaczmarz (1937)
and znalyzed by Tanabe (1971)9). Various cases of distrib-
uted relaxation for singular-perturbation problems are
analyzed by Dinar (1978).

Let us show how distributed-relaxation fields uniformly
bounded smoothing rates even when the marching directien
is upstream, i.e., against the direction of convection.

Take again the operator (6.3a) and assume forward relaxation.
Instead of changing enly the approximation uh(x) te
satisfy Lhuh(x) = F(x), change now both uh(x) and

uh(x + h): Change uh(x) by adding to it &, and

uh(x + h) by zdding to it -~w8, where w is a fixed
coefficient (see below) and & 1is calculated so that the
equation Lhuh(x) = F(x) 1is satisfied after these changes. -
This marching process is stable for w < (1 + n)/2. The
larger w the better is the smoothing rate. By taking w
not far from the critical value (1 + n)/2, we can get
smoothing rates Vv which are less than 1 for all n, and
v = O(n-l) for large n.

w is called the distribution coefficient, and should not
be confused with the familiar "relaxation parameter". The
above scheme is ralled Distributed Gauss-Seidel (DGS)
relaxation, because, as in the Gauss-Seidel scheme, each

difference equation in its turn is fully satisfied by the
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changes. For all problems examined, ‘ncluding incompressible
Navier-Stokes equations, DGS was found to be the best
smoother.

One final remark: The difference operacor must be
uniformly stable (see Sectien 5), otherwise no relaxation
scheme canbhave uniformly bounded smoothing rates. For
exauple, if the central difference approximation is used
instead of (6.3a), even backward relaxation would have

1 - n/2
7+ il +n/] L as e

u_(n) =
FOOTNOTES

An exception is the case when the coarse-grid difference
operator L= does not fully use the smoothness of the solu-
tion. In that case, ii Ii in (2.4) is of sufficiently
higa order, then Vh will be smooth enmough to be approxi-
mated by some VH. This situation is related, however, to
the use of an inappropriate approximation order, and will

therefore not arise in a fully adaptive procedure.

2)Provided the two Iﬁuh appearing in (2.9) are
identically the same. A cormmon programming error is that
they differ at some special points.

3)

It is not necessary to compute the residual norm, since
this particular algorithm is "fixed", its flow does not
depend on the intermnal measures, and the number of sweeps
made at each stage is prescribed in advance. For more
complicated equations an "accommodative' algorithm, with
internal switching criteria (e.g., the algorithmin Figure 1
above), may be desired. But, for more complicaced equations,
relaxation is more expensive, so that the extra work in

computing IIrH“ is relatively small.

e




4)

t-extrapolation is produced by the same FASPMG program
of MUGTAPE (1978) through simple changes shown there by‘
Comment cards. '

S)Altcrnati.ely, extra smoothness on the scale of the

finest grid Ch can be used to produce a solution with
errors smaller than the truncation errors in very little
work. Indeced, if the difference equations do. not exploit
all the smoothness in the solution, an approximation to the
level of the Gh truncation errors is obtained (with
T-extrapolation) already on cne of the coarser grids. All

is needed then is to interpolate from that grid to Gh,

with high enough order of interpelation.

6)For_examp1e, in the approach taken by Hackbusch (1978},

the solution of a coupled pair of elliptic equations
requires work equivalent to toc many (at least 28/3,
instead of just 2) solutions of a single equation.

7)

An abnormzl run can usually be detected by examining
the condensed output (output similar to the first three
columns in Tazble 1}. See Debugging Techniques, Lecture 18
in Brandt (19782).

8)It is enough to study relaxation schemes f%F the lowest

order operator, because (i) one can compute higher-order

approximations via the lower-order ones (see Sectioﬁ 3.4).
(ii) For any relaxation scheme, the smoothing-rate depen-
dence on the approximation-order is not very significant.

)

References due to Blair Swartz and Gene Golub.

lo)Fh in the definition of rh should later be under-

stood as the current right-hand side fh = F:/Z (see Fig.
1)0.
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