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ABSTRACT

A survey of numerical methods for time dependent partial

differential equations is presented. The emphasis is on

practical applications to large scale problems. A discussion

of new developments in high order methods and moving grids is

given. The importance of boundary conditions is stressed for

both internal and external flows. A description of implicit

methods is presented including generalizations to multidimensions.

Shocks, aerodynamics, meteorology, plasma physics and combustion

applications are also briefly described.
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1.	 Introduction

In the construction of numerical solutions to large

scale problems one wishes to have a code with many different

characteristics. Examples of these properties include

efficiency both in terms of computer time and computer

storage and also ease of use. Frequently a code is con-

structed to be used by other people who do not have a

detailed knowledge of the algorithm. Hence, one does not

want a program which requires the specification of many

nonphysical parameters or one that requires intervention

on the part of the user. Lagrangian codes are frequently

complex and may require operator intervention for rezoning.

Hence, we shall concentrate on Eulerian methods.

In contrast to ordinary differential equations it does

not seem advisable to introduce general packages for time

dependent partial differential equations. In one space

dimensions a number of packages exist usually based on an

ODE solver. These packages are useful when one wants 3

quick answer to a simple problem. However, the programs

are far from optimal both in terms of computer tithe and

computer storage (115j. Hence, for realistic physical

models with many complicated equations which are to be

solved many times it is necessary to develop a code for

each problem. This is especially true for multidimensional

problems. The range of solutions including both smooth

and discontinuous flows demands that the algorithm be

carefully matched with the physics. Depending on many

^__^^s
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factors one may need either an explicit or implicit scheme.

Accuracy and geometrical considerations will determine

whether high or low accuracy methods (in both space and

time) are more appropriate.

In the following sections we will discuss in more

detail many of the factors that influence the choice of a

scheme. Special attention will be paid to the treatment

of boundaries. After a general discussion of standard

boundary treatments attention will be focused on moving

boundaries. Artificial boundaries to simulate an infinite

domain create other difficulties which will be analyzed.

In all these cases the interplay between the physics and

the numerics will be stressed. Implicit methods and appli-

cations to specific problems are discussed with special

emphasis on shocks and on steady state solutions.
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2. Boundary Treatment

Since much of this study deals with nonstandard bound-

ary problems we shall first review the basic theory. For a

numerical method to be useful we require that it be stable

and also converge. Hence, small perturbations in the

problem should give rise to small perturbations in the solu-

tion. We first consider the model equation

(2.1)	 ut + Aux = 0

with A a constant n xn matrix and 0 < x < 1. Let A be

symmetric and have k positive eigenvalues, n-k negative

eigenvalues. It is then straightforward to show that (2.1)

is well posed only if k linearly independent conditions are

imposed at x = 0 and n-k conditions at x = 1. This number

of conditions is also sufficient for well posedness as long

as no variables corresponding to characteristic variables

coming into the boundary, from inside the region, are specified.

For a numerical method it is necessary to specify the

correct number of boundary conditions as given by the

differential equation. In general one requires some method

to numerically determine the boundary values for the other,

nonspecified variables. If the boundary treatment is not

done correctly then errors are generated at the boundary

which propagate into the domain of integration and create

instabilities. Especially for nonlinear problems these

instabilities frequently do not manifest themselves at the
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boundaries but rather along sonic limes or stagna^ion

points. It is a nontrivial task to trace the source of

the difficulty to a mistreatment of the boundary [137].

For simplicity we shall assume that the numerical

scheme uses information only at the point of interest and

at its immediate two neighbors at various time levels. Then

Kreiss has shown [81], (110j that the stability for a

scalar equation can be analyzed by assuming a solution of

the form

un = U K^ zn

and only considering the semi-infinite domain 0 < x < x,

If there are solutions to the interior and boundary differ-

ence schemes with ^ K ^ < 1 and ^z^ > 1 then the initial-

boundary scheme is unstable. if there are no nontrivial

solutions with ;^:; < 1 and ^z^ > 1 then the scheme is

stable. If there are solutions with ^K^ = 1, (z^ = 1

more care is required. For additional details see the survey

by Morton [140j.

For systems of equations or schemes that require more

than three mesh points at a time level the theory is more

complicated. For systems, the algebra of solving the equa-

tions for complex K and z is large and needs to be done

for each system of equations. Gottlieb, Gunzburger and

Turkel [72j have shown how the scalar results can be extended

to systems of equations if one takes into account the

characteristic variables (see also (28j). If this is not
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done examples are given to show that troubles can occur.

Several examples are presented in later chapters. Engquist

and Smedsaas (55) have a method of lines code that automa-

tically accounts for the characteristic variables.

For several of the standard schemes, boundary condi-

tions have been analyzed by several authors. We shall

present a brief outline of the results.

1.	 Leapfrog method:

a. Extrapolation in space is unstable.

b. Extrapolation in space-time is stable.

c. A one-sided Euler method is stable.

We again emphasize that these results are true only for a

scalar equation. As mentioned above the scalar results can

be extended to systems if the numerical boundary treatment

is done on the correct characteristic variables rather than

on the natural variables. The given boundary conditions

can consist of any combination of variables that yields a

well posed differential problem.

2.	 Lax-Wendroff method:

This is usually implemented by a two step Richtmyer

or a two step MacCormack method. The MacCormack method

is easier to implement as no half points are required and

boundary conditions can be imposed after the first step.

The treatment	 of parabolic terms is also easier using

the MacCormack scheme.

a. Space extrapolation at the conclusion of the two

steps is stable.

b. A one-sided Euler method at the conclusion of the

two steps is stable.
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c. Extrapolation at the intermediate step of the

Richtmyer method is unstable,

d. Extrapolation or one -sided differences at the

intermediate step or final step of the MacCormack

method is stable.

These boundary treatments are disctixssed in detail in (71]•

Method d is particularly easy to implement and will be

discussed in more detail in the next section where it is

extended to higher order methods. In many cases one sided

differences are equivalent to extrapolation of fluxes to

artificial points exterior tc the region. The choice

between these options is b^^:sed on programming ease.

3.	 Implicit methods:

a. Space extra^:^olation is stable.

b. The box scheme is stable and very accurate.

c. Explicit. one sided differences can lead to

stability limits on 0t ((172]).

Many numerical tests have confirmed the analysis of

Kreiss for both simple test cases and complicated problems.

At present one difficulty is to extend these results, in a

useful manner, to multidimensional problems. Abarbanel and

Gottlieb (3J have considered the leapfr^.g scheme while

Bayliss (private communication) has analyzed methods based

on splitting techniques. In pracrice most of the one



dimensional results generalize to the multidimensional

situation. In the comiAg chapters we shall consider

practical generalizations to higher order methods, moving

boundaries and radiation boundaries.

The numerical treatment of boundaries for parabolic

equations is usually simpler than that described above

since all the variables are prescribed. Some difficulties

may arise when derivative boundary conditions are given,

this is especially true for nonrectangular regions jI95).

More serious difficulties occur when the highest space

derivatives are multiplied by s small (but fixed) parameter,

e.g. high Reynolds number flow. Most schemes contain some

numerical viscosity and so ane must ensure that the numeri-

cal viscosity does not overwhelm the physical viscosity.

In general this is only true in boundary layers where the

large gradiants enhance the physical viscosity. Therefoze,

when the computations do not resolve the boundary layer it

is not reasonable to impose parabolic-type boundary condi-

tions. When one uses a coarse mesh near the boundary ane

is effectively ignoring the viscous effects and only con-

sidering the inviscid equations. So, with coarse grids near

the boundary one should use hyperbolic-like boundazy condi-

tions. Failure to do this leads to cell Reynolds number

restrictions (158).

To clarify this point we consider a model problem; the

steady state linearized Burgers equation

t2.2a)	 uxX = Rux	R ^ 0	 0 < x < 1
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with boundary conditions

(2.2b)
	

u(0) = 1	 u(1) = 0

The solution is given by

(2.3)	 u(x) a (eR - eRx ) /(eR - 1) .

For R large the solution is approximately equal to 1

everywhere except for a boundary layer near x = 1.

Solving (2.2) by central differences we have

(2.4a)
	

vj+ 1 - 2v j + vj
- 1	 R^ (vj+1 - vj - 1)	 with

(2.4b)
	

R^	 RP_x	 ,	 v0=1	 vN=O

This has the solution

(2.5)	 v a 
4^-Qti

1- Q

2-R^
Q	

2+R^

R, is generally called the cell Reynolds number or t^ze
J

Peclet number. For R, larger than 2 	 Q is negative and

so vj is oscillatory. As R^ increases	 Q approaches

-1 and v j acquires a large 2^7x oscillation which has

nothing in common with the analytic solution (see also(158J).

On g way to avoid this situation is to construct. schemes.

at least near boun6aries, which da not have an, • call F^ynolds

number restriction [6), (36J, (41J. Alternatively one can

match the interior scheme with an asymptotic expansic.r. for

the boundary layer [82J. Where feasible stretched grids

should be used to resolve the boundary layers. When the



9

position of the boundary layer is not known in advance or

is nonuniform along the b +̂ undary this is a difficult process.

The important point fs that this oscillation is entirely

due to faulty boundary treatment, i.e., nonresolution of the

boundary layers. xor example, specifying ux 0 at x 1

rather than u	 0 eliminates these oscillations. This is

a practical method fc^r outflow boundary conditions (84j.

Alternatively, one can specify combinations of u and higher

order derivatives at the boundary. As ex goes to zero this

combination should reduce to u(1) = 0 and so the scheme con-

verges for fixed R. As RA increases the boundary condition

should approximate some extrapolation formula which is stable

for the hyperbolic difference approximation. For example, we

can replace (2.4b) by

(2.4c)	 vN + k^(vN - vN_ 1 ) a 0

The solution to (2.4) is then given by

(2.6)	 v^ a AQ^ +1- A ; A = (1-QN +FM1QN
-1(1-Q))`1

By inspection v^ converges to u(x^) as .^x goes to

zero. As R^; increases beyond 2, Q becomes negative

and oscillations appear. However, the factor A in front

of the oscillatory part becomes small and so the oscillations

da not 3isturb the solution. In mure practical situations

the first difference vN - vN _ 1 can be replaced by higher

differences for greater accuracy. Similarly, more compli-

cated weights than simply R 	 can be constructed. For
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multidimensional problems R n varies locally in Moth

space and time. The ^^wr. gtream boundary conditions can

also create oscillations w;.en the mesh does not resolve

the boundary layers. Correct treatment of the downstream

boundaries eliminates this difficulty [95].

This provides an additional example of the ill effects

of improper boundary treatment. As before the effects

propagate into the interior and cannot always be easily

traced back to its proper source.

r
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3. HIGHER ORDER METHODS — FORMULATION

As computer hardware improved, the need for more

sophisticated numerical algorithms became ob^^ious. In the

early stages of software development a standard technique

was a first order method while a high order method signi-

fied a second order method. Computers were not sufficiently

fast to .^.onsider two dimensional problems with fine meshes

and so only low accuracy results were obtained. With the

advent of faster and more structured computers it is now

reasonable to achieve one percent accuracy for many two

dimensional time dependent problems. Three dimensional

problems are being solved with coarse meshes. With this

situation it is	 necessary to analyze higher order

methods. When one wishes accuracies of the order of one to

five percent the higher order methods allow for a coarser

grid than first or second order methods with no loss in

accuracy. This coarser grid means that both computer

storage ar_d computer running time can be decreased without

any deterioration in the solution. When even more accurate

solutions are needed the advantages of the higher order

methods are more pronounced. The results of [188] show that

even with low accuracy requirements the fourth order method

was more efficient.

Higher order methods may not always be advantageous

or feasible. Higher order methods usually require more

computer time per time step than lower order methods. Hence,

efficiency is increased only if a coarser mesh can be used.

There are various circumstances where the mesh is

.;_^..._^_ ^_ J
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constrained by considerations other than accuracy and hence

little is achieved by higher order methods. One case is

when the geometry of the problem demands a large number of

points. For example, if one wishes to describe the many

perturbations on a real wing then one needs many more

points than are needed for reasonable accuracy with a

second order method. Another example occurs in meteorolog-

ical flows over the globe. The accuracy of any algorithm

is limited by uncertainties in the physics of the model and

in observational data. However, one cannot choose too

coarse a grid or the topography of the earth is distorted.

Similar situations occur in other fields where the basic

equations being integrated have only limited validity.

However, for the majority of cases where the mesh is

constructed mainly on accuracy considerations the use of

higher order methods can lead to large savings in time and

storage. Furthermore, the implementation of these methods

frequently does not require large modifications to existing

codes.

The construction of higher order methods has proceeded

along one of three lines. Either extensions of existing

finite difference methods, or finite element methods or

spectral methods. Multidimensional finite element methods

have not proven very successful for hyperbolic problems.

There are problems with the inversion of a large

unstructured but sparse matrix and have thus far not

competed successfully with standard alternating direction
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techniques or explicit methods. Furthermore, finite

element methods do not automatically yield stable boundary

treatment (see e.g. [72] and [80]) and so much of their

justification for elliptic problems does not generalize.

In this section we shall discuss finite difference methods

and spectral methods.

High order finite difference methods have the

advantage that they are similar to lower order methods.

Hence, their implementation is easier and usually does not

require major modifications to existing programs. Spectral

methods are even higher order and frequently are "infinite"

order methods. They have limited applicability to problems

with complex boundaries (see however [151]) and their suita-

bility for shock problems needs further investigation. It is

possible to construct unconditionally stable spectral methods;

also boundary conditions are more straightforward with spec-

tral methods. We shall concentrate on the so called pseudo-

spectral or collocation methods as they have wide range of

applicability. Galerkin spectral methods are more costly

because of the need to calculate convolution sums. Hence,

they are limited to equations with a quadratic nonlinearity

in which case fast methods are available to calculate the

convolution sums [149]. Even in this case they are two to

three times slower t;..:^ a pseudospectral method.

We first consider the one-dimensional equation

(3.1)
	 ut + fx = 0
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and some extensions of standard second ordez methc3s.

The leapfrog approximation to (3.1) is given by

(3.2)	 u^+1 = uj-1 _ ^(f^+1
	 fj-1)

with ^ = Ot/fix. A fourth order extension suggested by

Kreiss and Oliger j111] is

(3.3) un+1 = un-1 - ^ [8 (fn - fn ) - (fn - fn ) )
7	 6	 J+1	 j-1	 ^ +2	 ^-2

At the boundaries (3. 3) can be supplemented by

(see [64] and [143]

n+1	 n-1 ^	 n	 n n	 nu 0	= u0 - 3 ^ - 11f0+18f1 -9f2+2f3^

+ llnp un+l-tun+un
- 1

	

6 ^ 0	 0 0

(3.4)	 and

un+1= un-1 - ^	 2fn- 3fn+ 6fn- fn
1	 1	 3^	 0	 1	 2	 3^

+ ^ un+1_ tun+ un-1
2 ^ 1	 1	 1

with p > spectral radius of A = of/au.

These equations can be trivially solved for u^
+1 and ui+1_

Similar expressions can be derived for u
n+1 

and un+1

	

N	 N-1'

To these conditions must be appended the appropriate

boundary conditions. This scheme is stable if 1 au < .72.

Another standard scheme is the Lax-Wendroff method.

A two step version proposed by biacCormack [124] is

(3.5)	 7	 7	 J+1	 j

un+l = 1 [un + u(1)- a(f(1)_ f(1)]
J	 2	 j	 7	 J	 J-1



Another variant uses backward differences for the
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predictor and forward differences for the corrector. A

fourth order extension is given by Gottlieb and Turkel

[ 69) . [188) .

u (1) = un + ^ ( 7fn - 8fn	 + fn )
]	 ]	 6	 j	 ^+1	 ]+2

(3.6)

un+1 __ 1 [un + u(1 ) - ^ (7f^ 1) - 8f^ 1) + f (1) )) .
]	 2	 j	 J	 6	 ]	 ]-1	 j-2

The boundary treatment for the predictor is

uNll = uNll - 6 ( 4fN - fN-1 - 4fN-2+ fN-3)

(3.7a)

uNl) = uN _ 6 (15fN - 28fN-1 + 17fN- 2 - 4fN-3)

and for the corrector

un+1 = 1	 n	 (1) - a	 (1)	 (1)	 (1)	 (1)
0	 2 

[u0+u0	
6 

( 4f 3 -17f 2 +28f1 -15f0 ) j

(3.7b)

n+1	 1	 n	 (1}	 1	 (1)	 (1)	 (1)	 (1)
ul	= 2 [ul +ul - 6 ( - f 3 +4f 2 +f l -4f 0 ) ) .

The boundary conditions ( 3.7) are identical to using cubic

extrapolation to calculate the fluxes exterior to the

domain and then using (3.6). There exists another variant

with backward differences in the predictor and forward

differences for the corrector. For fourth order accuracy,

in space, one must alternate the two variants. This scheme

is stable if a au < 2/3.
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The schemes that have been presented are second order

in time. It is possible to develop four step methcas that

are fourth order in both space and time. One such method

is

u(1) _ 1 (un	 +un 	 J^ n	 n

u(2) 
_-u^+1 + 10u^ - u^-1 _ a f(1) - f(1)J	 8	 2 ( 

j+
^	 J_^)

(3.8)

(3) __ - (uj+2 + uj-1) + 9 (u^+1 + u j )
uj+^	

8

+ a [f (2) - f(2) +1 (-fn	 + 3fn	 - 3f n+ fn ) ]J+1	 j	 8	 J+2	 J+l	 j	 J-1

un+1 = un + ^ [f ^ 3) - f (3) + f ^ 2) - t ^2)
J	 J	 6	 J +:̂ j-^ J+1 J-1

+ 1 (-f (1) + 7f (1)	 -
Z

7f(1)	 + f (1) )

j+^ 1+^ j-2 j-2

+ 1 (- fn
16	 J+2

+ lOf n
j+1

- lOfn	 + f n	) ]
J-1	 j-2

This scheme is stable if aau < 1 .

Other variants are given in [ 1] and extensions to

multidimensions are described in [186]. Third order methods

in time are given by Burstein and Mirin [30] and Rusar,ov [164],

[165]. Steppeler developed third order methods in space

and time based on an explicit evaluation of the Taylor

Series combined with a third order finite element approxi-

mation [175], (1761.

_^._.	 _ J
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An alternative approach is to use Richardson extrapola-

tion at each time step to increase the local accuracy in

time. For the leapfrog method, which is symmetric about

t + ^t/2 , this is straightforward while for the multistep

methods it is more complicated. This approach increases

the domain of dependence and also decreases the time step

allowed by stability. It has the advantage of simplicity

and of generalizing to muitidimensions ( ( 187)).

The schemes considered until now have been explicit

methods that are fourth order in space. We now present

higher order implicit methods. Comparisons between explicit

and implicit schemes are presented in Section 5. We

consider the compact implicit scheme [149], [202].

(3.9) ( 12 )^u^-1 + a^u^ + ( 12 )9u^+1

_ - ^ [^(f^+1 - 
fn+1 )

 + (1-^)(fn	 - fn )]2	 +1	 j-1	 J+1	 j-1

with pun = un+1 - un.
7	 J	 7

If a = 1 we have the standard implicit schemes. These

are second order in time when ^ = 1/2 and unconditionally

stable for ^ > 1/2. If a = 2/3 the schemes are fourth

order in space. To solve (3.8) requires an iteration pro-

cedure. An alternative is to expand f n+1 . 
Let A = of

a^

then a substitute for (3.9) is

(3.10) ( 1 2 - a^An)^u3 -1 + ^Lu^ + ( 1 2a +af,,An)^u^+1

',	 n	 _	 n
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This scheme has the same formal order of accuracy in space

and tirne as (3. 9) . Experience has shown that if oi.e is

approaching a steady state or else if the time evolution

is slow then (3.10) is accurate even with large time steps

(see (14]), However, for some problems the iteration proce-

dure may be necessary. For sufficiently large time steps

approaching a steady state and ^= 1 it can be shown that

(3.10) is approximately Newton's method for solving nonlinear

equations (105].

Using a trapezoidal rule with end corrections it is

possible to construct a fourth order in space and time

formula that requires only three mesh points in the x

direction. Let A be the Jacobian of f with respect

to u.	 Then (3. 9) can be replaced by

(3.11)	 ^(-4^u^-1 + dui - 4^u^+1)

- - i^ ( f n+l _ fn+1 + fn	 - f n ]4	 ^+1	 ^-1	 ^+1	 j-1

- a 2 (An+1 (fn+1 - f
n+l ) - An+l (fn+l - 

fn+1)
12	 ^+^ ^+1	 ^	 ^-^4 ^	 ^-1

+ An (fn	 - fn ) - An (fn - fn ) )
^+^ ^+1	 j	 ^-^ ^	 ^-1

If onF wishes to linearize this scheme with fourth order

accuracy in time, one mast first calculate a second

order accurate predictor. Hence, the generalization of

(3.10) requires a predictor and corrector step. An

additional difficulty with (3.11) is that the matrix

,-

_^ _
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inversion is stable only when AQx ^ 1. Hence, even though

the scheme is uncorc^itionally stable one must restrict the

time step in order to get a well conditioned matrix problem.

Furthermore, it is difficult to generalize (3.11) to multi-

dimensional problems since an alternating direction method

will reduce the time accuracy of the algorithm. This scheme

as well as some noncompact higher order implicit methods

are described in (92]. Fourth order, in space, methods

for equations with both hyperbolic and parabolic terms are

considered in j41j and (161]. Some comparisons for the

boundary layer equations are presented in (205]. It is

also possible to construct higher order methods for these

problems by combining high order Dufort-Frankel and leapfrog

methods j68], (111].

Since these schemes are compact, special schemes are

only required at the boundary. The author has found that

the box scheme is especially accurate even though it

reduces the order of accuracy. Hence, a boundary treatment

for (3.10) would be

1- aAn 	 n	 1+ lAn	n	 n n(3.12)	 (	 2	 ) pup + (	 2	 )C1ul	-^(fl-f0)

Further discussion of implicit methods is presented in

section 5.

All the above methods are extensions of standard finite

difference formulas. Hence, they have the advantaq^ that

it would not involve much programming effort to ch•^n^^e an

existing code. However, although they are of hiyh^:r order
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they are still only fourth order accurate in space. An

alternative is to use a psEUdo-spectral scheme. For suf-

ficiently smooth solutions these methods converge faster

than any power of the mesh size (see [701).

For periodic boundary conditions the most appropriate

expansion series is the Fourier series. To solve (3.1)

with a leapfrog-like method in time one algorithm is

(3.13)	 u,±1 = u,-1 - 2 ( ^, tfx) j

where

N
(3.14)	 (^t f )n= ^ i f G(k fit) errijk/N

x ^ k=-N k

where G (k fit) = k ^t + 0 ((k 't) 3 ^ . Given f this requires

two fast Fourier transforms. 	 A good choice for G is

(3.1g) G(k"t)	 _ (8 sin (kQ Lt) - sin(2ke^t)/6^

with c ^ 1.4 • (spectral radius of ^u). This scheme is

unconditionally stable.

For problems requiring some dissipation one r.an

replace the leapfrog method by a Runge-Kutta method. If

one wishes to use a splitting method for multi-dimensional

cases then in practice one is limited to second order in

time methods. Unfortunately, the second order Runge -Kutta

method is unconditionally unstable for the Fourier method.

Hence, we consider a modified method similar to (3.13 - 3.14).

The modified Euler scheme is _given by
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u un - otfXn)

(3.16)

with

	

N	
i/	(otfx)^ _ ^	 fkGl (

k^t)eni k N

	

^	 k=-N
(3,17)

	

N	
n i ' k/N	(etfx).	 fkGZ{kdt)e ^

	

^	 k^-N

with G1 (k^t) = k©t, G2 (k^t) = kit for small kOt.

Choosing Gl (kAt)	 G2 {kilt)	 kit the stability condition

is AN x^t < 8 with A	 3f/2u C70]. Since this is very

restrictive we substitute this with

G l (kit) 
_ (-e2z + 8 e 

z -7) /6c

(3.18)

G2(kAt) _ ( 7-8e-z+e-22)6,

where z = ikaQt and	 > 1.4^(A). As before the scheme

is unconditionally stable with these parameters.

If we consider the simplified equation

{3.19)	 ut + a(x)ux = 0

the standard stability proof for the Fourier method is

valid only if a(x) doesn't change sign { see (57]). The

correct analysis of {3.19) when a(x 0 )	 0 depends on
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distinguishing between mesh-stability and time-stability.

The F^^aat` :er method for ( 3.19 ) is stable for 0 < t < T

as the number of modes increases. ;fence, by the Lax-

Equivalence theorem the approximation converges to the

analytic solution. However, for a fixed number ^f modes

the error may increase exponentially as time increases

(when a(x0 )	 0). Hence, the Fourier method in its

original form may not be useful when a(x) changes sign

(74]. To overcome this difficulty we replace G l (k^t) by

Gl (kOt)p(k) and similarl y for G2 in (3.21). We choose

the cutoff p(k) so that it is one for small k and goes

to zero for the Highest modes. Majda et al. (131] and

Kreiss and ^.^liger (1.13] have shown that this modification

to the Fourier met.hc>d is stable. In fact, using these

cutoffs with a Ch ebyshE^v method (to be described) one can

solve the Riemann probie^, ^f fluid dynamics and resolve

the shor_^c and centact disc^^^tinuity within one mesh width

(D. Got? ?.ieb, private ccr°,m;i:iication) .

F`^,r mounded domains, y n expansion in Chebyshev poly-

nomial^ is more appropriate,. Since the eigenvalues of the

operator have a ney^t.ivn real part, we consider a two step

scheme rather tY,an ct ';:apfroa method. Hence, we ha^^e

(3.20 )



23

Let xj = cos ,rj/N, one can then expand

N
(3.21)	 fj	

k^0 a
kTk ( x j )	 j=0,...,N

w'^A-e (70]

N
(3.22) ak ` ^ ^ fj cos 

nN	
c0 cN 2

k j=o j

Equation ( 3.22) is solved using the FFT. We then have

N
(3.23)	 (^tfx ) j	 ^ bkTk(xj)

k=0

with

ri
(3.24)	 bk = ^	 ^	 a^G(a9t)

k ,t=k+1
k+k odd

and G (Q^t) _ ^A t + O((^t) 3 ). In this case a reasonable

choice is (seP [73) ) , z = e-aR
, ^t, and

(3.25)	 G(R, n.t i	 (:: - 18z + 9z 2 - 2z 3 )/6n	 ,

with a approximately equal to the spectral radius of of .au

The extensior, to multidimensional problems in

rectangular domains is straightforward. The leapfrog
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methods generalize in the obvious manner. For the :^unge-

Kutta methods splitting techniques are avai'able for rnulti-

dimensions while for the implicit methods alternating

direction techniques are the most appropriate.

We have stressed methods that are second order in time.

There are several reasons why higher order methods in time

are less appropriate. First, the extension to several

dimensions is complicated as splitting and alternating

direction methods are second order in time unless complicated

algorithms are constructed. The necessity far a full multi-

dimensional scheme usually results in a method which requires

many operations per time step. For problems c: '.e re t^^e ti.me

dependent equations are being used as a relaxation scheme

to a steady state *_here is no obvious advantage to a hi,h^r

order method in time. Even for time dependent problems the

important physical phenomena frequently mo^•e at speeds

considerably slower than the fastest signal speed allowed by

the equations. Hence, these motions are usually easy to resolve

and only the variation in space is rapid requiring higher order

techniques. The other major argument for second order schemes

in time is that one tian always increase the time accuracy by

taking smaller time steps. The computer work involved varies

linearly with the time step and so this may be more • efficient

than a costly high order method. Furthermore, rhocsinq

smaller time steps does not increase th y• st^^rage. 3lowever,
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for explicit methods doubling the mesh points increases

the work by 2d+1 in d dimensions and the storage

requirements increase by 2 d . Hence, the use of high

`	 order methods in space to limit the number of mesh points

can be very advantageous. Furthermore, one can increase

the accuracy in time by locally using Richardson extra-

polation ^ti87j. In general it is not known when higher

order methods in space or time are more efficient than

lower order methods. One case where the author has found

higher order methods, in time, useful is instability

studies. Time inaccuracies can introduce errors which

cause artificial instabilities. As more experience is

gained better guidelines should be available.
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4.	 HIGH ORDER METHODS -- RESULTS

In [150] and [186] a range of problems are considered

to demonstrate the advantage of high order methods. Here

we consider two of these cases which illustrate many of

the phenomena of more complex situations.

The first problem is flew in a nozzle. The equations

are one dimensional but many two dimensional effects are

included by specifying A(x) the area of the nozzle at

position x. The equations of motion are

(A p ) t + (pAu) x = 0

(4.1)	 (Apu)t + [ A(pu 2 + p)l x = AXp

(AE) t + [Au(E + p) l X = 0

with	 p = (y-1)(E - 2 put ) and y = 1.4.

The solution to the steady state equations is known

for both smooth and shocked profiles [43]. Hence, we march

the equations toward a steady state and we can then compute

the errors between the computational solution and the known

analytical solution.

We linearize (4.1) about a constant state (p0,u0,E0)

and drop lower order terms. One then finds that the

characteristic values a and eigenfunctions v are given

by

• 2	 2

(4.2a)	 nl = u 0	 ^1 = 'u0 - ` O l i;. - u0 ^,u + E

l
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(4.2b)	 a2 = u 0 + c^	 v2 = u0ru^ - C^l p - u^ - YOl pu + E
^2

(4.2c)	 13 = u^ - c^ v3 = u^ 2 + YOl p - u^ + YOl u + E

E
with	 c^ = Y (Y-1) p̂  - ^u0

0

At the inlet the flow is subsonic and we specify

p and E equal to the known steady solution. This is

supplemented by a difference equation for the characteristic

variable v 3 which is coming into the boundary. Given p,

E and v3 one can trivially solve for pu. With the

explicit method it was not found very important to solve

for v3 rather than pu. However, with the implicit method

and large time steps the use of (4.2c) was crucial. As

pointed out before the use of noncharacteristic boundary

treatment frequently manifested itself as a negative pressure

at the sonic point. The only way of identifying it as a

boundary difficulty was to observe that the difficulty dis-

appeared when one solved for v 3 rather than pu by. the

boundary difference scheme.

For smooth solutions ro boundary conditions are speci-

fied at the exit. Hence, the special boundary treatment

is used for all three variables. For a shocked profile the

pressure is specified at the exit. Again, with the explicit

schemes it was not found necessary to use characteristic

variables. Instead we calculated o and pu by finite
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difference approximations to (4.1). E was then calculated

knowing p, pu and p.

first linearize the given

tion is not required. Th

which ( 3.10) was derived.

by

With the implicit methods one must

boundary condition so that itera-

is is similar to the manner in

Then Pn+l = Pexit is replaced

2	 n
P	 - P

(4.3)	 Z D p - u0D m+ 0 E = 
exit - 1 ^ D o= pn+1_pn

By inspection one

P	 pexit'	 (4.3)

the box scheme (3

and v2 . For the

calculated to the

verifies that in the steady state

is supplemented by two equations based on

.13) for the characteristic variables vl

higher order methods A'(x) must be also

same order. Hence, for all problems both

A(x) and A'(x) were given analytically. For the examples

considered A(x) was chosen as a hyperbolic cosine.

For smooth profiles, it was found that the major

difficulty occurred at the throat where the flow is sonic.

When an artificial viscosity is not used many of the

methods gave rise to an expansion shock. For most of the

problems the solution is considered at steady state if p

changed by less than ^ = 10 5 in one time step. For some

of the runs with high resolution a smaller E was chosen.

In Table 4.1 we present the results for a smooth

profile. The explicit '4acCormack methods did not require

an artificial viscosity while the implicit method did.

When needed the artificial viscosity is added explicitly

^--
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=	 at time t even for the implicit methods. We see from the

tab3e that the fourth order explicit method is more than

twice as efficient as the corresponding second order method.

It also requires less than half the storage to achieve

three digit accuracy in the steady state. For four digit.

accuracy the efficiency factor increases to 16.

For implicit methods the accuracy and stability depends

very much on the boundary treatment. In (72] it is proved

that one does not need to include the given boundary condi-

tions in the implicit method. Instead, after each time step

one can correct for the boundary conditions. For equations

(4.1) it was found that this worked only for time steps

less than three times the Courant limit, otherwise

nonlinear instabilities arose. For larger time steps it

was necessary to incorporate the given boundary conditions

in the matrix to be inverted. tlith time stets of about

15 times the Courant limit steady state was reached very

rapidly. In this case the izigher order method was only

about thirty percent more efficient. We speculate that in

going to a steady state the use of the lower order box

scheme at the boundary deteriorates the accuracy. For a

wave equation the fourth order implicit method was 3-4

times more efficient than the second order implicit

method (see also (63]). For both these cases there is no

improvement in either accuracy or in the rate of convergence

when a second order in time method is used rather than a

first order in time method.
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This problem, (4.1), was also solved with the Chebyshev

collocation method (3.16) - (3.17) with G 1 (kilt)	 G 2 (k^t) _

kflt. This is stable with time steps about . 1 times the	 _

Courant limit. The error at the steady state is concentrated

at the sonic point. A simple automatic postprocessor at

the conclusion of the code removes this error. The result

is an error level 20 times smaller than with the fourth

order method, as seen in table 4.1b.

We next consider (4.1) with a shocked profile. The

solution to most of the methods is not a monotone function

of the mesh. Hence, instead of comparing schemes for a

given error tolerance we find the asymptotic rate of

accuracy. This is found by a least square estimate based

on about 50 runs with different meshes. If one includes

the shock area in the error analysis then all the methods

converge like (^x) 1^ 2 in the L 2 norm and as ^x in the Ll

norm. When we exclude a fixed physical distance about the

shock the scheme behaves statistically according to the

formal accuracy of the method. With the implicit methods

instabilities appeared when time steps larger than five

times the Courant limit were used.

As the second example we consider a two dimensional

problem in dynamic acoustics. The equations are given by

(7. 1) where the radiation boundary treatment for this

problem is discussed. The numerical algorithm used to

solve this problem is the second and fourth order two

step schemes (3.5) and (3.6) together with a splitting of
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the two dimensional problem into a series of one dimension-

al problems. This code was run on the CDC-STAR at NASA

Langley. More details of the algorithm are found

in [10]

Two cases are considered here. In the first case the

mean flow is zero and the forcing function is a delta

function in space and harmonic in timef for this case the

analytic solution is known. The fourth order method is

more accurate than a second order method with twice as many

mesh points. The efficiency gain is about 400 percent at

large error tolerances and increases at lower error toler-

ances.

In the second case we use a realistic mean flow modeled

after experiments and a harmonic source located two jet

diameters downstream of the jet exit, Varying the mesh

and boundaries demonstrates that the fourth order method

with 12000 points yields essentially the analytic result.

•`	 We then measure the peak acoustic pressure as a function of

the angle. The fourth order method with 8800 points gives

much better accuracy than the second order method with

16000 mesh points. The fourth order method is now being

routinely used to solve problems with a variet; of sources

including pulses, convecting sources an!? quadrapoles. Second

order methods would not be feasible for these problems because

of storage and cost limitations.

In general we hatie found the fourth order methods to

be three to five times faster while still .riving accuracy
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comparable with the second order method. The savings in

storage is a factor of two per space dimensions. For

error levels less than one percent the efficiency of the

higher order methods increase. Similar conclusions were

reached in [150j. Coding changes for the finite difference

methods are minimal given a second order program with

either an explicit or implicit scheme.

On some simple problems spectral methods behave even

more efficiently than the fourth order schemes. However,

they require coding a new program with careful attention

being paid to the implementation. At present there has

been little experience with these methods for large scale

hyperbolic problems especially in complex geometries or

with nonsmooth profiles.
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Smooth Solution to System (4.1) with errors ^ 10-3.

Method Order N CFL Viscosit
Factor

L	 Error
Steady State

MacCormack (3.5 2 41 0.9 0.0 1.93 x 10- 3

Two Step (3.6) 4 21 0.6 0.0 8.15 x 10-3

Fully Implicit 2 37 1.0 0 . 40 1.05 x 10-3
(3.9,	 ^	 1,a1)

Fully Implicit 2 37 10.0 0.40 9.97 x 10_4

Crank-Nicolson 2 35 1.0 0.40 l.11 x 10-3

a1)

Crank-Nicolson 2 35 10.0 0 . 40 1.11 x 10-3

Fully Implicit 4 23 1.0 0 . 40 1.22 x 10-
3

(3.9,	 ^	 1,
a = 2/3)

Fully Implicit 4 29 10.0 0.30 1 . 26 x 10- 3

TABLE 4.1b

Smooth Solution to System ( 4.1) with errors = 10-4

f

^` __.,_
^^_

Method Order N CFL Viscosity
Factor

L	 Err^^r
Steady State

^	 MacCormack	 ( 3.5) 2 171 0.9 0.0 1.01 x	 10-4

Two Step	 (3.6) 4 39 0.6 0.0 1.09	 X	 10-4

Fully Implicit 2 111 10.0 0 . 4 1.07	 X	 10_4

Fully Implicit 4 51 10.0 0.4 1.20	 x	 10-4

Chebyshev m 33 0.1 0.0 1 . 16	 k	 10-5
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5.	 IMPLICIT METHODS

The use of implicit ,nethods to solve hyperbolic

equations has been increasing in recent years ( see e.g.

[20]. [87] )• The rationale behind this is that implicit

methods are frequently unconditionally stable. Choosing

large time steps can then more than compensate for the

extra work per time step.

Even though there are no stability restrictions on

the time step nevertheless the time step is still restricted

by accuracy requirements. We consider the simplest equation

(5.1)	 ut-ux=0	 0 <x< 2^r

which we approximate by the Crank-Nicolson scheme

(5.2) v^+l - v^ - 4Qx(^j+1-v^±^+v^+1-vj-1,

Assume v^ = sin(jkQx). Since the Crank-Nicolson formula

(5.2) is nondissipative the only errors are phase errors,

so that v^+l = sin ( jkQx +a)	 For the differential equations

aA = k;^t. The numerical phase for ( 5.2) is given by

5.3)	 a = sin
-1 Qx sin(kQx)

N	 1 + (6t) sin ikax)/4 (Ax) 2

In Table 5.1 we present the phase errors a N/cxA for

k:^x = 20' 10' and ^. We note that the phase errors increase

dramatically as we choose Qt/fix much larger than one.
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This is because the Courant condition of/dx < 1 has

physical significance beyond a formal stability condition.

t^ith larger time ateps.we are not following the wave

correctly.

The justification for implicit methods arises only

by considering equations more complicated than a wave

equation. A simple model is provided by

(5.4)	 ut + ux	A(1-p)cce (x-pt)

A solution to {5.4) is

(5.5)	 u(x , t)	 A cos (x-pt) + B cos(x-t)

If p « 1 and B « 1 then accuracy requirements only

demand

(5.6)
	

= 1

which is much weaker than the stability criterion for

explicit schemes ^t/Qx < 1.

Another example is provided by systems of equations

with widely separated eigenvalues. For simplicity we con-

sider the uncoupled system

(5.7)
	 ut+aux=0

vt+bvx0

^,^,.
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with u ^ A sin {x-at), v ^ 8 sin{x-bt) and A « B,

a >a b. As before explicit schemes require a^tldx < 1.

However, since A « B accurate solutions only require

bbt/ax < 1.

Both of these examples demonstrate the phenomena of

different time scales. For these problems the time step

of an explicit method would be limited by the speed of

the fastest possible mode. For implicit methods the time

step is chosen to resolve the slower modes which carry

most of the energy. Both these simple illustrations have

many practical applications, For example a slowly oscil-

lating wing or rotor will induce wave motion witr. much

slower speeds than that of free motion. In meteorology

or plasma physics the usual speeds of propagation are

much smaller than the fastest signal speed. These will be

discussed further in chapter 8. The possible extensions

of explicit methods for these problems will also be dis-

cussed.

A similar justification for implicit method occurs

when the time step for an explicit method would vary

dramatically between different regions. An extreme example

occurs in laser fusion where the diffusitivity can change

by many orders of magnitude across the domain. In magnetic

fusion the existence of near vacuum regio»s create areas of

^•ery high speeds compared with the center of the

plasma. In ether problems similar effects occur due to

different mesh sizes in different regions. Far problems
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in matsrology the times step for an explicit scheme is

determined by the small mesh volunass near the pole due

to converging latitude lines. in Naviar-Stokes problems

with boundary layers extremely small ash sizes occur

near the body in order to resolve the boundary layer.

in all these problems the time step of an explicit scheme

is governed by a small region which may not be the area

requiring the greatest resolution in time.

A second type of problem suitable for implicit

method are those cases for whim only the steady-state

solution fs desired, The time dependent equations are

used merely as a device for obtaining iterative solutions

to the steady state equations. Zn this case there is no

need for the numerical method to accurately follow the

transient. Indeed, one way to accelerate the iteration

process is to make the scheme inconsistent with the transi-

ent solution, We only need guarantee that the numerical

steady state achieved is independent of the iteration

procedure. Consider the general equation

(5.8)	 ut^Lu .

A simple way to ensure the correct steady state is to

solve for un ^ un+1- un at each time step. The algorithm

then has the form

(5.9)	 QnAun ^ L un

^_,-^_
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Tha steady state is defined by dun 0 and so we have

L un 	0. Since the time accuracy fa not important we

do aot wish to iterate at each time step, In the interest

of ®fficiency Qn should not depend on the unknown variable

un+1 . in r^ny cases this can be achieved without loss o:

accuracy by a linearization procedure such as introduced in

[14), [23), and [122]. Higher order tin space) of these

schemes were defined by ( 3.10) and (3.11).

If we use the backward Euler formula for t5 .@) we have

(5.10)	
dun+1 	 at L un+l .

Linearizing, this equation we have that

(5.11)	 4ttI-©tJn).^un = Lun ,

J is the Jacobfan of L with respect to u. As ^t

increases this scheme approaches the Newton-Raprson iterative

(5.12)	 -JnAun =Lun

This is a property only of the backward Euler formula ar.d

is not true for other selections of parameters in t3.9).

In general it is not necessary that Q n be a function

of the exact Jacobian of L since we are only interested in

the steady state. This freedom can be utilized in several

different ways. One possibility is to change Qn in such a
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way as to simplify the solution of the linear set of

equations (5.11). In most cases Q n involves block

tridiagonal matrices. If these matrices can be inverted

by Gaussian eliminations without pivoting then the in-

versions can be accomplished by the Thomas algorithm in

0(m3N) operations where m is the block size and N

is the number of mesh points (see [103]). Hence, for

general r_,'.ack tridiagonal matrices and m larger than

3 or 4, most of the work is in inverting the full blocks.

When the fluid dynamic equations are written in velocity

form these blocks can be decomposed as a direct sum of

smaller blocks and so the process can be speeded up [23].

When the momentum form of the fluid equations are used

lull blocks occur. However, by using the freedom in Qn

one can simplify these blocks at the expense of making the

numerical scheme inconsistent with the time dependent

equations [174]. In fact even when solving the steady

equations directly using Newton's method [17) J need

not be the Jacobian of L. This generalization leads to

the use of quasi-Newton methods (for a survey see [46]).

Alternatively one can choose Qn in such a manner as

to speed up the convergence. t4cDonald and Briley [128]

consider methods with different ^t at different mesh

points. This can be viewed as a matrix conditioning of

the linear equations. This is especially promising for

parabolic equations in two space dimensions where the theory

of parameter selection for A.D.I. methods is well developed.

r^
'^
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Implicit methods have the disadvantage that they require

the solution of a large number of coupled equations at each

time step.- Therefore, the reduction in the number of time

steps compared with explicit methods must bE weighed by

the increase in the number of arithmetic operations

required for each step. To simplify the inversion process

in several dimensions alternating direction methods are

generally used. In this case one needs to invert a block

tridiagonal matrix for each direction. As mentioned pre-

viously this is very expensive when the block sizes get

large. F'or example, in the magnetohydrodynamic case the

blocks are 8 x 8 matrixes. In combustion problems there

is at least one partial differential equation per species.

Hence, for complicated chemical processes very large blocks

can be generated. These situations render standard implicit	 '

methods impractical as the work increases with the cube of

the block size. In some cases one can use knowledge of the

block structure to reduce this work (23]. However, when

shocks appear and the conservative forms of the equations

must be used, full matrices are unavoidable.

Furthermore, the Thomas algorithm is an inherently

serial algorithm and so inefficient for many vector pro-

cessors. In three space dimensions one can perform many

tridiagonal inversion simultaneously to partially vectorize

the procedure. However, this demands large storage require-

ments. The use of a cyclic reduction method is more efficient

for a vector ma chine but is still very far from optimal for

these pipeline machines. Hence, many of the advantages of

A.D.I. are negated on machines as the STAR-100.

..
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An additional difficulty with alternating direction

methods is that they introduce 0((^t) 2 ) perturb..tions

into the matrix Qn of (5.10). In this case the scheme

no longer approximates the Newton method for large ^t

and consequently there is a reduction in the rate of con-

vergence to a steady state. Marching to a steady state

using large time steps one wants to use the delta form

(5.10? so as to ensure that the steady state is independent

of 0t. In two space dimensions the alternating direction

methods which solve for un+1 and Dun are equivalent,

but in three dimensions they are not. The three dimensional

algorithm is unconditionally stable in the linear case if

one solves for un+1 but the steady state depends on 0t.

On the other hand if one solves for Du n to produce a

steady solution independent of fit, the algorithm is uncon-

ditionally unstable for scalar problems. As the entropy

equation is essentially a scalar equation this method has

difficulties for many systems. Only the addition of

viscous terms can stabilize the procedure.

Several alternatives have recently been advanced as

substitutes to alternating direction methods. Steger and

Warming [176] have suggested splitting the flux vector into

two parts corresponding to the positive and negative eigen-

values. Each part is then solved using the one sided

differences appropriate for the corresponding eigenvalue.

Jameson and Turkel [105] have proposed a method based on a

LU decomposition. in this method the lowEr and upper factors

^^
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are chosen for computational ease. The resulting scheme

can be chosen to be second order accurate in space. It is

demonstrated that the crucial ingredient is that each of

the L and U factors be diagonally dominant. The dia-

gonal dominance of the final scheme is irrelevant. This

scheme is stable for one, two and three dimensions. A

common feature of both these schemes is that only two factors

appear independent of the number of space dimensions. For

one dimension this is a disadvantage since it introduces

perturbations of order (^t) 2 and sr^ ^,_^ws down the con-

vergence rate. However, for three space dimensions the

(^t)3 from the back-

a steady state even

Ot. The requirement

a three dimensional

when not all the infor-

A.D.I. schemes have changes of order

ward Euler method and so converge to

slower than these methods for large

of three sweeps through the mesh for

A.D.I. method is also a disadvantage

mation can be stored in core.

Since the backward Euler method is a good approximation

to Newton's method it may be advantageous to use this method

even for multidimensional problems. The resulting matrix

is no longer tridiagonal and hence it is necessary to find

some efficient method to invert the matrix. Band Gaussian

elimination solvers require excessive core especially since

pivoting must be used. For parabolic problems that arise

in laser fusion Kershaw [108] has used a conjugate gradient

;,^ethod for inverting the matrix. Similarly Orszag [151] has

advocated the use of conjugate gradient to invert the full
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matrices that arise from spectral methods. Brackbill [20j

has used a SOR method in conjunction with his implicit

method for the nonlinear MHD equations.

Until now we have concentrated on the rate of con-

vergence to a steady state. An equally important topic

is the accuracy in the steady state. We wish to stop the

iteration process in such a manner so that the error in

the iteration process is below the truncation error of the

steady state scheme. In using (5.10) we have assumed that

in the steady state bun = 0. In many codes, one iterates

until dun is below some given error tolerance, E. We

then have that Lun Qns so that the error in Lu is

effected by the operator, Q. Therefore, it is better to

use the residual Lun as a measure of the steady state

rather than Dun . Since, L is in general not an elliptic

operator it is difficult to measure the deviation of un

from the steady state, even given that Lun = E. It is

also important to choose initial conditions that are a

reasonable guess to the steady state solution.

In summary, implicit methods have been successful when

one is careful to match the physics with the method. These

methods are less appropriate for wave-like equations where

one wishes to follow all the possible modes of propagation.

Attention to boundary treatment is even more important

for implicit methods than for explicit methods. This is

mainl}• because one wishes to use the implicit methods with
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large time steps. In many calculations one could ^^se any

one sided difference to some equation to supplement the given

boundary conditions as long as small time steps were used.

However, for large time steps it was essential, for

nonlinear stability, that the characteristics variables,

e.g. (4.2), be used. Skollermo [ 172) gives examples where

the use of an explicit boundary method can force a stabi-

lity condition for the entire method.

For complicated flows the choice of a poor boundary

treatment may be difficult to judge. For example, in-

correct treatment of outflow boundaries will severly slow

the rate of convergence to a steady state. Rudy and

5trikwerda [162],[163] and Thomas [182] demonstrate

that overspecification can be particularly inefficient.

However, if one judges the results by comparison with

experiment one would never sense the incorrect boundary

treatment. Gustaffson and Kreiss [g5] show that for this

case the steady state may depend on the initial conditions.

In any case it would not be obvious that the slow rate of

convergence is due to the boundary treatment. Thomas [182]

describes boundary treatments for other types of boundaries

that occur in Navier-Stokes flow (see also (4)).

Due to the unconditional stability of implicit

schemes it is not clear how to choose the time step. One

simple procedure is

^:
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for some choice of norm. This has been used successfully

in plasma diffusion problems (D. Nelson, private communica-

tion). Amore sophisticated choice is to compare two

iterates for time t as is done in o.d.e. solvers. When

going to a steady state At can be viewed as an interation

parameter, as discussed previously.

TABLE 5.1

Phase errors for the Crank-Nicolson method

as a function of the time step.

k^x

et/nx

a
2'0

n
1^'

n
4

.1 .995 .983 .900

1. .993 .976 .865	 ,

2. .987 .954 .783

3. .978 .921 .641

5. .949 .837 .262

10. .845 .365 .070

50. .063 .016 .003
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6. MOVING BOUNDARIES AND ADAPTIVE GRIDS

In the usual fluid dynamical situation boundaries are

considered as fixed in time. In many situations, especi-

ally for analytical results, the fluid is considered as

being confined to a rectangular or circular region. However,

in many circumstances one must include the motion of the

boundary as an important element of the problem. The

movement of the boundary arises from many different

factors which require different methods.

The simplest situation arises when the boundary moves in

response to an external force. This may represent a moving

piston,	 a diaphragm or similar devices. The next

situation occurs when the boundary represents a free

surface. In this case the boundary represents the separa-

tion between the domain of interest and some other region,

for instance a vacuum or the general atmosphere. The outer

region presents no resistance and the boundary moves in

accordance with the forces exerted on it by the interior

material. This occurs when metals are subject to a high

temperature or pressure and begin to flow. Other examples

occur when liquids are not in a container, as in

water over a dam or water waves or raindrops. The most

difficult problem arises when the moving boundary represents

an interface between different materials. In many cases

these are materials subject to the same differential equa-

tions. The two materials differ only in their density or

other material properties. The simplest such case is a

^'-'
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contact discontinuity in fluid mechanics where both sides

are the same material but jumps occur across the moving

surface. In other situations the media on the two sides of

the moving boundary are represented by different

differential equations. Such conditions arise when an

explosive gas impinges on a solid material. Another

example is the interface between a plasma and a vacuum.

In the latter case hyperbolic time dependent equations

describe the motion of the plasma while the magnetic field

in the vacuum is given by a time independent Poisson equa-

tion. In these cases the boundary moves as a result of

imbalance of forces from the two sides.

The standard techniques to solve such problems are

Lagrangian methods isee e. g. [19], [20], [ 96], 1197])•

With such schemes the boundaries are coordinate lines;

this simplifies the algorithm. However, Lagrangian methods

have several drawbacks. They are usually low order methods

especially in regions where the mesh is nonuniform. When the

motions are large the grid undergoes severe distortions which

require rezoning the mesh. This rezoning is quite difficult

in three dimensions. The rezoning usually results in a loss

of mass and so should no^ be done too frequently. In

addition, the rezoning fornulas are usually not automated

and require intervention b^• the user. The main drawback of

Lagrangian methods is that they are very complicated and

not user oriented. One method of simplifying the rezoning
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difficulty is to use triangular meshes. At each time

step reconnections are mace when appropriate. This

method developed by Fritts and Horis [60] has been

applied to problems involving high shear. As a dual 	 -

to this method is a scheme devised by Peskin [153] which

is a grid free Lagrangian method. This latter scheme

has been applied to the incompressible Navier-Stokes

equations. A difficulty with both these methods are

that they are difficult to couple with implicit time

algorithms and also the extension to three dimensions

is computationally complicated due to the many possible

configurations.

At the opposite end one can use a strictly Eulerian

approach and integrate across the boundary. To prevent

smearing of the interface one adds some artificial compres-

sion after each time step [91]. The location of each

:naterial is identified by a color function which is 1 in

one region and 0 in the other region. This color function

satisfies a convection equation which itself must be

solved numerically without smearing. This method has not

been used extensively on large scale problems and its

applicability for multidimensional problems is question-

able. It would be difficult to implement at interfaces

waere jump conditions need to be satisfied. These jump

^c:i:itions depend on the physics of the situation and

^annc+t be derived just from properties o` the differential

equation.

_.^ %4
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One alternative is to map each region onto a rectangle.

If this mapping is done at each time step then one must

interpolate between the grids at successive time steps.

Instead, one can initially find a grid by any package,

e.g. 1184]. This gives new coordinates ^ _ ^{x,y),

n n(x,y). We now allow the new coordinates to vary

with time, so that ^ _ ^(x,y,t) and n n (x,y,t). Gi^ren

the differential equation

This gets transformed into (see ^154J, I193J)

with

qIW

(6.3a)	 F = I (^ tw+ ^ xf + Yg)

G = I (rt tw+ rt xf + nyg)

and

^t	 -xt^x	 Yt^y

'	 (6.3b)
nt	 -xtnx - Yt ►► Y

I = x f y^ i - x^y^

(6.3c)

J	
^xrtY - l

y n x	 1/I
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In order to determine all these quantities we require

the grid point speeds (x t ,yt). One method is to construct

a new grid at the advanced time. This can be done either as

a function of gradients in the problem [50] or by solving an

elliptic equation. Given (x,y) at t and t + At (xt'yt)

can be calculated. An iterative procedure would be more

costly but also more stable. Hindeman et al.(98] prefer

differentiating the elliptic equation for (x,y) with

respect to t. This yields a linear elliptic equation for

(xt ,yt ). Given (x t ,y t ) on the boundary this equation is

solved at each time level. It is also important to solve

for the gird in a manner which is consistent with the

numerical solution of the differential equations (183].

These procedures require the solution of an elliptic

equation at each time step. It is not clear that the over-

head required by the mapping justifies its use. In addition,

we would like to use infozmation about the gradients of

the solution to construct the grid at the new time level.

At this time it is not known what are reasonable ways of

accomplishing this especially for multidimensions. For

example, it is well known that we can not allow the image

of a square in (^,+^) to become too distorted or else in-

accuracies and instabilities may occur. Also, if the grid

changes too rapidly in time one would expect difficulties.

An experimental program for a parabolic problem is presented

in (5p] while one for hyperbolic systems is presented in (9R].

Oliger (14^] and Yanenko (207] also investigate ada}^tive

grids from a more theoretical viewpoint.

^ _	 -^ --
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The differential equations are solved on the fixed

Eulerian mesh. At mesh points far from the boundary the

standard Eulerian scheme is used. At grid points near the

-	 boundary one sided differences are used. Alternatively the

fluxes can be extrapolated to the outside of each domain

and then the standard scheme is used. The boundary itself

is identified by a series of Lagrangian tracer particles

which are allowed to move through the fixed Eulerian mesh.

This boundary fs used only to keep the regions separate and

prevent diffusion of one material into another regio,,. The

only communication between different regions is via jump

conditions across an interface. No differential equations

are integrated across a boundary,

As an example of the difficulties encountered with

moving surfaces we discuss the impact of materials at high

speeds. Metals impacted by gaser^ or by other metals

are subjected to high pressures which will deform the

metal. The metals display elastic-plastic deformations.

The differential system for these situations is given by

the Prandtl-Reuss equations ( 97). As usual, p, u, v, e

represent the density, velocities and internal energy

respectively. The total stress are given by T ij = Sij p^5ij

Sij are stress deviatories and p is the thermodynamic

pressure. When the deviatories are less than the stress

limit, i.e. SS^ j < K 2 the flow is elastic. For

^Sl^j	
K 2 the flow is plastic. K^ is constant in the

simplest of models but is a function of various dependent

^^__ _
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variables when work hardening is included. We shall con-

sider these equations witi^ cylindrical symmetry.

Let ^ _ ^ + u ^ + v ^ Then the equations in

the generalized elastic regime are given by

d	 au	 av	 _ j>v
+p (z + ar s r

du	 a	 aSll	 aS l2	 X12

dv	 ap _ as12 	 as22 ^ as22 
+ S11

^ ^ + ar az - ^i	 r

P ^ tSll P) az - (522-p) ar S12^ai + ar,

v(S 11 + S 22 + p)
t6.4)	 _ -

r

dS11—= 2u^11

dS12^-- = 2 u 
^ 12

dt22	
2 u X22

	

with the strain rates	 ^
i
^ given by
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__ 1 au
E ll	 3 2 8z

__ 1	 3v
E22 3 2 ar

To this we append an equation

av v_
ar r

a^^aZ

_ 8u _ v
az r
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(6.6)	 P = P( p • E )

Since these equations are hyperbolic we can con-

struct characteristic equations for which differentia-

tions in only two space-time directions occur. In con-

trast to the fluid dynamic equation there are two speeds

of propagation. The first is the shear or transverse

speed given by

(6.7a)
	

cS = ^/P

There is also the compressive or longitudinal speed

where
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(6.7c)	 c2
	

ap

is the fluid dynamic sound speed. In addition to These

two conoids there are three quanta.t^^s that propagate

along stream lines. Hence, in total there are seven

sets of bicharaeteri^tics.

In the interior we solve (6.4) by any dissipative

conservative scheme. We do not follow the shocks explicit-

ly but instead capture them. The elimination of shock

fitting eliminates many of the complexities of the problem

an3 allows us to concentrate on fitting the interfaces.

Since shocks are compressive it is possible to follow them

without shock fitting. However, contact discontinuities

will be unacceptably smeared unless some special procedure

is followed. Hence, all free surfaces or interfaces are

followed explicitly to prevent their diffusion.

Due to the complications of the boundary tae have

chosen a simple scheme for the Eulerian mesa. X11 the

results were obtained using a two step sc.",e:^e devised by

Burstein [29J ;his scheme uses data at a nine point

rectangular lattice at the time level t to advance to t+^t.

=^t points far from the boundary the computation is straight-

forward. At mesh points near the boundary the fluxes at arti-

ficial points outside the domain are found by extrapolation.

Quadratic extrapolation i-^cluding the values at the

boundary is used because of the complexities that arise

^__
^.
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with an arbitrarily shaped boundary. After the flux

extrapolation the nine point scheme can be used without

.	 any complications. Each side of an interface is updated

-	 independently. In no case are values on one side of the

boundary used to update variables on the other side. In

many cases different grids are used in different regions

so that it would be difficult to integrate across an

interface even for quantities that are continuous across

the interface.

All boundaries, which move through the fixed Eulerian

mesh, are marked by Lagrangian tracer particles with

position (z,r) and velocity (uB ,vB ). For interfaces between

two regions there are marker particles on both sides of the

moving boundary. The motion of these particles is governed

by the equations

(6.8)

dt - vg(z,r,t)

Tre velocity (u H ,vB ) is the local fluid velocity and is

found by extrapolation from the interior. Across an inter-

face only the normal velocity is continuous. Hence, there

will be a tangential slippage of the position of the tracer

'	 particles on one side of the interface with respect to the

other side. The s}stem of equations (6.8} are solved for

the new positions ^ (t ^ .'.ti , r (t + '.t)	 at Each boundary

point by a first order method.
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Since each tracer particle is moved independently the

distance between these particles will vary. In many cases

the particles will bunch up in some regions with very

few boundary particles in other sections. To prevent this

the particles are rezoned if the distance between two

particles differs by more than 25 percent from the average

distance between particles. This rezoning consists of

creating a new set of tracer particles which a,re equally

spaced. Any information needed at the tracer particles

are found by interpolation. All distances and interpola-

tion formulas are calculated in terms of arc length along

the boundary. This is a one dimensional operation and so

much sia-^pler than a full Lagrangian rezone of the entire

two dimensional grid. Furthermore, since tl:e interior

values are unaffected by this transformation, the rezoning

procedure cannot affect the conservation of mass, momentum

or energy.

In order to advance the solution we need the dependent

variables at the boundary itself. It is Here that tl^e jump

conditions affect the solution. the first describe the

boundary conditions at an interface separatincr two contigu-

ous elastic domains. The physical laws that apply at

material interface boundaries are (1) continuity of the

normal velocity, u n	(2) continuity of the normal stress,

Tnn	 and (3, 4) the specification of the shear stress,

, ng	 on each side of the interface as a given function of
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the normal stress.

that Tng = 0 on each

free .s lip condition.

faces where laws (3,

the entire stress ma

face.

Here we only consider the condition

side of the interface, which is the

One could also consider welded sur-

4) are replaced by the condition tha*_

trix be continuous across the inter-

It may be verified that, for the elastic equations,

there are four characteristic waves eman:^ting from the mov-

ing interface, i.e., from each side of the interface two

waves propagate away from the boundary. Hence, at the

interface bo^.indary, a total of four conditions need to be

specified, so that by satisfying the above physical laws at

the interface boundary, the boundary motion can be determined.

To implement the boundary conditions we consider a

coordinate system with coordinates, n the normal and s

the tangent to the boundary at each marker point along the

boundary. Let S(z,r) be the deviatoric stress tensor as

a function of (z,r). Let R be the rotation matrix

cos	 sin t? 1

(6.9a)
	

R =
-sin t^
	

CoS E

with 8 the angle measured clockwise from the Z axis

to the norrlal. Then

(6. 9b)	 S (n, s) = R S (z, r) Rt
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is the rotated deviatoric tensor. In this reference

frame, the stress tensor T with components 
Ti7 

can

be computed. The velocity vector is given by

ii	 u
(6.9c)	 n	 = R

us 	v

To find the boundary values at the new time step we

must calculate fourteen quantities corresponding to the

seven dependent variables on each side of the interface.

Since we are given four conditions we must supplement this

by ten additional pieces of information. As discussed

before we shall use the characteristic variables to ob-

tain this information. We consider the interface as in-

creasing in the counterclockwise direction. We denote

by superscript 1 the region to ttie left and superscript

2 the region to the right of the interface. The normal

direction is taken as going from region one to region and

the tangential direction counterclockwise. As stated

before the signals c d , cs propagating to the right bring

two pieces of information to the boundary from the interior

of region one. Similarly for region two we consider the

signals -cd , -cs travelling from right to left. In

addition, we have three pieces of information on each side

that travels along stream lines. Using the

characteristic variables (see [33]) we find that

^..
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(6.10a)	 unl) - un2) 	0

	

(6.10b)	 P(1)_ Snn) _ ^p(2) _ Snn) = 0

	

(6.lOc)	 SnS) = 0

	

(6.lOd)	 SnS) = 0

	

(6. l0e)	 p 
(1) c {1) 2 _ p (1) = p (1) c (1) 2 _ P (1)

	

(6. lOf)	 p (2) c (2) 2 _ p (2) = p (2) c (2) 2 _ P (2)

	

9	
4u (1)	 (1) + c (1) 

2S (1) _ 4u (1) - (1) + c (1) 2S (1)

	

(6.10 )	 3p t1) P	 nn	 3p (1) P	 nn
0	 0

^=-	 2	 (2	 2

	

(6.lOh)	
4u 

(2) p
(2) + c (2) S (2) = 4U	 ) p(2) + c (2) S(2)

30 (2)	 nn	 3p (2)	 nn
0	 0

	

(6.10i)	 2u (1) ( p (1) _ S (1) _ c(1)2S(1)
3` (1) l	 nn,	 d	 nn

0

	

__ 
2u (1)	

-(1)	 (1)1	 (1)2 (1)

	

3^(1)	
^p	 - S	 J - 

cd	 Snn

	

0	
111

	

(6.lOj)	 2"(2) ^P(2)-S(2)l - cd2)2Snn)
.	 3`0	 J

	

2u (2)	 (_ (2)	 (2)	 (2) 2 (2)

	

3p (2)	 1p	
-Snn ^ - cd	 Snn

0



(1) _ S (1)	 (1) _	 (1)
(1)	 p	 nn __ - ( 1) _ p	 Snn

(6.lOR)	 un	 +	 1)	 1)	 un	 (1) (1)	 '
p0 cd	 p0 cd

(6.lOm)	 u(2) +	 1	 S(2) = u(2) +	 1	 S(2)
s	 2 2 ns	 s	 ( 2^^ ns

p0 cd	 p0 cs

(2) _ S (2)	 -(2)_	 (2)

(6.lOn)	
u(2) _ p	 nn	 = u(2) _ p	 Snn

2	 2	 n	 (2	 (2)
p0 cd	 p0 cd

In these equations the bar on the right hand side indicates

quantities that already have been computed. In all the

examples presented they were computed using nearest

point extrapolation from the interior of the appropriate

domain ( see also [40)). The subscripts n and s refer

to the normal and tangential directions as given by (6. 9).

The sound speeds c s , cd , c were defined in (6.7), while

00 denotes a reference density usually taken as the density

of the marker particle at the previous time step. Note, all

material properties differ between the two sides of the

interface.

Solving the system of equations (6.10) we find ghat

-(2)	 -(1)
(1)	 (2)	 Ln	 + vu	 ;^	 1	 ^-(2) _ -(1)

(6.11a)	 u n	 = un	 =	 ^ + 1	 r + 1	 (1) (1)	 ^r.n	 `nn
' 0 cd

;, -
^^. ,^
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with

(6.11b)	 K = p(1)C (1)^^(2)c(2) .
0 d	 0 d

Thus, the normal velocity is a weighted average of the

extrapolated normal velocities from the two sides, the

weight being the ratio of the acoustic impedances. In

addition there is a correction term dependent on the

difference in the extrapolated normal stresses. As

usual 
Tnn - p - Snn' In a similar manner we have

(1)	 -(2)	 (1) (1)

(6.11c)	 Tnn)= Tnn ) = T 11 + KT 11 + PO cd (unl) _ un2)l .

K + 1	 K+ 1	 l	 JJ

and

2

(6.11d)	 p(1) = p(1)	 c(1)	 ( (1)	 -(1) l

	

+ c(1)2 
Tnn -Tnn J	

'

d

S (1) _	 (1) _ T (1)
nn	 p	 nn

2

(6.11e)	 pt2) = p (2)	 c (2)	 ( (2) _ -t2)1
+ c (^ l T nn	 nn J '

d

nn	 p	 nn

Similarly we can solve for us and Sss on each side.

The complete recipe for dertermining the values assiyr^c^c3 to

dependent variables on each side of the interface is given

by the following algorithm.
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(i) Extrapolate, from the interior to the boundary,

the deviatoric stresses S, pressure p, internal

energy ^, and velocity components u, v on each

side of the interface.

(ii) Transform the stress and velocity components

from the z,r-coordinate system,to the n,s-coordi-

mate system.

(iiia)	 Use (6.11c)to calculate T nn	 then

(iiib)	 Calculate pressure on each side using

p(i) ^ Snn ) - T nn	 i = 1,2.

(iv) Apply the slip free condition: Tnn ) = 5^ ) = 0,

i = 1,2.

(v) Transform the deviatoric stresses back to *.he

z,r-coordina^:e system using (iv) and the Extra-

extrapolated values Tnn )	Tss)	 i	 1,2.

(vi) Calculate un using (5.11a); then

tvii)	 Convert the velocity co.^.ponents to the z,r-

coordinate system usir.c (vi) and the

extrapolated values us l) , i = 1,2.

(viii)	 Calculate densities fror^ the equation o_° sta_^

,^(i) = F^(p(i)^e(i))	 using (iiib) ancr

the extrapolated values e (1) , i = 1,2.

We note that the continuity of normal stress

is not used to calculate the deviatorics but insteac is ^.:sed

to compute. p. This algorithm has been chosen so .^G= ^`:e

formulas are valid even if one or both materials are ^.::E1}•

inviscid. In the limiting case of infinite density ^^:^_
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across the interface, i.e., p (1) /p (2)	 0, the above

algorithm coincides with the common driver -driven model

.	 where 
Tnn	 tnn) nnci un

 = un2).

'

	

	 The method described above applies equally well to free

surfaces if we intergret one of the domains to exhibit

material properties such that all dependent variables are

"	 zero. For definiteness denote the vacuum side by super-

script (2) ; then

(6.lOb')
(2)

inn = Tnn	 0 ,

and the slip free condition is

In many problems there exist regions with large

gradients. These gradients need to be resolved in order to

have an accurate solution. To prevent an excess of grids a

stretching is introduced which is a function of only one

coordinate transform. We denote the transformed variables

by (a,B). By use of the implicit function theorem it is

possible to transform divergence free quations from the

physical space (z,r) to the computational space (:^,^) in

such a manner that the new equations are still in diver-

gence free form. A consequence of this is that shocks

will be computed with the correct jump conditions in the

computational plane.

In most problems in ballistics the large gradients

occur near the axis of symmetry. For these cases we used

a transformation (see (160)).

--	 _^.
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(6.12x)	 ^ = 1 - log ^b^^+=j / log ^b+^^

with b = 1/(1 - d/a). -This maps the interval (O,a) into

(0,1) and d is the boundary layer thickness. For the

acoustic problem discussed in the next section an alternate

stretching was used.

2

This is inverted numerically to find ^ 	 8(r). For the

acoustics problem the transform was used in both the z and

r directions.	 In both cases one of the free parameters

controls the size of the gradients while the other controls

the size of the boundary layer effect induced by the trans-

form.

Another alternative is to choose new coordinate points,

B i , in some a priori manner. Cubic splines can then be used

to construct the derivatives at ^ i . The coordinate trans-

formation generated in this manner need not be monotone. To

enforce monotonicity one may need to alter slightly the P.i

so that no abrupt jumps occur. Even though this procedure is

not automatic it allows the construction of flexible coordinate

systems. Since the mesh generation is done only for each

geometry the inconvenience is not great. The author has used

this method to construct a mesh system for a generalization

of (4.1) that is being used for optimization studies for the

national transonic tunnel at NASA Langley Research Center.

i

.°_

_._
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r''

k `^

Dw to the complicated geometry of the tunnel it was necessary

=	 to refine the mesh in several different sections of the domains

this made it difficult to use ana^.ytic transformations. The

,	 disadvantage of this method is more pronounced when one

wishes to frequently change the mesh or change the geometry

of the configuration.

In other problems, as the shaped charge, transforma-

tions are needed because of the shape of the domain. Even

if a domain is rectangular if it is not properly aligned

with the coordinate axes a large waste of grids will occur.

Zn the shaped charge the initial shape of the liner is a

rectangle rotated about 30° with respect to the axis of

symmetry. The length of the liner is about 100 times

larger than the width. For this case it was necessary to

introduce the computational coordinates ( :x,^) via a full

two dimensional transform. Even though this complicates

the equations it presents an enormo^.s savings in both

computer tine and storage. Due to the moving boundary it

is sometimes necessary to introduce time dependeszt trans-

°ormations. In all these cases the coordinate transform is

Given analytically. Hence, it does not map the physical

region into a perfect rectangle but rather into a computa-

^ional region which is in some sense reasonable.

e

'.

^__._s.
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The code described above, SMITE, has been applied to

numerous problems in elasticity and plasticity. These

include application to bars im^^acting on other bars or into

plates as well as problems with shaped charges and explo-

sives. All these applications involve highly distorted

boundaries together M:.th the interaction of many shacks.

To illustrate this method and its r^►nge of applicabi-

lity we present two examples. in the first case we consider

an aluminum sphere impacting on a tungsten disc. The initial

configuration is shown in figure 6.1a The eonfiguratian

after 25 microseconds is shown in figure 6.1b. The sphere

has flattened out and is extended normal to the axis of

symmetry. The disc has also been indented. Obviously,

large distortions have occurred in both materials. These

graphs were obtaining the system (6.4) - (6.6> with the

inclusion cif plasticity.

The first example illustrated the interaction of two

metals. :n the seco^^d example wc^ consider a gas-metal

interface. The initial configuration is shown in figure

b.2a. The larger region is a uas with ignition occurinc,

at the origin. A blast wave propagates through the gas and

impinges on the metal. The solution after 35 micro-

seconds is shown in figure 6.2b. The gas has exNancled

outward while the metal has split into two sections.

The larger section is a slug which contains most of the

mass. In addition, there is a jet region which mo^^es

rapidly to the right. Additional examples are Giver. in

f 311 and (33j .



^

!
.^
7T

!
^
[^

`	 ^_-°_-_~_--^^^- '	 ~'	 '^ `	 -	 ''	 -,^	 .



7^yYi^ i.2•

r

68

i

^^	 3=
:^	

..

^I
^1:^

R(

_^

o^

^'1
^:^,

,f

•T

7.00	 ^ YO	 {.00 -2 ^.W- _ U•10	 11.0	 f^.r

►i^uc• i.2b

.-



In many problems of interest one is interested in

solving the aYuations in an infinite domain. For computa-

tional expediency one needs to compute in a bounded domain.

One possibility is to map the infinite domain onto a

bounded one. However, in many circumstances this mapping

can aggravate the situation especially if the solution is

oscillatory at infinity or the mapping has a singularity

(see [79]). An alternative possibility is to insert an

.artificial boundary and then impose boundary conditions

on this surface to simulate an infinite domain, i.e. there

should be no reflections from the boundary back into the

domain. Unless certain restrictions are met this will in

general not be possible [85].

In general one cannot construct boundary conditions

that give no reflections. Instead one wishes to consider

conditions which are in some sense better. The notion of

better can be defined in many ways. Some of them are

(1) the reflections decrease rapidly as the position of

the boundary goes to infinity

(2) the reflections decrease for longer wave lengths

(3) the reflections decrease as the incident wave

approaches in a direction more normal to the boundary

(4) the reflections are decreased so that the approach

to a steady state is accelerated.

One approach to decreasing reflections is to intro-

duce a viscosity near the bouT^dary or to introduce a sponge
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^.aye^r [1^8]. Wfth this approach it is not clear

what effect the boundary treatment has on the interior

dynasics. In addition it is difficult to improve these

methods if one wishes to further decrease the reflections.

Conditions 2 and 3 were used by Engquist and Majda [53],

[54] to construct an asymptotic set of nonreflecting

conditions based on pseudodifferential operators. The

higher order methods require Pade approximations for eta-

.- bility. Rudy and Strikwerda [162] have constructed, by

heuristic arguments, a radiation boundary condition based

on (4) .

Gustaffson and Kreiss [85l have shown that in general

one can not construct nonreflecting boundary conditions

un1e^4 the behavior of the solution is known in the neigh-

borhood of infinity. We adopt their procedure and con-

struct boundary conditions wrich are based on an asymptotic

expansion of the solution valid for lary-^ distances. As

with all asymptotic expansions we expect reasonable results

even when the artificial boundary is brought in quite

close to the region of interest. Extensive numerical tests

indeed confirm that the domain of integration can be very

constricted when one uses the higher order boundary operators.

Specifically, we consider the linearized Euler equations

in cylindrical coordinates.

pv + v
p t + { u0 + u} z + { Pv0 + v) r +	 r	 = F1

t7.1)	 ut + (uuD + p) z + tuv0 ) r = uvQ ^ r - vu^^ r + F2

vt + tvu^) z + {vv^ +p) r = vv0 ^ z - uv^^ z + F3

.x. ^.r.,--_-
__ ;.._



^-

^F

.^
_	 .

^1

where {u0 { z, r}, vQt^,r^) represents the man flow. The

mean density is assumeconstant and is scaled sa that.

AQ = 1, cp 	1.

In order far it to be feasible to integrate {6.1) in

abounded domain it is necessary to asswae that the mean

flow and the forcing terms decay as r or z go to infinity

{see e . g. 1851). Hence for sufficiently large d {where

d2 r2 + z2 ) {7 . 1) can be approximated by the wave system

pt +uz +
vr+r=0

vt +pr	=;^

or since p is linearly related to p

where ©2 is the Laplacian in cylindrical coordinates.

To find radiation conditions we first consider (7.3)

in spherical coordinates and let d represent the spherical

radius. It is known [11) and [59) that p has a formal ex-

pansion in terms of travelling waves

f^(t-d,8)
(7.4)	 p =

-j=1	 d^

where 8 represents the angular dependence of p,

One can then verify that

(^,$)	 ^ + a = of 12)
a

^.:--
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We note that the agproxation to {7.53 ^ + ^ = 0 is

just what one r^uld obtain from a one dimensional character-

istic theory. More generally, let

L= at + as
('..7)	 m

Bm = ^ (L + d ) _ (L + 2 
d 1 ) Bm_ 1

j=1

St follows from {7 . 4) that

(7.8)	 BP=O^ l
m	 d2m+

It is shown in [11) that boundary conditions Bmp 0

all lead to well posed problems in the sense of Kreiss [81).

Furthermore, one can show that errors in the solution

decrease as d goes to infinity. In particular for the

first order approximation ( 7.6) we can show that the error

p between the solutions in the bounded and infinite domains

satisfies

(( f

(7.9)	
1 ^ 

(pt2 + Px2 ) dV <	 g2 dS

where g = 0(1/d 3 ). In general for the mth order approxi-

mat ion (7.8) we can snow that

{7.10)	 11 P 112	<	 xll(g111
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v^hare q _ ^? t if d
m+1 }	 and ^ ^ ' ^ ^ , ^ ^ ^ ' ^ j ^ , are appropriate

norms.

The extension ^o cylindrical coordinates is straight-

forward since

t7.11)	 r =dcos 9 ,	 d2=r2+zZ

z	 d sin 8,	 tan 8= 2r

Hence, all derivatives with respect to d can be expressed

as derivatives with respect to z and r. In fact one can

show by induction that only derivatives tangential to the

boundary need appear.

The lowest order approximations in spherical coordi-

nates are given by

(7.12a)	 Blp = -aa-gt - d + ^ = 0

(7. 12b) B2p = a--2 + 2 28t8^ +^ + d ^ + d as - ^ 0
8t	 ad	 d

For cylindrical symmetry we have by (7.11) that

(7.13) ^ _ ^ cos 8 + ^ sin 9 = - ^ 2t cos 8 + at sin P^

Hence, we can replace (7.12) by

(7.14a)	 Blp	 at [P - u sin 8 - v cos :? ] + ^ r 0

^:	 ---^



	

a	 a	 ^
Bhp (1 + cos 2 8) ^ - 2 cos e ^ + sin 9 8 

2

	

2t	 At	 8t

2	 2	 2
- cos 28 ^ v -sin 26 a u + cos 8 8v

	ar8t	 ar8t	 r at

+ d ^-cos8 3t-sfnH 3t + ^ = 0
d

In order to illustrate the advantage of even the

first order boundary condition we present one example.

(7.1) was integrated using a mean flow obtained from

experimental data. The source was taken as a single

monopole along the axis of symmetry. In figure (7.1)

we plot the pressure as a function of time for a fixed

axial point. In figure (7.1a) the characteristic (or

Sommerfeld) condition

+ ^ = 0
	at	 8r

was used. The spurious reflections from the boundary

are evident. In figure (7.1b) we present the solution using

the first order boundary condition, B lp 0. This

solution no longer has any spurious reflections. These

comparisons were made with the boundary at fixed distance.

Varying the position of the artificial boundary it was

found that, using the first order boundary condition, one

could bring the boundary quite close to the sources with-

out loss of accuracy. For distributed sources, moving
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sources or a quadrapole it became nece:sary to use hfgher

order boundary conditions. Further comparisons are pre-

sented in ^101 and illl•

The problems in dynamic het acoustics present severe

difficulties for any numerical scheme. One wishes to find

the acoustic pressure in the far field which necessitates

many grid points. However, the grid must be constructed so

that there is high resolution near the origin to resolve

the sources and the mean flow. In addition one wishes to

verify long term patterns of the pressure. This requires

accuracy over many time steps. To have any chance of soly

-ing this problem requires attention to the methods

described in the past few sections. The use of high order

methods is required to limit the number of mesh points. In

addition the artificial boundaries must be brought in as

far as possiblo to further limit the number of mesh points.

This requires boundary conditions that severely restrict

the reflection of waves from the artificial boundary.

Careful attention to the stretching of the grid is also

necessary. With all the above considerations a realistic

two dimensional problem still requires about 35,000 mesh

points for reasonable accuracy. This required the use of

explicit methods that could be executed very efficiently

on a pipeline computer. This problem shows that a success-

ful code for a large scale problem requires an efficient

algorithm and boundary conditions; a careful attention to

the physics as well as to computer architecture.
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For matey application• one is interested in the fluid
dxnamie equations lineari. :ed about a mean state a uniform
state which is nonzero at infinity.. Let p^, p^, u^

represent the mean state in the far #ield and define

e^ ^ Yp^^^. tie assume that v^, is zero, The two

dimensional analog of { 7.2) is

ut + u^ux + ^ px 0

t 7.16 )	 vt + uwx + P py = 0
W

pt + u px + ^PW(uX + vy)	 0 .

This is equivalent to the convective wave equation

{7.17)	 ptt + 2u^pxt + u^xx c2 {pxx } pyy) = 0

By a change of variables this can be transformed to the

wave equation. We then transform the boundary conditions

Bmp 0 to this coordinate system. When all is finished

we transform back to the (x,y) system. The first order
-	 i

boundary condition far (7.16) then becomes, [13^

2
r	 1	 a	 p^c^	 x au	 av

c^,-u^ ®	 m

^^ a
a v	 a v	 P'P,^,

^ a`t + um aX1 + Za = o



TT

fir! d^ _ x2 + y2 and r^ _ ^ =-^ x2 + y2 . Wltan u^ = 0
Ca - ua

this reducers to tie previous boundary. condition. When up

is larger than c^, the outflow is supersonic and no boundary

conditions caul ba specified at tha artificial boundary. The

boundary condition tT.18) has been used for the Nervier-Stokes

equations with a subsonic outflow. The use of (T.1?) sub-

stantially increased the rate of convergence to a steady

state solution. The unknown linearized sta^ta tp^,, um , c^,)

was taken from the previous time step. A generalization of

17,15) for nonlinear problems is considered by Hedstrom (94^.

It is also possible to generalize this theory to the

three dimensional iielmholtz equation

(T.16}	 d p + k2p	 0 .

The analog of {T.4} is

t7.19I	 p = e
-ikr	 .

j =1	 r

The radiation boundary conditions are then given by

Smp = 0 with

(T.20)	 Bm	 R ^-ik + ^+ 2 r l^
j=1	 J

This procedure is ordered by first operating with j = 1
and continuing until j m. In (12) energy estimates are

obtained for the error using ( 7.20). Numerical computations
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presented in (lZ^ demonstrate that for many cases ona need

only tak• tan mesh points normal to the boundary, indepen-
dent of k, fn solving {7.18). The boundary conditions

apply to tha Laplace equation when k ; 0 in {7.i8) and

{7.20?. Extensions fio two dimensions are also considered

in [13l

5
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In ties pravions sections we have tried to stress the

interplay between the nusasrical scheme and the physics of

the problem. In particular we strongly feel that there is

no such thing as a universal or ultimate schema. The

variety of pheno^rna described by time dependent partial

differential equations demands a variety of numoricai

methods. In this section vra shall describe somo difficulties

that arise in particular situations. Due to a shortage of

space we can only sketch these difficulties with a brief

description of posaibla remedies. References to the litera-

ture will be given for a more extensive discussion of indi-

vidual situations.

A, Shocks

when dealing with no nlinear systems the solution

does not always remain smooth even when the initial data is

smooth. Instead surfaces of discont inuities, cabled shocks

arise, The solution is smooth on either side of the shock

and across the shock the solution is governed by jump condi-

tions. These shocks are ar. inherently nonlinear phenomena.

Linear discontinuities such as contact discontinuities can

also occur. For a survey of the analytical theory of shocks

see (118.

The standard convergence theorems for numerical

schemes are teased on the assumption that the solution is

smooth lase (156)). when shacks occur it is well known that

one can construct reasonable schemes that converge to a

^_



^-

	

	 .{

x

81

solution xith the xrong shock location ie.g. [1161. [2091.

Ono alternative is to ^e the differential equations only

in 'smooth regions. T2^ee s#^ock itself is foiloxed explicitly

using the Rankine-gugo^it relations supplemented by char-

acteristic data {see il.^0l , [1521, [166 j) . For eo^lex

flows xith several intersecting shocks this is difficult.

Furthermore, there is the additional difficulty of predicting

the generation of shocks that do not exist initially. The

introduction of viscous terms further complicates the

method.

An alternative to fitting the shock is the so-called

shock capturing method. Lax and Wendroff [ 116] showed that

if the equations are written in divergence -free form

t8.1}
	

ut + div f = 0

and if the numerical method also has this property then

when the scheme converges it will give the correct shock

speeds. Because of the ease of use, this method has dominated

the computation of shocked flows. We note that the use of

divergence-free form is not necessary. Instead one car. integrate

(8.1) as a quasi-linear system and compensate for this by

the addition of terms that depend on the mesh isee (20y)).

It is also well known that the use of the divergence free

form is not sufficient to give the correct shock speed.

Once one generalizes .the definition of a solution to allow

discontinuous solutions then the solution to (8.1) is no

longer unique. One must demand additional constraints, e.g.

that entropy increase across the shock, in order to have a

^-

£	 -..,z^^^-	 __.
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unique solution {see (ii8^ for additional information}. For

first order systems _. necessary and sufficient conditions which

guarantee entropy satisfying discrete shock profiles are

given by !^a jda and Raisbt^n 1132 ] .

Thee use of the difference scheme across the shock has

several disadvantages. In some cases it has been found that

non-physical rarefaction shocks can appear ([90], [125]) i.e.,

the entropy condition is violated. This generally happens

at a sonic line or a stagnation point where an eigenvalue of

the system becomes zero. All the known examples for model

equations exhibit troubles only when the coefficient in the

equation passes through zero. The usual second order schemes,

Lax-Wendroff or MacCormack, have a dissipative mechanism

which vanishes when an eigenvalue of ax in i8.1) is zero.

Hence, in these circumstances the scheme is effectively non-

dissipative and so it is no surprise that difficulties can

occur. Another difficulty of higher order method is that

overshoots can occur in the neighborhood of shocks even when

the shock speeds are calculated correctly.

The standard cure to these difficulties is to add an

artificial viscosity term to the scheme. This viscosity

should be constructed so that it do gs not affect the accuracy

of the scheme in the smooth portion of flow. It also should

not vanish at the sonic lines or the stagnation points. In

practical computations several viscosities have been suggested

which work reasonably well [29], [49). ^lajda and Osher

[130), [133J have suggested some viscosities for which

they can prove the convergence of the scheme to the correct

may. .
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solution. Lest and Peyret [120] have shcrira that one can

lessen the impact of tl#e oscillations by choosing the

-correct variant of Mads^roack's method t3.5). This becomes

difficult - for complicated flow patterns. Lerat [121]

discusses the addition of nonlinear correction terms to

reduce the oscillations. These latter studies are based

on the modified equation approach [I00], [171, [194].

These corrections have been of a very specialized and

problem dependent nature.

Zt is known that monotone schemes have the property

that overshoots do not occur and that they give the correct

shock locations [90]. Unfortunately, linear monotone schemes

are only first order accurate. Crandall and Majda [44)

have considered generalizations of monotone schemes as well

as extensions to several dimensions by using splitting methods.

,hey demonstrate that splitting the equations into one

:imensional portions can have strange effects on the

shocked solution. The definition of monotonicity for

systems of equations is not clear.

An alternative to using monotone first order methods

everywhere is to use these nethods only near the shock

and to use a higher order method in the smooth portion

of the flow [88] . Rather than using different sche.^,es

in different regions it is easier to automatically com-

bine these schemes using hybrid techniques (891. The

*;onotone methods produce excessive smoothing of the shock

profile. Several nonlinear corrections have been suggested

[181, [911, [151[, [20f;] to prevent this smearing.
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^i simpler technique is to use the scheme without

the addition of sn^ artificial viscosity. At the compie-

tior^ of each _ step ot^e f^i.2ters the solution to remove any

oaehila^tions. The simg^est way to accomglish this is with

a Shuman filter [88]. met u represent the solution to	 -

any finite difference scheme at time t. We then define

the corrected solution to be

($.2a)	 u^' = u^ + 9j+^(uj +1 uj )	 O j - ^ (uj - uj-1)

with -

(8,2b)	 0 < 9 j < ^

For (8.2) to be second order accurate, in space, we require

that 8 j = 0(Dx) in the smooth regions of the flow. (8. 2)

can be viewed as the second step of a splitting process which

adds the viscous terms (8u x ) x . Hence, stability is ensured

whenever the basic numerical algorithm is absolute'_y stable.

A reasonable choice for H is (92]

T j +2 - J j+1 - 
2 (c j +1 Q j ) + (a j -0 1)

I°j+2 ^ j+1 1 + 2 I ^j+1 -aj )I + I aj -a j- 2 I

where 0 < ^ < ^ and o is a function of u. For the

fluid dynamic equations one frequently chooses a as the

density.

The various techniques discussed all reduce oscilla-

tions in the neighborhood of a shock. It is not clear
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wh^ax one ntada to remDSm these oscfilati^u sxeept

for aesthetic rs^sons. ^ seems to ba probL+^m dependaAt.

For probieffi rtfth comb, it is imperative to prevent

oscillation: which may falsely trigger the combustion

process.	 For steady state calculations with separate

shocks the oscillations probably do little harm to the

total solution.	 Far dynamic situations with interacting

sho^cs the situation is less clear. -

Shocks are inherently stable and compressive phenomena.

Bence, even without shock fitting the shock is smeared over

only a few mesh points even for long periods of time. ,

However, contact discontinuities continue to spread in

time.	 Hence, in multidimensions where coarse grids are

necessary one cannot resolve contact discontinuities ever

long periods of time.	 One can try to convert these dis-

continuities into pseudo-shocks [91j. 	 Alternatively one

can use fitting techniques only for contact discontinuities.

One such technique was described in section 6 for the inter-

face between different materials.

Numerical evidence indicates that if higher order

methods are used in smooth parts of the flow then errors

in the shock area do not propagate into the smooth region

[lg$j, Since contact discontinuities are a linear phenomena

it seems that errors in the discontinuity region may

contaminate the entire domain of integration. For

linear problems with discontinuities a straightforward

method will yield only second order accuracy even in



smith xegiotts E129} T^Z accuracy of .the method can ^

recovered by pre- and pce^-processing [138] . For non-

linear problems preprocessing and pastprocessinq will not

work. On the other hand there are indications that there

is no need for any adjustments far shocks ([119], [188]).

In fact preliminary computations demonstrate that one can

achieve one point shocks and contact discontinuities

using Chebyshev spectral methods (3.16 - 3.18). Small

oscillations appear which can be removed by a postprocessor

(D. Gottlieb, private communication).

When using implicit methods to compute the solution

to shocked flows, computational experience indicates that

one can not use time steps more than about three or four

times the local Courant limit, even for stationary shocks

(e.g. [93]). In many practical situations this is not a

serious limitation as the time step for an explicit scheme

would be goverened by regions other than the shock region.

For example, in a shock -boundary layer interaction the time

step is goverened by the boundary layer mesh and not the

shock. Hence, an implicit method can still use time steps

about fifty times larger than those used by an explicit

method.

B. Multidimensional Problems

In several of the previous chapters we have dis-

cussed methods for one dimensional problems. For practical

applications one needs multidimensional codes. For some
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methods as leapfrog it is straightforward to construct a

stable multidimensional sr2'ieme. Even in this case the most

straightforward version man lead to restrictive time steps.

Consider the equation

	

8.3)	 ut +Aux +Huy

the straightforward leapfrog met

i:^

	

tEt.4)	
n+1 = n-1 _ At n

ui , j	 ui,j	 ^x Ai,j

_ 0t Hn
by i,j

- 0

hod for this equation

n	 _ n
ui+l,j ui-1,j,

n	 nui,j+1 - 
ui,j-1 '

This is stable if

t8,5a)
	

A sin y+ B sin r< 1

for all ^ and ^. In the worst case this can demand

`^ A ^^ < ^, ^) g i; < ^. For the fluid dynamic equations (8,4)

is stable when

(8.5b)	 ^t	 (u ^ 2 + ^ v 2 +	 1	 +	 1 l^ c	 < 1 ,
l^X ^	 ^^Y^	 Ox^	 ^dYJ

Abarbanel and Gottlieb ^ 2^ have pointed out. that one can

improve this stable condition by averaging the derivatives.

In particular we can replace (8,4) by



^^

n+l	 n-1	 t ^48.x) ui ^ j	 ui• 3 "	 x !►^r^

^+^, j+i + 
ui+1, j-1 - ui-1, j+l - ui-1, j-1^	 `

_ ht n	
-

21^y Bi, j

^
n	 n	 n	 n

ui+1, j+l + ui-1, j+1 - ui+1, j -1 - ui-1, '-1

This is now stable when

(8.7)	 ax A ^ 1	 ' yyB t l

which is optimal. Similar extension to three dimensions

exist except that the averaged scheme is no longer optimal

but sti?1 better than the standard leapfrog method. Exten-

sions to arbitrary dimensions are considered in ( 2©la.

-

	

	 A similar gain is achieved for the fourth order leap-

frog method t5. Abarbanel and D. Gottlieb, private commu-

nication).

For implicit methods the extension to multidi;^ensions

.is less straightforward. The obvious Generalization of one

dimensional schemes leads to the necessity of inverting

large sparse matrices which are no 'oncer tridiagonal.

To avoid this problem one usuallg e-^iot• s ar, alternating

direction method to reduce the prcble- .o a secuFnce of one

dimensional problems. ^9cAonald a^e	 '_E1 X128; have stresse%

the importance of doing this in such a -arner that each

portion of the split is consistent »it^ the ezi:,anal equations.

In chapter 5 we have indicated sore o.` the disadvantages of

^:
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^►.D.I. These include a reduction in the rate of convergence

to a steady state and a3.ao in$tability for some important

three dimensional versiesis.

For the usual multistep explicit methods one can con-

struct full two dimensional versions. This has been done

by Richtmyer [156],Burstein [29], MacCormack [ 124), Turkel,

Abarbanel and Gottlieb [1863 among others. These schemes

usually have a restricted stability criterion. Afore impor-

tant,it is difficult to treat different directions in a

different manner in order to take advantage of the physics

of the situation. Strang (1791, Yanenko [20b], and

Marchuk [ 134] have introduced the concept of splitting

the equation into several components. We consider the

general equation

(8.8)	 ut MXU + Myu + MZU M u

Here, we have arbitrarily split the right hand side into

three portions. Frequently these splits are identified

with separate dimensions. However, in other applications

other splits are indicated by the physics (see e .g. (135]

and section D). We now consider the subsystems

(8.9)	 vt = M^v	 vt = Myv	 =	 vt a MZv

and we denote the numerical solution to these subsystems by

(8.10) vn+1 = Lxvn	 ^ vn+1 s Lyvn	 ^ vn+1 = LZVn



{8, ilb) un+2 LLLun+1 .
x y z

90

Yispbettvely. ^e can reconstruct the solution to t8.8) by

{8.11a^	 un+l ^ 
LXLyLZUn .

This is a first order, in time, approximation to {8.8).

In order to make the approximation second order in time we

follow {8.11a) by

This is stable if each of the one dimensional operators

are strongly stable. Gourley and Morris [75], [76] have

considered the implementation using multistep methods.

Gottlieb [67] has shown that this 2-cycle of permutations

is second order even for nonlinear equations. This splitting

in two or three space dimensions coupled with some multi-

step scheme has been very successful for many applications.

One can show that one achieves the optimal time steps. One

can also treat different directions in different manners.

For example, MacCormack [ 125] uses the operator in the y

direction more oft >,, with smaller time steps, than the

operator in the x direction. This compensates for the

finer mesh in the y direction. Alternatively, one could

couple Fourier methods in periodic directions with finite

difference or Chebyshev methods in directions with boundaries.

For a further description of details sea [77].
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Aa with all as:thoda splitting techniques have their

.	 drawbacks. One immediate difficulty is that the intermediate

steps have no physical interpretations. .Hence, if the

coefficients of the equations or the boundary conditions

depend explicitly on time it is not clear which time to

use for the middle steps. This is compounded if multi-

step methods are used for the one-dimensional operator.

Additional difficulties are encountered wf^n the solution

has a shock inclined to one of the coordinate directions.

Crandall and Majda [45] have shown that unusual occurences

happen in this case. The efficiency of the random choice

method also deteriorates in the presence of oblique shocks

when splitting is used tChorin, personal communication).

Another difficulty occurs when some subsidiary con-

straints are intrinsic to the solution. For example, for the

`Saxwell equations the condition div B = 0 can be viewed

as an initial condition. For ?problems with variable

coefficients t8.10I is not s }•mmetric fn x and y even

though the operators appear in a symmetric fashion. Hence,

numerically ^^ div 8 iz nonzero. This introduces a non-

physical Lorenz force which can cause numerical instabilities.

:he author has done extensive calculations with the nonlinear

-	 :deal P^HD equations, when dimensional splitting was used

nonphysical instabilities always occurred. This also

occurs when Lagrangian schemes are used in MHD (Brackbill

and Barnes t21]). A similar situation occurs in the
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incx^apraasible Naviar-Stokes equations tthere div u = 0

must be satisfied. In this case the situation is unproved

by explicitly adding tarns involving 	 div u to the	 .

equations. This does not affect the analytic solution

since div u	 0. ` However, the nu^ricai solution can be

stabilized by such a procedure tees I g6l. [99 l).

C. Aerodynamics

Aerodynamics is frequently divided into internal

and external flows. Internal aerodynamics describes flows

in nozzles, ducts and turbomachinery. These flows usually

involve complex flow patterns and frequently require the

addition of chemistry models to study the propagation of

flames. Boundary conditions are extremely important for

internal flows. These flows are usually subsonic or

transonic with maximum Mach numbers of about 1.3. Hence,

one is frequently not interested in shocks and can frequently

dispense with the conservation forms of the difference

equations. This is especially important for implicit methods.

The block structure of the matrices to be inverted are much

more complicated when the divergence form of the equations

must be used. The velocity form of the equations frequently

allows the decoupling of the blocks into a direet sum of

smaller blocks tsee [23^). It is much faster to invert

three scalar tridiagonal matrices than to invert one block

tridiagonal matrix with 3 x 3 blocks. Hence, it is computa-

tionally important to utilizes the proper form of the equati^
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hor large system arising from chemical motb:is thin is even

e is^ortant. 1^in exta^siva ^iseussion of is^licit methods

for internal flows is gi+rjen by McDonald and Sriley [128) .

for both internal smd external flow's one must use a mesh

that resolves the boundary layers. This can be done by

a mesh stretching or a finite volume technique. Zn many

situations one is only interested in the steady state solution.

Fos this case implicit methods are bec^inq popular, As

mentioned in section ^ the implicit methods become more

inefficient as the cor^lexity of the equations increase.

This complexity can be created by the existence of many

equations or the existence of cross derivatives. For many

aerodynamic flows one simplifies the full Navier-Stokes

equations to the so called "thin layer" approximations 1175)

so that the flow is essentially unidirectional (S1). This

is useful only when the boundary layer has somr simple

structure parallel to the body. Ian alternative is the

rapid solver proposed by l^acCormack [126). Details of these

approaches are given in the article by Hollanders and

Viviand (101). An alternative to using the time dependent

equations is trying to solve the steady state equations

directly. Iterative methods have not proved to date, to

be very promising. Ona possibility is to use Newton's

method for linearizing the problem coupled with Gaussian

eliminatio = •. This has been carried out ty 131omster and

Sk811etmo (1?) and Rizzi O57). The major difficulty

with this apgroach is that the bandwidth of the matrix
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in^sasss rapidly as fir meshes are n.adad for more

realistic situations. This is especially severe in three

space dimensions. ^ltazaata linerisations, such as 	 `

Schvbert's methods, nay alleviate the difficulty since one

can account for the sparsity of the matrix to be inverted

lase e.g. t136I, (i67^).

1tn important problem in using the time dependant

equations to achieve a steady state is finding ways to

accelerate the convergence to the steady state. One such

method is to use different time steps at different mesh

points. For explicit methods the time steps could be

chosen so as to satisfy the local stability limit {Burstein,
^:

personal coanaunication). Far implicit methods large time

steps can be viewed as an iteration parameter. Some ideas

F.	
for optimizing this parameter were discu:sed in chapter 5.

Even more important is the proper implementation of

initial and boundary conditions. Rudy and Strikwerda (153

have considere8 the effect of various boundary treatments

on the acceleration to steady state. Over-specificaticn at

inflow can accelerate the convergence but frequently leads

to oscillations in the steady state. Under-specification

at outflow can prevent the ach.evement of the steady state.

The use of a radiation boundary condition can dramatically

decrease the number of steps required to achieve the

steady state. An analytic treatment of several boundary

tr^^*r^unta is nrnvfd^d its (ld?t _



coarser girds do not increase the work by very much. By

providing an excellent initial guess this process can sub-

stantially accelerate the process of reaching a steady

state.

For complex three dimensional flows it is likely that

all the processes described above and in chapter 5 will

be necessary to achieve a stead}^ state within a reasonable

number of iterations. For surveys of methods for the

Navier-Stokes equations see [ 7], [35], [137], [154].

In addition there will be, in the future, more of a

need for internal accuracy checks, e.g. changing the

mesh size. This is crucial for investigating the effect

of various acceleration techniques on the accuracy of

the steady state solution. In most studies the only

accuracy checks are comparisons of averaged quantitities

C^
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are very different from those in aerodynamics. First,

in meteor©logy one is interested in the dynamic behavior

of the model. Even in climatology one wishes to find

statistical averages rather than a steady state solution.

Furthermore, the equations of motion are a classical

example of a system with different time scales. Allowable

speeds in the atmosphere range from sound waves down to

Rossby waves. The physically dominating Rossby waves

are about 20-30 times slower than the speed of sound.

Nevertheless, if one uses an explicit scheme the time

steps is restricted by the fastest possible modes of

propagation. A further restriction on numerical methods

is that one wishes to limit the amount of dissipation

introduced by the scheme. The long term weather patterns

are governed by a delicate balance between heating due

to solar radiation and dissipation due to friction and

interactions with the oceans. For long term weather pre-

diction it is essential that the numerical method does

not interfere with this balance.

As a simplified set of equations we analyze the

shallow water equations in Cartesian coordinates.

__ ^



{u,v^ are the velocity components and h is the equi-

valent height of . the atmosphere, g and f are taken

to be constants. The phase speeds of the system are

wl=usin8+vcos9

{8.13)
w 2 ^3 w l ±	 gh+ f

In this simple system w l represents the important Rossby

wave while w 2 ^ 3 are the relatively less important

gravity waves. The flow is called geostrophic if the

right hand side of {8.12a) and (8 . 12b) are zero. The

flow is incompressible if the right hand side of t8.12c)

is zero. The real atmosphere is quasi -geostrophic and

almost incompressible. This is the cause of the small

amount of energy in the gravity waves.	 '

One way to ove,-come the difficulty with the different

time scales is to use a semi-implicit method. In this

method the right hand side of 18.12) is treated implicitly
:-

while the convective terms are treated explicitly. The

resulting stability condition then depends only on the

^^,_ -- ^^ ,..
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velcdities and not on the sound speed, g A further

analysis of this is presEnted in Elvius and Sundstrom [52].

Navon [144] has combined a semi-implicit method together

kith the linearization technique described in section 5.

He found that it was necessary to iterate the procedure

once in order to maintain the accuracy. Isaacson, 	 ,'

Marchesin and Zwas [104] have used a fully implicit compact

fourth •rder method coupled with linearization algorithm.

The scheme (3.9) was generalized to two dimensions by using

an alternating direction method. They found that the

correct treatment of the singularity at the pole was

necessary to maintain stability. The order of the factors

i^ the A.D.I. method was also crucial for stability.

Williamson [204] has compared the effectiveness of high

order schemes for the primitive equations. He found that

the horizontal diffusion term had a greater effect than

the order of the scheme. The introduction of topography

further complicates the comparison since for realistic

grids large mountain chains are described by relativity

fe•.: crid points leading to large gradients in the vertical

variable.

Gadd [62]has suggested splitting the system into fast

anc slow components and treating each separately with a

Lax-Kendroff method. This has the disadvantage of using a

dissipative method. It is possible to use a similar idea

wit: the leapfrog method by using two grids. The convective
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terms are differenced on the fine grid while the right

hand aide of (8.12) is differenced on a coarse grid but

with a compact fourth order method. The resulting

approximation to (8.12) is given by

ui
+j

un`1i,j — a u" j ^un1, i+l,j
— un	

1i-1,j

n	 n	 n+ vi, j ^vi ^ j+1 - vi, j-1

p f hi+p. 7 - hi -P, j J

+ ^tf 4vn + vn	 + vn	 ,

(8.1^)	 vi+^ _ vi, j	 a ui, j (vi+l, j - vi-l.jJ

n	 n	 n

r.'

p hi.j+P - hi,j-F

- ^3f ^ 4ui, j + ui, j+P + "i, j-P)

- ^_



	

n+1	 n-1	 n	 n	 _ n

	

hi,3	 hi,j	
a u

i,j^hi+l, j hi-1,j^

n	 n	 n
+ 
vi, j ^hi, j+1- h i, j-1

nah

— p ^ 4 (ui+p.^ ui-P.7 + vi.j+P vi^^-PJ

n	 _ n	 n	 _ n
+ u

i+P. j +P ui-P•]+P + 
u
i+P,^-P ui`P ► 7-P

+ vi+
P•^+P vi+p .7-P + vi-P•^ +P ^ vi`P,^`P

with 7^ Ox Dy .

An additional difficulty that occurs in meterology

is due to the spherical coordinate system used for the

globe. The coordinate singularity at the pole together

with the convergence of the latitude lines at the poles

forces an unrealistically small time step for explicit

schemes. Many attempts at using other coordinate systems

or patching several coordinate systems have not been very

successful. To enable the use of larger time steps some

smoothing algorithm is used near the poles to eliminate

the higher frequencies. In figure ( 6.1) we display a

contour map of h for the solution to the shallow water

equations in spherical coordinates. This solution used

3 minute time steps a ..^,d includes Fourier filtering near

the poles (see [190], [199)). In figure (6.2) is shown

a second graph using the scheme (8.14) together with

lfft^
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Fot^ciar filtering. This allowed 7^ minute time steps.

A leap frog method without any filtering could uee only

^ minute time steps with the grid used.

lire realistic models are based on the primitive

equations and also contained many levels in the vertical

direction. Usually a pressure-like coordinate is used

in the vertical direction. Even though many calculations

have been gerformed with the primitive equations

Oliger and Sundstrom (147) have shown that the system is

not well-posed. Browning (26) has proposed a substitute

which is a proper limit of hyperbolic equations.

In volume 17 of Mezhoda o^ C^mpu.ta^^orta^Z Ptcus^ce a

variety of methods are presented for solving these equations.

Spectral, pseudospectral and finite element methods all

present advantages and disadvantages for large scale

problems. To date there has been little comparison of

these numerical techniques under real-life situations.

e. Combustion

The replacement of an ideal gas by a real gas

and the inclusion of chemical processes introduces

several new difficulties into the computation. Because

of the exponential dependence of the ignition on the

termperature it is critical that there be no overshoots

in the computation of shocks. False overshoots can ig-

nite the chemistry at entirely incorrect places and times

and completely invalidate the computation. As previously

-*;
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r^ntioned one alternative is to introduce severe diasipa-

tion.	 Anti-diffusion is later added to sharpen the

sh©ck profile (see [18J, I91J, {191 0 . An additional	 `

difficulty is the introduction of many new equations

when many chemical species are present. This is a parti-

cular difficulty for implicit methods as the work increases

with m3 where m is the number of equations. In certain

cases Briley and McDonald [24J have shown that these

matrices can be simplified.

Since the flame occupies only a small region of the

computational domain it is necessary to introduce a fine

mesh which moves adaptively in time. Efficien^ ways of

changing the grid, especially for several space dimensions

are unknown. One way of moving the mesh for one space

dimension is given in [SOJ• An additional difficulty with

combustion problems is the stiffness of the ordinary

differential equations which describe the chemistry. This

necessitates much smaller time steps for the chemistry than

for the fluid dynamics. This can be partially alleviated

by using splitting techniques (section b) to split the

chemical and fluid dynamical portions of the calculation.

A different approach to these problems was introduced

by Chorin {3$J. He extended a probabilistic method due

to Glimm (65J into a practical method. The random choice

method is based on _ne solution to many Riemann problems.

In each interval the solution is considered to consist of

two constant states with a discontinuity between them. The

_.AVi!!'1
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solution is advanced to the naxt time level by analytically

solving this local Rieman problem and then choosing the

new constant state to be the solution evaluated at a random-

ly chosen poi»t within the mesh. This method has the pro-

perty that the discontinuity is sharp tin a probabilistic

sense) without overshoots. Hence, there is no need for

artificial dissipation or a moving grid. A drawback of the

method is that it is at best first order accurate in the

smooth regions of the flow. Since convergence is guaranteed

only in a probabilistic sense accuracy for any given compu-

tation may be poor. Thia depends crucially on the choice

of sampling. It is expensive to calculate exactly the solu-

tion to a Riemann problem at every mesh point and each time

level. An alternative is to solve the Riemann problem with

a finite difference method ( 93). This also has the advantage

that it easily generalizes to complex systems of equations.

The present extension to several dimensions i^ based on

splitting techniques. As this reduces the effectiveness of

the method other approaches are being investigated (66).

Sod (173 has compared this method with some finite difference

schemes for simple shock problems.

E
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f. Plasma Physics

The simplest set of equations that describe a

plasma are the ideal MHD equations developed by Lunquist

j123]. These form a set of eight nonlinear symmetric hyper-

bolic equations. Grad [^8] has shown that the full equations

include all of standard fluid dynamics within a small range

of parameter space in the MHD equations. Hence, all the

difficulties discussed in the previous sections automatically

occur in A4HD. In order to make the problems manageable

one can only treat simpler problems than those solved

_'

	

	 for the Navier-Stokes equations. This is even more true

when more relevant equations, as the Vlasov or Fokker-

Planck equations are considered. For these equations

only one dimensional or simple geometries can be consi-

dered.

As a simple illustration we consider the steady

state equations. For the Navier-Stokes equations we can

solve the full system with the time derivatives set equal

to zero. Some of these methods were described in section

c and others are described in more detail by Hollanders and

Viviand [101].	 For ideal MHD even the case with no flow,

i.e., u	 4, is nontrivial. In this case the equations

become

Dn = 7 x 7 x 8
(8.15}

div 8	 0

E_'
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his systest of four equations for p, Bx, ey , Bs has two

real and two imaginary characteristics. Hence, this is

a nixed hyperbolic-elliptic system. For three dimensional

-	 systems fn a torus it is not even clear that the diffarentisl

system is well posed. Sy imposing additional constraints

eatancourt and Garabedian (lbj, (9^ have obtained solutions to

18.15) for three dimensional eonfigurat ;ons. Srackbill (201

has obtained solutions by using the full time dependent MHD

equations and marching to a steady state wh#le removing

kinetic energy so that u = 0 in the limit. It is

c+' riously much more difficult to do the type of steady

state calculations that are commonplace in aerodynamic

flows.

In addition to the steady state, or equilibrium

problems, one is also interested in the stability of the

equilibrium. When one wishes to study nonlinear stability the

main technique is to integrate the time dependent equations.

As mentioned in section b one difficulty is introduced by

the constraint div 8 	 0. If ^ div 8 is nonzero

numerically it can introduce false sources of instability.

Hence, stable equilibria can appear as unstable equilibria

{see also (21), (142J).

Fox the time dependent equations there are three pound

speeds known as the fast {or magneto-acoustic) speed, the

Alfven speed and the slow speed (see e.q. (39^). Many of the

instabilities in a torus occur at the Alfven speed which can be

much smaller than the fast speed. Hence, we again face the
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pha^ena of differant time scalas. wa wish to use time

steps based on tha Alfvan speed without sacrificing stability.

One approach is to use an implicit, alternating direction

method {sae (122)). Howavar, this requires the invarsion of

block 8 x 8 tridfagonai matrices which is lima consuming.

Plasma flow has the property that most of tha change occurs

along magnetic flux surfaces and not across them. By using

flux surfaces on a coordinate system one can separate out

the fast and slower motions. Since the Alfvan wave is

ine^►pressible this can be used to set up a scheme which

•

	

	 uses Lima steps based on the Alfvan speed tees X106)). Thg

snafu disadvantage is that the method fails when the flux

lines no longer provide a reasonable coordinate system.

Another. approach fa to use a semi-implicit method {Brackbill,

priva^e communication) similar to that in section d. One

can now use a standard Eulerfan or Lagrangian grid. The

si-ae of the matrices t^ be inverted are severely reduced

^^hile the time step is governec"t by the Alfvan time step.

When considering non-ideal effects the major effect

is resistivity rather than viscosity. while this still

introduces parabolic terms nevertheless the physical

effects are quite different. It is well known that

resistivity can frequently cause instabilities that did

not exist in the ideal case ( 48^. As with the Navier-Stokes

it is necessary to reso .^^E: boundary layers where the

resistive effects are dominant. An additional difficulty

with plasma physics is the existence of a vacuum outside

Fu_
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the plasma. The magnetic field in the vacuum is governed

by an elliptic equation which must be cooped with the time

dependent MHD equations across a moving interface. When

solving the plasma-vacuum problem Lagrangian type methods

or flux surface methods have been used. The Eulerian

methods usually represent the plasma as a low density plasma.

We have concentrated on the applfcati.on of MHO to

magnetic controlled thermonuclear reactions. Another

application is to astrophysics. For these problems

radiation boundary conditions as described in chapter

7 are i^ortant. Another important area is laser fusion.

Zn this area the introduction of artificial boundaries

fa also important. In addition, these problems frequently

have regions with extremely different properties as the

pellet is compressed. Hence, the methods must be capable

of handling changes in coefficients in the range of 15

orders of magnitude. Further discussion of methods :or

plasma physics are given in (155 and also volume 16 of

^i¢thoda o^ Compu#a#<onaf ahysice.

g. Other Applications

In this brief survey we have shown some of the

'	 difficulties that occur in specific applications.

_	 Naturally this survey cannot cover all topics. One major

field which has not been discussed is two phase flow.

Aspects of that field are discussed by H. Wirz (203.

'. ^



of these present their own difficulties. In seismology

in particular one tends to use second order equations

rather than - first order systems. The occurrence of

layered media introduces other difficulties. Both interior

am exterior ballistics provide problems with extreme dis-

tortion of materials. Due to the high pressures and tem-

peratures even metals deform. Hence, one cannot

integrate in a region with fixed boundaries. Instead,

the motion of the free surfaces and interfaces must be

calculated. An additional difficulty is the existence

of a plastic regime. ^'or this regime the deviatoric

stresses remain on the yield surface, i.e.,

^Si,j = K. It is a nontrivial problem to enforce this

constraint numerically. A survey of numerical methods

in elastodynamics is given in [5].

One major field which has not been discussed is that

of incompressible flow. Discussion of finite difference

methods is given in a companion article by I:rause [109]

(see also [61J and [185J). There has also been much work

in the application of finite element approaches to solving

the time dependent incompressible Navier-Stokes equations

(see e.g. [58], [25J, [102]. Of particular note is the

recent use of grid-free methods. Chorin [37] used a method

based on the interaction of a finite number of vortices.
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Combination grid-vortex methods .. have considered in [27j,

{1211, and [1671. Peskin [153] has advocated the use of

a Lagrangian grid free method. These codes have been used

for many aeronautical purposes. The use of these codes for

biological studies is complicated by the fact the boundaries

which represent tissue material, are permeable (1511• The

spectral methods can also be viewed as grid-free methods.

Applications of spectral methods to incompressible flows

are surveyed in [1501

Boundary layer computations have been dominated by

the use of fourth order finite difference and finite

element algorithms te.g. [41], (1071, [1611, [1961, [20f]).

A major difficulty in the practical use of these codes is

the lack of sufficiently accurate turbulence models.

Extensions of the mathematical models to detached and

reverse flow is also being investigated (341. The boundary

layer equations are a parabolic system. Other parabolic

problems include heat flow and diffusion problems. Diffu-

sion problems are of major importance fer such diverse

fields as oil studies, glasma diffusion and biological

processes.

Transonic flow calculations have been mainly based on

the potential equation. Recent progress in the field has

been presented in (2041 and in the Proceedings of the

Fourth AIAA Computational Fluid Dynamics Conference.
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