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ABSTRACT

A survey of numerical methods for time dependent partial
differential equations is presented. The emphasis is on
practical applications to large scale problems. A discussion

of new developments in high order methods and moving grids is
given. The importance of boundary conditions is stressed for
both internal and external flows. A description of implicit
methods is presented including generalizations to multidimensions.
Shocks, aerodynamics, meteorology, plasma physics and combustion

applications are also briefly described.
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1. Introduction

In the construction of numerical solutions to large
scale problems one wishes to have a code with many different
characteristics. Examples of these properties include
efficiency both in terms of computer time and computer
storage and also ease of use. Frequently a code is con-
structed to be used by other people who do not have a
detailed knowledge of the algorithm. Hence, one does not
want a program which requires the specification of many
nonphysical parameters or one that requires intervention
on the part of the user. Lagrangian codes are frequently
complex and may require operator intervention for rezoning.
Hence, we shall concentrate on Eulerian methods.

In contrast to ordinary differential egquations it does
not seem advisable to introduce general packages for time
dependent partial differential equations. In one space
dimensions a number of packages exist usually based on an
ODE solver. These packages are useful when one wants a
quick answer to a simple problem. However, the programs
are far from optimal both in terms of computer time and
computer storage [115]. Hence, for realistic physical
models with many complicated equations which are to be
solved many times it is necessary to develop a code for
each problem. This is especially true for multidimensional
problems. The range of solutions including both smooth
and discontinuous flows demands that the algorithm be

carefully matched with the physics. Depending on many



factors one may need either an explicit or implicit scheme.
Accuracy and geometrical considerations will determine
whether high or low accuracy methods (in both space and
time) are more appropriate.

In the following sections we will discuss in more
detail many of the factors that influence the choice of a
scheme. Special attention will be paid to the treatment
of boundaries. After a general discussion of standard
boundary treatments attention will be focused on moving
boundaries. Artificial boundaries to simulate an infinite
domain create other difficulties which will be analyzed.

In all these cases the interplay between the physics and
the numerics will be stressed. Implicit methods and appli-
cations to specific problems are discussed with special

emphasis on shocks and on steady state solutions.




2. Boundary Treatment

Since much of this study deals with nonstandard bound-
ary problems we shall first review the basic theory. For a
numerical method to be useful we require that it be stable
and also converge. Hence, small perturbations in the
problem should give rise to small perturbations in the solu-

tion. We first consider the model equation

(2.1) u, + Aux =0

with A a constant nxn matrix and 0 < x < 1. Let A be
symmetric anéd have k positive eigenvalues, n-k negative
eigenvalues. It is then straightforward to show that (2.1)
is well posed only if k linearly independent conditions are
imposed at x = 0 and n-k conditions at x = 1. This number
of conditions is also sufficient for well posedness as long
as no variables corresponding to characteristic variables
coming into the boundary, from inside the region, are specified.
For a numerical method it is necessary to specify the
correct number of boundary conditions as given by the
differential equation. 1In general one requires some method
to numerically determine the boundary values for the other,
nonspecified variables. If the boundary treatment is not
done correctly then errors are generated at the boundary
which propagate into the domain of integration and create
instabilities. Especially for nonlinear problems these

instabilities frequently do not manifest themselves at the




boundaries but rather along sonic lines or stagna.ion
points. It is a nontrivial task to trace the source of
the difficulty to a mistreatment of the boundary [137].
For simplicity we shall assume that the numerical
scheme uses information only at the point of interest and
at its immediate two neighbors at various time levels. Then
Kreiss has shown [81], [110] that the stability for a
scalar equation can be analyzed by assuming a solution of

the form

and only considering the semi-infinite domain 0 < x < =,
If there are solutions to the interior and boundary differ-

ence schemes with |«x| < 1 and |z| > 1 then the initial-

boundary scheme is unstable. If there are no nontrivial

< 1 and |z| > 1 then the scheme is

solutions with |«
stable. If there are solutions with |k| =1, |zl =1

more care is required. For additional details see the survey
by Morton [140].

For systems of equations or schemes that require more
than three mesh points at a time level the theory is more
complicated. For systems, the algebra of solving the equa-
tions for complex «x and z 1is large and needs to be done
for each system of equations. Gottlieb, Gunzburger and
Turkel {[72]) have shown how the scalar results can be extended
to systems of equations if one takes into account the

characteristic variables (see also [28]). If this is not
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done examples are given to show that troubles can occur.
Several examples are presented in later chapters. Engquist
and Smedsaas [55) have a method of lines code that automa-

tically accounts for the characteristic variables.

For several of the standard schemes, boundary condi-
tions have been analyzed by several authors. We shall
present a brief outline of the results.

1. Leapfrog method:

a. Extrapolation in space is unstable.

b. Extrapolation in space-time is stable.

¢. A one-sided Euler method is stable.

We again emphasize that these results are true only for a
scalar equation. As mentioned above the scalar results can
be extended to systems if the numerical boundary treatment
is done on the correct characteristic variables rather than
on the natural variables. The given boundary conditions
can consist of any combination of variables that yields a

well posed differential problem.

2. Lax-Wendroff method:

This is usually implemented by a two step Richtmyer
or a two step MacCormack method. The MacCormack method
is easier to implement as no half points are required and

boundary conditions can be imposed after the first step.

The treatment of parabolic terms is also easier using
the MacCormack scheme.
a. Space extrapolation at the conclusion of the two
steps is stable.
b. A one-sided Euler method at the conclusicn of the

two steps is stable.
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c. Extrapolation at the intermediate step of the

Richtmyer method is unstable.

d. Extrapolation or one-sided differences at the
intermediate step or final step of the MacCormack
method is stable.

These boundary treatments are discussed in detail in [71].
Method 4 is particularly easy to implement and will be
discussed in more detail in the next section where it is

extended to higher order methods. In many cases nne sided

differences are equivalent to extrapolation of fluxes to
artificial points exterior tc the region. The choice

between these options is b sed on programming ease.

3. Implicit methods:
a. Space extrapolation is stable.
b. The box scheme is stable and very accurate.
c. Explicit one sided differences can lead to

stability limits on At ([172]).

Many numerical tests have confirmed the analysis of
Kreiss for both simple test cases and complicated problems.
At present one difficulty is to extend these results, in a
useful manner, to multidimensional problems. Abarbanel and
Gottlieb [3] have considered the leapfr.g scheme while
Bayliss (private communication) has analyzed methods based

on splitting techniques. 1In praccice most of the one




dimensional results generalize to the multidimensional
situation. In the coming chapters we shall consider
practical generalizations to higher order methods, moving
boundaries and radiation boundaries.

The numerical treatment of boundaries for parabolic
equations is usually simpler than that described above
since all the variables are prescribed. Some difficulties
may arise when derivative boundary conditions are given,
this is especially true for nonrectangular regions [195].

More serious difficulties occur when the highest space
derivatives are multiplied by a small (but fixed) parameter,
e.g. high Reynolds number flow. Most schemes contain some
numerical viscosity and so one must ensure that the numeri-
cal viscosity does not overwhelm the physical viscosity.
In general this is only true in boundary layers where the
large gradients enhance the physical viscosity. Therefore,
when the computations do not resolve the boundary layer it
is not reasonable to impose parabolic-type boundary condi-
tions. When one uses a coarse mesh near the boundary one
is effectively ignoring the viscous effects and only con-
sidering the inviscid equations. So, with coarse grids near
the boundary one should use hyperbolic-like boundary condi-
tions. Failure to do this leads to cell Reynolds number
restrictions [158].

To clarify this point we consider a model problem; the

steady state linearized Burgers eguation

(2.2a) U = Rug o R>0, 0 < x<1



with boundary conditions

(2.2b) u(0) =1 u(l) = 0
The solution is given by

(2.3) u(x) = (ef - e®)/(eR-1) .

For R 1large the solution is approximately equal to 1
everywhere except for a boundary layer near x = 1.

Solving (2.2) by central differences we have

(2.4a) v -2V, + v, with

341 TVt Vi = Ryvyy m Vi)

:]_ A
(2.5) v, = 228

Rl is generally called the cell Reynolds number or the
Peclet number. For R: larger than 2, Q 1is negative and
so vj is oscillatory. As RA increases, Q approaches
-1 and vj acquires a large 2Ax oscillation which has
nothing in common with the analytic solution (see also[l5B]).
One way to avoid this situation is to construct schemes.
at least near boundaries, which do not have any cell PReynolds
number restriction [6], [36]), [41]. Alternatively one can
match the interior scheme with an asymptotic expansicn for

the boundary layer [82]. Where feasible stretched grids

should be used to resolve the boundary layers. When the
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position of the boundary layer is not known in advance or
is nonuniform along the boundary this is a difficult process.
The important point is that this oscillation is entirely
due to faulty boundary treatment, i.e., nonresolution of the
boundary layers. < or example, specifying u, = 0 at x = 1
rather than u = 0 eliminates these oscillations. This is
a practical method for outflow boundary conditions [84).
Aiternatively, one can specify combinations of u and higher
order derivatives at the boundary. As Ax goes to zero this
combination should reduce to u(l) = 0 and so the scheme con-
verges for fixed R. As RA increases the boundary condition
should approximate some extrapolation formula which is stable
for the hyperbolic difference approximation. For example, we

can replace (2.4b) by

(2.4c¢) v, + RA(V

N N~ Vn-1) =0

The solution to (2.4) is then given by

N 1

(2.6) vy =agde1-a; A= -t eria-on”

By inspection vj converges to u(xj) as \x goes to

zero. As Rﬁ increases beyond 2, (Q becomes negative

and oscillations appear. However, the factor A 1in front

of the oscillatory part becomes small and so the oscillations
do not disturb the solution. In more practical situations

the first difference v can be replaced by higher

N~ VN-1
differences for greater accuracy. Similarly, more compli-

cated weights than simply R can be constructed. For
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multidimensional problems RA varies locally in both
space and time. The u~swrstream boundary conditions can
also create oscillations wiien the mesh does not resolve
the boundary layers. Correct treatment of the downstream
boundaries eliminates this difficulty [95].

This provides an additional example of the ill effects
of improper boundary treatment. As before the effects
propagate into the interior and cannot always be easily

traced back to its proper source.
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3. HIGHER ORDER METHODS — FORMULATION

As computer hardware improved, the need for more
sophisticated numerical algorithms became obvious. In the
early stages of software development a standard technique
was a first order method while a high order method signi-
fied a second order method. Computers were not sufficiently
fast to consider two dimensional problems with fine meshes
and so only low accuraby results were obtained. With the
advent of faster and more structured éomputers it is now
reasonable to achieve one percent accuracy for many two
dimensional time dependent problems. Three dimensional
problems are being solved with coarse meshes. With this
situation it is necesse.y to analyze higher order
methods. When one wishes accuracies of the order of one to
five percent the higher order methods allow for a coarser
grid than first or second order methods with no loss in
accuracy. This coarser grid means that both computer
storage anrd computer running time can be decreased without
any deterioration in the solution. When even more accurate
solutions are needed the advantages of the higher order
methods are more pronounced. The results of [188] show that
even with low accuracy requirements the fourth order method
was more efficient.

Higher order methods may not always be advantageocus
or feasible. Higher order methods usually require more
computer time per time step than lower order methods. Hence,
efficiency is increased only if a coarser mesh can be used.

There are various circumstances where the mesh is
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constrained by considerations other than accuracy and hence
little is achieved by higher order methods. One case is
when the geometry of the problem demands a large number of
points. For example, if one wishes to describe the many
perturbations on a real wing then one needs many more
points than are needed for reasonable accuracy with a
second order method. Another example occurs in meteorolog-
ical flows over the globe. The accuracy of any algorithm
is limited by uncertainties in the physics of the model and
in observational data. However, one cannot choose too
coarse a grid or the topography of the earth is distorted.
Similar situations occur in other fields where the basic
equations being integrated have only limited validity.
However, for the majority of cases where the mesh is
constructed mainly on accuracy considerations the use of
higher order methods can lead to large savings in time and
storage. Furthermore, the implementation of these methods
frequently does not require large modifications to existing
codes.

The construction of higher order methods has proceeded
along one of three lines. Either extensions of existing
finite difference methods, or finite element methods or
spectral methods. Multidimensional finite element methods
have not proven very successful for hyperbolic problems.
There are problems with the inversion of a large
unstructured but sparse matrix and have thus far not

competed successfully with standard alternating direction




techniques or explicit methods. Furthermore, finite
element methods do not automatically yield stable boundary
treatment (see e.g. [72] and [80]) and so much of their
justification for elliptic problems does not generalize.
In this section we shall discuss finite difference methods
and spectral methods.

High order finite difference methods have the
advantage that they are similar to lower order methods.
Hence, their implementation is easier and usually does not
require major modifications to existing programs. Spectral
methods are even higher order and frequently are "infinite"

order methods. They have limited applicability to problems

with complex boundaries (see however [151]) and their suita-
bility for shock problems needs further investigation. It is
possible to construct unconditionally stable spectral methods;
also boundary conditions are more straightforward with spec-
tral methods. We shall concentrate on the so called pseudo-
spectral or collocation methods as they have wide range of
applicability. Galerkin spectral methods are more costly
because of the need to calculate convolution sums. Hence,
they are limited to equations with a quadratic nonlinearity
in which case fast methods are available to calculate the
convolution sums [149]. Even in this case they are two to
tnree times slower ti..~ a pseudospectral method.

We first consider the one-dimensinnal equation

(3.1) u, + £ =0
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and some extensions of standard second order methcds.

The leapfrog approximation to (3.1) is given by

- £

- -1 _ n
(3.2) a2t A (£] 5-1)

j 3 i+l

with A = At/Ax. A fourth order extension suggested by

Kreiss and Oliger [111] is

(3.3) o1 - u?-l - % (8 (£"

n n n
3 j#17 f3-) T U

j+2° fj-z)]

At the boundaries (3.3) can be supplemented by
(see [64]) and [143]

+1 _ -1 A
un - n___3_(

0 0 ~11£0+18£0-9£0+2£7)

0 1 2 3

11Xxp n+l n, n-1
+ =25 (ug T2t )

6 0
(3.4) and
ntl_ n-1 X . .n_ n n_ cn
upt = uy - 3 (-2f - 3£+ 6f,- £1)

+ A% (u?+l- 2u§+ u?—l )

with p > spectral radius of A = 3f/3u.

These equations can be trivially solved for u3+l

n+l and un+l

Similar expressions can be derived for uy N-1°

To these conditions must be appended the appropriate

boundary conditions. This scheme is stable if X %g < .72,

Another standard scheme is the Lax-Wendroff method.

A two step version proposed by MacCormack [124] is

(1) n n n
A Y L)
(3.5) Y5 %5 (f541 3)
ntl1 _ 1 . n (1) (1) ()
, = = .+ A - A(f. - £
%3 2 uy * oy 5 31!
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Another variant uses backward differences for the
predictor and forward differences for the corrector. A
fourth order extension is given by Gottlieb and Turkel

[69],[188].

(1) _ n , A 40 _ gcn n
R L ST * ST 3P
(3.6)
n+l _ 1 cno, (1)_ A o (1) oo (1), (1)
ul™t = 3 [ug + uy g (7%; BE )+ £50901 -

The boundary treatment for the predictor is

(1) (1) _ A n _ . _ ,en n
g Wy - f 4fy_*+ £y 5)

UN-1 T UN-l N-1 N-2
(3.7a)
(1) _ n _ A n _ n n _ ,cn
ugt) = up - = (15fg - 28y, + 17£g - 4f o)

and for the corrector

n+l _ 1 poong (1) A, (1) _ o (1) oo (1) oo (1)
u0 =3 [uo+uo 3 (4f3 l7f2 +28fl 15f0 Y]
(3.7b)
n+l _ 1 .n, (1)_ ) _ (1), (1), (1)_, (1)
Uy =5 [Jl+ul 3 ( f3 +4f2 +f1 4f0 )]

The boundary conditions (3.7) are identical to using cubic

extrapolation to calculate the fluxes exterior to the

domain and then using (3.6). There exists another variant

with backward differences in the predictor and forward

differences for the corrector. For fourth order accuracy,

in space, one must alternate the two variants. This scheme
of

is stable if A £= < 2/3.

- - o cmaieh T e
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The schemes that have been presented are second order
in time. It is possible to develop four step methcus that

are fourth order in both space and time. One such method

is
(1) - l n n _A..n __n
n n n
J 8 2 "7j+d Ti-3
(3.8)
n n
L3y _ Tl tugoy) FO g, Hul)
j+i 8
(2) (2) n _
+ J\[fJ+l fJ (f3+2 3f. j+1 3f° +fJ l)]
n+1 n_ X (3) (3) (2) (2)
uy o= J+ ) (g 5% fj_é fJ+l tj_l
2 .3 1 .1 .
AR S A B A
1 n n n n
+R(-—fj+2+10fj+l-lij_l+fj_2)]

This scheme is stable if Aé- < 1.

Other variants are given in [ 1] and extensions to
multidimensions are described in [186]. Third order methods
in time are given by Burstein and Mirin [30] and Rusanov [164],
[165]. Steppeler developed third order methods in space
and time based on an explicit evaluation of the Taylor

Series combined with a third order finite element approxi-

mation [175], [176]).
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An alternative approach is to use Richardson extrapola-
tion at each time step to increase the local accuracy in
time. For the leapfrog method, which is symmetric about
t +At/2 , this is straightforward while for the multistep
methods it is more complicated. This approach increases
the domain of dependence and also decreases the time step
allowed by stability. It has the advantage of simplicity
and of generalizing to multidimensions ([187]}).

The schemes considered until now have been explicit
methods that are fourth order in space. We now present

higher order implicit methods. Comparisons between explicit

and implicit schemes are presented in Section 5. We
consider the compact implicit scheme [149], [202].
(3.9) (280" |+ aau® + (22 au?
: 2 j-1 3 2 j+1

_ _ A n+l _ _n+l _ryv (el _ gn

with aul = u9+l - uf.
J ] J
If o = 1 we have the standard implicit schemes. These

are second order in time when § = 1/2 and unconditionally

stable for £ > 1/2. If a = 2/3 the schemes are fourth
order in space. To solve (3.8) requires an iteration pro-
cedure. An alternative is to expand fn+l. Let A = %% ’
then a substitute for (3.9) is
(3.100 (A2 -realeud )+ e + (2 +A6a") buj, )
= -2 (f? -7
2 j+1 j-1
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This scheme has the same formal order of accuracy in space
and time as (3.9). Experience has shown that if one is
approaching a steady state or else if the time evolution
is slow then (3.10) is accurate even with large time steps
(see (14]). However, for some problems the iteration proce-
dure may be necessary. For sufficiently large time steps
approaching a steady state and ¢=1 it can be shown that
(3.10) is approximately Newton's method for solving nonlinear
equations ([105].

Using a trapezoidal rule with end corrections it is
possible to construct a fourth order in space and time
formula that requires only three mesh points in the x

direction. Let A be the Jacobian of £f with respect

to u. Then (3.9) can be replaced by

1

(3.11) g(—mu’j‘_l + Au‘j‘ - 4Au‘j’+l)
S ’;:i - f?ti + €5 -0 )]
g5 WPl g A
* BTy (5~ £5) S AT (5 - £5 )

If one wishes to linearize this scheme with fourth order
accuracy in time, one must first calculate a second
order accurate predictor. Hence, the generalization of
(3.10) requires a predictor and corrector step. An

additional difficulty with (3.11) is that the matrix
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inversion is stable only when A%% < 1. Hence, even though

the scheme is unconditionally stable one must restrict the
time step in order to get a well conditioned matrix problem.
Furthermore, it is difficult to generalize (3.11) to multi-
dimensional problems since an alternating direction method
will reduce the time accuracy of the algorithm. This scheme
as well as some noncompact higher order implicit methods

are described in [92]. Fourth order, in space, methods

for equations with both hyperbolic and parabolic terms are
considered in [41] and [161]. Some comparisons for the
boundary layer equations are presented in (205]. It is
also possible to construct higher order methods for these
problems by combining high order Dufort-Frankel and leapfrog
methods [68], ([11l1].

Since these schemes are compact, special schemes are
only required at the boundary. The author has found that
the box scheme is especially accurate even though it
reduces the order of accuracy. Hence, a boundary treatment

for (3.10) would be

1-2a" n 1+AAR n n n
{(3.12) { 5 )AuO + (———5———)Au1 = -x(fl- fo) .

Further discussion of implicit methods is presented in
section 5.

All the above methods are extensions of standard finite
difference formulas. Hence, they have the advantagc that
it would not involve much programming effort to change an

existing code. However, although they are of higher order
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they are still only fourth order accurate in space. An
alternative is to use a pseudo-spectral scheme. For suf-
ficiently smooth solutions these methods converge faster
than any power of the mesh size (see [70]).

For periodic boundary conditions the most appropriate
expansion series is the Fourier series. To solve (3.1)

with a leapfrog-like method in time one algorithm is

n+l n-1 n
.1 . =\u. - 2(AtE ).
(3.13) uJ u3 ( x)J
where
n_ ¥ o 1ijk/N
(3.14) (tf£)%= 7 if G(kot)e'?td
X J k=-N k

where G(k At) = k At + O((k At)3]. Given f this requires

two fast Fourier transforms. A good choice for G is
(3.15) G(k2t) = (8 sin (ko Lt) - sin{2koit) /69

with ¢ > 1.4 - (spectral radius of %% . This scheme 1is
unconditionally stable.

For problems requiring some dissipation one can
replace the leapfrog method by a Runge-Kutta method. If
one wishes to use a splitting method for multi-dimensional
cases then in practice one is limited to second order in
time methods. Unfortunately, the second order Runge-Kutta
method is unconditionally unstable for the Fourier method.
Hence, we consider a modified method similar to (3.13 - 3.14).

The modified Euler scheme is given by
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o= - Atfin)

(3.16)
uh*l . i(ﬁ*-u"-At?x)
with
(atf )7 = ? £ G, (kot)e"HIK/N
3 B 1 e
(3.17)
N . .
z ijk/N
(atE ). = J  £.G,(kat)e' I
X3 K==N k2

with Gl(kAt) = kat, Gz(kjt) = k4t for small kAt.

Choosing Gl(kAt) = Gz(kAt) = kAt the stability condition
2

is AN°At < 8 with A = 3f/3u [70]. Since this is very

restrictive we substitute this with

Gy (kt) = (-e?%+8e%-7) /60
(3.18)

G, (kat) = (7-8e”%+e"%%) /65
where 2z = ikcAt and - > 1.4o(A). As before the scheme
is unconditionally stable with these parameters.

If we consider the simplified equation
(3.19) u, + alxju, =0 ,
the standard stability proof for the Fourier method is

valid only if a(x) doesn't change sign (see [57]). The

correct analysis of (3.19) when alxy) =0 depends on

—_—
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distinguishing between mesh-stability and time-stability.
The Fourler method for (3.19) is stable for 0 < t < T

as the number of modes increases. idence, by the Lax-
Equivalence theorem the approximation converges to the
analytic solution. However, for a fixed number cf modes
the error may increase exponentially as time increases
(when a(xo) = 0), Hence, the Fourier method in its
original form may not be useful when a(x) changes sign
[74). To overcome this difficulty we replace G, (kat) by

Gl(kAt)p(k) and similarl: for G in (3.21). We choose

2
the cutoff op(k) so that it is one for small k and goes
to zero for the nighest modes. Majda et al., [131] and
Kreiss and Oliger (113) have shown that this modification
to the Fourier method is stable. 1In fact, using these
cutoffs with a Crebyshevy method (to be described) one can
solve the Riemann problem »f fluid dynamics and resolve
the shock and contact discontinuity within one mesh width
(D. Gottlieb, private commuaication).

For bounded domains, 2n expansion in Chebyshev poly-

nomialzs is more appropriate. Since the eigenvalues of the

operator have a negative veal part, we consider a two step

scheme rather than o !capfroag method. Hence, we have
LSS A(rtf )0
-~xj
(3.20)
3
un+1 - N n+}

u., - (“tf
D) ( x))
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Let x4 = cos nj/N, one can then expand

N
(3.21) £.= § arT (x)) j=0,...,N
J  xap KK7I

whare [70]

(3.22) ay

Equation (3.22) is solved using the FFT. We then have

N
. A . = T
_ (3.23) (Atf, )y kzo by Ty (%)
? with
2 N
(3.24) bk = o aQG(EAt)
k i=k+l
f+k odd

and G(iAt) = LAt + 0((;t)3). In this case a reasonable

choice is (see [73)), =z = e_aiﬁt. and

(3.25)  G(LAt) = (i°-18z+9z%-22%)/6a |,
with o« approximately equal to the spectral radius of %é .

The extension to multidimensional problems in

rectangular domains is straightforward. The leapfrog

N




methods generalize in the obvious manner. For the Runge-
Kutta methods splitting techniques are avai able for multi-
dimensions while for the implicit methods alternating
direction techniques are the most appropriate.

We have stressed methods that are second order in time.
There are several reasons why higher order methods in time
are less appropriate. First, the extension to several
dimensions is complicated as splitting and alternating
direction methods are second order in time unless complicated
algorithms are constructed. The necessity for a full multi-
dimensional scheme usually results in a method which requires
many operations per time step. For problems v.ere the time
dependent equations are being used as a relaxation scheme
to a steady state there is no obvious advantage to a higher
order method in time. Even for time dependent problems the
important physical phenomena frequently move at speeds

considerably slower than the fastest signal speed allowed by

the equations. Hence, these motions are usually easy to resolve

and only the variation in space is rapid requiring higher order

techniques. The other major argument for second order schemes
in time is that one can always increase the time accuracy by

taking smaller time steps. The computer work involved v;rios
linearly with the time step and so this may be morc efficient

than a costly high order method. Furthermore, chocsing

smaller time steps does not increasec the storage. lHowever,

L
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for explicit methods doubling the mesh points increases
the work by 2d+l in d dimensions and the storage
requirements increase by 2d. Hence, the use of high
order methods in space to limit the number of mesh points
can be very advantageous. Furthermore, one can increase
the accuracy in time by locally using Richardson extra-
polation {187]. In general it is not known when higher
order methods in space or time are more efficient than
lower order methods. One case where the author has found
higher order methods, in time, useful is instability

studies. Time inaccuracies can introduce errors which

cause artificial instabilities. As more experience is

gained better guidelines should be available.
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4. HIGH ORDER METHODS -- RESULTS

In [150] and [186] a range of problems are considered
to demonstrate the advantage of high order methods. Here
we consider two of these cases which illustrate many of
the phenomena of more complex situations.

The first problem is flnw in a nozzle. The equations
are one dimensional but many two dimensional effects are
included by specifying A(x) the area of the nozzle at

position x. The equations of motion are

(Ap), + (oAu) = 0
(4.1) (Apu) + [ Afpu’+ p)] = Ap
(AE), + lAW(E + p)1, = 0
. _ 1 2 _
with p = (y=-1)(E - 5 eu ) and y = 1.4.

The solution to the steady state equations is known
for both smooth and shocked profiles [43]. Hence, we march
the equations toward a steady state and we can then compute
the errors between the computational solution and the known
analytical solution.

We linearize (4.1) about a constant state (oo,uO,EO)
and drop lower order terms. One then finds that the
characteristic values ) and eigenfunctions Vv are given

by

(4.2a) Al = u E

G ik
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v S| o

(4.2b) Ay = uy +cy v2=u0L-2--—;71-p- Yy T o1 pu+E
7/

[ 3 c
(4.2¢) A, = u, = ¢ vV, = u Eg-+ip-(u+——9—— u+E
' 3 0 0 3 0f 2 y-1J 0" Y-

\ \

E

. 2 _ _ ~0 _ 2
with Co = y(y=-1) [po éuo

At the inlet the flow is subsonic and we specify
p and E equal to the known steady solution. This is
supplemented by a difference equation for the characteristic
variable vy which is coming into the boundary. Given o,
E and vy oOne can trivially solve for pu. With the
explicit method it was not found very important to solve
for Va rather than pu. However, with the implicit methog
and large time steps the use of (4.2c) was crucial. As
pointed out before the use of noncharacteristic boundary
treatment frequently manifested itself as a negative pressure
at the sonic point. The only way of identifying it as a
boundary difficulty was to observe that the difficulty dis-
appeared when one solved for v, rather than pu by the
boundary difference scheme.

For smooth solutions no boundafy conditions are speci;
fied at the exit. Hence, the special boundary treatment
is used for all three variables. For a shocked profile the
pressure is specified at the exit. Again, with the explicit
schemes it was not found necessary to use characteristic

variables. Instead we calculated o and pu by finite
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difference approximations to (4.1). E was then calculated
knowing p, pu and p. With the implicit methods one must
first linearize the given boundary condition so that itera-

tion is not required. This is similar to the manner in

which (3.10) was derived. Then pn+1 = Pexit is replaced
by

uf Pexit = P

0 _ _ ~exit . _ n+l_n
(4.3) -5 b updm + AE ==V =71 Ao= p" “=p

By inspection one verifies that in the steady state
P = Poyit* (4.3) is supplemented by two equations based on
the box scheme (3.13) for the characteristic variables vy
and Vo For the higher order methods A'(x) must be also
calculated to the same order. Hence, for all problems both
A(x) and A'(x) were given analytically. For the examples
considered A(x) was chosen as a nyperbolic cosine.

For smooth profiles, it was found that the major
difficulty occurred at the throat where the flow is sonic.
When an artificial viscosity is not used many of the
methods gave rise to an expansion shock. For most of the
problems the solution is considered at steady state if p
changed by less than ¢ = 10-5 in one time step. For some
of the runs with high resolution a smaller ¢ was chosen.

In Table 4.1 we present the results for a smooth
profile. The explicit MacCormack methods did not require

an artificial viscosity while the implicit metheod did.

When needed the artificial viscosity is added explicitly
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at time t even for the implicit methods. We see from the
table that the fourth order explicit method is more than
twice as efficiént as the corresponding second order method.
It also requires less than half the storage to achieve
three digit accuracy in the steady state. For four digit
accuracy the efficiency factor increases to 16.

For implicit methods the accuracy and stability depends
very much on the boundary treatment. In [72] it is proved
that one does not need to include the given boundary condi-
tions in the implicit method. Instead, after each time step
one can correct for the boundary conditions. For equations
(4.1) it was found that this worked only for time steps
less than three times the Courant limit, otherwise
nonlinear instabilities arose. For larger time steps it
was necessary to incorporate the given boundary conditions
in the matrix to be inverted. With time sters of about
15 times the Courant limit steady state was reached very
rapidly. 1In this case the higher order method was only
about thirty percent more efficient. We speculate that in
going to a steady state the use of the lower order box
scheme at the boundary deteriorates the accuracy. For a
wave equation the fourth order implicit method was 3-4
times more efficient than the second order implicit
method (see also {63]). For both these cases there is no
improvement in either accuracy or in the rate of convergence
when a second order in time method is used rather than a

first order in time method.
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This problem, (4.1), was also solved with the Chebyshev
collocation method (3.16) - (3.17) with G, (kat) = G, (kat) =
kAt. This is stable with time steps about .1 times the .
Courant limit. The error at the steady state is concentrated
at the sonic point. A simple automatic postprocessor at
the conclusion of the code removes this error. The result
is an error level 20 times smaller than with the fourth
order method, as seen in table 4.1b.

We next consider (4.1) with a shocked profile. The
solution to most of the methods is not a monotone function
of the mesh. Hence, instead of comparing schemes for a
given error tolerance we find the asymptotic rate of
accuracy. This is found by a least square estimate based
on about 50 runs with different meshes. If one includes
the shock area in the error analysis then all the methods
converge like (Ax)l/2 in the L2 norm and as Ax in the Ll
norm. When we exclude a fixed physical distance about the
shock the scheme behaves statistically according to the
formal accuracy of the method. With the implicit methods
instabilities appeared when time steps larger than five
times the Courant limit were used.

As the second example we consider a two dimensional
problem in dynamic acoustics. The equations are given by
(7.1) where the radiation boundary treatment for this
problem is discussed. The numerical algorithm used to
solve this problem is the second and fourth order two

step schemes (3.5) and (3.6) together with a splitting of
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the two dimensional problem into a series of one dimension-
al problems. This code was run on the CDC-STAR at NASA
Laﬂgley. More details of the algorithm are found

in [10].

Two cases are considered here. In the first case the
mean flow is zero and the forcing function is a delta
function in space and harmonic in time; for this case the
analytic solution is known. The fourth order method is
more accurate than a second order method with twice as many
mesh points. The efficiency gain is about 400 percent at
large error tolerances and increases at lower error toler-

ances,

In the second case we use a realistic mean flow modeled
after experiments and a harmonic source located two jet
diameters downstream of the jet exit. Varying the mesh
and boundaries demonstrates that the fourth order method
with 12000 points yields essentially the analytic result.

We then measure the peak acoustic pressure as a function of
the angle. The fourth order method with 8800 points gives
much better accuracy than the second order method with

16000 mesh points. The fourth order method is now being
routinely used to solve problems with a variety of sources
including pulses, convecting sources and quadrapoles. Second
order methods would not be feasible for these problems because
of storage and cost limitations.

In general we have found the fourth order metheds to

be three to five times faster while still giving accuracy
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comparable with the second order method. The savings in
storage is a factor of two per space dimensions. For
error levels less than one percent the efficiency of the
higher order methods increase. Similar conclusions were
reached in [150]. Coding changes for the finite difference
methods are minimal given a second order program with
either an explicit or implicit scheme.

On some simple problems spectral methods behave even
more efficiently than the fourth order schemes. However,
they require coding a new program with careful attention
being paid to the implementation. At present there has
been little experience with these methods for large scale
hyperbolic problems especially in complex geometries or

with nonsmooth profiles.
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Smooth Solution to System (4.1) with errors = 10-3.

2
l Viscositﬂ L® Error
10 Method Order| N | CFL Factor Steady State
MacCormack (3.5) 2 |41 |0.54 0.0 1.93 x 1073
Two Step (3.6) | 4 |21 |o.6d 0.0 8.15 x 10>
Fully Implicit | 2 |37 |1.0d o0.40 |1.05 x 1073
(309' E = ll
a = 1)

Fully Implicit 2 37 J10.0 0.40 9.97 x 10

év Crank-Nicolson | 2 |35 |1.0| 0.40 |[1.11 x 1073
g (3.9, £ = &,
: a = 1)
Crank-Nicolson | 2 |35 [|10.0| o0.40 |1.11 x 1073
Fully Implicit | 4 |23 [1.0| o0.40 |1.22 x 1073
(3.9, £ =1,
a= 2/3)
-3

Fully Implicit 4 29 j10.0 0.30 1.26 x 10

B

TABLE 4.1b

Smooth Solution to System (4.1) with errors = 10~ 9

Method Order | N | CFL ¥§§§§§ity g:egg;ugtate
MacCormack (3.5)| 2 171 { 0.99 0.0 1.01 x 1074
Two Step (3.6) | 4 39 | 0.600 0.0 1.09 x 1074

! pully Implicit | 2 111 10.0| 0.4 1.07 x 1074
Fully Implicit | 4 51 [10.0| 0.4 1.20 x 1074
Chebyshev ® 33| 0.1 0.0 1.16 x 10°°
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5. IMPLICIT METHODS

The use of implicit methods to solve hyperbolic
equations has been increasing in recent years (see e.g.
[20], [87)). The rationale behind this is that implicit
methods are frequently unconditionally stable. Choosing
large time steps can then more than compensate for the
extra work per time step.

Even though there are no stability restrictions on
the time step nevertheless the time step is still restricted

by accuracy requirements. We consider the simplest equation
(5.1) u, - u, =0 0 < x < 2m

which we approximate by the Crank-Nicolson scheme

n+l n _ At [ n+l__n+l _n _ n
(5.2) v5 vy = x| Vi+l vj_l+vj+l V-1

Assume v? = sin(jkAx). Since the Crank-Nicolson formula

(5.2) is nondissipative the only errors are phase errors,

so that v?+l = sin(jkAx+a) . For the differential equations
ap = kAt. The numerical phase for (5.2) is given by
2t Sin(kax)
{5.3) o, = sin L |&%
\Joe =
N 1+ (At)zsiAE}kAx)/4(Ax)2

In Table 5.1 we present the phase errors aN/aA for

kidx = %%, f%, and %. We note that the phase errors increase

dramatically as we choose At/Ax much larger than one.
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This is because the Courant condition A4t/4x < 1 has
physical significance beyond a formal stability condition.
With larger time steps. we are not following the wave
correctly.

The justification for implicit methods arises only
by considering equations more complicated than a wave

equation. A simple model is provided by

(5.4) u, +u, = A(l-p)ces (x-pt) .

A solution to (5.4) is
(5.5) u(x,t) = A cos(x-pt) + B cos(x-t) .

If p<< 1 and B << 1 then accuracy regquirements only

demand

pAt _
(5.6) ix 1l

which is much weaker than the stability criterion for
explicit schemes At/Ax < 1.

Another example is provided by systems of equations
with widely separated eigenvalues. For simplicity we con-

sider the uncoupled system

+
u aux = 0

(5.7) t

v, + bvx = 0

t

e s

F NP T Y

.
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with u = A sin(x-at), v = B sin(x-bt) and A << B,

a >> b. As before explicit schemes require aAt/4x < 1.
However, since A << B accurate solutions only require
bat/4x < 1.

Both of these exanples demonstrate the phenomena of
different time scales. For these problems the time step
of an explicit method would be limited by the speed of
the fastest possible mode. For implicit methods the time
step is chosen to resolve the slower modes which carry
most of the energy. Both these simple illustrations have
many practical applications. For example a slowly oscil-
lating wing or rotor will induce wave motion with much
slower speeds than that of free motion. In meteorology

or plasma physics the usual speeds of propagation are

much smaller than the fastest signal speed. These will be
discussed further in chapter 8. The possible extensions
of explicit methods for these problems will also be dis-
cussed.

A similar justification for implicit method occurs
when the time step for an explicit method would vary
dramatically between different regions. An extreme example
occurs in laser fusion where the diffusitivity can change
by many orders of magnitude across the domain. In magnetic
fusion the existence of near vacuum regions create areas of
very high speeds compared with the center of the
plasma. In other problems similar effects occur due to

different mesh sizes in different regions. For problems
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in meterology the time step for an explicit scheme is
determined by the small mesh volumes near the pole due
to converging latitude lines. In Navier-Stokes problems
with boundary layers extremely small mesh sizes occur
near the body in order to resolve the boundary layer.
In all these problems the time step of an explicit scheme
is governed by a small region which may not be the area
requiring the greatest resolution in time.

A second type of problem suitable for implicit

method are those cases for which only the steady-state

'solution is desired. The time dependent equations are

used merely as a device for obtaining iterative solutions
to the steady state equations. In this case there is no
need for the numerical method to accurately follow the
transient. Indeed, one way to accelerate the iteration
process is to make the scheme inconsistent with the transi-
ent solution, We only need guarantee that the numerical
steady state achieved is independent of the iteration

procedure. Consider the general equation

(5.8) u, =Lu .

A simple way to ensure the correct steady state is to
solve for u" = unﬂ-un at each time step. The algorithm

then has the form

(5.9) o"mu® = Ly .
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The steady state is defined by au” = 0 and so we have

Lu® = 0. Since the time accuracy is not important we

do not wish to iterate at each time step. In the interest
of efficiency Qn should not depend on the unknown variabie
un+1. In many cases this can be achieved without loss of
accuracy by a linearization procedure such as introduced in
[14), [23), and [122). Higher order (in space) of these
schemes were defined by (3.10) and (3.11).

If we use the backward Euler formula for (5.8) we have

n+l +1

(5.10) Au = At Lu” .

Linearizing, this equation we have that

(5.11) Elzu-aw"mu“ = Ly

J is the Jacobian of L with respect to u. As At
increases this scheme approaches the Newton-Raphson iteration

(5.12) -3 = Lu”

This is a property only of the backward Euler formula ard
is not true for other selections of parameters in (3.9).

In general it is not necessary that Qn be a function
of the exact Jacobian of L since we are only interested in
the steady state. This freedom can be utilized in several

different ways. One possibility is to change Q" in such a




way as to simplify the solution of the linear set of
equations (5.11). In most cases " involves block
tridiagonal matrices. If these matricec can be inverted
Ly Gaussian eliminations without pivoting then the in-
versions can be accomplished by the Thomas algorithm in
O(m3N) operations where m is the block size and N
is the number of mesh points (see [103]). Hence, for
general u’ack tridiagonal matrices and m larger than
3 or 4, most of the work is in inverting the full blocks.
When the fluid dynamic equations are written in velocity
form these blocks can be decomposed as a direct sum of
smaller blocks and so the process can be speeded up [23].
When the momentum form of the fluid equations are used
full blocks occur. However, by using the freedom in Qn
one can simplify these blocks at the expense of making the
numerical scheme inconsistent with the time dependent
equations [174]). 1In fact even when solving the steady
equations directly using Newton's method [17] J need
not be the Jacobian of L. This generalization leads to
the use of gquasi-Newton methods (for a survey see [46]).
Alternatively one can choose Qn in such a manner as
to speed up the convergence. McDonald and Briley [128]
consider methods with different .t at different mesh
points. This can be viewed as a matrix conditioning of
the linear equations. This is especially promising for
parabolic equations in two space dimensions where the theory

of parameter selection for A.D.I. methods is well developed.

I R L e




Implicit methods have the disadvantage that they require )

the solution of a large number of coupled equations at each |

time step. Therefore, the reduction in the number of time .
] f steps compared with explicit methods must be weighed by
the increase in the number of arithmetic operations

required for each step. To simplify the inversion process

T

in several dimensions alternating direction methods are
generally used. In this case one needs to invert a block
tridiagonal matrix for each direction. As mentioned pre-

viously this is very expensive when the block sizes get

large. For example, in the magnetohydrodynamic case the

blocks are 8 x 8 matrixes. In combustion problems there

ig at least one partial differential eguation per species.
Hence, for complicated chemical processes very large blocks
can be generated. These situations render standard implicit
methods impractical as the work increases with the cube of

the block size. In some cases one can use knowledge of the

block structure to reduce this work [23]. However, when

shockes appear and the conservative forms of the equations
must be used, full matrices are unavoidable.
Furthermore, the Thomas algorithm is an inherently

serial algorithm and so inefficient for many vector pro-

cessors. In three space dimensions one can perform many
tridiagonal inversion simultaneously to partially vectorize
the procedure. However, this demands large storage require-
ments. The use of a cyclic reduction method is more efficient
for a vector machine but is still very far from optimal for

these pipeline machines. Hence, many of the advantages of

A.D.I. are negated on machines as the STAR-100.
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An additional difficulty with alternating direction

methods is that they introduce o((At)z) perturbutions

into the matrix Qn of (5.10). In this case the scheme

o, oL D

no longer approximates the Newton method for large At

and consequently there is a reduction in the rate of con-
vergence to a steady state. Marching to a steady state
using large time steps one wants to use the delta form
(5.10) so as to ensure that the steady state is independent

of At. 1In two space dimensions the alternating direction
n+1l

BT

methods which solve for u and M" are equivalent,

but in three dimensions they are not. The three dimensional
algorithm is unconditionally stable in the linear case if
one solves for uni"l but the steady state depends on At.
On the other hand if one solves for Au" to produce a
steady solution independent of At, the algorithm is uncon-
ditionally unstable for scalar problems. As the entropy
equation is essentially a scalar equation this method has
difficulties for many systems. Only the addition of

viscous terms can stabilize the procedure.

Several alternatives have recently been advanced as
substitutes to alternating direction methods. Steger and
Warming [176] have suggested splitting the flux vector into
two parts corresponding to the positive and negative eigen-

values. Each part is then solved using the one sided

differences appropriate for the corresponding eigenvalue.

B R S

Jameson and Turkel [105] have proposed a method based on a

LU decomposition. In this method the lower and upper factors

P S T S Y - P gy
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are chosen for computational ease. The resulting scheme

can be chosen to be second order accurate in space. It is
demonstrated that the crucial ingredient is that each of

the L and U factors be diagonally dominant. The dia-
gonal dominance of the final scheme is irrelevant. This
scheme is stable for one, two and three dimensions. A
common feature of both these schemes is that only two factors
appear independent of the number of space dimensions. For
one dimension this is a disadvantage since it introduces
perturbations of order (At)2 and s¢ z1~ws down the con-
vergence rate. However, for three space dimensions the
A.D.I. schemes have changes of order (At)3 from the back-
ward Euler method and so converge to a steady state even
slower than these methods for large At. The requirement

of three sweeps through the mesh for a three dimensional
A.D.I. method is also a disadvantage when not all the infor-
mation can be stored in core.

Since the backward Euler method is a good approximation
to Newton's method it may be advantageous to use this method
even for multidimensional problems. The resulting matrix
is no longer tridiagonal and hence it is necessary to find
some efficient method to invert the matrix. Band Gaussian
elimination solvers require excessive core especially since
pivoting must be used. For parabolic problems that arise
in laser fusion Kershaw [108] has used a conjugate gradient
method for inverting the matrix. Similarly Orszag [151] has

advocated the use of conjugate gradient to invert the full
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matrices that arise from gpectral methods. Brackbill [20]
has used a SOR method in conjunction with his implicit
method for the nonlinear MHD equations.

Until now we have concentrated on the rate of con-
vergence to a steady state. An equally important topic
is the accuracy in the steady state. We wish to stop the
iteration process in such a manner so that the error in
the iteration process is below the truncation error of the
steady state scheme. 1In using (5.10) we have assumed that
in the steady state au™ = 0. In many codes, one iterates
until Aun is below some given error tolerance, ¢t¢. We
then have that Lu"” = Q"¢ so that the error in Lu is
effected by the operator, Q. Therefore, it is better to
use the residual Lu" as a measure of the steady state
rather than Au". Since, L 1is in general not an elliptic
operator it is difficult to measure the deviation of T
from the steady state, even given that Lu® = €. It is
also important to choose initial conditions that are a
reasonable guess to the steady state solution.

In summary, implicit methods have been successful when
one is careful to match the physics with the method. These
nethods are less appropriate for wave-like equations where
one wishes to follow all the possible modes of propagation.

Attention to boundary treatment is even more important

for implicit methods than for explicit methods. This is

mainly because one wishes to use the implicit methods with
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large time steps. In many calculations one could use any
one sided difference to some equation to supplement the given
boundary conditions as long as small time steps were used.
However, for large time steps it was essential, for
nonlinear stability, that the characteristics variables,

e.g. (4.2), be used. Skbllermo [172] gives examples where
the use of an explicit boundary method can force a stabi-
lity condition for the entire method.

For complicated flows the choice of a poor boundary
treatment may be difficult to judge. For example, in-
correct treatment of outflow boundaries will severly slow
the rate of convergence to a steady state. Rudy and
Strikwerda [162],[163] and Thomas [182] demonstrate
that overspecification can be particularly inefficient.
However, if one judges the results by comparison with
experiment one would never sense the incorrect boundary
treatment. Gustaffson and Kreiss [85] show that for this
case the steady state may depend on the initial conditions.
In any case it would not be obvious that the slow rate of
convergence is due to the boundary treatment. Thomas [182]
describes boundary treatments for other types of boundaries

that occur in Navier-Stokes flow (see alsoc [4]).

Due to the unconditional stability of implicit

schemes it is not clear how to choose the time step. One

simple procedure is




| au® ||

n
(At)n+l - o™ | ;A = g - ™l
(ae)® ™
n-1
™

for some choice of norm. This has been used successfully
in plasma diffusion problems (D. Nelson, private communica-
tion). A more sophisticated choice is to compare two
iterates for time t as is done in o.d.e. solvers. When
going to a steady state At can be viewed as an interation

parameter, as discussed previously.

TABLE 5.1
Phase errors for the Crank-Nicolson method

as a function of the time step.

kAx b n U

At/Ax . 20 10 4
.1 .995 .983 .900
1. .993 .976 .865
2. .987 .954 .783
3. .978 .921 .641
5. .949 .837 .262
10. . 845 . 365 .070
50. .063 .016 .003
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6. MOVING BOUNDARIES AND ADAPTIVE GRIDS

In the usual fluid dynamical situation boundaries are
considered as fixed in time. 1In many situations, especi-
ally for analytical results, the fluid is considered as
being confined to a rectangular or circular region. However,
in many circumstances one must include the motion of the
boundary as an important element of the problem. The
movement of the boundary arises from many different
factors which require different methods.

The simplest situation arises when the boundary moves in
response to an external force. This may represent a moving
piston, a diaphragm or similar devices. The next
situation occurs when the boundary represents a free
surface. In this case the boundary represents the separa-
tion between the domain of interest and some other region,
for instance a vacuum or the general atmosphere. The outer
region presents no resistance and the boundary moves in
accordance with the forces exerted on it by the interior
material. This occurs when metals are subject to a high
temperature or pressure and begin to flow. Other examples
occur when liquids are not in a container, as in
water over a dam or water waves or raindrops. The most
difficult problem arises when the moving boundary represents
an interface between different materials. In many cases
these are materials subject to the same differential equa-

tions. The two materials differ only in their density or

other material properties. The simplest such case is a
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contact discontinuity in fluid mechanics where both sides
are the same material but jumps occur across the moving
surface. In other situations the media on the two sides of
the moving boundary are represented by different
differential equations. Such conditions arig=2 when an
explosive gas impinges on a solid material. Another
example is the interface between a plasma and a vacuum.
In the latter case hyperbolic time dependent equations
describe the motion of the plasma while the magnetic field
in the vacuum is given by a time independent Poisson equa-
tion. In these cases the boundary moves as a result of
imbalance of forces from the two sides.

The standard techniques to solve such problems are
Lagrangian methods (see e.g. [19]), [20], [96], [197])).
With such schemes the boundaries are coordinate lines;
this simplifies the algorithm. However, Lagrangian methods
have several drawbacks. They are usually low order methods
especially in regiéns where the mesh is nonuniform. When the
motions are large the grid undergoes severe distortions which
require rezoning the mesh. This rezoning is quite difficult
in three dimensions. The rezoning usually results in a loss
of mass and so should nct be done too freguently. In
addition, the rezoning fornulas are usually not automated
and require intervention by the user. The main drawback of
Lagrangian methods is that they are very complicated and

not user oriented. One method of simplifying the rezoning




difficulty is to use triangular meshes. At each time
step reconnections are macde when appropriate. This
method developed by Fritts and Boris [60] has been
applied to problems involving high shear. As a dual

to this method is a scheme devised by Peskin [153]) which
is a grid free Lagrangian method. This latter scheme
has been applied to the incompressible Navier-Stokes
equations. A difficulty with both these methods are
that they are difficult to couple with implicit time
algo. ithms and also the extension to three dimensions
is computationally complicated due to the many possible
configurations.

At the opposite end one can use a strictly Eulerian
approach and integrate across the boundary. To prevent
smearing of the interface one adds some artificial compres-
sion after each time step [91]. The location of each
material is identified by a color function which is 1 in
one region and 0 in the other region. This color function
satisfies a convection equation which itself must be
solved numerically without smearing. This method has not
peen used extensively on large scale problems and its
applicability for multidimensional problems is question-
able. It would be difficult to implement at interfaces
where jump conditions need to be satisfied. These jump
sonditions depend on the physics of the situation and
cannot be derived just from properties of the differential

equation.
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One alternative is to map each region onto a rectangle.
If this mapping is done at each time step then one must
interpolate between the grids at successive time steps.
Instead, one can initially find a grid by any package,
e.g. [184]. This gives new coordinates ¢ = £(x,y),
n = n(x,y). We now allow the new coordinates to vary
with time, so that ¢ = £(x,y,t) and n n(x,y,t). Given

the differential equation

(6.1) wt+fx+gy=0 .

This gets transformed into (see [154], [193])

(6.2) q, + Fg + G” =0
with
g=1IW
(6.3a) F=1I(Ew+ETS +-£yg)
G = Il(ngw#n,f +n.g)
and

Ep = =Xeby = Veby
(6.3b)

Ng = “XeMx T Yelly

I = X, ¥, = XY
(6.3c)

J = Cx”y - £ynx = 1/1
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In order to determine all these quantities we require
the grid point speeds (xt,yt). One method is to construct
a new grid at the advanced time. This can be done either as
a function of gradients in the problem [50) or by solving an
elliptic equation. Given (x,y) at t and t+At (x.,y,)
can be calculated. An iterative procedure would be more
costly but also more stable. Hindeman et al. [98]) prefer
differentiating the elliptic equation for (x,y) with
respect to t. This yields a linear elliptic equation for

(x ). Given (xt,yt) on the boundary this equation is

t'Ye
solved at each time level. It is also important to solve

for the gird in a manner which is consistent with the
numerical solution of the differential equations [183].

These procedures require the solution of an elliptic
equation at each time step. It is not clear that the over-
head reguired by the mapping justifies its use. In addition,
we would like to use information about the gradients of
the solution to construct the grid at the new time level.

At this time it is not known what are reasonable ways of
accomplishing this especially for multidimensions. For
example, it is well known that we can not allow the image

of a square in (f,n) to become too distorted or else in-
accuracies and instabilities may occur. Also, if the grid
changes too rapidly in time one would expect difficulties.

An experimental program for a parabolic problem is presented
in [50] while one for hyperbolic systems is presented in | 98],
Oliger [146] and Yanenko [207] also investigate adaptive

grids from a more theoretical viewpoint.
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The differential equations are solved on the fixed
Eulerian mesh. At mesh points far from the boundary the
standard Eulerian scheme is used. At grid points near the
boundary one sided differences are used. Alternatively the
fluxes can be extrapolated to the outside of each domain
and then the standard scheme is used. The boundary itself
is identified by a series of Lagrangian tracer particles
which are allowed to move through the fixed Eulerian mesh.
This boundary is used only to keep the regions separate and
prevent diffusion of one material into another regioun. The
only communication between different regions is via jump
conditions across an interface. No differential equations
are integrated across a boundary.

As an example of the difficulties encountered with
moving surfaces we discuss the impact of materials at high
speeds. Metals impacted by gases or by other metals
are subjected to high pressures which will deform the
metal. The metals display elastic-plastic deformations.
The differential system for these situations is given by
the Prandtl-Reuss equations [97). As usual, p, u, v, e
represent the density, velocities and internal energy

respectively. The total stress are given by 1 = si" pS

ij j
are stress deviatories and p is the thermodynamic

ij
Sij
pressure. When the deviatories are less than the stress

limit, i.e. JSI, < «? the flow is elastic. For
fsf j = «?> the flow is plastic. k2 is constant in the
simplest of models but is a function of various dependent




variables when work hardening is included. We shall con-

sider these equations wit: cylindrical symmetry.

Let é% = %? +u %; + v %? « Then the equations in

the generalized elastic regime are given by

dp , fou, dv) . _ ov
3% * p[?? * r] r
3s 35 s

du . 3p _ 2511 _ %512 Sp)
Pae * 55 3z 3r T

av , 3p _ P12 33 _ %2 * Sy
PIe ¥ 9r T 7z or r

de _ (g o) M _ g . 3V _ g (v, 2u
Pge = (5117P) 37 ~ (S27P) 3 S12[ z * a:]

(6.4)

with the strain rates

ds11
It = 214:11

ds,, s
Jc M2

dszz

Jo " vy,

‘i3 given by

V(Sll + 822 + p)
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€11 = 3|23z " o :]
_1f3u, v
(6.5) €12 = 2|3 * az]
_1({, 3v _d3u _ v
€22 = 3|2 3¢ ~ %z r] .

To this we append an equation of state

(6.6) P = plp,e) .

Since these equations are hyperbolic we can con-
struct characteristic equations for which differentia-
tions in only two space-time directions occur. In con-
trast to the fluid dynamic equation there are two speeds
of propagation. The first is the shear or transverse

speed given by

(6.7a) cg = u/p

There is also the compressive or longitudinal speed
2

(6.7b) cg =c” + 4u/3p

where
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(6.7¢c) c? = 2B

is the fluid dynamic sound speed. 1In addition to these
two conoids there are three quantiti~s that propagate
along stream lines. Hence, in total there are seven
sets of bicharacteristics.

In the interior we solve (6.4) by any dissipative
conservative scheme. We do not follow the shocks explicit-
ly but instead capture them. The elimination of shock
fitting eliminates many of the complexities of the problem
and allows us to concentrate on fitting the interfaces,
Since shocks are compressive it is possible to follow them
without shock fitting. However, contact discontinuities
will be unacceptably smeared unless some special procedure
is followed. Hence, all free surfaces or interfaces are
followed explicitly to prevent their diffusion.

Due to the complications of the boundary we have
chosen a simple scheme for the Eulerian mesh. Aall the
results were obtained using a two step scheme devised by
Burstein [29] This scheme uses data at a nine point
rectangular lattice at the time level t to advance to t+4it.
At points far from the boundary the computation is straight-
forward. At mesh points near the boundary the fluxes at arti-
ficial points outside the domain are found by extrapolation.

Quadratic extrapolation including the values at the

boundary is used because of the complexities that arise
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with an arbitrarily shaped boundary. After the flux
extrapolation the nine point scheme can be used without
any complications. Each side of an interface is updated
independently. In no case are values on one side of the
boundary used to update variables on the other side. In
many cases different grids are used in different regions
so that it would be difficult to integrate across an
interface even for quantities that are continuous across
the interface.

All boundaries, which move through the fixed Eulerian
mesh, are marked by Lagrangian tracer particles with
position (z,r) and velocity (uB,vB). For interfaces between

two regions there are marker particles on both sides of the

moving boundary. The motion of these particles is governed

by the equations

dz _

at = vpfzert)
(6.8)

dr _

3t = VB(Zpr,t) .

Trte velocity (uB,vB) is the 1local fluid velocity and is
found by extrapolation from the interior. Across an inter-
face only the normal velocity is continuous. Hence, there
will be a tangential slippage of the position of the tracer
particles on one side of the interface with respect to the
other side. The system of equations (6.8) are solved for
the new positions z({t + 1tj, r(t + It} at each boundary

point by a first order method.
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Since each tracer particle is moved independently the
distance between these particles will vary. 1In many cases
the particles will bunch up 1in some regions with very
few boundary particles in other sections. To prevent this
the particles are rezoned if the distance between two
particles differs by more than 25 percent from the average
distance between particles. This rezoning consists of
creating a new set of tracer particles which are equally
spaced. Any information needed at the tracer rarticles
are found by interpolation. All distances and interpola-
tion formulas are calculated in terms of arc length along
the boundary. This is a one dimensional operation and so

much sampler than a full Lagrangian rezone of the entire

two dimensional grid. Furthermore, since the interior
values are unaffected by this transformation, the rezoning
procedure cannot affect the conservation of mass, momentum
or energy.

In order to advance the solution we need the dependent
variables at the boundary itself. It is here that the jump
conditions affect the solution. We first describe the
boundary conditions at an interface separating two contigu-
ous elastic domains. The physical laws that apply at
material interface boundaries are (1) continuity of the
normal velocity, uL e (2) continuity of the normal stress,

Thn and (3, 4) the specification of the shear stress,

Tng , on each side of the interface as a given function of
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the normal stress. Here we only consider the condition

that Tng = 0 on each side of the interface, which is the
free slip condition. One could also consider welded sur-
faces where laws (3, 4) are replaced by the condition that
the entire stress matrix be continuous across the inter-
face.

It may be verified that, for the elastic equations,
there are four characteristic waves emanating from the mov-
ing interface, i.e., from each side of the interface two
waves propagate away from the boundary. Hence, at the
interface boundary, a total of four conditions need to be
specified, so that by satisfying the above physical laws at
the interface boundary, the boundary motion can be determined.

To implement the boundary conditions we consider a
coordinate system with coordinates, n the normal and s

the tangent to the boundary at each marker point along the

boundary. Let S(z,r) be the deviatoric stress tensor as

a function of (z,r). Let R be the rotation matrix
" cos @ sin @

(6.9a) R = ’
-sin @ cos 6

with & the angle measured clockwise from the 2 axis

to the normal. Then

(6.9b) S(n,s) = RS (z,r)R"
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is the rotated deviatoric tensor. 1In this reference
frame, the stress tensor T with components Tij can
be computed. The velocity vector is given by

(6.9¢) = R .

To find the boundary values at the new time step we
must calculate fourteen quantities corresponding to the
seven dependent variables on each side of the interface.
Since we are given four conditions we must supplement this
by ten additional pieces of information. As discussed
before we shall use the characteristic variables to ob-
tain this information. We consider the interface as in-
creasing in the counterclockwise direction. We denote
by superscript 1 the region to the left and superscript
2 the region to the right of the interface. The normal
direction is taken as going from region one to region and
the tangential direction counterclockwise. As stated
before the signals €q' Cg propagating to the right bring
two pieces of information to the boundary from the interior

of region one. Similarly for region two we consider the

signals ~-cgy, -Cgq travelling from right to left. 1In
addition, we have three pieces of information on each side
that travels along stream lines. Using the

characteristic variables (see [33]) we find that

S L B e
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2
+ c(1) g(l)
nn

2
c(2) =(2)

+
Snn

2
_ C(l) §(l)

d nn

2
(2)7=(2)
d snn
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1y _ 1 (1) _ =) _ __ 1 =(1
(6.10k)  ug T 717 Sns = Us (17 “ns
po Cd pO cd
(1) _ (1) - (1) _ =(1)
(1) P "5 _-) _P  ~ Sp
(6.10%) u "o+ =u -
n (1) (1) n (1) (1)
o 4 Po Cq
(2) 1 (2) . =(2) 1 g(2)
(6.10m) s 7127 Sns T Y% Y Ty Shs
0 %a o %s
(2) _ (2) =(2)_ 5(2)
(6.10n) (2) _ 2 "o _ g2 P on
. u 27 _(2) n (27, (2)
Po Cg Po Ca

In these equations the bar on the right hand side incicates
guantities that already have been computed. In all the
examples presented they were computed using nearest

point extrapolation from the interior of the appropriate
domain (see also [40)). The subscripts n and s refer

to the normal and tangential directions as given by (6.9).
The sound speeds Cgr Cq+ C were defined in (6.7), wnile

o denotes a reference density usually taken as the density
of the marker particle at the previous time step. ©Note, all
material properties differ between the two sides of the

interface.

Solving the system of equations (6.10) we find =hat

- (2) - (1)
(1) _ (2) _%a * v _ 1 —(2) =
(6.11a) U = Yy B o+ 1 v + 1 ‘(l)c(l) nn n
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with

- (1) (1), (2)_(2)
(6.11b) K = pyleyg /po Cgq .
Thus, the normal velocity is a weighted average of the
extrapolated normal velocities from the two sides, the
weight being the ratio of the acoustic impedances. 1In
addition there is a correction term dependent on the

difference in the extrapolated normal stresses. As

usual Ton =P < snn' In a similar manner we have

(1) , 302 (1 (1)

6.11¢) WMo _far €Ty Po Sa {5(1)_ G(z)]
nn nn K + 1  + 1 n n
and
2
(1)
(1) _ =(1), ¢ (1) _ =(1) ,
(6.114) P =P + (1)2 {Tnn Tnn ] '
3
s(1) _ (W ()
nn nn
2
(2)
(2) _ _(2) c (2) _-(2)
(6.11e) P =p + 2) (Tnn nn ] ;
€4
(2) (2) _ _(2)
snn =P Thnn :

Similarly we can solve for ug and Sss on each side.
The complete recipe for dertermining the values assigncd to
dependent variables on each side of the interface is yiven

by the following algorithm.
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(1) Extrapolate, from the interior to the boundary,
the deviatoric stresses S, pressure p, internal
energy €, and velocity components u, v on each
side of the interface.

(ii) Transform the stress and velocity components
from the z,r-coordinate system,to the n,s-coordi-

nate system,

(iiia) Use (6.l1llc)to calculate Toan ! then
(iiib) Calculate pressure on each side using
(1) _ (1) _ i
P = Snn Tan + L F 1,2, .
(iv) Apply the slip free condition: r(l) = S(l) =0,
ns ns
i=1,2.
(v) Transform the deviatoric stresses back to the

2z, r-coordinace system using (iv) and the extra-
(1) T(1)

extrapolated values Ttpp’ ss ' i=1,2.
(vi) Calculate un using (6.1la): then
(vii) Convert the velocity components to the z,r-

coordinate system usinc (vi) and the

extrapolated values uél), i=1,2.
(viii) Calculate densities from the equation of s+<a<e
2 = p (e, et using (iiib) anc

the extrapolated values e(i), i=1,2.

We note that the continuity of normal stress

is not used to calculate the deviatorics but instead is used
to compute p. This algorithm has been chosen so thz: <the
formulas are valid even if one or both materials are gurely

inviscid. 1In the limiting case of infinite density rz=z:-
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across the interface, i.e., p(l’/p(Z) + 0, the above

algorithm coincides with the common driver-driven model

where t = ?éi) and u_ = ﬁéz).

The method described above applies equally well to free
surfaces if we interpret one of the domains to exhibit
material properties such that all dependent variables are
zero. For definiteness denote the vacuum side by super-

script (2):; then

- L (2)

nn nn 0.

(6.10b"') T

and the slip free condition is

(6.10c') Ts ™ 0.

In many problems there exist regions with large
gradients. These gradients need to be resclved in order to
have an accurate solution. To prevent an excess of grids a
stretching is introduced which is a function of only one
coordinate transform. We denote the transformed variables
by (a,8). By use of the implicit function theorem it is
possible to transform divergence free quations from the
physical space (z,r) to the computational space (%,R) in
such a manner that the new equations are still in diver-

gence free form. A conseguence of this is that shocks

will be computed with the correct jump conditions in the

computational plane.

In most problems in ballistics the large gradients
occur near the axis of symmetry. For these cases we used

a transformation (see [160]).

R PR
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b+ b
(6.12a) B =1 - log (b.:,,i (=2

with b = 1/(1 - 4/a). This maps the interval (0,a) into
(0,1) and d is the boundary layer thickness. For the
acoustic problem discussed in the next section an alternate

stretching was used.
_biz
(6.12b) r=f|1 - ae ° .

This is inverted numerically to find B = 8(r). For the

acoustics problem the transform was used in both the z and
r directions. In both cases one of the free parameters
controls the size of the gradients while the other controls

the size of the boundary layer effect induced by the trans-

form.

Another alternative is to choose new coordinate points,
By in some a priori manner. Cubic splines can then be used
to construct the derivatives at Z.,. The coordinate trans-

i
formation generated in this manner need not be monotone. To

enforce monotonicity one may need to alter slightly the £y
so that no abrupt jumps occur. Even though this procedure is
not automatic it allows the construction of flexible coordinate
systems. Since the mesh generation is done only for each
geometry the inconvenience is not great. The author has used
this method to construct a mesh system for a generalization

of (4.1) that is being used for optimization studies for the

national transonic tunnel at NASA Langley Research Center.
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Due to the complicated geometry of the tunnel it was necessary

to refine the mesh in several different sections of the domain;
this made it difficult to use analytic transformations. The
disadvantage of this method is more pronounced when one

wishes to frequently change the mesh or change the geometry

of the configuration.

In other problems, as the shaped charge, transforma-
tions are needed because of the shape of the domain. Even
if a domain is rectangular if it is not properly aligned
with the coordinate axes a large waste of grids will occur.
In the shaped charge the initial shape of the liner is a
rectangle rotated about 30° with respect to the axis of
symmetry. The length of the liner is about 100 times
larger than the width. For this case it was necessary to
introduce the computational coordinates (a,R) via a full

two dimensional transform. Even though this complicates

T

; the equations it presents an enormous savings in both

computer time and storage. Due to the moving boundary it

o

is sometimes necessary to introduce time dependent trans-
formations. In all these cases the coordinate transform is
¢iven analytically. Hence, it does not map the physical
region into a perfect rectangle but rather into a computa-

tional region which is in some sense reasonable.

pm——

R—
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The code described above, SMITE, has been applied to
numerous problems in elasticity and plasticity. These
include application to bars impacting on other bars or into
plates as well as problems with shaped charges and explo-
sives. All these applications involve highly distorted

boundaries together with the interaction of many shocks.

To illustrate this method and its range of applicabi-
lity we present two examples. In the first case we consider
an aluminum sphere impacting on a tungsten disc. The initial
configuration is shown in figure 6.la The configuration
after 25 microseconds is shown in figure 6.1b. The sphere
has flattened out and is extended normal to the axis of
symmetry. The disc has also been indented. Obviously,
large distortions have occurred in both materials. These
graphs were obtaining the system (6.4) - (6.6) with the
inclusion of plasticity.

The first example illustrated the interaction of two
metals. In the second example we consider a gas-metal
interface. The initial configuration is shown in figure
6.2a. The larger region is a cas with ignition occuring
at the origin. A blast wave propagates through the gas and

impinges on the metal. The solution after 35 micro-
seconds is shown in figure 6.2b. The gas has expanded
outward while the metal has split into two sections.
The larger section is a slug which contains most of the
rmass. In addition, there is a jet region which moves
rapidly to the right. Additional examples are given 1in

[31]) and [33].
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7. RADIATION BOUNDARY CONDITIONS

In many problems of interest one is interested in
solving the cguations in an infinite domain. For computa-
tional expediency one needs to compute in a bounded domain.
One possibility is to map the infinite domain onto a
bounded one. However, in many circumstances this mapping
can aggravate the situation especially if the solution is
oscillatory at infinity or the mapping has a singularity
(see [79]). An alternative possibility is to insert an
artificial boundary and then impose boundary conditions

on this surface to simulate an infinite domain, i.e. there

A B

should be no reflections from the boundary back into the
domain. Unless certain restrictions are met this will in
general not be possible ([85].

In general one cannot construct boundary conditions
that give no reflections. Instead one wishes to consider
conditions which are in some sense better. The notion of
better can be defined in many ways. Some of them are
(1) the reflections decrease rapidly as the position of

the boundary goes to infinity

(2) the reflections decrease for longer wave lengths
?g ‘ (3) the reflections decrease as the incident wave
approaches in a direction more normal to the boundary
:% (4) the reflections are decreased so that the approach

to a steady state is accelerated.

One approach to decreasing reflections is to intro-

duce a viscosity ncar the boundary or to introduce a sponge
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;1ayer [148). With this approach it is not clear

what effect the boundary txeatmant has on the interior
dynamics. In addition it is difficult to improve these
methods if oﬁe wisheiltd further decrease the reflections.
zfésnditiéns 2 ind 3 vere uéed by Engquist and Majda [53],
Tii§4] to construct an asymptotic set of nonreflecting
conditions based on pseudodifferential operators. The
higher order methods require Padé approximations for sta-
bility. Rudy and Strikwerda [162] have constructed, by
heuristic arguments, a radiation boundary condition based
on (4).

Gustaffson énd Kreiss [85] have shown that in general
one can'not construct nonreflecting boundary conditions
unlezs the behavior of the solution is known in the neigh-
borhood of infinity. We adopt their procedure and con-
struct boundary conditions which are based on an asymptotic
expansion of the solution valid for large distances. As
with all asymptotic expansions we expect reasonable results
even when the artificial boundary is brought in gquite
close to the region of interest. Extensive numerical tests
indeed confirm that the domain of integration can be very
constricted when one uses the higher order boundary operators.

Specificélly, we consider the linearized Euler equations

in cylindrical coordinates.

‘ pvo+v
og * (eug*tu), + (pvg+v) + —p— =F,
(7.1) ut + (uu0+-p)z + (uvo)r = uvo'r - vuO,r + F2

Ve + (vu{))z + (vv0+p)r = Vg, 5 ~ uvg , + F4



£
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i
<

n

whare (uo(:,r). vo(:,:é) tepresentl the mean flow. The
mean density is assumed constant and is scaled so that

| Po = 1+ G = L |

} In order for it to be feasible to integrate (6.l1) in
a bounded domain it is necessary to assume that the mean

flow and the forcing terms decay as r or z go to infinity
(see e.g. [85]). Hence for sufficiently large d (where

a2 =2, zz) (7.1) can be approximated by the wave system

v

Pp tu, * v+ =0
(7.2) | u, + o, =0
v, +p,. =0

(7.3) Pee - VP = 0

where V2 is the Laplacian in cylindrical coordinates.

To find radiation conditions we first consider (7.3)
in spherical coordinates and let d represent the spherical
radius. It is known [1ll] and [59] that p has a formal ex-
pansion in terms of travelling waves
£.(t-4,0)

4

1 a’

) i

e~ 8

- where ¢ represents the angular dependence of g,

One can then verify that

% , %2 . oL

(7.5) 5t * 34 =
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7.6 B+ B0y

We ﬁote that the approximation to (7.5) %E + %g =0 is

just what one would obtain from a one dimensional character-

istic theory. More generally, let

L=+ 5
(7.7 m ,
B = I:lr (L + 313;-) = (1.+-2-‘1;1-‘--1-)131[“_1 .
It follows from (7.4) that
(7.8) Bp = o(gz‘:liﬁ} -

It is shown in [11) that boundary conditions Bmp =0
all lead to well posed problems in the sense of Kreiss [81].

Furthermore, one can show that errors in the solution

decrease as d goes to infinity. 1In particular for the
first order approximation (7.6) we can show that the error
P between the solutions in the bounded and infinite domains

satisfies
(7.9)

where g = 0(1/d3). In general for the mth order approxi=-

mation (7.8) we can show that

(7.10) 1817 < xllgll
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wvhere g = o(1/a™*1)  ana {1=t1, {1l*1]]|, are appropriate

norms.
The extension to cylindrical coordinates is straight-
. ' forward since

(7.11) r =4 cos 0 , d2k= r2 2

RN+

z =4 sin 0 , tan 6 =

Hence, all derivatives with respect to d can be expressed
as derivatives with respect to z and r. 1In fact one can
show by induction that only derivatives tangential to the
boundary need appear.

The lowest order approximations in spherical coordi-

nates are given by

= 9P _ 3p =
(7.12a) Bip = 5% - 5% + g 0
2 2 2
= 9°p 9 3 p,43p, 43 _2p_
(7.12b)  B,p ve? + 25555 *adz *3setaag ;‘% =0

For cylindrical symmetry we have by (7.11) that

(7.13) %§=§2cose +3§sine =-[-g-%cose +~§-%sine]

Hence, we can replace (7.12) by

(7.14a) Blp=~g-€ {(p-usiné6 - vcos ¢} +§=o




B,p = (1+ cos? 9) 22 - 2[cose-a-2—§ +sinef-‘2!-] 1

at bt ot E

(7.14{:) - cos ze-g—f,-‘a-'-é- - 8in 26 g:‘a’t + °°‘ie 9—% ’ ;
+%%§-cose-g—:-sineg—:]+§§=o | f

{ In order to illustrate the advantage of even the f g

first order boundary condition we present one example.

(7.1) was integrated using a mean flow obtained from

experimental data. The source was taken as a single

monopole along the axis of symmetry. In figure (7.1)

we plot the pressure as a function of time for a fixed

axial point. In figure (7.la) the characteristic (or

Sommerfeld) condition

3p 4 3P .
(7.15) ¢ t 3¢ 0
4 was used. The spurious reflections from the boundary

are evident. 1In figure (7.1b) we present the solution using

the first order boundary condition, Blp = 0, This

solution no longer has any spurious reflections. These

comparisons were made with the boundary at fixed distance.
Varying the position of the artificial boundary it was

found that, using the first order boundary condition, one

could bring the boundary quite close to the sources with-

——

out loss of accuracy. For distributed sources, moving

e e A
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sources or a quadrapole it became necessary to use higher
order boundary conditions. Further comparisons are pre-
sented in [10] and [11].

The problems in dynamic jet acoustics presen£ severe
difficulties for any numerical scheme. One wishes to find
the acoustic pressure in the far field which necessitates
many grid points. However, the grid must be constructed so
that there is high resolution near the origin to resolve
the sources and the mean flow. In addition one wishes to
verify long term patterns of the pressure. This requires
accuracy over many time steps. To have any chance of solv-
ing this problem requires attention to the methods
described in the past few sections. The use of high order
methods is required to limit the number of mesh points. In
addition the artificial boundaries must be brought in as
far as possibkble to further limit the number of mesh points.
This reguires boundary conditions that severely restrict
the reflection of waves from the artificial boundary.
Careful attention to the stretching of the grid is also
necessary. With all the above considerations a realistic
two dimensional problem still requires about 35,000 mesh
points for reasonable accuracy. This required the use of
explicit methods that could be executed very efficiently
on a pipeline computer. This problem shows that a success-
ful code for a large scale problem requires an efficient
algorithm and bhoundary conditions; a careful attention to

the physics as well as to computer architecture.

=
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For many applications one is interested in the fluid
dynamic equations lineari:-ed about a mean state a uniform
state vwhich is nonzero at infinity. Let p ,p , U,

o o
represent the mean state in the far field and define
ci = yp“/p'. We assume that v, is zero. The two

dimensional analog of (7.2) is

1
u, + uu, + 5: Py = 0

1
(7.16) Ve +u v, + 3: pY = 0

Pp + U Py ¥ YR (U +vy) =0 .

This is equivalent to the convective wave equation

(7.17) Peg + 2u,Pye * uipxx - °:(pxx"pyy) =0 .

By a change of variables this can be transformed to the

wave equation. We then transform the boundary conditions
Byp = 0 to this coordinate system. When all is finished
we transform back to the (x,y) system. The first order

boundary condition for (7.16) then becomes, [13]

2
c
r 1 p_Sfe _xfou, av
(7.18) 3 7t ma[aﬁum 3y]
c. - u © ©

S
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c
where 62 - x2 + yz and rz = |33 xz + yz. When u_ = 0

c, - u,
this reduces to the previous boundary condition. When u_
is larger than c_ the outflow is supersonic and no boundary
‘conditions can be specified at the artificial boundary. The
wboundary condition (7.18) has been used for the Navier-Stokes
equations with a subsonic outflow. The use of (7.17) sub-
stantially increased the rate of convergence to a steady
state solution. The unknown linearized state (p,, u_,, c.)
was taken from the previous time step. A generalization of
(7.15) for nonlinear problems is considered by Hedstrom [94].
It is also possible to generalize this theory to the

three dimensional Helmholtz equation

(7.18) bp + k2p=o0 .

The analog of (7.4) is

(7.19) p=etkr ¥ A |

The radiation boundary conditions are then given by

By = 0 with

M ip o d . 2i-1

This procedure is ordered by first operating with j = 1
and continuing until j = m. In [12] energy estimates are

obtained for the error using (7.20). Numerical computations

R e S
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presented in Il!i demonstrate that for many cases one need
only take ten mesh points normal to the boundary, indepen~
dent of k, in solving (7.18). The boundary conditions
apply to the Laplace equation when k = 0 in (7.18) and

(7.20) ., Extensions to two dimensions are also considered

in [13].
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8. APPLICATIONS

In the previous sections we have tried to stress the
interplay between the numerical scheme and the physics of
the problem. In particular we strongly feel that there is
no such thing as a universal or ultimate scheme. The
variety of phenomena described by time dependent partial
differential equations demands a variety of numerical
methods. In this section we shall describe some difficulties
‘that arise in particular situations. Due to a shortage of
space we can only sketch these difficulties with a brief
description of possible remedies. References to the litera-
ture will be given for a more extensive discussion of indi-
vidual situations.

A. Shocks

When dealing with nonlinear systems the solution

does not always remain smooth even when the initial data is

smooth. Instead surfaces of discontinuities, called shocks

arise. The solution is smooth on either side of the shock

and across the shock the solution is governed by jump condi~
tions. These shocks are an inherently nonlinear phenomena.
Linear discontinuities such as contact discontinuities can
also occur. For a survey of the analytical theory of shocks
see [118].

The standa:d convergence theorems for numerical

schemes are hased on the assumption that the solution is
smooth (see [156)). When shocks occur it is well known that

one can construct reasonable schemes that converge to a
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solution with the wrong shock location (e.g. [116], [209]).
One alternative is to use the differential equations only
in smooth regions. The shock itself is followed explicitly
using the Rankine-Hugonnit relations supplemented by char-
- acteristic data (see [140), [152], [166]). For complex

flows with several intersecting shocks this is difficult.
Furthermore, there is the additional difficulty of predicting

the generation of shocks that do not exist initially. The

introduction of viscous terms further complicates the

method.

An alternative to fitting the shock is the so-called

shock capturing method. Lax and Wendroff [116] showed that

if the equations are written in divergence-free fcrm

(8.1) u, + divf =0

and if the numerical method also has this property then

when the scheme converges it will give the correct shock

E ; speeds. Because of the ease of use, this method has dominated

1
3
3

the computation of shocked flows. We note that the use of
divergence-free form is not necessary. Instead one car integrate

(8.1) as a quasi-linear system and compensate for this by

the addition of terms that depend on the mesh (see [203]).

It is alsc well known that the use of the divergence free

R L S e

form is not sufficient to give the correct shock speed.

Once one generalizes the definition of a solution to allow
discontinuous solutions then the solution to (8.1) is no
loager unique. One must demand additional constraints, e.g.

that entropy increase across the shock, in order to have a
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ﬁnique solution (see [118] fér additional information). For
first order systems necessary and sufficient conditions which
© ‘guarantee entropy satisfying discrete shock profiles are
given by Majda and Ralston [132].

The use of the difference scheme across the shock has
several disadvantages. In some cases it has been found that
non-physical rarefaction shocks can appear ([90], [125]) i.e.,
the entropy condition is violated. This generally happens
at a sonic line or a stagnation point where an eigenvalue of
the system becomes zero. All the known examples for model
equations exhibit troubles only when the coefficient in the
equation passes through zero. The usual second order schemes,
Lax-Wendroff or MacCormack, have a dissipative mechanism
which vanishes when an eigenvalue of %% in (8.1) is zero.
Hence, in these circumstances the scheme is effectively non-
dissipative and so it is no surprise that difficulties can
occur. Another difficulty of higher order method is that
overshoots can occur in the neighborhood of shocks even when
the shock speeds are calculated correctly.

The standard cure to these difficulties is to add an
artificial viscosity term to the scheme. This viscosity
should be constructz:d so that it do2s not affect the accuracy
of the scheme in the smooth portion of flow. It also should
not vanish at the sonic lines or the stagnation points. In
practical computations several viscosities have been suggested
which work reasonably well [29], [49]. Majda and Osher

[130], [133]) have suggested some viscosities for which

they can prove the convergence of the scheme to the correct

|
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solution. Lerat and Peyret [120] have shown that one can
lessen the impact of the oscillations by choosing the
correct variant of MacCormack's method (3.5). This becomes
-difficult for complicated flow patterns. Lerat ([121]
discusses the addition of nonlinear correction terms to
reduce the oscillations. These latter studies are based
‘on the modified equation approach [100], [171!, [194].
These corrections have been of a very specialized and
- problem dependent nature.

It is known that monotone schemes have the property
that overshoots do not occur and that they give the correct
shock locations [90]. Unfortunately, linear monotone schemes
are only first order accurate. Crandall and Majda [44)
have considered generalizations of monotone schemes as well
as extensions tc several dimensions by using splitting methods.
They demonstrate that splitting the equations into one

dimensional portions can have strange effects on the

shocked solution. The definition of monotonicity for
systems of equations is not clear.

An alternative to usinc monotone first order methods
everywhere is to use these methods only near the shock
and to use a higher order method in the smooth portion
of the flow [88]. Rather than using different schermes
in different regions it is easier to automatically com-
bine these schemes using hybrid techniques [89]. The
monotone methods prdduce excessive smoothing of the shock
profile. Several nonlinear corrections have been suggested

[18), [91], [191], [20¢] to prevent this smearing.
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A simpler technique is to use the scheme without

the addition of any artificial viscosity. At the comple-

tion of each step one filters the solution to remove any

- “oseillations. The simplest way to accomplish this is with

a Shuman filter [88]. Let u represent the solution to
any finite difference scheme at time t. We then define

the corrected solution to be

n - - - - -

. & s = . + . . -u,) =- R .= U. .
(8.2a) uj = uy 63+i(u3+1 uJ) ej_i(uJ uJ_l)
with
(8.2b) 0 < ej < % .

For (8.2) to be second order accurate, in space, we require
that ej = 0(Ax) in the smooth regions of the flow. (8.2)
can be viewed as the second step of a splitting process which
adds the viscous terms (eux)x. Hence, stability is ensured
whenever the basic numerical algorithm is absolutely stable.
A reasonable choice for 6 is [92]

~ . - . -2 . -G. + R
(8.2¢c) 6. = i*2 JJ+l (°J+1 03) (oJ 07-1)

=0
+ - - -
j+3 bj+2 cj+ly+2l5j+l cj)|+ loj Oj-Zl

'where 0 < a < 3 and o is a function of u. For the

fluid dynamic equations one frequently chooses o as the
density.
The various techniques discussed all reduce oscilla-

tions in the neighborhood of a shock. It is not clear

Sl ot ilicns i gmes Biai o
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whether one needs to remove these oscillations except

for aesthetic reasons. This seems to be problem dependent.
For problems with combustion, it is imperative to prevent
oscillations which may falsely triggexr the combustion
process. For steady state calculations with separate
shocks the oscillations probably do little harm to the
total solution. Por dynamic situations with interacting
shocks the situation is less clear.

Shocks are inherently stable and compressive phenomena.
Hence, even without shock fitting the shock is smeared over
only a few mesh points even for long periods of time.
However, contact discontinuities continue to spread in
time. Hence, in multidimensions where coarse grids are
necessary one cannot resolve contact discontinuities cver
long periods of time. One can try to convert these dis-
continuities into pseudo-shocks [91]. Alternatively one
can use fitting techniques only for contact discontinuities.
One such technique was described in section 6 for the inter-
face between different materials.

Numerical evidence indicates that if higher order
methods are used in smooth parts of the flow then errors
in the shock area do not propagate into the smooth region
{188]. Since contact discontinuities are a linear phenomena
it seems that errors in the discontinuity region may
contaminate the entire domain of integration. For
linear problems with discontinuities a straightforward

method will yield only second order accuracy even in

Ay




smooth regions [129}. The accuracy of the method can be
recovered by pre~ and post-proceasing (138]. For non-

linear problems preprocessing and postprocessing will not

work. On the other hand there are indications that there

is no need for any adjustments for shocks ([119]), [188]).
In fact preliminary computations demonstrate that one can

achieve one point shocks and contact discontinuities

using Chebyshev spectral methods (3.16 - 3.18). Small
oscillations appear which can be removed by a postprocessor
(D. Gottlieb, private communication).

When using implicit methods to compute the solution

to shocked flows, computational experience indicates that
one can not use time steps more than about three or four
times the local Courant limit, even for stationary shocks
(e.g. [93]). 1In many practical situations this is not a

serious limitation as the time step for an explicit scheme

would be goverened by regions other than the shock region.

T R

For example, in a shock-boundary layer interaction the time

step is goverened by the boundary layer mesh and not the
shock. Hence, an implicit method can still use time steps
about fifty times larger than those used py an explicit
method.
B. Multidimensional Problems
In several of the previous chapters we have dis~
cussed methods for one dimensional problems. For practical

applications one needs multidimensional codes. For some
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methods as leapfrog it is straightforward to construct a
stable multidimensional scheme. Even in this case the most

straightforward version can lead to restrictive time steps.

Consider the equation

(8.3) u, + Aux + Buy =0 .

The straightforward leapfrog method for this equation

is
' n+l _ n-1 _ At ,n n _ .0
(6.4) Yi,5 T 9,5 T ax Ai,j[“i+1,j ui-l,j]

§ At .n [0 n n
iy Bi,j[ui,j+l ui,j-l) :
This is stable if
(8.5a) A sinf{ + B sinn <1

for all £ and n. In the worst case this can demand
1Al < 4, |IBll < 3. For the fluid dynamic equations (8.4)

is stable when

2 2 2 2
At ul + (v + 1 1
e CHNEIRR C R Rt

Abarbanel and Gottlieb [ 2] have pointed out that one can

improve this stable condition by averaging the derivatives.

In particular we can replace (8.4) by
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:
E
:

" n+l n-1
(8.6) uj*y -uij 72"“15

, n . _.n
: {(éﬂ-l,j'ﬂ.*‘ ui"’l:j'l “i"l'j"'l ui-l:j'l}]

24

A n
Ay Bi,3

»

. n n _.n _.n
[[ui+1,j+l+“i-l,j+l Yi+1,§-1 “1-1,3‘—1]] .

This is now stable when’

(8.7)

(>'D

ier
)

IA
'—!
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et
which is optimal. Similar extension to three dimensions
exist except that the averaged scheme is no longer optimal
but still better than the standard leapfrog method. Exten-
sions to afbitrary dimension3 are considered in [201].
A similar gain is achieved for the fourth order leap-
frog method (S. Abarbanel and D. ttlieb, private commu-
nication).

For implicit methods the extension to multidimensions
is less straightforward. The obvious ceneralization of one
dimensional schemes leads to the necessity of inverting
large sparse matrices which are nc loncer tridiagonal.
To avoid this problem one usually emcicvs an alternating
direction method to reduce the prcbler <o a secuence of one
dimensional problems. McDonald ané Briley [128) have stressed
the importance of doing this in such a manner that each
portion of the split is consistent witnh the original equatiors,

In chapter 5 we have indicated sore of the disadvantages of



A.D.I. These include a reduction in the rate of convergence
to a steady state and aiso instability for some important
three dimensional versions.

For the usual multistep explicit methods one can con-
struct full two dimensional versions. This has been done
by Richtmyer [156],Burstein [29], MacCormack [124], Turkel,
Abarbanel and Gottlieb [186] among others. These schemes
usually have a restricted stability criterion. More impor-
tant, it is difficult to treat different directions in a

different manner in order to take advantage of the physics

of the situation. Strang [179], Yanenko [206], and
Marchuk [134] have introduced the concept of splitting
the equation into several components. We consider the
general equation

E {(8.8) u, = qu + Myu + Mzu = Mu .

Here, we have arbitrarily split the right hand side into

three portions. Frequently these splits are identified
with separate dimensions. However, in other applications
other splits are indicated by the physics (see e.g. [135]

and section D). We now consider the subsystems

(8.9) v

"
=
<

o

"
=
<

o3

n
=
<

(8.10) vn+1=va 0 T .. L 0 S
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respectively. We can reconstruct the solution to (8.8) by

n+l - n
(8.11a) u LxLyLzu .

This is a first order, in time, approximation to (8.8).

" In order to make the approximation second order in time we

follow (8.1la) by

n+2 _ n+l
(8.11b) u LxLyLzu .

This is stable if each of the one dimensional operators

are strongly stable. Gourlay and Morris [75], [(76] have
considered the implementation using multistep methods.
Gottlieb [67]) has shown that this 2-cycle of permutations

is second order even for nonlinear equations. This splitting
in two or three space dimensions coupled with some multi-
step scheme has been very successful for many applications.
One can show that one achieves the optimal time steps. One
can also treat different directions in different manners.

For example, MacCormack [125] uses the operator in the vy
direction more oft..;, with smaller time steps, than the
operator in the x direction. This compensates for the

finer mesh in the y direction. Alternatively, one could
couple Fourier methods in periodic directions with finite
difference or Chebyshev methods in directions with boundaries.

For a further description of details see [77].
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As with all methods splitting techniques have their
drawbacks. One immediate difficulty is that the intermediate
steps have no physical interpretations. Hence, if the
coefficients of the equations or the boundary conditions
depend explicitly on time it is not clear which time to
use for the middle steps. This is compounded if multi-
step methods are used for the one-dimensional operator.
Additional difficulties are encountered when the soiution
has a shock inclined to one of the coordinate directions.
Crandall and Majda [45]) have shown that unusual occurences
happen in this case. The efficiency of the random choice
method also deteriofates in the presence of oblique shocks
when splitting is used (Chorin, personal communication).

Another difficulty occurs when some subsidiary con-
straint; are intrinsic to the solution. For example, for the
Maxwell equations the condition divB= 0 can be viewed
as an initial condition. For problems with variable
coefficients (8.10) is not symmetric in x and y even
though the operators appear in a symmetric fashion. Hence,
numerically %E divB i nonzero. This introduces a non-
physical Lorenz fcrce which can cause numerical instabilities.
The author has done extensive calculations with the nonlinear
ideal MHD equations. When dimensional splitting was used
nonphysical instabilities always occurred. This also

occurs when Lagrangian schemes are used in MHD (Brackbill

and Barnes [21])). A similar situation occurs in the




incompressible Navier-Stokes equations where div;a = 0

must be satisfied. In this case the situation is improved

by explicitly adding terms involving %? divu to the

equations. This does not affect the analytic solution .
since divu = 0. However, the numerical solution can be

stabilized by such a procedure (see [86], (99]).

C. Aerodynamics

Aerodynamics is freguently divided into internal
and external flows. Internal aercdynamics describes flows
in nozzles, ducts and turbomachinery. These flows usually
involve complex flow patterns and frequently require the
addition of chemistry models to study the propagation of
flames. Boundary conditions are extremely important for
internal flows. These flows are usually subsonic or
transonic with maximum Mach numbers of about 1.3. Hence,
one is fregquently not interested in shocks and can frequently
dispense with the conservation forms of the difference
equations. This is especially important for implicit methods.
The block structure of the matrices to be inverted are much
more complicated when the divergence form of the equations
must be used. The velocity form of the equations frequently
allows the decoupling of the blocks into a direct sum of
smaller blocks (see [23])). It is much faster to invert
three scalar tridiagonal matrices than to invert one block
tridiagonal matrix with 3 x 3 blocks. Hence, it is computa-

tionally important to utilize the proper form of the equations.
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For large systems arising from chemical models this is even
more important. An extemsive discussion of implicit methods
for internal flows is giwen by McDonald and Briley [128].
Por both internal and external flows one must use a mesh
that resolves the boundary layers. This can be done by
a mesh stretching or a finite volume technique. In many
situations one is only interested in the steady state solution.
For this case implicit methods are becoming popular. As
mentioned in section 5 the implicit methods become more
inefficient as the cornlexity of the equations increase.
This complexity can be created by the existence of many
equations or the existence of cross derivatives. For many
aerodynamic flows one simplifies the full Navier-Stokes
equations to the so called "thin layer" approximations [175]
lo“that the flow is essentially unidirectional ([51]. This
is useful only when the boundary layer has some simple
structure parallel to the body. An alﬁernative is the
rapid solver proposed by MacCormack [126]. Details of these
approaches are given in the article by Hollanders and
Viviand [101). An alternative to using the time dependent
equations is trying to solve the steady state equations
directly. Iterative methods have not proved to date, to
be very promising. One possibility is to use Newton's
method for linearizing the problem coupled with Gaussian
eliminatio~. This has been carried out Ly Blomster and
Skdllermo [17) and Rizzi []S7). The major difficulty
with this approach is that the bandwidth of the matrix
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- increases rapidly as finer meshes are needed for more

realistic situations., This is especially severe in three
space dimensions. Alternate linerizations, such as
Schubert's methods, may alleviate the difficulty since one
can account for the sparsity of the matrix to be inverted
(see @.g. [136), [167)).

An important problem in using the time dependent
equations to achieve a steady state is finding ways to
accelerate the convergence to the steady state. One such
method is to use different time steps at different mesh
points. For explicit methods the time steps could be
chosen so as to satisfy the local stability limit (Burstein,
personal communication). For implicit methods large time
steps can be viewed as an iteration parameter. Some ideas
for optimizing this parameter were discussed in chapter 5.

Even more important is the proper implementation of
initial and boundary conditions. Rudy and Strikwerda [163)
have considered the effect of various boundary treatments
on the acceleration to steady state. Over-specificaticn at
inflow can accelerate the convergence but frequently leads
to oscillations in the steady state. Under-specification
at outflow can prevent the achievement of the steady state.
The use of a radiation boundary condition can dramatically
decrease the number of steps required to achieve the
steady state., An analytic treatment of several bouncary

treatments is provided in [147].
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~4§;;$!$0;c§i:§c; §t¢i§e~o£ainitial,data is also important
“in achieving a rapid steady state, When the initial data

does ﬁot*sat§;£§ the boundary conditions waves can arise
which take a long time to dissipate. One procedure is
to use a primitive form of the multi-grid method [22.
In this case we solve thé equations on a coarse grid.
This can be done rapidly and so the initial guess is not
important. The converged solution is then used as an
initial guess fqr the next finer grid. A pyramid of
grids‘can be used untii the finest grid is reached. Most
of the work is done 6n the finest grid and so the
coarser girds do not increase the work by very much. By
providing an excellent initial guess this process can sub-
stantially accelerate the process of reaching a steady
state.

For complex three dimensional flows it is likely that
all the processes described above and in chapter 5‘will
be necessary to achieve a steady state within a reasonable
number of iterations. For surveys of methcds for the
Navier-Stokes equations see [ 7], [35), [137]), [154].
In addition there will be, in the future, more of a
need for internal accuracy checks, e.g. changing the
mesh size. This is crucial for investigating the effect
of various acceleration techniques on the accuracy of
the steady state solution. 1In most studies the only

accuracy checks are comparisons of averaged quantitities

it




;*ﬁiiﬁ‘iiﬁéfiménéal’data;té.g. skin:frictiOﬂc drag, etc.
:'?hggé?eampariséni ignore any oscillations or other diffi-

culties that may occur locally in sections of the flow.

4. Meterorology

The problems that occur in computational meteorology

are very different from those in aerodynamics. First,

in meteorology one is interested in the dynamic behavior
of the model. Even in climatology one wishes to find
statistical averages rather than a steady state solution.

Furthermore, the equations of motion are a classical

example of a system with different time scales. Allowable
speeds in the atmosphere range from sound waves down to
Rossby waves. The physically dominating Rossby waves

are about 20-30 times slower than the speed of sound.

Nevertheless, if one uses an explicit scheme the time

'steps is restricted by the fastest possible modes of

propagation. A further restriction on numerical methods

is that one wishes to limit the amount of dissipation
introduced by the scheme. The long term weather patterns
are governed by a delicate balance between heating due
to solar radiation and dissipation due to friction and
interactions with the oceans. For long term weather pre-
diction it is essential that the numerical method does
not interfere with this balance.
As a simplified set of egquations we analyze the

shallow water equations in cartesian coordinates.
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(8.12a&) - u, fﬁﬁyxzf vuy !.-ghx + Iy
(8.12b) | ve * vy * Vv, = -gh, - fu
{8.12¢) ht + uhx + vhy = -h(uxi-vy).

(u,v) are the velocity components and h is the equi-
valent height of the atmosphere. g and f are taken

to be constants. The phase speeds of the system are

wy = u sin®+ v cos 9

(8.13)
wy 3 =wy * fgh+f

In this simple system Wy represents the important Rossby
wave while Wy, 3 are the relatively less important
gravity waves. The flow is called geostrophic if the
right hand side of (8.12a) and (8.12b) are zero. The
flow is incompressible if the right hand side of (8.1l2c)
is zero. The real atmosphere is gquasi-geostrophic and
almost incompressible. This is the cause of the small
amount of energy in the gravity waves.

One way to ovescome the difficulty with the different
time scales is to use a semi-implicit method. In this
method the right hand side of (8.12) is treated implicitly
while the convective terms are treated explicitly. The

resulting stability condition then depends only on the
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velocities and not on the sound speed, /gh. A fvrther

analysis of this is presented in Elvius and Sundstrom [52].

Navon [144] has combined a semi-implicit method together

with the linearization technique described in section 5. .
He found that it was necegsary to iterate the procedure
once in order to maintain the accuracy. Isaacson,
Marchesin and 2was [104] have used a fully implicit compact
fourih erder mcthod coupled with linearization algorithm.
The scheme (3.9) was generalized to two dimensions by using
an alternating direction method. They found that the
correct treatment of the singularity at the pole was
necessary to maintain stability. The order of the factors

in the A.D.I. method was also crucial for stability.

Williamson [200] has compared the effectiveness of high
order schemes for the primitive equations. He found that
the horizontal diffusion term had a greater effect than
the order of the scheme. The introduction of topography
further complicates the comparison since for realistic
grids large mountain chains are described by relativity
few crid points leading to large gradients in the vertical
variable.

Gadd [62] has suggested splitting the system into fast
anc slow components and treating eacn separately with a
Lax-wendroff method. This has the disadvantage of using a
dissipative method. It is possible to use a similar idea

with the leapfrog method by using two grids. The convective
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terms are differenced on the fine grid while the right
hand side of (8.12) is differenced on a coarse grid but
with a compact fourth order method. The resulting
approximation to (8.12) is given by

n+l _ n-1 _ n n _
%,3 U3 *[}i.j(“i+1.j “1-1,3}

n n _
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with A =

An additional difficulty that occurs in meterology

is due to the spherical coordinate system used for the

globe. The coordinate singularity at the pole together

! with the convergence of the latitude lines at the poles

forces an unrealistically small time step for explicit
schemes. Many attempts at using other coordinate systems
or patching several coordinate systems have not been very
successful. To enable the use of larger time steps some
smoothing algorithm is used near the poles to eliminate
the higher frequencies. 1In fiqure (6.1) we display a

contour map of h for the solution to the shallow water

equations in spherical coordinates. This solution used
3 minute time steps and includes Fourier filtering near
the poles (see [190], [199]). 1In figure (6.2) is shown

a second graph using the scheme (8.14) together with
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Fourier filtering. This allowed 74 minute time steps.
A leap frog method without any filtering could use only
4 minute time steps with the grid used.

More realistic models are based on the primitive
equations and also contained many levels in the vertical
direction. Usually a pressure-like coordinate is used
in the vertical direction. Even though many calculations
have been performed with the primitive equations
Oliger and Sundstrém [147] have shown that the system is
not well-posed. Browning [26] has proposed a substitute

which is a proper limit of hyperbolic equations.

In volume 17 of Methods of Computational Physics a
variety of methods are presented for solving these equations.
Spectral, pseudospectral and finite element methods all
present advantages and disadvantages for large scale
problems. To date there has been little comparison of

these numerical techniques under real-life situations.

e. Combustion
The replacement of an ideal gas by a real gas

and the inclusion of chemical processes introduces
several new difficulties into the computation. Because
of the exponential dependence of the ignition on the
termperature it is critical that there be no overshoots
in the computation of shocks. False overshoots can ig-
nite the chemistry at entirely incorrect piaces and times

and completely invalidate the computation. As previously
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mentioned one alternative is to introduce severe dissipa-
tion. Anti-diffusion is later added to sharpen the
shock profile (see [18], ([91], [191]). An additional
difficulty is the introduction of many new equations

when many chemical species are present. This is a parti-
cular difficulty for implicit methods as the work increases

with m3

where m is the number of equations. 1In certain
cases Briley and McDonald [24] have shown that these
matrices can be simplified.

Since the flame occupies only a small region of the

computational domain it is necessary to introduce a fine

mesh which moves adaptively in time. Efficient ways of
changing the grid, especially for several space dimensions
are unknown. One way of moving the mesh for one space
dimension is given in [50)]. An additional difficulty with
combustion problems is the stiffness of the ordinary
differential equations which describe the chemistry. This
necessitates much smaller time steps for the chemistry than
for the fluid dynamics. This can be partially alleviated
by using splitting techniques (section b) to split the
chemical and fluid dynamical portions of the calculation.
A different approach to these problems was introduced

by Chorin [38]. He extended a probabilistic method due

to Glimm [65] into a practical method. The random choice
method is based on .ne solution to many Riemann problems.
In each interval the solution is considered to consist of

two constant states with a discontinuity between them. The
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solution is advanced to the next time level by analytically
solving this local Riemann problem and then choosing the
new constant state to be the solution evaluated at a random-
ly chosen point within the mesh. This method has the pro-
perty that the discontinuity is sharp (in a probabilistic
sense) without overshoots. Hence, there is no need for
artificial dissipation or a moving grid. A drawback of the
method is that it is at best first order accurate in the
smooth regions of the flow. Since convergence is guaranteed
only in a probabilistic sense accuracy for any given compu-
tation may be poor. This depends crucially on the choice

of sampling. It is expensive to calculate exactly the solu-
tion to a Riemann problem at every mesh point and each time
level. An alternative is to solve the Riemann problem with
a finite difference method [93]. This also has the advantage
that it easily generalizes to complex systems of equations.

The present extension to several dimensions i. based on

splitting techniques. As this reduces the effectiveness of
the method other approaches are being investigated [66].
Sod [173] has compared this method with some finite difference

schemes for simple shock problems.
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f. Plasma Physics
The simplest set of equations that describe a
plasma are the ideal MHD equations developed by Lunquist
{123]. These form a set of eight nonlinear symmetric hyper-
bolic equations. Grad [78] has shown that the full equations
include all of standard fluid dynamics within a small range
of parameter space in the MHD equations. Hence, all the

difficulties discussed in the previous sections automatically

occur in MHD. In order to make the problems manageable
one can only treat simpler problems than those solved
for the Navier-Stokes equations. This is even more true
when more relevant equations, as the Vlasov or Fokker-
Planck equations are considered. For these eguations
only one dimensional or simple geometries can be consi-
dered.

As a simple illustration we consider the steady
state equations. For the Navier-Stokes equations we can
solve the full system with the time derivatives set equal
to zero. Some of these methods were described in section
¢ and others are described in more detail by Hollanders and
Viviand [l01]. For ideal MHD even the case with no flow,
i.e., u=20, is nontrivial. In this case the equations

become

Yp = 7x7xB
(8.15)
divB = 0
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This system of four equations for p, B v By has two

x’ By
real and two imaginary characteristics. Hence, this is

a mixed hyperbolic-elliptic system. PFor three dimensional
systems in a torus it is not even clear that the differential
system is well posed. By imposing additional constraints
Betancourt and Garabedian [16]), [9]) have obtained solutions to
(8.15) for three dimensional configurations. Brackbill [20]

has obtained solutions by using the full time dependent MHD

equations and marching to a steady state while removing
kinetic energy so that u = 0 in the limit. It is

o' saously much more difficult to do the type of steady
atate calculations that are commonplace in aerodynamic
flows.

In addition to the steady state, or equilibrium
problems, one is also interested in the stability of the
equilibrium. When one wishes to study nonlinear stability the
main technique is to integrate the time dependent equations.
As mentioned in section b one difficulty is introduced by
the constraint divB = 0. If ’:‘3 divB is nonzero
numerically it can introduce false sources of instability.
Hence, stable equilibria can appear as unstable equilibria
(see also [21]), [142]).

For the time dependent equations there are three sound
speeds known as the fast (or magneto-acoustic) speed, the
Alfven speed and the slow speed (see e.g. [39])). Many of the
instabilities in a torus occur at the Alfven speed which can be

much smaller than the fast speed. Hence, we again face the
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phenomena of different time scales. We wish to use time
steps based on the Alfven speed without sacrificing stability.
One approach is to use an implicit, alternating direction
method (see [122]). Howaver, this requires the inversion of
block 8 x 8 tridiagonal matrices which is time consuming.
Plasma flow has the property that most of the change occurs
along magnetic flux surfaces and not across them. By using
flux surfaces on a coordinate system one can separate out
the fast and slower motions. Since the Alfven wave is
incompressible this can be used to set up a scheme which
uses time steps based on the Alfven speed (see [106])). The
main disadvantage is that the method fails when the flux
lines no longer provide a reasonable coordinate system.
Another approach is to use a semi-implicit method (Brackbill,
privaze communication) similar to that in section d. One
can now use a standard Eulerian or Lagrangian grid. The
size of the matrices tc be inverted are severely reduced
vhile the time step is governed by the Alfven time step.
When considering non-ideal effects the major effect
is resistivity rather than viscosity. While this still
introduces parabolic terms nevertheless the physical
effects are quite different. It is well known that
resistivity can frequently cause instabilities that did
not exist in the ideal case [48]. As with the Navier-Stokes
it is necessary to reso.:'«= boundary layers where the
resistive effects are dominant. An additional difficulty

with plasma physics is the existence of a vacuum outside
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the plasma. The magnetic field in the vacuum is governed

by an elliptic equation which must be couped with the time

dependent MHD equations across a moving interface. Wwhen

7 solving the plasma-vacuum problem lLagrangian type methods

? 4 or flux surface methods have been used. The Eulerian

methods usuarliy represent the plasma as a low density plasma.
We have concentrated on the application of MHD to

magnetic controlled thermonuclear reactions. Another

application is to astrophysics. For these problems

radiation boundary conditions as described in chapter

7 are important. Another important area is laser fusion.
In this area the introduction of artificial boundaries

is also important. 1In addition, these problems frequently
have regions with extremely different properties as the
pellet is compressed. Hence, the methods must be capable
of handling changes in coefficients in the range of 15
orders of magnitude. Further discussion of methods Ior
plasma physics are given in [155] and also volume 16 of

Methods of Computational Physdics.

g. Other Applications

In this brief survey we have shown some of the

difficulties that occur in specific applications.

i
i
4
§
i

Naturally this survey cannot cover all topics. One major
field which has not been discussed is two phase flow.

Aspects of that field are discussed by H. Wirz [203].




~ Another field which was touched on briefly in chapter 8

is acbustics. This includes such diverse fields as

seismoloqy, underwater acoustics and jet acoustics. Each

of these present their own difficulties. In seismology .
in barticular 6ne tendé t§ use second order equations

rather than first order systems. The occurrence of

layéred‘media introduces other difficulties. Both interior %
an” exterior ballistics provide problems with extreme dis- |
tortion of materials. Due to the high pressures and tem-
peratures even metals deform. Hence, one cannot

integrate in a region with fixed boundaries. Instead,

the motion of the free surfaces and interfaces must be
calculated. An additional difficulty is the existence

of a plastic regime. For this regime the deviatoric
stresses remain on the yield surface, i.e.,

ZSg'j = K. It is a nontrivial problem to enforce this
constraint numerically. A survey of numerical methods

in elastodynamics is given in [5].

One major field which has not been discussed is that
of incompressible flow. Discussion of finite difference
methods is given in a companion article by Krause [109]
(see also [61] and [185]). There has also been much work
in the application of finite element approaches to solving
the time dependent incompressible Navier-Stokes equations
(see e.g. [58], [25], [102). Of particular note is the
recent use of grid-free methods. Chorin [37] used a method

based on the interaction of a finite number of vortices.
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Combination grid-vortex methods have considered in [27],
{1271, and [167]). Peskin [153] has advocated the use of

a Lagrangian grid free method. These codes have been used
for many aeronautical purposes. The use of these codes for

biological studies is complicated by the fact the boundaries

which represent tissue material, are permeable [151]1. The
spectral methods can also be viewed as grid-free methods.
applications of spectral methods to incompressible flows

are surveyed in [150]

Boundary layer computations have been dominated by
the use of fourth order finite difference and finite
element algorithms (e.g. [41]), [107], [1l61], ([196], [20%]).
A major difficulty in the practical use of these codes is
the lack of sufficiently accurate turbulence models.
Extensions of the mathematical models to detached and
reverse flow is also being investigated [34]). The boundary

layer equations are a parabolic system. Other parabolic

e R AR

problems include heat flow and diffusion problems. Diffu-

sion problems are of major importance fcr such diverse

fields as oil studies, plasma diffusion and biological
processes. %

Transonic flow calculations have been mainly based on

AT ¢
o

the potential equation. Recent progress in the field has

been presented in [204] and in the Proceedings of the

g
-

Fourth AIAA Computational Fluid Dynamics Conference.
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