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ABSTRACT
The spectral structure of pressure measurements made in a ducted combus-
tion test facility are studied. Dispersion and attenuation of acoustic plane
waves may occur in the duct at low frequencies due to combustor emissions and
affect the spectral structure. A model that corsiders the propagation of
plane waves through a cloud of particles in a flowing gas and which includes

heat transfer between soot particles and the gas is discussed. Experimental

results are compared with theory.

NOMENCLATURE
A,B,C,D matrices
a,b velocity potential wave equation integration coefficients
an,n pressure and velocity wava equation cocefficients
P boundary conditicn operator
Co source spectrum coefficient
c sound propagatiou velocity, m/sec
o isentropic speed of sound, m/sec
Cp gas specific heat at constant pressure, J/kg-K
d diameter, m




2
E acoustic energy density, J/m3
£ frequency, Hz
G(w,w,y) solution in source region
G(w,x) source term
Hw) source term coefficient }
R heat transfer coefficient, W/m2-K
i (-1)%
} af energy per unit mazs, J/kg
k propagation wave number, w/c, m~1
L,¥ second order space differential equation operator
Lo compustor length
M Mach number, u/c
mg soot particle mass, kg
Nuy heat transfer Nusselt number, Hd/k
N acoustic energy flux
n number of particles per unit volume
PL pressure level, dB
P pressure, N/m2
é heat trensferred to gas from particles by convection

Q(-iw,ik,R) time and space Fourier transform of ¢

'3 system state vector

174 gas constant, J/kgn K

R reflection factor

r radius, m

,J(w)/cp transfer function for response of entropy source to a pressure .
P perturbation

S area, m2




s entropy of gas, J/kg~K

t temperature, K

u velocity of bulk gas, m/sec

19 Wronskian

W mass f£lux, kg/mz sec

X cartesian coordinate, m

-y

Y acoustic state vector

A acoustic impedance, mks Rayles

a acoustic attenuation coefficient, dB/m

om,n duct transfer matrix element

Bm,n discontinuity transfer matrix element

Y specific heat ratio of gas

A time and space Fourier transform of D/DE

£ see Bq. (64)

e see Eq. (65)

LEY see Ey. (30)

0 time, sec

K gas thermal conductivity, W/m-K

Kg soot particle mass fraction, nm/p,

.'I""—““_“é‘
v Zkrdfqgl - M
o gas density, kg/m3
mecy
Tg soot particle thermal relaxation time, Nu
42____111.)
e K
S s

E ¢[ ] Fourier time transform operator
o , $ reflection factor phase angle, degrees
# 10 velocity potential function

1Y) velocity potential wave number factor

w angular frequency, radians/sec
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Superscripts and subscripts:

fﬁi time average

@) vector quantity

(H instantaneous quantity

( yt upstream propagating

()~ downstream propagating

()° wave propagating with flow

( Jcg combustor exit

(er combustor inlet

()4 exit of duct system

()i ( )j identifies an axiul duct location
(g identifies source location

m,n elements of a matrix

(g property of or due to soot particle
(Jo reference state quantity

( )l perturbed quantity

( Ve property far from soot particle

INTRODUCTION

As part of a combustion noise research program, pressure measurements
were made in a liquid fuel ducted combustion test facility at the NASA Lewis
Research Center. A schematic of the test facilivy is shown in Fig. 1. An
: analysis of the effect of the ducting downstream of the combustor on the
» .

‘ measured pressure spectra using the adiabatic speed of sound showed the peaks
in the measured spectra did not occur at frequencies corresponding to the
predicted resonant frequencies. This paper first develops an acoustic wave

equation that takes into account the presence of oxidizing soot particles

which cause attenuation and a decrease in the sound propagation speed. Then




this acoustic wave equation and the duct geometry are used to model sound
propagatica in the ducted combustion system.

The literature contains a number of theoretical and experimental studies
of the propagation of a plane wave through a cloud ¢f particles in a station-
ary gas for various types of particles. Studies considering viscous and
thermal interaction but not mass transfer were made by Epstein and Carhart
(Ref. 1), Chow (Ref. 2), Temkin and Dobbins (Ref. 3), Dobbins and Temkin
(Ref. 4), and Morfey (Ref. 5). Studies that consider vapor mass transfer in
addition to viscous and thermal interactlon were made by Cole and Dobbins
(Ref. 6), Marble and Wooten (Ref. 7), Davidson (Ref. 8), and Marble and
Candel (Ref. 9). Miles and Raftopoulos (Ref. 10) considered mass transfer
due to soot oxidation in addition to viscous and thermal interaction. The
theory of Cole and Dobbins (Ref. 6) was confirmed experimentally by Cole and
Dobbins (Ref. 11). These studies have the objective of investigating attenu-
ation and dispersion in a stationary, infinite bulk gas containing particles.
In contrast, this paper studies the effect of attenuation and dispersion on
duct spectra measurements in a flowing, confined gas containing soot particles.

Miles and Raftopoulos (Ref. 10) using Stokes' viscous drag law showing
the effect of viscous interaction between the soot particles and bulk gas is
not important at combustion noise frequencies. They alsoc estimate the sound
propagation speed from pressure cross spectra phase angle measurements. The
estimated sound propagation speed is near the isothermal sound propagation

speed, which indicates that heat transfer between the soot particles and the

# bulk gas may be more important than mass transfer at combustion noise fre-
P quencies. Consequently, the model presented herein includes only the heat

transfer between soot particles and the flowing gas.

In the first part of this paper, the model is presented. This problem

is first formulated as a distributed system parameter identification problem
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with a single unknown parameter. An extensive review of the distributed sys-
tem parameter identificarion problem is given in Ref. 12. Rather than using
any of the methods described in Ref. 12, it is shown that for the problem
discussed herein the solution can be approximated by the solution to an
acoustie wave equation. This acoustic wave equation and its solution are
used to model the duct system. Next, experimental results are presented.
Last, the experimental and theoretical results are compared.
ANALYTTCAL MODEL

Governing Equations

The following assumptions are used in this analysis:

(1) Tluctuations in the gas of pressure, velocity, density, entropy, and
temperature are assumed to be small compared with their equilibrium values so
that theilyr squares and cross products may be neglected.

(2) The bulk gas is a perfect gas.

(3) The soot particles are sperical, non-porous, and of a uniform tem-
perature and size.

(4) The volumctric heat transfer rate in a volume element containing a
large number of soot particles is the sum of the effects due to each particle.

(5) Mass transfer and the body force due to viscous drag can be neglected.
In addition the consequences of soot particle surface oxidation are idealized
as producing a constant time-independent soot particle temperature.

The one-dimensional continuity, momentum, and energy equations for the

bulk gas are as follows:

8 L3 = =
36 T3y P W =0 (1)
o = - o (2)

De T T Bx
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Ptpg=nQ (3)

where the heat transfer rate per soot particle from the particle into a unit

%
!
!
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volume of gas is

@

; N - -
Q = (AWrg) (7£§> kK (tg = ta) (4)

and the total derivative is given by

D .3 9.
Do 39 T Yo ox (3)

where the first term on the right hand side is the temporal member and the
second term is the convective member in the x direction. When the entropy
Ls constant the convective term is neglected if the time to convect a disturb-
ance through the volume of interest is large compared with the time required
for a quantity to change Ffrom a minimum to a maximum. The entropy is not
constant in this problem since heat transfer between the soot particles and
gas is taken into account. Therefore the effect ¢n the spectrum of the con-
vective term and heat transfer term may be of the same order of magnitude.
Consequently, the convective term is included in the governing equations.

The gas equation is

P=PAT (6)

and the adiabatic speed of sound is

2: /) = P_(.). 7
‘ ¢ YRty =Y o (7)
; Equations (1) to (4) are linearized by considering small perturbations
. of the variables from their equilibrium values as follows:

T=p,t e (8)
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U oug ok ouy (9)
P=rp,*p (10)
to =ty ot €1 e (11)
tg = to,g (12)
s =8, + 5] (13)

Substitution of the above equations into Eqs. (1) to (4) and elimination
of squares and cross products yields a set of lineirized equations which can

be written in the following non-dimensional form:

p n u
D 1 d 1
=] 4 —m—a | ——] =
D6 (po> ¢ ox <90> 0 (14)
N A 2 [P1
Do (Co> T "% dx (ypo> (15)
(%) _ _fsfe
DO <cp> T Tt (16)
S 0’0(\

Where the particle mass fraction, Kgs is a non-dimonsional group of parameters
defined as

kg = nm /p (17)
and the heat transfer time constant is defined as

mscp

Tg = (18)

(lwrrg) (NuH/ds) K
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The system model thus depends on the ratio of two parameters. Herein, it is
assumed that the heat transfer time constant parameter is a known parameter.
Consequently, the particle mass fraction remains the single parameter to be
identified.

These equations are simplified further using small perturbation thermo-

dynamic relations. The ideal gas entropy equation is for small perturbations
8 P p
=¥ a9)
P 0
Also, for small perturbations the gas equation of state is

-
Po Py to’°°

Equations (19) and (20) are substituted into Eq. (16) to determine the re-

sponse of the gas temperature to a pressure perturbation. Thus

P-D.-flz.g_ E.l-.....f_];):-.n l tlm (21)
Do Cp DO YP, Po Do YPo Tg o oo

From Eq. (21) the desired relation is

(.Q.Jrf_s_)f_l_ﬁi”_.ll(i:_x)ﬁ_l. (22)
Do Ts) to,® Do Y Py -

To remove the density perturbation, Eq. (19) is substituted into Eq. (14).

Thus

D (1P _ 51 R A
D6 (Y Pa cp> + o Bx (cé) 0 (23)

Selving Eq. (23) for sl/cp yields
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D (.l., 31_) T LA f,l,) (24)
Do \Y By) " S0 3LE /T BT,

State Variable Formulation
The system differential equation based on the small perturbation approx-
imation is discussed next. FEquations (145}, (16), (22), and (24) are written

in state variable form as

9 Y
23+ .7+
A5 q + Bug oy at =0 (25)
where
1L-v 0 0 iﬁ
0 1 0 0
A= (26>
0 0 1 0
L1 0 -1 0.
1 -y 0 o 1]
c /u 1 0 )
B=| > ° (27)
0 0 1 0
L1 c,/u -1 0_]
o 0 0 kgltg
0 0 0 0
C = : (28)




ST T W T Am—_—————— T T

1l

pl/Ypo 1

UI/QO

=)
'l

(29)
sl/cp

LFl,m/to,mJ
The state variable solution to Eq. (25) igs assumed to have the form

4

(ikoﬂ)zX”iwe
qj(xae) = nyge (30)
=1

Taking the Fourier transform in the time variable and the space variable of
Eq. (25) produces a set of four homogeneous algebraic equations in four un-
knowns expressed by the following matrix equation

[A(=1w) + B(ikoDuy + E]Q(~iu,ik @) = 0 (31)
A non~-trivial soluticn to Eq. (31l) exists if and only if the following deter-

minant of the goefficient matrix vanishes:

. K
s
a1 - y) 0 0 a+=2
s
(1ko2) cq A 0 0
=0 (32)
0 0 A KS/TS
A cg (iky8) -4 0
- .
where
A= (-iw) + (ik ) u, (33)

Solving the determinant equation yields a third order polynomial wave number

equation for (ik,R),

- : ﬁ:ﬂiﬁﬂ‘ ﬂwﬂ T, s - - A
e o PN ik . B S i o
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LAN 1y ~~“‘CL““JLL“=, = (ik ﬂ)z (34)
 Co } /g \ ©
( i P A+ 1
L s /.

and a solution 4 = (0 which corresponds to a wave number
o]
(ko) y = 1 -(‘;(‘;- (35a)
The roots of the third order polynomial can be found numerically to great
accuracy using an iteration method due to Muller (Ref. 13), For the data

studies herein the Mach number is low and a good approximate solution at

all frequencies is

K
(o) = = 72+ i (35b)

+ i(w/cg__)_

(Lke®) " = 357 (36)
_ (w/cs)
(ikoﬁ) = -1 1 - Ms (37)
where
[
0
Cs T ~ 1/2 (38)
1+ ._jd;i;ld_*_
(1 -5 iu)
Kg
and
u
M, = <> (39)
S

By definition, the propagation velocity is related to the wave number equation

by

clw) = E;?éi;ﬁ;, m/sec (40)

Also by definition, the acoustic energy attenuation coefficient in Nepers per

meter is
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o = -2Re(iky,i) (41)

Nepers per meter is converted to decibels per meter by multiplying by 10
log e = 4.34:

o= ~B8,68 Re(ikOQ) (42)
The state variable solution to Eq. (25) is expressed in terms of four one-
dimensional normal modes with wave numbers given by Eqs. (35) to (37). Equa-
tions (36) and (37) indicate that two modes may be interpreted as acoustic
modes corresponding to right and left traveling acoustic waves. The remaining
modes represent waves traveling with the flow. The wave defined by equa-
tion (35a) is unattenuated. However, this is not true for the wave defined
by Eq. (35b) since in this paper KS/TS is assumed to be small. Thus, the
attenuation wf the wave traveling with the flow calculated by substituting
Eq. (35b) into Eq. (42) is very large and this wave is highly damped for the
cases considered herein. Consequently, this mode quickly decays in the com-
bustion duct system. The wave with wave number given by Eq. (35a) is assumed
to have negligible effect on the system. Thus, the pressure, particle vel-
ocity, and pressure spectral structure are assumed to be determined onlv by
the acoustic modes.

The state variable differential equation (Eq. (25)) depends upon four
dependent variables: pressure, particle velocity, entropy, and bulk gas
temperature. In the next srction the non-acoustic modes are removed from
this state variable differential equation. This produces an acoustic state

variable systems differential equation which has two independent variables:

pressure and particle velocity. However, the new acoustic wave number solu~
tions are identical to the previous ones. The acoustic state variable systems
Jifferential equation is further simplified by use of a velocity potential
function to cr~-+e a single one~dimensional differential equation. This is

the equation usea to nmudel the system.
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Acoustic State Variable Formulation

The set of differential equations which has onl; the acoustic mode is

obtained by neglecting the convective term, u, %ﬁ in Eq. (16). As a conse=-

quence Eq. (21) becomes
d 81\ _dala-yh_ fie|_ % te
W \ey) " Rt T (43)
p Y Po 0, S T0,%

From this equation the response of the bulk gas temperature to a pressure

perturbation is

K t . v 4 - P
...‘.L.,..ﬁ. _J.—J_=_.§L(.];__l>,.1; (44)
de Tg to,oo é0 Y Py

Taking the Fourier transform in the time domain of Eqs. (43) and (44) yields

T ' o
T T Ye R (D[ 1] .5
’ Lo,mJ [(-1w) + kg/1g] LTPo (45)
and
\ P
FP Cp YPo_
where
x’)éw) = (1 - Y) r (47)
P \ s
1+ (~iw) .
s

The time Fourier transform of Eq. (15) is

u )
) 3 1 u b1 -
[( iw) -+ g ax]q)[-—co]-k Cy o ] E——Ypo] 0 (48)

SuBétituting Eq. (46) into the time Fourier transform of Eq. (24) yields
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| R o v Mg
J(=iw) + u, -l 1 - RO ]4- R ] I (49)
L Cp YPo | O Ax - { e J
. A plane wave solution to Lgs. (48) and (49) can be vbtained in terwms of a
vejioeity potentfal, ¢, where
o - O
and
d 9 ..
Py = Po |37 T Yo )V (51)

Substituting the time Tourier transform of Eqs. (50) and (51) into Eq. (49)
vields a new governing partial differential cquattion called the non-adiabatic

velocity potentinl wave oquation

o
- 2
],\hlqll = {(-[k,s_) b 'MS dd‘{} ‘[vlu,l - SL,“ ‘hlw] =] (52)
) - dx~
whare
G)
0g = == “*"}"‘* 7 (53)
PEREIO)
{ “p
kg = w/og (5%
Mg = un/cq (55)

The velocity potentlial sotution Is assumed te bhe proportional to

exp | (iked)x -+ 1wl]. Substltuting this solution into Bg. (52) yields a wave

number equation which has the acoustic wave numbers gilven by Eqs. (36) and (37)
as a solution. Consequently, the veloclty potential wave equation solution

consists of an acoustic wave traveling upstream and downstream expressoed as
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(ilcoQ)+x (ik ) x
g =lae +bhe °© e~iwb (56)

In the following sections the use of the Fourier transform operator notation
is discontinued since all variable: such as ¢, p, and u are Fourier trans-
formed variables.

APPLICATION TO DUCTED COMBUSTION SYSTEM

The analysis developed in the last section is now used to study the
spectral structure of pressure measurements made in the ducted combustion
system shown in Fig. 1. The ducted combustion system shown in F.g. 1l consists
of: (1) a source region inside the combustor can; (2) a non-source region
inside a spocl piece and a long duct; (3) an area expansion and contraction
on either side of a spool piece; and (4) an upstream boundary at the exit of
the long duct and a downstream boundary at the combustor inlet.

The solution for the yelocity potential in a non—source region is given
by Eq. (56). The velocity potential wave equation (Eq. (52)) is assumed to
apply in the source region with the addition of a source term G(w,x) on the
right hand side. Using the combustor inlet and exit impedance as a boundary
condition a unique Green's function solution for the velocity potential is
found. The acoustic pressure and particle velocity can be found from a
velocity potential using Eqs. (50) and (51). Consequently, the acoustic
pressure and particle velocity at the combustor exit can be determined from
the velocity potential solution in the combustor. The acoustic pressure and
particle velocity at the combustor exit can then be used to find the acoustic
pressure and particle velocity at any other point in the ducted combustor
system with four-pole equations in transfer matrix form derived using Equa-

tions (50), (51), and (56). The combustor exit impedance can be calculated
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from the duct exit impedance using the same four-pole transter matrix equa-
tions. The transfer matrix approach used is discussed in Refs, 14 to 17.
Source Region
The acoustic state vector approach developed in the last sectlon is used
to study the spectral structure of pressure measurcments made in the ducted
combustion system. The linear inhomogenecous velocity potential wave equation
assumed to apply in the sounce region is
LY = G(w,x) (57)
The boundary conditions at the combustor inl.t and exit are respectively

Zer _ 1 P1

—

bo°6 PpCo Y1 (58)

x=0
and

%ep _ 1 D1 (59)

PoCe Pof W1
x='-LC

In the following analysis, the combustion noise source is assumed to be
acoustically compact in the x-direction. The volume source-distribution of

monopole order confined to the duct cross-section x = Xy is written us
G(w,%) = Coaf ()6 (x = x,) (L = MZ) (60)

Similar source descriptions have been previously applied by Mani (Ref. 18) to

a fan noise problem and by Mor “ey (Ref. 19), Ingard and Singhal (Ref. 20), and

Swinbanks (Ref. 21) to duct noise source problems.

! Substituting Eqs. (52) and (60) inte Eq. (57), and the time Fourier

. transform of Eqs. (50) and (51) into Eqs. (58) and (59) and some algebraic
manipulation yields a problem that has the form ol a general second order

Sturm-Liouville differential equation with unmixed boundary conditions:

oyl 2 - T Skl v . adie

e o
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Y= - d(}; (t gﬁ) + o= eCo (W) (x = xg) (61)

-

'z
#er(0) = [5-%2- + MOJ Wt (-ky)y =0 (62)
0o x=0
Z
CE d
“‘/JCE(LC) = ['p—o_é";' + M0] '("1'3:‘ + (-iko)l!l = 0 (63)
x=Lg
where N
2(~ikgM,)
T T
s
e = e (64)
and
E:(—ilcs)2
;=" (65)
-

However, since the differential equation has complex coefficients the operator
¥ is not self-adjoint or Hermitian.

Since the differential equation is not self adjoint, the development of
a solution in terms of an orthogonal set of eigenfunctions is more complex
than obtaining a solution by constructing the Creen's function solution (sce
Refs. 21 to 23). ‘The Green's function solution is constructed using the two
initial value solutions of the homogensous equation

Ly =0 (66)

which satisfy Egqs. (62) and (63). This method is described in Refs. 24 and
25 where it is applied to self-adjaeint operators. The solution to Eq. (§6)

with boundary condition given by E¢. (62) is

e e
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+ -
(ikoR) x (1kg92) x
Yer = 8¢r | © + Reope (67)
where
- »
Z
(7 e w) -
\"0"0
R = = (68)
C1 et
1-9 Mo o+ —
PoCo
The solution to Eq. (66) with boundary condition given by Eq. (63) is
+ -
(1ko2) x (ko) %
Yop = acg | © + Repe (69)
where
Z
CE -
Kpoco + M) l ik, (@F-7)L¢
= i (70)
1
3

Rop = e
CE ZCE
1 -9 M, + —
PoCo

Consecuently, the Green's function solution to Egs.

(‘

Yop (%) ¥ep (%)
0y oA () ~SEAYCL

W(Xg)

g(w,x,xz) = 4

biop (%) b ()
W(xg)

—CO j)f \(0)
.

where W(x) is the Wronskian

4
WG = Vor 5= Vep T Vep 3o Yer

Using the time Fourier transforms of Egs.

(61) to (63) iy given by

0 < x < Xy < Lo

(71)

0 < xp € x < Lg

(72)

(50) and (51), the pressure
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and particle velocity Fourier transforms at the combustor exit are

]
Pp = P, [(-iw) + ug '5',‘;] G wsx,x%,) (73)
x=L,
and
9
up = - s g(w,x,xz) (74)
X = Lc

Equations (73) and (74) define the acoustic state vector at the combustor axit
determined from the combustor inlét and exit boundary coaditions and the
source spectrumn.
Duct Transfer Matrix
Substituting Eq. (56) into Eqs. (50) and (51) yields the pressure and

particle velocity equations

(ik 2)Fx (1koR) ™%
py = P oCo (—ikop) ajiae + alzbe (75)
and
~— + » Lad
(ikOQ) x (ikyQ) x
up = (iko)[?21ae + azzbe (76)
where
_ -+
ajp = 1- Mo (78)
" .
and
ag, = Q (80)

I

S

IS AR
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The integratlon constants a and b in Eqs. (75) and (76) are deter~
mined by assuming that x = 0, p = p(0), and u = u(0) at the left boundary
and x =1L, p = p(L), and u = u(L) at the right boundary. As a consequence,
the relation between the ascoustic state vector at x = 0, ?(O) and the acoustic

~
state veetor at L, Y(L) is

~
Py %11 %121/ P1
Y(L) = = = [om,n) ¥(0) (8%)
ul (12 o u
x=1L L 1 22 L x=0
where
R o
(iko® 'L, (ikoQ) L,
= 11928 ~ %12%:® (82)
11 a8y ~ Ap1839
¢k o)L (ik.2) L
° ¢ + a4, ., ° €
-a a e a
a1y = e 11812 11%12 (83)
°° ajpagy ~ 21319
ok , -
[: (il 2) L (1ky2) L%J
_(B21%20° ~ ®20%21°
@21 7 PoColagydigy = 891819) (84)
and
S ik )L ik Q)"
:. _ (l o e N ('l. ) ) LC
; 871210% 811899
) (222 = (85}

v v (ay7855 = 8py395)

Y
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Discontinuity Transfer Matrix
The four-pole transfer matrix used at the juncticn of two pipes of dif-
ferent diameter is based on an acoustilc energy gonservation law. Various
definitions for the acoustic energy in flowing fluid are given in Refs.
26-30. While none of these definitions are applicable to a plane wave propa-~ .

gating through a soot particle cloud in a flowing fluid, the method for find-

ing an energy conservation equation used in Refs. 26 and 31 is applicable.
The relationship which has the form of an acoustic energy conservation law
is derived using Eqs. (48) and (49). A quantity corresponéing to acoustic
energy flux is defined by
N= fiw (86)

where the acoustic energy pexr unilt mass is

A1 = vourL + p1/n, (87)
and the mass flux fluctuation rate is

W1 = Pouy * ugp (88)

If Eq. (48) is multiplied by wl/pocO and Eq. (49) by a!i/cg, the sum of the

resulting second-order equations can be put in the form

E d N
(-im s e s -1 = 0 (89)
) Cg dx \ pyco
where FE represents an acoustic energy density
2 2
- /u ' z u p u p
£ le> oy MJ%&)(J.)(W) R ﬁ‘.(.u.x)](._L) (90)
) c§ o p €0/ \YPo/ \%o ¢p J\"Po
I
L and
W
£ N = Co /21 "_l' (gi)
PoCo ¢, o

3 ,.
k ) '3 B = [
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Integrating Eq. (89) over a volume yields

/ (~1iw) ‘% (w)dv + / ?1.' fido = 0 (92)
\' co S

since

/v-'x?dv= f T+ fido (93)
S

v

The area discontinuity is assumed to take place sharply at the junction of
two pilpes with different diameters causing the flowing gas to undergo a sudden
expansion or contraction. As a consequence of Eq. (92), across the pipe dis-

continuity the acoustic energy is constant
N(L1)S(1) = N(2)5(2) (94)
To derive a transfer matrix acrosgs the discontinuity Eq. (94) is rewritten as

AW = F1(2) (95)
and

S(L)wy (1) = S(2)wy (2) (96)

Algebraic manipulation shows that the acoustic state vectors on either side

of the discontinuity are related by
._“\ ey
Y(+p) = [B,n]¥(x2) (o7)

where the resulting transfer matrix is given by

— -
e 2
. . DocsMs(z){[l - S }
9, . s(2 2
(B, = t- [?(Lf; MS(Z,)} (98)

s(2) |1 - Mﬁ(.zﬂ
=7
s (1) {1— %ﬁ(%ms(z)J }J
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System Boundary Conditions
First, the boundary condition at the duct exit is discussed, Experimen-
tal investigations of the exit impedance of flow ducts reported in Refs. 32
and 33 show the duct exit pressure reflection factor may be greater than
unity. Theoretical investigations reported in Refs. 34, 35, and 36 show that .
the pressure reflection factor is greater than unity because of the flow field
at the duct exit. The following empirical expression for |R] is given in

Ref. 20

(1 - M)
R = 0.95 'zIfIGE;; krg < 0.5 (99)

where |R| is measured at the upstream end of a duct. In the case of jet exit
flow, My is replaced by =M, (Ref. 34). For case studieq herein |R| is about
1.03.

The model calculations shown herein are made using the following combus-

tion duct exit pressure reflection factor

(1-M) /1~ 2/p_c
R = |R|eld = - 0 00 (100)
(1 +Ma) \1 + 2/p,e,
The duct exit impedance is
2J, (v 128, (v
AR PR A2 B A (101)
pOCO ° v v

where

v = Zkrd//[/l -2 (102)

Jl(v) {s the Bessel function of the first order and first kind, Sl(v) is the

id Struve functlon of the irst kind and first order, and ry is the duct radius.
The duet exit fapodance used was devived {no Ref, 35 for a circular duct with
[low having an open end (itted with an (nlinite acoustically rigid flange.

Again, in the case of jet exit Elow,b&) is replaced by “Mﬁ in Egs. (L00) to (101).

-
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The other boundary condition is specified at the combustor entrance. To
model the impedance the combustor entrance is taken to be closed by a rigid
circular plate at the entrance. This corresponds to a zero particle veloelty
at x = 0. Consequently, the pressurc reflection factor is unity at x = 0.

. Calculation Procedure

The following procedure is used to calculate the piessurc spectrum. It
is applied at each frequency as necessary to obtain the desired spectrum.
First, the exit pressure perturbation is arbitrarily assumed to be one Pascal.

Then using the duct exit acoustic impedance based on the duct exlt pressure

reflection factor given by Egs. (100) to (102), the particle velocity is calcu-
lated. Next, using the duct transfer matrix and the area discontinuity trans-
fer matrix as necessary the acoustic state vector at the duct exit is used to
find the acoustic state vector at the combustor exit. The resulting acoustic
pressure and particle velocity are used to calculate the combustor exit
impedance.

The next phasc uses this impedance, the combustor entrance impedance, and
a white noise source spectrum to determine the velocity potential solution in
the source region. This velocity potential solution is used to calculate the
acoustic pressure and particle velocity ut the combustor exit due to the spec-
ified source and boundary conditions.

The last phase uses the duct transfer matrix and the area discontinuity
matrix as necessary to calculate the acoustic state vector at any point in the

R duct from the acoustic state vector at the combustor exit. The pressure level

at a given frequency is calculated from

* - \——/
(PL), = 10 loglo‘ip;(w,xi)pl(m,xizl (103)

l
:
1
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EXPERIMENTAL INVESTIGATION

The experimental apparatus is shown schematically in Fig. 1. The com-~
bustor section consists of a J-47 burner can placed concentrically in a
0.30 m diameter by 0.77 m long flow duct. The combustor section is followed
by a 0.38 m diameter by 0.76 m long spool piece. This section is followed by
a 0.30 m diameter by 6.1 m long flow duct.

The measurements discussed herein were made at an exit temperature of
920 K and at air mass flow rates of 0.5, 1.13, and 1.68 kg/sec. The corres-
ponding velocities at the exit of the long duct were 18.5, 41.6, and
61.3 m/sec and the corresponding fuel flow rates were 0,009, 0.018, and
0.027 kg/sec. The fuel used was Jet A,

Simultaneous internal fluctuating pressure measurements were made at the
three locations shown in Fig. 1, The transducers used were conventional
5/8 cm diameter (nominal) pressure response condenser microphones. To avoid
direct exposure to the severe environment within the flow duct, the micvo~
phones were mounted outside the duct and the fluctuating pressure in the duct
was communicated to the transducers by '"semi-infinite" acoustic waveguildes.
The internal probes have previously been used for engine measurements (Refs.
37 to 39) and measurements in a combustion component test facility (Ref. 40).
Probe design, frequency response, and operzting characteristics are described
in Ref. 41.

Measured constant-bandwildth pressure spectra are shown in Fig. 2 for
duct exit flow velocities of 18.5, 41.6, and 61.3 m/sec, The spectra measutred
near the exit of the leng duct are shown in Fig. 2(a) and the spectra measured

near the entrance of the long duct are shown in Fig. 2(b). The structure of

the measured spectra shown in Fig. 2(a) and 2(b) is similar at a given location

for each test condition. The location of resonance peaks and dips is nearly
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the same for cach operating condition. Moreover, the peaks tend to be sharper
at the low frequencies and more broad at the higher frequencies.

No attempt was made in this investigation to determine soot particle size
or mass concentration. Data in the literacure indicates that typical soot
particle diameters range from 0.05 um to 1 um (Ref. 42). Smoke concentration
ranges from 0.53 to 5.8 gm/m3 in the primary combustion zone and from 0.00018
to 0.015 gm/m3 at a comhustor exhaust station were found in Ref. 43. Besides
being a function of position in the combustor, smcxe concentration was found
to be a function of combustor model, fuel-air ratio and operating pressure in
Ref. 43.

COMPAFISON WITH EXPERIMENTAL DATA

The model is used to calculate the pressure level near the beginning and
end of the long duct. The parameters used to calculate the mass fraction and
soot particle relaxation time used are given in Table I. The value of the
soot particle soot relaxation time is assumed to be 1.5x1076 sec for all
cases. The following three values of mass fractioa are used: l.5x10_2,
l.fn‘clo—3 and l.5x10“4. The results obtained for a flow velocity of 18.5 m/sec
are shown in Figs. 3 and 4.

The calculated spectra shown in Figs. 3 and 4 have similar structure even
though the location of the peaks and their sharpness or broadness changes with
mass fraction. The changes with mass fraction appear graphically in the form
of stretching or as compression of the basic structure. These changes in the
structure were easily recognized but proved difficult to simply explain.

The corresponding attenuation and sound propagation speed are shown in
Fig. 5. For a mass fraction of 1.5x10'4 the sound propagation speed exhibited
in Fig. 5 increases from the isothermal sound propagation speed of 510 m/sec

to the adiabatic sound propagation speed of 609.0 m/sec before the f[requency
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has increased to 80 Hertz. Also, the attenuatdion is small at all frequencies.
Model spectra calculated with a mass fraction of 1.5%x10™4 "are shown with the
measured spectra in Figs. 3(a) and 4(a). Sharp resonant peaks appear in the
calculated spectrum, In addition, the peaks are displaced from the broad
peaks present in the measured spectrum.

For a mass fraction of l.leO"3 the sound propagation speed exhibited in
Fig. 5 slowly increased from 510 m/sec to 610 m/sce. Also, the attenuation
above 100 Hertz is above 0.5 dB. The caleculated and the measured spectra
exhibited in Figs. 3(b) and 4(b) are in good agreement [or this mass fraction.
Both the measured and calculated spectra have an increase :in the broadness of
the spectral peaks with lrequency. Also, the caleulated locations of the peaks
are close to the measured locations.

For a mass fraction of l.leO"z, the sound propagation speed exhibited
in Fig. 5 is isothermal and the attenuation is less than 0.5 dB/m. TFor this
mass fraction the calculated spectra shown in TFigs. 3(e¢) and 4(¢) have the
correct location of resonant peaks only at the low frequencies. Also, the
peaks are all sharp. Discrepancies occur at the higher [requencies.

The agreement between the calculated and measured locatilon of peaks in
the spectrum obtained using a mass [raction of LL.leO"3 is attributable to
the variation with frequency of the calculated sound propagation velocity.
At low frequencies the calculated sound propagation velocity is near the
isothermal speed of sound. As previously noted, usling the cross-spectra phasce
angle, the sound propagation velocity was found to be near the isothermal
spead of sound (ref. 10). Thus, these results provide additional evidence
that the sound propagation speed is near the isothermal speed of sound.
-3

Calculations made using a mass fraction of 1.5x10 - with three dilferent

flow velocities are shown in Fig. 6. The caleculated pressure level at the exit

i e N AR s K .
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of the long duct changes slightly with the mean flow velocdty at the low fre-
quencies. While the change is greater at the higher frequencies it oeccurs
predominantly in the spectrum level and not the frequency locatilon of peaks.
Consequently, these changes could not be observed in the measured spectra.
However, the measured spectra shown fn Fig. 2 for the three flow velocitides
have similar trends at the low frequencies. Accovdingly, the spectra measured
at the higher duct exit flow velocities is also in failr agreement with the
madel calculations made for a mass fraction of 1.5x%10™3.

Above 200 Hertz o broad peak occurs fin the spectra measuxred at flow
veloedities of 41.6 and Gl.3 m/secc. Ihis resonance does not oceur in the
spectra measured at a flow velocity of 18.5 m/sec. Moreever, this rosonance
does not scem to be related to the duct modes observed at the lower fredquencies.
This resonance may be due to a feedback type of instability fovolving the com-
bution process and the duct acousties. Tonsequently, the caleculated spectrum
is compared only with the spectrum obtained at a duet eoxit flow veloclty of
18.5 m/sec.

DISCUSSTON
Spectral Structure

The spectral structure for a given operating temperature and a given
geomatry 1is determined by the value of the ratio of the soot particle thermal
relaxation time to the wags Traction. Using Bgs. (L7) and (18) and the parvam-
eters in Table T, the soot particle concentration can be caleulated from the
soot particle vadius Tor a given value of this rativ by

"
a.saxlo”(n:) 3 |
(nmg) = dﬂf;gf;;fuxa’ gn/m (104)

This function is plotted in Fig. 7 for the three values of this ratio consid-

ered herein. Also shown in Fig. 7 ds the smoke number for a given soot
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particle concentration as given in Ref. 43. The circled point in Flg. 7 at

r = 0.342 ym and (nmg) = 0.567 gm/m3 corresponds to the value in Table I for
TS/KS = 0.001 sec which produced the spectral structure that most resembled
the measured spectra. Thig particular point may be unrealistic since 1t cor-
responds to a large smoke number. However, any point on the TS/KS = 0.001
se¢ line would also produce the same spectral structure. Consequently, these
results, to this extent, are independent of the parameters used in Table I.
Unfortunately, this also means that the method cannot independently be used
to estimate the soot particle radius or mass concentration.

Figure 7 also indicates how the sound propagation velocity varies with
soot particle radius and mass concentration at combustion noise frequencies.
The sound propagation speed can be determined from Eqs. (36) to (40). The sound
propagation speed is isothermal at frequencies for which (wrg/kg) is less than
unity. Consequently, sound propagates isothermally at frequencies less than a

corner of break frequency, f}, given by

i

™ = ——-—m—.—.——_“‘ R il
Iy ZW(TS/KS) (105)

Above the corner or break frequency the sound propagation speed i1s changing
from isothermal to adiabatic. Along curves A, B, and C the break frequencies
are respectively 15.91, 159.1, and 1591 Hertz. For (tg/kg) = 0.0l (corres-
ponding to curve A in Fig. 7) the speed of sound propagation exhibited in

Fig. 5 is less than 540 m/sec at frequencies below 15.91 Hertz. Also, for
(TS/KS) = 0.001 (corresponding to curve B in Fig. 7) the speed of scund prop-
agation exhibited in Fig. 5 is less than 540 m/sec at frequencies below

159.1 Hertz. Conscquently, at combustion noise frequencies in the region

above curve A in Fig. 7 the sound propagation specd is adiabatic. In the
region below curve C the sound propagation speed is isothermal. However, along

curve B a mixed propagation situation occurs at combustion noise frequencies.
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The maximum amount of attenuation is difficult to determine from Eq. (42).
However, it is possible to determine the frequency which maximizes the phase
angle of (ik,R). The attenuation at this frequency is about 54% of the maxi-
mum atteauation. Substituting Eq. (36) into Eq. (42) and maximizing the phase
angle shows the phase angle maximum attenuation at any operating temperature,

for M = 0.0, occurs at

£ L2 (106)
- F=1
max . .
(2nrs/ks)
The phase angle maximum attenuation iIs at this frequency
L inax
Cpax = 4:96 —=, dB/m {£07)

Co

Thus, along curves A, B, and C in Fig. 7, the phase angle maximum attenuation
ocecurs respectively at 18.83, 188.3, and 1883 Hertz and is respectively 0.15,
1.53, and 15.3 dB/m. The attenuation is respectively 0.2846, 2.846, and
28.46 dB/m at £ = 1.0x1099.

The measured spectra shown in Figs. 2(a) and 2(b) may have similar struc-
ture at each operating condition because the value of the ratio of the heat
transfer time constant to mass fraction did not change much with operating
condition and was approximately 0.001 secc.

On the other hand, if the broad peak above 200 Hertz, which occurs in
the measured spectra taken at Flow velocities of 41.6 and 61.3 m/sec, is due
to feedback between the duct acoustics and the combustion process, then its
occurrence at these operating conditions may be due to a decrease in acoustic
damping of the longitudinal waves due to a change in soot mass fraction or
radius at these operating conditions. This possibility suggests that soot

particles can be used to control certain types of combustor instability.

P
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Model Assumptions

In this study the soot particles are assumesd to have a uniform tempera-
ture and no mass loss because these simple assumptions produced theoretical
results which agreed with measurements and because they greatly simplified
the analysis. The actual effect of a pressure perturbation on the temperature
and mass equilibrium between a liquid or solid particle and a gas is a complex
problem depending on at least the following influences:

1. Convective heat transfer to or from the particle.

2. Heat transfer within the particle.

3. Mass transfer to or from the particle.

4. Surface chemical reactions on a soot particle.

5. Liquid~vapor phase transitions of a droplet.

6. Radiative heat transfer. Radiative heat transfer is not an important
factor in this case since the combustion duck operating temperatures are low.

Many models can be constructed which describe this problem for a soot
particle. As an example, it is possible to analyze this problem by assuming
instantaneous heat transfer within the particle and by using a pressure and
temperature dependent surface chemical reaction which effects heat and mass
transfer (Ref. 10). This model is complex and depends on many parameters.

In this paper the particles are assumed to have a uniform temperature.
This is assumed to be due to some unspecified pressure and temperature de-
pendent surface chemical reaction. The model produced is dependent on only
the ratio of- Tg to kg

It is possible to analyze this problem by ignoring surface chemical re-
action effects on heat and mass transfer and by assuming instantaneous heat
transfer within the particle. The resulting thermal relaxation time for a

1 ym particle is about 0.3 usec which shows that this type of particle quickly
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follows any temperature change and does not have a constant, uniform tempera-
ture. However, experiments show that smoke concentrations of soot particles
are reduced as soot travels from a measuring station at the primary combustion
zone to one at the combustor exhaust (Ref. 43). Consequently, surface chemical
reactions cannot be ignored. Further study is needed to discover what assump-
tions are best for analyzing this problem.
CONCLUDING REMARKS

A model for acoustic plane wave propagation in a combustion duct through
a confined, flowing gas containing soot particles was presented. The model
takes into account only heat transfer between the gas and soot particles. As
a result, the model depends on only a single parameter which can be written
as the ratio of the soot particle thermal relaxation time to the soot particle
mass fraction. The model yields expressions for the attenuation and dispersion
of the plane wave which depend only on this single parameter.

The model was-used to calculate pressure spectra in a combustion duct.
The results were cnmpared with measured spectra. For particular values of
the single free parameter the calculated spectra resemble the measured spectra.
Consequently, the model, to this extent, explains the experimental measurements

and provides some insight into the number aud type of particles.
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Table I. - Parameters used to calculate dispersion and attenuation due

to soot particle-gas heat transfer

T, K 922.0
K, W/m-k £.38x1072
Po» leg/M? ¢.378 y

Cps J/kg-K 1100.0

Y 1.4
Pg» ka/M3 1880.0
s, m 0.342x1076
c,» m/sec 609.0
mg, kg 3.15x20716
Tgy Sec 1.5x1076
Example
1 2 3
Isothermal Mixed Adiabatic
n, number/m3 1.8x1013 1.8x10%2 1.8x1011
nmg, gn/m’ 5.67 0.567 0.0567
Ks» Nmg/p, 1.5x1072 1.5x10™3 1.5x10™%

/K., Sec 1x10™4 1x10™3 1x1072
S S
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