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ABSTRACT

The spectral structure of pressure measurements made in a ducted combus-

tion test facility are studied. Dispersion and attenuation of acoustic plane

waves may occur in the duct at low frequencies due to combustor emissions and

affect the spectral structure. A model that considers the propagation of

plane waves through a cloud of particles in a flowing gas and which includes

heat transfer between soot particles and the gas is discussed. Experimental

results are compared with theory.

NOMENCLATURE

A,B,C,D	 matrices

a,b	 velocity potential wave equation integration coefficients

fin, n pressure and velocity wa-^,:^ equation coefficients

boundary condition operator

Co	 source spectrum coefficient

c	 sound propagation velocity, m/sec

co	isentropic speed of sound, m/sec

c 	 gas specific heat at constant pves:G ure, J/kg-K

d	 diameter, m

I
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H acoustic energy de-all -ly, J/m3

f Frequency, Hz

I(w ) w,y) solution in source region

G(w,x) source term

source term coefficient

H heat transfer coefficient, W/m2-K

i (-1)'1

e energ; per unit mats, J /kg

k propagation wave number, w/c, m-1

second order space differential equation operator

Lc com'ustor length

M Mach number, u/c

ms soot particle mass, kg

Nuts heat transfer Nusselt number, Hd/k

N acoustic energy flux

n number of particles per unit volume

PL pressure level, dB

p pressure, N/m2

Q heat trr,nsferred to gas from particles by convection

Q (-iw, ik, SQ) time and Space Fourier transform of 	 q

q system state vector

9' gas constant, J/kgn K

R, reflection factor

r radius, m

i J W /cp transfer function for response of entropy source to a pressure

perturbation

S area, m2

I
i_
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V

s	 entropy of gas, J/kg-K

t	 temperature, K

u	 velocity of bulk gas, m/sec

w	 Wronskian

w mass flux, kg/m2 sec

x cartesian coordinate, m

Y acoustic state vector

2 acoustic impedance, miss Rayles

a acoustic attenuation coefficient, dB/m

am,n duct transfer matrix element

am,n discontinuity transfer matrix element

Y specific heat ratio of gas

Q time and space Fourier transform of P/DO

e :,ee Eq.	 (64)

r, ;gee Eq.	 (65)

n j z see B,1,	 (30)

0 time,	 stye

K gas thermal, conductivity, W/m-K

ks soot particle mass :fraction, nm/po

V 2krd	
,--2

P gas density, kg/m3
mscp

rs soot particle thermal relaxation time, 	 NuH1 
x41trs (

d s

4,E a Fourier time transform operator

reflection factor phase angle, degrees

V) velocity potential function

a2 velocity potential wave number factor

w angular frequency, radians/see.
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Superscripts and subscripts:

( )	 time average

( )	 vector quantity

( )	 instantaneous quantity

( )+	 upstream propagating

( )-	 downstream propagating

( ) o	wave propagating with flow

( )CS	 combustor exit

( ) CI	 combustor inlet

( ) d	exit of duct system

( ) i , ( ) j	 identifies an axiol duct location

( ) Q	identifies source location

( )m,n	 elements of a matrix

( ) s	property of or due to soot particle

( ) o	reference state quantity

( ) l	perturbed quantity

( )^	 property far from soot particle

INTRODUCTION

As part of a combustion noise research program, pressure measurements

were made in a liquid fuel ducted combustion test facility at the NASA Lewis

Research Center. A schematic of the test facility is shown in Pig. 1. An

analysis of the effect of the ducting downstream of the combustor on the

measured pressure spectra using the adiabatic speed of sound showed the peaks

in the measured spectra did not occur at frequencies corresponding to the

predicted resonant frequencies. This paper first develops an acoustic wave

equation that takes into account the presence of oxidizing soot particles

which cause attenuation and a decrease in the sound propagation speed. Then
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this acoustic wave equation and the ducat geometry are used to model sound

t
S

propagatica in the ducted combustion system.

The literature contains a number of theoretical and experimental studies

of the propagation of a plane wave through a cloud of particles in a station-

s ary gas for various types of particles. 	 Studies considering viscous and

thermal interaction but not mass transfer were made by Epstein and Carhart

(Ref. 1), Chow (Ref. 2), Temkin and Dobbins (Ref. 3), Dobbins and Temkin

(Ref. 4), and Morfey (Ref. 5).	 Studies that consider vapor mass transfer in

addition to viscous and thermal interaction were made by Cole and Dobbins

(Ref.	 6), Marble and Wooten (Ref. 7), Davidson (Ref. 8), and Marble and

Candel (Ref. 9).	 Miles and Raftopoulos (Ref. 10) considered mass transfer

due to soot oxidation in addition to viscous and thermal interaction. 	 The

theory of Cole and Dobbins (Ref. 6) was confirmed experimentally by Cole and

Dobbins (Ref. 11).	 These studies have the objective of investigating attenu-

ation and dispersion in a stationary, infinite bulk gas containing particles.

x In contrast, this gaper studies the effect of attenuation and dispersion on

A
i

duct spectra measurements in a flowing, confined gas containing soot particles.

Miles and Raftopoulos (Ref. 10) using Stokes' viscous drag law showing

t

the effect of viscous interaction between the soot particles and billk gas is

not important at combustion noise frequencies.	 They also estimate the sound

propagation speed from pressure cross spectra phase angle measurements. 	 The

t estimated sound propagation speed is near the isothermal sound propagation
t .=

speed, which indicates that heat transfer between the soot particles and the

bulk gas may be more important than mass transfer at combustion noise fre-

quencies.	 Consequently, the model presented herein includes only the heat

transfer between soot particles and the flowing gas.

In the first part of this paper, the model is presented.	 This problem

is first formulated as a distributed system parameter identification problem
T

1 ,.7
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with a single unknown parameter. An extensive review of the distributed sys-

tem parameter identification problem is given in Ref. 12. Rather than using;

any of the methods described in Ref. 12, it is shown that for the problem

discussed herein the solution can be approximated by the solution to an

acoustic wave: equation. This acoustic wave equation and its solution are

used to model the duct system. Next, experimental results are presented.

Last, the experimental, and theoretical results are compared.

ANALYTICAL MODEL

Governing Equations

The followi ng, assumptions are used in this analysis:

(1) Fluctuations in the gas of pressure, velocity, density, entropy, and

temperature are assumed to be small compared with their equilibrium values so

that their squares and cross products may be neglected.

(2) The bulk gas is a perfect gas.

(3) The soot particles are spexical, non-porous, and of a uniform tem-

perature and size.

(4) The volumetric heat transfer rate is a volume element containing a

large number of soot particles is the sum of the effects due to each particle.

(5) Mass transfer and the body force due to viscous drag can be neglected.

In addition the consequences of soot particle surface oxidation are idealized

as producing a constant time-independent Soot particle temperature..

The one-dimensional continuity, mome:ntitm, and energy egUations for the

bulk gas are as follows:

as + ax ( u) = o	 tl)

Du
P DO	 8x	 (2)

E
iA
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t^ t Da . n Q	 (3)

where the heat transfer rate per soot particle from the particle ^nto a urLit

volume of gas is

Q = (Ors} 
FH 

K (t s tom)	 (4)

and the total derivative is given by

D a a_	 a

D6	 86	
uo 

8x	 (5)

where; the first term on the right hand side z.s the temporal. member and the

second term is the convective member in the x direction. When the entropy

is constant the convective term is neglooted if the time to convect a disturb-

ance through they volume of interest is largo compared with the time r.equirod

for a quantit/ to change from a minimum to a maximum. The, entropy is not

constant in t1lis problem since heat transfer between the soot particles and

gas is taken into account. Therefore the effect on the spectrum of the con-

vective term and heat transfer term may be of the same order of magnitude.

Consequently, the convective term is included in the governing equations.

The gas equation is

P ! t	 (6)

and the adiabatic speed of sound is

2	 p
^.	 co = Y E!^ to	

Y Po	
(7)

Equations (1) to (4) Are linearized by considering small perturbations

of the variables from their equilibrium values as .follows:

A = P o + p l	 (8)

I
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u=u0 +u1
	

(9)

	p = p  4 pl	 (10)

too = t w + t w	 (ll)
o,	 1,

	

is = to,s	 (12)

	

s = s o + s l	 (l3)

Substitution of the above equations into Eqs. (1) to (4) and elimination

of squares and cross products yields a set of Linearized equations which can

be written in the following non-dimensional form;

De Al + c ax (LC0
	 (14)

o0

D ui	 a pl
-c	 (1.5)

De co - o ax Ypo

D s l	
'cs '1,-	

(16)do Cp^

	

	 T t a,
s 0,

Where the particle mass fraction, K s , is a non-dimensional group of parameters

defined as

	

Ks = nms/po	 (17)

f

and the heat transfer time constant is defined as

Y

Ts =

	

	 mscp	 (1.8)
(4 ,rrr2) (NuH/dS)uK

s Yap
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The system model thus depends on the ratio of two parameters. Herein, it is

assumed that the hest transfer time constant parameter is a known parameter.

Consequently, the particle mass fraction remains the single parameter to be

identified.

These equations are simplified further usin g small perturbation thermo-

dynamic relations. The ideal gas entropy equation is for small perturbations

a1 l Pi - Pi	
(l9)

cp y Po po

Also, for small perturbations the gas equation of state is

P1 - A l+ 1t1,^	 (20)

Po TO to Poo

Equations (19) and (20) are substituted into Eq. (15) to determine the re-

sponse of the gas temperature to a pressure perturbation. Thns

D s1 _	 pl	 p 1	 D	 y	 + tl,-	 Kstl,._

D6 cp^	

D	 (l-)

D6 YPo 	Po = D6 
ypo P1	 to ^	

- Tsto'W	 (21)

From Eq. (21) the desired relation is

	

Kt ^	 P(TD

	

 + Ts t1y - - D8
_.^l 1	 (2?)

s	 o,^	 Y // po

To remove the density perturbation, Eq. (19) is substituted into Eq. (14).

Thus

D1 pl Sl + c a (.Li
	

0	 (23)
D8 Y p  _ c 	 o 8x co

Salving Eq. (23) for sl /cp yields
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P	
.ui^^	 ^'sn 1 1 ,. c 	 D	 1	 (24)

D® Y po	 0 3 ^ .t9 r De

State Variable Formulation

The system differential equation based on the small perturbation approx-

imation is discussed next. Equations (l;l, (16), (22), and (24) are written

in state variable form as

	

A a8 n + Buo 2 R + Cq - 0	 (25)

where

1- y 0 0 1

0 1 0 0
`

0 0 1 0

1 0 -1 0

1- Y	 0	 0	 1

ca/uo	1	 0	 0
B -_

0	 0	 1	 0

1	 co/uo	 -1	 0

r0	 0	 0	 KS /TS

0	 0	 0	 0
C=

9 00	 0	 KS /-Cs

10	 0	 0	 0 -

it

(26)

(27)

(28)

.

I
M
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Pl/Ypa

ul/co
q	 (29)

sl/cp
k

Itl CO/ to,^^

The state variable solution to Eq. (25) its a gpumed to have the form

4

(ikon)e-iwQ
q3 (x,0)Y

J
n jke 	 (30)

9-1

Taking the Fourier transform in the time variable and the space variable of

Eq. (25) produces a set of four homogeneous algebraic equations in four un-

knowns expressed by the following matrix equation

E (-im) + & (ikO R) uo + ^C1 q (-iw, ikop ) = 0	 (31)

A non-trivial solution to Eq. (31) exists if and only if the following deter-

minant of the coefficient matrix vanishes:

X1(1 - Y)	 0	 0	 Q	
K

+
Ts

s

(ikon) CO 	 A	 0	 0

M 0	 (32)

0	 0	 A	 Ks /TS

A	 co (ikon)	 -Q	 0

where

A = (-iw) + (iko S)) uo
	

(33)

Solving the determinant equation yields a third order polynomial wave number

equation for (ikon),

A



(ikoWo - Ks+ 1 
uo

(35b)

12

1	 (iko 2)	 (34)
{" {gyp	 ^'CS 

L
and a solution A - 0 which corresponds to a 4 rave number

(ikot?) 0 - i A-
	

(35a)

The roots of the third order polynomial, can be found numerically to great

accuracy using an iteration method due to Muller (Ref. 13). For the data

studies herein the Mach number is low and a good approximate solution at

all frequencies is

i(w/cs)
( ik0^) - Al

s 
+ 1

(w/cS)
(ikov2)^-i1Ms

where

co

cs -	 1/2
l +	 (Y_ - 1)

1 

T
-TsiW)S

and

u

Ms u	 (39)
s

^.

	

	 By definition, the propagation velocity is related to the wave number equation

by

W

O(W)(w) -_ Tm(ikoS2) m/sec	 (40)

Also by definition., the acoustic energy attenuation coefficient in Nepers per

meter is

(36)

(37)

(38)

A
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a = -Me(ikou)	 (41)

Nepers per meter is converted to decibels per meter by multiplying by 10

I ag e - 4.34:

a = -8.68 Fee (ikoQ)	 (42)

The state variable solution to Eq. (25) is expressed in terms of four one-

dimensional normal modes with wave numbers given by Eqs. (35) to (37). Equa-

tions (36) and (37) indicate that two modes may be interpreted as acoustic

modes corresponding to right and left traveling acoustic waves. The remaining

modes represent waves traveling with the flow. The wave defined by equa-

tion (35a) is unattenuated. However, this is not true for the wave defined

by Eq. (35b) since in this paper KS/TS is assumed to be small. Thus, the

attenuation of the wave traveling with the flow calculated by substituting

Eq. (35b) into Eq. (42) is very large and this wave is highly damped for the

cases considered herein. Consequently, this mode quickly decays in the com-

bustion duct system. The wave with wave number given by Eq. (35a) is assumed

to have negligible: effect on the system. Thus, the pressure, particle vel-

ocity, and pressure spectral structure are assumed to be determined onl y by

the acoustic modes.

The state variable differential equation (Eq. (25)) depends upon four

dependent variables: pressure, particle velocity, entropy, and bulk gas

temperature. In the next srction the non-acoustic modes are removed from

this state variable differential equation. This produces an acoustic state

variable systems differential equation which has two independent variables:

pressure and particle velocity. However, the new acoustic wave number solu-

tions are identical to the previous ones. The acoustic state variable systems

differential equation is further simplified by use of a velocity potential

function to cry - P e a single one-dimensional differential equation. This is

the equation used to model. the system.
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Acoustic State Variable Formulation

The set of differential equations which has onl.1 the acoustic mode is

obtained by neglecting the convective term, uo ax in Eq. (16). As a copse-

quence Eq. (21) becomes

s1 - d	 '? +	 _ _ Ks tl,-	 C 43>
TO cp - d8	 -	 po toy	 Ts to,w

From this equation the response of the bulk gas temperature to a pru;isure

perturbation is

d + tis t1 ' 	 `=-	 Y p1	 (44)

	

T TS to,w 	 Y	 Po

'.Caking the Fourier transform in the time domain of Eqs. (43) and (44) yields

cif[t-
1.w^ = - l-iw (1 - 1)	 ^P -

to' .	 r(-iw) + Kg /Ts ]	 Ypo	
(45)

and

i, 

tp 

Ii, "I
 c 	 Ypo_
	 (46)

where

(4'1)

s

The time Fourier transform of Eq. (15) is

P'
t.

1	

= 0	 (48)(-iw) + uo x ^ cl + 
co ^x ^^ 1'p

	

o	 l	 o

Substituting Eq. (46) into the t.Lme Four.3.er transform of Eq. (24) yields

l

i
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P

	

d' p
l1K	

t^l^l^	

Y! 	

(,{.	 ^^ `^	 ^+	 0	 (^+9)

	

D	 0	 1	 0 ._

A {)latu v wavo ,shit 1011 co Eqs. (68) oad (49) can bo obtained in torms of a

velocity lxa t ilL ial, 4), whet,

and

lt) 1 G t '0 (;^0	 0 ^^ ^{	 (51)

Substituting the timo P„urier transform of I-.q.. (50) and (51) into Eq. (119)

yields a now 1,0vern'tnl, partial dtffclhtlntl.al oquaVlon called the lion-adfabatio

volocity {)0tciiLi,al wave equallon

n

,.a,r (^, J - (^ ll^ > Al Ms i d ]0 	 (52)
dx.

whero

00 ^ 1/
2
	 (53)

eP

lcs - w/ 0s	 (50

M9 = uc7lc	 (5.5

'gilt' vll.loctt.^I i)OL011(iill sol oVi.011 is a8$111110d t(' i)4' 1)1'011111"t. Il)11;1-t to

exp (1.1cOS4)x - itooI . 5ubstituttnl, His sol.ut ion into Eq. (52) yields a wavo

number Oquatton which has the ncwust C wave nullillel'S { ivc?i1 by 13q:1. (36) ;ind (37)

as a solution. Consequontly, the voloci.t:y 110tontial wave oquzittlmi. solution

consists of in :14;f1u it; 't4 wavc, C'ravol.ing upstromil and downsLixmlll O xpressod as

(50)

V	 ^r1^MrRiirr^^.
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In the following sections the use of the Fourier transform operator notation

is discontinued since all vat,lnb to such as ^, p, and u are Fourier trans-

formed variables.

APPLICATION TO DUCTED COMBUSTION SYSTEM

The analysis developed in the last section is now used to study the

spectral structure of pressure measurements made in the ducted combustion

system shown in Fig. 1. The ducted combustion system shown in F.g. l consists

of: (1) a source region inside the combustor can; (2) a non-source region

inside a spool piece and a long duct; (3) an area expansion and contraction

on either side of a spool piece; and (4) an upstream boundary at the exit of
u

the long duct and a downstream boundary at the combustor inlet.

The solution for the velocity potential in a non-source region is given

by Eq. (56). The velocity potential wave equation (Eq. (52)) is assumed to

apply in the source region with the addition of a source term G(w,x) on the

right hand side. Using the combustor inlet and exit impedance as a boundary

condition a unique Green's function solution for the velocity potential is

found. The acoustic pressure and particle velocity can be found from a

velocity potential using Eqs. (50) and (51). Consequently, the acoustic
3

pressure and particle velocity at the combustor exit can be determined from

the velocity potential solution in the combustor. The acoustic pressure and

'	 particle velocity at the combustor exit can then be used to find the acoustic
I^

i
pressure and particle velocity at any other point in the ducted combustor

system with four-pole equations in transfer matrix form derived using Equa-

tions (50), (51), and (56). The combustor exit Impedance can be calculated

A
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from the duct exit impedance using the same Four-pole transfer matrix equa-

tions. The transfer matrix approach used is discussed in Refs. 14 to 17.

Source Region

The acoustic state vector :approach dcvcloped to the last section is used

to study the spectral, structure of pressure measurements made in the ducted

combustion system. The linear inhomogeneous velocity potential gave equation

assumed to apply in the source region is

	

L^ = C (w,x)

	

(57)

The boundary conditions at the combustor inl . ^t and exit are respectively

7CI_ i i'1

	

-Poco- 
Poco 

ul	 (58)

x' 0

and

Poco - ^ 1 a co kul

7CE _	 i I'll

Ix = Lc
	 (59)

In the following analysis, the combustion noise source is assumed to be

acoustically compact in the : direction. The volume source-distribution of

monopole order confined to the duct cross-suction x = x  is Written oL,

G (w, x) = Co.IY (w) d (x	 x 4,)(1 - ivls)	 (60)

Similar source descriptions have been previously applied by Mani (Rer. 18) to

a fan, noise problem and by Mor 'ry (Ref. 1.9) , Ingard and Singhal. (Ref. 20) , and

t	 Swi.nbanks (Ref. 21) to duct noise source problems.

Substituting Eqs. (52) and (60) inth Eq. (57) , and the Mime Vourier

transform of Eqs. (50) and (51) into Eqs. (58) and (59) and some algebraic
47

manipulation yields a problem that has the form of a general second order

Sturm-Liouville differential equation with unmixed boundary conditions:

i4

lb

.. ^.btl.wi.ws	 .m'PR	 _ v.v.: rwY4.+6.i_.	 _ .v `.
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Y41 . - clx ( 0 + rtji - rCo,* (w) 6 (x - x.)	 (61)

z

	

C'I(0)	 po o + M° d + (-ik
o)V	 = 0	 (62)

x = o

	

wdGE(Lc)	 Paco + Mo dx + (
-iko)	 0	 (63)

x = Lc

where

2(-iksMs)

- MS^
e = e	 (64)

and

c(_iks)2

1-M,

However, since the differential equation has complex coefficients the operator

is not self-adjoint or Hermitian.

Since the differential equation is not self adjoint, the development of

a solution in terms of in orthogonal set of eigenfUnctions is more complex

than obtaining a solution by constructing the Green's function solution (see

R,L'fS. 21 to 23). The Green's function solution is constructed using the two

initial, value solutions of the homogeaeo-as equation

0,	 (66)

which satisfy Eqs. (62) and (63). T'L•i,is method is described in Refs. 24 and

25 where it is applied to self-adjc;I::ot operators. The solution to Eq. (66)

with boundary condition given by Eq,, (62) is

^,, .^. yx	 r •:..	 x&: ..r	 :... __. ...,.qua	 ,ywaW,ll^:d	 -	 rrrr^in rn^^—_^_. _ ._ . :,a _._..,.::.

G
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(ilcowt) x	 (iko5l)-x

where

L_ z

RCx(68)

1 - a Mo+ ZCc
T O O

The solution to Eq. (66) with boundary condition given by Eq. (63) is

(ikoSZ)
+x	

(ilcoS2)-x

SCE = aCE e	 + RCE e 	 (69)

where

oC o + Vlo S2+ - 1	 iko (SZ+-12 )Lc
RCR	 e	 (70)

M. + p 
ĉo)-

l 1
\	 o 	 t

Consequently, the Green's function solution to Eqs. (61) to (63) is given by

kE (x0CZ (x)

CW,x,xZ ) =	 (71)

where W(x) is thr-- Wronskian

14(x) = ^Cj 
d SCE

dx S	 - q'CE 
a

dx 4)CI:	
(72)

Using the time Fourier transforms of Eqs. (50) and (51), thr. pressure
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And particle velocity Fourier transforms at the combustor exit are

	

pl = p o (-iw) + uo 8x 

q

(w ' x ' x

Z 

)
	

(73)

x = Lc
and

	

u1 -	
ax 

9(WPX)XQ )	 (74)

lx=L
c

Equations (73) and (74) define the acoustic state vector at the combustor exit

determined from the combustor inlet and exit boundary conditions and the

source spectrum.

Duct Transfer Matrix

Substituting Eq. (56) into Eqs. (50) and (51) yields the pressure and

particle velocity equations

(^	 (i.kpS2)+X	 (ikoSt) x
p l = p o co (- iko)I a11ae	 + a12be	 (75)

and	

II

	

'-	 (ikoSZ)+x	 (ikon) ^x
ul = (iko )La21ae	 + a22 be (76)

where

all = 1 - Moe	 (77)

a12 = 1 - MOQ	 (78)

a21 = S2	 (79)
`r

and

a22 - 0
	 (80)
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The integration constants a and b In Eqs. (75) and (76) are deter-

mined by assuming that x = 0, p = p(0), and u - u(0) at the left boundary

and x = L, p = p(L), and u - u(L) at the right boundary. As a consequence$

the relation between the acoustic state vector at x = 0, Y(0) and the acoustic

state vector at L, X(L) is

p1	 0111	 a12pl

Y (L) _	 = 1%,nJY(0)	 (8 ,)

ul	 0121	 a'22	 ul
x = L	 x-0

where

(ikoS2)+Lc	 (ikoSZ)-Lc

a11a22e	 - a12a21e
C111 -	 al,a22 - a21a12	 (82)

(ikop )+L c 	(ikoQ) Lc
-a

11a12e 	+ a11a12e	
($3'12 __ poco	

alla22 - a2la12	
)

(ikoS2) Lc	 (ikoSZ)rLc

a21 a22 `^	 a22a21e

a 21 -	
poco(alla22 - "21a12)	

(84)

and

i .	 (ikoQ)+Lc	 (i.kon) Lc

a22 = a21a12e	
+ 

alla22e	
(85)

(a11 	 21a22 _ 010112)
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Discontinuity Transfer Matrix

The Four-poke transfer matrix used at the Junction of two pipes of dif-

ferent diameter is based on an acoustic energy conservation law. Various

definitions for the acoustic energy in flowing fluid arc. given in Refs.

26-30. While none of these definitions are applicable to a plane wave propa-

gating through a soot particle cloud in a flowing fluid, the method for find-

ing an energy conservation equation used in Refs. 26 and 31 is applicable.

The relationship which has the form of an acoustic energy conservation law

is derived using Eqs. (48) and (49). A quantity corresponding to acoustic

energy flux is defined by

N = jlwl 	(86)

where the acoustic energy per unit mass is

	

l uoul + pl 'oo	 (87)

and the mass flux fluctuation rate is

	

wl = poul + uop l 	(88)

If Eq. (48) is multiplied by w 1/p 0 c0 and Eq. (49) by	 l/cQ,t he sum of the

resulting second-order equations can be put in the form

(-iW)	 + — N -
 
=0

C2	 dx poco0

where 8 represents an acoustic energy density

(89)

0

2	 2

C = u1 + l - ^! w _ 2(

^io)

u 	 Pl u + L -	
W.) ^^1

c2	 co	 c» 	 Yp	 c0	 c	 Ypj
o o	 p	 o

and

N

	

fl wl

p o co	 cO po
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Integrating Eq. (89) over a volume yields

(-iw)(w) dV +	 N • ndcr - 0
	

(92)
v	 o	 S

since

fV  - FdV - 
fS

F - fida	 (93)

v
The area discontinuity is assumed to take place sharply at the junction of

two pipes with different diameters causing the flowing gas to undergo a sudden

expansion or contraction. As a consequence of Eq. (92) across the pipe dis-

continuity the acoustic energy is constant

N(1)S(l) = N(2)S(2) 	 (94)

To derive a transfer matrix across the discontinuity Eq. (94) is rewritten as

	

/1(1) = /1 (2)	 (95)

and

S (1) wi (:1,) = S (2)%al (2)	 (96)

Algebraic manipulation shows that the acoustic state vectors on either side

of the discontinuity are related by

1 (''l) = [Bm,n]y(x2)	 (97)

where the resulting transfer matrix is given by

S 2 2PocsMs(2) ^11	 - S (1)J

_ S 	 2
B m	 = 	 Ms (2)^	 (9g)rpm,

S(2) [1 -	 (2

S 

(1)	

1 

_ 

S
(1) 

Ms 

(2 
2

x
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System Boundary Conditions

First, the boundary condition at the duct exit is discussed, Experimen-

tal investigations of the exit impedance of flow ducts reported in Refs, 32

and 33 show the duct exit pressure reflection factor may be y greater than

unity. Theoretical investigations reported in Refs. 34, 35, and 36 show that

the pressure reflection factor is greater than unity because of the flow field

at the duct exit. The following empirical expression for JR1 is given in

Ref. 20

C'	 1.33

	

It = 0.95 
(1	 No)
	 krd < 0, 5	 (99)

(l Mo)

where JR1 is measured at the upstream end of a duct. In the case of jet exit

flow, Mo is replaced by -Mo (Ref. 34). For case studied herein JR1 is about

1.03.

The model calculations shown herein are made using the following combus-

tion duct exit pressure reflection .factor

	

R M JRJe4 w	 ( 
rlo)l- 7.Ipoc©	

C o)(l +rlo> 1 + z/Porn
to

 )

The duct exit impedance is

,

where

z	 2.71 (v)	 12S1(v)	
(l01}

p o rn Y o	 v	 v

v 2krd/ l - P10	 (102)

1I t (0 is tilt? Besse.L function of the first order and first kind, S 1 (v) is the

Scrt ►vo Lund ttm of, hilt, Nr t kind and first order, and rd is the duct radius.

Tho elue • t exit 11111)vdaneu used wa;, derived in Rof. 35 for a circular duct with

flow h4virig an open sand Cttced with an. LnUnito acoustically rigid flange.

Attain, in the case of ,jet exit flow, Me is replaced by -Mo in E(Is. (100) to (101) .
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The other boundary condition is specified at the combustor entrance. To

model, the impedance the combustor entrance is taken to be closed by a rigid

circular plate at the entrance. This corresponds to a zero particle velocity

at x = 0. Consequently, the pressure reflection factor is unity at x - 0.

Calculation Procedure

The following procedure is used to calculate the pressure spectrum. It

is applied at each frequency as necessary to obtain the desired spectrum.

First, the exit pressure perturbation is arbitrarily assumed to be one Pascal.

Then using the duct exit acoustic impedance based on the duct exit pressure

reflection factor given by Eqs. (100) to (102), the particle velocity is calcu-

lated. Next, using the duct transfer matrix and the area discontinuity trans-

fer matrix as necessary the acoustic state vector at the duct exit is used to

.find the acoustic state vector at the combustor exit. The resulting acoustic

pressure and particle velocity are used to calculate the combustor exit

impedance.

The next phase uses this impedance, the combustor entrance impedance, and

a white noise source spectrum to determine the velocity potential solution in

the source region. This velocity potential solution is used to calculate the

acoustic pressure and particle velocity 4t the combustor exit due to the spec-

'	 ified source and boundary conditions.

The last phase uses the duct transfer matrix and the area discontinuity

matrix as necessary to calculate the acoustic state vector at any point in the

duct from the acoustic state vector at the combustor exit. The pressure level

at a given frequency is calculated from

(PL) i - 10 log10[P*J(w,xi)pl(w,x 
i
)	 (103)
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3

EXPERIMENTAL INVESTIGATION

The experimental apparatus is shown schematically in Fig. I. The com-

bustor section consists of a J-47 burner can placed concentrically in a

0.30 m diameter by 0.77 m long flow duct. The combustor section is followed

by a 0.38 m diameter by 0.76 m long spool piece. This section is followed by

a 0.30 m diameter by 6.1 m long flow duct.

The measurements discussed herein were made at an exit temperature of

920 K and at air mass flow rates of 0.5, 1.13, and 1.68 kg/sec. The corres-

ponding velocities at the exit of the long duct were 18.5, 41.6, and

61.3 m/sec and the corresponding fuel flow rates were 0.009, 0.018, and

0.027 kg/sec. The fuel used was Jet A.

Simultaneous internal fluctuating pressure measurements were made at the

three locations shown in Fig. 1. The transducers used were conventional

5/8 cm diameter (nominal) pressure response condenser microphones. To avoid

direct exposure to the severe environment within the Flow duct, the mic ,.,o-

phones were mounted outside the duct and the .Fluctuating pressure in the duct

was communicated to the transducers by "semi-infinite" acoustic waveguides.

The internal probes have previously been used for engine measurements (Refs.

37 to 39) and measurements in a combustion comaonont test facility (Ref. 40).

Probe design, frequency response, and operating characteristics are described

in Ref. 41.

Measured constant-bandwidth pressure spectra are shown in Fig. 2 for

duct exit flow velocities of 18.5, 41.6, and 61.3 m/sec. The spectra measured

near the exit of the long duct are shown in Fig. 2(a) and the spectra measured

near the entrance of the long duct are shown in F.1g. 2(b). The structure of

the measured spectra shown in Fig. 2(a) and 2(b) is similar at a given Location

for each test: condition. The location of resonance peaks and dips is nearly
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the same for each operating; condition. Moreover, tho peaks tend to be sharper

at the low frequencies and more broad at the higher frequencies.

No attempt was masse in this investigation to determine soot particle size

or mass concentration. Data in the literacure indicates that typical soot

particle diameters range from 0.05 pm to 1 pm (Ref. 42). Smoke concentration

rangea from 0.53 to 5.8 gm/m 3 in the primary combustion zone and from 0.00018

to 0.015 gm/m3 at a combustor exhaust station were found in Ref. 43. Besides

being a function of position in the combustor, smc,.e concentration was found

to be a function of combustor model, fuel-air rat-lo and operating pressure in

Ref. 43.

COMPARISON WITH EXPERIMENTAL, DATA

The model is used to calculate the pressure level near the beginning and

end of the song; duct. The parameters used to calculate the mass fraction and

soot particle relaxation time used are given in Table I. The value of the

soot particle soot relaxation time is assumed to be 1.5x10 -6 sec for all

cases. The following three values of mass fractio ni are used: 1.5x10-2,

1.5x10 3 and 1.53c10-4 . The results obtained for a flow velocity of 18.5 m/sec

are shown in Figs. 3 and 4.

The calculated spectra shown in Figs. 3 and 4 have similar structure even

though the location of the peaks and their sharpness or broadness changes with

mass fraction. The changes with mass fraction appear graphically in the form

of stretching or as compression of the basic structure. These changes in the

structure were easily recognized but proved difficult to simply explain.

The corresponding attenuation and sound propagation speed are shown in
4 ,

Fig. 5. For a mass fraction of 1.5x10 -4 the sound propagation speed exhibited

in Fig. 5 increases from the isothermal sound propagation speed of 510 m/sec

to the adiabatic sound propagation speed of 609.0 m/sec before the frequency

LI-7-
L 	i
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has Increased to 80 Hertz. Also, the attenuation is small at all frequencies.

Model spectra calculated with a mass fraction of 1,5x10 -4'are. shown with the

measured spectra in rigs. 3(a) and 4(a). Sharp resonant peaks appear in the

calculated spectrum, In addition, the peaks are displaced from the broad

peeks present in the measured spectrum.

For a mass .fraction of 1.5x10-3 the sound propagation speed exhibited In

Fig. 5 slowly increased from 510 to/sec to 610 ni/scT. Also, the attenuation

above. 100 Hertz Is above 0.5 dB. The calculated and the measured spectra

exhibited in rigs. 3(b) and 4(b) are in good agreement for this mass fraction.

Both the measured and calculated spectra have an increase :in tho broadness; of

the spectral peaks with frequency. Also, the calculate(] locations of the peaks

are close to the measured locations.

For a mass fraction of 1.540 2 , the sound propagation speed exhibited

in rig. 5 is isothermal and the attenuation is less than 0.5 dB/m. For this

mass fraction the calculated spectra shown in ribs. 3(c) and 4(c) have. the

correct location of resonant peaks only at the low frequencies. Also, the

peaks are all sharp. Discrepancies occur at the higher frequencies.

The agreement between the calculated and measured locat-Lon of peaks in

the spectrum obtained using a mass fraction of 1.5:10 3 is attributable to

the variation with frequency of the calculated sound propagation velocity.

At low frequencies the calculated sound pa-opat;atiOn velocity is Ilear the

isothermal spend of sound. As pre_viousl.y noted, using Lho Cross--specta-a pliase

angle, the sound propagation velocity was found to be near the isothermal

speed of sound (ref. 10). Thus, these results provide additional evidenceevidence

that the sound propagation speed is near the isothermal speed of sound.

Calculations made using a inass :Fraction of 1.5x10 -3 with three different

flow velocities are shown in Fig. 6. The calculated pressure level. at the exit

w
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of the long duct Vii tinges slightly with the mean, flow velocity at the low fre-

qu on e I vs. While the change, is greater at 
tile 

higher frequencies it occurs

predominantly in the spectrum level and not the froquency location of peaks.

Consequently, 0080 CllangOS could not be observed fn the measured spectra.

However, 
tile 

measured 
spectra 

shown ill 	 2 for the three flow velocities

heave similar trends it the low frequencies. Accordingly, tile spectra measured

at tile! higher duct exit flow velocities is also ill 	 agreement with the

model calculations made for a mass fraction of 1.5x10-3.

Above 200 Hertz ti broad peak occurs in the spectra measured at flow

velooities of 41.6 and 61.3 in/see. Skis resonance does not occur in the

spectra measured at a flow velocity of 18.5 m/sec. Moreover, this resonance

does not seem to 
be 

related to the duct modes observed tit 
tile 

lower frequenclos.

This resonance may be due to a feedback type of instability involving the com-

bution procoss and the duct acoustics. ConsvqLlefttly, 
tile 

calculated spectrum

is compared only with the spectrum obtal-nod at, a duct ox:Lt: flow velocity of

18.5 m/soc-

DISCUSSION

Spectral. Structure

The spectral, structure for a given operatiug, tompornture and a given

geometry is determined by 'Cht, value of tile. ratio of the soot particle thermal

relaxation time to 
tile 

ma y s fraction. Using Hqs. (17) and ('18) nild the param-

eters In Tablt^ T, the soot parLJC1,c% coacontratioa van bo calculated frown the

soot particle radlus rot- a givon value of this ratto by

it 'q 11 x ,I o') r

This function 
is 

plotted in Flg. 7 for the three values of thIs ratio consid-

ered horvin. Also shown 
in 

Fig. 7 is the smoke number, for a Own soot

Ilk-	 . ......
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particle concentration as given In lief. 43. The circled point in Fig. 7 at

r = 0.342 Um and (nms) = 0.567 gm/m 3 corresponds to the value in Table x for

Ts1rs = 0.001 sec which produced the spectral structure that most resembled

the measured spectra. This particular point may be unrealistic since it cor-

responds to a large smoke number. However, any point on the TS/KS = 0.001

sec line would also produce the same spectral, structure. Consequently, these

results, to this extent, are independent of the parameters used in Table 1:.

Unfortunately, this also means that the method cannot independently be used

to estimate the soot particle radius or mass concentration.

Figure 7 also indicates how the sound propagation velocity varies with

soot particle radius and mass concentration at combustion noise frequencies.

The sound propagation speed can be determined from Eqs. (36) to (40). The sound

propagation speed is isothermal at frequencies for which (WT S /K S ) is Less than

unity. Consequently, sound propagates isothermally at frequencies less than a

corner of break frequency, fb , given by

Above the corner or break frequency the sound propagation speed is changing

from isothermal to adiabatic. Along curves A, B, and C the break frequencies

are respectively 15.91, 159.1, and 1591 Hertz. For (-r s /K s ) = 0.01 (corres-

ponding to curve A in rig. 7) the speed of sound propagation exhibited in

Fig. 5 is less than 540 m/sec at frequencies below 15.91 Hertz. Also, for

('C S /K S ) = 0.001 (corre c-ponding to curve B in rig. 7) the speed of sound prop-

agation exhibited in Fig. 5 is less than 540 m/see at frequencies below

159.1 Hertz. Consequently, at combustion noise frequencies in the region

above curve A in Fig. 7 the sound propagation speed is adiabatic. In the

region below curve C the sound propagation speed is isothermal. However, along

curve B a mixed propagation situation occurs at combustion noise frequencies.

M
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The maximum amount of attenuation is difficult to determine from Eq. (42).

However, it is possible to determine the frequency which maximizes the phase

angle of (ikon). The attenuation at this frequency is about 54% of the maxi-

mum attGnuation. Substituting Eq. (36) into Eq. (42) and maximizing the phase

angle shows the phase angle maximum attenuation at any operating temperature,

for T1 = 0.0, occurs at

Yl/2

fmax	
(2-n.Ts/r:s)
	 (106)

Tile phase angle maximum attenuation is at this frequency

a	 4.96 fax, dB/m	 (j.07)maxco

Thus, along curves A, B, and C in rig. 7, the phaso. angle maximum attenuation

occurs respectively at 18.83, 188.3, and 1883 hertz and is respectively 0.:15,

1.53, and 15.3 dB/m. The attenuation is respectively 0.2846, 2.846, and

28.46 dB/m at f = 1.0x1099.

The measured spectra shown in Figs. 2(a) and 2(b) may have similar struc-

ture at each operating condition because the value of the ratio of the iu•at

transfer time constant to mass fraction did not change much with operating

condLtion and was approximately 0.001 sec.

On the other hand, if the broad peal. above 200 hertz, which occurs in

the measured spectra taken at 'low velocities of 41.6 and 61.3 m/sec, is due

to feedback between the duct acoustics and the combustion process, then its

occurrence at these operating conditions may be due to a decrease in acoustic

damping of the longitudinal waves clue to a change in soot mass fraction or

radius at these operating conditions. This possibility suggests that soot

particles can be used to control certain types of combustor instability.

:.a
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Model Assumptions

In this study the soot particles are assumed to have a uniform tempera-

tore and no mass loss because these simple asscmptions produced theoretical

results which agreed with measurements and because they greatly simplified 	 '

the analysis. The actual effect of a pressure perturbation on the temperature r

and mass equilibrium between a liquid or solid particle and a gas is a complex

problem depending on at least the following influences:

1. Convective heat transfer to or from the particle.

2. Heat transfer within the particle.

3. Mass transfer to or from the particle.

4. Surface chemical reactions on a soot particle.

5. Liquid-vapor phase transitions of a droplet.

6. Radiative heat transfer. Radiative heat transfer is not an important

factor in this case since the combustion duct operating temperatures are low.

Many models can be constructed which describe this problem for a soot

particle. As an example, it is possible to analyze this problem by assuming

instantaneous heat transfer within the particle and by using a pressure and

temperature dependent surface chemical reaction which effects heat and mass

transfer (Ref. 10). This model is complex and depends on many parameters.

In this paper the particles are assumed to have a uniform temperature.

This is assumed to be due to some unspecified pressure and temperature de-

pendent surface chemical reaction. The model produced is dependent on only

the ratio of Ts to acs.
a

It is possible to analyze this problem by ignoring surface chemical re-

action effects on heat and mass transfer and by assuming instantaneous heat

transfer within the particle. The resulting thermal relaxation time for a

1 um particle is about 0.3 usec which shows that this type of particle quickly
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follows any temperature change and does not have a constant, uniform tempera-

ture, however, experiments show that smoke concentrations of soot particles

are reduced as soot travels from a measuring station at the primary combustion

zone to one at the combustor exhaust (Ref. 43). Consequently, surface chemical

reactions cannot be ignored. Further study is needed to discover what assump-

tions are best for analyzing this problem.

CONCLUDING REMARKS

A model for acoustic plane wave propagation in a combustion duct through

a confined, flowing gas containing soot particles was presented. The model

takes into account only heat transfer between the gas and soot particles. As

a result, the model depends on only a single parameter which can be written

as the ratio of the soot particle thermal relaxation time to the soot particle

mass fraction. The model yields expressions for the attenuation and dispersion

of the plane wave which depend only on this single parameter.

The model was-used to calculate pressure spectra in ;, combustion duct.

The results were compared with measured spectra. For particular values of

the single free parameter the calculated spectra resemble the measured spectra.

Consequently, the model, to this extent, explains the experimental measurements

and provides some insight into the number azid type of particles.

i,
t
i
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Table I. - Parameters used to calculate dispersion and attenuation due

to soot particle-gas heat transfer

T , K	 922.0

Y
K, W/m-k	 5.38x10-2

PO, lrg/M5 	 6.378

cps J /kg-K	 1100.0

Y	 1.4

ps, kg/M3 	1880.0

rs. m	 0.342x10-6

co , m/sec	 609.0

ms, kg	 3.15x30-16

Ts , sec	 1.5x10-6

Example

1	 2 3
Isothermal	 Mixed Adiabatic

n, number/m3 1.8x1013	 1.8x1012 1.8x1011

nms , gm/m3 5.67	 0.567 0.0567

Ks> Nms/Po 1.5x10-2	 1.5x10-3 1.5x10-4

TS /K S , sec 1x104	 1x10-3 1x10-2

P"
1. .

ti
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Figure 1. - Ducted combustion system.
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Figure 4. - Comparison of measured and calculated pressure spectra near
entrance to long duct.

(a) TS/Ks . 0. 01, K S -1.5x10`4;

(u) TS/KS a 0.001, KS - 1.5X10`3.
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Figure 5. - Calculated attenuation and dispersion.
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Figure 6. - Effect of flow velocity on computed pressure
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